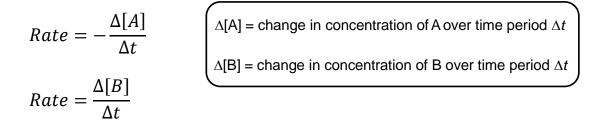
Chapter 13

Chemical Kinetics Sections: 13.1 – 13.9

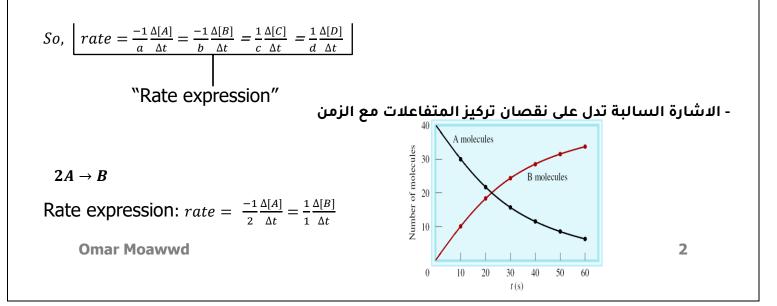
Example


Definition of Reaction Rate

Chemical kinetics: The study of reaction rates, including how reaction rates change with varying conditions and which molecular events occur during the overall reaction.

 Reaction rate (معدل سرعة التفاعل): The change in the concentration of a reactant or a product with time (M/s).

معدل سرعة التفاعل: التغير في تركيز المتفاعلات أو النواتج لكل وحدة زمن.



 $M/s = mol/L \cdot s = mol L^{-1} s^{-1}$:(Rate) وحدة سرعة التفاعل

إذا كان لدينا المعادلة التالية:

 $aA + bB \rightarrow cC + dD$

Example 1:

Write the rate expressions for the following reactions in terms of the disappearance of the reactants and the appearance of the products:

- 1. $2KClO_3 \rightarrow 2KCl + 3O_2$
- 2. $2KClO_3 + 4KCl \rightarrow 6KCl + 3O_2$
- 3. $I^- + OCl^- \rightarrow Cl^- + OI^-$

Solution:

1.
$$Rate = \frac{-1}{2} \frac{\Delta[KClO_3]}{\Delta t} = \frac{1}{2} \frac{\Delta[KCl]}{\Delta t} = \frac{1}{3} \frac{\Delta[O_2]}{\Delta t}$$

2.
$$Rate = \frac{-1}{2} \frac{\Delta[KClO_3]}{\Delta t} = \frac{-1}{4} \frac{\Delta[KCl]}{\Delta t} = \frac{1}{6} \frac{\Delta[KCl]}{\Delta t} = \frac{1}{3} \frac{\Delta[O_2]}{\Delta t}$$

3.
$$Rate = \frac{-1}{1} \frac{\Delta[I^-]}{\Delta t} = \frac{-1}{1} \frac{\Delta[OCl^-]}{\Delta t} = \frac{1}{1} \frac{\Delta[Cl^-]}{\Delta t} = \frac{1}{1} \frac{\Delta[OI^-]}{\Delta t}$$

Example 2:

Suppose that, at a particular moment during the reaction, molecular NO_2 is formed at the rate of 0.036 *M*/s.

- (a) At what rate is N_2O_5 being reacting?
- (b) At what rate is O₂ formed?

Solution:

$$Rate = \frac{-1}{2} \frac{\Delta[N_2 O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta[N O_2]}{\Delta t} = \frac{1}{1} \frac{\Delta[O_2]}{\Delta t} , \frac{\Delta[N O_2]}{\Delta t} = 0.036 \text{ M/s}$$
$$a. \quad \frac{-1}{2} \frac{\Delta[N_2 O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta[N O_2]}{\Delta t} ,$$
$$\frac{\Delta[N_2 O_5]}{\Delta t} = -2 \times \frac{0.036}{4} = -0.018 \text{ M/s}$$

b.
$$\frac{1}{4} \frac{\Delta[NO_2]}{\Delta t} = \frac{1}{1} \frac{\Delta[O_2]}{\Delta t} ,$$
$$\frac{\Delta[O_2]}{\Delta t} = \frac{0.036}{4} = 0.009 M/s$$

Dependence of Rate on Concentration

Rate law: the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers.

$$aA + bB \rightarrow cC + dD$$

 $Rate = k[A]^{x}[B]^{y}$

x = order of A _A رتبة y = order of B _B رتبة x + y = order of the reaction رتبة التفاعل k = Rate constant

(تحديد رتبة التفاعل بطريقتين)

