UNITS, PHYSICAL QUANTITIES, AND VECTORS

1.1.

1.2.

1.3.

1.4.

1.5.

IDENTIFY: Convert units from mi to km and from km to ft.
SETUP: 1in.=2.54 cm, 1 km =1000 m, 12 in. =1 ft, 1 mi =5280 ft.

EXECUTE: (a) 1.00mi:(1.00mi)(5280ﬁj(lzm'j[z'S“mj( w j(lkm)ﬂblkm

1 mi 1ft lin. 102 em \10° m
3 2 :
(b) 1.00 km = (1,00 km)| -2 || 10-cm | Lin. VR ). 550008 f
1 km 1 m 2.54 cm J\ 12 in.

EVALUATE: A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in
akm.

IDENTIFY: Convert volume units from L to in. .

SETUP: 1L=1000cm?’. 1in.=2.54 cm

1000 cm3] ( 1in.
X

3
=289 in.>.
1L 2.54 cm

EXECUTE: 0473 L x[

EVALUATE: 1in? is greater than 1 em’, so the volume in in> is a smaller number than the volume in

cm3, which is 473 cm?.
IDENTIFY: We know the speed of light in m/s. ¢ = d/v. Convert 1.00 ft to m and ¢ from s to ns.

SETUP: The speed of light is v =3.00x10% m/s. 1 ft =0.3048 m. 1 s =10° ns.

0.3048 m
EXECUTE: ¢= YN 4

3.00x10° m/s
EVALUATE: In 1.00 s light travels 3.00x10® m =3.00x10°> km =1.86x10° mi.

IDENTIFY: Convert the units from g to kg and from cm’ to m®.

SETUP: 1kg=1000g. 1 m=100 cm.

3
EXECUTE: 19.3i><[ L kg jx(loocmj :1.93><104k—%

em® (1000 g Im m

=1.02x107° s=1.02 ns

EVALUATE: The ratio that converts cm to m is cubed, because we need to convert cm® to m>.

IDENTIFY: Convert volume units from in> to L.
SETUP: 1L =1000 cm’. 1in.=2.54 cm.

EXECUTE: (327 in.})x(2.54 em/in.)® x (1L/1000 cm®) =5.36 L

EVALUATE: The volume is 5360 cm®

than the volume in in.>.

. lem?®isless than 1in., so the volume in cm’is a larger number



1-2 Chapter 1

1.6. IDENTIFY: Convert ft>to m?and then to hectares.
SETUP: 1.00 hectare =1.00x10* m?. 1t =0.3048 m.

2 2
EXECUTE: The areais (12.0 acres)[43’600 ft ](0'3048 mj [ 1.00 hectare j =4.86 hectares.

1 acre 1.00 ft 1.00x10* m?

EVALUATE: Since 1 ft =0.3048 m, 1 ft> =(0.3048)> m>.
1.7. IDENTIFY: Convert seconds to years. 1 gigasecond is a billion seconds.
SETUP: 1 gigasecond =1x10° s. 1day =24 h. 1h =3600s.

EXECUTE: 1.00 gigasecond = (1.00x10° s)( Lh j[ldayJ 1y Vo374
3600 s J\ 24 h /| 365 days

EVALUATE: The conversion 1y = 3.156x107 s assumes 1 y =365.24 d, which is the average for one

extra day every four years, in leap years. The problem says instead to assume a 365-day year.
1.8. IDENTIFY: Apply the given conversion factors.
SET Up: 1 furlong =0.1250 mi and 1 fortnight =14 days. 1day =24 h.

EXECUTE: (180,000 furlongs/fortnight) Gl 22hmn) |4 foriniaht YRS 67 mi/h
1 furlong 14 days 24 h

EVALUATE: A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a
much smaller number.

1.9. IpENTIFY: Convert miles/gallon to km/L.
SETUP: 1 mi=1.609 km. 1 gallon =3.788 L.

EXECUTEY (a) 55:0milc¥/allon = (55 Damiles/gallan)| =000 S0 |f L SAONR _ 50 4 sl
1 mi 3.788 L
(b) The volume of gas required is 1500 km_ =64.1L. _64IL =1.4 tanks.
23.4 km/L 45 L/tank

EVALUATE: 1mi/gal =0.425 km/L. A km is very roughly half a mile and there are roughly 4 liters in a
gallon, so 1 mi/gal ~% km/L, which is roughly our result.

1.10. IDENTIFY: Convert units.
SET UP: Use the unit conversions given in the problem. Also, 100 cm =1 m and 1000 g =1 kg.

EXECUTE: (a) (60E _Lh 52801 )_ oo ft
h /{ 3600s 1 mi S

®) (32£j 30.48 cm ( I m j:9.82
s? 11t 100 cm s?

3
g lOOcmj l1kg 3 kg
o) |1.0—=5|| ———| | —— |=10°—=
()( cnﬁ)( Im 1000 g m?

EVALUATE: The relations 60 mi/h =88 ft/s and 1 g/cm3 =10° kg/m3 are exact. The relation

32 fi/s> =9.8 m/s? is accurate to only two significant figures.
1.11.  IDENTIFY: We know the density and mass; thus we can find the volume using the relation
density = mass/volume = m/V. The radius is then found from the volume equation for a sphere and the

result for the volume.

SETUP: Density =19.5 g/em® and Meitical = 00.0 kg. For a sphere V' = %7[1’3.

EXECUTE: V =mg;.,/density = 60.0 ke 3 1000 | _ 3080 cm’.
19.5 g/cm 1.0 kg
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1.12.

1.13.

1.14.

1.15.

r= /3—V = /1(3080 cm’) =9.0 cm.
4r 4r

EVALUATE: The density is very large, so the 130-pound sphere is small in size.
IDENTIFY: Convert units.

SETUP: We know the equalities Img =107 g, 1 ug 1076 g, and 1kg =10° g.

-3
EXECUTE: (a) (410 mg/day)[llo_gj[ 1 ug j:4.10><105,ug/day.

mg \10° g
107 g
(b) (12 mg/kg)(75 kg) = (900 mg) 1 =0.900 g.
mg

10° g
1 mg
the number of grams recommended per day divided by the number of grams per tablet:
0.0030 g/day
2.0x107 g/tablet

(¢) The mass of each tablet is (2.0 mg)[ ] =2.0x10~ g. The number of tablets required each day is

=1.5 tablet/day. Take 2 tablets each day.

1 mg
103 g
EVALUATE: Quantities in medicine and nutrition are frequently expressed in a wide variety of units.

IDENTIFY: Model the bacteria as spheres. Use the diameter to find the radius, then find the volume and
surface area using the radius.

(d) (0.000070 g/day)[ J =0.070 mg/day.

SET UP: From Appendix B, the volume / of a sphere in terms of its radius is V' = 37[73 while its surface

arca A is A =47xr*. The radius is one-half the diameter or »=d/2=1.0 Mm. Finally, the necessary

equalities for this problem are: 1/m = 10%m; 1em=102 m; and 1 mm =107 m.

3
= 3
EXECUTE: V:%ﬂr3 :%E(I.O/Jm)} S ( lczm j =42x10""2 cm® and
1 ym 10" m

s 2 2

A=4m* = 47[(1.0,um)2[10 m] ( I mm j =1.3%107 mm®

lpm | \107° m
EVALUATE: On a human scale, the results are extremely small. This is reasonable because bacteria are not
visible without a microscope.
IDENTIFY: When numbers are multiplied or divided, the number of significant figures in the result can be
no greater than in the factor with the fewest significant figures. When we add or subtract numbers it is the
location of the decimal that matters.
SET UP: 12 mm has two significant figures and 5.98 mm has three significant figures.

EXECUTE: (a) (12 mm)X(5.98 mm) =72 mm? (two significant figures)

(b) 598 mm _ 0.50 (also two significant figures)
12 mm

(¢) 36 mm (to the nearest millimeter)

(d) 6 mm

(e) 2.0 (two significant figures)
EVALUATE: The length of the rectangle is known only to the nearest mm, so the answers in parts (c) and
(d) are known only to the nearest mm.

IDENTIFY: Use your calculator to display %107 Compare that number to the number of seconds in a year.
SETUP: 1yr=365.24 days, 1day=24h, and 1 h =3600 s.
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1.20.

EXECUTE: (36524 days/I yr)( 24h ][3600 s

1 day lh

The approximate expression is accurate to two significant figures. The percent error is 0.45%.
EVALUATE: The close agreement is a numerical accident.

IDENTIFY: To asses the accuracy of the approximations, we must convert them to decimals.

SET Up: Use a calculator to calculate the decimal equivalent of each fraction and then round the numeral
to the specified number of significant figures. Compare to 7t rounded to the same number of significant
figures.

EXECUTE: (a) 22/7 = 3.14286 (b) 355/113 = 3.14159 (¢) The exact value of  rounded to six significant
figures is 3.14159.

EVALUATE: We see that 355/113 is a much better approximation to « than is 22/7.

IDENTIFY: Express 200 kg in pounds. Express each of 200 m, 200 cm and 200 mm in inches. Express
200 months in years.

SET UP: A mass of 1 kg is equivalent to a weight of about 2.2 Ibs. 1 in.=2.54 cm. 1y =12 months.

j:3.15567...><107 s; 7x107 $=3.14159...x10" s

EXECUTE: (a) 200 kg is a weight of 440 1b. This is much larger than the typical weight of'a man.
1 in.

(b) 200 m =(2.00x 10* cm)( J =7.9x10> inches. This is much greater than the height of a person.

2.54 cm
(¢) 200 cm =2.00 m =79 inches = 6.6 ft. Some people are this tall, but not an ordinary man.
(d) 200 mm =0.200 m = 7.9 inches. This is much too short.

(e) 200 months = (200 mon)( ly
12 mon

j =17 y. This is the age of a teenager; a middle-aged man is much

older than this.

EVALUATE: None are plausible. When specifying the value of a measured quantity it is essential to give
the units in which it is being expressed.

IDENTIFY: Estimate the number of people and then use the estimates given in the problem to calculate the
number of gallons.

SET UP: Estimate 3x10® people, so 2x 10% cars.
EXECUTE: (Number of cars X miles/car day)/(mi/gal) = gallons/day
(2x10% carsx10000 mi/yr/carx1 yr/365 days)/(20 mi/gal) =3x10% gal/day

EVALUATE: The number of gallons of gas used each day approximately equals the population of the U.S.
IDENTIFY: Estimate the number of blinks per minute. Convert minutes to years. Estimate the typical
lifetime in years.

SET Up: Estimate that we blink 10 times per minute. 1 y =365 days. 1 day =24 h, 1 h =60 min. Use 80

years for the lifetime.

EXECUTE: The number of blinks is (10 per min)| 20T |[ 2401365 days | ¢ jifetime) = 4x10°
lh 1 day ly

EVALUATE: Our estimate of the number of blinks per minute can be off by a factor of two but our

calculation is surely accurate to a power of 10.

IDENTIFY: Approximate the number of breaths per minute. Convert minutes to years and cm’ to m° to

find the volume in m? breathed in a year.

SETUP: Assume 10 breaths/min. 1y =(365 d)(24 h}(ml%

Td ):5.3><105 min. 10> cm =1m so

3

10% cm® =1 m®. The volume of a sphere is V' = %7[1’ = %ﬂ'd 3, where r is the radius and d is the diameter.

Don’t forget to account for four astronauts.
5.3x10° min

EXECUTE: (a) The volume is (4)(10 breaths/min)(500x107% m3)[ 1
y

}zlxlo“ m>/yr.
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1/3 4 3 1/3
wae(&) (w1,
T

T

EVALUATE: Our estimate assumes that each cm® of air is breathed in only once, where in reality not all
the oxygen is absorbed from the air in each breath. Therefore, a somewhat smaller volume would actually
be required.

1.21. IDENTIFY: Estimation problem.
SET Up: Estimate that the pile is 18 in.x18 in.x5 ft 8 in.. Use the density of gold to calculate the mass of

gold in the pile and from this calculate the dollar value.

EXECUTE: The volume of gold in the pile is V' =18 in.x18 in.X 68 in. = 22,000 in. Convert to cm®:

¥V =22,000 in.> (1000 em?/61.02 in*) =3.6x10% cm’.
The density of gold is 19.3 g/cm3 , So the mass of this volume of gold is
m=(19.3 g/em’)(3.6x10° cm’) =7x10° g.
The monetary value of one gram is $10, so the gold has a value of ($10/gram)(7x10°® grams) = $7x107,

or about $100x10° (one hundred million dollars).
EVALUATE: This is quite a large pile of gold, so such a large monetary value is reasonable.

1.22. IDENTIFY: Estimate the number of beats per minute and the duration of a lifetime. The volume of blood
pumped during this interval is then the volume per beat multiplied by the total beats.
SET UP: An average middle-aged (40 year-old) adult at rest has a heart rate of roughly 75 beats per
minute. To calculate the number of beats in a lifetime, use the current average lifespan of 80 years.

EXECUTE: Ny . =(75 beats/min)[60 mmj( ik J(%S days}[ j =3x10° beats/lifespan

lh 1 day yr lifespan

1000 cm® J\ 3.788 L lifespan

EVALUATE: This is a very large volume.

9
Vilood = (50 cm3/beat)( 1L j( 1 gal j[3x10 beatsj =4x10’ gal/lifespan

1.23. IDENTIFY: Estimate the diameter of a drop and from that calculate the volume of a drop, in m>. Convert
mto L.
SET Up: Estimate the diameter of a drop to be ¢ =2 mm. The volume of a spherical drop is

14 :§m3 :%mﬁ. 10> em® =1L.

1000 cm®

— 5
3 =2x10

EXECUTE: V' =¢7(0.2 cm)3 =4x10~> cm®. The number of drops in 1.0 L is 3
4x10™° cm

EVALUATE: Since V ~d°, if our estimate of the diameter of a drop is off by a factor of 2 then our

estimate of the number of drops is off by a factor of 8.
1.24. IDENTIFY: Draw the vector addition diagram to scale.

SETUP: The two vectors A and B are specified in the figure that accompanies the problem.
EXECUTE: (a) The diagram for R = A + B is given in Figure 1.24a. Measuring the length and angle of
R gives R =9.0 mand an angle of 6 =34°.

(b) The diagram for E = A— B is given in Figure 1.24b. Measuring the length and angle of E gives
D =22 mand an angle of 6 =250°.

(¢) —A—B=—(A+B),so —A— B has a magnitude of 9.0 m (the same as 4 + B ) and an angle with the
+x axis of 214° (opposite to the direction of A + B).
(d) B—A=—(A-B),so B— Ahas a magnitude of 22 m and an angle with the +x axis of 70° (opposite

to the direction of A— B).
EVALUATE: The vector —A is equal in magnitude and opposite in direction to the vector A.
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1.25.

1.26.

=y

X

(@) (®)
Figure 1.24

IDENTIFY: Draw each subsequent displacement tail to head with the previous displacement. The resultant
displacement is the single vector that points from the starting point to the stopping point.

SET Up: (Call the three displacements A, B, and C. The resultant displacement R is given by
R=A+B+C.

EXECUTE: The vector addition diagram is given in Figure 1.25. Careful measurement gives that R is
7.8 km, 38° north of east.

EVALUATE: The magnitude of the resultant displacement, 7.8 km, is less than the sum of the magnitudes
of the individual displacements, 2.6 km +4.0 km + 3.1 km.

Figure 1.25

IDENTIFY: Since she returns to the starting point, the vector sum of the four displacements must be zero.
SET Up: Call the three given displacements A, B, and C, and call the fourth displacement D.
A+B+C+D=0.

EXECUTE: The vector addition diagram is sketched in Figure 1.26. Careful measurement gives that D
is 144 m, 41° south of west.

EVALUATE: D is equal in magnitude and opposite in direction to the sum A + B +C.

Figure 1.26
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1.27.

1.28.

1.29.

1.30.

1.31.

IDENTIFY: For each vector ¥, use that ¥, =V cosé and V, =Vsin@, when 6 is the angle V makes
with the +x axis, measured counterclockwise from the axis.

SETUP: For A, 6=270.0°. For B, §=60.0°. For C, =205.0°. For D, 6=143.0°.

EXECUTE: 4,=0, 4,=-8.00m. B, =7.50 m, B, =13.0 m. C, =-109 m, C;, =-5.07 m.

D, =-7.99 m, D, =6.02 m.

EVALUATE: The signs of the components correspond to the quadrant in which the vector lies.

A
IDENTIFY: tand = A—y, for & measured counterclockwise from the +x -axis.

X

SETUP: A sketch of 4,, 4, and A tells us the quadrant in which A lies.

EXECUTE:
4
@) tan 0= = 200M _ 6 500, 0= tan~(~0.500) = 360° — 26.6° = 333,
A, 200m
4
®) tan 0= 2=100M _ 560 6= tan~'(0.500) = 26.6°.
4, 2.00m
4
(© tan 0= =190 _ 4500 9= tan"!(~0.500) =180° = 26.6° =153°.
A —200m
4
(@) tan 0= 2 =200 _ 6 500, 9 = tan1(0.500) = 180° + 26.6° = 207°
4. —2.00m

X
EVALUATE: The angles 26.6° and 207° have the same tangent. Our sketch tells us which is the correct
value of 6.
IDENTIFY: Given the direction and one component of a vector, find the other component and the
magnitude.
SET Up: Use the tangent of the given angle and the definition of vector magnitude.

X

EXECUTE: (a) tan32.0°=

y

|4,] = (9.60 m)tan32.0° =6.00 m. 4, =—6.00 m.

(b) A= A4 +4 =113m.

EVALUATE: The magnitude is greater than either of the components.

IDENTIFY: Given the direction and one component of a vector, find the other component and the
magnitude.

SET Up: Use the tangent of the given angle and the definition of vector magnitude.

x

EXECUTE: (a) tan34.0°=

|4
|4,|= Al _160m oy
tan34.0° tan34.0°
4,=-237m.

(b) A=A+ 4> =28.6m.

EVALUATE: The magnitude is greater than either of the components.
IDENTIFY: If C=A+B, then C, = 4, + B and C,=4,+B,. Use C,and C, to find the magnitude and

direction of C.
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1.32.

1.33.

SET UP: From Figure E1.24 in the textbook, 4, =0, Ay =-8.00 mand B, =+Bsin30.0°=7.50 m,
B, =+Bc0s30.0°=13.0 m.

EXECUTE: (a) C=A+Bso C,=4,+B,=750mand C,=4,+B, =+500m. C=9.01m.

C
ang=—2=>00m 4 g=337°
C, 7.50m
(b) B+ A=A+B,so B+ A has magnitude 9.01 m and direction specified by 33.7°.
() D=A-Bso D,=4,-B,=-750mand D, =4, ~B,==21.0m. D=223m.
Dy —-21.0 m o Ta: - rd .
tang = D_ = —7 0 and ¢ =70.3°. Disinthe 3™ quadrant and the angle @ counterclockwise from the
-7.50 m

X

+x axis is 180°+70.3° =250.3°.
(d) B—A=—(A-B),so B— Ahas magnitude 22.3 m and direction specified by 8 =70.3°.

EVALUATE: These results agree with those calculated from a scale drawing in Problem 1.24.
IDENTIFY: Find the vector sum of the three given displacements.
SET UP: Use coordinates for which +x is east and +y is north. The driver’s vector displacements are:

A =2.6 km, 0° of north; B =4.0 km, 0° of east; C = 3.1 km, 45° north of east.

EXECUTE: R, =4, +B, +C,=0+4.0 km+(3.1km)cos(45°)=6.2km; R, =4, +B, +C, =

2.6 km +0+(3.1 km)(sin45°) =4.8 km; R =R} + R} =7.8 km; 0 = tan"[(4.8 km)/(6.2 km)] = 38°;
R =7.8 km, 38° north of east. This result is confirmed by the sketch in Figure 1.32.

EVALUATE: Both R, and R, are positive and R is in the first quadrant.

Figure 1.32

IDENTIFY: Vector addition problem. We are given the magnitude and direction of three vectors and are
asked to find their sum.

SET UP:
N A=3.25km
B
Al B=220km
c C =1.50 km
A
R
W E
S

Figure 1.33a
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1.34.

Select a coordinate system where +x is east and +y isnorth. Let A, B, and C be the three
displacements of the professor. Then the resultant displacement R is given by R = A+ B +C. By the
method of components, R, =4, +B +C and R =4, +B, +C,. Find the x and y components of each
vector; add them to find the components of the resultant. Then the magnitude and direction of the resultant
can be found from its x and y components that we have calculated. As always it is essential to draw a

sketch.
EXECUTE:

A,=0, 4, =43.25 km

B,=-220km, B, =0
C,=0,C, =-1.50 km
A J
R =4 +B +C,
R, =0-2.20 km+0=-2.20 km
& X Ry =Ay +By +Cy
R, =3.25km+0-1.50 km =1.75 km
C
Figure 1.33b
N
R R=\[R +R? =(-2.20 km)? +(1.75 km)?
. Ry R=2.81km
|
: ~ Y tane__y_ﬂ__ogoo
W B R, —220km
-
R, E 6=141.5°
S

Figure 1.33¢

The angle 6 measured counterclockwise from the +x-axis. In terms of compass directions, the resultant
displacement is 38.5° N of W.

EVALUATE: R <0 and R >0, so R is in the 2nd quadrant. This agrees with the vector addition

diagram.

A
IDENTIFY: Use 4 =, /AXZ + Aj and tan @ = —= to calculate the magnitude and direction of each of the
A

given vectors.
SETUP: A sketch of 4,, 4, and A tells us the quadrant in which A lies.

EXECUTE: (a) \/(—8.60 cm)? +(5.20 cm)? =10.0 cm, arctan( 5;6()0) =148.8° (which is180°—31.2°).

(b) \/(—9.7 m)” + (=2.45 m)> =10.0 m, arctan( 5) =14°+180° =194°.

(©) (7.75 km)? + (-2.70 km)? =821 km, arctan(%j =340.8° (which is 360°—19.2°).

EVALUATE: In each case the angle is measured counterclockwise from the +x axis. Our results for &
agree with our sketches.
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1.35. IDENTIFY: Vector addition problem. 4—B = A+ (—B).

SET UP: Find the x- and y-components of 4 and B. Then the x- and y-components of the vector sum are

calculated from the x- and y-components of 4 and B.
EXECUTE:

A, = Acos(60.0°)
A, =(2.80 cm)cos(60.0°) = +1.40 cm
A, = Asin(60.0°)
A, =(2.80 cm)sin (60.0°) = +2.425 cm
: B, = Bcos(=60.0°)
“’j | By B, =(1.90 cm)cos(—60.0°) = +0.95 ecm
: B, = Bsin(=60.0°)
B, =(1.90 cm)sin(—60.0°) =-1.645 cm

Note that the signs of the components correspond
to the directions of the component vectors.

Figure 1.35a

(a) Now let R = A+B.
R.=4,+B,=+1.40 cm +0.95 cm = +2.35 cm.
R, =4, +B, =+2.425 cm —1.645 cm = +0.78 cm.

R=\[R2+R? =/(2.35 cm)® +(0.78 cm)?

________ R
- : R=2.48 cm
y | +0.
6) | S P 319
| R & R, +235cm
X
0=184°

Figure 1.35b

EVALUATE: The vector addition diagram for R=A+B is

y R is in the Ist quadrant, with IR, |<IR|,

in agreement with our calculation.

Figure 1.35¢



Units, Physical Quantities, and Vectors

1-11

(b) EXECUTE: Now let R=A—B.

R. =4, —-B,=+1.40 cm—0.95 cm =+0.45 cm.
Ry = Ay —By =+2.425 cm +1.645 cm = +4.070 cm.

Figure 1.35d

R =[R2+ R? = /(0.45 cm)? +(4.070 cm)®
R=4.09 cm

EVALUATE: The vector addition diagram for R=A+ (—1§) is

Figure 1.35¢

(c) EXECUTE:

Figure 1.35f

Ris in the 1st quadrant, with |R |<|R,|,

in agreement with our calculation.

B-A=-(4A-B)
B-Aand A- B are equal in magnitude and

opposite in direction.
R=4.09 cm and 6 =83.7°+180° =264°
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EVALUATE: The vector addition diagram for R=B+ (—}i) is
y = .
R is in the 3rd quadrant, with [R|<|R |,
——x in agreement with our calculation.
B
R
—A
Figure 1.35¢g
1.36. IDENTIFY: The general expression for a vector written in terms of components and unit vectors is
A=A +A4,j.
SETUP: 5.0B =5.0(4i —6j)=20i —=30j
EXECUTE: (a) 4,=5.0, 4,=-63 (b) 4, =112, 4,=-991 (¢) 4, =-15.0, 4,=224
(@) 4,=20, 4,=-30
EVALUATE: The components are signed scalars.
1.37.  IDENTIFY: Find the components of each vector and then use the general equation A = Axf + Ay} for a
vector in terms of its components and unit vectors.
SETUP: 4,=0, 4,=-8.00m. B, =7.50 m, B, =13.0 m. C, =-10.9 m, C;, =-5.07 m.
D,=-799m, D, =6.02 m.
EXECUTE: A =(-8.00 m)j; B =(7.50 m)i +(13.0 m)j; C =(~10.9 m)i +(~5.07 m);
D =(=7.99 m)i +(6.02 m)j.
EVALUATE: All these vectors lie in the xy-plane and have no z-component.
1.38. IDENTIFY: Find 4 and B. Find the vector difference using components.

SET Up: Identify the x- and y-components and use 4 = 4 /Af + Aly2 g

EXECUTE: (a) A=4.00i +7.00j; A, =+4.00; 4, =+7.00.

A= 42+ 42 =/(4.00)* +(7.00)* =8.06. B =5.00i =2.00j; B

X

=+5.00; B, =-2.00;

B =B +B? =/(5.00)" +(~2.00)* =5.39.

EVALUATE: Note that the magnitudes of A and B are each larger than either of their components.
EXECUTE: (b) A— B =4.00i +7.00j—(5.00i —2.00) = (4.00—5.00)i +(7.00 +2.00) .
A—B=-1.00i +9.00]

(¢) Let R=A-B=-1.00i +9.00j. Then R, =-1.00, R, =9.00.
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1.39.

1.40.

1.41.

R- - - R =+/(~1.00)? +(9.00)> =9.06.
R
R, tan0:—‘—&——900
R -1.00

|

|

|

| )

| x
|

|

|

1

9——83.6 '180 —963 .
—___l
X

Figure 1.38

EVALUATE: R <0 and R, >0, so R is in the 2nd quadrant.
IDENTIFY: Use trigonometry to find the components of each vector. Use R, =4 + B _+--- and
Ry = Ay + By +-+- to find the components of the vector sum. The equation A = Axf + Ay} expresses a

vector in terms of its components.
SET Up: Use the coordinates in the figure that accompanies the problem.

EXECUTE: (a) A =(3.60 m)cos70.0% +(3.60 m)sin70.0°j = (1.23 m)i +(3.38 m)j

B =—(2.40 m)c0s30.0% — (2.40 m)sin30.0°j = (—2.08 m)i +(~1.20 m)j

(b) C =(3.00).4—(4.00) B = (3.00)(1.23 m)i +(3.00)(3.38 m) j—(4.00)(—2.08 m)i — (4.00)(—1.20 m)
C =(12.01 m)i +(14.94 m)j

A
(¢) From 4 :*/Aj +A4° and tan@ = —,
. A

x

c :\/(12.01 m)? +(14.94 m)?> =19.17 m, arctan IR -
12.01 m

EVALUATE: C, and C, are both positive, so @ is in the first quadrant.

IDENTIFY: We use the vector components and trigonometry to find the angles.

SET UpP: Use the fact thattan& =4 / 4 .

EXECUTE: (a) tan@ =4 /A =—— . 6 = 117° with the +x-axis.
-3.00

2.00
(b) tand =B /B =——. 0 =159°.
' 7.00
(¢) First find the components of C. C,= A_+B,=-3.00 + 7.00 = 4.00,
C =A, +B,=6.00+2.00=8.00

8.00
tanf=C /C =——=2.00. 0 =63.4°
~ 4.00

EvALUATE: Sketching each of the three vectors to scale will show that the answers are reasonable.
IDENTIFY: A and B are given in unit vector form. Find 4, B and the vector difference A — B.
SETUP: A=-2.00i +3.00j +4.00k, B =3.00{ +1.00/ —3.00k

Use 4=, /Af + Ai + Az2 to find the magnitudes of the vectors.

EXECUTE: (a) 4= \/A§ +42 + A2 =/(=2.00)° +(3.00)% + (4.00) =5.38
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1.42.

1.43.

1.44.

B=\[B2+B2+ B2 =/(3.00 +(1.00)* +(-3.00)* =436

(b) A- B =(-2.00i +3.00] +4.00k)—(3.00i +1.00j —3.00k)

A—B =(=2.00-3.00) +(3.00—1.00) j +(4.00 — (—3.00))k =—5.00i +2.00 +7.00k.
(¢c) Let C=A-B, so C,=-5.00, C, =+2.00, C, =+7.00

C=\/C2+C2+C2 =4(-5.00)% +(2.00)* +(7.00)> =8.83

B-A=—(A-B), so A—B and B— A have the same magnitude but opposite directions.
EVALUATE: A, B, and C are each larger than any of their components.
IDENTIFY: Target variables are A-B and the angle ¢ between the two vectors.

SETUP: We are given 4 and B in unit vector form and can take the scalar product using
A-B=AB,_+ A,B, +4.B, . The angle ¢ can then be found from A-B=ABcos¢.
EXECUTE: (a) A=4.00i +7.00j, B =5.00i —2.00j; 4=8.06, B=5.39.

A- B =(4.00i +7.00)-(5.00i —2.00j) = (4.00)(5.00) + (7.00)(—2.00) = 20.0—14.0 = +6.00.
(b) Cos¢=A-B __ 600
AB  (8.06)(5.39)

EVALUATE: The component of B along A is in the same direction as A, so the scalar product is
positive and the angle ¢ is less than 90°.

IDENTIFY: A-B= ABcos¢

SETUP: For A and B, ¢=150.0°. For B and C, ¢=145.0°. For A and C, ¢ =65.0°.

EXECUTE: (a) A-B =(8.00 m)(15.0 m)cos150.0° =—104 m?

(b) B-C =(15.0 m)(12.0 m)cos145.0° = —148 m>

(¢) A-C =(8.00 m)(12.0 m)cos65.0° = 40.6 m>

EVALUATE: When ¢ <90° the scalar product is positive and when ¢ >90° the scalar product is negative.

=0.1382; ¢ =82.1°.

IDENTIFY: Target Variab}e is the vector Ax B expressed in terms of unit vectors.

SET UP: We are given 4 and B in unit vector form and can take the vector product using
iXi=jxj=0,ixj=k, and jxi=—k.

EXECUTE: A=4.00i +7.00j, B =5.00i —2.00;.

Ax B =(4.00i +7.00j)x(5.00i —2.00j) =20.0i xi —8.00i X j +35.0jxi —14.0jx j. But i xi = jxj=0
and ixj=k, jxi=—k, so AxB=-8.00k +35.0(—k)=—43.0k. The magnitude of Ax B is 43.0.
EVALUATE: Sketch the vectors 4 and B in a coordinate system where the xy-plane is in the plane of the

paper and the z-axis is directed out toward you. By the right-hand rule Ax B is directed into the plane of
the paper, in the —z-direction. This agrees with the above calculation that used unit vectors.

o~

Figure 1.44
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1.45. IDENTIFY: For all of these pairs of vectors, the angle is found from combining A-B = ABcos¢ and

- ) _ A-B)_ AB +A4B,
A-B=AB . +A4,B, +A4.B,,togive the angle¢ as ¢ =arccos 5| arccos a3
SETUP: A-B= AB, +A4,B, + A.B. shows how to obtain the components for a vector written in terms

of unit vectors.
=22

mj =165°.

EXECUTE: (a) A-B=-22, A:m, BZ\/E, and so ¢:arccos[

o

- = 60
(b) A-B=60, 4=-/34, B=/136, ¢= arccos(mj B9ce.
(¢) A-B=0 and ¢ =90°.
EVALUATE: If 4-B>0, 0<$<90°. If A-B<0, 90°<¢<180°. If A-B=0, ¢ =90° and the two
vectors are perpendicular.
1.46. IDENTIFY: The right-hand rule gives the direction and |;1 X B| = ABsin ¢ gives the magnitude.
SETUP: ¢ =120.0°.

EXECUTE: (a) The direction of AxB is into the page (the —z-direction ). The magnitude of the vector
productis AB sing =(2.80 cm)(1.90 cm)sin120° =4.61 cm”.
(b) Rather than repeat the calculations, Bx A =— AxB may be used to see that Bx .4 has magnitude
4.61cm? and is in the +z-direction (out of the page).
EVALUATE: For part (a) we could use the components of the cross product and note that the only non-
vanishing component is C, =4, B, — 4, B, = (2.80 em)c0s60.0°(—1.90 cm)sin60°
—(2.80 cm)sin 60.0°(1.90 cm)co0s 60.0° = —4.61 cm?.
This gives the same result.
1.47. IDENTIFY: AXD has magnitude ADsing. Its direction is given by the right-hand rule.
SETUp: ¢ =180°-53°=127°
EXECUTE: (a) |Ax D|=(8.00 m)(10.0 m)sin127° = 63.9 m’. The right-hand rule says Ax D is in the
—z-direction (into the page).
(b) Dx A has the same magnitude as Ax D and is in the opposite direction.
EVALUATE: The component of D perpendicular to A is D = Dsin53.0°=7.99 m.
|AxD|= 4D, =63.9 m?, which agrees with our previous result.

1.48. IDENTIFY: Apply Egs. (1.16) and (1.20).
SET Up: The angle between the vectors is 20° +90° +30° =140°.

EXECUTE: (a) A-B = ABcos¢ gives A-B =(3.60 m)(2.40 m)cos140° =—6.62 m>.

(b) From |;1 X B| = ABsin ¢ , the magnitude of the cross product is (3.60 m)(2.40 m)sin140° = 5.55 m?
and the direction, from the right-hand rule, is out of the page (the +z-direction ).

EVALUATE: We could also use 4-B = AB, +A,B, + A.B, and the cross product, with the components

of Aand B.
1.49. IDENTIFY: We model the earth, white dwarf, and neutron star as spheres. Density is mass divided by
volume.

SETUP: We know that density = mass/volume = m/V where V' = 37[7’3 for a sphere. From Appendix B,
the earth has mass of m =5.97x10%* kg and a radius of » = 6.37x10°m whereas for the sun at the end of
its lifetime, m =1.99x10°*kg and » = 7500 km = 7.5x10° m. The star possesses a radius of = 10 km =
1.0x10*m and a mass of m =1.99x10> kg.
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1.50.

1.51.

1.52.

EXECUTE: (a) The carth has volume ¥ =4 7r° =2 7(6.37x10°m)’ =1.0827x10*' m’. Its density is

3
density =72 == = (5. 51x10° kg/m?) 10°g ( 12“‘ j =551 g/lem®
1kg N10° cm

. lg/cm3 6 3
density = — = ——————= =(1. 1x10° kg/m )| ———= | =1.1x10" g/cm
Vo 1.77x10*' m? 1000 kg/m*

(© V=47 =47(1.0x10*m)’ =4.19x10"* m’

1 g/cm3
1000 kg/m’

m 199x103°kg

density = — = ——"—__ =5 =(4.7x10"" kg/m )[ ] =4.7x10" g/om®

EVALUATE: For a fixed mass, the density scales as 1/r3. Thus, the answer to (c) can also be obtained
from (b) as

3
6
M =4.7x10"* g/em’.
1.0x10*m

IDENTIFY: Area is length times width. Do unit conversions.
SETUP: 1 mi=5280 ft. | ft’ =7.477 gal.

(1.1><106g/cm3)[

EXECUTE: (a) The area of one acre is é m1><8—10 mi = % m12 so there are 640 acres to a square mile.
) 2
() (1 acre)x| I | (3280817 15 560 42
640 acre 1 mi

(all of the above conversions are exact).

7.477 gal

(¢) (1 acre-foot) = (43,560 ft3)><[ o j =3.26x10° gal, which is rounded to three significant figures.

EVALUATE: An acre is much larger than a square foot but less than a square mile. A volume of 1 acre-
foot is much larger than a gallon.

IDENTIFY: The density relates mass and volume. Use the given mass and density to find the volume and
from this the radius.

SET Up: The earth has mass my =5. 97x10%** kg and radius g = 6.37x10° m. The volume of a sphere is
V=4zr’. p=1.76 g/em’ =1760 km/m’.
m _3.28x10% kg

EXECUTE: (a) The planet has mass m =5.5m; =3.28x10% kg. V' =—=""""—"_—5=186x10% m".
P 1760 kg/m
(Wj - | AL8OXI0T mT} 4107 m=1.64x10* km
4r 4r

(b) r=2.57r

EVALUATE: Volume V is proportional to mass and radius 7 is proportional to V13 soris proportional to
m"3_ If the planet and earth had the same density its radius would be (5. 5)1/ S =1 .81z. The radius of the

planet is greater than this, so its density must be less than that of the earth.

IDENTIFY and SET UP: Unit conversion.

EXECUTE: (a) f =1.420x10° cycles/s, so $=7.04x1071" s for one cycle.

1.420%10°
3600 s/h

011010 </ovel =5.11x10'? cycles/h
7.04x107"" s/cycle
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1.53.

1.54.

1.55.

(¢) Calculate the number of seconds in 4600 million years = 4.6X 10° y and divide by the time for 1 cycle:

(4.6x10° v)(3.156x10 sly)
7.04x107'0 g/cycle

e clock 1s off by I s in R y=1x Y, soin 4.60x y itis off by
(d) The clock is off by 1 s in 100,000 y =1x10° in 4.60x10° y itis off b

=2.1x10% cycles

9
(Is) 4'60—XISO =4.6x10% s (about 13 h).
1x10

EVALUATE: In each case the units in the calculation combine algebraically to give the correct units for the
answer.

IDENTIFY: Using the density of the oxygen and volume of a breath, we want the mass of oxygen (the
target variable in part (a)) breathed in per day and the dimensions of the tank in which it is stored.

SET UP: The mass is the density times the volume. Estimate 12 breaths per minute. We know 1 day =24 h,

1 h =60 min and 1000 L = 1 m’. The volume of a cube having faces of length /is ¥ = I°.

60 minj 24 h
l1h 1 day

one day is (3 L/breath)(17,280 breaths/day) = 8640 L =8.64 m’. The mass of air breathed in one day is the

density of air times the volume of air breathed: m = (1.29 kg/m’)(8.64 m’) =11.1 kg. As 20% of this
quantity is oxygen, the mass of oxygen breathed in 1 day is (0.20)(11.1 kg) =2.2 kg =2200 g.

EXECUTE: (a) (12 breaths/min)( j =17,280 breaths/day. The volume of air breathed in

b)yV=864m’>and V=10, s0/=V"=21m.

EVALUATE: A person could not survive one day in a closed tank of this size because the exhaled air is
breathed back into the tank and thus reduces the percent of oxygen in the air in the tank. That is, a person
cannot extract all of the oxygen from the air in an enclosed space.

IDENTIFY: Use the extreme values in the piece’s length and width to find the uncertainty in the area.
SET UP: The length could be as large as 7.61 cm and the width could be as large as 1.91 cm.
EXECUTE: (a) The area is 14.44 + 0.095 cm’.

2
(b) The fractional uncertainty in the area is 00‘9“5‘—01112 =0.66%, and the fractional uncertainties in the
cm
length and width are Oi0Lem= 0.13% and 01091 M = 0.53%. The sum of these fractional uncertainties is
cm .9 cm

0.13% +0.53% = 0.66%, in agreement with the fractional uncertainty in the area.

EVALUATE: The fractional uncertainty in a product of numbers is greater than the fractional uncertainty in
any of the individual numbers.
IDENTIFY: Calculate the average volume and diameter and the uncertainty in these quantities.

SET Up: Using the extreme values of the input data gives us the largest and smallest values of the target
variables and from these we get the uncertainty.

EXECUTE: (a) The volume of a disk of diameter d and thickness ¢ is V = 7z (d/ 2)2t.
The average volume is V' = 7(8.50 cm/2)2 (0.050 cm) =2.837 cm’. But¢is given to only two significant

figures so the answer should be expressed to two significant figures: V' =2.8 cm’.
We can find the uncertainty in the volume as follows. The volume could be as large as

V =r(8.52 cm/ 2)2(0.055 cm)=3.1 cm®, whichis 0.3 cm® larger than the average value. The volume
could be as small as V' = 7(8.48 cm/2)2(0.045 cm)=2.5 cm?, which is 0.3 cm® smaller than the average

value. The uncertainty is +0.3 cm’, and we express the volume as V' =2.8+0.3 cm’.
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(b) The ratio of the average diameter to the average thickness is 8.50 cm/0.050 cm =170. By taking the
largest possible value of the diameter and the smallest possible thickness we get the largest possible value
for this ratio: 8.52 cm/0.045 cm =190. The smallest possible value of the ratio is 8.48/0.055=150. Thus
the uncertainty is +20 and we write the ratio as 170 + 20.
EVALUATE: The thickness is uncertain by 10% and the percentage uncertainty in the diameter is much
less, so the percentage uncertainty in the volume and in the ratio should be about 10%.

1.56. IDENTIFY: Estimate the volume of each object. The mass m is the density times the volume.
SET UP: The volume of a sphere of radius ris V = %ﬂr3 . The volume of a cylinder of radius » and length
lis V =zr*l. The density of water is 1000 kg/m3.
EXECUTE: (a) Estimate the volume as that of a sphere of diameter 10 cm: V' =5.2x 1074 m?.
m =(0.98)(1000 kg /m>)(5.2x10™* m*) = 0.5 kg.
(b) Approximate as a sphere of radius » =0.254m (probably an overestimate): V' =6.5 x1072° m?,
m =(0.98)(1000 kg/m*)(6.5%1072° m*) =6x107!7 kg =6x107"* g.
(¢) Estimate the volume as that of a cylinder of length 1 cm and radius 3 mm: ¥ = 7zr* =2.8x10~" m".
m =(0.98)(1000 kg/m*)(2.8%107" m?) =3x10~* kg =0.3 g.
EVALUATE: The mass is directly proportional to the volume.

1.57. IDENTIFY: The number of atoms is your mass divided by the mass of one atom.
SET UpP: Assume a 70-kg person and that the human body is mostly water. Use Appendix D to find the
mass of one H,O molecule: 18.015 ux1.661x107%7 kg/u = 2.992x10726 kg/molecule.
EXECUTE: (70 kg)/(2.992x1072® kg/molecule) =2.34x10%” molecules. Each H,0 molecule has
3 atoms, so there are about 6x10%7 atoms.
EVALUATE: Assuming carbon to be the most common atom gives 3x10%” molecules, which is a result of
the same order of magnitude.

1.58. IDENTIFY: We know the vector sum and want to find the magnitude of the vectors. Use the method of

components.

SET UP: The two vectors A and B and their resultant C are shown in Figure 1.58. Let +y be in the
direction of the resultant. 4 = B.

EXECUTE: C,=4,+B,. 372N=24c0s36.0° gives 4=230 N.

EVALUATE: The sum of the magnitudes of the two forces exceeds the magnitude of the resultant force
because only a component of each force is upward.

y

o

-1
1

36.0°136.0°

Figure 1.58
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1.59.

1.60.

IDENTIFY: We know the magnitude and direction of the sum of the two vector pulls and the direction of
one pull. We also know that one pull has twice the magnitude of the other. There are two unknowns, the
magnitude of the smaller pull and its direction. 4, + B, =C and 4, + B, =C, give two equations for these
two unknowns.

SET UP: Let the smaller pull be A and the larger pull be B. B=2A. C = A+ B has magnitude 460.0 N
and is northward. Let +x be eastand +y be north. B, =—Bsin21.0°and B, = Bcos21.0°. C, =0,
C,=460.0 N. A must have an eastward component to cancel the westward component of B. There are
then two possibilities, as sketched in Figures 1.59 a and b. A can have a northward component or 4 can
have a southward component.

EXECUTE: In either Figure 1.59aorb, 4 +B_=C, and B =24 gives (24)sin21.0° = 4sin¢g and

¢ =45.79°. In Figure 1.59a, 4 + B, =C, gives 24c0s21.0° + 4c0s45.79°=460.0 N, so 4=179.4 N. In
Figure 1.59b, 2A4c0s21.0°— Aco0s45.79° =460.0 N and 4 =393 N. One solution is for the smaller pull to

be 45.8° east of north. In this case, the smaller pull is 179 N and the larger pull is 358 N. The other

solution is for the smaller pull to be 45.8° south of east. In this case the smaller pull is 393 N and the larger
pull is 786 N.

EVALUATE: For the first solution, with A east of north, each worker has to exert less force to produce the
given resultant force and this is the sensible direction for the worker to pull.

Figure 1.59

IDENTIFY: Let D be the fourth force. Find D such that A+B+C+D =0, so D= —(;1 +B+ C’).
SET UP:  Use components and solve for the components D, and D, of D.

EXECUTE: 4, =+A4c0s30.0°=+86.6N, 4, =+4sin30.0° = +50.00N.

B, =—Bsin30.0°=—40.00N, B,, = +Bc0s30.0° = +69.28 N.

C, =—Cc0s53.0°=-24.07N, C,, =-Csin53.0°=-31.90N.

— — _ (2,12 = — —
Then D, =-22.53N, D, =—87.34N and D =,/D; +D; =90.2 N. tane =|D,/D,|=87.34/22.53.
a=7554°. ¢=180°+a =256° counterclockwise from the +x-axis.

EVALUATE: As shown in Figure 1.60, since D, and D, are both negative, D must lie in the third quadrant.

Figure 1.60
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1.61. IDENTIFY: Vector addition. Target variable is the 4th displacement.
SET UP: Use a coordinate system where east is in the +x-direction and north is in the +y-direction.

Let A, B, and C be the three displacements that are given and let D be the fourth unmeasured
displacement. Then the resultant displacement is R = A+ B + C + D. And since she ends up back where
she started, R =0.

0=A+B+C+D, so D=—(A+B+C)

D, =—(A4,+B,+C,) and D, =—(4,+B,+C))

EXECUTE:

"' A,=-180m, 4,=0

B, =Bcos315°=(210 m)cos315°=+148.5m
% 3]50/ © B, = Bsin315°=(210 m)sin315° ==148.5 m
\ = H C, =Ccos60° = (280 m)cos60° = +140 m

C, =Csin60° = (280 m)sin60° = +242.5 m

Figure 1.61a

D, =—(4, + B, +C,)=—(~180 m +148.5 m +140 m) =—108.5 m
D, =~(4, +B, +C,) =—(0~148.5 m +242.5 m)=-94.0 m

> — 2 2
Do D =D} +D?

5 D= \/(—108.5 m)? +(—94.0 m)> =144 m
D, ,/ I\ E
W X X D
i e B SN
: D, -108.5m
: D. 6 =180° +40.9° =220.9°
D=~~~ ~ " 1 (D is in the third quadrant since both

D, and D, are negative.)

Figure 1.61b

The direction of D can also be specified in terms of ¢ =6 —180°=40.9% D is 41° south of west.
EVALUATE: The vector addition diagram, approximately to scale, is

y -
’ Vector D in this diagram agrees qualitatively

with our calculation using components.

Figure 1.61c¢
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1.62. IDENTIFY: Find the vector sum of the two displacements.
SET UP: Call the two displacements A4 and B, where 4=170km and B=230km. 4+B =R.
Aand B are as shown in Figure 1.62.
EXECUTE: R =4, + B, =(170 km)sin68° + (230 km)cos36° =343.7 km.
R, =A4,+B,=(170 km)cos68°— (230 km)sin36° = -71.5 km.

R, 71.5 km
R =.,/R?+R? =/(343.7 km)? +(-71.5 km)? =351 km. tan8, =|—2|= ———— =0.208.
‘/" T U ) K |Rx| 343.7 km

6, =11.8° south of east.

EVALUATE: Our calculation using components agrees with R shown in the vector addition diagram,
Figure 1.62.

Figure 1.62

1.63.  IDENTIFY: We know the resultant of two forces of known equal magnitudes and want to find that
magnitude (the target variable).

SET UP: Use coordinates having a horizontal +x axis and an upward +) axis. Then 4 + B =R_ and

R =12.8 N.
SOLVE: 4 + B _=R_and Acos32°+ Bsin32°=R,. Since 4 =B,
2A4cos32°=R_, so 4 =L =7.55N

’ (2)(cos32°)

EVALUATE: The magnitude of the x component of each pull is 6.40 N, so the magnitude of each pull
(7.55 N) is greater than its x component, as it should be.

1.64. IDENTIFY: Solve for one of the vectors in the vector sum. Use components.
SET UP: Use coordinates for which +x is east and +y is north. The vector displacements are:

A =2.00 km, 0°f east; B =3.50 m, 45° south of east; and R =5.80 m, 0° east
EXECUTE: C, =R, -4, — B, =5.80 km=(2.00 km)—(3.50 km)(cos45°) =1.33 km; C, =R, —4, - B,

=0 km -0 km — (—3.50 km)(sin45°) =2.47 km; C :\/(1.33 km)? +(2.47 km)? =2.81 km;

6= tan_l[(2.47 km)/(1.33 km)] =61.7° north of east. The vector addition diagram in Figure 1.64 shows
good qualitative agreement with these values.
EVALUATE: The third leg lies in the first quadrant since its x and y components are both positive.

