Linear – First exam – Second semester – 2019

Q1: Circle the correct answer :

- 1) If $A = \begin{bmatrix} -3 & 1 \\ 0 & 2 \end{bmatrix}$ and $p(x) = x^2 2x 1$, then p(A) = aa) $\begin{bmatrix} 14 & -4 \\ 0 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 14 & -3 \\ 0 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -3 \\ 0 & -1 \end{bmatrix}$ d) $\begin{bmatrix} 14 & 0 \\ 0 & -1 \end{bmatrix}$
- 2) For which values of the constant a does the system

$$(a+3)x + 8y = 0$$

ax + (a-3)y =0

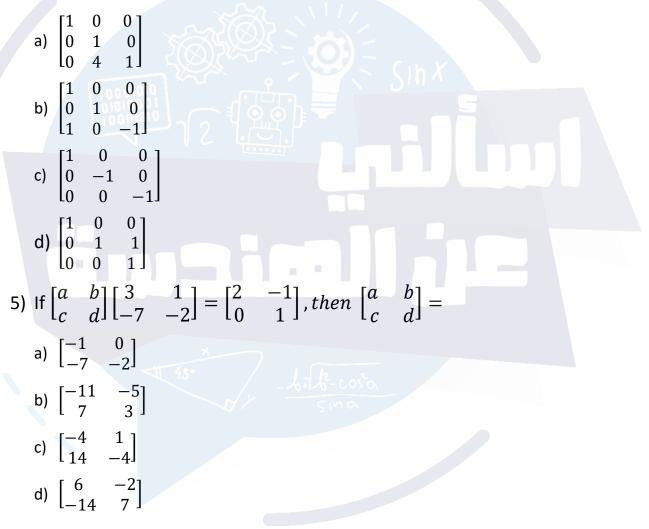
have only the trivial solution ?

- a) a ∈ **R {-9,1**}
- b) a ∈ **{-9,1**}
- C) a ∈ R {9,-1}
- d) a ∈ **{9,-1**}

3) det
$$\left(tr\left(\begin{bmatrix}4 & -3\\0 & 1\end{bmatrix}\right)\begin{bmatrix}-2 & 1\\-2 & 4\end{bmatrix}\right)$$
=

- a) 24
- b) -24
- c) 18
- d) -18

4) Which one of the following matrices is elementary:



6) What a condition on b_1 , b_2 and b_3 in order for the system:

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ -2 & -4 & 2 \end{bmatrix} \begin{bmatrix} X \\ y \\ Z \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 to be consistent ?

a) $b_3 = -2b_1$

b)
$$b_1 = 2b_2$$

- c) $b_1 = -2b_3$
- d) $b_2 = 2b_1$

7) If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -3$$
, then $\begin{vmatrix} a & 3d & -2g \\ b & 3e & -2h \\ c & 3f & -2i \end{vmatrix} =$

- a) -12
- b) 18
- c) -18
- d) -81
- 8) Which one of the following statements is false for any n x n matrices A and B.
 - a) $det(AB)^{-1} = det(A^{-1}) det(B^{-1})$
 - b) A (A+B) = $A^2 + AB$
 - c) $(A+B)^2 = A^2 + 2AB + B^2$
 - d) $(A^{-1} + B^{-1})^t = (A^t)^{-1} + (B^t)^{-1}$

9) The solution of the system

x + 2y + z =2 -x -y + 2z =-9 2x + y -z =7

is:

- a) {(1,2,-3)}
- b) {(-1,2,-3)}
- c) {(2,-1,1)}
- d) {(2,-9,7)}

Q2)

a) Use Cramer's Rule to solve the following system

X + 2z =2 -3x + 4y +6z =30 -x -2x +3z =8

Q3) Let A =
$$\begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 & -1 \\ -2 & 3 & -2 \end{bmatrix}$$

- 1) Find the adjoint of A.
- 2) Find the inverse of A.

Linear – First exam – First semester – 2019

Q1: let B = $\begin{bmatrix} 3 & 4 \\ 2 & 2 \end{bmatrix}$ a. Find B^{-1} b. If $(2A - 3I)^{-1}$ = B, find A. c. If BX = $\begin{bmatrix} 5 & 1 & 4 \\ -3 & -1 & -2 \end{bmatrix}$.Find X.

Q2: If A and B are 4×4 matrices, |A|=2 and |B|=5. Find:

- a. $|A^tB|$.
- b. |3*B*⁻²|.

Q3: Determine whether the following statements always true or sometimes false. (Justify your answer)

- a. If B is invertible and skew symmetric, then B^{-1} is skew symmetric.
- b. If the matrix A is invertible , then $adj(A^{-1})=(adj(A))^{-1}$

Q4: Determine all values of (b) that make the following system has NO solution.

x-3y+z=4 -x-7y+z=10 2x-y+z=b

Q5: Let A =
$$\begin{bmatrix} 2 & 1 & 3 \\ -1 & 4 & 2 \\ 2 & 1 & 5 \end{bmatrix}$$

Use adjoint method to find A^{-1} .