- 1. x + y = 0, zero order reaction
- 2. x + y = 1, first order reaction
- 3. x + y = 2, second order reaction
- 4. x + y = 3, third order reaction

Order of the reaction	Units of k
1. Zero order	$mol \ L^{-1} \ s^{-1} = M \ s^{-1}$
2. First order	s ⁻¹
3. Second order	$L mol^{-1} s^{-1} = M^{-1} s^{-1}$
4. Third order	$L^2 mol^{-2} s^{-1} = M^{-2} s^{-1}$

Example 3:

Consider the following data of the oxidation of iodide with hydrogen peroxide:

Determine:

$$H_2O_2 + 3I^- + 2H^+ \rightarrow I_3^- + 2H_2O$$

(a) the rate law

(b) the rate constant

(c) the rate of the reaction when $[I^-] = 0.03 M$, $[H^+] = 6.0 \times 10^{-3} M$

and $[H_2 O_2] = 5.0 \times 10^{-3} M$

Solution:

a. $rate = k [H_2O_2]^x [I^-]^y [H^+]^z$ b. To find k you should know x , y and z Exp 4 ÷ 1: $\frac{1.15 \times 10^{-6} = k [0.010]^x [0.010]^y [0.00100]^z}{1.15 \times 10^{-6} = k [0.010]^x [0.010]^y [0.00050]^z} \rightarrow$

$$\frac{1.15 \times 10^{-6}}{1.15 \times 10^{-6}} = \frac{k}{k} \left(\frac{0.010}{0.010}\right)^x \left(\frac{0.010}{0.0.10}\right)^y \left(\frac{0.00100}{0.00050}\right)^z$$

$$\to 1 = 1^x 1^y 2^z \ \to 1 = 2^z \ \to z = 0$$

Exp. No.	Initial $[H_2O_2]_0$ (M)	Initial $[I^{}]_0$ (M)	Initial $\left[H^{^{+}} \right]_{_{0}} (M)$	Initial Rate (M/s)
1	0.010	0.010	0.00050	1.15×10^{-6}
2	0.020	0.010	0.00050	2.30×10^{-6}
3	0.010	0.020	0.00050	2.30×10^{-6}
4	0.010	0.010	0.00100	1.15×10^{-6}

Exp 3 ÷ 1:
$$\frac{2.30 \times 10^{-6}}{1.15 \times 10^{-6}} = \frac{k}{k} \left(\frac{0.010}{0.010} \right)^x \left(\frac{0.020}{0.010} \right)^y \left(\frac{0.00050}{0.00050} \right)^0$$

$$2 = 2^y \rightarrow y = 1$$
Exp 2 ÷ 1: $\frac{2.30 \times 10^{-6}}{1.15 \times 10^{-6}} = \frac{k}{k} \left(\frac{0.020}{0.010} \right)^x \left(\frac{0.010}{0.010} \right)^1 \left(\frac{0.00050}{0.00050} \right)^0$

$$2 = 2^x \rightarrow x = 1$$
Let we chose Exp 1: $rate = k \left[H_2 O_2 \right]^1 [I^-]^1 [H^+]^0 \rightarrow rate = k [H_2 O_2] [I^-]$

$$1.15 \times 10^{-6} = k \times 0.010^1 \times 0.010^1$$

$$k = \frac{1.15 \times 10^{-6} M/s}{0.010 M \times 0.010 M} = 0.0115 M^{-1} s^{-1}$$
C. $rate = k [H_2 O_2] [I^-] = 0.0115 \times 5 \times 10^{-3} \times 0.03 \times 0.006^0 = 1.7 \times 10^{-6} M/s$

Example 4:

The reaction of nitric oxide with hydrogen at 1280°C is

If the rate constant is $2.5 \times 10^2 M^{-2} s^{-1}$, find the rate of the reaction when

 $[NO] = 0.055 M and [H_2] = 0.01 M$

Exp. No.	[<i>NO</i>]	[<i>H</i> ₂]	(M/s)
1	0.005	0.002	1.3 × 10 ⁻⁵
2 0.01		0.002	5 × 10 ⁻⁵
3	0.01	0.004	10 × 10 ⁻⁵

Solution:

 $rate = k[NO]^{x}[H_{2}]^{y}$

Firstly, we should find x and y , Exp 2 ÷ 1: $\frac{5 \times 10^{-5}}{1.3 \times 10^{-5}} = \frac{k}{k} \left(\frac{0.01}{0.005}\right)^x \left(\frac{0.002}{0.002}\right)^y \rightarrow \cong 4 = 2^x \rightarrow x = 2$