Figure 1.64
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1.65. IDENTIFY: We have two known vectors and a third unknown vector, and we know the resultant of these
three vectors.
SET Up: Use coordinates for which +x is east and +y is north. The vector displacements are:

A =23.0 km at 34.0° south of east; B =46.0 km due north; R =32.0 km due west; C is unknown.
EXECUTE: C, =R, — A, — B, =-32.0 km—(23.0 km)cos34.0°— 0 = ~51.07 km;
Cy = Ry — Ay —By =0-(-23.0 km)sin34.0°—46.0km =-33.14 km;

C=,/C;+C; =60.9km

Calling @ the angle that C makes with the —x-axis (the westward direction), we have

tand =C /C(:ﬂ; 6 = 33.0° south of west.
Y5107

EVALUATE: A graphical vector sum will confirm this result.
1.66.  IDENTIFY: The four displacements return her to her starting point, so D =—(A + B + C), where A, B,

and C are in the three given displacements and D is the displacement for her return.
SET UP: Let +x be eastand +y be north.

EXECUTE: (a) D, =—{(147 km)sin85° + (106 km)sin167° + (166 km)sin 235°] = —34.3 km.
D, =—{(147 km)cos85° + (106 km)cos167° + (166 km)cos235°] = +185.7 km.

D= \/(—34.3 km)? + (185.7 km)? =189 km.

34.3 km

(b) The direction relative to north is ¢ = arctan| ——
185.7 km

]:10.5°. Since D, <0 and D, >0, the

direction of D is 10.5° west of north.
EVALUATE: The four displacements add to zero.

1.67.  IDENTIFY: We want to find the resultant of three known displacement vectors: R=A+B+C .
SETUP: Let +x be eastand +y be north and find the components of the vectors.
EXECUTE: The magnitudes are 4 =20.8 m, B =38.0 m, C = 18.0 m. The components are
4,=0,4,=28.0m, B,=38.0m, B,=0,

= —(18.0 m)(sin33.0°) = -9.804 m, C;, = —(18.0 m)(c0s33.0°) =—15.10 m

R.=A4,+B,+C,=0+38.0m+(-9.80 m) =28.2 m
R,=4,+B,+(C,=20.8m+0+(-15.10m) =5.70 m

R=, /Ri + Rf = 28.8 m is the distance you must run. Calling 8, the angle the resultant makes with the
+x-axis (the easterly direction), we have
tan @, =R /R, = (5.70 km)/(28.2 km); &, = 11.4° north of east.
EVALUATE: A graphical sketch will confirm this result.

1.68.  IDENTIFY: Let the three given displacements be A, B and C, where A =40 steps, B =80 steps and
C =50 steps. R=A+B+C. The displacement C that will return him to his hut is —R.
SET UP: Let the east direction be the +x-direction and the north direction be the +y-direction.

EXECUTE: (a) The three displacements and their resultant are sketched in Figure 1.68.
(b) R, =(40)cos45°—(80)cos60°=—11.7and R, =(40)sin45°+(80)sin60°—50 =47.6.

. L 47.6
The magnitude and direction of the resultant are \/ (-11 .7)2 + (47.6)2 =49, acrtan (lf_7J =76°, north of

west. We know that R is in the second quadrant because R, <0, Ry >0. To return to the hut, the explorer

must take 49 steps in a direction 76° south of east, which is 14° east of south.
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1.69.

1.70.

EVALUATE: It is useful to show R, R, and R on a sketch, so we can specify what angle we are

computing.

Figure 1.68

IDENTIFY: We know the resultant of two vectors and one of the vectors, and we want to find the second
vector.
SET Up: Let the westerly direction be the +x-direction and the northerly direction be the +y-direction.

We also know that R=A+ B where R is the vector from you to the truck. Your GPS tells you that you
are 122.0 m from the truck in a direction of 58.0° east of south, so a vector from the truck to you is 122.0
m at 58.0° east of south. Therefore the vector from you to the truck is 122.0 m at 58.0° west of north. Thus
R =122.0 m at 58.0° west of north and A is 72.0 m due west. We want to find the magnitude and

direction of vector B .
EXECUTE: B, =R,—A,=(122.0 m)(sin 58.0°) — 72.0 m = 31.462 m

B, =R, —4,=(122.0 m)(cos 58.0° — 0= 64.450 m; B=,/BZ+B2 =71.9m.
_ 64.650m

31.462 m
EVALUATE: A graphical sum will show that the results are reasonable.
IDENTIFY: We use vector addition. One vector and the sum are given; find the magnitude and direction of
the second vector.

SETUP: Let +x be eastand +y be north. Let A be the displacement 285 km at 62.0° north of west and

tan 6, =By/B

X

=2.05486; 6, = 64.1° north of west.

let B be the unknown displacement.

A+ B =R where R=115km, east

B=R-4

B,=R.—4,, B,=R, -4,

EXECUTE: 4, =-A4c0s62.0°=-133.8 km, 4, =+4sin62.0° =+251.6 km

R, =115km,R, =0

B, =R,—A4,=115km - (-133.8 km) = 248.8 km

B,=R,—A4,=0-251.6 km=-251.6 km

B= JB? + Bi =354 km. Since B has a positive x component and a negative y component, it must lie in
the fourth quadrant. Its angle with the +x-axis is given by tana =|B,/B,|=(251.6 km)/(248.8 km) , so
o =45.3° south of east.

EVALUATE: A graphical vector sum will confirm these results.
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1.71.

1.72.

1.73.

IDENTIFY: Vector addition. One force and the vector sum are given; find the second force.
SET Up: Use components. Let +y be upward.

B is the force the biceps exerts.

clbow

Figure 1.71a

E is the force the elbow exerts. E + B=R, where R=132.5N and is upward.
E.=R.-B.,E,=R,-B,

EXECUTE: B, =-Bsin43°=-158.2 N, B, =+Bcos43°=+169.7N, R, =0, R, =+132.5 N
Then E, =+1582N, E, =-37.2N.

E=\|E;+E; =160 N;

tana = |E, /E,| =37.2/158.2

o =13°, below horizontal

Figure 1.71b

EVALUATE: The x-component of E cancels the x-component of B. The resultant upward force is less
than the upward component of B, so E ), must be downward.

IDENTIFY: Find the vector sum of the four displacements.
SET Up: Take the beginning of the journey as the origin, with north being the y-direction, east the

x-direction, and the z-axis vertical. The first displacement is then (—30 m)lg, the second is (—15 m) }, the
third is (200 m)i, and the fourth is (100 m) j.

EXECUTE: (a) Adding the four displacements gives

(=30 m)k + (=15 m) j + (200 m)i +(100 m) j = (200 m)i + (85 m) j— (30 m)k.

(b) The total distance traveled is the sum of the distances of the individual segments:
30 m+15 m+200 m+100 m =345 m. The magnitude of the total displacement is:

D=,[D? + D2+ D? = /(200 m)? + (85 m)* + (30 m)* =219 m.

EVALUATE: The magnitude of the displacement is much less than the distance traveled along the path.

IDENTIFY: The sum of the four displacements must be zero. Use components.

SET Up: Call the displacements 4, B, C,and D, where D is the final unknown displacement for the
return from the treasure to the oak tree. Vectors ;1, B, and C are sketched in Figure 1.73a.
A+B+C+D=0 says 4 +B, +C +D, =0 and A4,+B,+C,+D, =0. 4=825m, B=1250 m, and
C =1000 m. Let +x be eastward and +y be north.
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1.74.

1.75.

EXECUTE: (a) 4, +B,+C +D, =0 gives
D, =—(4, + B, +C,) =—{0-(1250 m)sin30.0° + (1000 m)c0s32.0°]=-223.0 m. 4, +B,+C,+ D, =0
gives D, = —(Ay +B,+ Cy) =—[-825 m + (1250 m)c0s30.0° + (1000 m)sin32.0°] =-787.4 m. The fourth

displacement D and its components are sketched in Figure 1.73b. D =, /D% + Dﬁ =818.4 m.

ID,| _223.0m
ID,|  787.4m

tang = and ¢ =15.8°. You should head 15.8° west of south and must walk 818 m.

(b) The vector diagram is sketched in Figure 1.73c. The final displacement D from this diagram agrees
with the vector D calculated in part (a) using components.

EVALUATE: Note that D is the negative of the sum of ;1, B, and C , as it should be.

" y
B N
30°
5 52
s
A
(@

Figure 1.73

IDENTIFY: The displacements are vectors in which we want to find the magnitude of the resultant and
know the other vectors.

SETUP: Calling A the vector from you to the first post, B the vector from you to the second post, and
C the vector from the first post to the second post, we have A +C = B. We want to find the magnitude

of vector B . We use components and the magnitude of C . Let +x be toward the east and +y be toward
the north.
EXECUTE: B, =0 and B, is unknown. C, = -4, = —(52.0 m)(cos 37.0°) =—-41.529 m 4, =41.53 m

C=680m, so C, = +,/C* —C} =-53.8455m. We use the minus sign because the second post is south of

the first post.

B, =4, + C,=(52.0 m)(sin 37°) + (-53.8455 m) = -22.551 m.

Therefore you are 22.6 m from the second post.

EVALUATE: B, is negative since post is south of you (in the negative y direction), but the distance to you
is positive.

IDENTIFY: We are given the resultant of three vectors, two of which we know, and want to find the
magnitude and direction of the third vector.

SETUP: Calling C the unknown vector and A and B the known vectors, we have A+ B +C = R. The
components are 4, +B, +C, =R and 4,+B, +C =R.
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EXECUTE: The components of the known vectors are 4, =12.0 m, 4, =0,
B, =—Bsin50.0°=-21.45m, B, = Bc0s50.0°=+18.00 m, R, =0, and R, =-10.0 m. Therefore the

components of C are C, =R, — A —-B =0-12.0 m —(-21.45m)=9.45m and
C,=R,—4,-B,=-100m —0-18.0 m=-28.0 m.

. . o = . 4
Using these components to find the magnitude and direction of C gives C =29.6 m and tané = % and

6 =18.6° east of south.
EVALUATE: A graphical sketch shows that this answer is reasonable.

1.76. IDENTIFY: The displacements are vectors in which we know the magnitude of the resultant and want to
find the magnitude of one of the other vectors.
SETUp: Calling A the vector of Ricardo’s displacement from the tree, B the vector of Jane’s
displacement from the tree, and C the vector from Ricardo to Jane, we have A+ C = B. Let the +x-axis
be to the east and the +y-axis be to the north. Solving using components we have 4, +C, =B, and

A4,+C =B,

EXECUTE: = (a) The components of A and B are A, =—(26.0 m)sin60.0° =—-22.52 m,
4, =(26.0 m)cos60.0° = +13.0 m, B, =—(16.0 m)cos30.0° =—13.86 m,

B, =—(16.0 m)sin30.0°=—8.00 m, C, =B, — 4, =—13.86 m —(=22.52 m) = +8.66 m,
C,=B,-4,=-8.00m—-(13.0m)=-21.0 m

Finding the magnitude from the components gives C =22.7 m.

(b) Finding the direction from the components gives tané = % and @=22.4°, east of south.

EVALUATE: A graphical sketch confirms that this answer is reasonable.
1.77.  IDENTIFY: Ifthe vector from your tent to Joe’s is A4 and from your tent to Karl’s is B, then the vector

from Karl’s tent to Joe’s tent is A— B .
SET Up: Take your tent’s position as the origin. Let +x be east and +y be north.

EXECUTE: The position vector for Joe’s tent is

([21.0 m]cos 23°)i — ([21.0 m]sin 23°) j = (19.33 m)i — (8.205 m) j.

The position vector for Karl’s tent is ([32.0 m]cos 37°)f +([32.0 m]sin 37°)} =(25.56 m)f +(19.26 m)}.
The difference between the two positions is

(19.33 m—25.56 m)i +(~8.205 m—19.25 m)j =—(6.23 m)i — (27.46 m)j. The magnitude of this vector is

the distance between the two tents: D = \/ (-6.23 m)2 +(-27.46 rn)2 =282 m

EVALUATE: If both tents were due east of yours, the distance between them would be

32.0 m—21.0 m =11.0 m. If Joe’s was due north of yours and Karl’s was due south of yours, then the
distance between them would be 32.0 m+21.0 m =53.0 m. The actual distance between them lies

between these limiting values.
1.78. IDENTIFY: Calculate the scalar product and use Eq. (1.16) to determine @.

SET Up: The unit vectors are perpendicular to each other.

EXECUTE: The direction vectors each have magnitude /3, and their scalar product is
M@ +M)(=1) +(1)(-1) =—1, so from Eq. (1.16) the angle between the bonds is

arccos(_—lJ = arccos(—lj =109°
V33 3 '

EVALUATE: The angle between the two vectors in the bond directions is greater than 90°.
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1.79. IDENTIFY: We know the scalar product and the magnitude of the vector product of two vectors and want
to know the angle between them.

SETUp: The scalar product is A-B = ABcos® and the vector product is |;1 X E| = ABsiné.

EXECUTE: A-B= ABcos6 =—6.00 and |;1 X§| ABsin@ =+49.00. Taking the ratio gives tané = %

so 6 =124°.
EVALUATE: Since the scalar product is negative, the angle must be between 90° and 180°.
1.80. IpENTIFY: Find the angle between specified pairs of vectors.
SET UpP: Use cos¢ = ﬁ
AB
EXECUTE: (a) A= k (along line ab)

B=i +}+I€ (along line ad)

A4=1, B=N1P?+1>+1> =3

A-B k(l+j+k)—1
So cos¢——B-1/\/— 9=54.7°

(b) A=i+ ] +k (along line ad)
B= ] +k (along line ac)

A=NP+12+12 =\3; B=N1?+12 =2

I1-Bz(§+j+/€).(f+}):1+1:2

So cos¢————— ; ¢=353°

ABIII

EVALUATE: Each angle is computed to be less than 90°, in agreement with what is deduced from

the figure shown with this problem in the textbook.
1.81. IDENTIFY: We know the magnitude of two vectors and their scalar product and want to find the
magnitude of their vector product.

SET UP: The scalar product is A- B = ABcos¢ and the vector product is \;1 X E\ = ABsing.
- o L 112.0 m* 112.0 m*
EXECUTE: A-B = ABcos¢ = 90.0 m’, which gives cos¢ = i = 0m =0.5833, so
AB (12.0 m)(16.0 m)

¢ =54.31°. Therefore |;1><l§| = ABsing = (12.0 m)(16.0 m)(sin54.31°) =156 m’.

EVALUATE: The magnitude of the vector product is greater than the scalar product because the angle
between the vectors is greater than 45°.

1.82.  IDENTIFY: The cross product Ax B is perpendicular to both A and B.

SETUpP: Use Eq. (1.23) to calculate the components of Ax B.
EXECUTE: The cross product is

(—13.00)i +(6.00) j+ (-11.00)k =13 {—(moﬁ{ﬂ) ;1100

. The magnitude of the vector in
13.00 13.00

square brackets is +/1.93, and so a unit vector in this direction is

V1.93

[—(1 .00)7 +(6.00/13.00) j—(11 .00/13.00)12}
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1.83.

1.84.

1.85.

1.86.

The negative of this vector,

(1.00)i —(6.00/13.00) j+(11.00/13.00) k

J1.93 ’

is also a unit vector perpendicular to 4 and B.

EVALUATE: Any two vectors that are not parallel or antiparallel form a plane and a vector perpendicular
to both vectors is perpendicular to this plane.

IDENTIFY: We know the scalar product of two vectors, both their directions, and the magnitude of one of
them, and we want to find the magnitude of the other vector.

SETUP: A-B=ABcos¢. Since we know the direction of each vector, we can find the angle between

them.

EXECUTE: The angle between the vectors is 8 =79.0°. Since A-B = ABcos¢, we have
AR 2

B= A-B _ 48.0 m —28.0m.

- Acos¢ B (9.00 m)cos79.0°
EVALUATE: Vector B has the same units as vector A.
IDENTIFY: Calculate the magnitude of the vector product and then use |;i X B| = ABsiné.
SET UpP: The magnitude of a vector is related to its components by Eq. (1.11).

- . Ax B| _+/(=5.00)* +(2.00)*
EXECUTE: |ixB|= ABsing, sin@ =Bl - NESO0 + Q00 7, 550, ;g
AB (3.00)(3.00)

0 =sin"1(0.5984) = 36.8°.
EVALUATE: We haven’t found 4 and B, just the-angle between them.

IDENTIFY and SET UP: The target variables are the components of C. We are given 4 and B. We also
know A-C and B-C, and this gives us two equations in the two unknowns C, and C,.

EXECUTE: A and C are perpendicular, so 4-C =0. 4.C, + 4,C, =0, which gives 5.0C, —6.5C, =0.
B-C=15.0, so 3.5C,-7.0C, =15.0
We have two equations in two unknowns C, and C,. Solving gives C, =-8.0 and C,, =—6.1.

EVALUATE: We can check that our result does give us a vector C that satisfies the two equations
A-C=0 and B-C =15.0.

(a) IDENTIFY: Prove that A (EXC') = (;1 XE) -C.

SET Up: Express the scalar and vector products in terms of components.

EXECUTE:

A-(BxC)=A,(BxC), +A4,(BxC),+A,(BxC),
A-(BxC)=4,(B,C,-B.C,)+4,(B,C,~B.C,)+4,(B,C,-B,C,)
(AxB)-C =(AxB),C, +(AxB),C, +(AxB).C.
(AXB)-C =(A4,B,— A.B,)C, +(A.B,~ AB.)C, +(A,B, - 4,B,)C.
Comparison of the expressions for A (B X 6') and (;1 ><l§) -C shows they contain the same terms, so
A-(BxC)=(AxB)-C.
(b) IDENTIFY: Calculate (Ax B)-C, given the magnitude and direction of A, B, and C.
SET UP: Use |;1 X E\ = ABsin ¢ to find the magnitude and direction of Ax B. Then we know the

components of Ax B and of C and can use an expression like 4-B= A B, + A4,B, + 4.B, to find the

scalar product in terms of components.
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EXECUTE: A4=5.00; 8,=26.0°% B=4.00, 83 =63.0°

|Ax B| = ABsin¢.

The angle ¢ between A and B is equal to ¢ =85 —8, =63.0°—26.0° =37.0°. So

|Ax B| = (5.00)(4.00)sin37.0° =12.04, and by the right hand-rule Ax B is in the +z-direction. Thus
(Ax B)-C =(12.04)(6.00)=72.2

EVALUATE: AxB is a vector, so taking its scalar product with C is a legitimate vector operation.
(AXB)-C is a scalar product between two vectors so the result is a scalar.

1.87. IDENTIFY: Express all the densities in the same units to make a comparison.
SET Up: Density p is mass divided by volume. Use the numbers given in the table in the problem and

convert all the densities to kg/m’.

1k
8.00 g( s )
1000 g

EXECUTE: Sample A: p, =———— =4790 kg/m’
1.67 x 10° m’

1k
6.00x10° g( E )
1000 g

Sample B: p,, = ~ =640 kg/m’
. . [10°m
938 x 10° pm’ | ———
1 ym
1k
8.00x10° g( = )
1000 !
Sample C: p. = g T = 3200 kg/m
4 3( 1 m
2.50 x 10" cm
100 cm
9.00x10™ kg ,
Sample D: p, = T =320 kg/m
: 3( Im
281 x 100 mm | ———
1000 mm
1 1k
9.00x10" ng 9g &
10" ng /\ 1000 g 3
Sample E: p, = - = 6380 kg/m
S , ( 1 m :
141 x 10 mm | ———
1000 mm
1k
6.00x10° g &
1000 g ;
Sample F: p,. = T =480 kg/m
. L ITm Y
1.25 x 10 pm p
10" um

EVALUATE: In order of increasing density, the samples are D, F, B, C, A, E.
1.88. IDENTIFY: We know the magnitude of the resultant of two vectors at four known angles between them,
and we want to find out the magnitude of each of these two vectors.
SET UP: Use the information in the table in the problem for & = 0.0° and 90.0°. Call 4 and B the
magnitudes of the vectors.
EXECUTE: (a) At 0°: The vectors point in the same direction, so 4 + B = 8.00 N.
At 90.0°: The vectors are perpendicular to each other, so 4> + B> = R* = (5.83 N)* = 33.99 N°.
Solving these two equations simultaneously gives
B=8.00N-4
A+ (8.00 N — 4)*=33.99 N?
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1.89.

A*+64.00 N’ —16.00 N 4 + 4° = 33.99 N’

The quadratic formula gives two solutions: 4 =5.00 N and B=3.00 Nor4=3.00 N and B=5.00 N. In
either case, the larger force has magnitude 5.00 N.

(b) Let 4 =5.00 N and B =3.00 N, with the larger vector along the x-axis and the smaller one making an
angle of +30.0° with the +x-axis in the first quadrant. The components of the resultant are

R, =4, +B,=5.00 N+ (3.00 N)(cos 30.0°) = 7.598 N

R,=A4,+ B,=0+(3.00 N)(sin 30.0°) = 1.500 N

R=\R*+R =774N

EVALUATE: To check our answer, we could use the other resultants and angles given in the table with the
problem.

IDENTIFY: Use the x and y coordinates for each object to find the vector from one object to the other; the
distance between two objects is the magnitude of this vector. Use the scalar product to find the angle
between two vectors.

SET Up: If object 4 has coordinates (x4, y ) and object B has coordinates (x5, y3), the vector 7, from 4

to B has x-component x — x4 and y-component yp — v 4.

EXECUTE: (a) The diagram is sketched in Figure 1.89.
(b) (i) In AU, \/(0.3182)2 +(0.9329)? =0.9857.

(ii) In AU, \/(1.3087)2 +(—0.4423)% + (~0.0414)% =1.3820.

(iii) In AU, /(0.3182 — 1.3087)% +(0.9329 — (~0.4423))? +(0.0414)> =1.695.

(c) The angle between the directions from the Earth to the Sun and to Mars is obtained from the dot
product. Combining Egs. (1.16) and (1.19),

5 = arcoos| (03182013087 0.3182) #(=0.9329)(-0.4423-0.9329) #(0) ) _,
(0.9857)(1.695)

(d) Mars could not have been visible at midnight, because the Sun-Mars angle is less than 90°.
EVALUATE: Our calculations correctly give that Mars is farther from the Sun than the earth is. Note that
on this date Mars was farther from the earth than it is from the Sun.

v (Au)
1.00 +— Earth
[ ]
II o\\
/ \
/ \
) \
/ R
0.50 —¢ %
I/ \
/ \
/ \
/ \\
II \
S } \l’\ % x (Au)
o 0.50 1.ON 1.50
\
\
\
\
A L ® Mars

Figure 1.89
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1.90. IDENTIFY: Add the vector displacements of the receiver and then find the vector from the quarterback to
the receiver.
SET UP: Add the x-components and the y-components.
EXECUTE: The receiver’s position is

A

[(+1.0+9.0— 6.0 +12.0)yd]i +[(=5.0+11.0 +4.0 +18.0) yd]j = (16.0 yd)i +(28.0 yd) .
The vector from the quarterback to the receiver is the receiver’s position minus the quarterback’s position,

or (16.0 yd)f +(35.0 yd)_;', a vector with magnitude \/(16.0 yd)2 +(35.0 yd)2 =38.5 yd. The angle is

arctan[%) =24.6° to the right of downfield.

EVALUATE: The vector from the quarterback to receiver has positive x-component and positive
y-component.
1.91. IDENTIFY: Draw the vector addition diagram for the position vectors.

SETUP: Use coordinates in which the Sun to Merak line lies along the x-axis. Let A be the position
vector of Alkaid relative to the Sun, M is the position vector of Merak relative to the Sun, and R is the
position vector for Alkaid relative to Merak. 4 =138 ly and M =77 ly.
EXECUTE: The relative positions are shown in Figure 1.91. M + R = A. A =M, +R, so

R, =4, —M,=(1381y)cos25.6°~77ly=475ly. R, =4, -M, = (138 ly)sin25.6° -0 =59.6 ly.

R =76.2 ly is the distance between Alkaid and Merak.

. N R, 4751y

b) The angle is angle ¢ in Figure 1.91. cos@ =—* =
(b) g gle ¢ gu R 7621y

EVALUATE: - The concepts of vector addition and components make these calculations very simple.

and 8=51.4°. Then ¢ =180°—-6=129°.

L 2 X
< 7y Merak

Figure 1.91

1.92. IDENTIFY: The total volume of the gas-exchanging region of the lungs must be at least as great as the
total volume of all the alveoli, which is the product of the volume per alveoli times the number of alveoli.
SET Up: V = NV,,, and we use the numbers given in the introduction to the problem.
EXECUTE: V =NV, = (480 x 10°)(4.2 x 10° um’) =2.02 x 10" pm’. Converting to liters gives

V' =2.02x10" m’ ( ) =2.02 L = 2.0 L. Therefore choice (c) is correct.

10° pm
EVALUATE: A volume of 2 L is reasonable for the lungs.
1.93. IDENTIFY: We know the volume and want to find the diameter of a typical alveolus, assuming it to be a
sphere.
SET Up: The volume of a sphere of radius r is ¥ = 4/3 m° and its diameter is D = 2r.
EXECUTE: Solving for the radius in terms of the volume gives r = (3 V/4n)1/3, so the diameter is
1/3
3(4.2x10° pm’)
D =2r=203V/4n)" = 2 =200 um. Converting to mm gives
47
D = (200 um)[(1 mm)/(1000 pm)] = 0.20 mm, so choice (a) is correct.
EVALUATE: A sphere that is 0.20 mm in diameter should be visible to the naked eye for someone with
good eyesight.
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1.94. IDENTIFY: Draw conclusions from a given graph.
SET UP: The dots lie more-or-less along a horizontal line, which means that the average alveolar volume
does not vary significantly as the lung volume increases.
EXECUTE: The volume of individual alveoli does not vary (as stated in the introduction). The graph
shows that the volume occupied by alveoli stays constant for higher and higher lung volumes, so there
must be more of them, which makes choice (c) the correct one.
EVALUATE: It is reasonable that a large lung would need more alveoli than a small lung because a large
lung probably belongs to a larger person than a small lung.



MOTION ALONG A STRAIGHT LINE

2.1.

2.2,

2.3.

24.

IDENTIFY: Ax=v_ At

SET UP: We know the average velocity is 6.25 m/s.
EXECUTE: Ax=v, At=25.0m

av-x

EVALUATE: In round numbers, 6 m/s X 4 s =24 m = 25 m, so the answer is reasonable.

Ax
IDENTIFY: v, =—
S At

SETUP: 13.5 days =1.166x10° s. At the release point, x =+5.150x10° m.

_ _ 6
EXECUTE: (a) v, = e B S'ISOXI06 T =442 mss.
At 1.166x10° s

(b) For the round trip, x, =x, and Ax=0. The average velocity is zero.

EVALUATE: The average velocity for the trip from the nest to the release point is positive.
IDENTIFY: Target variable is the time Az it takes to make the trip in heavy traffic. Use Eq. (2.2) that
relates the average velocity to the displacement and average time.

Ax Ax
SETUP: v, =— so Ax=v, At and At =—.

At Voo
EXECUTE: Use the information given for normal driving conditions to calculate the distance between the
two cities, where the time is 1 h and 50 min, which is 110 min:

Ax=v,_At=(105 km/h)(1 h/60 min)(110 min) =192.5 km.

Now use v, for heavy traffic to calculate Af; Ax is the same as before:

v 70 km/h

av-x

The additional time is (2 h and 45 min) — (1 h and 50 min) = (1 h and 105 min) — (1 h and 50 min) = 55 min.
EVALUATE: At the normal speed of 105 km/s the trip takes 110 min, but at the reduced speed of 70 km/h it
takes 165 min. So decreasing your average speed by about 30% adds 55 min to the time, which is 50% of 110
min. Thus a 30% reduction in speed leads to a 50% increase in travel time. This result (perhaps surprising)
occurs because the time interval is inversely proportional to the average speed, not directly proportional to it.

IDENTIFY: The average velocity is v, = v Use the average speed for each segment to find the time
) t

traveled in that segment. The average speed is the distance traveled divided by the time.
SET UP: The post is 80 m west of the pillar. The total distance traveled is 200 m +280 m =480 m.

EXECUTE: (a) The eastward run takes time 280 rjl =40.0 s and the westward run takes
m/s
280 m . . m
=70.0 s. The average speed for the entire trip is =4.4 m/s.
4.0 m/s 110.0 s
M) v, .= Ar_80m _ —0.73 m/s. The average velocity is directed westward.
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EVALUATE: The displacement is much less than the distance traveled, and the magnitude of the average
velocity is much less than the average speed. The average speed for the entire trip has a value that lies
between the average speed for the two segments.

2.5. IDENTIFY: Given two displacements, we want the average velocity and the average speed.

SET Up: The average velocity is v, = Zﬂ and the average speed is just the total distance walked divided
t

by the total time to walk this distance.
EXECUTE: (a) Let +x be east. Ax =60.0 m—40.0 m=20.0 m and Ar=28.0s+36.0 s=64.0s. So

_Ax _20.0m

Vo =— =———=0.312 m/s.
At 64.0s
. +40.
(b) average speed :M =1.56 m/s
64.0s

EVALUATE: The average speed is much greater than the average velocity because the total distance
walked is much greater than the magnitude of the displacement vector.

o A
2.6. IDENTIFY: The average velocity is v, = A—); Use x(¢) to find x for each ¢.

SETUP: x(0)=0, x(2.00 s) =5.60 m, and x(4.00 s) =20.8 m

EXECUTE: (a) v, e =
2.00 s
) v, 2208820 550 mis
i 4.00 s
© v, = 20.8 m—5.60 m = +7.60 m/s
) 2.00s

EVALUATE: The average velocity depends on the time interval being considered.

2.7. (a) IDENTIFY: Calculate the average velocity using v, = s
t
SETUP: v, = i so use x(¢) to find the displacement Ax for this time interval.
t
EXECUTE: ¢=0: x=0
£=10.0s: x=(2.40 m/s*)(10.0 s)* —(0.120 m/s*)(10.0 s)* =240 m —120 m =120 m.

Ax _120m

=———=12.0 m/s.
At 10.0s

Then v, =
dx . ‘ .
(b) IDENTIFY: Use v_= = to calculate v (¢) and evaluate this expression at each specified 7.
y g

SETUpP: v, =& 2bt —3ct”.
dt

EXECUTE: (i) t=0:v =0

(i) £=5.0s: v, =2(2.40 m/s*)(5.0 s)—3(0.120 m/s’)(5.0 s)* =24.0 m/s —9.0 m/s =15.0 m/s.

(iii) £=10.0 s: v, =2(2.40 m/s*)(10.0 s)—3(0.120 m/s*)(10.0 s)* =48.0 m/s—36.0 m/s =12.0 m/s.
(c) IDENTIFY: Find the value of  when v _(¢) from part (b) is zero.

SETUP: v, =2bt—3ct’

v. =0 at 1=0.

v, =0 next when 2bt —3ct* =0

EXECUTE: 2b=3ct so t=—=————-2-=1335s
3¢ 3(0.120 m/s”)

EVALUATE: v (¢) for this motion says the car starts from rest, speeds up, and then slows down again.
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2.8.

2.9.

2.10.

2.11.

2.12.

IDENTIFY: We know the position x(¢) of the bird as a function of time and want to find its instantaneous
velocity at a particular time.

. o dx _ d[28.0 m+(12.4 m/s) —(0.0450 m/s’)¢’ |
SET UP: The instantaneous velocity is v (¢) = = = = .
t t

EXECUTE: v, (1) :§ =12.4 m/s—(0.135 m/s*)¢’. Evaluating this at t =8.0 s gives v, =3.76 m/s.
t
EVALUATE: The acceleration is not constant in this case.
IDENTIFY: The average velocity is given by v, =%. We can find the displacement A¢ for each
) t

constant velocity time interval. The average speed is the distance traveled divided by the time.
SETUP: For =0 to t=2.0s, v.=2.0m/s. For t=2.0s to t=3.0s, v, =3.0 m/s. In part (b),

v, ==3.0m/s for t=2.0s to £ =3.0 s. When the velocity is constant, Ax =v At.
EXECUTE: (a)For t=0 to t=2.0s, Ax=(2.0 m/s)(2.0s)=4.0 m. For #=2.0s to t=3.0s,
Ax=(3.0 m/s)(1.0 s) =3.0 m. For the first 3.0 s, Ax =4.0 m+3.0 m=7.0 m. The distance traveled is

(b) For t=2.0st03.0s, Ax=(—3.0 m/s)(1.0 s) =—3.0 m. For the first 3.0 s,
Ax=4.0 m +(—3.0 m) =+1.0 m. The ball travels 4.0 m in the +x-direction and then 3.0 m in the

—x-direction, so the distance traveled is still 7.0 m. v, = T W =0.33 m/s. The average speed is
: t .Os
700m_ 2.33 m/s.
3.00s

EVALUATE: When the motion is always in the same direction, the displacement and the distance traveled
are equal and the average velocity has the same magnitude as the average speed. When the motion changes
direction during the time interval, those quantities are different.

IDENTIFY and SET UP: The instantaneous velocity is the slope of the tangent to the x versus ¢ graph.
EXECUTE: (a) The velocity is zero where the graph is horizontal; point IV.

(b) The velocity is constant and positive where the graph is a straight line with positive slope; point I.

(c) The velocity is constant and negative where the graph is a straight line with negative slope; point V.
(d) The slope is positive and increasing at point II.

(e) The slope is positive and decreasing at point III.

EVALUATE: The sign of the velocity indicates its direction.

IDENTIFY: Find the instantaneous velocity of a car using a graph of its position as a function of time.
SET UP: The instantaneous velocity at any point is the slope of the x versus ¢ graph at that point. Estimate
the slope from the graph.

EXECUTE: A4: v =6.7m/s; B: v.=6.7m/s; C: v, =0; D: v. =—40.0 m/s; E: v. =—-40.0 m/s;

F: v, =-40.0 m/s; G: v, =0.
EVALUATE: The sign of v_ shows the direction the car is moving. v_ is constant when x versus 7 is a

straight line.

IDENTIFY: a, = AAV"* . a () is the slope of the v_versus ¢ graph.
PR A
SETUP: 60 km/h =16.7 m/s
EXECUTE: (a) (i) a,,, :%ﬂ =1.7 m/s. (i) a,,, :%m =—1.7 m/s’.
s s

(iii)) Av, =0 and a,, =0. (iv) Av, =0 and a,,, =0.

av-x

(b) At t=20s, v, isconstantand a, =0. At =35 s, the graph of v, versus ¢ is a straight line and

a =a, =-1.7m/s.

X
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EVALUATE: When a.

av-x

signs, the speed is decreasing.

and v_ have the same sign the speed is increasing. When they have opposite

. L L Av
2.13. IDENTIFY: The average acceleration for a time interval At is given by a,,  =—=*.

At
SET UP: Assume the car is moving in the +x direction. 1 mi/h =0.447 m/s, so 60 mi/h =26.82 m/s,
200 mi/h =89.40 m/s and 253 mi/h =113.1 m/s.

EXECUTE: (a) The graph of v_versus ¢ is sketched in Figure 2.13. The graph is not a straight line, so the

acceleration is not constant.

®) () a,. = 26.82 m/s—0 =12.8 m/s? (il) a,_ = 89.40m/s—26.82 m/s ~3.50 m/s>
2.1s 20.0s-2.1s
(iii) a,,, = ! 13'1521/5 _2809'(?0 s _ 0.718 m/s*. The slope of the graph of v, versus ¢ decreases as ¢
$s—20.0s

increases. This is consistent with an average acceleration that decreases in magnitude during each

successive time interval.

EVALUATE: The average acceleration depends on the chosen time interval. For the interval between 0 and
113.1m/s -0

" =2.13 m/s’.
i 53s

53s, a

v, (mifh)

1 1 Lt (s)
0 (2.1 20.0 53.0

Figure 2.13

2.14. IDENTIFY: We know the velocity v(¢) of the car as a function of time and want to find its acceleration at
the instant that its velocity is 12.0 m/s.
dv._ d[(0:860 m/s")’ |

SETUp: We know that v,(7) = (0.860 m/s*)7’ and that a_ () = e y .
) t t

EXECUTE: a (f)= ‘;V* =(1.72 m/s*)t. When v, =12.0 m/s, (0.860 m/s’)* = 12.0 m/s, which gives

t
t=3.735 s. At this time, a, =6.42 m/s’.

EVALUATE: The acceleration of this car is not constant.

d d
2.15.  IDENTIFY and SET UP: Use v, = and a, :% to calculate v, (¢) and a (?).
dx )
EXECUTE: v, :d— =2.00 cm/s—(0.125 cm/s”)¢
t

a, = D = _0.125 cm/s?
Toodt

(a) At t=0, x=50.0 cm, v, =2.00 cm/s, a, =—0.125 cm/s’.
(b) Set v, =0 and solve for #: £ =16.0 s.

(¢) Set x =50.0 cm and solve for ¢. This gives t =0 and ¢# =32.0 s. The turtle returns to the starting point
after 32.0 s.
(d) The turtle is 10.0 cm from starting point when x =60.0 cm or x =40.0 cm.
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2.16.

2.17.

Set x =60.0 cm and solve for#: 1 =6.20 s and t =25.8 s.
At t=6.20s, v. =+1.23 cm/s.
At t=25.8s, v, =—1.23 cm/s.

Set x =40.0 cm and solve for #: # =36.4 s (other root to the quadratic equation is negative and hence
nonphysical).

At t=36.4s, v, =-2.55 cm/s.

(e) The graphs are sketched in Figure 2.15.

a V,

Figure 2.15

EVALUATE: The acceleration is constant and negative. v, is linear in time. It is initially positive,

decreases to zero, and then becomes negative with increasing magnitude. The turtle initially moves farther
away from the origin but then stops and moves in the —x-direction.

A . .
IDENTIFY: Use a, = Av" , with Az =10 s in all cases.
t

SET UP: v, is negative if the motion is to the left.
EXECUTE: (a) [(5.0 m/s)—(15.0 m/s)]/(10 s) =—1.0 m/s”
(b) [(=15.0 m/s) =(=5.0 m/s)]/(10s) =—1.0 m/s

(©) [(-15.0 m/s)—(+15.0 m/s)])/(10 s) =—3.0 m/s”

EVALUATE: In all cases, the negative acceleration indicates an acceleration to the left.

— Av .
IDENTIFY: The average acceleration is a,,  =—=. Use v, (¢) to find v, at each . The instantaneous

dv,
dr
SETUP: v (0)=3.00 m/s and v (5.00 s) =5.50 m/s.

Av. _5.50 m/s—3.00 m/s

acceleration is a_ =

EXECUTE: (a) a,,  =—=* =0.500 m/s”
At 5.00 s
(b) a = ”i;* =(0.100 m/s*)(2¢) =(0.200 m/s’)t. At t=0, a,=0. At t=5.00s, a, =1.00 m/s’.

(c) Graphs of v_(#) and a_(¢) are given in Figure 2.17 (next page).

EVALUATE: a (¢) is the slope of v _(f) and increases as ¢ increases. The average acceleration for 1 =0 to
t =5.00 s equals the instantaneous acceleration at the midpoint of the time interval,  =2.50 s, since
a,(t) is a linear function of 7.
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v, (D) a1
5.5 |- 1|
5.25 0.9
5 0.8
4.75 0.7
45 0.6
425 0.5
4 0.4
3.75 0.3
35 0.2
3.25 0.1
3 t e t
0]1051152253354455 0)1051152253354455
Figure 2.17
2.18. IDENTIFY: v (¢) :@ and a, () =ﬂ
dt dt
d ny — n—1
SET UP: d—(t )=nt"" for n>1.
t
EXECUTE: (a) v, (¢) =(9.60 m/s*)t —(0.600 m/s®)¢’ and a (¢) =9.60 m/s* —(3.00 m/s®)¢*. Setting
v, =0 gives t=0 and 1=2.00s. At =0, x=2.17 m and @, =9.60 m/s’. At £=2.00s, x=15.0m
and a, =-38.4 m/s’.
(b) The graphs are given in Figure 2.18.
EVALUATE: For the entire time interval from ¢ =0 to £ =2.00 s, the velocity v, is positive and x
increases. While a_ is also positive the speed increases and while a, is negative the speed decreases.
x(1) Ve (D)
11.25
75
3.5
0 05 1 15 2 25 d
t
2 25
Figure 2.18
2.19. IDENTIFY: Use the constant acceleration equations to find v, and a,.

(a) SET Up: The situation is sketched in Figure 2.19.

N vy = 15.0m/s xX—x,=70.0m
0x -
1 * 1=6.00 s
v, =15.0 m/s
X0=0 X =70.0m —9
t= t =6.00s Vor =

Figure 2.19
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+ 2(x— 2(70.0
Execurs: Use x_xo:[”‘h—z“jr, S0 v, = (xtxo)_vx: (Z 0 m)
. S

(b) Use v. =v, +a.t, 5o g =YV _15.0m/s—-5.0 m/s
T ! t 6.00s

EVALUATE: The average velocity is (70.0 m)/(6.00s) =11.7 m/s. The final velocity is larger than this,

—15.0 m/s =8.33 m/s.

=1.11 m/s>.

so the antelope must be speeding up during the time interval; v, <v_ and a, >0.

2.20. IDENTIFY: In (a) find the time to reach the speed of sound with an acceleration of 5¢g, and in (b) find his
speed at the end of 5.0 s if he has an acceleration of 5g.
SET UP: Let +x be in his direction of motion and assume constant acceleration of 5¢g so the standard

kinematics equations apply so v, =v, +a.t. (a) v, =3(331 m/s)=993 m/s, v, =0, and
a,=5g=49.0m/s’. (b) t=5.0's

= 993 m/s — 0
EXECUTE: (a) v, =v,, +at and t= Ve~ Vor - s

a 49.0 m/s’

i

=20.3 s. Yes, the time required is larger

than 5.0 s.
(b) v, =v,, +at=0+(49.0 m/s*)(5.0 s) =245 m/s.
EVALUATE: In 5.0 s he can only reach about 2/3 the speed of sound without blacking out.

2.21.  IDENTIFY: For constant acceleration, the standard kinematics equations apply.

SET UP: Assume the ball starts from rest and moves in the +x-direction.

EXECUTE: (a) x—x,=1.50 m, v, =45.0 m/s and v,, =0. v =v +2a (x—x,) gives
_vi-vi. _(45.0 m/s)’

a
Yo 2(x=x)  2(1.50 m)

=675 m/s’.

+ - :
(b) x—x, =(V‘” Vs jt gives ¢ = 2§-%) =20.5¢m] =0.0667 s
2 Vo, TV,  45.0m/s
v, _45.0 m/s . .
EVALUATE: We could also use v, =v,, +at tofind t=—=———-=0.0667 s which agrees with
a, 675m/s

our previous result. The acceleration of the ball is very large.
2.22. IDENTIFY: For constant acceleration, the standard kinematics equations apply.
SET UP: Assume the ball moves in the +x direction.

EXECUTE: (a) v, =73.14m/s, v,, =0 and £=30.0 ms. v, =v, +at gives
g =2V _ 73.14 m/s—0
* t 30.0x107° s

+ +73,
(b) x—x, :(V‘”z VX}:(O 73214 m/SJ(30.0><103 s$)=1.10 m .

EVALUATE: We could also use x—x, =v,/ ++at’ to calculate x—x,:

=2440 m/s>.

x =X, =1(2440 m/s*)(30.0x107 s)* =1.10 m, which agrees with our previous result. The acceleration

of the ball is very large.
2.23. IDENTIFY: Assume that the acceleration is constant and apply the constant acceleration kinematic
equations. Set |a | equal to its maximum allowed value.

SETUP: Let +x be the direction of the initial velocity of the car. a, =—250 m/s’.
105 km/h =29.17 m/s.

EXECUTE: v, =29.17 m/s. v, =0. v} =v] +2a (x—Xx,) gives

vi—vs _0-(29.17 m/s)* _

X

1.70 m.

X=X, = >
2a, 2(-250 m/s*)

EVALUATE: The car frame stops over a shorter distance and has a larger magnitude of acceleration. Part

of your 1.70 m stopping distance is the stopping distance of the car and part is how far you move relative to

the car while stopping.
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2.24. IDENTIFY: In (a) we want the time to reach Mach 4 with an acceleration of 4g, and in (b) we want to
know how far he can travel if he maintains this acceleration during this time.

SET UP: Let +x be the direction the jet travels and take x, =0. With constant acceleration, the equations
v, =v, +at and x=x,+v, 1 +1a i’ bothapply. a, =4g=39.2 m/s’, v, =4(331 m/s) =1324 m/s, and
v, = 0.

. . - 1324 -
EXECUTE: (a) Solving v =v, +at fortgives t = v TV, o 1324 mis 5 0. 33.8s

’ N 39.2 m/s

(b) x=x,+v,t ++ar’=1(39.2 m/s*)(33.8 5)’ =2.24x10*m =22.4 km.
EVALUATE: The answer in (a) is about %2 min, so if he wanted to reach Mach 4 any sooner than that, he
would be in danger of blacking out.

2.25. IDENTIFY: Ifa person comes to a stop in 36 ms while slowing down with an acceleration of 60g, how far
does he travel during this time?

SET Up: Let +x be the direction the person travels. v, =0 (he stops), a, is negative since it is opposite
to the direction of the motion, and # =36 ms =3.6x10’s. The equations v, =v, +a ¢ and
x=x, + vt +La 1* both apply since the acceleration is constant.
EXECUTE: Solving v, =v, +a for v, gives v,, =—a. Then x=x, +v, ¢ +1at’ gives
x=-Ltar’=-1(-588 m/s’)(3.6x107s)’ =38 cm.
EVALUATE: Notice that we were not given the initial speed, but we could find it:

Vo =—at =—(=588 m/s’)(36 x107s) =21 m/s = 47 mph.

2.26. IDENTIFY: In (a) the hip pad must reduce the person’s speed from 2.0 m/s to 1.3 m/s over a distance of
2.0 cm, and we want the acceleration over this distance, assuming constant acceleration. In (b) we want to
find out how long the acceleration in (a) lasts.

SET UpP: Let +y be downward. v,, =2.0 m/s, v, =1.3 m/s, and y — y, = 0.020 m. The equations

2 - —| Yoy g Yy :
v, = vf)y +2a,(y—y,) and y—y, = ; t apply for constant acceleration.
EXECUTE: (a) Solving v; =v; +2a,(y-y,) fora,gives

2 2 2 2
v, =V, 1. —(2.

g =2 Y (3mVS) —QOmS) _ go 2o 5o,

T2y =) 2(0.020 m)

Vo, TV, . 2(y — 2(0.02
(b) y—y, =| 2—2 |t gives t = O=x) - (0.020 m) =12 ms.
2 Vo, tv,  2.0m/s +1.3 m/s

EVALUATE: The acceleration is very large, but it only lasts for 12 ms so it produces a small velocity change.

2.27. IDENTIFY: We know the initial and final velocities of the object, and the distance over which the velocity
change occurs. From this we want to find the magnitude and duration of the acceleration of the object.
SET UP: The constant-acceleration kinematics formulas apply. v> =v;, +2a_(x —x,), where
Vo =0, v, =5.0x10° m/s, and x—x, =4.0 m.

2 .2 3 2
EXECUTE: (a) v} =72, +2a,(x—x,) gives a_= Yo = COMOW 54100 0 =3 0x10° 4.
’ ’ T 2(x—xy) 2(4.0 m)

v, =V, _ 5.0x10° m/s
b) v, =v,, +at gives t =+t = =1.6 ms.
b) v =w, *at g 3.1x10° m/s’
EVALUATE: (c) The calculated a is less than 450,000 g so the acceleration required doesn’t rule out this
hypothesis.

2.28. IDENTIFY: Apply constant acceleration equations to the motion of the car.

SET UP: Let +x be the direction the car is moving.

) 2 2 2
EXECUTE: (a) From v’ =v2, +2a,(x—x,), with v, =0, a, =— = COMS)" _ 6702

* T 2(x-x,) 2(120m)
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(b) Using Eq. (2.14), t =2(x—x,)/v, =2(120m)/(20 m/s) =12s.

(¢) (12 s)(20m/s) =240 m.

EVALUATE: The average velocity of the car is half the constant speed of the traffic, so the traffic travels
twice as far.

Lo Av, . . .
2.29. IDENTIFY: The average accelerationis a,, = A—‘ For constant acceleration, the standard kinematics
t

equations apply.
SET UP: Assume the rocket ship travels in the +x direction. 161 km/h =44.72 m/s and
1610 km/h =447.2 m/s. 1.00 min =60.0 s

Av, 4472 m/s—0 _

EXECUTE: (a)(i) a,  =—+r=————=5.59 m/s’
At 8.00 s
(i) 0, /2 4472 m/s—44.72mIs oo, o
60.0 s—8.00 s

+ +44,
(b) (i) t=8.00s, v,, =0, and v, =44.72 m/s. x—x, :[VOXZ VXJt:[O 44272 m/S](S.oo $)=179 m.

(i) Ar=60.05—-8.005s=52.0s, v,, =44.72 m/s, and v, =447.2 m/s.
(Vo TV, ), _[44.72 m/s+447.2 m/s
X—Xx, = 2 0= 5

EVALUATE: When the acceleration is constant the instantaneous acceleration throughout the time interval
equals the average acceleration for that time interval. We could have calculated the distance in part (a) as

x—x, =vyt +Lat® =1(5.59 m/s*)(8.00 )’ =179 m, which agrees with our previous calculation.

)(52.0 s)=1.28x10" m.

2.30.  IDENTIFY: The acceleration a,_ is the slope of the graph of v~ versus ¢.
SET Up: The signs of v, and of a_ indicate their directions.
EXECUTE: (a) Reading from the graph, at £ =4.0's, v. =2.7 cm/s, to the rightand at 1 =7.0 s,
v, =1.3 cm/s, to the left.