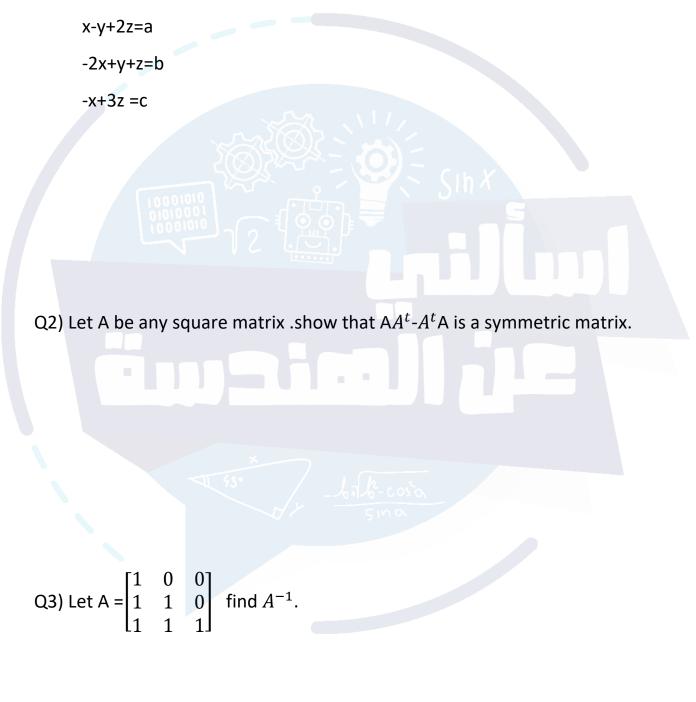
- a. For any matrix A, prove that the matrix C=A $A^t A^t A$ is symmetric .
- b. If B is invertible matrix and $AB^{-1} = B^{-1}A$. Prove that AB=BA.

& THE b) Give an example of 2×2 symmetric matrices A and B such that AB is not symmetric. $65B=\begin{bmatrix}3\\1\\2\end{bmatrix}$ AB= 3 1 Q3) a) Let $A = \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix}$. Find the values of a and b for which $A^{t}A = I$. $\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ atl = 63+1 az b) Let A be a square matrix such that $A^2 = 0$. Prove that A is not invertible. UN LADA det(0)=0-> $det(A^2) = 0 \rightarrow (det(A))^2 = 0$ dc+(A)=0 det(A)=0 A isnot invertable

the second Q4) Let A and B be 3×3 matrices such that det(A) = 2 and det(B) = -3. Find a) $det(A^{1}B^{-1})$ b) $det(\frac{1}{2}A)$ d) det(adj(B)). $det(A^{1}B^{-1})$ $(\frac{1}{2})^{3} det(A)$ $(det(B))^{n-1}$ $(\frac{1}{2}e^{1}det(B))^{3} det(B)$ $det(A) - \frac{1}{4e+(B)} = -\frac{1}{8}e^{2}$ $(-3)^{2} = 9$ $(\frac{1}{4e+(B)})^{3} det(B^{-1})^{3} de$ Q5) If $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -5$, find $\begin{vmatrix} -2a & -2c & -2b \\ d+3g & f+5i & e+3h \\ g & i & h \end{vmatrix}$. -2 a to b d+3g f+3i e+3h = 2 d+3g e+3h f+si g i h g h i $-3R_3+R_2$ a b c f = 2x-5 = -10 $-2\left|\begin{array}{c}a & b\\ d+3g & 1+3i & l+3h\end{array}\right| = -(-2)\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & b & c\\ d+3g & c+3h\end{array}\right| = 2\left|\begin{array}{c}a & c+3h\end{array}\right| = 2\left|\begin{array}{c$

Linear – First exam – First semester – 2022

Q1) Find the condition on a,b,c that the system is consistent :



Q4) Let A and B be 3x3 matrices such that det(A)=-2 and det(B)=4 . Find :

- a) det($A^{-1}B^2$)
- b) det($2A^t$)
- c) det(adj(B))

Q5) If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
 =-5, find $\begin{vmatrix} -4a & -4b & -4c \\ g & h & i \\ d+2g & e+2h & f+2i \end{vmatrix}$.

Q6) Use Cramer's rule to find the value of x_1 in the system of linear equations.

$$x_1 - 2x_2 + x_3 = -1$$

 $3x_1 + x_2 - x_3 = -12$
 $2x_1 + 3x_2 + 4x_3 = 1$

Linear-first-2022

Q1) (6 points)

- a) Let $A = \begin{bmatrix} 1 & k \\ 0 & -1 \end{bmatrix}$ find the value of k for which $AA^{t} = A^{t}A$
- b) Let A be a square matrix such that $A^2 2A + 3I = 0$. Show that A is invertible.

Q2: (6 points) For which value(s) of Λ does the system

 $(\Lambda - 1) x + y = 0$ X+ $(\Lambda - 1)y = 0$

Have nontrivial solutions?

Q3)(6 points)

- a) Let A be an invertible symmetric matrix . prove that A^{-1} is symmetric.
- b) Let A and B be square matrices of the same size such that AB =0.If A is invertible show that B =0.

Q4) (6 points) find the value of a such that the system

X+ 2y+ 9z = 102x+ 3y+ 17z = 16

 $X+y+(a^2-1)z=2a$

Is inconsistent.