From rate constant: $M^{-2}s^{-1}$, so order of the reaction is third order (3 = رتبة التفاعل)

 $rate = k[NO]^{2}[H_{2}] = 2.5 \times 10^{2} \times 0.055^{2} \times 0.01 = 7.56 \times 10^{-3} M/s$

Change of Concentration with Time

To calculate the concentration of a reactant (or product) after some time of starting the reaction

We use Integrated Rate Laws (Concentration—Time Equations)

كيفية حساب التركيز في التفاعل بعد مدة معينة من الزمن من بدأ التفاعل

• First-Order Reactions For $A \rightarrow Product$ Rate = k[A] $k = \frac{rate}{[A]} = \frac{M/s}{M} = s^{-1}$ $ln[A] = ln[A^{\circ}] - kt$ $or, ln\left(\frac{[A]}{[A^{\circ}]}\right) = -kt$ [A] is the concentration of A at any time t $[A]_0$ is the concentration of A at time t = 0 Slope = -k $Intercept = ln [A^{\circ}]$

Half-life, $t_{1/2}$

is the time required for the concentration of a reactant to decrease to half of its initial concentration.

الزمن اللازم لخفض تركيز المادة المتفاعلة إلى نصف تركيزها الأول.

$$t_{1/2} = t$$
 , when $[A] = \frac{[A^\circ]}{2}$

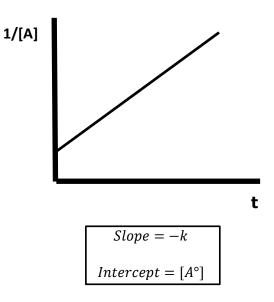
Half-life for first order is:

$$ln[A] = ln[A^{\circ}] - kt \rightarrow kt_{1/2} = ln[A^{\circ}] - ln[A]$$

$$\rightarrow kt_{1/2} = \ln\left(\frac{[A^\circ]}{[A^\circ]/2}\right) = kt_{1/2} = \ln 2$$

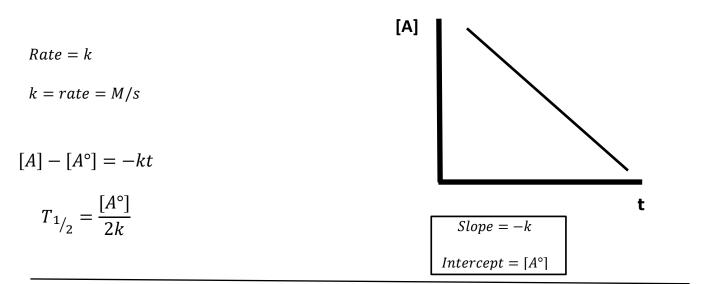
So,
$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$$

Second-Order Reactions


$$Rate = k[A]^{2}$$

$$k = \frac{rate}{[A]^{2}} = \frac{M/s}{M^{2}} = M^{-1} s^{-1}$$

$$\frac{1}{[A]} - \frac{1}{[A^{\circ}]} = kt$$


$$T_{1/2} = \frac{1}{k[A^{\circ}]}$$

Omar Moawwd

8

• Zero-Order Reactions

Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions

Order of the reaction	Order	Rate law	Units of k	Concentration time equation	Half-Life	Straight- Line Plot
Zero order	0	Rate = k	M s ⁻¹	$[A] - [A^\circ] = -kt$	$T_{1/2} = \frac{[A^\circ]}{2k}$	[A] vs t
First order	1	Rate = k[A]	s ⁻¹	$\ln[A] = \ln[A^\circ] - kt$	$T_{1/2} = \frac{ln2}{k}$	ln[A] vs t
Second order	2	$Rate = k[A]^2$	$M^{-1} s^{-1}$	$\frac{1}{[A]} - \frac{1}{[A^\circ]} = kt$	$T_{1/2} = \frac{1}{k[A^\circ]}$	$\frac{1}{[A]}$ vs t

Example 5:

The hydrolysis of a certain compound A follows first-order kinetics with a rate constant of $2.5 \times 10^{-3} s^{-1}$ at 25°C. If the initial concentration of A is 0.020 mol/L, determine:

- 1. The concentration of A after 300 seconds.
- 2. How long in minutes it takes for the concentration of A to decrease to 0.010 mol/L from its initial value?