(b) v, versus ¢ is a straight line with slope _%gm/s =—1.3 cm/s’. The acceleration is constant and
0s

equal to 1.3 cm/s”, to the left. It has this value at all times.

(¢) Since the acceleration is constant, x —x, =v, t ++a . For 1=0 t04.5s,
x—x, =(8.0 cm/s)(4.5 s) +L(—1.3 cm/s*)(4.5 s)* =22.8 cm. For 1 =0 t0 7.5 s,
x=x, =(8.0 cm/s)(7.5 8) +1(~1.3 cm/s*)(7.5 5)* =23.4 cm

(d) The graphs of a_and x versus ¢ are given in Figure 2.30.

. V, TV
EVALUATE: In part (c) we could have instead used x —x, = ( s jt.

a,

— 1.3 m/s?

Figure 2.30
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2.31.

2.32.

(a) IDENTIFY and SET UP: The acceleration a_ at time ¢ is the slope of the tangent to the v_ versus ¢

curve at time ¢.

EXECUTE: At t=3s, the v_ versus f curve is a horizontal straight line, with zero slope. Thus a, = 0.

45 m/s—20 m/s
9s-5s

At t =7 s, the v_ versus ¢ curve is a straight-line segment with slope =6.3 m/s’.

Thus a, =6.3 m/s’.
. . . . . -0-45m/
At t =11 s the curve is again a straight-line segment, now with slope 13—9ms =-11.2 m/s’.
s=9s
Thus a, =—11.2 m/s’.
EVALUATE: g =0 when v, is constant, ¢, >0 when v, is positive and the speed is increasing, and
a, <0 when v_ is positive and the speed is decreasing.

(b) IDENTIFY: Calculate the displacement during the specified time interval.

SET UP: We can use the constant acceleration equations only for time intervals during which the

acceleration is constant. If necessary, break the motion up into constant acceleration segments and apply

the constant acceleration equations for each segment. For the time interval £ =0 to ¢ =5 s the acceleration

is constant and equal to zero. For the time interval £ =5 s to 1 =9 s the acceleration is constant and equal

to 6.25 m/s*. For the interval =9 s to =13 s the acceleration is constant and equal to —11.2 m/s’.

EXECUTE: During the first 5 seconds the acceleration is constant, so the constant acceleration kinematic

formulas can be used.

v, =20m/s a, =0 t=5s x—x,=?

X=X, =yt (a, =0 sono tat® term)

x—x, =(20 m/s)(§ s) =100 m; this is the distance the officer travels in the first 5 seconds.

During the interval #=5 s to 9 s the acceleration is again constant. The constant acceleration formulas can

be applied to this 4-second interval. It is convenient to restart our clock so the interval starts at time ¢ =0

and ends at time # =4 s. (Note that the acceleration is nof constant over the entire £ =0 to £=9 s

interval.)

Vo, =20m/s a,=6.25m/s’ t=4s x,=100m x-x,=?

x=x,=vyt+tar’

x =X, =(20 m/s)(4 s) +1(6.25 m/s*)(4 5)° =80 m+50 m =130 m.

Thus x—x,+130 m =100 m+130 m =230 m.

At t =9 s the officer is at x =230 m, so she has traveled 230 m in the first 9 seconds.

During the interval t =9 s to t =13 s the acceleration is again constant. The constant acceleration

formulas can be applied for this 4-second interval but not for the whole 1 =0 to ¢ =13 s interval. To use

the equations restart our clock so this interval begins at time # =0 and ends at time ¢ =4 s.

Vo, =45 m/s (at the start of this time interval)

a, =-11.2m/s’ t=4s x,=230m x—x,=?

x=x,=vyt+tar’

x—x, =(45 m/s)(4 s) +1(-=11.2 m/s*)(4 s)* =180 m—89.6 m =90.4 m.

Thus x =x,+90.4 m=230 m+90.4 m=320 m.

At t =13 s the officer is at x =320 m, so she has traveled 320 m in the first 13 seconds.

EVALUATE: The velocity v_ is always positive so the displacement is always positive and displacement

and distance traveled are the same. The average velocity for time interval Atz is v, =Ax/At. For t =0 to
=20 m/s. For t=0 t0o9s, v

5s, v e =26 m/s. For t=0 to 13's, v, =25 m/s. These results are

av-x

consistent with the figure in the textbook.
IDENTIFY: v (¢) is the slope of the x versus ¢ graph. Car B moves with constant speed and zero

acceleration. Car 4 moves with positive acceleration; assume the acceleration is constant.
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SET UP: For car B, v, is positive and a, =0. For car 4, a, is positive and v, increases with .

EXECUTE: (a) The motion diagrams for the cars are given in Figure 2.32a.
(b) The two cars have the same position at times when their x-¢ graphs cross. The figure in the problem
shows this occurs at approximately t =1s and ¢ =3s.

(c) The graphs of v, versus ¢ for each car are sketched in Figure 2.32b.

(d) The cars have the same velocity when their x-¢ graphs have the same slope. This occurs at
approximately ¢ =2 s.

(e) Car 4 passes car B when x, moves above x, in the x-# graph. This happens at r =3 s.
(f) Car B passes car 4 when x, moves above x, in the x-f graph. This happens at ¢ =1 s.
EVALUATE: When a_ =0, the graph of v_ versus # is a horizontal line. When a_ is positive, the graph of

v, versus ¢ is a straight line with positive slope.

\{r(m/s)
(I"' (I". (l",
A —- A — A —
) ev, =0 0—»(‘)’_, 0—0>Vx
a. = a. = a. =
B X B X B - 2, ot " 1 s I WD NES e LS BT
Vx T W TV 1(s)
t=0 t=1s t=3s
@ (b)

Figure 2.32

2.33. IDENTIFY: For constant acceleration, the kinematics formulas apply. We can use the total displacement
ande final velocity to calculate the acceleration and then use the acceleration and shorter distance to find
the speed.

SET UP: Take +x to be down the incline, so the motion is in the +x direction. The formula

v:=v; +2a(x-x,) applies.

EXECUTE: First look at the motion over 6.80 m. We use the following numbers: vy, = 0, x —x, = 6.80 m,
and v, = 3.80 /s. Solving the above equation for a, gives a, = 1.062 m/s>. Now look at the motion over the
3.40 m using v, =0, a, = 1.062 m/s” and x — xo = 3.40 m. Solving the same equation, but this time for v,,
gives v, = 2.69 m/s.

EVALUATE: Even though the block has traveled half way down the incline, its speed is not half of its
speed at the bottom.

2.34. IDENTIFY: Apply the constant acceleration equations to the motion of each vehicle. The truck passes the
car when they are at the same x at the same ¢>0.

SET Up: The truck has @, =0. The car has v, =0. Let +x be in the direction of motion of the vehicles.

Both vehicles start at x, =0. The car has a. =2.80 m/s’. The truck has v, =20.0 m/s.

EXECUTE: (a) x—X, =v,t+1at’ gives x; =v,t and x. =La.t’. Setting x, =x. gives =0 and
2vyr _ 2(20.0 m/s)
a.  2.80m/s’
x=1(3.20 m/s*)(14.29 s)* =286 m. The car and truck have each traveled 286 m.

(b) At t=14.29 s, the car has v, =v,, +a ¢ =(2.80 m/s*)(14.29 s) =40 m/s.

act, sot= =14.29 s. At this ¢, x; =(20.0 m/s)(14.29 s) =286 m and

1
Vor =3

(¢) x; =vy;t and x, =La.t’. The x-1 graph of the motion for each vehicle is sketched in Figure 2.34a.
(d) v; =vy. v =act. The v -t graph for each vehicle is sketched in Figure 2.34b (next page).
EVALUATE: When the car overtakes the truck its speed is twice that of the truck.



2-12 Chapter 2
x (m) vy (m/s)
Of——m e — — —
20 truck
1(s) 1(s)
(b)
Figure 2.34
2.35. IDENTIFY: Apply the constant acceleration equations to the motion of the flea. After the flea leaves the
ground, a, =g, downward. Take the origin at the ground and the positive direction to be upward.
(a) SET UP: At the maximum height v, =0.
v,=0 y-»,=0440m a,=-9.80 m/s’ Wiy = 7
VL=V, $2a,(r = 3)
EXECUTE: v, =\/=2a,(y =) = \/—2(—9.80 m/s*)(0.440 m) =2.94 m/s
(b) SET UP: When the flea has returned to the ground y -y, =0.
y=y,=0 v, =+2.94m/s a,=-9.80 m/s’ ;=7
Y=Yy =Vl +%ayz‘2
. e 2v, 2(2.94
EXECUTE: With y—y, =0 this gives ¢ = b Ay m/sz) =0.600 s.
a, -9.80 m/s
EVALUATE: Wecanuse v, =v,, *a, toshow that with v, =2.94 m/s, v =0 after 0.300 s.
2.36. IDENTIFY: The rock has a constant downward acceleration of 9.80 m/s*. We know its initial velocity and
position and its final position.
SET UP: We can use the kinematics formulas for constant acceleration.
EXECUTE: (a) y—y, =-30m, v,, =22.0 m/s, a, ==9.80 m/s®. The kinematics formulas give
v, = —\/véy +2a,(y—y,) =—(22.0 m/s)* +2(~9.80 m/s>)(~30 m) =-32.74 m/s, so the speed is 32.7 m/s.
v, =V, _—32.74 m/s—22.0 m/
(b) v, =v,, +a, and 1= = oL o559
’ ’ a, -9.80 m/s
EVALUATE: The vertical velocity in part (a) is negative because the rock is moving downward, but the
speed is always positive. The 5.59 s is the total time in the air.
2.37. IDENTIFY: The pin has a constant downward acceleration of 9.80 m/s> and returns to its initial position.
SET UP: We can use the kinematics formulas for constant acceleration.
EXECUTE: The kinematics formulas give y -y, =v,,¢ +%a},t2. We know that y—y, =0, so
2v,, .
o __2(8.20 m/sz) 1167 s
a, -9.80 m/s
EVALUATE: It takes the pin half this time to reach its highest point and the remainder of the time to
return.
2.38.  IDENTIFY: The putty has a constant downward acceleration of 9.80 m/s>. We know the initial velocity of

the putty and the distance it travels.
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2.39.

2.40.

241.

SET UP: We can use the kinematics formulas for constant acceleration.
EXECUTE: (a) vy, = 9.50 m/s and y — y, = 3.60 m, which gives

v, = V2, +2a,(y = ) =4J(9.50 m/s)’ +2(=9.80 m/s”)(3.60 m) =4.44 m/s

_4.44 m/s—-9.50 m/s
—-9.8 m/s?

— Voy

v,
(b) t=-2 =0.517 s

a,
EVALUATE: The putty is stopped by the ceiling, not by gravity.

IDENTIFY: A ball on Mars that is hit directly upward returns to the same level in 8.5 s with a constant
downward acceleration of 0.379g. How high did it go and how fast was it initially traveling upward?

SET UP: Take +y upward. v, =0 at the maximum height. a, =-0.379g =-3.71 m/s’. The constant-
acceleration formulas v, =v, +at and y =y, + v, + %ayt2 both apply.

EXECUTE: Consider the motion from the maximum height back to the initial level. For this motion
vy, =0 and 1=4.255s. y =y, +v, 1 +La® =1(=3.71 m/s*)(4.25 s)* =—33.5 m. The ball went 33.5 m

above its original position.
(b) Consider the motion from just after it was hit to the maximum height. For this motion v, =0 and

t=4.25s. v, =, +at gives v, =—at=—(-3.71 m/s*)(4.25 s)=15.8 m/s.
(c) The graphs are sketched in Figure 2.39.

Ugy

~Ugy

0
(a) (b) ©
Figure 2.39

EVALUATE: The answers can be checked several ways. For example, v, =0, v, =15.8 m/s, and

v =, _ 0-(15.8 m/s)’

Y

2a 2(-3.71 m/s?)

v

a,==3.71m/s’ in v} =V, +2a,(y —y,) gives y—y, = =33.6 m, which

agrees with the height calculated in (a).
IDENTIFY: Apply constant acceleration equations to the motion of the lander.

SETUP: Let +y be downward. Since the lander is in free-fall, a, =+1.6 m/s>.

EXECUTE: v, =0.8m/s, y—y,=5.0m, a, =+1.6 m/s* in v'i =v§y +2a,(y-y,) gives

v, = Vs, +2a,(y = ) =(0.8 m/s)’ +2(1.6 m/s’)(5.0 m) = 4.1 m/s.

EVALUATE: The same descent on earth would result in a final speed of 9.9 m/s, since the acceleration due
to gravity on earth is much larger than on the moon.

IDENTIFY: Apply constant acceleration equations to the motion of the meterstick. The time the meterstick
falls is your reaction time.

SET UP: Let +y be downward. The meter stick has v,, =0 and a, =9.80 m/s’. Let d be the distance the

meterstick falls.

d
. - 2 : — 2742 —
EXECUTE: (a) Y=Y —voyt+%ayt gives d =(4.90 m/s ) and ¢ = W
() 1= |20~ 190
4.90m/s

EVALUATE: The reaction time is proportional to the square of the distance the stick falls.
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2.42.

2.43.

IDENTIFY: Apply constant acceleration equations to the vertical motion of the brick.

SETUP: Let +y be downward. a, =9.80 m/s”

EXECUTE: (a) v,, =0,£=1.90 s,a, =9.80 m/s’. y—y, =v, t++a * =1(9.80 m/s*)(1.90 5)’ =17.7 m.
The building is 17.7 m tall.

(b) v, =v,, +a,t=0+(9.80 m/s*)(1.90 s)=18.6 m/s

(¢) The graphs of @, v, and y versus 7 are given in Figure 2.42. Take y =0 at the ground.

+
Yo v vy

EVALUATE: We could use either y -y, :[ jt or v, =v; +2a,(y - y,) to check our results.

vy Y= Yo

Figure 2.42

IDENTIFY: When the only force is gravity the acceleration is 9.80 m/s*>, downward. There are two
intervals of constant acceleration and the constant acceleration equations apply during each of these
intervals.

SET UP: Let +y be upward. Let y =0 at the launch pad. The final velocity for the first phase of the
motion is the initial velocity for the free-fall phase.

EXECUTE: (a) Find the velocity when the engines cut off. y—y, =525 m, a, =2.25 m/s’, Yy, =0.

Vi =vy, +2a,(y—y,) gives v, :\/2(2.25 m/s*)(525 m) =48.6 m/s.
Now consider the motion from engine cut-off to maximum height: y, =525 m, v, =+48.6 m/s, v =0
(at the maximum height), a, =—9.80 m/s*. v; =v; +2a,(y—y,) gives
2_ .2 . 2
yoyy =Y S O8O M)y i =121 m+525 m =646 m.
2a, 2(-9.80 m/s”)

(b) Consider the motion from engine failure until just before the rocket strikes the ground:
y=y,=-525m, a,=-9.80 m/s’, vy, = +48.6 m/s. v;‘: = véy +2a,(y-y,) gives

v, :—\/(48.6 m/s)’ +2(-9.80 m/s*)(=525 m) =—112 m/s. Then v, =v, +a, gives

_ V=V, _—112m/s—48.6 m/s
a -9.80 m/s’

y

=16.4 s.

(¢) Find the time from blast-off until engine failure: y -y, =525 m, v,, =0, a, =+2.25 m/s>.

20 -y _ \/2(525 m)
a 2.25 m/s?

v

Y=Yy =Vt +%ayt2 gives t = =21.6 s. The rocket strikes the launch pad

21.6 s+16.4 s =38.0 s after blast-off. The acceleration a,is +2.25 m/s” from =0 to t=21.6s. Itis
—9.80 m/s* from +=21.6s to 38.0 s. v, =v,, +at applies during each constant acceleration segment,
so the graph of v, versus ¢ is a straight line with positive slope of 2.25 m/ s* during the blast-off phase
and with negative slope of —9.80 m/s” after engine failure. During each phase y -y, = Vo, +%ayt2. The
sign of a, determines the curvature of y(¢). At t=38.0 s the rocket has returned to y =0. The graphs
are sketched in Figure 2.43.



Motion Along a Straight Line 2-15

2.44.

EVALUATE: In part (b) we could have found the time from y —y, =v, ¢ +%ayt2, finding v, first allows

us to avoid solving for ¢ from a quadratic equation.

vy y
225 mfs? —— 48.6 mfs
i ! ¢ 646 m |-
0 21i6s 38.0s L | p 525m
| 0 21.6s\ 38.0s
|
|
| 1 P
| ) 216s  380s
| = -
-9.80 m/sl < S— 112 m/s
Figure 2.43

IDENTIFY: Apply constant acceleration equations to the vertical motion of the sandbag.
SET Up: Take +y upward. a, =-9.80 m/ s>. The initial velocity of the sandbag equals the velocity of

the balloon, so v;, =+5.00 m/s. When the balloon reaches the ground, y -y, =-40.0 m. Atits
maximum height the sandbag has v, =0.

EXECUTE: (a)
1=0.250 s: y—y, = vt ++a 1’ =(5.00 m/s)(0.250 s) +4(=9.80 m/s*)(0.250 s)* =0.94 m. The

sandbag is 40.9 m above the ground. v, =v, +at=+5.00 m/s +(-9.80 m/s*)(0.250 s) =2.55 m/s.
t=1.00s: y—y, =(5.00 m/s)(1.00 s) +1(-9.80 m/s*)(1.00 s)> =0.10 m. The sandbag is 40.1 m above
the ground. v, =v; +at=+5.00 m/s +(-9.80 m/s*)(1.00 s) =—4.80 m/s.

(b) y—y, =—40.0 m, v,, =5.00 m/s, a, =—9.80 m/s’. y—y, =v, t++a 1’ gives

—40.0 m =(5.00 m/s)t—(4.90 m/s*)z*. (4.90 m/s*)t> —(5.00 m/s)t—40.0 m =0 and

t :91%(5.001\/(—5.00)2 —4(4.90)(—40.0)) s =(0.51%£2.90) s. ¢ must be positive, so t =3.41 s.

(© v, =vy, ta,=+5.00 m/s +(-9.80 m/s?)(3.41s) =—-28.4 m/s
(d) v,, =5.00 m/s, a, ==9.80 m/s’, v, =0. v; =v;, +2a,(y—y,) gives

2

V=V, _ 0—(5.00 m/s)’
2a,  2(-9.80 m/s’)

Y=y, = =1.28 m. The maximum height is 41.3 m above the ground.

(e) The graphs of @, v, and y versus ¢ are given in Figure 2.44. Take y =0 at the ground.

y’
EVALUATE: The sandbag initially travels upward with decreasing velocity and then moves downward

with increasing speed.

S|
S

Figure 2.44



2-16

Chapter 2

2.45.

2.46.

IDENTIFY: Use the constant acceleration equations to calculate a, and x —x,.
(@) SETUp: v =224 m/s, v, =0,1=0.900s, a, =7
v, =y, tat

_v, =V, _224m/s—0
EXECUTE: a, =- L=
t 0.900 s

(b) a /g =(249 m/s*)/(9.80 m/s*) =25.4

(€) x—Xx, = vyt +1a > =0+1(249 m/s)(0.900 s)* =101 m
(d) SET Up: Calculate the acceleration, assuming it is constant:
t=1.40s, v,, =283 m/s, v, =0 (stops), a, =?

=249 m/s?

v, =V, tat
EXECUTE: q, =& 0= 0-283m/5 _ 502 m/s?
t 1.40s

a/g =(-202 m/s*)/(9.80 m/s*) =—20.6; a, =—20.6g

If the acceleration while the sled is stopping is constant then the magnitude of the acceleration is only 20.6g.
But if the acceleration is not constant it is certainly possible that at some point the instantaneous acceleration
could be as large as 40g.

EVALUATE: It is reasonable that for this motion the acceleration is much larger than g.

IDENTIFY: Since air resistance is ignored, the egg is in free-fall and has a constant downward acceleration

of magnitude 9.80 m/s’>. Apply the constant acceleration equations to the motion of the egg.
SET Up: Take +y to be upward. At the maximum height, v, =0.

EXECUTE: (a) y—y, =—-30.0m, 1=5.00 s, a, ==9.80 m/s’. y—y, v, t+1a,’ gives

Yoy :%_%ayt :%—%(—9.80 m/s*)(5.00 s) = +18.5 m/s.

(b) v,, =+18.5 m/s, v, =0 (at the maximum height), a, =—9.80 m/s*. v =v; +2a (y-y,) gives
2_v2 _ 2

Y=y, = v, =V, _0-(18.5 m/sz) —17.5 m.
2a, 2(-9.80 m/s%)

(¢) At the maximum height v, =0.

(d) The acceleration is constant and equal to 9.80 m/s*>, downward, at all points in the motion, including

at the maximum height.
(e) The graphs are sketched in Figure 2.46.

=1.89 s. The

v, —v,, —18.
EVALUATE: The time for the egg to reach its maximum height is ¢ =—2—"" = 18.5 m/zs
a, -9.8 m/s
egg has returned to the level of the cornice after 3.78 s and after 5.00 s it has traveled downward from the
cornice for 1.22 s.

¥(#) (m) vy(1) (mfs) ay (mfs?)

0

25
=10
=15
=20
0

t(s)

Figure 2.46
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2.47.

2.48.

2.49.

IDENTIFY: We can avoid solving for the common height by considering the relation between height, time
of fall, and acceleration due to gravity, and setting up a ratio involving time of fall and acceleration due to
gravity.

SETUP: Let g, be the acceleration due to gravity on Enceladus and let g be this quantity on earth. Let /

be the common height from which the object is dropped. Let +y be downward, so y -y, =h. v,, =0
EXECUTE: y-—y,=v, ! ++a gives h=1gt; and h=1g 17 . Combining these two equations gives

1.75 s
18.6's

EVALUATE: The acceleration due to gravity is inversely proportional to the square of the time of fall.
IDENTIFY: Since air resistance is ignored, the boulder is in free-fall and has a constant downward

2 2
g =g 7 and g, :g[t—Ej =(9.80 m/sz)( j =0.0868 m/s’.
t

En

acceleration of magnitude 9.80 m/s*. Apply the constant acceleration equations to the motion of the
boulder.
SET UP: Take +y to be upward.

EXECUTE: (a) v,, =+40.0 m/s, v, =+20.0 m/s, a, =-9.80 m/s>. v, =v,, tat gives

_V, =V, _20.0 m/s—40.0 m/s

=2 Yoo =42.04's.
a, -9.80 m/s’
(b) v, ==20.0 m/s. ¢ =22 o - 2200 mSZA00MS _ (4,
4 a -9.80 m/s

y

(©) y=y, =0, v, =+40.0 m/s, a, ==9.80 m/s’. y—y, =v, t++a* gives t =0 and
2 .
f= Yoy _ 2(400m/s2):+8.16s.
a, -9.80 m/s
— — _ o . _V, =V, _0-40.0 m/s _
() v, =0, v, =+40.0 m/s, a, =-9.80 m/s’. v, =v, +at gives t = a B 408

(e) The acceleration is 9.80 m/s>, downward, at all points in the motion.

(f) The graphs are sketched in Figure 2.48.

EVALUATE: v, =0 atthe maximum height. The time to reach the maximum height is half the total time
in the air, so the answer in part (d) is half the answer in part (c). Also note that 2.04 s <4.08 s<6.12 s.
The boulder is going upward until it reaches its maximum height and after the maximum height it is
traveling downward.

y (£)(m) vy (1)(m/s) a, (m/sz)

50 0
25
0 -5
1(s) _;5) g _1(s)
S = (s S
o] 2 4 6 8 10 0] 2 4 6 8 10 0 5 10

Figure 2.48

IDENTIFY: The rock has a constant downward acceleration of 9.80 m/s®. The constant-acceleration
kinematics formulas apply.

SET Up:  The formulas y =y, + v, ¢ + %ayt2 and vf = vf)y +2a,(y —y,) both apply. Call +y upward.
First find the initial velocity and then the final speed.

EXECUTE: (a) 6.00 s after it is thrown, the rock is back at its original height, so y = y, at that instant.
Using a, =-9.80 m/s” and 7= 6.00 s, the equation y = Yo Tyt t %ayt2 gives vy, = 29.4 m/s. When the rock
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reaches the water, y — y, = —28.0 m. The equation vj = an +2a,(y —y,) givesv,=-37.6 m/s, so its speed is
37.6 m/s.
EVALUATE: The final speed is greater than the initial speed because the rock accelerated on its way down
below the bridge.

2.50. IDENTIFY: The acceleration is not constant, so we must use calculus instead of the standard kinematics
formulas.
SET UP: The general calculus formulas are v, =v, + J: adt and x =x, + j(: v, dt. First integrate a, to find
w(t), and then integrate that to find x(?).
EXECUTE: Find w(f): v (t) =v,, + _[(: adt=v,, +I;—(0.0320 m/s*)(15.0 s=¢)dt. Carrying out the integral
and putting in the numbers gives v(¢) = 8.00 m/s — (0.0320 m/s*)[(15.0 s)¢ — £/2]. Now use this result to
find x(7).
x=x, + [ v.dt =5, + [[[8.00 m/s —(0.0320 m/s")((15.0 s)t = 5) |de, which gives
x=Xxo+ (8.00 m/s)t — (0.0320 m/s3)[(7.50 s)t2 —£/6)]. Using xo =—14.0 m and £ = 10.0 s, we get x =47.3 m.
EVALUATE: The standard kinematics formulas apply only when the acceleration is constant.

2.51. IDENTIFY: The acceleration is not constant, but we know how it varies with time. We can use the
definitions of instantaneous velocity and position to find the rocket’s position and speed.

" 50 o Y t t

SET Up: ' The basic definitions of velocity and position are v, (£) =v,, + JO adt and y—y, = IO v, dt.
EXECUTE: (a) v,(1)= j;aydt = j;(z.so m/s*)dt = (1.40 m/s’)
Y=y, = j;vydz = jo’(l 40 m/s")2dt = (0.4667 m/s’ ). For t=10.0's, y— y, =467 m.
(b) y—y,=325m so (0.4667 m/s’)t’ =325 m and ¢ =8.864 s. At this time
v, =(1.40 m/s’)(8.864 5)* =110 m/s.
EVALUATE: The time in part (b) is less than 10.0 s, so the given formulas are valid.

2.52. IDENTIFY: The acceleration is not constant so the constant acceleration equations cannot be used. Instead,

t t
use v, =v,, + IO adt and x =x,+ IO v.dt . Use the values of v, andofxat #=1.0 s to evaluate v, and x,.

SET Up: .ft”dt:%lt””, for n>0.
n

EXECUTE: (a) v, =v,, +J.(:0{tdt =y, +Lot’ =v, +(0.60 m/s’)r’. v, =5.0 m/s when t=1.0's gives
v,, =4.4 m/s. Then,at 1=2.0s, v, =4.4 m/s +(0.60 m/s’)(2.0 s)* =6.8 m/s.

(b) x=x, +J.0r(vox +lot?)dt=x,+v t+iot’. x=6.0m at t=1.0' s gives x, =1.4 m. Then, at
t=2.0s, x=1.4m+(4.4 m/s)(2.0 ) +1(1.2 m/s’)(2.0 s)’ =11.8 m.

(©) x(1)=1.4 m+ (4.4 m/s)t +(0.20 m/s’). v (t) =4.4 m/s +(0.60 m/s’)¢*. a (t) =(1.20 m/s’)¢. The
graphs are sketched in Figure 2.52.

. dv
EVALUATE: We can verify that a_= d" and v =—.
: y f

x(t) (m) v,(t) (mfs)

1(s)

Figure 2.52
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2.53.

2.54.

(a) IDENTIFY: Integrate a (¢) to find v (¢) and then integrate v (¢) to find x(¢).

SETUP: v, =v, + [ a,dt, a, = At-Br* with 4=1.50 m/s’ and B =0.120 m/s".

EXECUTE: v, =v,, +L: (At—Bt*)dt =v, ++ 4 -1+ Br
Atrestat t =0 saysthat v, =0, so

v, =147 —1Br =1(1.50 m/s’)¢* —1(0.120 m/s*)¢’

v, =(0.75 m/s*)r* —(0.040 m/s*)r’

SETUP: x-—Xx, +.[0th dt

EXECUTE: x =x, +J'(:(%At2 —1Br)dt =x,++4r - L Bt
At the origin at £ =0 says that x, =0, so

x=147 -LBr* =1(1.50 m/s’)’ —-£(0.120 m/s*)¢*
x=(0.25 m/s*)* —(0.010 m/s*)*

dv,

EVALUATE: We can check our results by using them to verify that v_(¢) = % and a (¢)=
t

g ) . dv ! dv .
(b) IDENTIFY and SET UP: At time #, when v, is a maximum, = £ =0. (Since a, = d" , the maximum
4 ] t

velocity is when a, =0. For earlier times a, is positive so v, is still increasing. For later times a, is
negative and v_ is decreasing.)

L 0 s bt 58 <)
t

EXECUTE: a, =

One root is ¢ =0, but at this time v, =0 and not a maximum.

_ 1.50m/s®

At this time v, =(0.75 m/s’)¢* —(0.040 m/s*)t’ gives

v, =(0.75 m/s*)(12.5 s)* —(0.040 m/s*)(12.5 s)’ =117.2 m/s—78.1 m/s =39.1 m/s.

EVALUATE: For t<12.5s, a, >0 and v, is increasing. For #>12.5's, a. <0 and v, is decreasing.
IDENTIFY: a(?) is the slope of the v versus ¢ graph and the distance traveled is the area under the

v versus ¢ graph.
SET UP: The v versus ¢ graph can be approximated by the graph sketched in Figure 2.54 (next page).
EXECUTE: (a) Slope=a =0 for >1.3 ms.

(b) h_,, =Areaunder v-¢ graph = 4, +4

riangle Rectangle

z%(l& ms)(133 cm/s)+ (2.5 ms—1.3 ms)(133 cm/s) =

0.25 cm
133 cm/s
ms

(¢) a =slope of v-f graph. @ (0.5 ms) = a(1.0 ms) =1.0x10° cm/s>.

a(1.5ms) =0 because the slope is zero.

(d) h=area under v-f graph. 4(0.5 ms) = 4, :%(0.5 ms)(33 cm/s) =8.3x107 cm.

riangle

.0 ms) = =—(1.0 ms cm/s)=5.0x10" cm.
h(1.0 A, ;10 100 cm/ 0x107*

riangle

h(1.5ms)=A,. . +4

riangle Rectangle

:%(1.3 ms)(133 cm/s) + (0.2 ms)(133 cm/s) =0.11 cm.
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2.55.

2.56.

2.57.

EVALUATE: The acceleration is constant until £ =1.3 ms, and then it is zero. g =980 cm/s’. The

acceleration during the first 1.3 ms is much larger than this and gravity can be neglected for the portion of
the jump that we are considering.

133 cm/s

Figure 2.54

IDENTIFY: The sprinter’s acceleration is constant for the first 2.0 s but zero after that, so it is not constant
over the entire race. We need to break up the race into segments.

va Vs Vx

SET UP: When the acceleration is constant, the formula x —x, =[ jt applies. The average

velocity is v, =—.
Y,

EXECUTE: (a) X—x, :[vox;VXJz :(0”0;) m/sJ(z.o $)=10.0'm.

(b) (i) 40.0 m at 10.0 m/s so time at constant speed is 4.0 s. The total time is 6.0 s, so

(i1) He runs 90.0 m at 10.0 m/s so the time at constant speed is 9.0 s. The total time is 11.0 s, so
_ 100 m

Vir = =9.09 m/s.
11.0s
(ii1) He runs 190 m at 10.0 m/s so time at constant speed is 19.0 s. His total time is 21.0 s, so
b =200 g 5o s,
© 21.0s

EVALUATE: His average velocity keeps increasing because he is running more and more of the race at his
top speed.

IDENTIFY: We know the vertical position of the lander as a function of time and want to use this to find
its velocity initially and just before it hits the lunar surface.

.. d . . .
SET UP: By definition, v, (¢) = d—y, so we can find v, as a function of time and then evaluate it for the
t

desired cases.

EXECUTE: (a) v, (¢) :% =—c+2dt. At 1=0, v (#) =-c=-60.0 m/s. The initial velocity is 60.0 m/s

downward.

(b) y(t)=0 says b—ct +dt* =0. The quadratic formula says  =28.57 s *+7.38 s. It reaches the surface
at £=21.19 s. Atthis time, v, =—60.0 m/s +2(1.05 m/s*)(21.19 s) =—15.5 m/s.

EVALUATE: The given formula for y(¢) is of the form y = y, + vo,t + £ at’. For part (a), Vo, = —¢ = =60 m/s.
IDENTIFY: Intime £, the S-waves travel a distance d =vgt and in time ¢, the P-waves travel a distance
d =vt,.

SETUP: f,=¢, +33s

EXECUTE: i:i+33s.a’ ! — ! =33sand d =250 km.
Vs 3.5km/s 6.5km/s
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2.58.

2.59.

2.60.

2.61.

EVALUATE: The times of travel for each wave are ¢, =71s and ¢, =38s.

IDENTIFY: The brick has a constant downward acceleration, so we can use the usual kinematics formulas.
We know that it falls 40.0 m in 1.00 s, but we do not know which second that is. We want to find out how
far it falls in the next 1.00-s interval.
SET UP: Let the +y direction be downward. The final velocity at the end of the first 1.00-s interval will be

1

the initial velocity for the second 1.00-s interval. a, = 9.80 m/s” and the formula y — Yo =Vt tsa yt2 applies.

EXECUTE: (a) First find the initial speed at the beginning of the first 1.00-s interval. Applying the above
formula with a, = 9.80 m/s%, t=1.00s, and y —y, = 40.0 m, we get vy, = 35.1 m/s. At the end of this 1.00-s
interval, the velocity is v, = 35.1 m/s + (9.80 m/s”)(1.00 s) = 44.9 m/s. This is vy, for the next 1.00-s
interval. Using y —y, = v, ¢ +%ayt2 with this initial velocity gives y —y, =49.8 m.

EVALUATE: The distance the brick falls during the second 1.00-s interval is greater than during the first
1.00-s interval, which it must be since the brick is accelerating downward.

Lo Ax
IDENTIFY: The average velocity is v, =—.

At
SETUP: Let +x be upward.
EXECUTE: (a) v, Semiy =197 m/s
4.75s
(®) vy VU =ON - B
5.90s

. 63 m-0 N .,

EVALUATE: For the first 1.15 s of the flight, v, = - =54.8 m/s. When the velocity isn’t
A5

constant the average velocity depends on the time interval chosen. In this motion the velocity is increasing.
IDENTIFY: Use constant acceleration equations to find x —x, for each segment of the motion.

SET UP: Let +x be the direction the train is traveling.

EXECUTE: =0 to 14.0s: x—x, = v, f +3+a> =1(1.60 m/s*)(14.0 s)* =157 m.

At t=14.0 s, the speed is v, =v,, +at=(1.60 m/s*)(14.0 s) =22.4 m/s. In the next 70.0's, a, =0 and
X=X, =v,,t =(22.4 m/s)(70.0 s) =1568 m.

For the interval during which the train is slowing down, v,, =22.4 m/s, a, =—3.50 m/s’ and v, =0.

2 2 2
vi=v] +2a . (x—x,) gives x—x, = VeVop 032 4 m/sz) =7

2a, 2(-3.50 m/s%)
The total distance traveled is 157 m+1568 m+72 m =1800 m.
EVALUATE: The acceleration is not constant for the entire motion, but it does consist of constant
acceleration segments, and we can use constant acceleration equations for each segment.

IDENTIFY: When the graph of v_ versus ¢ is a straight line the acceleration is constant, so this motion

consists of two constant acceleration segments and the constant acceleration equations can be used for each
segment. Since v, is always positive the motion is always in the +x direction and the total distance moved

equals the magnitude of the displacement. The acceleration a, is the slope of the v_versus ¢ graph.
SET Up: Forthe +=0 to +=10.0 s segment, v, =4.00 m/s and v, =12.0 m/s. For the 1 =10.0 s to
12.0 s segment, v, =12.0 m/s and v, =0.

4.00 m/s +12.0 m/s
2

+
EXECUTE: (a) For /=0 to =10.0's, x—x, :[V"xz V"jt :( )(10.0 s)=80.0 m.

) +
For t=10.0s to t=12.0 s, x—x, 2[%}2.00 s) =12.0 m. The total distance traveled is 92.0 m.

(b) x—x,=80.0 m+12.0 m=92.0 m
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2.62.

2.63.

_12.0 m/s—4.00 m/s

(¢)For t=0 t0 10.0s, a,
’ 10.0 s

=0.800 m/s*. For t=10.0s to 12.0s,

-12. P
a, :% =-6.00 m/s’. The graph of a,_ versus ¢ is given in Figure 2.61.
.00 s

EVALUATE: When v, and a, are both positive, the speed increases. When v_ is positive and a, is

negative, the speed decreases.
a

+0.8 m/s? F———
1 1 t
0 10.0s 12.0s

—6.0m/s? | e

Figure 2.61

IDENTIFY: Apply x—x, =v,/+2a® to the motion of each train. A collision means the front of the

passenger train is at the same location as the caboose of the freight train at some common time.
SET Up: Let P be the passenger train and F be the freight train. For the front of the passenger train x, =0

and for the caboose of the freight train x, =200 m. For the freight train v, =15.0 m/s and a; =0. For the
passenger train v, =25.0 m/s and @, =—0.100 m/s’.
EXECUTE: (a) x—x, =v,t++a® for each object gives x, = vt +1a,r* and x, =200 m+v,. Setting

Xp =X gives vt +1a,1? =200 m+v.2. (0.0500 m/s*)z* —(10.0 m/s)z +200 m =0. The quadratic

formula gives ¢ = 3 1100 (+10.0 + \/(10.0)2 - 4(0.0500)(200)) s =(100+77.5) s. The collision occurs

at t=100s —77.5 s=22.5 s. The equations that specify a collision have a physical solution (real,
positive 7), so a collision does occur.

(b) x, =(25.0 m/s)(22.5 s) +2(-0.100 m/s*)(22.5 s)* =537 m. The passenger train moves 537 m before
the collision. The freight train moves (15.0 m/s)(22.5 s) =337 m.

(c) The graphs of x, and x, versus ¢ are sketched in Figure 2.62.

EVALUATE: The second root for the equation for z, t =177.5 s is the time the trains would meet again if
they were on parallel tracks and continued their motion after the first meeting.

Figure 2.62

IDENTIFY and SET UP: Apply constant acceleration kinematics equations.
Find the velocity at the start of the second 5.0 s; this is the velocity at the end of the first 5.0 s. Then find
x —x, for the first 5.0 s.
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2.64.

2.65.

EXECUTE: For the first 5.0 s of the motion, v,, =0, £ =5.0s.

v, =v,, +tat gives v. =a (5.0 s).

This is the initial speed for the second 5.0 s of the motion. For the second 5.0 s:
v, =a . (5.0s), t=5.0s, x—x, =200 m.

x—x,=vyt+Lar’ gives 200 m=(25s’)a, +(12.5 s*)a, so a, =5.333 m/s’.
Use this a, and consider the first 5.0 s of the motion:

X=X, =Vt +Lar’ =0+1(5.333 m/s’)(5.0 5)’ =67 m.

EVALUATE: The ball is speeding up so it travels farther in the second 5.0 s interval than in the first.
IDENTIFY: The insect has constant speed 15 m/s during the time it takes the cars to come together.
SET UP: Each car has moved 100 m when they hit.

100 m

m/s

EXECUTE: The time until the cars hit is

=10 s. During this time the grasshopper travels a

distance of (15 m/s)(10 s) =150 m.

EVALUATE: The grasshopper ends up 100 m from where it started, so the magnitude of his final
displacement is 100 m. This is less than the total distance he travels since he spends part of the time
moving in the opposite direction.

IDENTIFY: Apply constant acceleration equations to each object.

Take the origin of coordinates to be at the initial position of the truck, as shown in Figure 2.65a.

Let d be the distance that the car initially is behind the truck, so x,(car) =—d and x,(truck)=0. Let
T be the time it takes the car to catch the truck. Thus at time 7 the truck has undergone a displacement
x—x,=60.0 m, soisat x =x, +60.0 m =60.0 m. The car has caught the truck so at time 7'is also at
x=60.0 m.

d
car ruck
| |_> | x
= 3.40 m/s2 — 2
o= 0% =3 m/s vor =0 %= 2.10 mfs

Figure 2.65a

(a) SET Up: Use the motion of the truck to calculate T:
x—x, =60.0 m, v, =0 (starts from rest), a, =2.10 m/s*, ¢=T
x—x,=vyt+tar’
2(x—x,)
a

X

EXECUTE: T = /M =7.56s
2.10 m/s

(b) SET UP: Use the motion of the car to calculate d-
x=x,=60.0m+d, v, =0, a, =3.40 m/s’, t=7.56 s

Since v, =0, this gives ¢ =

x—x,=vyt+tar

EXECUTE: d +60.0 m=1(3.40 m/s*)(7.56 s)’
d=97.16m-60.0m=37.2m.

(c)car: v, =v, +at=0+(3.40 m/s*)(7.56 s) =25.7 m/s
truck: v, =v,, +at=0+(2.10 m/s’)(7.56 s) =15.9 m/s
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(d) The graph is sketched in Figure 2.65b.

60.0 m -+

truck

—37.2m +

Figure 2.65b

EVALUATE: In part (c) we found that the auto was traveling faster than the truck when they came abreast.
The graph in part (d) agrees with this: at the intersection of the two curves the slope of the x-¢ curve for the
auto is greater than that of the truck. The auto must have an average velocity greater than that of the truck
since it must travel farther in the same time interval.

2.66. IDENTIFY: The bus has a constant velocity but you have a constant acceleration, starting from rest.
SET Up: When you catch the bus, you and the bus have been traveling for the same time, but you have
traveled an extra 12.0 m during that time interval. The constant-acceleration kinematics formula
x=x, =vyt+La s applies.
EXECUTE: Call d the distance the bus travels after you start running and ¢ the time until you catch the
bus. For the bus we have d = (5.00 m/s)t, and for you we have d + 12.0 m = (1/2)(0.960 m/s*)7’. Solving
these two equations simultaneously, and using the positive root, gives t = 12.43 s and d = 62.14 m. The
distance you must run is 12.0 m + 62.14 m = 74.1 m. Your final speed just as you reach the bus is
ve = (0.960 m/s)(12.43s) = 11.9 m/s. This might be possible for a college runner for a brief time, but it
would be highly demanding!
EVALUATE: Note that when you catch the bus, you are moving much faster than it is.

2.67. IDENTIFY: Apply constant acceleration equations to each vehicle.
SET Up: (a) It is very convenient to work in coordinates attached to the truck.
Note that these coordinates move at constant velocity relative to the earth. In these coordinates the truck is
at rest, and the initial velocity of the car is v,  =0. Also, the car’s acceleration in these coordinates is the

same as in coordinates fixed to the earth.
EXECUTE: First, let’s calculate how far the car must travel relative to the truck: The situation is sketched
in Figure 2.67.

45m 21.0m 45m

S ey

- —
P == truck - — -, car,
L = = le—— 240 m—:E 26.0m = - - final
car,
initial <——240m + 21.0m + 26.0m + 45m = 75.5m —>

Figure 2.67
The car goes from x, =-24.0 m to x=51.5 m. So x—x,=75.5 m for the car.

Calculate the time it takes the car to travel this distance:
a, =0.600 m/s*, v,, =0, x—x,=75.5m, t =?

— 1 2
X=X, =Vt t5at

t:\/Z(x—xO) :\/2(75.5 m s 6

a 0.600 m/s’

It takes the car 15.9 s to pass the truck.
(b) Need how far the car travels relative to the earth, so go now to coordinates fixed to the earth. In these
coordinates v,, =20.0 m/s for the car. Take the origin to be at the initial position of the car.
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2.68.

2.69.

2.70.

Vo, =20.0 m/s, a,=0.600 m/s’, t=15.86's, x—x, =?
X=X, = vyt +La > =(20.0 m/s)(15.86 s) +1(0.600 m/s*)(15.86 s)’
x=x,=3172m+75.5m=393 m.

(¢) In coordinates fixed to the earth:
v, =v,, +at=20.0 m/s+(0.600 m/s*)(15.86 s) =29.5 m/s

x

EVALUATE: In 15.86 s the truck travels x—x, =(20.0 m/s)(15.86 s) =317.2 m. The car travels
392.7 m—317.2 m =75 m farther than the truck, which checks with part (a). In coordinates attached to

+
the truck, for the car v,, =0, v, =9.5 m/s and in 15.86 s the car travels x —x, = ( vO"'Z Y jt =75 m, which

checks with part (a).

IDENTIFY: The acceleration is not constant so the constant acceleration equations cannot be used. Instead,

dv, _ t
use a (t)= 0l and x =x, +_[0 v (t)dt.
SET Up: jt"dt LA A
n+l
EXECUTE: (a) x(?) = x, +J‘0[[a—ﬂt2]dt =x,+ot—1pr' x=0 at t=0 gives x, =0 and

x(ty=at—L B =(4.00 m/s)r —(0.667 m/s’ ). a (1) = ‘Z =—2/3t =—(4.00 m/s’)z.

(b) The maximum positive x is when v, =0 and a, <0.v, =0 gives o=t =0 and

t= 2= /M =1.41s. Atthis ¢, a; isnegative. For t =1.41s,
p 2.00 m/s

x =(4.00 m/s)(1.41 s)—(0.667 m/s*)(1.41s)* =3.77 m.
EVALUATE: After 1 =1.41 s the object starts to move in the —x direction and goes to x =—co as t — oo,
(a) IDENTIFY and SET UP: Integrate a (¢) to find v (#) and then integrate v (¢) to find x(¢). We know

a,(t)=a+ fBt, with & =-2.00 m/s> and #=3.00 m/s’.

EXECUTE: v, =y, + J-(; a dt=v, + L: (a+prydt=v, +ot+1p

x=x, +J0’vx dt =x, +I<:(V0x +out +L By di = x, + vt + Lot + LB

At t=0, x =x,.

To have x=x, at £, =4.00 s requires that v, £, + Lot} +1 5t =0.

Thus v, =—1 81 =L ot =—1(3.00 m/s)(4.00 s)’ =1 (=2.00 m/s*)(4.00 s) =—4.00 m/s.

(b) With v, as calculated in part (a) and ¢ =4.00 s,

v, =v,, ot +1frP =-4.00 m/s +(—2.00 m/s*)(4.00 s) +1(3.00 m/s’)(4.00 s)* =+12.0 m/s.
EVALUATE: a =0 at t=0.67 s. For t>0.67 s, a_>0. At ¢t =0, the particle is moving in the
—x-direction and is speeding up. After # =0.67 s, when the acceleration is positive, the object slows
down and then starts to move in the +x-direction with increasing speed.

IDENTIFY: Find the distance the professor walks during the time ¢ it takes the egg to fall to the height of his head.
SET UP: Let +p be downward. The egg has v, =0 and a, =9.80 m/s”. At the height of the professor’s

head, the egg has y —y, =44.2 m.

9 80 /s’ =3.00 s. The professor walks a
a . m/s

y

: 2(y- 2(44.2
EXECUTE: y-— yozvoyt+%ayt2 gives ¢ = \/ =y _ \/ ( m)

distance x —x, =v,,¢ =(1.20 m/s)(3.00 s) =3.60 m. Release the egg when your professor is 3.60 m from

the point directly below you.
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EVALUATE: Just before the egg lands its speed is (9.80 m/s*)(3.00s) =29.4 m/s. It is traveling much

faster than the professor.

IDENTIFY: Use the constant acceleration equations to establish a relationship between maximum height
and acceleration due to gravity and between time in the air and acceleration due to gravity.

SET UP: Let +y be upward. At the maximum height, v, =0. When the rock returns to the surface,

y=,=0.
EXECUTE: (a) vf = vjy +2a,(y—y,) gives a H = —%vgy, which is constant, so a.H =ay,H,,.

2
Hy =H,| % |=p| 22005 | 6am
M 3.71m/s

() y—y,=v,,t +%a},t2 with y—y, =0 gives a ¢ =-2v, , which is constant, so a,;T; =ayT,.

T, =T, [”—E} =2.64T.
Ay

EVALUATE: On Mars, where the acceleration due to gravity is smaller, the rocks reach a greater height

and are in the air for a longer time.

IDENTIFY: Calculate the time it takes her to run to the table and return. This is the time in the air for the

thrown ball. The thrown ball is in free-fall after it is thrown. Assume air resistance can be neglected.

SET Up:  For the thrown ball, let +y be upward. a, =-9.80 m/ s*. y =y, =0 when the ball returns to its

original position. The constant-acceleration kinematics formulas apply.
EXECUTE: (a) It takes her % =1.833 s to reach the table and an equal time to return, so the total
.00 m/s

time ball is in the air is 3.667 s. For the ball, y -y, =0, 1=3.667 s and a, =—9.80 m/s’.
+a,t=—1(-9.80 m/s*)(3.667 s) =18.0 m/s.

Y= Yo TVt ++a it gives v, =—4
(b) Find y—y, when #=1.833 s.
Y=Y, =Vt ++a 1’ =(18.0 m/s)(1.833 s) +£(-9.80 m/s*)(1.833 5)* =16.5 m.

EVALUATE: It takes the ball the same amount of time to reach its maximum height as to return from its
maximum height, so when she is at the table the ball is at its maximum height. Note that this large
maximum height requires that the act either be done outdoors, or in a building with a very high ceiling.
(a) IDENTIFY: Consider the motion from when he applies the acceleration to when the shot leaves

his hand.

SET Up: Take positive y to be upward. v,, =0, v, =?, a, =35.0 m/s’, y—y, =0.640 m,
ijf = vgy + 2ay(y _y())
EXECUTE: v, =,/2a,(y-¥,) =\/2(35.0 m/s*)(0.640 m) =6.69 m/s

(b) IDENTIFY: Consider the motion of the shot from the point where he releases it to its maximum height,
where v=0. Take y =0 at the ground.

SETUP: y,=2.20m, y=?, a,=—9.80 m/s’ (free fall), v,, =6.69 m/s (from part (a), v, =0 at

maximum height), Vj = ng +2a,(y=y,)

V}z’ - ng _0—-(6.69 m/s)’
2a, 2(-9.80 m/s?)

(c) IDENTIFY: Consider the motion of the shot from the point where he releases it to when it returns to the
height of his head. Take y =0 at the ground.

EXECUTE: y-—y,=

=229m, y=220m+2.29 m=4.49 m.

SETUP: y,=2.20m, y=1.83m, a, =-9.80 m/s*,v,, =+6.69 m/s, 1 =2 y—y, =v, 1 ++a 1’

EXECUTE: 1.83 m—2.20 m=(6.69 m/s)r +1(=9.80 m/s*)t* =(6.69 m/s)r —(4.90 m/s*)¢*,
4.90* —6.69¢t—0.37 =0, with ¢ in seconds. Use the quadratic formula to solve for ¢:
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= $(6.69 * \/(6.69)2 - 4(4.90)(—0.37)) =0.6830+0.7362. Since ¢ must be positive,
t=0.6830s+0.7362 s=1.42s.
EVALUATE: Calculate the time to the maximum height: v, =v, +at so t=(v,—v, )a, =

—(6.69 m/s)/(—9.80 m/s*) =0.68 s. It also takes 0.68 s to return to 2.2 m above the ground, for a total
time of 1.36 s. His head is a little lower than 2.20 m, so it is reasonable for the shot to reach the level of his
head a little later than 1.36 s after being thrown; the answer of 1.42 s in part (c) makes sense.

IDENTIFY: The flowerpot is in free-fall. Apply the constant acceleration equations. Use the motion past
the window to find the speed of the flowerpot as it reaches the top of the window. Then consider the
motion from the windowsill to the top of the window.

SET UP: Let +y be downward. Throughout the motion a, =+9.80 m/ s*. The constant-acceleration

kinematics formulas all apply.
EXECUTE: Motion past the window: y—y,=1.90 m, 1=0.380 s, a, =+9.80 m/s’. y—y, =v, /1 ++a 1’

:y—yo_%at: 1.90 m
”0.380s

flowerpot when it is at the top of the window.

Motion from the windowsill to the top of the window: v, =0, v, = 2.466 m/s, a, =+9.80 m/s’.

Vv =y, _ (3.138 m/s)’ —0

)

2a, 2(9.80 m/s?)

gives v, —1(9.80 m/s*)(0.380 s) =3.138 m/s. This is the velocity of the

Vi =vp, +2a,(y—y,) gives y—y, = =0.502 m. The top of the window is
0.502 m below the windowsill.

v,
0 =0.320 s to fall from the sill to the top of the

v, =V, 3.138 m/
EVALUATE: It takes the flowerpot t =—2—* = = 2S
5 9.80 m/s

window. Our result says that from the windowsill the pot falls 0.502 m+1.90 m=2.4 m in
0.320 s+0.380 s =0.700 5. y—y, =v, 7 ++a,1° =3(9.80 m/s*)(0.700 s)* =2.4 m, which checks.

IDENTIFY: Two stones are thrown up with different speeds. (a) Knowing how soon the faster one returns
to the ground, how long it will take the slow one to return? (b) Knowing how high the slower stone went,
how high did the faster stone go?

SET UP: Use subscripts f and s to refer to the faster and slower stones, respectively. Take +y to be

upward and y, =0 for both stones. v, =3v,,. When a stone reaches the ground, y =0. The constant-

acceleration formulas y = y, +v,  ++a* and v; =, +2a,(y —y,) both apply.

— L2 o i T Vor — Yos
EXECUTE: (a) y =y, tv,t+5at" givesa, =— . Since both stones have the same a,, P and
f s
t =t{v05 ] =(1)10s)=33s.
Vor
(b) Since v, =0 at the maximum height, then v} =v; +2a (y—y,) gives a, =— 20;} . Since both have

2

the same a , 1}0—f :1}0—5 and y; =y, [h] =9H.
Vi Vs 0s

EVALUATE: The faster stone reaches a greater height so it travels a greater distance than the slower stone
and takes more time to return to the ground.
IDENTIFY: The motion of the rocket can be broken into 3 stages, each of which has constant acceleration,
so in each stage we can use the standard kinematics formulas for constant acceleration. But the acceleration
is not the same throughout all 3 stages.

Vo, TV,

: 1
SET UP: The formulas y—y, = (T}]t, Y=Yy =Vt +Ea",t2, and v, =v, +a;t apply.
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EXECUTE: (a) Let+y be upward. At 7 =25.0's, y—y,=1094 m and v, =87.5 m/s. During the next 10.0 s

2 2
1100 m. The height above the launch pad when the second stage quits therefore is 1094 m+1100 m =
vi—vo, _ 0—(132.5 m/s)’
2a,  2(-9.8m/s’)
The maximum height above the launch pad that the rocket reaches is 2194 m +896 m =3090 m.

+
Vo, vy}:(sn.s m/s +132.5 m/sj(I0.0 o=

the rocket travels upward an additional distance y —y, = [

2194 m. For the free-fall motion after the second stage quits: y — y, = =896 m.

(b) y—y,=v,,t +%ayt2 gives —2194 m = (132.5 m/s)t — (4.9 m/s*)¢*. From the quadratic formula the

positive root ist =38.6 s.

© v, =v, ta,=132.5m/s+(-9.8 m/s*)(38.6 s) =—246 m/s. The rocket’s speed will be 246 m/s just
before it hits the ground.

EVALUATE: We cannot solve this problem in a single step because the acceleration, while constant in
each stage, is not constant over the entire motion. The standard kinematics equations apply to each stage
but not to the motion as a whole.

IDENTIFY: The rocket accelerates uniformly upward at 16.0 m/s” with the engines on. After the engines are
off, it moves upward but accelerates downward at 9.80 m/s.

SET Up: The formulas y—y, =v, #=3a,* and v =vg, +2a (y - y,) both apply to both parts of the
motion since the accelerations are both constant, but the accelerations are different in both cases. Let +y

be upward.
EXECUTE: With the engines on, v,, =0, a,=16.0 m/s” upward, and 7 = T at the instant the engines just
shut off. Using these quantities, we get

Y=Yy =vyt++art = (8.00 /s)T° and v, = vo, + a, £ = (16.0 m/s*)T.

With the engines off (free fall), the formula v; =v; +2a,(y—y,) for the highest point gives

¥ —yo=(13.06 m/s")T*, using vy, = (16.0 m/s’)T, v, = 0, and a, = —9.80 m/s".

The total height reached is 960 m, so (distance in free-fall) + (distance with engines on) = 960 m.
Therefore (13.06 m/s%) 7° + (8.00 m/s”) 7* = 960 m, which gives 7= 6.75 s.

EVALUATE: It we putin 6.75 s for 7, we see that the rocket travels considerably farther during free fall
than with the engines on.

IDENTIFY: The teacher is in free-fall and falls with constant acceleration 9.80 m/s®>, downward. The
sound from her shout travels at constant speed. The sound travels from the top of the cliff, reflects from the
ground and then travels upward to her present location. If the height of the cliff is 4 and she falls a distance
yin 3.0 s, the sound must travel a distance 4+ (h—y) in3.0s.

SETUP: Let +y be downward, so for the teacher a, =9.80 m/s’ and v, , =0. Let y =0 at the top of
the cliff.

EXECUTE: (a) For the teacher, y =1(9.80 m/s*)(3.0 s)’ =44.1 m. For the sound, h+(h—y)=v(.

h=1(vit+y)=1([340 m/s][3.0 s] +44.1 m) =532 m, which rounds to 530 m.

(b) v =v,, +2a,(y—y,) gives v, = /Zay(y— Vo) =\/2(9.80 m/s*)(532 m) =102 m/s.
v 102 m/s

a 9.80 m/s’

v

vy B VO

EVALUATE: She is in the air for ¢ =

=10.4 s and strikes the ground at high speed.

IDENTIFY: The helicopter has two segments of motion with constant acceleration: upward acceleration for
10.0 s and then free-fall until it returns to the ground. Powers has three segments of motion with constant
acceleration: upward acceleration for 10.0 s, free-fall for 7.0 s and then downward acceleration of 2.0 m/s.
SET UP: Let +y be upward. Let y =0 at the ground.
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EXECUTE: (a) When the engine shuts off both objects have upward velocity v, =v,, +at =
(5.0 m/s*)(10.0 s) =50.0 m/s and are at y = Vot +%a},t2 =1(5.0 m/s*)(10.0 s)* =250 m.
For the helicopter, v, =0 (at the maximum height), v,, =+50.0 m/s, y, =250 m, and a, =-9.80 m/s’.
Vo, - 0—(50.0 m/s)>
2a, ¢ 2(-9.80 m/s?)

y

2
v =92 +2a (y-y,) gives y =2

+250 m =378 m, which rounds to 380 m.

(b) The time for the helicopter to crash from the height of 250 m where the engines shut off can be found
using v,, =+50.0 m/s, a, =—9.80 m/s’, and y=y; =250 m. y—y, =v, 1 ++ar® gives

~250 m =(50.0 m/s)t —(4.90 m/s*)¢*. (4.90 m/s*)t* — (50.0 m/s)t — 250 m = 0. The quadratic formula

gives ¢ :ﬁ(S0.0 + \/(50.0)2 + 4(4.90)(250)) s. Only the positive solution is physical, so t =13.9 s.

Powers therefore has free-fall for 7.0 s and then downward acceleration of 2.0 m/s’ for
13.95-7.05=6.9s. After 7.0 s of free-fall he is at y —y, =v, ¢ +%ayt2 =250 m+(50.0 m/s)(7.0 s) +
1(—9.80 m/s*)(7.0 s)* =360 m and has velocity v, =v, +a,¢=50.0 m/s +(—9.80 m/s*)(7.0 s) =

—18.6 m/s. After the next 6.9 sheisat y—y, =v, ¢ +%c7tyt2 =360 m+(—18.6 m/s)(6.9 s) +

1(=2.00 m/s*)(6.9 s)’ =184 m. Powers is 184 m above the ground when the helicopter crashes.
EVALUATE: When Powers steps out of the helicopter he retains the initial velocity he had in the helicopter
but his acceleration changes abruptly from 5.0 m/s* upward to 9.80 m/s* downward. Without the jet
pack he would have crashed into the ground at the same time as the helicopter. The jet pack slows his
descent so he is above the ground when the helicopter crashes.

IDENTIFY: Apply constant acceleration equations to the motion of the rock. Sound travels at constant speed.
SET Up: Let ¢, be the time for the rock to fall to the ground and let #_be the time it takes the sound to

travel from the impact point back to you. ¢, +¢, =8.00 s. Both the rock and sound travel a distance 4 that
is equal to the height of the cliff. Take +y downward for the motion of the rock. The rock has v, =0 and
a,=g=9.80 m/s’,

EXECUTE: (a) For the falling rock, y — y, =v, t++a,1* gives h =1 gt . For the sound, & = v¢,. Equating
these two equations for / and using the fact that 7, +7, =8.00 s, we get + gt} = v, =v(8.00 s — ). Using

v, =330 m/s and g = 9.80 m/s’, we get a quadratic equation. Solving it using the quadratic formula and using
the positive square root, we get f;=7.225 s. Therefore / =+ gt? = (1/2)(9.80 m/s*)(7.225 sy’ = 256 m.

(b) Ignoring sound you would calculate d =+(9.80 m/ $7)(8.00 s)> =314 m, which is greater than the

actual distance. So you would have overestimated the height of the cliff. It actually takes the rock less time
than 8.00 s to fall to the ground.

EVALUATE: Once we know /1 we can calculate that ¢, =7.225 s and ¢, =0.775 s. The time for the sound

of impact to travel back to you is 6% of the total time and should not be neglected for best precision.

(a) IDENTIFY: We have nonconstant acceleration, so we must use calculus instead of the standard
kinematics formulas.

SET UP: We know the acceleration as a function of time is a,(f) =—Ct , so we can integrate to find the velocity

and then the x-coordinate of the object. We know that v () =v, + J.l adt and x(1) = x, + _[ l v (t)dt.
0 - 0

EXECUTE: (a) We have information about the velocity, so we need to find that by integrating the
acceleration. v _(t) =v,, + J'(; adt =v, + J';—Ctdt =v,, —1Cr’. Using the facts that the initial velocity is
20.0 m/s and v, =0 when 7= 8.00's, we have 0 =20.0 m/s — C(8.00 s)*/2, which gives C = 0.625 m/s’.
(b) We need the change in position during the first 8.00 s. Using x(¢) = x, + (jvx ()dt gives

x=x, = [ (~4CP +(20.0 m/s))dt =—Cr/6 + (20.0 m/s)
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Putting in C = 0.625 m/s’ and # = 8.00 s gives an answer of 107 m.
EVALUATE: The standard kinematics formulas are of no use in this problem since the acceleration varies
with time.
2.82. IDENTIFY: Both objects are in free-fall and move with constant acceleration 9.80 m/ s?, downward. The
two balls collide when they are at the same height at the same time.
SETUP: Let +y be upward, so a, =—9.80 m/s*> for each ball. Let y =0 at the ground. Let ball 4 be the
one thrown straight up and ball B be the one dropped from rest at height 4. y,, =0, y,, =H.
EXECUTE: (a) y -y, =v,,f++at” applied to each ball gives y, = vt —+gt* and y, = H -1 g,
. H
V.=V, gives vt —Ltgt’ =H-1gt’ and t=—.
v()
(b) For ball 4 at its highest point, v, =0 and v, =v, +at gives t = Yo Setting this equal to the time in
i g
2
part (a) gives y- and H =2
Vo & g
: 0074 § . . gH
EVALUATE: In part (a), using £ =— in the expressions for y, and y, gives y, =y, =H & Vi
Ka Vo
2
H must be less than EAs in order for the balls to collide before ball 4 returns to the ground. This is
g
. . _2v, . a2
because it takes ball 4 time # =— to return to the ground and ball B falls a distance - gt =— during
g
- 2v, m_| .
this time. When H =2 the two balls collide just as ball 4 reaches the ground and for A greater than this
g
ball 4 reaches the ground before they collide.
2.83. IpENTIFY and SETUP: Use v, =dx/dt and a, =dv /dt to calculate v (f) and a () for each car. Use

these equations to answer the questions about the motion.
dx dv
EXECUTE: x,=at+ B, v, == Tar2 a,=—n=0p
’ t t

dx, dv
=2yt —368t%, a, =—2 =2y —65t
It Vo BT v

(a) IDENTIFY and SET UP: The car that initially moves ahead is the one that has the larger v, ..

X, =y =0, v, =

EXECUTE: At ¢=0, v, =« and v, =0. So initially car 4 moves ahead.

(b) IDENTIFY and SET UP: Cars at the same point implies x, = x,.

at+ B> =yt - ot

EXECUTE: One solution is ¢ =0, which says that they start from the same point. To find the other
solutions, divide by #: o + Bt = yt — 6t

S+ (B-t+a=0

:2—15(—(,3— V)£ (B-7) —45a) =5 :O(+1.60i\/(1.60)2 —4(0.20)(2.60)) =4.00s%1.73 s

So x, =x, for t=0,¢#=2.27s and +=5.73 s.

EVALUATE: Car 4 has constant, positive a,. Its v, is positive and increasing. Car B has v,, =0 and a,

that is initially positive but then becomes negative. Car B initially moves in the +x-direction but then
slows down and finally reverses direction. At t =2.27 s car B has overtaken car 4 and then passes it. At
t =5.73 s, car B is moving in the —x-direction as it passes car 4 again.
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(c) IDENTIFY: The distance from 4 to B is x, —x,. The rate of change of this distance is P
t

d(x; —x,)

this distance is not changing, =0. But this says v, —v, =0. (The distance between 4 and B is

neither decreasing nor increasing at the instant when they have the same velocity.)
SETUP: v, =v, requires o +2ft=2yt-361
EXECUTE: 308 +2(B—y)t+a=0

_ 1 2 _ 1 2
—5(—2(,5—}/)1\/4(ﬂ—}/) —125&)—5(3.201\/4(—1.60) —12(0.20)(2.60))

t=2.667s+1.667s, so v, =v, for t=1.00s and 1 =4.33s.
EVALUATE: At ¢=1.00s, v, =v, =5.00 m/s. At t=4.33s, v, =v, =13.0 m/s. Now car B is

slowing down while 4 continues to speed up, so their velocities aren’t ever equal again.
(d) IDENTIFY and SET UP: @, =a, requires 23 =2y — 60t

,=r=B _2380 m/s” —1.20 m/s’

=2.67 s.
35 3(0.20 m/s’)

EXECUTE:

EVALUATE: At ¢=0, a, >a,,, but a, is decreasing while a, is constant. They are equal at

t=2.67 s but for all times after that a, <a,..

IDENTIFY: Interpret the data on a graph to draw conclusions about the motion of a glider having constant
acceleration down a frictionless air track, starting from rest at the top.

SET UP: The constant-acceleration kinematics formulas apply. Take the +x-axis along the surface of the
track pointing downward.

: . 1
EXECUTE: (a) For constant acceleration starting from rest, we have x = Eaxt2 . Therefore a plot of x

versus # should be a straight line, and the slope of that line should be a,/2.

(b) To construct the graph of x versus 7, we can use readings from the graph given in the text to construct a
table of values for x and 7, or we could use graphing software if available. The result is a graph similar to
the one shown in Figure 2.84, which was obtained using software. A graph done by hand could vary
slightly from this one, depending on how one reads the values on the graph in the text. The graph shown is
clearly a straight line having slope 3.77 m/s” and x-intercept 0.0092 m. Using the slope y-intercept form of
the equation of a straight line, the equation of this line is x = 3.77¢ 4 0.0092, where x is in meters and ¢ in
seconds.

0.00 T T T T T T T T T2 (S:)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2.84
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(¢) The slope of the straight line in the graph is a,/2, so a, = 2(3.77 m/s>) = 7.55 m/s’.
(d) We know the distance traveled is 1.35 m, the acceleration is 7.55 m/s’, and the initial velocity is zero,

so we use the equation v. =v; +2a (x—x,) and solve for v,, giving v, = 4.51 m/s.

EVALUATE: For constant acceleration in part (d), the average velocity is (4.51 m/s)/2 =2.25 m/s. With
this average velocity, the time for the glider to travel 1.35 m is x/v,, = (1.35 m)/(2.25 m) = 0.6 s, which is
approximately the value of ¢ read from the graph in the text for x = 1.35 m.

IDENTIFY: A ball is dropped from rest and falls from various heights with constant acceleration. Interpret
a graph of the square of its velocity just as it reaches the floor as a function of its release height.

SET UP: Let +y be downward since all motion is downward. The constant-acceleration kinematics

formulas apply for the ball.
EXECUTE: (a) The equation vf = véy +2a (y—y,) applies to the falling ball. Solving for y — y, and using
2
v
voy=0and a, =g, we get y—y, = 2—V A graph of y — y, versus v will be a straight line with slope 1/2g =
g

1/(19.6 m/s*) =0.0510 s*/m.

(b) With air resistance the acceleration is less than 9.80 m/s’, so the final speed will be smaller.

(¢) The graph will not be a straight line because the acceleration will vary with the speed of the ball. For a
given release height, v, with air resistance is less than without it. Alternatively, with air resistance the ball
will have to fall a greater distance to achieve a given velocity than without air resistance. The graph is
sketched in Figure 2.85.

with air
resistance -
-
7 without
P air resistance
-

7~
e

<o

Figure 2.85

EVALUATE: Graphing y — y, versus v. for a set of data will tell us if the acceleration is constant. If the

graph is a straight line, the acceleration is constant; if not, the acceleration is not constant.

IDENTIFY: Use data of acceleration and time for a model car to find information about its velocity and
position.

SET UP: From the table of data in the text, we can see that the acceleration is not constant, so the
constant-acceleration kinematics formlas do not apply. Therefore we must use calculus. The equations

v.(H)=v, + (jaldt and x(¢) =x, + (jvxdt apply.

EXECUTE: (a) Figure 2.86a shows the graph of a, versus ¢. From the graph, we find that the slope of the
line is —0.5131 m/s’ and the a-intercept is 6.026 m/s>. Using the slope y-intercept equation of a straight
line, the equation is a(f) = —0.513 m/s’ ¢ + 6.026 m/s’, where ¢ is in seconds and a is in m/s’.
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Figure 2.86a

(b) Integrate the acceleration to find the velocity, with the initial velocity equal to zero.
v, () = vy, * [ a,dt =v, +[(6.026 m/s’ ~0.513 m/s’ ¢)dt =6.026 m/s” t—0.2565 m/s’ .
Figure 2.86b shows a sketch of the graph of v, versus 7.

Figure 2.86b

(c) Putting 7 = 5.00 s into the equation we found in (b) gives v, = 23.7 m/s.
(d) Integrate the velocity to find the change in position of the car.

x—x, = [1v,dt = [[(6.026 m/s*)¢—(0.2565 m/s*)r*]dt =3.013 m/s” £ — 0.0855 m/s’

At t=5.00 s, this gives x —x, = 64.6 m.
EVALUATE: Since the acceleration is not constant, the standard kinematics formulas do not apply, so we
must go back to basic definitions involving calculus.

IDENTIFY: Apply y—y, =v, ¢+ %ayt2 to the motion from the maximum height, where v, =0. The time
spent above y, /2 on the way down equals the time spent above y_ /2 on the way up.

SETUP: Let +y be downward. a, =g. y—y, = »,,,/2 when he is a distance y,, /2 above the floor.

EXECUTE: The time from the maximum height to y,, /2 above the floor is given by y,../2=21gt’. The
time from the maximum height to the floor is given by y,. =1 gf;, and the time from a height of y, /2

to the floor is ¢, =¢, —t,.

2t1 _ 2 ymax/2 2

U e 2 21

EVALUATE: The person spends over twice as long above y,_, /2 asbelow y_ /2. His average speed is

4.8.

less above y /2 than it is when he is below this height.
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2.88.

2.89.

IDENTIFY: Apply constant acceleration equations to the motion of the two objects, the student and the bus.
SET UP: For convenience, let the student’s (constant) speed be v, and the bus’s initial position be x,.

Note that these quantities are for separate objects, the student and the bus. The initial position of the
student is taken to be zero, and the initial velocity of the bus is taken to be zero. The positions of the

student x, and the bus x, as functions of time are then x, =v,¢ and x, = x, +(1/2)at’.

. . . . 1
EXECUTE: (a) Setting x, = x, and solving for the times # gives ¢ = —(vo +.Jv; —2ax, )
a

1

f=———

0.170 m/s’
The student will be likely to hop on the bus the first time she passes it (see part (d) for a discussion of the
later time). During this time, the student has run a distance v ¢ =(5m/s)(9.55 s) =47.8 m.

(5.0 m/si\/(S.Om/s)2 —2(0.170 m/s*)(40.0 m)) =9.55sand 49.3 s.

(b) The speed of the bus is (0.170 m/s*)(9.55 s) =1.62 m/s.

(c) The results can be verified by noting that the x lines for the student and the bus intersect at two points,
as shown in Figure 2.88a.

(d) At the later time, the student has passed the bus, maintaining her constant speed, but the accelerating
bus then catches up to her. At this later time the bus’s velocity is (0.170 m/s”)(49.3 s) =8.38 m/s.

(€) No; v; <2ax;; and the roots of the quadratic are imaginary. When the student runs at 3.5 m/s,
Figure 2.88b shows that the two lines do not intersect.
() For the student to catch the bus, v; >2ax,. And so the minimum speed is \/ 2(0.170 m/s*)(40 m/s) =

3.69m/s

0.170 m/s’
80.0 m. However, when the student runs at 3.688 m/s, the lines intersect at one point, at x =80 m, as

3.688 m/s. She would be running for a time =21.7 s, and covers a distance (3.688 m/s)(21.7 s) =

shown in Figure 2.88c.
EVALUATE: The graph in part (c) shows that the student is traveling faster than the bus the first time they
meet but at the second time they meet the bus is traveling faster.

tz :ttm_tl
x(m) x(m)
400 900
300 150
200 100
100 50
t t
o o] 8 16 24 32 40 o] 8 16 24 32 40
(a) (b) ©
Figure 2.88

IDENTIFY: Apply constant acceleration equations to both objects.
SET UP: Let +y be upward, so each ball has a, =—g. For the purpose of doing all four parts with the

least repetition of algebra, quantities will be denoted symbolically. That is, let y, =h+ vt —% gt?,

¥, :h—%g(t—to)z. In this case, ¢, =1.00 s.
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2.91.

2.92.

EXECUTE: (a) Setting y, =y, =0, expanding the binomial (¢—¢,)* and eliminating the common term

1
1-v,/(gt,) |

Substitution of this into the expression for y, and setting y, =0 and solving for /4 as a function of v,

2
38 _t,

Lgt? yields vyt = gt,t —L gt;. Solving fort: ¢ = 2
8lhy=v, 2

; 2 (%gto _Vo)2 . . ,
yields, after some algebra, h =1 gt; ﬁ Using the given value 7, =1.00 s and g =9.80m/s",
8ly =%
2
h=20.0 m=(4.9 m) 49m/s—v, |
9.8m/s—v,

This has two solutions, one of which is unphysical (the first ball is still going up when the second is
released; see part (c)). The physical solution involves taking the negative square root before solving for v,
and yields 8.2 m/s. The graph of y versus ¢ for each ball is given in Figure 2.89.

(b) The above expression gives for (i) 0.411 m and for (ii) 1.15 km.

(c) As v, approaches 9.8 m/s, the height /# becomes infinite, corresponding to a relative velocity at the

time the second ball is thrown that approaches zero. If v, >9.8 m/s, the first ball can never catch the
second ball.

(d) As v, approaches 4.9 m/s, the height approaches zero. This corresponds to the first ball being closer
and closer (on its way down) to the top of the roof when the second ball is released. If v, <4.9m/s, the

first ball will already have passed the roof on the way down before the second ball is released, and the
second ball can never catch up.

EVALUATE: Note that the values of v, in parts (a) and (b) are all greater than v, and less than v, .

n

y (m)
30

20

Figure 2.89

IDENTIFY: We know the change in velocity and the time for that change. We can use these quantities to
find the average acceleration.

SET UP: The average acceleration is the change in velocity divided by the time for that change.
EXECUTE: a,, =(v—v,)/t =(0.80 m/s —0)/(250x107 s) =32 m/s*, which is choice (c).

EVALUATE: This is about 1/3 the acceleration due to gravity, which is a reasonable acceleration for an
organ.

IDENTIFY: The original area is divided into two equal areas. We want the diameter of these two areas,
assuming the original and final areas are circular.

SET Up: The area 4 of a circle or radius r is 4 = n* and the diameter d is d = 2r. 4; =24, and r = d/2,
where A; is the area of each of the two arteries.

EXECUTE: Call d the diameter of each artery. 4; = n(d,/2)* = 2[n(d/2)*], which gives d = da/\/z , which is
choice (b).

EVALUATE: The area of each artery is half the area of the aorta, but the diameters of the arteries are not
half the diameter of the aorta.

IDENTIFY: We must interpret a graph of blood velocity during a heartbeat as a function of time.

SET UP: The instantaneous acceleration of a blood molecule is the slope of the velocity-versus-time
graph.
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EXECUTE: The magnitude of the acceleration is greatest when the slope of the v- graph is steepest. That
occurs at the upward sloping part of the graph, around # = 0.10 s, which makes choice (d) the correct one.
EVALUATE: The slope of the given graph is positive during the first 0.25 s and negative after that. Yet the
velocity is positive throughout. Therefore the blood is always flowing forward, but it is increasing in speed
during the first 0.25 s and slowing down after that.
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3.1. IDENTIFY and SETUP: Use v = in component form.

L, =

=1.4m/s

EXECUTE: (a) vav_x AV . Xy — X1 Ir 53m-1.1m
13 ek (KOG =0

v =ﬂ=y2—yl=—O.5m—3.4m:_1'3m/s
TYOA -t 3.05-0

(b) Y
Y N Yav )y tangy =—2 2 ="""2 """ =_(.9286

\

o

o =360°-42.9°=317°

Vay = (Var)s + (V)3

y Va =14 m/s)2 +(=1.3 m/s)? =1.9 m/s

av’y

Figure 3.1

EVALUATE: Our calculation gives that v, is in the 4th quadrant. This corresponds to increasing x and

decreasing y.

|

2

3.2.  IDENTIFY: Use v = in component form. The distance from the origin is the magnitude of 7.
t —t
2 1

-~

SET UP: At time tl’ X == 0.
EXECUTE: (@) x = (v, Al = (-3.8m/s)(12.05) =—45.6m and y = (vy,.,)A? = (4.9 m/s)(12.05) = 58.8 m.

() r=+/x? + % =/(=45.6 m)? +(58.8 m)* =74.4 m.
EVALUATE: AF is in the direction of v,,. Therefore, Ax is negative since v,, . is negative and Ay is

positive since Vav—y 1S positive.

3.3.  (a) IDENTIFY and SET UP: From 7 we can calculate x and y for any 7.
_E-E
Thenuse v =— in component form.
t—t
2 1

EXECUTE: 7 =[4.0 cm + (2.5 cr/s?)e2]i + (5.0 cr/s)ff
At 1=0, F=(4.0 cm)i.
At t=20s, F=(14.0 cm)i +(10.0 cm) j.
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Ax 10.0 cm
=—=———=50cm/s
WA 20s
Ay _10.0 cm
=—=———=50cm/s
WAL 205

§
Vay =+ ()2 +(vav)§ =7.1 cm/s

tana=% =1.00
(v

av/x
6=45°.

Figure 3.3a

EVALUATE: ' Both x and y increase, so v,, is in the 1st quadrant.
(b) IDENTIFY and SET UP: Calculate 7 by taking the time derivative of (7).

EXECUTE: ¥ = % =([5.0 cr/sf)i +(5.0 cm/s) j

t=0: v, =0, vy =5.0cm/s; v=5.0 cm/s and 8 =90°

t=10s v, =50cm/s, v, =50cm/s; v=T7.1cm/s and 6 =45°
1=2.0s: v, =10.0 emv/s; v, =5.0 ecny/s; v =11cm/s and 6=27°

(c) The trajectory is a graph of y versus x.

x=4.0 cm+ (2.5 cm/s?) £2, y =(5.0 cm/s)z

For values of ¢ between 0 and 2.0 s, calculate x and y and plot y versus x.

y
(cm)

x (cm)

o -+

Figure 3.3b

EVALUATE: The sketch shows that the instantaneous velocity at any ¢ is tangent to the trajectory.
3.4. IDENTIFY: Given the position vector of a squirrel, find its velocity components in general, and at a

specific time find its velocity components and the magnitude and direction of its position vector and
velocity.
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3.5.

3.6.

SET UP: v, = dx/dt and v, = dy/dt; the magnitude of a vector is 4 =, I(Af + Aﬁ).
EXECUTE: (a) Taking the derivatives gives v, () =0.280 m/s +(0.0720 m/sz)t and
v, (1) =(0.0570 m/s”)e.

(b) Evaluating the position vector at 1 =5.00 s gives x =2.30 m and y =2.375 m, which gives
r=331m.

() At 1=5.00s, v, =+0.64 m/s, v, = 1.425 m/s, which gives v=1.56 m/s and tan@ = % so the

direction is 8 =65.8° (counterclockwise from +x-axis)

EVALUATE: The acceleration is not constant, so we cannot use the standard kinematics formulas.
.V, =V

IDENTIFY and SET UP: Use Eq. a = in component form to calculate a

L, =1t

av-x and aav-y'

EXECUTE: (a) The velocity vectors at #; =0 and ¢, =30.0 s are shown in Figure 3.5a.

-

X X
\\ ‘l
H=0 1, =300s
Figure 3.5a
®) ay. _Ave vy —vy, _ 170 m/s —90 m/s — 867 m/s>
At - 30.0's
Ay Vo, —V =
R Tl T 40 m/s=110mfs _ 0 o
At - 30.0's
) 0= () +(dyyy)? =8.98 mis?
2
tang = a2 Z233 WS 569
Qgy —8.67 m/s’
o =15°+180° =195°
Figure 3.5b

EVALUATE: The changes in v, and v, are both in the negative x or y direction, so both components of

da,, are in the 3rd quadrant.
v, =V,

ZL2 - tl
SETUP: a, =(0.45m/s’)c0s31.0°=0.39 m/s”, a, = (0.45m/s*)sin31.0° = 0.23 m/s’

IDENTIFY: Use a = in component form.

Av 5 Av,
EXECUTE: (a) a,,, = T; and v, =2.6 m/s +(0.39 m/s")(10.0 ) =6.5m/s. ay,., :y and

v, ==1.8m/s +(0.23m/s*)(10.0 5) = 0.52 m/s.
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3.7.

(b) v= \/(6.5 m/s)2 +(0.52 m/s)2 =6.52m/s, at an angle of arctan(%} =4.6° counterclockwise from

the +x-axis.
(c) The velocity vectors ¥, and v, are sketched in Figure 3.6. The two velocity vectors differ in

magnitude and direction.
EVALUATE: v is at an angle of 35° below the +x-axis and has magnitude v, =3.2 m/s, so v, >v; and

the direction of ¥, is rotated counterclockwise from the direction of v,.

IEL

Figure 3.6

__dF L _dv
IDENTIFY and SET UP: Use v =— and a = — to find v,, .
dt dt
magnitude and direction of # and @ can be found once we know their components.
EXECUTE: (a) Calculate x and y for 7 values in the range 0 to 2.0 s and plot y versus x. The results are
given in Figure 3.7a.

a,, and a, as functions of time. The

x°

(m)
3.01
20+
1.0 +
t y i | } x (m)
10 20 30 5.0
-1.0+
_2‘0—_
Figure 3.7a
dx dy
b)yv. =—=a v, =—=-20t
(b) v, == (b B
dv, dVy
a, = =0 g, =——=-2
Toodt Yodt 4

Thus ¥ =i =24, @=-28j
() velocity: At t=2.0s, v, =2.4m/s, v,=-2(1.2 m/sz)(Z.O s) =—4.8 m/s
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2 v:1/v§+v§ =5.4m/s
%

X

o =-63.4°+360°=297°

Figure 3.7b

acceleration: At ¢=2.0s, a,=0, a,=-2(1.2 m/s?) = 2.4 m/s*

."

fl—x a= ai +a§ =24 m/s’
B
G, T A/ |
a fan f=—=———=—c0
a, 0
B =270°
Figure 3.7¢
y EVALUATE: (d) @ has a component g in the same

direction as v, so we know that v is increasing (the bird

is speeding up). a also has a component a;
perpendicular to v, so that the direction of v is
changing; the bird is turning toward the —y-direction
(toward the right)

Figure 3.7d

v is always tangent to the path; v at 1 =2.0 s shown in part (c) is tangent to the path at this ¢, conforming
to this general rule. a is constant and in the —y-direction; the direction of v is turning toward the

—y-direction.

3.8. IDENTIFY: Use the velocity components of a car (given as a function of time) to find the acceleration of
the car as a function of time and to find the magnitude and direction of the car’s velocity and acceleration
at a specific time.

SETUP: a, =dv,/dt and a, =dv /dt; the magnitude of a vector is 4 = ,/(Af + Af).

EXECUTE: (a) Taking the derivatives gives a,(f) =(—0.0360 m/s3)t and a, (1) =0.550 m/s>.
(b) Evaluating the velocity components at 7 =8.00 s gives v, =3.848 m/s and v, =6.40 m/s, which gives

vy =7.47 m/s. The direction is tané = 6.40
3.848

so 6 =59.0° (counterclockwise from +x-axis).
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3.9.

(c) Evaluating the acceleration components at ¢t =8.00 s gives a, =—0.288 m/s? and a, =0.550 m/s?,

which gives a =0.621 m/s”. The angle with the +y axis is given by tan8 = %, so 8=27.6°. The

direction is therefore 118° counterclockwise from +x-axis.
EVALUATE: The acceleration is not constant, so we cannot use the standard kinematics formulas.
IDENTIFY: The book moves in projectile motion once it leaves the tabletop. Its initial velocity is

horizontal.
SET UP: Take the positive y-direction to be upward. Take the origin of coordinates at the initial position

of the book, at the point where it leaves the table top.

vy = 1.10mfs X-component:
a, =0, v,, =1.10 m/s,

— t=0.480 s
N y-com[gonent:
\ a, =-9.80 m/s’,

\ Voy =0,

1. 1=0.480 s

Figure 3.9a

Use constant acceleration equations for the x and y components of the motion, with a, =0 and a, =—g.
EXECUTE: (a) y—y,=7?
Y=Y =Voyt +%ayt2 =0 +%(—9.80 rn/sz)(0.480 s)2 =-1.129 m. The tabletop is therefore 1.13 m above

the floor.
(b) x—xy=?

X—Xo = Vol +%axt2 =(1.10 m/s)(0.480s) +0 = 0.528 m.
(©) v, =vy, ta,t=1.10 m/s (The x-component of the velocity is constant, since a, =0.)

v, = vy, +a,t =0+ (-9.80 m/s”)(0.480 ) = —4.704 m/s

v=\v2 +v2 =4.83 m/s
v

tang =2 = 4704 M _ ) ooea
v, L10m/s
o=-76.8°

Direction of v is 76.8° below the horizontal

Figure 3.9b

(d) The graphs are given in Figure 3.9c.
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Figure 3.9¢

EVALUATE: In the x-direction, a, =0 and v, is constant. In the y-direction, a,, =-9.80 m/s” and v, Is

y

downward and increasing in magnitude since a,, and v,, are in the same directions. The x and y motions

y
occur independently, connected only by the time. The time it takes the book to fall 1.13 m is the time it
travels horizontally.

3.10. IDENTIFY: The person moves in projectile motion. She must travel 1.75 m horizontally during the time
she falls 9.00 m vertically.

SETUP: Take +y downward. a, =0, a, =+9.80 m/s?. Yox = Vos Yoy = 0.

[2(y=y0) :\/2(9.00 ™ a6

a, 9.80 m/s”

EXECUTE: Time to fall 9.00 m: y—y, = vy, +%ayt2 gives t =

Speed needed to travel 1.75 m horizontally during this time: x —xq = vy, ¢ + %atxt2 gives

EVALUATE: If she increases her initial speed she still takes 1.36 s to reach the level of the ledge, but has
traveled horizontally farther than 1.75 m.
3.11.  IDENTIFY: Each object moves in projectile motion.

SETUp: Take +y to be downward. For each cricket, a, =0 and a,, =+9.80 m/s”. For Chirpy,

Vox = Vo, = 0. For Milada, v, =0.950 m/s, v, =0.

EXECUTE: Milada’s horizontal component of velocity has no effect on her vertical motion. She also
reaches the ground in 2.70 s. x —xy = v, ¢ +%axl‘2 =(0.950 m/s)(2.70 s) =2.57 m.

EVALUATE: The x and y components of motion are totally separate and are connected only by the fact that
the time is the same for both.

3.12. IDENTIFY: The football moves in projectile motion.
SETUP: Let +y beupward. a, =0, a, =—g. At the highest point in the trajectory, v, =0.

. s 12.0 .
EXECUTE: (a) v, =v, tat. The time 7 is —2 = —m/s2 =1.224 s, which we round to 1.22 s.
g 9.80m/s
(b) Different constant acceleration equations give different expressions but the same numerical result:

2
1,21, ,_"0p _
S8t —2v,0t—2 =7.35m.

(c¢) Regardless of how the algebra is done, the time will be twice that found in part (a), which is
2(1.2245)=2.45s.

(d) a, =0, so x—xy =v,¢=(20.0m/s)(2.455) =49.0 m.

(e) The graphs are sketched in Figure 3.12 (next page).
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EVALUATE: When the football returns to its original level, v, =20.0 m/s and v, = —12.0 m/s.
X y %
’ vy
V % I — ’
t t
Figure 3.12
3.13. IDENTIFY: The car moves in projectile motion. The car travels 21.3 m—1.80 m =19.5 m downward
during the time it travels 48.0 m horizontally.
SETUP: Take +y to be downward. a, =0, a, =+9.80 m/s?, Vox = Vo> Vo, = 0.
EXECUTE: (a) Use the vertical motion to find the time in the air:
Y=o =vo,t +da,? gives ¢ = 2= ) :\/2(19'5 mz) =1.995 s
a, 9.80 m/s
- 48.0 m
Then x —xp = vout +Layt? gives vy = v, =0 =" =24 | m/s.
0 0x* ' 7 %x g 0 0x ¢ 1.995 s
(b) v, =24.06 m/s since @, =0. v, =vj, +a,t =—-19.55m/s. v=\/v; +v; =310 m/s.
EVALUATE: Note that the speed is considerably less than the algebraic sum of the x- and y-components of
the velocity.
3.14. IpENTIFY: Knowing the maximum reached by the froghopper and its angle of takeoff, we want to find its
takeoff speed and the horizontal distance it travels while in the air.
SET UP:  Use coordinates with the origin at the ground and +y upward. a, =0, a, =-9.80 m/s>. At the
maximum height v, =0. The constant-acceleration formulas vJZ, = vgy +2a,(y—-y,) and
Y =Yo = vot + %ayt2 apply.
EXECUTE: (a) vi = vgy +2a,(y—yp) gives
Voy =724, (¥ =) = \/—2(—9.80 m/s>)(0.587 m) =3.39 m/s. Voy = Vsing so
V,
vy = 233918 _y g s,
sing, sin58.0°
(b) Use the vertical motion to find the time in the air. When the froghopper has returned to the ground,
2v, 2(3.
Y=y =0. y—yy =vo,t +La s gives =-— =- © Wsz) =0.692 s.
a, —9.80 m/s
Then x—xy = vt + %axtz = (v cos )t = (4.00 m/s)(cos 58.0°)(0.692 s) =1.47 m.
v,
EVALUATE: v, =0 when ¢ = o =_ 339 m/s2 =0.346 s. The total time in the air is twice this.
’ a, —9.80 m/s
3.15. IpENTIFY: The ball moves with projectile motion with an initial velocity that is horizontal and has

magnitude v,,. The height 4 of the table and v, are the same; the acceleration due to gravity changes from
gg =9.80 m/s® on earth to gx on planet X.
SET UP: Let +x be horizontal and in the direction of the initial velocity of the marble and let +y be

upward. vo, =vy, vy, =0, a, =0, a, =—g, where g is either gg or gx.

y
EXECUTE: Use the vertical motion to find the time in the air: y—y, =—h. y—y, = vy, 1 +%ayt2 gives

t= /% Then x - x, :voxt+%axt2 gives x—Xxq =Vt =V ’ﬁ Xx—Xg =D on earth and 2.76D on
g g
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3.16.

3.17.

Planet X. (x —xo)\/g = vox/ﬂ, which is constant, so Dy/gr =2.76D,/gx.

-_8E _ — 2
gx (2,76 0.131gg =1.28 m/s”.
EVALUATE: On Planet X the acceleration due to gravity is less, it takes the ball longer to reach the floor
and it travels farther horizontally.
IDENTIFY: The shell moves in projectile motion.
SET UP: Let +x be horizontal, along the direction of the shell’s motion, and let +y be upward. a_=0,

a, =-9.80 m/s’.

EXECUTE: (a) v,, =V, cos &, =(40.0 m/s)cos 60.0° =20.0 m/s,
Vo, =V, Sin @, =(40.0 m/s)sin 60.0° =34.6 m/s.

Vo

. g _ % 4 V=V, _0-34.6 m/s _
(b) At the maximum height v, =0. v, =v, +ar gives t =— = L= Y, Ve

¥y

3.53s.

vi—vy,  0—(34.6 m/s)’
¢) v:=v] +2a (y— ives y—y,=~+—2 = _ =61.2 m.
© v, =v, L =w) e Y=>X 2a, 2(=9.80 m/s?)
(d) The total time in the air is twice the time to the maximum height, so
X=Xy = vyt +1a 1 =(20.0 m/s)(2)(3.53 s) =141 m.
(e) At the maximum height, v, =v, =20.0 m/sand v, =0. At all points in the motion, @, =0and

a, =-9.80 m/s”.

2 .
EVALUATE: The equation for the horizontal range R derived in the text is R = M. This gives
4
40. ?5in(120.0° . . .
R= (400 I;I/;z) IS:;(Z 0.0.) =141 m, which agrees with our result in part (d).
. s

IDENTIFY: The baseball moves in projectile motion. In part (c) first calculate the components of the
velocity at this point and then get the resultant velocity from its components.

SET UP: First find the x- and y-components of the initial velocity. Use coordinates where the
+y-direction is upward, the +x-direction is to the right and the origin is at the point where the baseball

leaves the bat.

Vor = Vgcos, =(30.0 m/s) c0s36.9° =24.0 m/s
Voy = Vosineg = (30.0 m/s) sin36.9° =18.0 m/s

Figure 3.17a

Use constant acceleration equations for the x and y motions, with a, =0 and a, =-g.
EXECUTE: (a) y-component (vertical motion):

y=yp=+10.0m, v, =18.0m/s, a,=-9.80 m/s>, ¢="?

Y=Y = Yoy +%ayl2

10.0 m = (18.0 m/s)s — (4.90 m/s°)r*

(4.90 m/s?)r* —(18.0 m/s)t +10.0 m =0
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3.18.

Apply the quadratic formula: ¢ = ﬁ[l&o + \/(—18.0)2 -4 (4.90)(10.0)} s=(1.837£1.154) s
The ball is at a height of 10.0 above the point where it left the bat at #; =0.683 s and at 7, =2.99 s. At the

earlier time the ball passes through a height of 10.0 m as its way up and at the later time it passes through
10.0 m on its way down.

(b) v, =vy, =+24.0 m/s, at all times since a, =0.

vy, =V, tayt

11 =0.683 s: v, =+18.0 m/s +(-9.80 m/sz)(0.683 s) =+11.3 m/s. (v, is positive means that the ball is
traveling upward at this point.)

=299 s: v, =+18.0 m/s +(-9.80 m/sz)(2.99 s) =—11.3 m/s. (v, is negative means that the ball is

traveling downward at this point.)
(©) v, =vp, =24.0 m/s

Solve for vy

v, =7, y=yy =0 (when ball returns to height where motion started),

a, =-9.80 m/s’, vy, =+18.0 m/s

2 _.2
vy =Voy +2a,(y=Yp)

v, ==V, = —18.0 m/s (negative, since the baseball must be traveling downward at this point)

Now solve for the magnitude and direction of .

y 2 2
= +
v V=L,V vy,

v= J(24.0 m/s)? +(=18.0 m/s)> =30.0 m/s
~18.0 m/s

240m/s

a=-36.9°, 36.9° below the horizontal

A%
tana:_y:
Vx

Figure 3.17b

The velocity of the ball when it returns to the level where it left the bat has magnitude 30.0 m/s and is
directed at an angle of 36.9° below the horizontal.

EVALUATE: The discussion in parts (a) and (b) explains the significance of two values of ¢ for which
¥—yo =+10.0 m. When the ball returns to its initial height, our results give that its speed is the same as its

initial speed and the angle of its velocity below the horizontal is equal to the angle of its initial velocity
above the horizontal; both of these are general results.

IDENTIFY: The shot moves in projectile motion.

SET UP: Let +y be upward.

EXECUTE: (a) If air resistance is to be ignored, the components of acceleration are 0 horizontally and
-g=-9.80m/ s2 vertically downward.

(b) The x-component of velocity is constant at v, = (12.0 m/s)cos51.0° = 7.55 m/s. The y-component is
Voy =(12.0 m/s) sin51.0° =9.32 m/s at release and

v, = Vo, — g1 =(9.32 m/s) - (9.80 m/s)(2.08 s) = —11.06 m/s when the shot hits.

(©) x—xy =vy,t =(7.55m/s)(2.08s) =15.7 m.

(d) The initial and final heights are not the same.

(e) With y =0 and v;, as found above, the equation for y — y, as a function of time gives y, =1.81m.

(f) The graphs are sketched in Figure 3.18.
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EVALUATE: When the shot returns to its initial height, v, =-9.32 m/s. The shot continues to accelerate

downward as it travels downward 1.81 m to the ground and the magnitude of v, at the ground is larger
than 9.32 m/s.

X(1) (m) y() (m) vy (m/s) vy(1) (m/s
- 7.56 ; ;

7.55

7.54
0 1. 2

t(s) =2
3 (s) =20

Figure 3.18

3.19. IDENTIFY: Take the origin of coordinates at the point where the quarter leaves your hand and take
positive y to be upward. The quarter moves in projectile motion, with a, =0, and a, =—g. It travels

vertically for the time it takes it to travel horizontally 2.1 m.

Vox = Vo Cos = (6.4 m/s) cos60°

il Vo, =320 m/s
I ? Voy = Vo SIney = (6.4 m/s) sin60°
Voy =5.54 m/s

Figure 3.19

(a) SETUP: Use the horizontal (x-component) of motion to solve for ¢, the time the quarter travels
through the air:
[:?5 X=Xy =21 m, Vo, =32 m/S, ay =0

X —Xg =Vt +%axt2 =V, since a, =0
EXECUTE: t=——-=——=0.6565

SET UP: Now find the vertical displacement of the quarter after this time:
y=yo =2 a,=-9.80m/s>, v, =+5.54 m/s, 1=0.656s

Y=>Xo +V0yt+%ayt2
EXECUTE: -y, =(5.54 m/s)(0.656 s) +1(~9.80 m/s*)(0.656 5)* =3.63m-2.11m=1.5m.