Solution:

1.
$$ln[A] = ln[A^{\circ}] - kt$$

 $ln[A] = ln[0.020] - 2.5 \times 10^{-3} \times 300$
 $ln[A] = -4.66 \rightarrow [A] = e^{-4.66} = 9.45 \times 10^{-3} M$
2. $ln[A] = ln[A^{\circ}] - kt$
 $ln[0.010] = ln[0.020] - 2.5 \times 10^{-3} \times t$
 $t = \frac{ln[0.010] - ln[0.020]}{-2.5 \times 10^{-3}} = 277 s = 4.6 min$

Example 6:

A second-order reaction is 46% complete at the end of 33 minutes. What is the length of the second halflife of this reaction?

A. 2225 s
B. 40 min
C. 27 min
D. 39 min
E. 38.8 s
Solution:

$$\frac{1}{[A]} - \frac{1}{[A^\circ]} = kt$$

 $k = \frac{1}{t} \left(\frac{1}{[A]} - \frac{1}{[A^\circ]} \right) = \frac{1}{33 \min \times 60 \ s/min} \left(\frac{1}{54} - \frac{1}{100} \right) = \frac{1}{1980 \ s} \times 8.52 \times 10^{-3} \ M^{-1} = 4.3 \times 10^{-6} \ M^{-1} \ s^{-1}$
 $T_{1/2} = \frac{1}{k[A^\circ]} = \frac{1}{4.3 \times 10^{-6} \times 100} = 2325.6 \ s = 38.8 \ min$
Omar Moawwd
10

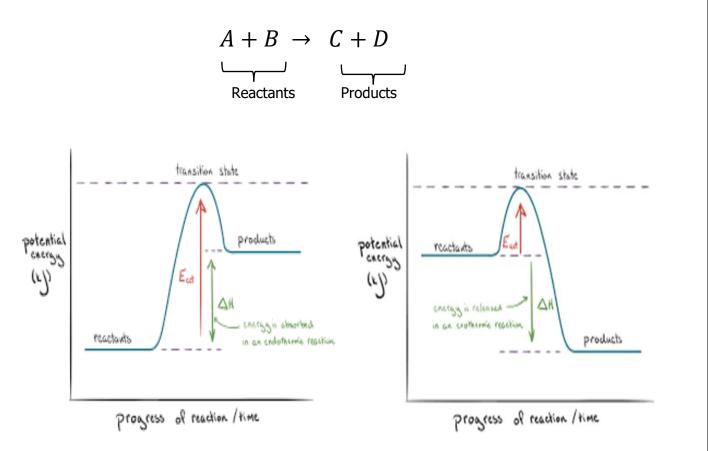
Example 7:

The decomposition of compound A is a reaction with a rate constant of 1.8×10^{-2} M/s at 30°C. determine:

- a. How long it takes for the concentration of A to decrease from 0.058 M to 0.004 M?
- b. How long (in minutes) will it take to convert 63 percent of the starting material?
- c. Calculate the half-life of the reaction if the initial concentration of A is 0.0055 *M* and if it is 0.001 *M*.

Solution:

a. $[A] - [A^\circ] = -kt$


 $0.004 - 0.058 = -1.8 \times 10^{-2} \times t \rightarrow t = \frac{0.004 - 0.058}{-1.8 \times 10^{-2}} = 3 s$

b. $[A] - [A^{\circ}] = -kt$

 $37 - 100 = -1.8 \times 10^{-2} \times t \rightarrow t = \frac{37 - 100}{-1.8 \times 10^{-2}} = 3500 \, s = 58 \, min$


• Temperature and Rate; Collision and Transition-State Theories				
Effect of temperature on the reaction rate:				
تأثير درجة الحرارة على سرعة التفاعل:				
Temperature $\uparrow \rightarrow Kinetic energy \uparrow \rightarrow number of collision \uparrow \rightarrow rate of the reaction \uparrow \rightarrow rate constant (k) ↑ثابت سرعة التفاعل سرعة التفاعل عدد التصادمات الطاقة الحركية درجة الحرارة$				
In collision theory, the rate constant (k) for a reaction depends on:				
1. The collision frequency (number of collisions per unit time)				
2. The fraction of collisions having energy greater than the activation energy (Ea)				
activation energy (E _a) (طاقة التنشيط): The minimum amount of energy required to				
initiate a chemical reaction.				
طاقة التنشيط: أقل طاقة لازمة لحدوث التفاعل الكيميائي .				

	Endothermic reaction	Exothermic reaction
Reactants and products	Reactants < products	Reactants > products
ΔH إشارة	+	-
Ea	$E_{a_{endo}} > E_{a_{exo}}$	$E_{a_{endo}} > E_{a_{exo}}$
E_a forward and E_a reverse	E_a forward > E_a reverse	E_a forward < E_a reverse

(طارد للحرارة) Exothermic reaction (ماص للحرارة)

Rate constant is related to temperature with Arrhenius Equation.