(b) SETUP: v, =2, 1=0.656s, a,=-9.80 m/s”, vy, =+5.54 m/s v, =v;, +a,t

EXECUTE: v, =5.54 m/s +(-9.80 m/s?)(0.656 s) = —0.89 m/s.
EVALUATE: The minus sign for v, indicates that the y-component of v is downward. At this point the

quarter has passed through the highest point in its path and is on its way down. The horizontal range if it
returned to its original height (it doesn’t!) would be 3.6 m. It reaches its maximum height after traveling
horizontally 1.8 m, so at x—x, =2.1 m it is on its way down.

3.20. IpENTIFY: Consider the horizontal and vertical components of the projectile motion. The water travels
45.0 m horizontally in 3.00 s.
SETUP: Let +y beupward. a, =0, a, =-9.80 m/s>. Vox =V €088y, Vo, =vysinb.

45.0m = 0.600;

EXECUTE: (a) x—X, =vy.t +La.t> gives x—x, =vy(cos 8,)t and cosfy=——— — =
( ) 0 0x 2 “x g 0 0( 0) 0 (250m/s)(300s)

6, =53.1°
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(b) At the highest point v, = vy, =(25.0m/s)cos 53.1°=15.0 m/s, v, =0 and v = 2+ vy =15.0m/s. At
all points in the motion, a =9.80 m/s> downward.
(¢) Find y—y, when ¢ =3.00s:
¥ =¥ = vyt +1a,r? =(25.0 m/s)(sin53.1°)(3.00 5) +1(~9.80 m/s*)(3.005)* =159 m
Ve =g, =15.0m/s, vy, = vy, +a it =(25.0m/s)(sin53.1%) — (9.80m/s?)(3.00s) =—9.41 m/s, and
v=v2+02 =(15.0 mis)? + (-9.41 mis)? =17.7 mis
EVALUATE: The acceleration is the same at all points of the motion. It takes the water
_ Voy_ 200m/s _ . . . S
t=——==—————-5=2.04s to reach its maximum height. When the water reaches the building it has
a, —9.80 m/s

passed its maximum height and its vertical component of velocity is downward.

3.21. IpENTIFY: Take the origin of coordinates at the roof and let the +y-direction be upward. The rock moves

in projectile motion, with a, =0 and a, =—g. Apply constant acceleration equations for the x and y

components of the motion.
SET UP:

Vor = VpCOS Oy =25.2'm/s
VOy =V Sinao =16.3 m/s

15.0m

Figure 3.21a

(a) At the maximum height v, =0.

a, =-9.80 m/s*, v, =0, vy, =+163m/s, y—y, =2

vy =g, +2a, (v = o)

vy ~Voy _0-(163 m/s)?
2a,  2(-9.80 m/s*)

(b) SET UP: Find the velocity by solving for its x and y components.

v, =V, =25.2 m/s (since a, =0)

EXECUTE: y-—y, = =+13.6 m

vy =9,

position), vy, =16.3 m/s

2 _.2
Vy =Voy +2(1y(y—yo)

a, =-9.80 m/s?, y—yo =—15.0 m (negative because at the ground the rock is below its initial

v, =— vgy +2a,(y—y) (v, is negative because at the ground the rock is traveling downward.)

EXECUTE: v, = —\/(16.3 m/s)? +2(=9.80 m/s?)(=15.0 m) =—23.7 m/s

Then v= 2 +v2 =4/(25.2 mis)? +(-23.7 m/s)* =34.6 ms.
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3.22.

3.23.

(¢) SET Up: Use the vertical motion (y-component) to find the time the rock is in the air:
t=?, v, =—=23.7 m/s (from part (b)), a, = -9.80 m/sz, Voy = +16.3 m/s

—Voy _ —23.7m/s—16.3 m/s
a,  -9.80 m/s®

SET Up: Can use this ¢ to calculate the horizontal range:
t=4.08s, vy, =252 m/s, a, =0, x—x5="?

EXECUTE: x—X) =v,t +2a,t’ =(25.2m/s)(4.08 ) +0=103 m

%
EXECUTE: (=-% =+4.08 s

(d) Graphs of x versus 7, y versus 7, v, versus  and v, versus &

Figure 3.21b

EVALUATE: The time it takes the rock to travel vertically to the ground is the time it has to travel
horizontally. With v,,, =+16.3 m/s the time it takes the rock to return to the level of the roof (y =0) is

1 =2v,,/g =3.33s. The time in the air is greater than this because the rock travels an additional 15.0 m to

the ground.

IDENTIFY and SET UP: The stone moves in projectile motion. Its initial velocity is the same as that of the
balloon. Use constant acceleration equations for the x and y components of its motion. Take +y to be
downward.

EXECUTE: (a) Use the vertical motion of the rock to find the initial height.

1=5.00s, v, =+20.0 m/s, a, =+9.80 m/s>, y—y,=?

Y =Yg = Vot +%ayt2 gives y—y, =223 m.

(b) In 5.00 s the balloon travels downward a distance y — y, =(20.0 m/s)(5.00 s) =100 m. So, its height
above ground when the rock hits is 223 m—100 m =123 m.

(¢) The horizontal distance the rock travels in 5.00 s is (15.0 m/s)(5.00 s) = 75.0 m. The vertical component
of the distance between the rock and the basket is 123 m, so the rock is \/ (75 m)> +(123 m)> =144 m

from the basket when it hits the ground.
(d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 m/s relative to the
basket. Just before the rock hits the ground, its vertical component of velocity is

vy, =gy ta,t =20.0 m/s +(9.80 m/sz)(S.OO s) =69.0 m/s, downward, relative to the ground. The basket is

moving downward at 20.0 nmv/s, so relative to the basket the rock has a downward component of velocity 49.0 m/s.
(ii) horizontal: 15.0 m/s; vertical: 69.0 m/s

EVALUATE: The rock has a constant horizontal velocity and accelerates downward.

IDENTIFY: Circular motion.

SET Up: Apply the equation aaq = 4n°R/T°, where T'= 24 h.
2 6
EXECUTE: (a) ay =—7 (03810 m)2 =0.034 m/s> =3.4x1073g.
[(24 h)(3600 s/h)]

(b) Solving the equation agq = 4n’R/T” for the period T with Arad = 8>

2 6
T= /w:y)ms =14h.
9.80 m/s
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3.24.

3.25.

3.26.

3.27.

3.28.

EVALUATE: a,, is proportional to 1/7 2, so to increase a by a factor of =294 requires

rad

3.4x107°

1 24h
294" 294
IDENTIFY: We want to find the acceleration of the inner ear of a dancer, knowing the rate at which she spins.
1.0s

rev

=14h.

that 7'be multiplied by a factor of

SETUP: R =0.070 m. For 3.0 rev/s, the period T (time for one revolution) is 7 = =0.333s. The

speed is v=d/T = (27R)/T, and a4 = VIR,

V2 QRITY? _47*R _47%*(0.070 m) _
EXECUTE: a,y=—= =—F" =

R R T (0333 s)
EVALUATE: The acceleration is large and the force on the fluid must be 2.5 times its weight.
IDENTIFY: For the curved lowest part of the dive, the pilot’s motion is approximately circular. We know
the pilot’s acceleration and the radius of curvature, and from this we want to find the pilot’s speed.

2

SETUP: a,y =5.5g =53.9 m/s. | mph =0.4470 m/s. ay = %.

25 m/s? =2.5g.

2
EXECUTE: a4 = %, SO v =4 Ra g = \/(280 m)(53.9 m/s*) =122.8 m/s = 274.8 mph. Rounding these

answers to 2 significant figures (because of 5.5g), gives v = 120 m/s = 270 mph.
EVALUATE: This speed is reasonable for the type of plane flown by a test pilot.
IDENTIFY: Each blade tip moves in a circle of radius R =3.40 m and therefore has radial acceleration

Apad = VIR,

SET UP: 550 rev/min = 9.17 rev/s, corresponding to a period of 7 =———=0.109 s.
9.17 rev/s

EXECUTE: (a) v= MTR =196 m/s.

2
(b) a,q =%=1.13><104 m/s2 =1.15x10%g.

47°R . :
EVALUATE: a,y = oz gives the same results for a4 as in part (b).

IDENTIFY: Uniform circular motion.
. . - dy o
SET UP: Since the magnitude of v is constant, v, = % =0 and the resultant acceleration is equal to
t

the radial component. At each point in the motion the radial component of the acceleration is directed in

toward the center of the circular path and its magnitude is given by VvZ/R.

EXECUTE: (a) dq = = = W =2.57 m/s?, upward.

(b) The radial acceleration has the same magnitude as in part (a), but now the direction toward the center of
the circle is downward. The acceleration at this point in the motion is 2.57 m/sz, downward.

(¢) SET Up: The time to make one rotation is the period 7, and the speed v is the distance for one
revolution divided by 7.

_27R

EXECUTE: v=="= 50 7= 27R _27z(140m) _,

v 6.00 m/s

EVALUATE: The radial acceleration is constant in magnitude since v is constant and is at every point in
the motion directed toward the center of the circular path. The acceleration is perpendicular to v and is
nonzero because the direction of v changes.

4.7 s.

IDENTIFY: Each planet moves in a circular orbit and therefore has acceleration a4 = VvZ/R.
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3.29.

3.30.

3.31.

SET UP: The radius of the earth’s orbit is 7 =1.50x10'" m and its orbital period is
T =365 days =3.16x10” s. For Mercury, r =5.79x10'° m and T =88.0 days =7.60x10° s.

EXECUTE: (a) v= % =2.98x10% m/s

2
(b) dpg =——=5.91x107> my/s’.
r

(¢) v=4.79x10* m/s, and a4 =3.96x107> m/s’.

EVALUATE: Mercury has a larger orbital velocity and a larger radial acceleration than earth.
2
IDENTIFY: Each part of his body moves in uniform circular motion, with a4 = 3 The speed in rev/s is

1/T, where T is the period in seconds (time for 1 revolution). The speed v increases with R along the

length of his body but all of him rotates with the same period 7.
SET Up: For his head R =8.84 m and for his feet R =6.84 m.

EXECUTE: (a) v=+/Ra, =4/(8.84 m)(12.5)(9.80 m/s?) =32.9 m/s

471'2R
(b) Use a,q =———. Since his head has a4 =12.5g and R =8.84 m,

T=27 |—=2 O 6RB 8N Then his fedk have a,, & AT O34M) o) 2 g 67 z
Urag 12.5(9.80m/s?) 72 (1.688s)

The difference between the acceleration of his head and his feet is 12.5g —9.67g =2.83g =27.7 m/s.
1 1
¢) —=—=0.592 rev/s =35.5 rpm
© T 1.69s B
EVALUATE: His feet have speed v =./Ra,,q4 = \/(6.84 m)(94.8 m/sz) =25.5 m/s.

IDENTIFY: The relative velocities are v, the velocity of the scooter relative to the flatcar, vg,g, the

scooter relative to the ground and vy, the flatcar relative to the ground. vg,g = ¥g + V. Carry out the

vector addition by drawing a vector addition diagram.

SET UP: ¥y =Vgg —VpG- Vi 1S to the right, so =¥, is to the left.

EXECUTE: In each case the vector addition diagram gives

(a) 5.0 m/s to the right

(b) 16.0 m/s to the left

(c) 13.0 m/s to the left.

EVALUATE: The scooter has the largest speed relative to the ground when it is moving to the right relative
to the flatcar, since in that case the two velocities ¥gp and Vg, are in the same direction and their
magnitudes add.

IDENTIFY: Relative velocity problem. The time to walk the length of the moving sidewalk is the length
divided by the velocity of the woman relative to the ground.

SET Up: Let W stand for the woman, G for the ground and S for the sidewalk. Take the positive direction
to be the direction in which the sidewalk is moving.

The velocities are vy, (woman relative to the ground), vy, (Woman relative to the sidewalk), and vg/

(sidewalk relative to the ground).
The equation for relative velocity becomes vy, = vys + Vg/G-

. . distance traveled relative to ground
The time to reach the other end is given by ¢ = g

YWIG
EXECUTE: (a) vgg =1.0 m/s
Yw/s = +1.5 m/s
VW/G ZVW/S +Vs/G =1.5m/s+1.0 H]/S =2.5 m/s.
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t:35.0m: 350m _14s.
Yw/G 2.5 m/s
Yw/s = -1.5m/s
YwiG = Vwis T Vg =—1.5m/s +1.0 m/s =—0.5 m/s. (Since vy, now is negative, she must get on the
moving sidewalk at the opposite end from in part (a).)
/= —350m _ -35.0m ~70 s,
Yw/G —0.5 m/s

EVALUATE: Her speed relative to the ground is much greater in part (a) when she walks with the motion
of the sidewalk.

3.32. IDENTIFY: Calculate the rower’s speed relative to the shore for each segment of the round trip.
SET UP: The boat’s speed relative to the shore is 6.8 km/h downstream and 1.2 km/h upstream.
EXECUTE: The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a time of three
fourths of an hour (45.0 min).
The total time the rower takes is i | il km; 1.47 h =88.2 min.

6.8 km/h 1.2 km/h

EVALUATE: It takes the rower longer, even though for half the distance his speed is greater than 4.0 km/h.
The rower spends more time at the slower speed.

3.33. IDENTIFY: Apply the relative velocity relation.
SET UpP: The relative velocities are vog, the canoe relative to the earth, vy, the velocity of the river
relative to the earth and vz, the velocity of the canoe relative to the river.
EXECUTE: Vo =VopR +Vrpe and therefore vop =V —Vrp. The velocity components of v are
—0.50 m/s +(0.40 m/s)/x/i, east and (0.40 rn/s)/\/i, south, for a velocity relative to the river of 0.36 m/s,
at 52.5° south of west.
EVALUATE: The velocity of the canoe relative to the river has a smaller magnitude than the velocity of
the canoe relative to the earth.

3.34. IDENTIFY: Relative velocity problem in two dimensions.

(a) SETUP:  vp, is the velocity of the plane relative to the air. The problem states that vp/, has
magnitude 35 m/s and direction south.

v, s the velocity of the air relative to the earth. The problem states that v, -is to the southwest
(45° S of W) and has magnitude 10 m/s.

The relative velocity equation iS Vp/z =Vp/s +Vp/E-

=10 mfs

Figure 3.34a

EXECUTE: (b) (vp/a)y =0, (Vpjp), =—35 m/s
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3.35.

(VaE)y =—(10 m/s)cos 45° =—~7.07 m/s,

(vag), =—(10 m/s)sin 45° = ~7.07 m/s

pe)x = pia)x ¥ (Vap)x =0-7.07 m/s ==7.1 m/s
(VP/E)y = (VP/A)y +(vA/E)y =-35m/s—7.07 m/s =—42 m/s

C y _ 2 P
© (Veje)s verp = VpE)x + (Vpe))y

VRE = \/(—7-1 m/s)? +(—42 m/s)? =43 m/s

tang=C2E)e - 771 169
Opp)y —42

#=9.6° (9.6° west of south)

Figure 3.34b

EVALUATE: The relative velocity addition diagram does not form a right triangle so the vector addition
must be done using components. The wind adds both southward and westward components to the velocity
of the plane relative to the ground.

IDENTIFY: Relative velocity problem in two dimensions. His motion relative to the earth (time
displacement) depends on his velocity relative to the earth so we must solve for this velocity.

(a) SET UpP: View the motion from above.

The velocity vectors in the problem are:

N Vg, the velocity of the man relative to the earth
hid E vy, the velocity of the water relative to the earth
S l YwiE Vyywo the velocity of the man relative to the water

The rule for adding these velocities is
YME = Pmiw t YWE
—_—
YM/w

<«~— 500 m———>

Figure 3.35a
The problem tells us that ¥y,; has magnitude 2.0 m/s and direction due south. It also tells us that vy

has magnitude 4.2 m/s and direction due east. The vector addition diagram is then as shown in Figure 3.35b.

This diagram shows the vector addition
YME = Vmw T VYW

VWi and also has vy and vy, in their
=2.0m/s

specified directions. Note that the vector

_ =

=42 mfs diagram forms a right triangle.

v
M/W

Figure 3.35b

The Pythagorean theorem applied to the vector addition diagram gives vl%,[/E = Vl%/[/W + v\Z,WE.
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3.36.

3.37.

0 =65°% or ¢ =90°—6 =25°. The velocity of the man relative to the earth has magnitude 4.7 m/s and
direction 25° S of E.

(b) This requires careful thought. To cross the river the man must travel 500 m due east relative to the
earth. The man’s velocity relative to the earth is ¥y;. But, from the vector addition diagram the eastward

component of vy equals vyw =4.2 m/s.

(¢) The southward component of ¥y, equals vy, =2.0 m/s. Therefore, in the 120 s it takes him to cross
the river, the distance south the man travels relative to the earth is

Y—Yo = vyt =(2.0 m/s)(119 s5) =240 m.
EVALUATE: Ifthere were no current he would cross in the same time, (500 m)/(4.2 m/s) =120 s. The

current carries him downstream but doesn’t affect his motion in the perpendicular direction, from bank to bank.
IDENTIFY: Use the relation that relates the relative velocities.
SET UP: The relative velocities are the water relative to the earth, vy, the boat relative to the water,

vgw, and the boat relative to the earth, vg/. Vg is due east, ¥y,g is due south and has magnitude
2.0 m/s. vy =4.2 m/s. Vg =vgw t Vywe- Lhe velocity addition diagram is given in Figure 3.36.

VW/E — 2.0 m/s

. 8=28.4°, north of east.
VB/W 4.2 m/s

EXECUTE: (a) Find the direction of vg,y. sinf =

() v =V — Ve =42 m/s)> = (2.0 mis)® =3.7 m/s
(©) t:M:w:m oy

EVALUATE: It takes longer to cross the river in this problem than it did in Problem 3.35. In the direction
straight across the river (east) the component of his velocity relative to the earth is lass than 4.2 m/s.

Ugle

o\

'}.W/l{

Figure 3.36

IDENTIFY: The resultant velocity, relative to the ground, is directly southward. This velocity is the sum of
the velocity of the bird relative to the air and the velocity of the air relative to the ground.

ST Up: Yp/A = 100 km/h. GA/G =40 km/h, east. ﬁB/G = ﬁB/A +‘7A/G'

EXECUTE: We want vy, to be due south. The relative velocity addition diagram is shown in
Figure 3.37.



Motion in Two or Three Dimensions 3-19

3.38.

3.39.

UB/G

—
b

Figure 3.37

(8 sing = Y6 = A0k

(b) Vg6 =\Vea> — Va2 =91.7 km/h. Pl -

VB/G 91.7 km/h
EVALUATE: The speed of the bird relative to the ground is less than its speed relative to the air. Part of its
velocity relative to the air is directed to oppose the effect of the wind.
IDENTIFY: Use the relation that relates the relative velocities.
SET UP: The relative velocities are the velocity of the plane relative to the ground, vp;;, the velocity of

@=24°, west of south.

the plane relative to the air, ¥p/,, and the velocity of the air relative to the ground, v,,g. Vp,; must be
due west and v,,; must be south. v,,; =80 km/h and vp;, =320 km/h. ¥p;g =Vpa + VG- The relative

velocity addition diagram is given in Figure 3.38.
Vag — 80 km/h

EXECUTE: (a) siné = =

and @ =14°, north of west.

() VoG =\ VA — VoG =v/(320 km/h)? — (80.0 km/h)? =310 km/h,

EVALUATE: To travel due west the velocity of the plane relative to the air must have a westward
component and also a component that is northward, opposite to the wind direction.

w E

5 LU,
vA/G N P/»\ S

EP/G
Figure 3.38

__dr . _dv
IDENTIFY: vV =— and a =—
dt dt

SET UP: %(t”)wt”‘l- At t=1.00s, a,=4.00 m/s* and a, =3.00 m/s>. At =0, x=0 and

y=50.0 m.
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EXECUTE: (a) v, = ? =2Bt. a,= % =2B, which is independent of #. a, =4.00 m/s? gives
t t
_ 2 o_dy 0 _dvy _ 2 . _ 3 _
B=200nm/s". v,=—-=3Dt". a,=—==6Dt. a, =3.00 m/s” gives D=0.500 m/s”. x=0 at =0
dt dt
gives 4=0. y=50.0m at =0 gives C =50.0 m.
(b) At t=0, v, =0 and vy, =0, so v=0. At t=0, a, =2B=4.00 m/s® and a, =0, so
@ =(4.00 m/s?)i.
(¢) At £=10.0's, v, =2(2.00 m/s*)(10.0 s) =40.0 m/s and v, =3(0.500 m/s*)(10.0 s)* =150 ms.

v :Jvﬁ +v§ =155 m/s.

(d) x=(2.00 m/s?)(10.0 5)> =200 m, y =50.0 m +(0.500 m/s*)(10.0 s)* =550 m.
7 =(200 m)i +(550 m);.

EVALUATE: The velocity and acceleration vectors as functions of time are

v(t) = (2Bt)f + (3Dt2)}' and a(?) = (ZB)f A (6Dt)}. The acceleration is not constant.

3.40. IDENTIFY: The acceleration is not constant but is known as a function of time.
SET Up: Integrate the acceleration to get the velocity and the velocity to get the position. At the maximum
height v, =0.

a3 Y2 & 4 Br 73
EXECUTE: (a) v, =vy, +—t7, v, =vy, + ft—=t°, and x=vy t+—t",y =vy t +—1t"—=t".
X Ox 3 > Vy 0y 2 ’ Ox 12 s 0y > 6

(b) Setting v, =0 yields a quadratic in ¢, 0=v;, + ft —%/ A, Using the numerical values given in the

problem, this equation has as the positive solution ¢ = —[ L+ ﬂz +2v, y}/} =13.59 s. Using this time in
v

the expression for y(f) gives a maximum height of 341 m.

th V3 and %tz - gt —Vp,, = 0. Using the numbers given in the problem, the
positive solution is £ =20.73 s. For this ¢, x =3.85 x10% m.
EVALUATE: We cannot use the constant-acceleration kinematics formulas, but calculus provides the
solution.

3.41. IDENTIFY: ¥ =dr/dt. This vector will make a 45° angle with both axes when its x- and y-components
are equal.

n
SET Up: ) ="
dt

(©) y=0 gives 0=y, 7+

EXECUTE: ¥ =2bti +3ct’j. v, =v, gives t =2b/3c.
EVALUATE: Both components of ¥ change with z.
3.42. IDENTIFY: Use the position vector of a dragonfly to determine information about its velocity vector and
acceleration vector.
SET Up: Use the definitions v, =dx/dt, v, =dy/dt, a, =dv,/dt, and a,, = dv,/dt.

EXECUTE: (a) Taking derivatives of the position vector gives the components of the velocity vector:
v,(£)=(0.180 m/sz)t, v, (1) =(=0.0450 /s’ )12. Use these components and the given direction:

3,2
tan30.0° = (0.0450 m/s")” which gives t =2.31s.

(0.180 m/s)t
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(b) Taking derivatives of the velocity components gives the acceleration components:
a, =0.180 m/s”, a,(1) =—(0.0900 m/s’)t. At t=2.31s, a,=0.180 m/s* and a, =—0.208 m/s’, giving

a=0.275 m/s>. The direction is tan@ = %, so 8=49.1° clockwise from +x-axis.

EVALUATE: The acceleration is not constant, so we cannot use the standard kinematics formulas.
IDENTIFY: Once the rocket leaves the incline it moves in projectile motion. The acceleration along the
incline determines the initial velocity and initial position for the projectile motion.

SET Up: For motion along the incline let +x be directed up the incline. V2

o= vgx +2a,(x—xy) gives

v, = \/2(1.90 m/sz)(ZOO m) =27.57 m/s. When the projectile motion begins the rocket has vy =27.57 m/s
at 35.0° above the horizontal and is at a vertical height of (200.0 m)sin35.0° =114.7 m. For the
projectile motion let +x be horizontal to the right and let +y be upward. Let y =0 at the ground. Then

Yo =114.7m, vy, =v,c0s835.0°=22.57 m/s, vy, =v,sin35.0°=15.81 m/s, a, =0, a, =-9.80 m/s”. Let
x =0 atpoint 4, so x, =(200.0 m)cos35.0°=163.8 m.

EXECUTE: (a) At the maximum height v, =0. vﬁ = vgy +2a,(y—yy) gives

V=5, 0—(15.81 m/s)

2a, 2(-9.80 m/s?)

above ground is 128 m.
(b) The time in the air can be calculated from the vertical component of the projectile motion:

=12.77m and y =114.7 m +12.77 m =128 m. The maximum height

Y=Yo=

y=yp==1147m, vy, =1581m/s, a, =-9.80m/s*. y—y, =vy,t+1a i* gives
(4.90 m/sz)t2 —(15.81 m/s)t—114.7 m. The quadratic formula gives #=6.713 s for the positive root. Then
X=Xy = Voul +%axt2 =(22.57 m/s)(6.713 ) =151.6 m and x =163.8 m+151.6 m =315 m. The horizontal

range of the rocket is 315 m.
EVALUATE: The expressions for /4 and R derived in the range formula do not apply here. They are only
for a projectile fired on level ground.

t dv
IDENTIFY: 7 =7, +| v(t)dt and a =—.
)+ [ 50 .

SETUP: At =0, x,=0 and y, =0.

EXECUTE: (a) Integrating, r = (0{[ —§t3 J; +(7—2/t2j_;'. Differentiating, a = (—Zﬁt)f + 7/}'.

(b) The positive time at which x =0 is given by 2= 3a/B. At this time, the y-coordinate is
_Y23ay 324 m/s)4.0 m/s?) _
2 2p 2(1.6 m/s®)

EVALUATE: The acceleration is not constant.
IDENTIFY: Take +y to be downward. Both objects have the same vertical motion, with vy, and

9.0 m

a, =+g. Use constant acceleration equations for the x and y components of the motion.

SET UP: Use the vertical motion to find the time in the air:

vo, =0, a,=9.80 m/s>, y—y,=25m, =2

EXECUTE: y—y, =v,t +%ayt2 gives t =2.259 s.

During this time the dart must travel 90 m, so the horizontal component of its velocity must be
Yot 2259s

EVALUATE: Both objects hit the ground at the same time. The dart hits the monkey for any muzzle
velocity greater than 31 m/s.
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IDENTIFY: The velocity has a horizontal tangential component and a vertical component. The vertical
2
. . . . 14
component of acceleration is zero and the horizontal component is a4 =—=

SET UP: Let +y be upward and +x be in the direction of the tangential velocity at the instant we are

considering.
EXECUTE: (a) The bird’s tangential velocity can be found from
_ circumference _ 27(6.00 m)

=7.54 m/s.

X time of rotation - 5.00 s

Thus its velocity consists of the components v, =7.54 m/s and v, =3.00 m/s. The speed relative to the

ground is then v :Jvf +v§ =8.11 m/s.

(b) The bird’s speed is constant, so its acceleration is strictly centripetal—entirely in the horizontal

direction, toward the center of its spiral path—and has magnitude a,q =—*= W =9.48 m/s>.
r .00 m

-13.00 m/s _ 2170

7.54 m/s
EVALUATE: The angle between the bird’s velocity and the horizontal remains constant as the bird rises.
IDENTIFY: The cannister moves in projectile motion. Its initial velocity is horizontal. Apply constant
acceleration equations for the x and y components of motion.
SET UP:

(¢) Using the vertical and horizontal velocity components 6 = tan

Take the origin of coordinates at the point
where the cannister is released. Take +y to be
upward. The initial velocity of the cannister is
the velocity of the plane, 64.0 m/s in the
+x-direction.

Figure 3.47

Use the vertical motion to find the time of fall:
1=2 vy, =0, a,=-9.80 m/s?, Y—Yp =—90.0 m (When the cannister reaches the ground it is 90.0 m
below the origin.)

— 1 2
Y=Y = V()yt +5ayt

EXECUTE: Since v, =0, l:\/2(y—y0) :\/2(9_38'2;12) =4.286s.
a, -9. s

SET UP: Then use the horizontal component of the motion to calculate how far the cannister falls in this
time:

x—xy=?, a,—0, vy, =64.0m/s

EXECUTE: x—Xxy = vyt +%at2 =(64.0 m/s)(4.286 s) +0 =274 m.

EVALUATE: The time it takes the cannister to fall 90.0 m, starting from rest, is the time it travels
horizontally at constant speed.
IDENTIFY: The person moves in projectile motion. Her vertical motion determines her time in the air.

SET UP: Take +y upward. v, =15.0 m/s, Voy = +10.0 nvs, a, =0, a, =-9.80 m/s.
EXECUTE: (a) Use the vertical motion to find the time in the air: y -y, = vy, +%ayt2 with

Y=y, =-30.0m gives —30.0 m =(10.0 m/s)z — (4.90 m/s>)r>. The quadratic formula gives
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L= 2(41 9 ("'10'0 t \/(—10-0)2 —4(4.9)(-30) | s. The positive solution is # =3.70 s. During this time she

travels a horizontal distance x—xq = vy, + %axt2 =(15.0 m/s)(3.70 s) =55.5 m. She will land 55.5 m south

of the point where she drops from the helicopter and this is where the mats should have been placed.
(b) The x-t, y-t, v, -t and v, -t graphs are sketched in Figure 3.48.

EVALUATE: If she had dropped from rest at a height of 30.0 m it would have taken her
t= /% =2.47 s. She is in the air longer than this because she has an initial vertical component of
. ]

velocity that is upward.

Figure 3.48

IDENTIFY: The suitcase moves in projectile motion. The initial velocity of the suitcase equals the velocity
of the airplane.

SETUP: Take +y to be upward. a, =0, a, =-g.

EXECUTE: Use the vertical motion to find the time it takes the suitcase to reach the ground:

Vo, =Vp 8in23°, @, =980 m/s®, y— yy =114 m, 1 =2 y—y, =v, t+1a 1 gives 1=9.60s.

The distance the suitcase travels horizontally is x —x; = vy, = (v, c0s23.0°)f =795 m.

EVALUATE: An object released from rest at a height of 114 m strikes the ground at

t= /M =4.82 s. The suitcase is in the air much longer than this since it initially has an upward
-&

component of velocity.
IDENTIFY: The shell moves as a projectile. To just clear the top of the cliff, the shell must have
Y=Yy =25.0 m when it has x—x, =60.0 m.
SETUP: Let +y beupward. a, =0, a, =—g. vy, =v;cos43° vy, =vsin43°.
60.0 m
(vycos43°) '

vertical motion: y—y, =v, + laytz gives 25.0m = (v, sin 43.0°) ¢ +1(-9.80 m/s*) 7°.

y 2

EXECUTE: (a) horizontal motion: x —xj =v,f so ¢ =

Solving these two simultaneous equations for v, and ¢ gives v, =32.6 m/s and ¢ =2.51s.

(b) v, when shell reaches cliff:

v, =Vg,, +a,t =(32.6 m/s) sin 43.0°—(9.80 m/s*)(2.51 s) = 2.4 m/s
The shell is traveling downward when it reaches the cliff, so it lands right at the edge of the cliff.

v
EVALUATE: The shell reaches its maximum height at ¢ = ~W =227 s, which confirms that at

ay
t =2.51 s it has passed its maximum height and is on its way down when it strikes the edge of the cliff.
IDENTIFY: Find the horizontal distance a rocket moves if it has a non-constant horizontal acceleration but
a constant vertical acceleration of g downward.
SET UpP: The vertical motion is g downward, so we can use the constant acceleration formulas for that
component of the motion. We must use integration for the horizontal motion because the acceleration is not
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. . . . . 2(y— . L
constant. Solving for ¢ in the kinematics formula for y gives ¢ = M. In the horizontal direction we
a
y
t ’ ’ t r ’
must use v,(¢) =vy, + fo a ()dt’ and x—x, = J.o v (£)dt’.
EXECUTE: Use vertical motion to find 7. ¢ = 20 =) = \/2(30'0 mz) =2474s.
a, 9.80 m/s

In the horizontal direction we have
v.(£) = vy, + j(; a (')dt’ = vy, +(0.800 m/s*)r* =12.0 m/s +(0.800 m/s>)¢>. Integrating v _(¢) gives

x—xo =(12.0 m/s)t +(0.2667 m/s*)r>. At t=2.474s, x—x;=29.69 m+4.04m=33.7m,

EVALUATE: The vertical part of the motion is familiar projectile motion, but the horizontal part is not.
IDENTIFY: The equipment moves in projectile motion. The distance D is the horizontal range of the
equipment plus the distance the ship moves while the equipment is in the air.

SET Up: For the motion of the equipment take +x to be to the right and +y to be upward. Then a, =0,
a, =-9.80 m/s?, Vox =Vpcosay =7.50 m/s and vy, =vjsina =13.0 m/s. When the equipment lands in

the front of the ship, y—y, =—8.75 m.

EXECUTE: Use the vertical motion of the equipment to find its time in the air: y -y, = vy, +%ayt2 gives

t= 91%(13.0 + \/(—13».0)2 + 4(4.90)(8.75)) s. The positive root is ¢ =3.21 s. The horizontal range of the

equipment is x — Xy = Vgt +%axt2 =(7.50 m/s)(3.21 s) =24.1 m. In 3.21 s the ship moves a horizontal

distance (0.450 m/s)(3.21s)=1.44 m, so D=24.1m+1.44 m=25.5m.

vg sin2¢
4

points of the projectile motion are at different heights.
IDENTIFY: Projectile motion problem.

EVALUATE: The range equation R = cannot be used here because the starting and ending

Y Take the origin of coordinates at the point
where the ball leaves the bat, and take +y to be

s upward.

\ Voy = Vo COS

Voy =V Sing,

188 m but we don’t know vj.

Figure 3.53

Write down the equation for the horizontal displacement when the ball hits the ground and the
corresponding equation for the vertical displacement. The time 7 is the same for both components, so this
will give us two equations in two unknowns (v, and 7).

(a) SET UP: y-component:

a, =-9.80 m/s?, y Yo =—0.9m, v, =vysin45°
y=yo=vo,t+ia,t’

EXECUTE:  —0.9 m = (vysin45°) +1(=9.80 m/s”):”

SET UP: x-component:
a, =0, x—x,=188m, vy, =vycos45°

- 1, 42
X—Xo =Voxl tHal
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EXECUTE: =20 = 188 m

Voy  VpCOs45°

Put the expression for ¢ from the x-component motion into the y-component equation and solve for v.
(Note that sin45° =cos45°.)

2
0.9 m = (v sind5°) | oM |_ (490 m/s?)| LS8
vy cos45° vy cos45°

2
188 m

4.90 m/sz[ J =188 m+0.9 m=188.9 m

vy cos45°

0\2 2 2
Vo c0s45° )" _ 4.90 m/s = 188 m /4.90 m/s” _ 428 m/s
188 m 188.9 m cos45° 188.9 m
(b) Use the horizontal motion to find the time it takes the ball to reach the fence:

SET UP: x-component:
x=x9=116m, a, =0, vy, =vycos45°=(42.8 m/s)cos45°=30.3 m/s, t="?

X=Xy :voxt+%axt2
EXECUTE: f=——=——=3.835s

SET Up: Find the vertical displacement of the ball at this #:

y-component:
y=yo =% a,=-9.80 m/s>, vy, =v,sin45°=303m/s, 1=3.83s

Y=Xo =v0yl+%ayt2
EXECUTE:  y—y, =(30.35)(3.83 5) + (-9.80 m/s*)(3.83 5)°

y—yo =116.0 m—71.9 m = +44.1 m, above the point where the ball was hit. The height of the ball above
the ground is 44.1 m +0.90 m =45.0 m. Its height then above the top of the fence is

450 m-3.0 m=42.0 m.

EVALUATE: With v, =42.8 m/s, 1;,, =30.3 m/s and it takes the ball 6.18 s to return to the height where
it was hit and only slightly longer to reach a point 0.9 m below this height. ¢ = (188 m)/(v,cos45°) gives
t =6.21 s, which agrees with this estimate. The ball reaches its maximum height approximately

(188 m)/2 =94 m from home plate, so at the fence the ball is not far past its maximum height of 47.6 m,

so a height of 45.0 m at the fence is reasonable.

IDENTIFY: While the hay falls 150 m with an initial upward velocity and with a downward acceleration
of g, it must travel a horizontal distance (the target variable) with constant horizontal velocity.

SET UP: Use coordinates with +y upward and +x horizontal. The bale has initial velocity components

Vox =Vocosy = (75 m/s)cos55°=43.0 m/s and vy, =v,sineg = (75 m/s)sin55° =61.4 m/s. y, =150 m
and y =0. The equation y -y, = v,/ + %ayt2 applies to the vertical motion and a similar equation to the
horizontal motion.

EXECUTE: Use the vertical motion to find #: y —y, = vy, 7 + %ayt2 gives

—150 m =(61.4 m/s)t —(4.90 m/sz)tz. The quadratic formula gives ¢ = 6.27 * 8.36 s. The physical value

is the positive one, and ¢t =14.6 s. Then x —x, = v, ¢ +%axt2 =(43.0 m/s)(14.6 s) =630 m.

EVALUATE: If the airplane maintains constant velocity after it releases the bales, it will also travel
horizontally 630 m during the time it takes the bales to fall to the ground, so the airplane will be directly
over the impact spot when the bales land.

IDENTIFY: Two-dimensional projectile motion.
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SETUP: Let +y be upward. a, =0, a, =-9.80 m/s%. With Xo = yg =0, algebraic manipulation of the
equations for the horizontal and vertical motion shows that x and y are related by
g 2
y=(tanfy)x - —=——x".
0 21)02 cos? &
6, =60.0°. y=8.00m when x =18.0 m.
o’
EXECUTE: (a) Solving for v, gives v = 5 =16.6 m/s.
2(cos” Gy)(xtanGy — y)
(b) We find the horizontal and vertical velocity components:
U, = Uy, = Uycosy = 8.3 m/s.
vy2 = onz +2a,(y =y,) gives
v, = —\/(1)0 sin€p)” +2a,(y — yp) = —\/(14.4 m/s)? +2(=9.80 m/s>)(8.00 m) = —7.1 m/s
a3 _lvl 71 =\ )
v=4u YT = 10.9 m/s. tan@ =—=— =—— and @ =40.5°, below the horizontal.
|v] 83
EVALUATE: We can check our calculated vy.
_X-x _18.0m 517
Uy, 8.3 m/s
Then y -y, = vyt +1a,r* =(14.4 m/s)(2.17 5) - (4.9 m/s*)(2.17 5)* =8 m, which checks.
3.56. IDENTIFY: The water moves in projectile motion.
SETUP: Let xj =y, =0 and take +y to be positive. a, =0, a, =—g.
EXECUTE: The equations of motions are y = (v, sin &) t — % gt2 and x = (v, cos &) ¢. When the water
goes in the tank for the minimum velocity, y =2D and x =6D. When the water goes in the tank for the
maximum velocity, y =2D and x =7D. In both cases, sin @ = cos & = 272
To reach the minimum distance: 6D = %vot, and 2D = %Vot —% gtz. Solving the first equation for ¢
2
gives t = 6D\/§. Substituting this into the second equation gives 2D =6D — % g( 6D\/§] . Solving this
Yo Yo
for v, gives v, =34/gD.
To reach the maximum distance: 7D = %Vol, and 2D = gvot - % gtz. Solving the first equation for ¢
2
. D+2 o . . . D~2 . .
gives t = \/_ Substituting this into the second equation gives 2D =7D — % g [7 \/_J . Solving this
Yo Yo
for v, gives vy =+/49gD/5 =3.13,/gD, which, as expected, is larger than the previous result.
EVALUATE: A launch speed of v, = J6 gD =2.45,/gD is required for a horizontal range of 6D. The
minimum speed required is greater than this, because the water must be at a height of at least 2D when it
reaches the front of the tank.
3.57. IDENTIFY: From the figure in the text, we can read off the maximum height and maximum horizontal

distance reached by the grasshopper. Knowing its acceleration is g downward, we can find its initial speed
and the height of the cliff (the target variables).

SET UP: Use coordinates with the origin at the ground and +y upward. a, =0, a, =-9.80 m/s%. The

constant-acceleration kinematics formulas vﬁ = vgy +2a, (y—yp) and x —xy = vyt + %axt2 apply.
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EXECUTE: (a) v, =0 when y —y, =0.0674 m. vi = vgy +2a, (y—y,) gives

Voy = /—Zay =) :\/—2 (-9.80 m/sz)(0.0674 m) =115 m/s. v, =v,sing, so

singg, sin50.0°
(b) Use the horizontal motion to find the time in the air. The grasshopper travels horizontally
-X) _  X—X
- vp€0s50.0°

=1.10 s. Find the vertical

. X
X —xp=1.06 m. x—x, :voxt+%axt2 gives t = -
Ox

displacement of the grasshopper at # =1.10 s:
¥ =yo =vp,t +Laf? = (1.15m/s)(1.10 5) +1 (-9.80 m/s?)(1.10 5)* = —4.66 m. The height of the cliff is

4.66 m.
EVALUATE: The grasshopper’s maximum height (6.74 cm) is physically reasonable, so its takeoff speed

of 1.50 m/s must also be reasonable. Note that the equation R = Ypsin2ap does not apply here since the
g

launch point is not at the same level as the landing point.

IDENTIFY: To clear the bar the ball must have a height of 10.0 ft when it has a horizontal displacement of
36.0 ft. The ball moves as a projectile. When v is very large, the ball reaches the goal posts in a very short
time and the acceleration due to gravity causes negligible downward displacement.

SET UpP: 36.0 ft=10.97 m; 10.0 ft =3.048 m. Let +x be to the right and +y be upward, so a, =0,

a, ==&, Vo =Vpcosd and vy, =v,singy,.

EXECUTE: (a) The ball cannot be aimed lower than directly at the bar. tangy = :1;2(()) E and o =15.5°.
(b) x—xg =Vt +%axt2 gives t = I7%0 - X700 pep Y=o = Vo,t +%ayt2 gives
Vox Vo CoSs GVO
. X—X —1C)="1 )2 1T (x=xp)
Y=o = (vgsiney) 0 |—— ; g :(x—xo)tanao——g%.
VpCosdy ) 2 yjcos” 27 vycos” o
N 2

" :(x Xp) g _1097m 9.80 m/s —122 m/s = 43.9 .

cosay \2[(x—xp)tanagy — (¥ —yy)] cos45.0° | 2[10.97 m—3.048 m]
EvALUATE: With the v, and 45° launch angle in part (b), the horizontal range of the ball is

2 .

2 : S .
R= QSN 15.2 m =49.9 ft. The ball reaches the highest point in its trajectory when
4

X —xo = R/2, which is 25 ft, so when it reaches the goal posts it is on its way down.

IDENTIFY: The snowball moves in projectile motion. In part (a) the vertical motion determines the time in
the air. In part (c), find the height of the snowball above the ground after it has traveled horizontally 4.0 m.

SETUP: Let +y be downward. a, =0, a, =+9.80 m/s?. Vox = Vpc0séy =5.36 m/s,
VO_V = Vo sin 90 =4.50 m/s.
EXECUTE: (a) Use the vertical motion to find the time in the air: y -y, = vy, 7 + %ayt2 with

y—y,=14.0 m gives 14.0 m = (4.50 m/s) ¢ + (4.9 m/s*) t*. The quadratic formula gives
t= 2(%9) (—4.50 + \/(4.50)2 -4 (4.9)(—14.0)) s. The positive root is # =1.29 s. Then

x—=xo =gt +1a s’ = (536 m/s)(1.29 §)=6.91 m.
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(b) The x-£, y-t, vt and v,-t graphs are sketched in Figure 3.59.

. xX— o
(©) x—xy =vy,t+ %axt2 gives t =———=————=0.746 s. In this time the snowball travels downward

adistance y—yy = vyt +%ayt2 =6.08 m and is therefore 14.0 m—6.08 m =7.9 m above the ground. The

snowball passes well above the man and doesn’t hit him.
EVALUATE: If the snowball had been released from rest at a height of 14.0 m it would have reached the

ground in ¢ = f% =1.69 s. The snowball reaches the ground in a shorter time than this because of
. s
its initial downward component of velocity.

X y v vy

Figure 3.59

IDENTIFY: The dog runs horizontally at constant velocity, and the ball is in two-dimensional projectile
motion. The ball starts out traveling only horizontally.
SET UP: Use coordinates with the origin at the boy and with +y downward. For the ball

Uy, =0, 0y, =8.50 m/s, a, =0 and a,, =9.80 m/s”.

EXECUTE: (a) The dog must travel horizontally the same distance the ball travels horizontally, so the dog
must have speed 8.50 my/s.

(b) Use the vertical motion of the ball to find its time in the air. y —y, = 0y,¢ + %ayt2 gives

a, 9.80 m/s”

EVALUATE: The dog is about 40 ft from the tree, which is not unreasonable since the tree is nearly 40 ft
high.

IDENTIFY: The dog runs horizontally at constant velocity, and the ball is in two-dimensional projectile
motion. But this time the ball has an upward component to its initial velocity.

SET Up: Use coordinates with the origin at the boy and with +y upward. The ball has v, =v,cosé, =

(8.50 m/s)c0s 60.0° =4.25 m/s, v, =, sin, = (8.50 m/s)sin60.0° =7.36 m/s, a, =0 and

t:\/z(y ~ o) :\/2(12'0 Q56 5. Then x - x, = Vgt + a1 =(8.50 m/s)(1.56 5) =133 m

a, =-9.80 m/s’.

EXECUTE: (a) The dog must travel horizontally the same distance the ball travels horizontally, so the dog
must have speed 4.25 m/s.

(b) Use the vertical motion of the ball to find its time in the air. y —y, = v, + %aytz gives

—12.0 m =(7.36 m/s)t — (4.90 m/sz)tz. The quadratic formula gives ¢ =0.751£1.74 s. The negative
value is not physical, so t =2.49 s. Then x — xy = vt + %axtz =(4.25 m/s)(2.49 s) =10.6 m.

EVALUATE: The ball is in the air longer than when it is thrown horizontally (as we saw in the previous
problem), but it doesn’t travel as far horizontally. The dog doesn’t have to run as far or as fast as when the
ball is thrown horizontally.

IDENTIFY: The rock moves in projectile motion.

SETUP: Let +y beupward. a, =0, a, =—g. Eqgs. (3.21) and (3.22) give v, and v,.

EXECUTE: Combining Egs. 3.24, 3.21 and 3.22 gives
vi= vg cos? o +(vysino — g’ = vg (sin? o+ cos? o) —2vysin o gt + (gt)%.
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3.63.

. 1 . .
vi= vg - Zg(vo sin ot — Egtzj = vg —2gy, where Eq. (3.20) has been used to eliminate ¢ in favor of y. For

the case of a rock thrown from the roof of a building of height A, the speed at the ground is found by
substituting y =—/ into the above expression, yielding v = \/vg +2gh, which is independent of ¢,.
EVALUATE: This result, as will be seen in the chapter dealing with conservation of energy (Chapter 7), is
valid for any y, positive, negative or zero, as long as vg —-2gy>0.

(a) IDENTIFY: Projectile motion.

Take the origin of coordinates at the top of

~. the ramp and take +y to be upward.
" The problem specifies that the object is
% displaced 40.0 m to the right when it is
\ 15.0 m below the origin.
\
\
\
40.0 m

Figure 3.63

We don’t know ¢, the time in the air, and we don’t know v,. Write down the equations for the horizontal

and vertical displacements. Combine these two equations to eliminate one unknown.
SET UP: y-component:
y—yp==15.0m, a, =-9.80 m/s>, v,, =v;sin53.0°
= 2
Y= Yo vt +Lay
EXECUTE: —15.0 m = (v,sin53.0°) £ — (4.90 m/s*) >

SET UP: x-component:
xX—x9=40.0m, a, =0, vy, =v,c0s53.0°
X—Xg =Vt t %axtz
EXECUTE: 40.0 m = (vyt)c0s53.0°
40.0 m

The second equation says vyt =————— = 66.47 m.
c0s53.0°

Use this to replace vt in the first equation:

~15.0 m = (66.47 m) sin 53° — (4.90 m/s?) 1>

oy
t:\/(66.47 m)sin 53 : 150 m :\/ 68.08 m2 e

4.90 m/s 4.90 m/s
Now that we have ¢ we can use the x-component equation to solve for v:

L 400m 40.0 m
0 £ c0s53.0° (3.727 5) c0s53.0°

EVALUATE: Using these values of v, and #in the y =y, =v,, + %a ytz equation verifies that

=17.8 m/s.