Example 8:

The rate constant of a first-order reaction is $2.58 \times 10^{-3} s^{-1}$ at 0°C.

If the activation energy for the reaction is 45.6 kJ/mol, what is the rate constant at 37°C?

Solution:

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln \left(\frac{2.58 \times 10^{-3}}{k_2} \right) = \frac{45600}{8.314} \left(\frac{1}{310} - \frac{1}{273} \right)$$

$$ln \left(\frac{2.58 \times 10^{-3}}{k_2} \right) = -2.4 , \frac{2.58 \times 10^{-3}}{k_2} = e^{-2.4}$$

$$k_2 = \frac{2.58 \times 10^{-3}}{e^{-2.4}} = 0.028 \, s^{-1}$$

Example 9:

The rate constant for the decomposition of nitrogen pentoxide into nitrogen dioxide and oxygen is $1.2 \times 10^{-3} mol/L \cdot s$ at 400 K and $2.8 \times 10^{-2} mol/L \cdot s$ at 450 K.

- a. Find the activation energy E_a .
- b. Calculate the rate constant at 500 K.

Solution:

$$ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

a. $ln \left(\frac{1.2 \times 10^{-3}}{2.8 \times 10^{-2}} \right) = \frac{E_a}{8.314} \left(\frac{1}{450} - \frac{1}{400} \right)$
 $-3.15 = E_a \times -3.34 \times 10^{-5}$
 $\rightarrow E_a = 94280 J = 94.28 KJ$

 $\begin{aligned} k_1 &= 1.2 \times 10^{-3} \; mol/L \cdot s, \; k_2 &= 2.8 \times 10^{-2} \; mol/L \cdot s \\ T_1 &= \; 400 \; K \; , \quad T_2 &= \; 450 \; K \\ E_a &= \; ?? \; , \; R = 8.314 \; J/K \cdot mol \end{aligned}$

b.
$$ln\left(\frac{1.2 \times 10^{-3}}{k_2}\right) = \frac{94280}{8.314} \left(\frac{1}{500} - \frac{1}{400}\right)$$

 $ln\left(\frac{1.2 \times 10^{-3}}{k_2}\right) = -5.67$, $\frac{1.2 \times 10^{-3}}{k_2} = e^{-5.67}$
 $k_2 = \frac{1.2 \times 10^{-3}}{e^{-5.67}} = 0.35 M^{-1} s^{-1}$

$$k_{1} = 1.2 \times 10^{-3} \frac{mol}{L} \cdot s, \ k_{2} =??$$
$$T_{1} = 400 \ K, \qquad T_{2} = 500 \ K$$
$$E_{a} = 94280 \ J, \ R = 8.314 \ J/K \cdot mol$$

• Elementary reactions and reaction mechanism

A balanced chemical equation is a description of the overall result of a chemical reaction.

The overall reaction is actually made from several one-step reactions. Each is called **Elementary** reaction:

$$NO_2 + F_2 \rightarrow NO_2F + F$$
Elementary reaction 1 $F + NO_2 \rightarrow NO_2F$ Elementary reaction 2 $2NO_2 + F_2 \rightarrow 2NO_2F$ Overall reaction

The sequence of elementary steps that leads to product formation is the reaction mechanism.

Example 10:

Consider the following elementary reactions

 $Cl_2 \rightleftharpoons 2Cl$

 $Cl + CHCl_2 \rightarrow HCl + CCl_3$

$$Cl + CCl_3 \rightarrow CCl_4$$

Obtain the net, or overall, chemical equation from this mechanism.

```
Solution: Cl_2 + CHCl_3 \rightarrow HCl + CCl_4
```

molecularity of a reaction: the number of molecules reacting in an elementary step.

- Unimolecular reaction elementary step with 1 molecule
- Bimolecular reaction elementary step with 2 molecules
- Termolecular reaction elementary step with 3 molecules

	Example of reaction	Rate law
Unimolecular reaction	$A \rightarrow products$	rate = k [A]
Bimolecular reaction	$A + B \rightarrow products$ $A + A \rightarrow products$	rate = k [A][B] $rate = k[A]^2$
Termolecular reaction	$A + B + C \rightarrow products$ $2A + B \rightarrow products$ $A + A + A \rightarrow products$	$rate = k[A][B][C]$ $rate = k[A]^{2}[B]$ $rate = k[A]^{3}$

Example 11:

What is the molecularity of each step in the following mechanism?

$$\begin{array}{rcl} Cl_2 &\rightleftharpoons& 2Cl \\ \\ Cl+CHCl_2 &\to HCl+CCl_3 \end{array}$$

 $Cl + CCl_3 \rightarrow CCl_4$

Solution:

- The forward part of the first step is unimolecular.
- The reverse part of the first step is bimolecular.
- The second step is bimolecular.
- The third step is bimolecular.