Y=o =-15.0m.
(b) IDENTIFY: v, =(17.8 m/s)/2=8.9 m/s

This is less than the speed required to make it to the other side, so he lands in the river.
Use the vertical motion to find the time it takes him to reach the water:

SETUP:  y—y,=-100m; vy, =+vysin53.0°=7.11m/s; a, =—9.80 m/s’

Y=Yy =vp,t +La,t* gives —100=7.11¢ - 4.90¢
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EXECUTE: 4.90/>—7.11/—100=0 and ¢ = 9_1%(7.1 1+ \/(7.1 1)’ -4 (4.90)(—100))
t=0.726 s£4.57s so t =530 s.
The horizontal distance he travels in this time is
X=Xy =Vt =(vyc0s53.0°) ¢t =(5.36 m/s)(5.30 5) =28.4 m.
He lands in the river a horizontal distance of 28.4 m from his launch point.
EVALUATE: He has half the minimum speed and makes it only about halfway across.
3.64. IDENTIFY: The ball moves in projectile motion.
SET UP: The woman and ball travel for the same time and must travel the same horizontal distance, so for
the ball vy, =6.00 m/s.
EXECUTE: (a) vy, =vyc0s86,. cosf, = Yos OIS and @, =72.5°. The ball is in the air for 5.55s and
vo  20.0 m/s
she runs a distance of (6.00 m/s)(5.55s) =33.3 m.
(b) Relative to the ground the ball moves in a parabola. The ball and the runner have the same horizontal
component of velocity, so relative to the runner the ball has only vertical motion. The trajectories as seen
by each observer are sketched in Figure 3.64.
EVALUATE: The ball could be thrown with a different speed, so long as the angle at which it was thrown
was adjusted to keep v, =6.00 m/s.
y y
0 Yoo "
Viewed by person at Viewed by the runner
rest on ground
Figure 3.64
3.65. IDENTIFY: The boulder moves in projectile motion.
SETUp: Take +y downward. vy, =vy, @, =0, a, =0, a, =+9.80 m/s?.
EXECUTE: (a) Use the vertical motion to find the time for the boulder to reach the level of the lake:
. . 2(y— 2(2
Y=Yo =Voyt +%ayt2 with y—y, =+20 m gives ¢ = =) :J (20 m)2 =2.02 s. The rock must
a, 9.80 m/s
. . . _ 12 . _ _x—x9 _100m _
travel horizontally 100 m during this time. x —xo = vy, f +5a,1” gives vy = vy, = T T Sms 49.5 m/s
(b) In going from the edge of the cliff to the plain, the boulder travels downward a distance of
2(y - 2(4
Y=y =45m. t= = Jo) :\/ (45 m)2 =3.03 s and x—xy = vy, ¢ =(49.5 m/s)(3.03 s) =150 m.
a, 9.80 m/s
The rock lands 150 m —100 m =50 m beyond the foot of the dam.
EVALUATE: The boulder passes over the dam 2.02 s after it leaves the cliff and then travels an additional 1.01 s
before landing on the plain. If the boulder has an initial speed that is less than 49 m/s, then it lands in the lake.
3.66. IDENTIFY: The bagels move in projectile motion. Find Henrietta’s location when the bagels reach the

ground, and require the bagels to have this horizontal range.
SETUP: Let +y be downward and let x, = yy =0. a, =0, a, =+g. When the bagels reach the ground,

y=38.0m.
EXECUTE: (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time for the

bagels to fall 38.0 m from rest. Get the time to fall: y = %gtz, 38.0m= % (9.80 m/sz) > and 1=2.78s.

So, she has been jogging for 9.00s +2.78s =11.78s. During this time she has gone
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x =vt =(3.05 m/s)(11.78 s) =35.9 m. Bruce must throw the bagels so they travel 35.9 m horizontally in
2.78 s. This gives x =vt. 359m=v(2.78 s) and v=12.9 m/s.

(b) 35.9 m from the building.
EVALUATE: If v>12.9 m/s the bagels land in front of her and if v <12.9 m/s they land behind her.
There is a range of velocities greater than 12.9 m/s for which she would catch the bagels in the air, at some
height above the sidewalk.

3.67. IDENTIFY: The cart has a constant horizontal velocity, but the missile has horizontal and vertical motion
once it has left the cart and is in free fall.
SET UP: Let +y be upward and +x be to the right. The missile has v,, =30.0 m/s, Uy = 40.0 m/s, a, =0

and a, = —9.80 m/s>. The cart has a, =0 and vy, =30.0 n/s.

EXECUTE: (a) At the missile’s maximum height, b = 0.

y. - 0-(40.0 mls)®

2a, 2(-9.80 m/s?)

(b) Find ¢ for y —y, =0 (missile returns to initial level).

209, _ 2(40.0 m/s)
a,  —9.80 ns>

Then x —xo = Ut +1a,t” =(30.0 m/s)(8.16 5) =245 m.

2
V., =,
r 0 =81.6 m

2 _ 2 : —
V" =0,” +2a,(y - y) gives y—yy =

=8.16 s

Y=Yy =yt t+ %ayt2 gives t =

(¢) The missile also travels horizontally 245 m so the missile lands in the cart.
EVALUATE: The vertical motion of the missile does not affect its horizontal motion, which is the same as
that of the cart, so the missile is always directly above the cart throughout its motion.

3.68. IDENTIFY: The water follows a parabolic trajectory since it is affected only by gravity, so we apply the
principles of projectile motion to it.
SET UP: Use coordinates with +y upward. Once the water leaves the cannon it is in free-fall and has

a, =0 and a, =-9.80 m/s”. The water has Vpy = Upcosby =15.0 m/s and v, = v;siné, = 20.0 m/s.
EXECUTE: Use the vertical motion to find # that gives y —y, =10.0 m: y =y, =0,¢ + %ayt2 gives

10.0 m = (20.0 m/s)t — (4.90 m/s?)¢>.

The quadratic formula gives # =2.04+1.45s, and # =0.59 s or ¢ =3.49 s. Both answers are physical.

For £ =0.59s, x —xy =vy,¢ =(15.0 m/s)(0.59 s) =8.8 m.

For t=3.49s, x —xy=0,,¢=(15.0 m/5)(3.:49 5) =52.4 m.
When the cannon is 8.8 m from the building, the water hits this spot on the wall on its way up to its
maximum height. When is it 52.4 m from the building it hits this spot after it has passed through its
maximum height.
EVALUATE: The fact that we have two possible answers means that the firefighters have some choice on
where to stand. If the fire is extremely fierce, they would no doubt prefer to stand at the more distant
location.

3.69. IDENTIFY: The rock is in free fall once it is in the air, so it has only a downward acceleration of 9.80 m/s’,

and we apply the principles of two-dimensional projectile motion to it. The constant-acceleration
kinematics formulas apply.

SET UP: The vertical displacement must be Ay =y —y, =5.00 m —1.60 m = 3.40 m at the instant that
the horizontal displacement Ax = x — x, = 14.0 m, and a, = -9.80 m/s” with +y upward.

EXECUTE: (a) There is no horizontal acceleration, so 14.0 m = v, cos(56.0°)¢, which gives
140 m
(=

= —— . Putting this quantity, along with the numerical quantities, into the equation
v, €08 56.0°

Y= Yo = vyt +%ayt2 and solving for vy we get vy = 13.3 m/s.
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(b) The initial horizontal velocity of the rock is (13.3 m/s)(cos 56.0°), and when it lands on the ground,
Y=Y, =-1.60 m. Putting these quantities into the equation y—y, = vyt + %ayt2 leads to a quadratic

equation in ¢. Using the positive square root, we get 1 = 2.388 s when the rock lands. The horizontal
position at that instant is x —x, = (13.3 m/s)(cos 56.0°)(2.388 s) = 17.8 m from the launch point. So the

distance beyond the fence is 17.8 m— 14.0 m = 3.8 m.

EVALUATE: We cannot use the range formula to find the distance in (b) because the rock’s motion does
not start and end at the same height.

IDENTIFY: The object moves with constant acceleration in both the horizontal and vertical directions.
SET UP: Let +y be downward and let +x be the direction in which the firecracker is thrown.

o . . f2h
EXECUTE: The firecracker’s falling time can be found from the vertical motion: ¢ = |—.
g

The firecracker’s horizontal position at any time ¢ (taking the student’s position as x =0) is x = vt — %atz.
x =0 when cracker hits the ground, so ¢ =2v/a. Combining this with the expression for the falling time

2
gives 2. d and h = 2v2g'

a g a
EVALUATE: When / is smaller, the time in the air is smaller and either v must be smaller or @ must be
larger.
IDENTIFY: Relative velocity problem. The plane’s motion relative to the earth is determined by its
velocity relative to the earth.
SET UP: Select a coordinate system where +y is north and +x is east.

The velocity vectors in the problem are:
vpg, the velocity of the plane relative to the earth.

Vpsa, thevelocity of the plane relative to the air (the magnitude vp/, is the airspeed of the plane and the
direction of vp,, is the compass course set by the pilot).

VaE, the velocity of the air relative to the earth (the wind velocity).

The rule for combining relative velocities gives Vp/g =Vpja +Vp/E-

(a) We are given the following information about the relative velocities:
vp,x has magnitude 220 km/h and its direction is west. In our coordinates it has components

(Vp/a)y =—220 km/h and (vpjs ), =0.
From the displacement of the plane relative to the earth after 0.500 h, we find that vp; has components in

our coordinate system of

120 km
=————=-240 km/h est
(Ve/E)x 0500 h (west)
20 km
=—————=-40 km/h (south
(vpE), 0500 (south)

With this information the diagram corresponding to the velocity addition equation is shown in
Figure 3.71a.

Vp/A

"A/F_Z/
\'p/E

Figure 3.71a
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We are asked to find v, g, so solve for this vector:

Vp/E = Vp/a tVAE 8IVES Vaop =Vpg —Vp/a-

EXECUTE: The x-component of this equation gives

Va/E)x = WpE)y — (Vpja )y =—240 knmvh — (—220 knmvh) =-20 kmv/h.
The y-component of this equation gives

(vae)y =(Vpe)y —(Vpia )y =—40 km/h.

Now that we have the components of v,z we can find its magnitude and direction.

-

YN — 2, 2
e AlE ) E K et
‘_: (0 vam =+/(=20 km/h)? +(~40 knvh)? =44.7 km/h
: tang = 20KB 5 50 5=63.4°
| VAE) 20 km/h
‘ L S Y The direction of the wind velocity is 63.4° S of W,
VAIE s or 26.6° W of S.
Figure 3.71b

EVALUATE: The plane heads west. It goes farther west than it would without wind and also travels south,
so the wind velocity has components west and south.

(b) SET UP: The rule for combining the relative velocities is still ¥p =Vp/s + V45, but some of these
velocities have different values than in part (a).
vp,a has magnitude 220 km/h but its direction is to be found.

Vo has magnitude 40 km/h and its direction is due south.
The direction of vp is west; its magnitude is not given.

The vector diagram for vp; =Vps +V 4 and the specified directions for the vectors is shown in
Figure 3.71c.

Figure 3.71c

The vector addition diagram forms a right triangle.
EXECUTE: sing =2AE = 77XV — 1818, ¢=10.5°
The pilot should set her course 10.5° north of west.

EVALUATE: The velocity of the plane relative to the air must have a northward component to counteract
the wind and a westward component in order to travel west.
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3.72. IDENTIFY: Use the relation that relates the relative velocities.
SET Up: The relative velocities are the raindrop relative to the earth, vy, the raindrop relative to the

train, vy, and the train relative to the earth, vp/p. Vg =Vp/ +V1E- Vrg 1S due east and has
magnitude 12.0 m/s. vy, is 30.0° west of vertical. vy is vertical. The relative velocity addition

diagram is given in Figure 3.72.
EXECUTE: (a) vy is vertical and has zero horizontal component. The horizontal component of vy, is

—Vr/E, SO is 12.0 m/s westward.

12. 12.

v 12008 _ o6 6 s, vy =—1E = 20
tan30.0° tan30.0° sin30.0°  sin30.0°
EVALUATE: The speed of the raindrop relative to the train is greater than its speed relative to the earth,
because of the motion of the train.

=24.0 m/s.

(®) v =

N
W+E
, ~__ S
Urfr / 30.0° ~
/ RIE
‘TT/E

Figure 3.72

3.73. IDENTIFY: Relative velocity problem.
SET Up: The three relative velocities are:
VG, Juan relative to the ground. This velocity is due north and has magnitude vy, =8.00 m/s.

Vp/G. the ball relative to the ground. This vector is 37.0° east of north and has magnitude
Ve =12.00 m/s.

vp/y, the ball relative to Juan. We are asked to find the magnitude and direction of this vector.
The relative velocity addition equation is v, = Vg5 + VG, SO Vi =Vg/G — Vi/G-

The relative velocity addition diagram does not form a right triangle so we must do the vector addition
using components.
Take +y to be north and +x to be east.

EXECUTE: vg);, = +vp,Gsin37.0°=7.222 m/s
VB/Jy = +VB/G c0s37.0°— Vg = 1.584 m/s
These two components give vg; =7.39 m/s at 12.4° north of east.

EVALUATE: Since Juan is running due north, the ball’s eastward component of velocity relative to him is
the same as its eastward component relative to the earth. The northward component of velocity for Juan
and the ball are in the same direction, so the component for the ball relative to Juan is the difference in
their components of velocity relative to the ground.

3.74. IDENTIFY: Both the bolt and the elevator move vertically with constant acceleration.
SET UP: Let +y be upward and let y =0 at the initial position of the floor of the elevator, so y, for the
bolt is 3.00 m.

EXECUTE: (a) The position of the bolt is 3.00 m +(2.50 m/s) # —(1/2)(9.80 m/sz) ¢* and the position of
the floor is (2.50 m/s)z. Equating the two, 3.00 m = (4.90 m/s?) r*. Therefore, 7 =0.782s.

(b) The velocity of the bolt is 2.50 m/s —(9.80 nl/sz)(0.782 s) =—5.17 m/s relative to earth, therefore,
relative to an observer in the elevator v =-5.17 m/s —2.50 m/s = —7.67 m/s.
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3.76.

(¢) As calculated in part (b), the speed relative to earth is 5.17 m/s.
(d) Relative to earth, the distance the bolt traveled is

(2.50 m/s) £ — (1/2)(9.80 m/s?) £ = (2.50 m/s)(0.782's) — (4.90 m/s?)(0.782 s)> =—1.04 m.
EVALUATE: As viewed by an observer in the elevator, the bolt has v, y = 0 and a, = -9.80 m/s” , SO in

0.782 s it falls —1 (9.80 m/s?)(0.782 5)? =—3.00 m.

IDENTIFY: We need to use relative velocities.

SET UP: If B is moving relative to M and M is moving relative to E, the velocity of B relative to E is
VBE =VBM tVME:

EXECUTE: Let +x be east and +y be north. We have vy, =2.50 m/s, vgpy, =—4.33 m/s, vyg, =0,
and vy, =6.00 m/s. Therefore v = vy + Ve, = 2-50 mv/s and

VBEy = VBMy t VMEy =433 m/s +6.00 m/s = +1.67 m/s. The magnitude is

J(z.so m/s)? +(1.67 m/s)*> =3.01 m/s, and the direction is tan = %, which gives

6 =33.7° north of east.

EVALUATE: Since Mia is moving, the velocity of the ball relative to her is different from its velocity
relative to the ground or relative to Alice.

IDENTIFY: You have a graph showing the horizontal range of the rock as a function of the angle at which
it was launched and want to find its initial velocity. Because air resistance is negligible, the rock is in free
fall. The range formula applies since the rock rock was launced from the ground and lands at the ground.

. v, sin(26) : o o
SET UP: (a) The range formula is R = —————, so a plot of R versus sin(26,) will give a straight line

g
having slope equal to vcz)/ 'g. We can use that data in the graph in the problem to construct our graph by

hand, or we can use graphing software. The resulting graph is shown in Figure 3.76.

R (m)
12.00

10.00 '&&

8.00 /
'

6.00

4.00

2.00

0.00 - ; : : . 1 Sin (26,)
0.000 0.200 0.400 0.600 0.800 1.000 1.200

Figure 3.76

(b) The slope of the graph is 10.95 m, so 10.95 m = vg/g. Solving for v, we get vy = 10.4 m/s.
(¢) Solving the formula vj = vg »t 2a v (¥ = yg) for y—y, withv, =0 at the highest point, we get

y—y0=199 m.
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EVALUATE: This approach to finding the launch speed v, requires only simple measurements: the range

and the launch angle. It would be difficult and would require special equipment to measure v, directly.

IDENTIFY: The table gives data showing the horizontal range of the potato for various launch heights.

You want to use this information to determine the launch speed of the potato, assuming negligible air

resistance.

SET UP: The potatoes are launched horizontally, so v,, = 0, and they are in free fall, so a, = 9.80 m/s’

downward and a, = 0. The time a potato is in the air is just the time it takes for it to fall vertically from the

launch point to the ground, a distance 4.

EXECUTE: (a) For the vertical motion of a potato, we have & = Y% gr*, so t =/2h/g. The horizontal range
2

v
R is given by R =vyt =vy+/2h/g. Squaring gives R = 20 |p. Graphing R* versus / will give a straight

g

line with slope 2v§/g. We can graph the data from the table in the text by hand, or we could use graphing

software. The result is shown in Figure 3.77.

R2(m2)
700
600 4

yd
400

300 /

200 /

100 /

0

0 2 4 6 8 10

Figure 3.77

(9.80 m/s”)(55.2 m)
2

(¢) In this case, the potatoes are launched and land at ground level, so we can use the range formula with 6
vy sin(26) _ 5

g
EVALUATE: This approach to finding the launch speed v, requires only simple measurements: the range
and the launch height. It would be difficult and would require special equipment to measure v, directly.
IDENTIFY: This is a vector addition problem. The boat moves relative to the water and the water moves
relative to the earth. We know the speed of the boat relative to the water and the times for the boat to go
directly across the river, and from these things we want to find out how fast the water is moving and the
width of the river.

SET UP: For both trips of the boat, v .

(b) The slope of the graph is 55.2 m, so v, = \/ =16.4 m/s.

=30.0° and vy = 16.4 m/s. The resultis R = 3.8m

Vgw T Vi » Where the subscripts refer to the boat, earth, and

water. The speed of the boat relative to the earth is vg = d/f, where d is the width of the river and ¢ is the
time to cross the river, which is different in the two crossings.
EXECUTE: Figure 3.78 shows a vector sum for the first trip and for the return trip.
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3.80.

Figure 3.78a-b

(a) For both trips, the vectors in Figures 3.78 a & b form right triangles, so we can apply the Pythagorean

theorem. v; . v; o vaE and vg = d/t. For the first trip, vgw = 6.00 m/s and 7= 20.1 s, giving
d*/(20.15)* =(60.00 m/s*) — (v )*. For the return trip, vgyw = 9.0 m/s and #= 11.2 s, which gives

d?/ 112 s)2 =(9.00 m/sz) —(vwiE )2. Solving these two equations together gives d = 90.48 m, which

rounds to 90.5 m (the width of the river) and vy, = 3.967 m/s which rounds to 3.97 m/s (the speed of the
current).

(b) The shortest time is when the boat heads perpendicular to the current, which is due north. Figure 3.78c
illustrates this situation. The time to cross is £ = d/vgw = (90.48 m)/(6.00 m/s) = 15.1 s. The distance x east
(down river) that you travel is x = vyst = (3.967 m/s)(15.1 s) = 59.9 m east of your starting point.

Vwie
(3.97 m/s)

o y.
Vpw J/
(6.00 mvs) /s

Figure 3.78¢

EVALUATE: In part (a), the boat must have a velocity component up river to cancel out the current
velocity. In part (b), velocity of the current has no effect on the crossing time, but it does affect the landing
position of the boat.

IDENTIFY: Write an expression for the square of the distance (Dz) from the origin to the particle,

expressed as a function of time. Then take the derivative of D? with respect to ¢, and solve for the value
of ¢t when this derivative is zero. If the discriminant is zero or negative, the distance D will never decrease.

SETUP: D? =x?+y?, with x(r) and y(¢) given by Egs. (3.19) and (3.20).

EXECUTE: Following this process, sin"'~/8/9 =70.5°.

EVALUATE: We know that if the object is thrown straight up it moves away from P and then returns, so
we are not surprised that the projectile angle must be less than some maximum value for the distance to
always increase with time.

IDENTIFY: Apply the relative velocity relation.

SET UP: Let vy be the speed of the canoe relative to water and vy, be the speed of the water relative
to the ground.

EXECUTE: (a) Taking all units to be in km and h, we have three equations. We know that heading
upstream Vo — Vg = 2. We know that heading downstream for a time ¢, (vow + vy g)t =5. We also
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know that for the bottle vy, (¢ +1) =3. Solving these three equations for vy, =x, vow =2 +x,

therefore (2+x+x)t =5 or (2+2x)t=5. Also t =3/x—-1, so (2+2x)(i—lj:5 or 2x2 +x—6=0.
X

The positive solution is x = vy, =1.5 km/h.
(b) vow =2 kmv/h + vy, =3.5 km/h.
EVALUATE: When they head upstream, their speed relative to the ground is
3.5 km/h —1.5 km/h = 2.0 kmv/h. When they head downstream, their speed relative to the ground is
3.5 kmv/h +1.5 km/h =5.0 knv/h. The bottle is moving downstream at 1.5 km/s relative to the earth, so they
are able to overtake it.
3.81. IDENTIFY: The rocket has two periods of constant acceleration motion.
SETUP: Let +y be upward. During the free-fall phase, a, =0 and a, =—g. After the engines turn on,

a, =(3.00g)c0s30.0° and a, =(3.00g)sin30.0°. Let ¢ be the total time since the rocket was dropped and

let T be the time the rocket falls before the engine starts.
EXECUTE: (i) The diagram is given in Figure 3.81 a.
(ii) The x-position of the plane is (236 m/s)¢ and the x-position of the rocket is

(236 m/s)t +(1/2)(3.00)(9.80 m/sz)cos 30°(¢—T )2. The graphs of these two equations are sketched in
Figure 3.81 b.

(iii) If we take y =0 to be the altitude of the airliner, then

y()= —l/2gT2 —-gT(t—-T)+1/2(3.00)(9.80 m/sz)(sin 30°)(¢ - T)2 for the rocket. The airliner has constant y.

The graphs are sketched in Figure 3.81b.

In each of the Figures 3.81a—c, the rocket is dropped at # =0 and the time 7 when the motor is turned on is
indicated.

By setting y =0 for the rocket, we can solve for ¢ in terms of 7:

0=—(4.90 m/s?)T? = (9.80 m/s>)T (¢ — T) +(7.35 m/s>)(t — T')*. Using the quadratic formula for the

7 = (980 m/sH)T + \/(9.80 m/s>T)? +(4)(7.35 m/s?)(4.9)T? o
2(7.35 m/s?) '
=1000 m, we find

variable x=¢t—T we find x =¢—

t=2.72T. Now, using the condition that x;,cxer = Xplane

(236 m/s)t +(12.7 m/s>)(¢ — T)? — (236 m/s)t =1000 m, or (1.72T)* =78.6s°. Therefore T =5.15s.

EVALUATE: During the free-fall phase the rocket and airliner have the same x coordinate but the rocket
moves downward from the airliner. After the engines fire, the rocket starts to move upward and its
horizontal component of velocity starts to exceed that of the airliner.

Rocket

Airliner l
Airliner {1000 mj<- - !
23 Airliner r Rocket
L t
Rocket T
(©) (b) ©

Figure 3. 81

3.82. IDENTIFY: We know the speed of the seeds and the distance they travel.
SET UP: We can treat the speed as constant over a very short distance, so v = d/t. The minimum frame
rate is determined by the maximum speed of the seeds, so we use v =4.6 m/s.
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3.83.

3.84.

3.85.

EXECUTE: Solving for 7 gives t =d/v = (0.20 x 10~ 5)/(4.6 m/s) = 4.3 x 10> s per frame.

The frame rate is 1/(4.3 x 10~ s per frame) = 23,000 frames/seconde. Choice (c) 25,000 frames per second
is closest to this result, so choice (c) is the best one.

EVALUATE: This experiment would clearly require high-speed photography.

IDENTIFY: A seed launched at 90° goes straight up. Since we are ignoring air resistance, its acceleration is
9.80 m/s* downward.

SET UP: For the highest possible speed vy, = 4.6 m/s, and v, = 0 at the highest point.

EXECUTE: v, = v, — gt gives t = v,,/g = (4.6 m/s)/(9.80 m/s”) = 0.47 s, which is choice (b).

EVALUATE: Seeds are rather light and 4.6 m/s is fairly fast, so it might not be such a good idea to ignore
air resistance. But doing so is acceptable to get a first approximation to the time.

IDENTIFY: A seed launched at 0° starts out traveling horizontally from a height of 20 cm above the
ground. Since we are ignoring air resistance, its acceleration is 9.80 m/s* downward.

SET Up: Its horizontal distance is determined by the time it takes the seed to fall 20 c¢m, starting from rest
vertically.

EXECUTE: The time to fall 20 cm is 0.20 m = % gt2, which gives ¢ = 0.202 s. The horizontal distance

traveled during this time is x = (4.6 m/s)(0.202 s) = 0.93 m = 93 cm, which is choice (b).

EVALUATE: Inreality the seed would travel a bit less distance due to air resistance.

IDENTIFY: About 2/3 of the seeds are launched between 6° and 56° above the horizontal, and the average
for all the seeds is 31°. So clearly most of the seeds are launched above the horizontal.

SET UP and EXECUTE: For choice (a) to be correct, the seeds would need to cluster around 90°, which they
do not. For choice (b), most seeds would need to launch below the horizontal, which is not the case. For
choice (c), the launch angle should be around +45°. Since 31° is not far from 45°, this is the best choice.
For choice (d), the seeds should go straight downward. This would require a launch angle of —90°, which is
not the case.

EVALUATE: Evolutionarily it would be an advantage for the seeds to get as far from the parent plant as
possible so the young plants would not compete with the parent for water and soil nutrients, so 45° is a
biologically plausible result. Natural selection would tend to favor plants that launched their seeds at this
angle over those that did not.
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4.1. IDENTIFY: Vector addition.
SET UpP: Use a coordinate system where the +x-axis is in the direction of F "\» the force applied by

dog A. The forces are sketched in Figure 4.1.
EXECUTE:

F, =+270N, F, =0
F,, = F,c0s60.0° = (300 N)c0s60.0° = +150 N

Fy, = F,sin60.0° = (300 N)sin60.0° = +260 N

I—z: A+ B
R =F, +F, =+270 N+150 N =+420 N
R =F, +F, =0+260 N=+260 N

R =1/(420 N)> +(260 N)* =494 N

R,
tan@ =—-=0.619
R

X

6=31.8°
Figure 4.1b

EVALUATE: The forces must be added as vectors. The magnitude of the resultant force is less than the
sum of the magnitudes of the two forces and depends on the angle between the two forces.

4.2. IDENTIFY: We know the magnitudes and directions of three vectors and want to use them to find their
components, and then to use the components to find the magnitude and direction of the resultant vector.
SETUP: Let F, =985 N, F,=788 N, and F; =411 N. The angles & that each force makes with the

+x axisare 6, =31°, 6, =122° and &, =233°. The components of a force vector are F, = F cosf and

R,
F,=Fsin6, and R= /R’ +R_f, and tan@ =R—J'.

X
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4.3.

4.4.

EXECUTE: (a) F|, = F cosf =844 N, F =Fsing =507 N, F, =F,cosd,=—418 N,
F,, =F,sin0, =668 N, F, =Fcosf,=-247N, and F;, = F;sind, =—-328 N.

R,
(b) R, =F, +F, +F =179N; R =F +F, +F, =847 N. R=/R*+R? =886 \; tang=—" so

X

6=78.1°. R and its components are shown in Figure 4.2.

Figure 4.2

EVALUATE: A graphical sketch of the vector sum should agree with the results found in (b). Adding the
forces as vectors gives a very different result from adding their magnitudes.

IDENTIFY: We know the resultant of two vectors of equal magnitude and want to find their magnitudes.
They make the same angle with the vertical.

Figure 4.3

SETUP: Take +y to be upward, so 2 F, =5.00 N. The strap on each side of the jaw exerts a force F’

directed at an angle of 52.5° above the horizontal, as shown in Figure 4.3.
EXECUTE: X F, =2Fsin52.5°=5.00 N, so F =3.15N.

EVALUATE: The resultant force has magnitude 5.00 N which is not the same as the sum of the magnitudes
of the two vectors, which would be 6.30 N.
IDENTIFY: F, =Fcosf, F,=Fsin6.

SET UP: Let +x be parallel to the ramp and directed up the ramp. Let +y be perpendicular to the ramp
and directed away from it. Then 68 =30.0°.

cos@ cos30°
(b) F, =Fsinf=F_ tand=(90 N)(tan30°) =52.0 N.

EVALUATE: We can verify that F + Fy2 = F*. The signs of F, and F, show their direction.
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4.5.

4.6.

4.7.

4.8.

IDENTIFY: Add the two forces using components.

SETUP: F, =Fcos6, F,=Fsind, where @ is the angle F makes with the +x axis.
EXECUTE: (a) F, +F, =(9.00N)cos120°+(6.00 N)cos(233.1°)=-8.10 N

K, +F, =(9.00 N)sin120°+(6.00 N)sin(233.1°) =+3.00 N.

1y

() R :\/Rf +R? =/(8.10 N)* +(3.00 N)* =8.64 N.
EVALUATE: Since F, <0 and F, >0, F is in the second quadrant.

IDENTIFY: Use constant acceleration equations to calculate @ and ¢. Then use S F =ma to calculate the

net force.
SETUP: Let +x be in the direction of motion of the electron.

EXECUTE: (a) v,, =0, (x=2x,)=1.80x10" m, v, =3.00x10° m/s. v} =v; +2a (x—x,) gives
_ v =2, _(3.00x10° m/s)’ -0

a, = =2.50x10" m/s>
T 2(x—xy) 2(1.80x107™" m)

v, _3.00x10° m/s—0
a, 2.50x10" m/s®

(¢c) XF =ma, =(9.11x107"" kg)(2.50x10" m/s*) =2.28x107'° N.

EVALUATE: The acceleration is in the direction of motion since the speed is increasing, and the net force
is in the direction of the acceleration.

IDENTIFY: Friction is the only horizontal force acting on the skater, so it must be the one causing the
acceleration. Newton’s second law applies.

SET UP: Take +x to be the direction in which the skater is moving initially. The final velocity is v_ =0,

=1.2x107" s

3 \Z
(b) v.=v, tar gives t ==

since the skater comes to rest. First use the kinematics formula v, =v, +a ¢ to find the acceleration, then

apply Y. F =ma to the skater.

—Vy, _ 0-2.40m/s _
75 TR0 S
the skater is the friction force, so f, = ma, =(68.5 kg)(—0.682 m/s*) =—46.7 N. The force is 46.7 N,

directed opposite to the motion of the skater.

EVALUATE: Although other forces are acting on the skater (gravity and the upward force of the ice), they
are vertical and therefore do not affect the horizontal motion.

IDENTIFY: The elevator and everything in it are accelerating upward, so we apply Newton’s second law
in the vertical direction.

SET UP: Your mass is m = w/g = 63.8 kg. Both you and the package have the same acceleration as the

v .
EXECUTE: v, =v, +at so a == —0.682 m/s”. The only horizontal force on

elevator. Take +y to be upward, in the direction of the acceleration of the elevator, and apply 2. F, =ma,.
EXECUTE: (a) Your free-body diagram is shown in Figure 4.8a, where 7 is the scale reading. X F, = ma,
gives 1 — w = ma. Solving for n gives n =w + ma =625 N + (63.8 kg)(2.50 m/s*) =784 N.

(b) The free-body diagram for the package is given in Figure 4.8b. 2. F, =ma, gives T —w =ma, so

T =w+ma=(3.85kg)(9.80 m/s* + 2.50 m/s*) =47.4 N.

Figure 4.8
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4.9.

4.10.

4.11.

4.12.

EVALUATE: The objects accelerate upward so for each of them the upward force is greater than the
downward force.

IDENTIFY: Apply Y F =md to the box.

SET UP: Let +x be the direction of the force and acceleration. > F. =48.0 N.

EXECUTE: X F. =ma, gives m =—~=————=21.8 kg.

EVALUATE: The vertical forces sum to zero and there is no motion in that direction.
IDENTIFY: Use the information about the motion to find the acceleration and then use 2 F, =ma_ to

calculate m.

SET UP: Let +x be the direction of the force. > F, =80.0 N.

EXECUTE: (a) x—x,=11.0m, 1=5.00's, v,, =0. x—x, =v,t+1ar gives
4 _2(x—x,) _2(11.0 m) XF 80.0 N

. R ==0.880 m/s’. m="—*r=—————=90.9 kg.
.00 s a .880 m/s
‘ (5.00 5) ~0.880 m/

(b) a, =0 and v, is constant. After the first 5.0's, v, =v, +a,= (0.880 m/s*) (5.00 s) =4.40 m/s.
x—x, =vyt+tar’ = (4.40 m/s)(5.00 s) =22.0 m.

EVALUATE: The mass determines the amount of acceleration produced by a given force. The block moves
farther in the second 5.00 s than in the first 5.00 s.

IDENTIFY and SET Up: Use Newton’s second law in component form to calculate the acceleration
produced by the force. Use constant acceleration equations to calculate the effect of the acceleration on the
motion.

EXECUTE: (a) During this time interval the acceleration is constant and equal to

a, :i :w:1562 In/s2

We can use the constant acceleration kinematic equations from Chapter 2.

x=x, =vyt+Larr =0+1(1.562 m/s*)(2.00 s)* =3.12 m, so the puck is at x=3.12 m.

v, =v,, +at=0+(1.562 m/s*)(2.00 s) =3.12 m/s.

(b) In the time interval from ¢ =2.00 s to 5.00 s the force has been removed so the acceleration is zero.
The speed stays constant at v, =3.12 m/s. The distance the puck travels is

X=X, =v,,t =(3.12 m/s)(5.00 s —2.00 s) =9.36 m. At the end of the interval it is at

X=x,+9.36 m=12.5 m.

In the time interval from ¢ =5.00 s to 7.00 s the acceleration is again @, =1.562 m/s’. At the start of this
interval v,  =3.12 m/s and x, =12.5 m.

X=X, =vyt+Lar’ =(3.12 m/s)(2.00 s) +1(1.562 m/s*)(2.00 s)’.

X—x,=6.24m+3.12m=9.36 m.

Therefore, at 1 =7.00 s the puckisat x=x,+9.36 m=12.5m+ 9.36 m=21.9 m.

v, =v,, +at=3.12 m/s +(1.562 m/s*)(2.00 s) = 6.24 m/s.

EVALUATE: The acceleration says the puck gains 1.56 m/s of velocity for every second the force acts. The
force acts a total of 4.00 s so the final velocity is (1.56 m/s)(4.0 s) =6.24 m/s.

IDENTIFY: Apply Y F =ma. Then use a constant acceleration equation to relate the kinematic quantities.
SET UP: Let +x be in the direction of the force.

EXECUTE: (a) a, = F,/m = (14.0 N)/(32.5 kg) = 0.4308 m/s’, which rounds to 0.431 m/s” for the final
answer.

(b) x—x, =v,t ++ar’. With vy, =0, x=1La > =1(0.4308 m/s*)(10.0 s)* =21.5 m.

(©) v, =v,, +at. With v, =0, v, =a ¢ = (0.4308 m/s’)(10.0 s) = 4.31 m/s.

EVALUATE: The acceleration connects the motion to the forces.



Newton’s Laws of Motion 4-5

4.13. IDENTIFY: The force and acceleration are related by Newton’s second law.
SETUp: X F =ma_ where 2 F, is the net force. m =4.50 kg.
EXECUTE: (a) The maximum net force occurs when the acceleration has its maximum value.
Y F. =ma, =(4.50 kg)(10.0 m/s*) =45.0 N. This maximum force occurs between 2.0 s and 4.0 s.
(b) The net force is constant when the acceleration is constant. This is between 2.0 s and 4.0 s.
(¢) The net force is zero when the acceleration is zero. This is the case at 1 =0 and 7 =6.0 s.
EVALUATE: A graph of 2 F, versus ¢ would have the same shape as the graph of a_ versus z.

) dv .
4.14. IDENTIFY: The force and acceleration are related by Newton’s second law. a, =—=, so a_ is the slope
; :

of the graph of v, versus ¢.

SET Up: The graph of v, versus # consists of straight-line segments. For # =0 to t=2.00 s,
a,=4.00 m/s’. For t=2.00s t06.00s, @, =0. For £=6.00 s to 10.0's, @, =1.00 m/s’.

2 F =ma_ with m=2.75kg. X F, is the net force.

EXECUTE: (a) The maximum net force occurs when the acceleration has its maximum value.

> F. =ma, =(2.75 kg)(4.00 m/s*) =11.0 N. This maximum occurs in the interval =0 to ¢ =2.00 s.
(b) The net force is zero when the acceleration is zero. This is between 2.00 s and 6.00 s.

(¢) Between 6.00 s and 10.0's, @, =1.00 m/s’, so X F. =(2.75 kg)(1.00 m/s*) =2.75 N.

EVALUATE: The net force is largest when the velocity is changing most rapidly.
4.15. IDENTIFY: The net force and the acceleration are related by Newton’s second law. When the rocket is

near the surface of the earth the forces on it are the upward force F exerted on it because of the burning
fuel and the downward force F._ of gravity. F_ =mg.

grav grav

SET Up: Let +) be upward. The weight of the rocket is £, =(8.00 kg)(9.80 m/s’)=78.4 N.
EXECUTE: (a)At t=0, F=4=100.0 N. At t=2.00s, F=4+(4.00s’)B=150.0 N and

_150.0N-100.0 N

= =12.5 N/s*.
4.00 s
(b) (i) At t =0, F =A4=100.0 N. The net force is ZFy =F-F,, =100.0 N-78.4N=21.6 N.
F
a =L—M=2.7O m/s’. (ii) At £=3.00s, F=A+B(3.00s)’=212.5N.
! m  8.00k
F

2F,=212.5N-784 N=134.1N. —L:M:MS /s

: " m  8.00kg

212.5N

(c¢) Now F,

grav

=0 and XF,=F=2125N. a,=

EVALUATE: The acceleration increases as F increases.
4.16. IDENTIFY: Weight and mass are related by w =mg. The mass is constant but g and w depend on location.

SET UP: On Earth, g =9.80 m/s’.

EXECUTE: (a) » =m, which is constant, so Y :&. w; =17.5N, g.=9.80 m/s?, and
g

8  8a

wy =3.24N. g, :(%]gE :Gfigj@.so m/s?) =1.81 m/s>.
: .

b)y m=—t=—"—_=1.79 kg.
®) g 9.80 m/s’ s

EVALUATE: The weight at a location and the acceleration due to gravity at that location are directly
proportional.
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4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

IDENTIFY and SET UP: F =ma. We must use w=mg to find the mass of the boulder.
EXECUTE: m=—=———-=2449 kg
s

Then F =ma =(244.9 kg)(12.0 m/s*) =2940 N.

EVALUATE: We must use mass in Newton’s second law. Mass and weight are proportional.
IDENTIFY: Find weight from mass and vice versa.

SET UP: Equivalencies we’ll need are: 1 g =10°g=10"kg, 1 mg=10"g=10"kg,
IN=0.2248 Ib, and g =9.80 m/s> =32.2 ft/s’.

EXECUTE: (a) m =210 g =2.10x107kg. w=mg =(2.10x107"kg)(9.80 m/s*) =2.06 x10° N,
(b) m=123mg=1.23x10"kg. w=mg =(1.23x107°kg)(9.80 m/s*) =1.21x10*N.

g 9.80 m/s’

EVALUATE: We are not converting mass to weight (or vice versa) since they are different types of
quantities. We are finding what a given mass will weigh and how much mass a given weight contains.
IDENTIFY and SET UP: w = mg. The mass of the watermelon is constant, independent of its location. Its
weight differs on earth and Jupiter’s moon. Use the information about the watermelon’s weight on earth to
calculate its mass:

(b) On Jupiter’s moon, m =4.49 kg, the same as on earth. Thus the weight on Jupiter’s moon is
w=mg =(4.49 kg)(1.81 m/s*)=8.13 N.

EVALUATE: The weight of the watermelon is less on Io, since g is smaller there.

IDENTIFY: Newton’s third law applies.

SET UP: The car exerts a force on the truck and the truck exerts a force on the car.

EXECUTE: The force and the reaction force are always exactly the same in magnitude, so the force that
the truck exerts on the car is 1600 N, by Newton’s third law.

EVALUATE: Even though the truck is much larger and more massive than the car, it cannot exert a larger
force on the car than the car exerts on it.

IDENTIFY: Apply 2 F. =ma, to find the resultant horizontal force.

SET UP: Let the acceleration be in the +x direction.
EXECUTE: X F. =ma, =(55 kg)(15 m/s*) =825 N. The force is exerted by the blocks. The blocks push

on the sprinter because the sprinter pushes on the blocks.

EVALUATE: The force the blocks exert on the sprinter has the same magnitude as the force the sprinter
exerts on the blocks. The harder the sprinter pushes, the greater the force on her.

IDENTIFY: The reaction forces in Newton’s third law are always between a pair of objects. In Newton’s
second law all the forces act on a single object.

SET UP: Let +y be downward. m =w/g.

EXECUTE: The reaction to the upward normal force on the passenger is the downward normal force, also
of magnitude 620 N, that the passenger exerts on the floor. The reaction to the passenger’s weight is the

. : 2F,
gravitational force that the passenger exerts on the earth, upward and also of magnitude 650 N. —==ga_
m )
gives a, = 050N-620N _ 0.452 m/s*. The passenger’s acceleration is 0.452 m/s*, downward.

" (650 N)/(9.80 m/s?)
EVALUATE: There is a net downward force on the passenger, and the passenger has a downward
acceleration.
IDENTIFY: The system is accelerating so we use Newton’s second law.
SET UP: The acceleration of the entire system is due to the 250-N force, but the acceleration of box B is
due to the force that box A exerts on it. >, F =ma applies to the two-box system and to each box
individually.
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4.24.

4.25.

4.26.

250 N
25.0 kg

exerted on Bby A, F, =mua =(5.0 kg)(10.0 m/s*) =50 N.
EVALUATE: The force on B is less than the force on A4.

EXECUTE: For the two-box system: a_ = =10.0 m/s*>. Then for box B, where F, is the force

IDENTIFY: Apply Newton’s second law to the earth.
SET Up: The force of gravity that the earth exerts on her is her weight,

w=mg = (45 kg)(9.8 m/s*) =441 N. By Newton’s third law, she exerts an equal and opposite force on
the earth.

Apply > F =mi to the earth, with |Zﬁ| =w=441N, but must use the mass of the earth for m.
EXECUTE: a=—=————=7.4x10" m/s’.

EVALUATE: This is much smaller than her acceleration of 9.8 m/s>. The force she exerts on the earth
equals in magnitude the force the earth exerts on her, but the acceleration the force produces depends on
the mass of the object and her mass is much less than the mass of the earth.

IDENTIFY: Identify the forces on each object.

SET Up: In each case the forces are the noncontact force of gravity (the weight) and the forces applied by
objects that are in contact with each crate. Each crate touches the floor and the other crate, and some object
applies F to crate A.

EXECUTE: (a) The free-body diagrams for each crate are given in Figure 4.25.

F,, (the force on m, dueto m,)and F,, (the force on m, due to m,) form an action-reaction pair.

(b) Since there is no horizontal force opposing F, any value of F, no matter how small, will cause the
crates to accelerate to the right. The weight of the two crates acts at a right angle to the horizontal, and is in
any case balanced by the upward force of the surface on them.

EVALUATE: Crate B is accelerated by F},, and crate 4 is accelerated by the net force ' —F,;,. The
greater the total weight of the two crates, the greater their total mass and the smaller will be their
acceleration.

Figure 4.25

IDENTIFY: The surface of block B can exert both a friction force and a normal force on block 4. The
friction force is directed so as to oppose relative motion between blocks B and 4. Gravity exerts a
downward force w on block 4.

SET Up: The pull is a force on B not on 4.

EXECUTE: (a) If the table is frictionless there is a net horizontal force on the combined object of the two
blocks, and block B accelerates in the direction of the pull. The friction force that B exerts on 4 is to the
right, to try to prevent 4 from slipping relative to B as B accelerates to the right. The free-body diagram
is sketched in Figure 4.26a (next page). f'is the friction force that B exerts on 4 and » is the normal force
that B exerts on 4.

(b) The pull and the friction force exerted on B by the table cancel and the net force on the system of two
blocks is zero. The blocks move with the same constant speed and B exerts no friction force on 4. The free-
body diagram is sketched in Figure 4.26b (next page).
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4.27.

4.28.

4.29.

EVALUATE: Ifin part (b) the pull force is decreased, block B will slow down, with an acceleration
directed to the left. In this case the friction force on 4 would be to the left, to prevent relative motion
between the two blocks by giving 4 an acceleration equal to that of B.

n n
I f '
w w
(@ (b)
IDENTIFY: Since the observer in the train sees the ball hang motionless, the ball must have the same

acceleration as the train car. By Newton’s second law, there must be a net force on the ball in the same
direction as its acceleration.

Figure 4.26

SET Up: The forces on the ball are gravity, which is w, downward, and the tension T in the string, which
is directed along the string.

EXECUTE: (a) The acceleration of the train is zero, so the acceleration of the ball is zero. There is no net
horizontal force on the ball and the string must hang vertically. The free-body diagram is sketched in Figure 4.27a.
(b) The train has a constant acceleration directed east so the ball must have a constant eastward
acceleration. There must be a net horizontal force on the ball, directed to the east. This net force must come
from an eastward component of T and the ball hangs with the string displaced west of vertical. The free-
body diagram is sketched in Figure 4.27b.

EVALUATE: When the motion of an object is described in an inertial frame, there must be a net force in
the direction of the acceleration.

w w

(@ (b)
Figure 4.27

IDENTIFY: Use a constant acceleration equation to find the stopping time and acceleration. Then use
> F =ma to calculate the force.
SET UP: Let +x be in the direction the bullet is traveling. F is the force the wood exerts on the bullet.

VO X + vx

EXECUTE: (a) v,, =350 m/s, v, =0 and (x—x,)=0.130 m. (x—xo):[ jt gives

_2(x—=x,) _2(0.130 m)
Vo, TV, 350 m/s

t =7.43x107" s.

2 2 2
(b) v} =v; +2a . (x—x,) gives a, = v~V - 9-(350 mls) =—4.71x10° m/s’

’ ’ 2(x—x,)  2(0.130 m)
Y F. =ma, gives —F =ma, and F =—ma_, =—(1.80x107 kg)(-4.71x10° m/s*) =848 N.
EVALUATE: The acceleration and net force are opposite to the direction of motion of the bullet.
IDENTIFY: Identify the forces on the chair. The floor exerts a normal force and a friction force.
SET UP: Let +y be upward and let +x be in the direction of the motion of the chair.
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4.30.

4.31.

EXECUTE: (a) The free-body diagram for the chair is given in Figure 4.29.
(b) For the chair, a,= 0 so ZF_V =ma, gives n—mg — Fsin37°=0 and n =142 N.

EVALUATE: £ is larger than the weight because F has a downward component.

n v

f

37.0°

mg

Figure 4.29

IDENTIFY: Identify the forces for each object. Action-reaction pairs of forces act between two objects.
SET Up: Friction is parallel to the surfaces and is directly opposite to the relative motion between the
surfaces.

EXECUTE: The free-body diagram for the box is given in Figure 4.30a. The free-body diagram for the
truck is given in Figure 4.30b. The box’s friction force on the truck bed and the truck bed’s friction force
on the box form an action-reaction pair. There would also be some small air-resistance force action to the
left, presumably negligible at this speed.

EVALUATE: The friction force on the box, exerted by the bed of the truck, is in the direction of the truck’s
acceleration. This friction force can’t be large enough to give the box the same acceleration that the truck
has and the truck acquires a greater speed than the box.

n

a

—_ fk
[ S—— wp T
e (reaction force to
tires’ backward push)
! '“'B Wiruck
@ (b)

Figure 4.30

IDENTIFY: Apply Newton’s second law to the bucket and constant-acceleration kinematics.

SET UP: The minimum time to raise the bucket will be when the tension in the cord is a maximum since
this will produce the greatest acceleration of the bucket.

EXECUTE: Apply Newton’s second law to the bucket: T —mg =ma. For the maximum acceleration, the

2
tension is greatest, so a = T-mg _75.0N-(5.60 kg)(9.8 m/s’) =3.593 m/s’.
m 5.60 kg
The kinematics equation for y(f) gives ¢ = IZ(y—yU) =\/ 202.0 1'1’1)2 =2.58s.
a, 3.593 m/s

EVALUATE: A shorter time would require a greater acceleration and hence a stronger pull, which would
break the cord.
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4.32.

4.33.

4.34.

IDENTIFY: Use the motion of the ball to calculate g, the acceleration of gravity on the planet. Then
w=mg.

SET UpP: Let +y be downward and take y, =0. v,, =0 since the ball is released from rest.
EXECUTE: GetgonX: y :%gt2 gives 10.0 m :%g(3.40 s)®. g=1.73 m/s* and then

wy =mg, =(0.100 kg)(1.73 m/s’) =0.173 N.

EVALUATE: g on Planet X is smaller than on earth and the object weighs less than it would on earth.
IDENTIFY: If the box moves in the +x-direction it must have a,=0, so Z',Fy =0.

The smallest force the child can exert and still
produce such motion is a force that makes the
y-components of all three forces sum to zero,
but that doesn’t have any x-component.

Figure 4.33

SETUP: F, and F, are sketched in Figure 4.33. Let IE'3 be the force exerted by the child.
XF,=ma, implies F| +F, +F =0, so F, =—(F +F,).

EXECUTE: £ =+Fsin60°=(100 N)sin60°=86.6 N

F,, =+F,;sin(-30°%) = -F,sin30° = =(140 N)sin30%=-70.0 N

Then F, =—(F, +F,))=—(86.6 N-70.0 N)=-16.6 N; F, =0

The smallest force the child can exert has magnitude 17 N and is directed at 90° clockwise from the
+x-axis shown in the figure.

(b) IDENTIFY and SET UP: Apply > F. =ma_. We know the forces and a, so can solve for m. The force
exerted by the child is in the —y-direction and has no x-component.