The rate-determining step (RDS): the slowest step in the sequence of steps leading to product formation.

The rate-determining step should predict the same rate law that is determined experimentally.

- يجب أن يتوافق قانون سـرعة التفاعل مع التفاعل البطيئ (RDS) في التفاعل.

- يجب أن تكون مجموع كل المعادلات البطيئة والسريعة (الميكانيكا) تؤدي إلى المعادلة المطلوبة

(المعادلة النهائية).

Example 12: Consider the reaction of NO_2 with F_2 is believed to occur in the

Following steps:

 $2NO_2 + F_2 \rightarrow 2NO_2F$ $rate = k[NO]^x[F_2]^y$

 $NO_2 + F_2 \rightarrow NO_2F + F$ slow $rate = k_1[NO][F_2]$

 $F + NO_2 \rightarrow NO_2F$ fast $rate = k_2[NO][F]$

The rate of the overall reaction is: $rate = k_1 [NO_2]^1 [F_2]^1$ (same of slow reaction)

Intermediates (الوسيط): species that appear in a reaction mechanism but not in the overall balanced equation.

An intermediate is always formed in an early elementary step and consumed in a later elementary step.

الوسيط: هو المركب أو العنصر الذي يظهرمع النواتج في المعادلة الأولى في التفاعل ويظهر مع المتفاعلات في المعادلة الثانية ولكن لا يظهر أبداً في المعادلة النهائية للتفاعل.

Catalysis (المحفز): the increase in the rate of a reaction that results from the

addition of a catalyst.

Catalysis is always consumed in an early elementary step and formed in a later elementary step.

المحفز يظهر مع المتفاعلات في المعادلة الأولى ويظهر مع النواتج في المعادلة الثانية، ولكن لا يظهر أبداً في المعادلة النهائية للتفاعل.

Ex:

 $Cl + O_3 \rightarrow ClO + O_2$

 $ClO + O \rightarrow Cl + O_2$

 $O_3 + O \rightarrow 2 Q$ المعادلة النهائية للتفاع O_3 + O $\rightarrow 2 Q$ Intermediate: *ClO* Catalysis: *Cl*

Example 13:

Given the following mechanism:

 $NO_2 + F_2 \rightarrow NO_2F + F$

 $F + NO_2 \rightarrow NO_2F$

Identify the intermediate in the reaction.

A. NO_2 B. F_2 C. NO_2F D. \underline{F} E.None of these

Example 14:

Given the following mechanism:

 $A + B \rightleftharpoons C$

 $E \,+\, C \,+\, A \,\,\rightarrow\, D$

 $D + G \rightarrow E + W$

Identify the intermediates and catalysts in the reaction.

- A. C is intermediate, E is the catalyst
- B. B and D are intermediates, W is the catalyst
- C. C and D are intermediates, A is the catalyst
- D. G is intermediate, E and D are the catalysts
- E. C and D are intermediates, E is the catalyst

Example 15:

Consider the reaction of NO_{2} with F_{2} is believed to occur in the following steps:

Find the overall rate law for the reaction.

 $2N_2O_5 \rightarrow 4NO_2 + O_2$

Mechanism:

Step 1: $N_2O_5 \rightleftharpoons NO_2 + NO_3$ fast Step 2: $NO_2 + NO_3 \rightarrow NO_2 + NO + O_2$ slow Step 3 $NO + NO_3 \rightarrow 2NO_2$ fast

Solution:

Step 1:
$$N_2O_5 \Rightarrow NO_2 + NO_3$$
 fast rate = $k_1[N_2O_5]$
Step 2: $NO_2 + NO_3 \rightarrow NO_2 + NO + O_2$ slow rate = $k_2[NO_2][NO_3]$
Step 3: $NO + NO_3 \rightarrow 2NO_2$ fast rate = $k_3[NO][NO_3]$
 $2N_2O_5 \rightarrow 4NO_2 + O_2$ rate = $k[N_2O_5]^x$
So, rate = $k[NO_2][NO_3]$ but, rate = $k[N_2O_5]^x$
In equilibrium (⇒)(Step 1), $k_1[N_2O_5]^1 = k_{-1}[NO_2][NO_3]$
, $x = 1$

So, $rate = k[N_2O_5]$

Example 16:

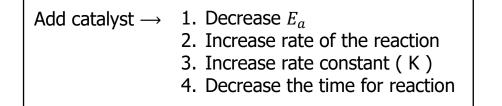
The reaction

 $3A + B \rightarrow C$

Given the following mechanism:

Step 1: $A + B \rightleftharpoons D$ (fast equilibrium)

Step 2: $D + B \rightarrow E$


Step 3: $E + 2A \rightarrow C + B$

If step 2 is the rate – determining step, then the rate of formation of *C* should equal:

- A. $k[A]^{3}[B]$
- *B.* $k[B]^2$
- C. $k[A][B]^2$
- D. $k[A]^2[B]^3$
- *E. k*[*A*]

• Catalyst

Catalyst: is a substance that increases the rate of a chemical reaction without itself being **consumed.**

 $A + B \rightarrow C + D$ for equation progress $A + B \rightarrow C + D$ for equation progress for equation progres

Types of catalysts:

1. Homogenous: Same phase of catalyst and reaction material.

Ex:
$$\frac{3}{2}O_{2(g)} \xrightarrow{NO(g)} O_{3(g)}$$

2. Heterogeneous: Different phase of catalyst and reaction material.

Ex:
$$C_2H_{4(g)} + H_{2(g)} \xrightarrow{Ni_{(s)}} C_2H_{6(g)}$$

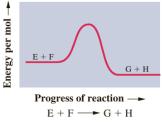
3. Enzymes

The substance whose reaction the enzyme catalyzes is called the **substrate**.

Problems:

1) Consider the reaction $E + F \rightarrow G + H$, which has the following reaction coordinate diagram. Which one of the following statements is true?

- a) The activation energy is greatest for the forward reaction.
- b) The reactants are at a lower energy than the products.
- c) The reaction is endothermic.
- d) The rate of the forward reaction would be slowed by an increase in temperature.
- e) If the rate law for the reaction is Rate = $k[E]^2[F]$, then doubling the concentration of E will cause the rate to increase by a factor of 4 (that is, the reaction will proceed four times faster).


2) Identify the **INCORRECT** statement below concerning chemical kinetics:

- a) The rate of a chemical reaction changes with time.
- b) The rate constant of a reaction generally depends on the concentrations of species.
- c) The rate of a chemical reaction is affected by the temperature of the reaction.
- d) The rate law of a chemical reaction bears no relationship with the balancing coefficients of the overall reaction.
- e) The rate law expresses how the rate varies with concentration of species.

3) The hypothetical reaction $A + B + C \rightarrow D + E$ has the rate law $Rate = k[A]^2[B]$.

Which of the following changes would have the **least** effect on increasing the rate of this reaction?

- a) Doubling [A]0 while keeping [B]0 and [C]0 constant.
- b) Doubling [B]0 while keeping [A]0 and [C]0 constant.
- c) Doubling [C]0 while keeping [A]0 and [B]0 constant.
- d) Increasing the rate constant by running the reaction at a higher temperature.
- Adding a catalyst to the reaction mixture.
 Omar Moawwd

4) The rate law for the iodine clock reaction is given by: $Rate = k[IO_3^-][I^-]^2[H^+]^2$

a) This reaction is first order with respect to IO_3^- and third order overall.

- b) This reaction is second order with respect to I^- and 3rd order overall.
- c) This reaction is first order with respect to IO_3^- and fifth order overall.
- d) This reaction is third order with respect to H^+ .

5) Consider the following kinetic data collected at the very beginning of a reaction:

Which of the following is an appropriate expression for the rate law and rate constant?

Exp. No.	[A](M)	[<i>B</i>] (M)	(M/s)
1	0.1	0.1	0.009
2	0.2	0.1	0.036
3	0.1	0.2	0.018

- a) Rate = $k[A]^2[B]$; $k = 9.0 L^2/mol^2 \cdot s$
- b) Rate = $k[A]^2[B]$; $k = 0.9 L^2/mol^2 \cdot s$
- c) Rate = $k[A]^4[B]^2$; $k = 9.0 \times 10^3 L / mol \cdot s$
- d) Rate = $k[A][B]; k = 0.9 L / mol \cdot s$

6) Of the following factors, which cannot affect the rate of a chemical reaction?

- a) all can affect the rate
- b) Temperature
- c) presence of a catalyst
- d) concentration of reactants of the forward reaction
- e) physical state or state of subdivision of solid reactants

7) Consider the following rate law expression: $Rate = k[A]^2[B]$. Which of the following is **NOT TRUE** about the reaction having this expression?