EXECUTE: F, =F cos60°=50 N

F, =F,cos30°=121.2 N

YF=F_+F, =50N+1212N=1712N

Then w=mg =840 N.
EVALUATE: In part (b) we don’t need to consider the y-component of Newton’s second law. a, =0 so

the mass doesn’t appear in the ZFy =ma, equation.

IDENTIFY: Use Y F =ma to calculate the acceleration of the tanker and then use constant acceleration
kinematic equations.
SET UP: Let +x be the direction the tanker is moving initially. Then a_ =—F/m.

EXECUTE: V. =V, +2a (x—x,) says that if the reef weren’t there the ship would stop in a distance of

X

2 2 2 7 2
x—xo:—h: Vo _my, _(3.6x10 kg)(i.S m/s) =506 m,
2a, 2(F/m) 2F 2(8.0x10* N)

so the ship would hit the reef. The speed when the tanker hits the reef is found from v =v;, +2a, (x—x,),
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4.35.

4.36.

S0 it is

4
v = v — (2Fx/m) :\/(1.5 mysy? = 28:0X10 NS00 m) _ e

(3.6x10" kg)

and the oil should be safe.

EVALUATE: The force and acceleration are directed opposite to the initial motion of the tanker and the
speed decreases.

IDENTIFY: We can apply constant acceleration equations to relate the kinematic variables and we can use
Newton’s second law to relate the forces and acceleration.

(a) SET UP: First use the information given about the height of the jump to calculate the speed he has at
the instant his feet leave the ground. Use a coordinate system with the +y-axis upward and the origin at
the position when his feet leave the ground.

v, =0 (at the maximum height), v,, =?, a, =-9.80 m/s’, y—y,=+1.2m
v, = v, +2a,(v - y,)

EXECUTE: v, =/=2a,(y— y,) =/~2(~9.80 m/s*)(1.2 m) =4.85 m/s

(b) SET UP: Now consider the acceleration phase, from when he starts to jump until when his feet leave
the ground. Use a coordinate system where the +y-axis is upward and the origin is at his position when he

starts his jump.

EXECUTE: Calculate the average acceleration:

—Vo, _4.85m/s-0
t 0.300 s

(c) SET Up:  Finally, find the average upward force that the ground must exert on him to produce this
average upward acceleration. (Don’t forget about the downward force of gravity.) The forces are sketched
in Figure 4.35.

(a,), = =16.2 m/s>

2 EXECUTE:
L
(a, )\. T F,, (the average force m=w/g —m =90.8 kg
’ the ground exerts on him) '
zF}, =ma,
l ! F,—-mg=m(a,),
me F,=m(g+(a,),)

F., =90.8 kg(9.80 m/s* +16.2 m/s)
F,=2360 N

Figure 4.35

This is the average force exerted on him by the ground. But by Newton’s third law, the average force he
exerts on the ground is equal and opposite, so is 2360 N, downward. The net force on him is equal to ma,

so F_ =ma=(90.8kg)(16.2m/s*) =1470 N upward.

net

EVALUATE: In order for him to accelerate upward, the ground must exert an upward force greater than his
weight.

IDENTIFY: Use constant acceleration equations to calculate the acceleration @ that would be required.
Thenuse > F, =ma, to find the necessary force.
SET UP: Let +x be the direction of the initial motion of the auto.

2
: . V, b :
EXECUTE: V. =v,, +2a (x—x,) with v. =0 gives a, =———%—. The force F is directed opposite to

2(x—x,)
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the motion and a_=——. Equating these two expressions for a_ gives
m
2 2
=m—0_ =(850 kg)w =3.7x10° N.
2(x—x,) 2(1.8x10™ m)

4.37.

4.38.

EVALUATE: A very large force is required to stop such a massive object in such a short distance.
IDENTIFY: Using constant-acceleration kinematics, we can find the acceleration of the ball. Then we can
apply Newton’s second law to find the force causing that acceleration.

SET UP: Use coordinates where +x is in the direction the ball is thrown. v’ =v; +2a (x—x,) and
SF, =ma,.

EXECUTE: (a) Solve for a: x—x,=1.0 m, v,, =0, v, =46 m/s. v =v;_+2a (x—x,) gives

_ Vi~V _(46m/s)’—0

T 2(x—x) 2(1.0 m)

=1058 m/s’.

The free-body diagram for the ball during the pitch is shown in Figure 4.37a. The force F is applied to the
ball by the pitcher’s hand. X F, =ma, gives F =(0.145 kg)(1058 m/s*) =153 N.

(b) The free-body diagram after the ball leaves the hand is given in Figure 4.37b. The only force on the ball
is the downward force of gravity.

(a) (b)

Figure 4.37

EVALUATE: The force is much greater than the weight of the ball because it gives it an acceleration much
greater than g.

IDENTIFY: Kinematics will give us the ball’s acceleration, and Newton’s second law will give us the
horizontal force acting on it.

SET UP: Use coordinates with +x horizontal and in the direction of the motion of the ball and with +y
upward. > F. =ma_ and for constant acceleration, v_ = v, + a t.

SOLVE: (a) v,, =0, v, =73.14 m/s, ¢t =3.00x107s. v, =v, +a_t gives

g =YV _ 73.14m/s -0

. t 3.00x107s
F =ma, =(57x107kg)(2.44x10°m/s*) =140 N.

=2.44x10°m/s>. X F. =ma, gives

(b) The free-body diagram while the ball is in contact with the racket is given in Figure 4.38a. F is the force
exerted on the ball by the racket. After the ball leaves the racket, F ceases to act, as shown in Figure 4.38b.

y ¥

(a) (b)
Figure 4.38
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EVALUATE: The force is around 30 b, which is quite large for a light-weight object like a tennis ball,
but is reasonable because it acts for only 30 ms yet during that time gives the ball an acceleration of
about 250g.

4.39. IDENTIFY: Use Newton’s second law to relate the acceleration and forces for each crate.
(a) SET UP: Since the crates are connected by a rope, they both have the same acceleration, 2.50 m/s’.
(b) The forces on the 4.00 kg crate are shown in Figure 4.39a.

y EXECUTE:

T =ma =(4.00 kg)(2.50 m/s’)=10.0 N.

\71)

a

Yw, =mg

Figure 4.39a

(c) SET Up: Forces on the 6.00 kg crate are shown in Figure 4.39b.

y The crate accelerates to the right,
| so the net force is to the right.
ol F must be larger than 7.
a
—
T F
X
Ywy, =myg

Figure 4.39b

(d) EXECUTE: X F =ma_ gives F—-T =m,a
F=T+ma=10.0 N+(6.00 kg)(2.50 m/s’)=10.0 N+15.0 N=25.0 N

EVALUATE: We can also consider the two crates and the rope connecting them as a single object of mass
m=m, +m, =10.0 kg. The free-body diagram is sketched in Figure 4.39¢.

"‘ ZF’C :max
(, F =ma=(10.0 kg)(2.50 m/s*)=25.0 N

This agrees with our answer in part (d).
n

[ =

Yw = mg

Figure 4.39¢
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4.40.

4.41.

4.42.

IDENTIFY: Use kinematics to find the acceleration and then apply Newton’s second law.

SET UP: The 60.0-N force accelerates both blocks, but only the tension in the rope accelerates block B.
The force F is constant, so the acceleration is constant, which means that the standard kinematics formulas
apply. There is no friction.

EXECUTE: (a) First use kinematics to find the acceleration of the system. Using x—x, =v, ¢ +<at* with

x—x9=18.0m, vo, =0, and 7= 5.00 s, we get a, = 1.44 m/s’. Now apply Newton’s second law to the
horizontal motion of block A, which gives F— T' = ma. T = 60.0 N — (15.0 kg)(1.44 m/s”) = 38.4 N.

(b) Apply Newton’s second law to block B, giving T = mpa. mg = T/a = (38.4 N)/(1.44 m/s®) = 26.7 kg.
EVALUATE: As an alternative approach, consider the two blocks as a single system, which makes the
tension an internal force. Newton’s second law gives F' = (m, + mp)a. Putting in numbers gives 60.0 N =
(15.0 kg + mp)(1.44 m/s%), and solving for m; gives 26.7 kg. Now apply Newton’s second law to either
block 4 or block B and find the tension.

IDENTIFY and SET UP: Take derivatives of x(¢) to find v_ and a,. Use Newton’s second law to relate

the acceleration to the net force on the object.

EXECUTE:
(a) x =(9.0x10° m/s*)t* —(8.0x10*m/s’ )¢’
x=0att=0

When ¢=0.025s, x=(9.0x10’ m/s*)(0.025 s)* —(8.0x10* m/s*)(0.025 s)’ =4.4 m.

The length of the barrel must be 4.4 m.

(b) v, :% = (18.0x10° m/s>)t — (24.0x10* m/s*)r2

At t=0, v_ =0 (object starts from rest).
At t=0.025 s, when the object reaches the end of the barrel,
v, =(18.0x10° m/s*)(0.025's) —(24.0x10* m/s*)(0.025 s)* =300 m/s
(¢) 2 F. =ma,_, somust find a_.
dv,

a :7:18.0><103 m/s> —(48.0x10* m/s’)t
t

X

(i) At 1=0, a, =18.0x10° m/s* and X F, =(1.50 kg)(18.0x10° m/s*) =2.7x10* N.
(i) At £=0.025 s, a, =18x10° m/s” —(48.0x10* m/s*)(0.025 s) =6.0x10° m/s” and

> F =(1.50 kg)(6.0x10° m/s*) =9.0x10° N.

EVALUATE: The acceleration and net force decrease as the object moves along the barrel.

IDENTIFY: The ship and instrument have the same acceleration. The forces and acceleration are related by
Newton’s second law. We can use a constant acceleration equation to calculate the acceleration from the
information given about the motion.

SET UP: Let +y be upward. The forces on the instrument are the upward tension T exerted by the wire
and the downward force w of gravity. w=mg =(6.50 kg)(9.80 m/s*) =63.7 N
EXECUTE: (a) The free-body diagram is sketched in Figure 4.42. The acceleration is upward, so 7' > w.
2(y-y,) _ 2276 m) _

£ (15.0 s)*
2.45m/s’. X F,=ma, gives T—w=ma and T =w+ma=63.7 N+(6.50 kg)(2.45 m/s*) =79.6 N.

EVALUATE: There must be a net force in the direction of the acceleration.

— Y, = m, t=150s,v, =0. y—y, =y, t+-a it gves a, =
(b) y—y,=276 1505, v, =0. y—y, =v,,t +1a,* gives a,
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Figure 4.42
4.43. IDENTIFY: Using kinematics we can find the acceleration of the froghopper and then apply Newton’s

second law to find the force on it from the ground.
SET Up: Take +y to be upward. ZFy =ma, and for constant acceleration, v, =v,, +at.

EXECUTE: (a) The free-body diagram for the froghopper while it is still pushing against the ground is
given in Figure 4.43.

(a) (b)
Figure 4.43

(b) v,, =0, v, =4.0m/s, 1=1.0x107s. v, =v, +az gives

a = VTV, _ 4.0 m/s_—30 =4.0x10°m/s>. X F, =ma, gives n—w=ma, so
’ t 1.0x107s

n=w+ma=m(g+a)=(123x10°kg)©9.8 m/s> + 4.0 x 10’ m/s*) =0.049 N.

© L 0.04 %8 =410, F=410w.

W (12.3x10°kg)(9.8 m/s?)

EVALUATE: Because the force from the ground is huge compared to the weight of the froghopper, it
produces an acceleration of around 400g!

4.44. IDENTIFY: Apply Y F =ma to the elevator to relate the forces on it to the acceleration.
(a) SET Up: The free-body diagram for the elevator is sketched in Figure 4.44.

The net force is T —mg (upward).

Figure 4.44

Take the +y-direction to be upward since that is the direction of the acceleration. The maximum upward
acceleration is obtained from the maximum possible tension in the cables.
EXECUTE: X F, =ma, gives T —mg =ma
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4.45.

4.46.

Chapter 4
2
u= T—mg _ 28,000 N —(2200 kg)(9.80 m/s") — 93 m/s>.
m 2200 kg
(b) What changes is the weight mg of the elevator.
2
u= T—mg _ 28,000 N—(2200 kg)(1.62 m/s") 110 s,

m 2200 kg

EVALUATE: The cables can give the elevator a greater acceleration on the moon since the downward
force of gravity is less there and the same 7 then gives a greater net force.
IDENTIFY: You observe that your weight is different from your normal in an elevator, so you must have

acceleration. Apply > F =ma to your body inside the elevator.
SET UP: The quantity w =683 N is the force of gravity exerted on you, independent of your motion.

Your mass is m = w/g =69.7 kg. Use coordinates with +y upward. Your free-body diagram is shown in

Figure 4.45, where 7 is the scale reading, which is the force the scale exerts on you. You and the elevator
have the same acceleration.

n

Figure 4.45
EXECUTE: X F, =ma, gives n—w=ma, so a, =I-Y
m
2 - N ; = —

(@ n=725N, s0 a, = % =0.603 m/s’. a, is positive so the acceleration is upward.

-1 Kg

N - N : ; L

(b) n=595N, so0 a, = % =—-1.26 m/s’. a, is negative so the acceleration is downward.

7 kg .

EVALUATE: If you appear to weigh less than your normal weight, you must be accelerating downward,
but not necessarily moving downward. Likewise if you appear to weigh more than your normal weight, you
must be acceleration upward, but you could be moving downward.

IDENTIFY: Apply 3 F =ma to the hammer head. Use a constant acceleration equation to relate the

motion to the acceleration.
SET UP: Let +y be upward.

EXECUTE: (a) The free-body diagram for the hammer head is sketched in Figure 4.46.
(b) The acceleration of the hammer head is given by v; =v;, +2a,(y—y,) with v =0, v, =-3.2 m/s

and y—y, =-0.0045m. a,=v; /2(y—y,) = (3.2 m/s)’/2(0.0045 m) =1.138x10° m/s’. The mass of
the hammer head is its weight divided by g, (4.9 N)/(9.80 m/s*) =0.50 kg, and so the net force on the
hammer head is (0.50 kg)(1.138x10°> m/s*) =570 N. This is the sum of the forces on the hammer head:

the upward force that the nail exerts, the downward weight and the downward 15-N force. The force

that the nail exerts is then 590 N, and this must be the magnitude of the force that the hammer head exerts
on the nail.

(c) The distance the nail moves is 0.12 c¢m, so the acceleration will be 4267 m/s*, and the net force on the
hammer head will be 2133 N. The magnitude of the force that the nail exerts on the hammer head, and
hence the magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 N.
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4.47.

4.48.

EVALUATE: For the shorter stopping distance the acceleration has a larger magnitude and the force
between the nail and hammer head is larger.

F

nail

mg

F hami

Figure 4.46

IDENTIFY: He is in free-fall until he contacts the ground. Use the constant acceleration equations and

apply > F =ma.
SET Up: Take +y downward. While he is in the air, before he touches the ground, his acceleration

is a,=9.80 m/s.

EXECUTE: (a) v,, =0, y—y, =3.10 m, and a, =9.80 m/s*. v} =v; +2a (y—y,) gives

v, =2a,(y = y,) =4/2(9.80 m/s*)(3.10 m) =7.79 m/s

() v,, =779 m/s, v, =0, y—y,=0.60m. v} =v; +2a,(y—y,) gives
2 2 _ 2
a,= - R——-) —50.6 m/s’. The acceleration is upward.
2= ,) 2(0.60 m)

(¢) The free-body diagram is given in Fig. 4.47. F is the force the ground exerts on him.
YF, =ma, gives mg—F =—ma. F=m(g+a)=(75.0 kg)(9.80 m/s’ +50.6 m/s’) =4.53x10" N,

upward.

3
Fo__ o3IO N o F=6.16 w=6.16 mg.
w (75.0 kg)(9.80 m/s”)
By Newton’s third law, the force his feet exert on the ground is —F.

EVALUATE: The force the ground exerts on him is about six times his weight.

1

mg

Figure 4.47

IDENTIFY: Note that in this problem the mass of the rope is given, and that it is not negligible compared

to the other masses. Apply > F =ma to each object to relate the forces to the acceleration.
(a) SET Up: The free-body diagrams for each block and for the rope are given in Figure 4.48a.
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6.00 kg block rope 5.00 kg block
y ;

.\‘

F =200N
(applied force)

X
1 mg (earth)

T
(bottom of rope)

—

y &
t

(top of rope)

Figure 4.48a
T, is the tension at the top of the rope and 7, is the tension at the bottom of the rope.
EXECUTE: (b) Treat the rope and the two blocks together as a single object, with mass

m=6.00 kg +4.00 kg +5.00 kg =15.0 kg. Take +y upward, since the acceleration is upward. The free-
body diagram is given in Figure 4.48Db.

y ZFy =ma,
> 1“ F—mg=ma
X a :_F—mg
m
=200 N —(15.0 kg)(9.80 m/s?)

mg
15.0 kg

=3.53 m/s’

Figure 4.48b

(c) Consider the forces on the top block (m =6.00 kg), since the tension at the top of the rope (7;) will be
one of these forces.

¥ XF, =ma,
F f" F—mg—-T =ma
« T,=F-m(g+a)
T =200 N —(6.00 kg)(9.80 m/s* +3.53 m/s’) =120 N.
1{¥ me

Figure 4.48¢
Alternatively, can consider the forces on the combined object rope plus bottom block (m =9.00 kg):

SF, =ma,

T = T, —mg =ma
g B T =m(g+a)=9.00 kg(9.80 m/s* +3.53 m/s’) =120 N,
l which checks
mg

Figure 4.48d

(d) One way to do this is to consider the forces on the top half of the rope (m =2.00kg). Let 7, be the
tension at the midpoint of the rope.
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p 4 ZF} :may
o T,~T,—mg =ma
T
! . T =T -m(g+a)=120 N-2.00 kg(9.80 m/s* +3.53 m/s*) =93.3 N
m| " mg
Figure 4.48e

To check this answer we can alternatively consider the forces on the bottom half of the rope plus the lower
block taken together as a combined object (m =2.00 kg +5.00 kg =7.00 kg):

XF,=ma,

I, —mg=ma

T. =m(g+a)=7.00 kg(9.80 m/s” +3.53 m/s*) =93.3 N,
which checks

Figure 4.48f

EVALUATE: The tension in the rope is not constant but increases from the bottom of the rope to the top.

The tension at the top of the rope must accelerate the rope as well the 5.00-kg block. The tension at the top

of the rope is less than F; there must be a net upward force on the 6.00-kg block.

4.49.  IpENTIFY: The system is accelerating, so we apply Newton’s second law to each box and can use the

constant acceleration kinematics for formulas to find the acceleration.

SET Up: First use the constant acceleration kinematics for formulas to find the acceleration of the system.

Then apply > F =ma to each box.

EXECUTE: (a) The kinematics formula y -y, =v, +%ayt2 gives

4= 2(y—y,) _2(12.0 m)
g tz (4.0 s)°

T 36.0N

m= = =4.34 kg.
g—a 9.8m/s’—1.5m/s’ g

=1.5 m/s’. For box B, mg —T =ma and

F-T 80.0N-36.0N
g—a 9.8m/s’—1.5m/s’

(b) Forbox 4, T+mg—F =ma andm = =5.30 kg.

EVALUATE: The boxes have the same acceleration but experience different forces because they have
different masses.

4.50. IDENTIFY: On the planet Newtonia, you make measurements on a tool by pushing on it and by dropping
it. You want to use those results to find the weight of the object on that planet and on Earth.
SET UP: Using w = mg, you could find the weight if you could calculate the mass of the tool and the
acceleration due to gravity on Newtonia. Newton’s laws of motion are applicable on Newtonia, as is your
knowledge of falling objects. Let m be the mass of the tool. There is no appreciable friction. Use
coordinates where +x is horizontal, in the direction of the 12.0 N force, and let +y be downward.

EXECUTE: First find the mass m: x —x,=16.0 m, t=2.00s, v, =0. x—x, =v, t + %axt2 gives
4= 2(x—x,) _ 2(16.0 m)

=8.00 m/s’. Now apply Newton’s second law to the tool. > F, = ma, gives

* 12 (2.00 s)’
F 12.0N . . . .
F=ma_and m=—= .00 /s =1.50 kg. Find gy, the acceleration due to gravity on Newtonia.
a . s

y=»,=10.0m, v, =0, 1=2.58s. y—y, =0, ++at’ gives
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4.51.

4.52.

4.53.

L =20=y) _2(10.0m)
! £ (2.58s)°

wy = mg, =(1.50 kg)(3.00 m/s*) =4.50 N. The weight on Earth is

w, =mg, =(1.50 kg)(9.80 m/s’) =14.7 N.

EVALUATE: The tool weighs about 1/3 on Newtonia of what it weighs on Earth since the acceleration due
to gravity on Newtonia is about 1/3 what it is on Earth.

IDENTIFY: The rocket accelerates due to a variable force, so we apply Newton’s second law. But the
acceleration will not be constant because the force is not constant.

SET UP: We canuse a, = F /m to find the acceleration, but must integrate to find the velocity and then

=3.00 m/s*; g, =3.00 m/s>. The weight on Newtonia is

the distance the rocket travels.
(16.8 N/s)t
45.0 kg

to get the velocity, and then integrate the velocity to get the distance moved.

v(0) = v, + [ (()dr' = (0.1867 mis’)e* and x—x, = [v, (¢)dr' =(0.06222 m/s")’. At 1=5.00s,

EXECUTE: Using a, = F,/m gives a (t) = =(0.3733 m/s’)¢. Now integrate the acceleration

X—x,=7.78 m.
EVALUATE: The distance moved during the next 5.0 s would be considerably greater because the
acceleration is increasing with time.

IDENTIFY: Calculate @ from a =d’#/dt’>. Then F.. =ma.

net
SETUP: w=mg
EXECUTE: Differentiating twice, the acceleration of the helicopter as a function of time is
a=(0.120 m/s*)fi —(0.12 m/s*)k andat ¢ =5.0s, the acceleration is @ = (0.60 m/s*)i —(0.12 m/s*)k.
The force is then

35
F=mai="a =(2'75X—102N)[(0.60 m/s?)i —(0.12 m/sz)l:f] =(1.7x10* N)i —(3.4x10° N)k
g (9.80 m/s?)

EVALUATE: The force and acceleration are in the same direction. They are both time dependent.
IDENTIFY: Kinematics will give us the average acceleration of each car, and Newton’s second law will
give us the average force that is accelerating each car.
SET UP: The cars start from rest and all reach a final velocity of 60 mph (26.8 m/s). We first use
kinematics to find the average acceleration of each car, and then use Newton’s second law to find the
average force on each car.
EXECUTE: (a) We know the initial and final velocities of each car and the time during which this change

. . . . . Av .
in velocity occurs. The definition of average acceleration gives a,, =A—. Then F = ma gives the force on
t

each car. For the Alpha Romeo, the calculations are a,, = (26.8 m/s)/(4.4 s) = 6.09 m/s’. The force is F =
ma = (895 kg)(6.09 m/s*) = 5.451 x 10° N = 5.451 kN, which we should round to 5.5 kN for 2 significant
figures. Repeating this calculation for the other cars and rounding the force to 2 significant figures gives:
Alpha Romeo: a = 6.09 m/s’, F=5.5 kN
Honda Civic: @ = 4.19 m/s’, F = 5.5 kN
Ferrari: a = 6.88 m/s’, F = 9.9 kN
Ford Focus: a = 4.97 m/s’, F= 7.3 kN
Volvo: a =3.72 m/s’, F = 6.1 kN
The smallest net force is on the Alpha Romeo and Honda Civic, to two-figure accuracy. The largest net
force is on the Ferrari.
(b) The largest force would occur for the largest acceleration, which would be in the Ferrari. The smallest
force would occur for the smallest acceleration, which would be in the Volvo.
(c) We use the same approach as in part (a), but now the final velocity is 100 mph (44.7 m/s).
ay = (44.7 m/s)/(8.6 8) = 5.20 m/s’, and F = ma = (1435 kg)(5.20 m/s”) = 7.5 kN. The average force is
considerably smaller in this case. This is because air resistance increases with speed.
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4.54.

4.55.

(d) As the speed increases, so does the air resistance. Eventually the air resistance will be equal to the force
from the roadway, so the new force will be zero and the acceleration will also be zero, so the speed will
remain constant.

EVALUATE: The actual forces and accelerations involved with auto dynamics can be quite complicated
because the forces (and hence the accelerations) are not constant but depend on the speed of the car.
IDENTIFY: The box comes to a stop, so it must have acceleration, so Newton’s second law applies. For
constant acceleration, the standard kinematics formulas apply.

. _ ) _ .
SET Up: For constant acceleration, x —x, =v,,t +3+a,t* and v, =v, +a,t apply. For any motion,

F,

net
EXECUTE: (a) If the box comes to rest with constant acceleration, its final velocity is zero so vy, = —a,t.
And if during this time it travels a distance x — x, = d, the distance formula above can be put into the form
d = (—ayt) + Y ai’ =— "5 a,r’". This gives a, = —2d/t". For the first push on the box, this gives
a, =-2(8.22 m)/(2.8 s)> =—2.1 m/s”. If the acceleration is constant, the distance the box should travel after
the second push is d = — % a* =—( 2 )(-2.1 m/s°)(2.0 s)* = 4.2 m, which is in fact the distance the box did
travel. Therefore the acceleration was constant.
(b) The total mass m of the box is the initial mass (8.00 kg) plus the added mass. Since v, = 0 and a, =
2d/f" as shown in part (a), the magnitude of the initial speed vo, is vo, = a,t = (2d/)t = 2d/t. For no added
mass, this calculation gives vy, = 2(8.22 m)/(2.8 s) = 5.87 m/s. Similar calculations with added mass give

mr = 8.00 kg, vo, = 5.87 m/s = 5.9 m/s

mr=11.00 kg, vo, = 6.72 m/s = 6.7 m/s

mr=15.00 kg, vo, = 6.30 m/s = 6.3 m/s

mr = 20.00 kg, vy, = 5.46 m/s = 5.5 m/s
where all answers have been rounded to 2 significant figures. It is obvious that the initial speed was not the
same in each case. The ratio of maximum speed to minimum speed is
Vo.max/Vomin = (6.72 m/s)/(5.46 m/s) = 1.2
(¢) We calculate the magnitude of the force fusing f = ma, getting a using a = —2d/¢, as we showed in part
(a). In each case the acceleration is 2.1 m/s. So for example, when m = 11.00 kg, the force is /= (11.00
kg)(2.1 m/s*) = 23 N. Similar calculations produce a set of values for fand m. These can be graphed by
hand or using graphing software. The resulting graph is shown in Figure 4.54. The slope of this straight-
line graph is 2.1 m/s” and it passes through the origin, so the slope-y intercept equation of the line is

=ma.

f= (2.1 m/s%)m.

40
35 /

25
y &

15

wn

T T T T - m (kg)
0 5 10 15 20 25

Figure 4.54

EVALUATE: The results of the graph certainly agree with Newton’s second law. A graph of F’ versus m
should have slope equal to the acceleration a. This is in fact just what we get, since the acceleration is
2.1 my/s® which is the same as the slope of the graph.

IDENTIFY: A block is accelerated upward by a force of magnitude F. For various forces, we know the
time for the block to move upward a distance of 8.00 m starting from rest. Since the upward force is
constant, so is the acceleration. Newton’s second law applies to the accelerating block.
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SET UP: The acceleration is constant, so y — y, =v, ¢ +%ayt2 applies, and ZFy =ma, also applies to the
block.
EXECUTE: (a) Using the above formula with vy, = 0 and y — y,= 8.00 m, we get a, = (16.0 m)/’’. We use
this formula to calculate the acceleration for each value of the force F. For example, when F= 250 N, we
have a = (16.0 m)/(3.3 s)* = 1.47 m/s>. We make similar calculations for all six values of F and then graph
F versus a. We can do this graph by hand or using graphing software. The result is shown in Figure 4.55.
F.\'

600

500 /

400 /

300 /

200
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0 T T T T T ™ d (m/ 52)
0 2 4 6 8 10 12
Figure 4.55
(b) Applying Newton’s second law to the block gives F'— mg = ma, so F' = mg + ma. The equation of our
best-fit graph in part (a) is F' = (25.58 kg)a + 213.0 N. The slope of the graph is the mass m, so the mass of the
block is m = 26 kg. The y intercept is mg, so mg =213 N, which gives g = (213 N)/(25.58 kg) = 8.3 m/s” on
the distant planet.
EVALUATE: The acceleration due to gravity on this planet is not too different from what it is on Earth.
4.56. IDENTIFY: x= f; vdt and v = L: a dt, and similar equations apply to the y-component.
SET UP: In this situation, the x-component of force depends explicitly on the y-component of position. As
the y-component of force is given as an explicit function of time, v, and y can be found as functions of
time and used in the expression for a_(¢).
EXECUTE: a, =(k;/m)t, so v, = (k3/2m)t2 and y = (k3/6m)t3, where the initial conditions v,, =0,y, =0
have been used. Then, the expressions for a_,v , and x are obtained as functions of time: a, = ﬁ + %ﬁ,
m  6m
v, = ﬁt +—ka32 t* and x = ﬁzz o Rk =15,
m  24m 2m 120m
In vector form, 7 = ﬁtz +i3zt5 i+ £t3 jand v = ﬁt +kz—k32t4 i+ £t2 j.
2m 120m 6m m  24m m
EVALUATE: a_depends on time because it depends on y, and y is a function of time.
4.57. IDENTIFY: Newton’s second law applies to the dancer’s head.

Av = —
SETUP: Weuse a,, =— and F,, =ma.
At

EXECUTE: First find the average acceleration: a,, = (4.0 m/s)/(0.20 s) = 20 m/s’. Now apply Newton’s
second law to the dancer’s head. Two vertical force act on the head: F.ox — mg = ma, so Fyeq = m(g + a),
which gives Fyeq = (0.094)(65 kg)(9.80 m/s” + 20 m/s>) = 180 N, which is choice (d).

EVALUATE: The neck force is not simply ma because the neck must balance her head against gravity,
even if the head were not accelerating. That error would lead one to incorrectly select choice (c).
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4.58.

4.59.

4.60.

IDENTIFY: Newton’s third law of motion applies.

SET UP: The force the neck exerts on her head is the same as the force the head exerts on the neck.
EXECUTE: Choice (a) is correct.

EVALUATE: These two forces form an action-reaction pair.

IDENTIFY: The dancer is in the air and holding a pose, so she is in free fall.

SET UP: The dancer, including all parts of her body, are in free fall, so they all have the same downward
acceleration of 9.80 m/s’.

EXECUTE: Since her head and her neck have the same downward acceleration, and that is produced by
gravity, her neck does not exert any force on her head, so choice (a) 0 N is correct.

EVALUATE: During falling motion such as this, a person (including her head) is often described as being
“weightless.”

IDENTIFY: The graph shows the vertical force that a force plate exerts on her body.

SET Up and EXECUTE: When the dancer is not moving, the force that the force plate exerts on her will be
her weight, which appears to be about 650 N. Between 0.0 s and 0.4 s, the force on her is less than her
weight and is decreasing, so she must be accelerating downward. At 0.4 s, the graph reaches a relative
minimum of around 300 N and then begins to increase after that. Only choice (a) is consistent with this
part of the graph.

EVALUATE: At the high points in the graph, the force on her is over twice her weight.
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5.1.

5.2.

5.3.

IDENTIFY: a =0 for each object. Apply XF), = ma,, to each weight and to the pulley.

SET UpP: Take +y upward. The pulley has negligible mass. Let 7; be the tension in the rope and let T,
be the tension in the chain.
EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a.

2F, =ma, gives I, =w=25.0 N.
(b) The free-body diagram for the pulley is given in Figure 5.1b. T, =27, =50.0 N.

EVALUATE: The tension is the same at all points along the rope.

Yw=250N
C))

Figure 5.1

IDENTIFY: Apply F =ma to each weight.
SET UpP: Two forces act on each mass: w down and T'(=w) up.

EXECUTE: In all cases, each string is supporting a weight w against gravity, and the tension in each string is w.
EVALUATE: The tension is the same in all three cases.
IDENTIFY: Both objects are at rest and a = 0. Apply Newton’s first law to the appropriate object. The

maximum tension 7, ,, is at the top of the chain and the minimum tension is at the bottom of the chain.

SET UP: Let +y be upward. For the maximum tension take the object to be the chain plus the ball. For the

minimum tension take the object to be the ball. For the tension 7 three-fourths of the way up from the bottom
of the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of
these three cases are sketched in Figure 5.3. my,, . =75.0 kg +26.0 kg =101.0 kg. my, =75.0 kg. m is the

mass of three-fourths of the chain: m = %(26.0 kg) =19.5 kg.

EXECUTE: (a) From Figure 5.3a, £F), =0 gives T},,, —my4.g =0 and

Thax = (101.0 kg)(9.80 m/sz) =990 N. From Figure 5.3b, XF), =0 gives T,;;;, —m,g =0 and

.. =(75.0 kg)(9.80 m/s*) =735 N.

(b) From Figure 5.3¢c, XF), =0 gives T —(m+my)g =0 and T =(19.5 kg +75.0 kg)(9.80 m/s?) =926 N.
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EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain.
y y y
T"l\.l\ Tmm T
X \ X
Y Woie = Mpic 8 Wy, = My, 8 w=(m+m)g
(a) (b) ()
Figure 5.3
5.4. IDENTIFY: For the maximum tension, the patient is just ready to slide so static friction is at its maximum
and the forces on him add to zero.
SET UP: (a) The free-body diagram for the person is given in Figure 5.4a. F is magnitude of the traction
force along the spinal column and w = mg is the person’s weight. At maximum static friction, f, = un.
(b) The free-body diagram for the collar where the cables are attached is given in Figure 5.4b. The tension
in each cable has been resolved into its x- and y-components.
3
.\. -
Teos6se 4= 0
. ¥ _ | Tsin65°
71 Tsin65°
| Fos~~!,
" Tcos65°
(@ (b)
Figure 5.4
EXECUTE: (a) n=w and F = f, = 4n = 0.75w = 0.75(9.80 m/s?)(78.5 kg) =577 N.
. F 0.75
(b) 2T sin65°— F =0 so T = — =— Y - 041w= (0.41)(9.80 m/s?)(78.5 kg)=315N.
2sin65°  25sin65°
EVALUATE: The two tensions add up to 630 N, which is more than the traction force, because the cables
do not pull directly along the spinal column.
5.5. IDENTIFY: Apply ZF =ma to the frame.
SET UP: Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the
tension is the same in each wire. 7 = 0.75w.
EXECUTE: The vertical component of the force due to the tension in each wire must be half of the weight,
and this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical.
3
Y =2 058 and @ =arc cos2 = 48°.
2 4 3
EVALUATE: If 6 =0° T =w/2 and T — e as 8 — 90°. Therefore, there must be an angle where 7 = 3w/4.
5.6. IDENTIFY: Apply Newton’s first law to the wrecking ball. Each cable exerts a force on the ball, directed

along the cable.
SET UP: The force diagram for the wrecking ball is sketched in Figure 5.6.
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5.7.

5.8.

s arD
IBu)s-l()

A 'I'”sin 40°

mg
Figure 5.6
EXECUTE: (a) ZF, =ma,
Ty cos40°—mg =0
mg__ (3620 kg)OBOMST) _, (104 N 463 kN

B cos40° cos40°
(b) XF, =ma,
Tpsin40°-T,=0
T, =Tgsin40° =2.98x10* N =29.8 kN
EvVALUATE: If the angle 40° is replaced by 0° (cable B is vertical), then 75 =mg and T, =0.
IDENTIFY: Apply ZF =ma to the object and to the knot where the cords are joined.
SET UP: Let +y be upward and +x be to the right.
EXECUTE: (a) I =w, T,5in30°+T,sin45° =T, =w, and T,c0s30° —Tp cos45° = 0. Since

sin45° =cos45°, adding the last two equations gives 7,(cos30° +sin30°)=w, and so

T, =—Y—=0.732w. Then, T, =7,<%3% = 0.897w.
1.366 cos45°
(b) Similar to part (a), 7o =w, —T,c0s60°+Tpsin45°=w, and T,sin60°— T cos45° =0.
Adding these two equations, 7 :_+ =2.73w, and Ty =T, sm6v” _ 3.35w.
(sin60° — cos 60°) cos45°

EVALUATE: In part (a), T, + Tz > w since only the vertical components of 7, and 7 hold the object

against gravity. In part (b), since 7, has a downward component T is greater than w.

IDENTIFY: Apply Newton’s first law to the car.
SET UP: Use x- and y-coordinates that are parallel and perpendicular to the ramp.

EXECUTE: (a) The free-body diagram for the car is given in Figure 5.8 (next page). The vertical weight w

and the tension 7 in the cable have each been replaced by their x- and y-components.
(b) XF, =0 gives T'cos31.0°~wsin25.0°=0 and

,,Sin25.0° _ (1130 kg)(9.80 m/SZ)ﬂ =5460 N.
c0s31.0° cos31.0°

(¢) ZF, =0 gives n+Tsin31.0°—wc0s25.0°=0 and

n=wco0s25.0°—Tsin31.0° = (1130 kg)(9.80 m/sz)cos25.0° — (5460 N)sin31.0° =7220 N

EVALUATE: We could also use coordinates that are horizontal and vertical and would obtain the same

values of #n and T.



5-4 Chapter 5

Tsin 31.0°
Tcos 31.0°

w sin 25.0° 4

w cos 25.0°

Figure 5.8

5.9. IDENTIFY: Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the
man must oppose the component of gravity down the incline.

SET UP: The free-body diagrams for the two cases are shown in Figure 5.9. F is the force applied by the
man. Use the coordinates shown in the figure.

EXECUTE: (a) XF, =0 gives F —wsinl9.0°=0 and F =(180 kg)(9.80 m/s>)sin 19.0° =574 N.

(b) XF, =0 gives ncos19.0°~w=0 and n= . 2F, =0 gives F —nsin19.0° =0 and

c0s19.0°
F=— |in19.0° = wtan19.0° = 607 N.
c0s19.0°

A
4 n cos 19.0°

w sin 19.0° n sin 19°

i F

v

pushes parallel to incline pushes parallel to floor

@ ()
Figure 5.9

EVALUATE: When pushing parallel to the floor only part of the push is up the ramp to balance the weight
of the piano, so you need a larger push in this case than if you push parallel to the ramp.
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5.10. IDENTIFY: Apply Newton’s first law to the hanging weight and to each knot. The tension force at each
end of a string is the same.
(a) Let the tensions in the three strings be 7, T°, and T”, as shown in Figure 5.10a.
Figure 5.10a
SET UP: The free-body diagram for the block is given in Figure 5.10b.
y EXECUTE:
pp A=)
1 /i T —w=0
x T"=w=60.0 N
f
Figure 5.10b
SET UP: The free-body diagram for the lower knot is given in Figure 5.10c.
) EXECUTE:
2K, =0
Tsin45°-T"=0
T= .T :6_0'0N:84.9N
sin45°  sin45°
Figure 5.10¢
(b) Apply ZF, =0 to the force diagram for the lower knot:
XF, =0
F, =T cos45°=(84.9 N)cos45°=60.0 N
SET UP: The free-body diagram for the upper knot is given in Figure 5.10d.
y EXECUTE:
r" IF =0
F 5 Tcos45°—F =0
1 T cos 45
—— % F} =(84.9 N)cos45°
S
: F=60.0N
Tsin45°% — - = T
Figure 5.10d

Note that | = F,.

EVALUATE: Applying £F), =0 to the upper knot gives 7' " =Tsin45° =60.0 N = w. If we treat the whole
system as a single object, the force diagram is given in Figure 5.10e (next page).
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YF, =0 gives F, = F, which checks
XF, =0 gives T ” =w, which checks
Figure 5.10e
5.11. IDENTIFY: We apply Newton’s second law to the rocket and the astronaut in the rocket. A constant force
means we have constant acceleration, so we can use the standard kinematics equations.
SET Up: The free-body diagrams for the rocket (weight w, ) and astronaut (weight w) are given in
Figure 5.11. Fy is the thrust and # is the normal force the rocket exerts on the astronaut. The speed of
sound is 331 m/s. Weuse XF), =ma, and v =y, + at.
y )
n
. \
Fr fu
}
—— X
4 x
W, 14
(a) (b)
Figure 5.11
EXECUTE:  (a) Apply ZF), = may, to the rocket: Fp —w, = ma. a = 4g and w, = mg, s0
F=m(5g)=(2.25x10%kg) (5) (9.80 m/s*>) =1.10x 10° N.
(b) Apply 2F, = ma, to the astronaut: n — w=ma. a = 4g and m = K, son=w+ [KJ({g) =5w.
g g
(€) v, =0, v=331m/s and a = 4g =392 m/s>. v=v, + at gives t =0 = 331“‘/52 =84s.
a 39.2 m/s
EVALUATE: The 8.4 s is probably an unrealistically short time to reach the speed of sound because you
would not want your astronauts at the brink of blackout during a launch.
5.12. IDENTIFY: Apply Newton’s second law to the rocket plus its contents and to the power supply. Both the

rocket and the power supply have the same acceleration.

SET UP: The free-body diagrams for the rocket and for the power supply are given in Figure 5.12. Since
the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a downward
gravity force on each object. Let +y be upward, since that is the direction of the acceleration. The power

supply has mass m,,; = (15.5 N)/(9.80 m/sz) =1.58 kg.
EXECUTE: (a) XF, =ma, applied to the rocket gives F —m,g =m,a.
= F=mg _ 1720 N- (125 kg)(9.80 m/s?)
m, 125 kg
(b) XF, =ma, applied to the power supply gives n—m,g = mya.
- — 2 2y —
n=mpy(g +a)=(1.58 kg)(9.80 m/s” +3.96 m/s”) =21.7 N.

EVALUATE: The acceleration is constant while the thrust is constant, and the normal force is constant
while the acceleration is constant. The altitude of 120 m is not used in the calculation.

=3.96 m/s>.
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5.13.

5.14.

y X,

F '{l k" [ﬂ

m.g Y myeg

(@) (b)
Figure 5.12

IDENTIFY: Use the kinematic information to find the acceleration of the capsule and the stopping time.

Use Newton’s second law to find the force F' that the ground exerted on the capsule during the crash.

SETUP: Let +y be upward. 311 km/h =86.4 m/s. The free-body diagram for the capsule is given in

Figure 5.13.

EXECUTE:  y—y,=-0.810m, v, =-86.4m/s, v, =0. vi = vgy +2a,(y =) gives

¥ vi=v3, _ 0—(~86.4 m/s)’
T 2(y-y9)  2(-0.810) m

(b) XF), =ma, applied to the capsule gives ' —mg = ma and

= 4610 m/s* = 470g.

F = m(g +a)=(210 kg)(9.80 m/s*> + 4610 m/s*) =9.70x10° N =471w.

Vo, TV _ —
©) y—y 2[ 0y2 y]t gives t=2(y yO): 2(—881p mj =0.0187 s

Voy tv, —86.4m/s+0

EVALUATE: The upward force exerted by the ground is much larger than the weight of the capsule and
stops the capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a

force mg on the capsule, but the large 9.70x10° N force is exerted only for 0.0187 s.

Y mg

Figure 5.13

IDENTIFY: Apply Newton’s second law to the three sleds taken together as a composite object and to each

individual sled. All three sleds have the same horizontal acceleration a.
SET UP: The free-body diagram for the three sleds taken as a composite object is given in Figure 5.14a

and for each individual sled in Figures 5.14b—d. Let +x be to the right, in the direction of the acceleration.

My, = 60.0 kg.
EXECUTE: (a) XF, = ma, for the three sleds as a composite object gives P = m,a and
P _ 190N
my, 600 kg

tot

=3.17 m/s°.
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(b) XF, = ma, applied to the 10.0 kg sled gives P—T, = m;ya and
T,=P-mya=190 N-(10.0 kg)(3.17 m/sz) =158 N. ZF, = ma, applied to the 30.0 kg sled gives
Ty = myya = (30.0 kg)(3.17 m/s*) = 95.1 N.
EVALUATE: If we apply XF, = ma, to the 20.0 kg sled and calculate a from 7, and T found in part (b),
T,—Tp 158N-95.1N . .
we get T, — Ty =mypa. a=—-4L—L = =3.15 m/s?, which agrees closely with the value
My, 20.0 kg
we calculated in part (a), the difference being due to rounding.
y y y y
| a | a a
— — —
no g n3g
T, P Ty T, Ty
—_—X - —-_—X C —X
l'"lo&' mso8
10.0 kg sled 20.0 kg sled 30.0 kg sled
(@) (®) © (C)]
Figure 5.14
5.15. IDENTIFY: Apply ZF =ma to the load of bricks and to the counterweight. The tension is the same at

each end of the rope. The rope pulls up with the same force (T") on the bricks and on the counterweight.

The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the
same magnitude.
(a) SET UP: The free-body diagrams for the bricks and counterweight are given in Figure 5.15.

m i g m,g

bricks couﬁlu‘\\@ighl
Figure 5.15
(b) EXECUTE: Apply XF, =ma, to each object. The acceleration magnitude is the same for the two
objects. For the bricks take +y to be upward since @ for the bricks is upward. For the counterweight
take +y to be downward since a is downward.
bricks: XF), =ma,
T-mg=ma
counterweight: XF, =ma,
myg—T =mya
Add these two equations to eliminate 7:

(my —my)g = (my +my)a
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5.16.

5.17.

a :[’”2 —M J :[28'0 kg =150 kgj@.so m/s2) = 2.96 m/s>
my +my 15.0 kg +28.0 kg

(©) T—mg=ma gives T =m(a+g)=(15.0 kg)(2.96 m/s> +9.80 m/s>) =191 N

As a check, calculate T using the other equation.

myg —T =mya gives T =m,(g—a)=28.0kg(9.80 m/s? —2.96 m/s*) =191 N, which checks.

EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate

upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to

accelerate downward. If m; =m,, a=0 and T =m;g =m,g. In this special case the objects don’t move. If

m; =0, a =g and T =0; in this special case the counterweight is in free fall. Our general result is correct

in these two special cases.

IDENTIFY: In part (a) use the kinematic information and the constant acceleration equations to calculate
the acceleration of the ice. Then apply ZF = ma. In part (b) use F = ma to find the acceleration and use
this in the constant acceleration equations to find the final speed.

SET UP: Figure 5.16 gives the free-body diagrams for the ice both with and without friction.

Let +x be directed down the ramp, so +y is perpendicular to the ramp surface. Let ¢ be the angle

between the ramp and the horizontal. The gravity force has been replaced by its x- and y-components.
EXECUTE: (a) x—x, =1.50 m, vy, =0. v, =2.50 m/s. v =v}_ +2a (x—Xx,) gives
2 2 2 2
3 A CEU 2.08 m/s”. XF, = ma, gives mg sin ¢ = ma and sin ¢ = :%.
2(x—xg) 2(1.50 m) g 9.80 m/s
9=12.3°.
(b) XF, = ma, gives mgsing— f = ma and
0= mgsing— f _ (8.00 kg)(9.80 m/sz)sin12.3°—10.0 N
m 8.00 kg

=0.838 m/s>.

Then x—xy=1.50 m, v, =0. a, =0.838 m/s” and v,zc =v§x +2a,(x—xy) gives

v, =24, (x— xp) =+/2(0.838 m/s?)(1.50 m) =1.59 m/s

EVALUATE: With friction present the speed at the bottom of the ramp is less.

\ \

a

yd

mg sin ¢

(l/

mg sin ¢

Figure 5.16

IDENTIFY: Apply ZF =md to each block. Each block has the same magnitude of acceleration a.

SET UP: Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg
block; the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and
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5.18.

the suspended block accelerates downward. Let +x be to the right for the 4.00 kg block, so for it a, =a,
and let +y be downward for the suspended block, so for it a, =a.

EXECUTE: (a) The free-body diagrams for each block are given in Figures 5.17a and b.

(¢) XF, =ma, applied to the suspended block gives mg —T = ma and
m= r . DON =2.48 kg.
g-a  9.80 m/s* —3.75 m/s?

(d) The weight of the hanging block is mg = (2.48 kg)(9.80 m/s? ) =24.3 N. This is greater than the tension
in the rope; T = 0.617mg.

EVALUATE: Since the hanging block accelerates downward, the net force on this block must be
downward and the weight of the hanging block must be greater than the tension in the rope. Note that the
blocks accelerate no matter how small m is. It is not necessary to have m >4.00 kg, and in fact in this

problem m is less than 4.00 kg.

a
n —_—
l a
T
> X

.\.
[ mg

mg

(@ (b
Figure 5.17

IDENTIFY: (a) Consider both gliders together as a single object, apply ZF = md, and solve for a. Use a in

a constant acceleration equation to find the required runway length.

(b) Apply =F =ma to the second glider and solve for the tension 7; ¢ in the towrope that connects the two

gliders.

SET Up: In part (a), set the tension 7, in the towrope between the plane and the first glider equal to its

maximum value, 7; =12,000 N.

EXECUTE: (a) The free-body diagram for both gliders as a single object of mass 2m =1400 kg is given in

T, —-2f _ 12,000 N-5000 N
2m 1400 kg

Figure 5.18a. ZF, =ma, gives I, =2 = (2m)a and a = =5.00 m/s%. Then
V2 —V2
a, =5.00 m/s*, vy, =0and v, =40 m/s in v> =v3_ +2a, (x—xy) gives (x—xy) = = 0x =160 m.
aX

(b) The free-body diagram for the second glider is given in Figure 5.18b.
XF, =ma, gives T, — f =ma and Tg = f+ma=2500 N + (700 kg)(5.00 m/sz) =6000 N.