- a) The reaction is overall third order.
- b) The reaction is first order in B.
- c) Doubling the concentration of A doubles the rate.
- d) The reaction is second order in A.

8) The gas phase reaction $A + B \rightarrow C$ has a reaction rate which is experimentally observed to follow the relationship $Rate = k[A]^2[B]$. If the concentration of A is tripled and the concentration of B is doubled, the reaction rate would be increased by a factor of:

a) 9 b) 6 c) 18 d) 12 e) 24

9) The collision theory of reaction rates:

- I. helps to expose how temperature affects the rate
- II. assumes that the rate depends on the frequency at which reactants collide.
- III. assumes that reactants must be in correct orientation to react.
- IV. assumes that only collisions with energy above the activation energy are successful
- a) I, II, and III are correct. IV is incorrect.b) I, III, and IV are correct. II is incorrect.c) II, III, and IV are correct. I is incorrect.d) All are correct statements.

10) The relationship between the rate constant and temperature is expressed by the:

a) Arrhenius equation.

c) integrated rate equation.

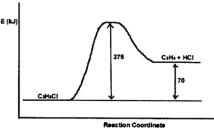
b) rate law.d) reaction mechanism

11) Identify the **INCORRECT** statement below:

- a) The rate of a typical reaction doubles with a 10° C rise in temperature.
- b) The overall rate of reaction is determined by the rate of the fastest elementary step.
- c) The reaction mechanism is a step-by-step pathway by which reaction occurs.
- d) The reaction mechanism is typically a series of elementary reaction steps.
- e) Reaction orders for a single elementary step are equal to the balancing coefficients for that step.

12) Which of the following statements about catalysts are **FALSE**?

- a) In homogeneous catalysis the catalyst is in the same phase as the reactants.
- b) Catalyst is often transition metals and transition metal oxides.
- c) A catalyst can make a nonspontaneous reaction spontaneous.
- d) A catalyst speeds up both the forward and reverse reaction.
- e) A catalyst lowers the activation energy.


13) Consider the following reaction: $2 N_2 O(g) \rightarrow 2 NO(g) + O_2(g)$; *rate* = $k[N_2 O]$ If the half-life for the reaction is 0.910 *s*, the rate constant is:

- a) $1.1 \, s^{-1}$
- *b*) 0.69*s*⁻¹
- *c*) 1.3*s*⁻¹
- *d*) $0.32 \, s^{-1}$
- *e*) $0.76 \, s^{-1}$

14) A reaction profile (not to scale!) for the reaction is shown below: $C_2H_5Cl \rightarrow C_2H_4 + HCl$

What is the activation energy of the **REVERSE** reaction, and is the **FORWARD** reaction exothermic or endothermic?

- a) 70 KJ and endothermic forward reaction
- b) 205 KJ and exothermic forward reaction
- c) 275 KJ and endothermic forward reaction
- d) 275 KJ and exothermic forward reaction
- e) 205 KJ and endothermic forward reaction

15) A proposed mechanism for one of the pathways for the destruction of ozone in the atmosphere is:

slow: $O_3 + NO \rightarrow NO_2 + O_2$

fast: $NO_2 + O \rightarrow NO + O_2$

Which species acts as a catalyst, intermediates and Which rate law for the overall reaction is consistent with this mechanism? **(In order)**

- a) O_3 , O, $k[O_3][NO]$
- b) NO, NO_2 , $k[O_3][NO]$
- c) NO, O_2 , $k[O][O_3][NO]$
- d) $0, NO_2, k[NO_2][0]$
- $e) NO_2, O_3, k[O_3][NO][O]$

Answers:

- 1) e (If the rate law for the reaction is Rate = $k[E]^2[F], \dots, \dots$)
- 2) b (The rate constant of a reaction generally depends on the concentrations of species)
- 3) c (Doubling [C]0 while keeping [A]0 and [B]0 constant)
- 4) c (This reaction is first order with respect to IO_3^- and fifth order overall)
- 5) a (Rate = $k[A]^2[B]$; $k = 9.0 L^2/mol^2 \cdot s$)
- 6) a (all can affect the rate)
- 7) c (Doubling the concentration of A doubles the rate)
 - 8) c (18)
 - 9) d (All are correct statements)
 - 10) a (Arrhenius equation)
 - 11) b (The overall rate of reaction is determined by the rate of the fastest elementary step)
 - 12) c (A catalyst can make a nonspontaneous reaction spontaneous)
 - **13) e** (0.76 s^{-1})
 - **14) e** (205 KJ and endothermic forward reaction)
 - **15) b** (*NO*, *NO*₂, $k[O_3][NO]$)