EVALUATE: We can verify that XF, = ma, is also satisfied for the first glider.
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5.19.

5.20.

Mo a n a

2of n I : T

“ 2mg | mg
(@ (b)
Figure 5.18

IDENTIFY: The maximum tension in the chain is at the top of the chain. Apply £F =ma to the composite
object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to
the time.

SET UP: Let +y be upward. The free-body diagram for the composite object is given in Figure 5.19.

r= 2'50Wchain' Mot = Mehain + Mpoulder = 1325 kg.

EXECUTE: (a) ZF, =ma, gives T —my, g = mya.

a= T—mg s 2'50mchaing ~ Miot& :(z'somchain - ljg
Mot Mot Mot

o= 22006 ke) (9.80 m/s?) = 0.832 m/s>
1325 kg

(b) Assume the acceleration has its maximum value: a, =0.832 m/s?, y— Yo =125 m and v, =0.

20-y0) _ \/ 2025m) _ .,

a, 0.832 m/s’

1 .
Y =Yo = Vot +ant2 gives ¢ =

EVALUATE: The tension in the chain is 7 =1.41x10* N and the total weight is 1.30x10* N. The upward
force exceeds the downward force and the acceleration is upward.

|
y tu
T

Y omg

Figure 5.19

IDENTIFY: Apply XF =ma to the composite object of elevator plus student (myy =850 kg) and also to
the student (w =550 N). The elevator and the student have the same acceleration.
SET UP: Let +y be upward. The free-body diagrams for the composite object and for the student are

given in Figure 5.20. T is the tension in the cable and # is the scale reading, the normal force the scale
exerts on the student. The mass of the student is m = w/g =56.1 kg.
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EXECUTE: (a) XF, =ma, applied to the student gives n—mg =ma
g =nomg _ 450 N-550 N _

v

—1.78 m/s?. The elevator has a downward acceleration of 1.78 m/s>.

7 m 56.1kg
() a, -670N-550N _ 2.14 m/s2.
56.1kg

(¢) n=0 means a, =—g. The student should worry; the elevator is in free fall.

(d) XF), =ma, applied to the composite object gives T'—m g = M@, T =my(a, +g). In part (a),

T =(850 kg)(—1.78 m/s* +9.80 m/s>) = 6820 N. In part (c), @, =—g and T =0.

EVALUATE: In part (b), T = (850 kg)(2.14 m/s> +9.80 m/s?) =10,150 N. The weight of the composite

object is 8330 N. When the acceleration is upward the tension is greater than the weight and when the
acceleration is downward the tension is less than the weight.

M8 mg

(@) (b)
Figure 5.20

5.21. IDENTIFY: While the person is in contact with the ground, he is accelerating upward and experiences two
forces: gravity downward and the upward force of the ground. Once he is in the air, only gravity acts on
him so he accelerates downward. Newton’s second law applies during the jump (and at all other times).
SET UP: Take +y to be upward. After he leaves the ground the person travels upward 60 cm and his

acceleration is g =9.80 m/s?, downward. His weight is w so his mass is w/g. XF, =ma, and

vﬁ = Voi +2a,(y—yo) apply to the jumper.

EXECUTE: (a) v, =0 (at the maximum height), y —y, =0.60 m, a, =-9.80 m/s.

v =vg, +2a,(y— yy) gives vy, =F2a,(y—y,) = \/—2(—9.80 m/s%)(0.60 m) =3.4 m/s.

(b) The free-body diagram for the person while he is pushing up against the ground is given in Figure 5.21

(next page).
(¢) For the jump, v, =0, v, =3.4m/s (from part (a)), and y —y, = 0.50 m.

Vi=vg, (34 ms):—0
20—y 2(0.50m)

vﬁ :vgy +2a,(y—yp) gives a, = =11.6 m/s>. XF, = ma, gives n—w=ma.

n=w+ma :w[l+£j:2.2w.
g
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5.22.

5.23.

Figure 5.21

EVALUATE: To accelerate the person upward during the jump, the upward force from the ground must
exceed the downward pull of gravity. The ground pushes up on him because he pushes down on the
ground.

dv _
IDENTIFY: Acceleration and velocity are related by a,, = Tty Apply ZF =ma to the rocket.

SET Up: Let +y be upward. The free-body diagram for the rocket is sketched in Figure 5.22. F is the
thrust force.

EXECUTE: (a) v, = At+Bt*. a, = A+2Bt. At t=0, a, =150 m/s’so 4=1.50 m/s*. Then

v, =2.00 m/s at £=1.00s gives 2.00 m/s =(1.50 m/s*)(1.00 s) + B(1.00 5)* and B =0.50 m/s’.

(b) At £=4.00s, a, =1.50 m/s* +2(0.50 m/s*)(4.00 s) =5.50 m/s”.

(¢) XF), = ma, applied to the rocket gives 7'—mg =ma and

T =m(a+g) = (2540 kg)(9.80 m/s”> +5.50 m/s?) =3.89x10* N. T =1.56w.

(d) When a =1.50 m/s?, T =(2540 kg)(9.80 m/s> +1.50 m/s>) = 2.87x10* N.

EVALUATE: During the time interval when v(z) = A¢ + B#? applies the magnitude of the acceleration is

increasing, and the thrust is increasing.

Y mg

Figure 5.22

IDENTIFY: We know the external forces on the box and want to find the distance it moves and its speed.
The force is not constant, so the acceleration will not be constant, so we cannot use the standard constant-
acceleration kinematics formulas. But Newton’s second law will apply.

. . . . F
SET UP: First use Newton’s second law to find the acceleration as a function of time: a,(¢#) =—*. Then
m

integrate the acceleration to find the velocity as a function of time, and next integrate the velocity to find
the position as a function of time.
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5.24.

5.25.

5.26.

EXECUTE: Let +x be to the right. a, (f) = —% =———"—=—(3.00 m/s*)e2. Integrate the acceleration
m

to find the velocity as a function of time: v, (¢) = —(1.00 m/s4)t3 +9.00 m/s. Next integrate the velocity to find
the position as a function of time: x(¢) =—(0.250 m/s4)t4 +(9.00 m/s)z. Now use the given values of time.
(@) v, =0 when (1.00 m/s*)s’ =9.00 m/s. This gives 1 =2.08 s. At 1=2.08s,

x =(9.00 m/s)(2.08 s) — (0.250 m/s*)(2.08 s)* =18.72 m—4.68 m =14.0 m.

(b) At £=3.00s, v (r) =—(1.00 m/s*)(3.00 s)* +9.00 m/s =—18.0 m/s, so the speed is 18.0 m/s.
EVALUATE: The box starts out moving to the right. But because the acceleration is to the left, it reverses
direction and v, is negative in part (b).

IDENTIFY: We know the position of the crate as a function of time, so we can differentiate to find its
acceleration. Then we can apply Newton’s second law to find the upward force.

SETUP: v, (1) =dy/dt, a,(t) =dv,/dt, and ZF), = ma,,.
EXECUTE: Let +y be upward. dy/dt = v, (¢) = 2.80 m/s +(1.83 m/s’)* and

dv,/dt = a(f) = (3.66 m/s3)t. At t=4.00s, a, =14.64 m/s%. Newton’s second law in the y direction

gives F —mg =ma. Solving for F gives F =49 N +(5.00 kg)(14.64 m/sz) =122 N.

EVALUATE: The force is greater than the weight since it is accelerating the crate upwards.

IDENTIFY: At the maximum tilt angle, the patient is just ready to slide down, so static friction is at its
maximum and the forces on the patient balance.

SET Up: Take +x to be down the incline. At the maximum angle f; = un and ZF, =ma, =0.

EXECUTE: The free-body diagram for the patient is given in Figure 5.25. 2F, = ma,, gives n =mgcos6.

YF, =0 gives mgsinf— yn=0. mgsin€— pmgcosf =0. tan6 = 1 so 6 =50°.

mgsin®

Figure 5.25

EVALUATE: A larger angle of tilt would cause more blood to flow to the brain, but it would also cause the
patient to slide down the bed.

IDENTIFY: f, < pn and f, = t4n. The normal force n is determined by applying SF =md to the block.
Normally, f4 < 4,. f, is only as large as it needs to be to prevent relative motion between the two

surfaces.

SET UP: Since the table is horizontal, with only the block present » =135 N. With the brick on the block,
n=270 N.

EXECUTE: (a) The friction is static for P =0 to P =75.0 N. The friction is kinetic for P >75.0 N.
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(b) The maximum value of f; is fn. From the graph the maximum f; is f, =75.0 N, so
_maxf, _ 750N _fix _50.0N _

(c) When the block is moving the friction is kinetic and has the constant value f, = f4n, independent of P.
This is why the graph is horizontal for P >75.0 N. When the block is at rest, f; =P since this prevents
relative motion. This is why the graph for P <75.0 N has slope +1.
(d) max f; and f, would double. The values of f on the vertical axis would double but the shape of the
graph would be unchanged.
EVALUATE: The coefficients of friction are independent of the normal force.

5.27. (a) IDENTIFY: Constant speed implies a =0. Apply Newton’s first law to the box. The friction force is
directed opposite to the motion of the box.
SET Up: Consider the free-body diagram for the box, given in Figure 5.27a. Let F be the horizontal
force applied by the worker. The friction is kinetic friction since the box is sliding along the surface.

y EXECUTE:
= =
a EFy ma,
= n—mg =0
n=mg
F ]
: 4—4?7' X SO fi = M = fhmg
jk
mg

Figure 5.27a

2F, =ma,
F-f =0
F = f, = t4mg =(0.20)(16.8 kg)(9.80 m/s?) =33 N

(b) IDENTIFY: Now the only horizontal force on the box is the kinetic friction force. Apply Newton’s
second law to the box to calculate its acceleration. Once we have the acceleration, we can find the
distance using a constant acceleration equation. The friction force is fi = f4 mg, just as in part (a).

SET UP: The free-body diagram is sketched in Figure 5.27b.

y EXECUTE:
ZFZ\” = max
n _fk =ma,

—Hmg =ma,

] * a. =—1 g =—(0.20)(9.80 m/s>) =—1.96 m/s>
S | « = —Hieg =—(0.20)( )

Figure 5.27b

Use the constant acceleration equations to find the distance the box travels:
v, =0, vp, =3.50 m/s, a, =—1.96 m/s?, x—x,=?

v = Vo + 20, (x o)

v —vh, _ 0-(3.50 m/s)’ im

X=Xy = >
20, 2(~1.96 m/s?)
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EVALUATE: The normal force is the component of force exerted by a surface perpendicular to the surface.
Its magnitude is determined by LF =ma. In this case n and mg are the only vertical forces and a,, =0, so
n=mg. Also note that f, and n are proportional in magnitude but perpendicular in direction.

5.28. IDENTIFY: Apply F =md to the box.
SET Up: Since the only vertical forces are n and w, the normal force on the box equals its weight. Static
friction is as large as it needs to be to prevent relative motion between the box and the surface, up to its
maximum possible value of f™™ = zin. If the box is sliding then the friction force is fi = f4n.
EXECUTE: (a) If there is no applied force, no friction force is needed to keep the box at rest.
(b) f"™ = pn=(0.40)(40.0 N) =16.0 N. If a horizontal force of 6.0 N is applied to the box, then
f;, =6.0 N in the opposite direction.
(¢) The monkey must apply a force equal to f{"*", 16.0 N.
(d) Once the box has started moving, a force equal to f, = 47 =8.0 N is required to keep it moving at
constant velocity.
(©) f, =8.0N. a=(18.0N—-8.0 N)/(40.0 N/9.80 m/s*) = 2.45 m/s’
EVALUATE: /4 </, and less force must be applied to the box to maintain its motion than to start it
moving.

5.29. IDENTIFY: Apply F =ma to the crate. feSHn and f, = g0
SET UpP: Let +y be upward and let +x be in the direction of the push. Since the floor is horizontal and
the push is horizontal, the normal force equals the weight of the crate: n=mg =441 N. The force it takes
to start the crate moving equals max f; and the force required to keep it moving equals f;.
EXECUTE: (a) max fy =313 N, so /4 :% =0.710. fi, =208 N, so f4 = ig?g =0.472.
(b) The friction is kinetic. XF, =ma, gives F — fy =ma and
F = f, +ma =208 N +(45.0 kg)(1.10 m/s*) = 258 N.
(¢) (i) The normal force now is mg =72.9 N. To cause it to move,
F =max f, = t4n =(0.710)(72.9 N) =51.8 N.
(ii) F=f, +ma and a= F-fi (28N=-(047)(729N) _ , 57 2

m 45.0 kg

EVALUATE: The kinetic friction force is independent of the speed of the object. On the moon, the mass of
the crate is the same as on earth, but the weight and normal force are less.

5.30. IDENTIFY: Newton’s second law applies to the rocks on the hill. When they are moving, kinetic friction

acts on them, but when they are at rest, static friction acts.
SET UP: Use coordinates with axes parallel and perpendicular to the incline, with +x in the direction of
the acceleration. XF, =ma, and XF), =ma, =0.

EXECUTE: With the rock sliding up the hill, the friction force is down the hill. The free-body diagram is
given in Figure 5.30a.
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5.31.

5.32.

n n

4
v X
/ Ji
) }
K mgsing
% ((_b), 5 \ ((1;7
mgcosq \ o
mgsinc N # \ & mgcos
X \ X \
\ )} \ 3
\\/ 7 3 \“ B z
mg mg
@ (b)

Figure 5.30

XF, =ma, =0 gives n =mgcos¢ and f, = 4n = fhmgcosp. EF, =ma, gives

mgsing + L4, mgcos P = ma.

a=g(sing+ 4 cosg) =(9.80 m/sz)[sin36° +(0.45)co0s36°]. a =9.33 m/s>, down the incline.

(b) The component of gravity down the incline is mgsing = 0.588mg. The maximum possible static
friction force is f; = n = Umgcosp =0.526mg. f, can’t be as large as mgsing and the rock slides
back down. As the rock slides down, f, is up the incline. The free-body diagram is given in Figure 5.30b.
XF, =ma, =0 gives n =mgcos¢ and fi = hn= [hmgcos@. LF, =ma, gives

mgsing— L4, mgcosP =ma, so-a = g(sing— L4 cos@) =2.19 m/sz, down the incline.

EVALUATE: The acceleration down the incline in (a) is greater than that in (b) because in (a) the static

friction and gravity are both acting down the incline, whereas in (b) friction is up the incline, opposing
gravity which still acts down the incline.

IDENTIFY: A 10.0-kg box is pushed on a ramp, causing it to accelerate. Newton’s second law applies.
SET Up: Choose the x-axis along the surface of the ramp and the y-axis perpendicular to the surface. The
only acceleration of the box is in the x-direction, so XF, = ma, and XF, =0 . The external forces acting
on the box are the push P along the surface of the ramp, friction f;, gravity mg, and the normal force n. The
ramp rises at 55.0° above the horizontal, and f, = y,n. The friction force opposes the sliding, so it is
directed up the ramp in part (a) and down the ramp in part (b).

EXECUTE: (a) Applying 2F, =0 givesn =mg cos(55.0°), so the force of kinetic friction is fi = un =
(0.300)(10.0 kg)(9.80 m/s*)(cos 55.0°) = 16.86 N. Call the +x-direction down the ramp since that is the
direction of the acceleration of the box. Applying XF, =ma, gives P + mg sin(55.0°) — fi = ma. Putting in
the numbers gives (10.0 kg)a = 120 N + (98.0 N)(sin 55.0°) — 16.86 N; a = 18.3 m/s.

(b) Now P is up the up the ramp and f; is down the ramp, but the other force components are unchanged, so
Jfx=16.86 N as before. We now choose +x to be up the ramp, so ZF, =ma, gives

P — mg sin(55.0°) — f; = ma. Putting in the same numbers as before gives a = 2.29 m/s’.

EVALUATE: Pushing up the ramp produces a much smaller acceleration than pushing down the ramp
because gravity helps the downward push but opposes the upward push.

IDENTIFY: For the shortest time, the acceleration is a maximum, so the toolbox is just ready to slide
relative to the bed of the truck. The box is at rest relative to the truck, but it is accelerating relative to the
ground because the truck is accelerating. Therefore Newton’s second law will be useful.

SET Up: If the truck accelerates to the right the static friction force on the box is to the right, to try to
prevent the box from sliding relative to the truck. The free-body diagram for the box is given in
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Figure 5.32. The maximum acceleration of the box occurs when f; has its maximum value, so f; = fn.
If the box doesn’t slide, its acceleration equals the acceleration of the truck. The constant-acceleration
equation v, =v,, +a,t applies.
J n i
]
A
X
mg
Figure 5.32
EXECUTE: n=mg. XF, =ma, gives f,=ma so HUmg =ma and a = l,g =637 m/s>. Vor =0,
. = 30.0 m/s — 0
v, =30.0 m/s. v, =vy, +a,t gives t = Yo~ Yox — s 3 478
a, 6.37 m/s
EVALUATE: If the truck has a smaller acceleration it is still true that f; = ma, but now f; < /n.
5.33. IDENTIFY: Apply ZF =ma to the composite object consisting of the two boxes and to the top box. The

friction the ramp exerts on the lower box is kinetic friction. The upper box doesn’t slip relative to the lower
box, so the friction between the two boxes is static. Since the speed is constant the acceleration is zero.

SET UpP: Let +x be up the incline. The free-body diagrams for the composite object and for the upper box

0m

are given in Figure 5.33. The slope angle ¢ of the ramp is given by tan¢ :%, so ¢ =27.76°. Since
75 m

the boxes move down the ramp, the kinetic friction force exerted on the lower box by the ramp is directed
up the incline. To prevent slipping relative to the lower box the static friction force on the upper box is
directed up the incline. m,, =32.0 kg +48.0 kg =80.0 kg.

EXECUTE: (a) ZF), =ma, applied to the composite object gives ny, = m,gcos¢ and

Jx = Hmygcosg. TF, =ma, gives fi +T —m,,gsing =0 and

T =(sing— f4 cos @)m, g = (8in27.76° —[0.444]c0s27.76°)(80.0 kg)(9.80 m/sz) =57.1N.

The person must apply a force of 57.1 N, directed up the ramp.

(b) XF, =ma, applied to the upper box gives f, = mgsing =(32.0 kg)(9.80 m/sz)sin27.76° =146 N,
directed up the ramp.

EVALUATE: For each object the net force is zero.
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5.34.

5.35.

myyg8 sing{

M8

@ (b)

Figure 5.33

IDENTIFY: Constant speed means zero acceleration for each block. If the block is moving, the friction
force the tabletop exerts on it is kinetic friction. Apply ZF =ma to each block.

SET UP: The free-body diagrams and choice of coordinates for each block are given by Figure 5.34.
m, =459 kg and mp =2.55 kg.

EXECUTE: (a) ZF, =ma, with a, =0 applied to block B gives mpg -7 =0 and 7'=25.0 N.

XF, =ma, with a, =0 applied to block A4 gives T'— f, =0 and f, =25.0N. n, =m, g =45.0 N and

(b) Now let A be block 4 plus the cat, so m 4 =9.18 kg. ny=90.0 N and

S = 141 =(0.556)(90.0 N) =50.0 N. 2 F, = ma, for 4 gives T — f =m a,. ZFy =ma, for block B

gives mpg —T =mpa,,. a,for 4 equals a, for B, so adding the two equations gives
mpg = fi _ 250N-500N _

mpg— fr, =(m,+mg)a, and a, = =-2.13 m/s%. The acceleration is
58~ S =(mytmpla, Y m,+mg 9.18kg+2.55kg

v

upward and block B slows down.
EVALUATE: The equation mpg — fi =(m, +mp)a, has a simple interpretation. If both blocks are

considered together then there are two external forces: mpg that acts to move the system one way and f;

that acts oppositely. The net force of mpg — fi must accelerate a total mass of m, +my.

T

‘u

mgg

Figure 5.34

IDENTIFY: Use £F =md to find the acceleration that can be given to the car by the kinetic friction force.
Then use a constant acceleration equation.
SET UP: Take +x in the direction the car is moving.
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5.36.

5.37.

EXECUTE: (a) The free-body diagram for the car is shown in Figure 5.35. £F) =ma, gives n=mg.

XF, =ma, gives —thn=ma,. —hmg =ma, and a, =—f4 g. Then v, =0 and v)zc = vgx +2a,(x—xp)

W sy Vo o Q8T

2a, 2442 2(0.80)(9.80 m/s?)
(b) Vo, =218 (x—xg) =1/2(0.25)(9.80 m/s*)52.5 m =16.0 m/s

gives (x—xp) =—

2
. . Vox - . .
EVALUATE: For constant stopping distance 0x js constant and Vo, 1s proportional to /£4 . The answer
Hy

to part (b) can be calculated as (28.7 m/s)4/0.25/0.80 =16.0 m/s.

S = mn

mg

Figure 5.35

IDENTIFY: Apply 2F =ma to the box. When the box is ready to slip the static friction force has its
maximum possible value,  f; = tn.

SET UP: Use coordinates parallel and perpendicular to the ramp.

EXECUTE: (a) The normal force will be w cos & and the component of the gravitational force along the
ramp is wsin ¢. The box begins to slip when wsin & > fw cos ¢, or tanar > 1, = 0.35, so slipping occurs
at o =arctan(0.35) =19.3°.

(b) When moving, the friction force along the ramp is £4 w cos ¢, the component of the gravitational force
along the ramp is wsin¢, so the acceleration is

(wsin @ — w4 cos@)/m = g(sino — f4 cosr) =0.92 m/s>.

(¢) Since vy, =0, 2ax =17, so v=(2ax)"?, or v =[(2)(0.92 m/s*)(5 m)]"? =3 mys.
EVALUATE: When the box starts to move, friction changes from static to kinetic and the friction force
becomes smaller.
IDENTIFY: Apply SF =md to each crate. The rope exerts force T to the right on crate 4 and force T to
the left on crate B. The target variables are the forces 7 and F. Constant v implies a =0.
SET Up: The free-body diagram for A is sketched in Figure 5.37a.

y EXECUTE:
XF, =ma,
nygy—mug=0

ny=myg

Jia = Heny = them g

Figure 5.37a
2F, =ma,
T—-fiu=0
T = themyg
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5.38.

5.39.

SET UP: The free-body diagram for B is sketched in Figure 5.37b.

EXECUTE:
ZFy =ma,
ng—mpg =0
ng =mpg

Jkg = Mg = thempg

Figure 5.37b
XF, =ma,
F-T-fp=0
F=T+pmpg
Use the first equation to replace 7 in the second:
E = phm g + phmpg.
(@) F =y (my+mp)g
(b) T = phm, g
EVALUATE: We can also consider both crates together as a single object of mass (m +mp). XF, =ma,
for this combined object gives F = fi = t4 (m, + mp)g, in agreement with our answer in part (a).
IDENTIFY: Apply XF =md to the box.
SET UP: Let +p be upward and +x be horizontal, in the direction of the acceleration. Constant speed
means a =0.
EXECUTE: (a) There is no net force in the vertical direction, so n + Fsin@-w=0, or
n=w—Fsinf =mg — Fsin@. The friction force is f, = t4n = 4 (mg — Fsin@). The net horizontal force
is Fcos@— f = Fcos@— 14 (mg—Fsin@), and so at constant speed,

A Hemg :

cos@ + L sin &

2
(b) Using the given values, F = (0.3500kg)O-80m/s ) _ 290 N.

(cos25°+(0.35) sin 25°)
EvVALUATE: If 6=0°, F =y mg.

IDENTIFY: Apply XF =ma to each block. The target variables are the tension 7 in the cord and the
acceleration « of the blocks. Then a can be used in a constant acceleration equation to find the speed of
each block. The magnitude of the acceleration is the same for both blocks.

SET UP: The system is sketched in Figure 5.39a.

For each block take a positive
coordinate direction to be the direction
of the block’s acceleration.

my = 1.30kg
Figure 5.39a

block on the table: The free-body is sketched in Figure 5.39b (next page).
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EXECUTE:
ZFy =ma,
n—-myg =0
n=myg
S = Hen = phem g
Figure 5.39b
XF, =ma,
T—f=mya
T —phmyg =mya
SET UP: hanging block: The free-body is sketched in Figure 5.39c¢.
EXECUTE:
2F, =ma,
mpg —T =mpa
T =mpg—mpa
Figure 5.39¢
(a) Use the second equation in the first
mpg —mpa = fhm g =m, a
(my +mpg)a=(mp—phem,)g
g (mp — Hhm)g _ (1.30 kg —(0.45)(2.25 kg))(9.80 m/s?) —0.7937 m/s>
my+mp 225 kg +1.30 kg
SET UP: Now use the constant acceleration equations to find the final speed. Note that the blocks have the
same speeds. x—x, =0.0300 m, a, =0.7937 m/s>, vy, =0, v, =2
vf = vgx +2a,(x—xp)
EXECUTE: v, =,[2a,(x—X) = \/2(0.7937 m/s2)(0.0300 m) =0.218 m/s =21.8 cms.
() T =myg—mpa=mg(g—a)=130 kg(9.80 m/s> —0.7937 m/s*) =11.7 N
Or, to check, T — (ymyg =m 4a.
T =m(a+ phg)=225kg(0.7937 m/s +(0.45)(9.80 m/s*)) =11.7 N, which checks.
EVALUATE: The force T exerted by the cord has the same value for each block. T'<mpg since the
hanging block accelerates downward. Also, f, = t4m, g =9.92 N. T > f, and the block on the table
accelerates in the direction of 7.
5.40. IDENTIFY: Apply XF =ma to the ball. At the terminal speed, f =mg.

SET UP: The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed,
the magnitude of the frictional force is one-fourth the weight.

EXECUTE: (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is
(5/4)w and the acceleration is (5/4)g, down.

(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w and the
acceleration is (3/4)g, down.

EVALUATE: The frictional force is less than mg in each case and in each case the net force is downward
and the acceleration is downward.
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5.41.

5.42.

5.43.

(a) IDENTIFY: Apply XF =md to the crate. Constant v implies @ =0. Crate moving says that the friction
is kinetic friction. The target variable is the magnitude of the force applied by the woman.
SET UpP: The free-body diagram for the crate is sketched in Figure 5.41.

EXECUTE:

ZFy =ma,
n—mg—Fsind=0
n=mg+ Fsinf

Ji = en = tymg + 4 Fsin@

Figure 5.41

XF; =ma,
Fcos@—-f, =0
F cos6 — pymg — 4 Fsin@ =0
F(cos@— 4 sinf) = pmg
F= Hmg :
cos@— U4 sin @
(b) IDENTIFY and SET UP: “Start the crate moving” means the same force diagram as in part (a), except
that t4 isreplaced by . Thus F = &
cos@ — (4 sind

cos49: 1

sind tand’
EVALUATE: F has a downward component so > mg. If =0 (woman pushes horizontally), n =mg

and F = fi = 4y mg.

IDENTIFY and SET UP:  Apply v, = ,/%

EXECUTE: F — oo if cos@— (4 sin@ = 0. This gives Y, =

_mg _ (80 kg)(9.80 m/s”)

EXECUTE: (a) Solving for D in terms of v,, D 5 5
Vi (42 mv/s)

b) v, = \/m_? _ (45 kg)(9.80 m/s®) _ i
“\'p (0.25 kg/m) ’

EVALUATE: “Terminal speed depends on the mass of the falling object.”

=0.44 kg/m.

IDENTIFY: Since the stone travels in a circular path, its acceleration is agq = V2 /R, directed toward the

center of the circle. The only horizontal force on the stone is the tension of the string. Set the tension in the
string equal to its maximum value.
2
. v
SETUP: 2 F, =ma, gives T = me

EXECUTE: (a) The free-body diagram for the stone is given in Figure 5.43 (next page). In the diagram the
stone is at a point to the right of the center of the path.
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5.44.

5.45.

Arad pn

mg

Figure 5.43

(b) Solving for v gives v = }E = TN Sy =8.2 m/s.
m 0.80 kg

EVALUATE: The tension is directed toward the center of the circular path of the stone. Gravity plays no
role in this case because it is a vertical force and the acceleration is horizontal.

IDENTIFY: The wrist exerts a force on the hand causing the hand to move in a horizontal circle. Newton’s
second law applies to the hand.

SET Up: Each hand travels in a circle of radius 0.750 m and has mass (0.0125)(52 kg) = 0.65 kg and
weight 6.4 N. The period for each hand is 7 = (1.0 5)/(2.0) = 0.50 s. Let +x be toward the center of the
v _4n’R

— = , and
R 72

circular path. The speed of the hand is v = 2rnR/T, the radial acceleration is a,_, =

2F, = ma, = mapy,.

EXECUTE: (a) The free-body diagram for one hand is given in Figure 5.44. F is the force exerted on the
hand by the wrist. This force has both horizontal and vertical components.

Figure 5.44

47°R _ 47%(0.750 m)

(b) Gy = = 0505 =118 m/s?, so F, = ma,y =(0.65 kg)(118 m/s?) =77 N.
S0s
F 77N . . . .
(c) —= AN =12, so the horizontal force from the wrist is 12 times the weight of the hand.
w 6.

EVALUATE: The wrist must also exert a vertical force on the hand equal to the weight of the hand.
IDENTIFY: Apply XF =md to the car. It has acceleration @4, directed toward the center of the circular

path.
SET UP: The analysis is the same as in Example 5.23.
2

2
EXECUTE: (a) F, = m[g +%] =(1.60 kg)[9.80 m/s? + (12.0 m/s)

=61.8 N.
00 m J
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5.46.

5.47.

5.48.

2

2
(b) Fp =m[g—%J =(1.60 kg)(9.80 mys2 - (120 M)

=-30.4 N, where the minus sign indicates that
5.00 m
the track pushes down on the car. The magnitude of this force is 30.4 N.
EVALUATE: |F|>|Fp|. |Fy|-2mg =|Fp|.
IDENTIFY: The acceleration of the car at the top and bottom is toward the center of the circle, and
Newton’s second law applies to it.

SET Up: Two forces are acting on the car, gravity and the normal force. At point B (the top), both forces
are toward the center of the circle, so Newton’s second law gives mg + ny = ma. At point 4 (the bottom),

gravity is downward but the normal force is upward, so n, —mg = ma.
EXECUTE:  Solving the equation at B for the acceleration gives

= mg*n _ (0.800 kg)(9.8 m/s?) +6.00 N
m 0.800 kg

gives n, = m(g +a) = (0.800 kg)(9.8 m/s* +17.3 m/s*) =21.7 N.

=17.3 m/s>. Solving the equation at A4 for the normal force

EVALUATE: The normal force at the bottom is greater than at the top because it must balance the weight
in addition to accelerate the car toward the center of its track.

IDENTIFY: A model car travels in a circle so it has radial acceleration, and Newton’s second law applies
to it.

2
— _ K v . .
SET UP: We use XF =ma , where the acceleration is a4 = 3 and the time 7 for one revolution is

T =2mR/.

EXECUTE: At the bottom of the track, taking +y upward, SF =ma gives n—mg = ma, where n is the
2

normal force. This gives 2.50mg — mg = ma, so a = 1.50g. The acceleration is a_, = % , SO

v=+/aR = \/(1.50)(9.80 m/s>)(5.00 m) =8.573 m/s, so T = 2nR/v = 21(5.00 m)/(8.573 m) = 3.66 s.
EVALUATE: We never need the mass of the car because we know the acceleration as a fraction of g and
the force as a fraction of mg.

IDENTIFY: Since the car travels in an arc of a circle, it has acceleration a4 = v?/R, directed toward the

center of the arc. The only horizontal force on the car is the static friction force exerted by the roadway.
To calculate the minimum coefficient of friction that is required, set the static friction force equal to its
maximum value, f; = fn. Friction is static friction because the car is not sliding in the radial direction.
SET UP: The free-body diagram for the car is given in Figure 5.48 (next page). The diagram assumes the

center of the curve is to the left of the car.
2 2
EXECUTE: (a) ZF, =ma, gives n=mg. XF, =ma, gives [n :m%. MU.mg :m% and

v (250 mss)?
H = R 2
gR  (9.80 m/s?)(170 m)

2 2 2
(b) Y= Rg =constant, so R V) =) /'USZ =(25.0 m/s) /’ULB =14.4 m/s.
Hs M1 Hs2 Hs1 Hs1

EVALUATE: A smaller coefficient of friction means a smaller maximum friction force, a smaller possible
acceleration and therefore a smaller speed.

=0.375
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Arad

mg

Figure 5.48

5.49. IDENTIFY: Apply Newton’s second law to the car in circular motion, assume friction is negligible.

SET UP: The acceleration of the caris a,, = v2/R. As shown in the text, the banking angle # is given

2
by tan /3 :V—R. Also, n =mg/cos . 65.0 mi/h =29.1m/s.
g

(29.1 m/s)?
(9.80 m/s?)(225 m)
the mass of the vehicle, so the truck and car should travel at the same speed.
(1125 kg)(9.80 m/s?)
- co0s21.0°

EXECUTE: (a) tan = and f=21.0°. The expression for tan # does not involve

(b) For the car, ng, =1.18x10* N and Piuck = 2Mcqr = 2.36x10* N, since

car

Mypyck = 2mcar'

EVALUATE: The vertical component of the normal force must equal the weight of the vehicle, so the
normal force is proportional to m.

5.50. IDENTIFY: The acceleration of the person is a4 = v2/R, directed horizontally to the left in the figure in

the problem. The time for one revolution is the period 7 = ﬂ Apply =F =ma to the person.
v

SET UP: The person moves in a circle of radius R =3.00 m + (5.00 m)sin30.0° =5.50 m. The free-body

diagram is given in Figure 5.50. F is the force applied to the seat by the rod.
mg

EXECUTE: (a) XF, =ma, gives Fco0s30.0°=mg and F =——=—.
@ Y v & & c0s30.0°

XF, =ma, gives

2
Fsin30.0° = m% Combining these two equations gives

v=,/Rgtanf = \/(5.50 m)(9.80 m/sz)tan30.0° =5.58 m/s. Then the period is
_27R _27(5.50 m)
C v 558m/s
(b) The net force is proportional to m so in XF =ma the mass divides out and the angle for a given rate of
rotation is independent of the mass of the passengers.

EVALUATE: The person moves in a horizontal circle so the acceleration is horizontal. The net inward
force required for circular motion is produced by a component of the force exerted on the seat by the rod.

T =6.19s.
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5.51.

5.52.

Grad Fcos30°

Fsin30° i

' mg

Figure 5.50

IDENTIFY: Apply F =ma to the composite object of the person plus seat. This object moves in a

horizontal circle and has acceleration a directed toward the center of the circle.

rad >

SET UP: The free-body diagram for the composite object is given in Figure 5.51. Let +x be to the right,
in the direction of @,,4. Let +y be upward. The radius of the circular path is R =7.50 m. The total mass

is (255 N +825 N)/(9.80 m/s>) =110.2 kg. Since the rotation rate is 28.0 rev/min = 0.4667 rev/s, the

period T'is L =2.143s.
0.4667 rev/s

mg _255N+825N

= =1410 N.
c0s40.0° ¢0s40.0°

EXECUTE: XF), =ma, gives T,c0s40.0°—mg =0 and 7, =

XF =ma, gives T,sin40.0°+Tp =ma,y and

2 2
A = m4”_R_ T,5in40.0° = (110.2 kg)w
2 2
T (2.143 5)

The tension in the horizontal cable is 6200 N and the tension in the other cable is 1410 N.

EVALUATE: The weight of the composite object is 1080 N. The tension in cable 4 is larger than this since
its vertical component must equal the weight. The tension in cable B is less than ma,,q because part of the
required inward force comes from a component of the tension in cable A.

— (1410 N)sin40.0° = 6200 N

y Arad
——

T, cos40°

A

Y mg
Figure 5.51

IDENTIFY: Apply ZF =mi to the button. The button moves in a circle, so it has acceleration a,,.

SET UP: We apply Newton’s second law to the horizontal and vertical motion. Vertically we get n = w,
2

and horizontally we get ugng = mv’/R. Combining these equations gives M = ;— Also, v =2nR/T.
g
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v? . . . 27R AR
EXECUTE: (a) 4, = R Expressing v in terms of the period 7, v = SO U = ”T A platform
g I"g
. . 47%(0.220
speed of 40.0 rev/min corresponds to a period of 1.50 s, so 4 = il (20 m) o= 0.394.
(1.50 s)°(9.80 m/s”)
(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the
period (longer periods mean slower speeds, so the button may be moved farther out) and so is inversely
proportional to the square of the speed. Thus, at the higher speed, the maximum radius is
2
40.0
(0.220 m)(—) =0.0978 m.
60.0
47°R . . : . , N
EVALUATE: a4 = P The maximum radial acceleration that friction can give is (i mg. At the faster
rotation rate T is smaller so R must be smaller to keep a,,q4 the same.
. ; . 47°R
5.53.  IDENTIFY: The acceleration due to circular motion is dpq = ———.
T
SETUP: R =400 m. 1/T is the number of revolutions per second.
EXECUTE: (a) Setting a,,q4 =g and solving for the period T gives
R 4
T:ZI\/::2’ /M = 40.1 s,
g 9.80 m/s’
so the number of revolutions per minute is (60 s/min)/(40.1 s) =1.5 rev/min.
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of
the square root of the ratio of the accelerations, T’ = (1.5 rev/min)x+/3.70/9.8 = 0.92 rev/min.
2
EVALUATE: In part (a) the tangential speed of a point at the rim is given by a4 = VE’ SO
v =4 Ra,y =+ Rg =62.6 m/s; the space station is rotating rapidly.
5.54. IDENTIFY: T = @ The apparent weight of a person is the normal force exerted on him by the seat he
v

is sitting on. His acceleration is a,,q = v?/R, directed toward the center of the circle.
SET UP: The period is 7 =60.0 s. The passenger has mass m = w/g =90.0 kg.

2 2
27R 278500 m) _ 5 54 s, Notethiat ay = = O22 ) — 6 549 2.
T 60.0's R 50.0 m
(b) The free-body diagram for the person at the top of his path is given in Figure 5.54a. The acceleration is

downward, so take +y downward. XF, =ma, gives mg—n=md .

EXECUTE: (a) v=

n=m(g—a,y) =(90.0 kg)(9.80 m/s> —0.549 m/s*) =833 N.

The free-body diagram for the person at the bottom of his path is given in Figure 5.54b. The acceleration is
upward, so take +y upward. XF), =ma, gives n—mg =mayy and n=m(g +a,q) =931 N.

2
(c) Apparent weight =0 means n=0 and mg =ma . g= % and v=,/gR =22.1 m/s. The time for one
27R _27(50.0 m) _
v 22.1 m/s

(d) n=m(g+a,y)=2mg =2(882N)=1760 N, twice his true weight.

revolution would be 7 = 14.2 s. Note that a4y = g.

EVALUATE: At the top of his path his apparent weight is less than his true weight and at the bottom of his
path his apparent weight is greater than his true weight.
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—— X f“rad

‘am 44—

mg

mg

(a) (b)
Figure 5.54

5.55. IDENTIFY: Apply =F =ma to the motion of the pilot. The pilot moves in a vertical circle. The apparent
weight is the normal force exerted on him. At each point @, is directed toward the center of the circular
path.

(a) SET UP: “the pilot feels weightless” means that the vertical normal force n exerted on the pilot by

the chair on which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in
Figure 5.55a.

‘, EXECUTE:

l l EFy =ma,,
i mg =ma

a rad

rad
€<%
Figure 5.55a

Thus v =+/gR =+/(9.80 m/s2)(150 m) = 38.34 m/s

v=(3834 m/s)[ I'km j[3600 5

j:138km/h
10°m/\ 1h

(b) SET Up: The force diagram for the pilot at the bottom of the path is given in Figure 5.55b. Note that
the vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward.

y EXECUTE:

ZFy =ma,

2

TU 2 n—mg=m d
rad - - e

R

2

v
mg n=mg +mE

This normal force is the pilot’s
apparent weight.

Figure 5.55b

w=T00N, so m=—=7143kg

3
v =(280 km/h)(&j 10" m | _ 7778 ms
3600s )| 1km

0Q
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(77.78 m/s)?

Thus =700 N +71.43 kg
150 m

=3580 N.
EVALUATE: In part (b), n >mg since the acceleration is upward. The pilot feels he is much heavier than
when at rest. The speed is not constant, but it is still true that a4 = v2/R at each point of the motion.

5.56. IDENTIFY: a4 = Vv2/R, directed toward the center of the circular path. At the bottom of the dive, g is
upward. The apparent weight of the pilot is the normal force exerted on her by the seat on which she is

sitting.

SET UP: The free-body diagram for the pilot is given in Figure 5.56.
2 2 5

EXECUTE: () a,q = 24 gives R = Y - M = m

dpq 4.00(9.80 m/s?)
(b) XF), =ma, gives n—mg = ma,,.
n=m(g +ag,y)=m(g+4.00g)=5.00mg =(5.00)(50.0 kg)(9.80 m/s*) = 2450 N
EVALUATE: Her apparent weight is five times her true weight, the force of gravity the earth exerts on her.

y

n
f“ rad

|
mg

Figure 5.56

5.57. IDENTIFY: Apply F =ma to the water. The water moves in a vertical circle. The target variable is the
speed v; we will calculate a4 and then get v from a4 = Vv2/R.

SET Up: Consider the free-body diagram for the water when the pail is at the top of its circular path, as
shown in Figures 5.57a and b.

T ~ The radial acceleration is in toward the center
Bia N of the circle so at this point is downward. 7 is the
downward normal force exerted on the water by
l a.q the bottom of the pail.

Figure 5.57a

EXECUTE:
>F , =ma,

+mg = v
n+mg=m—
R

Figure 5.57b

At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed,
n — 0. (Note that the force n cannot be upward.)
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5.58.

5.59.

2
With n— 0 the equation becomes mg = m% v=4gR = \/(9.80 11’1/52)(0.600 m) =2.42 m/s.

EVALUATE: At the minimum speed a4 = g. If v is less than this minimum speed, gravity pulls the water
(and bucket) out of the circular path.
IDENTIFY: The ball has acceleration a4 = v?/R, directed toward the center of the circular path. When

the ball is at the bottom of the swing, its acceleration is upward.
SET UP: Take +y upward, in the direction of the acceleration. The bowling ball has mass

m=wlg =7.27 kg.
v (420 m/s)?

(b) The free-body diagram is given in Figure 5.58. £F, = ma,, gives T'=mg = may,q.
T =m(g +a,y) =(7.27 kg)(9.80 m/s* +4.64 m/s*) =105 N

EVALUATE: The acceleration is upward, so the net force is upward and the tension is greater than the weight.

y

T
A f“md

mg

Figure 5.58

IDENTIFY: Since the arm is swinging in a circle, objects in it are accelerated toward the center of the
circle, and Newton’s second law applies to them.

SETUP: R =0.700 m. A 45° angle is é of a full rotation, so in % s a hand travels through a distance of

%(27[13). In (c) use coordinates where +y is upward, in the direction of a4 at the bottom of the swing.

2
S v
The acceleration is a4 = %

EXECUTE: (a) v =+ 228
8050 s

(b) The free-body diagram is shown in Figure 5.59. F'is the force exerted by the blood vessel.

v

F
Ayrad

W = mg

Figure 5.59
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5.60.

5.61.

(¢) IF), =ma, gives F —w=ma,, and
F=m(g +ayy) =(1.00x10kg)(9.80 m/s* +1.73 m/s*) =1.15x 1072 N, upward.

(d) When the arm hangs vertically and is at rest, a,q =0 so F =w=mg =9.8x 107 N.

EVALUATE: The acceleration of the hand is only about 20% of g, so the increase in the force on the blood
drop when the arm swings is about 20%.

IDENTIFY: Apply Newton’s first law to the person. Each half of the rope exerts a force on him, directed
along the rope and equal to the tension 7 in the rope.

SET UP: (a) The force diagram for the person is given in Figure 5.60.

Y T, and T, are the

2 tensions in each half of
the rope.

'I'I cosB T cosB

w =mg

Figure 5.60

EXECUTE: XF, =0

T, cos@—T cos@=0

This says that 7; =7, =T (The tension is the same on both sides of the person.)
2F, =0

Tysin@+T,sinf—mg =0

But 7, =T, =T, so 2Tsin@ =mg

mg _ (90.0 kg)(9.80 m/s?)

o =2540 N
2sin @ 2sin10.0°

(b) The relation 27sin@ =mg still applies but now we are given that 7 = 2.50x10* N (the breaking
strength) and are asked to find 6.

Ging =8 — (90.0kg)(9.80 m/s?)
2T 2(2.50x10%N)

EVALUATE: T =mg/(2sin@) saysthat T =mg/2 when 6 =90° (rope is vertical).
T — o when 8 — 0 since the upward component of the tension becomes a smaller fraction of the tension.
IDENTIFY: Apply ZF = ma to the knot.
SETUP: a =0. Use coordinates with axes that are horizontal and vertical.
EXECUTE: (a) The free-body diagram for the knot is sketched in Figure 5.61.
T; is more vertical so supports more of the weight and is larger. You can also see this from XF, =ma,:

T, c0840° —T,cos60° =0. T, cos40°—T;cos60° =0.
(b) T; is larger so set 7; =5000 N. Then 7, =7;/1.532=3263.5N. XF, =ma, gives
7;sin60° + 7, sin40° =w and w=6400 N.

EVALUATE: The sum of the vertical components of the two tensions equals the weight of the suspended
object. The sum of the tensions is greater than the weight.

=0.01764, 6=1.01°.
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5.62.

5.63.

5.64.

Figure 5.61

IDENTIFY: Apply F =ma to each object. Constant speed means a = 0.

SET Up: The free-body diagrams are sketched in Figure 5.62. Tj is the tension in the lower chain, 7, is
the tension in the upper chain and 7 = F is the tension in the rope.

EXECUTE: The tension in the lower chain balances the weight and so is equal to w. The lower pulley must
have no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope,
which equals F, is w/2. Then, the downward force on the upper pulley due to the rope is also w, and so the
upper chain exerts a force w on the upper pulley, and the tension in the upper chain is also w.

EVALUATE: The pulley combination allows the worker to lift a weight w by applying a force of only w/2.

T T T Ty

Figure 5.62

IDENTIFY: The engine is hanging at rest, so its acceleration is zero which means that the forces on it must
balance. We balance horizontal components and vertical components.

SET UP: In addition to the tensions in the four cables shown in the text, gravity also acts on the engine. Call

+x horizontally to the right and +y vertically upward, and call @ the angle that cable C makes with cable D. The
mass of the engine is 409 kg and the tension 7 in cable 4 is 722 N.

EXECUTE: The tension in cable D is the only force balancing gravity on the engine, so 7p = mg. In the
x-direction, we have T, = T sin @, which gives Tc = Tx/sin @ = (722 N)/(sin 37.1°) = 1197 N. In the
y-direction, we have Ty — T — Tc cos @ = 0, which gives T = (409 kg)(9.80 m/s*) + (1197 N)cos(37.1°)
=4963 N. Rounding to 3 significant figures gives Tz = 4960 N and 7 = 1200 N.

EVALUATE: The tension in cable B is greater than the weight of the engine because cable C has a
downward component that B must also balance.

IDENTIFY: Apply Newton’s first law to the ball. Treat the ball as a particle.

SET Up: The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface.
The normal force is perpendicular to the surface of the ramp. Use x- and y-axes that are horizontal and vertical.

EXECUTE: (a) The free-body diagram for the ball is given in Figure 5.64 (next page). The normal force
has been replaced by its x and y components.

mg
c0s35.0°
(¢) ZF, =0 gives T —nsin35.0°=0 and T =(1.22mg)sin35.0° = 0.700mg.

(b) XF, =0 gives ncos35.0°-w=0 and n = =1.22mg.
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5.65.

EVALUATE: Note that the normal force is greater than the weight, and increases without limit as the angle
of the ramp increases toward 90°. The tension in the wire is wtan¢@, where ¢ is the angle of the ramp
and T also increases without limit as ¢ — 90°.

S
| n cos 35°

n sin 35°

Figure 5.64

IDENTIFY: Apply Newton’s first law to the ball. The force of the wall on the ball and the force of the ball

on the wall are related by Newton’s third law.

SET UP: The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall.
16.0 cm

To calculate the angle ¢ that the wire makes with the wall, use Figure 5.65a: sing = and ¢ = 20.35°

cm
EXECUTE: (a) The free-body diagram is shown in Figure 5.65b. Use the x and y coordinates shown in the

w_ (45.0 kg)(9.80 m/s?)
cos ¢ - €0s20.35°
(b) ZF, =0 gives Tsing—n=0. n=(470 N)sin20.35° = 163 N. By Newton’s third law, the force the
ball exerts on the wall is 163 N, directed to the right.

figure. £F), =0 gives T'cosp—w=0 and T = =470 N

w
EVALUATE: n :(

¢jsin(b =wtan¢@. As the angle ¢ decreases (by increasing the length of the wire),
cos

T decreases and n decreases.

T cos ¢

30cm [¢ Tsin ¢

(@) (b)
Figure 5.65
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5.66.

5.67.

5.68.

IDENTIFY: In each rough patch, the kinetic friction (and hence the acceleration) is constant, but the
constants are different in the two patches. Newton’s second law applies, as well as the constant-
acceleration kinematics formulas in each patch.

SET Up: Choose the +y-axis upward and the +x-axis in the direction of the velocity.

EXECUTE: (a) Find the velocity and time when the box is at x = 2.00 m. Newton’s second law tells us that
n=mg and —f = ma, which gives —umg = may; a, = —ug = —(0.200)(9.80 m/s’) = —1.96 m/s>. Now use

the kinematics equations involving v,. Using v)% = v&x +2a,(x—x,) we get

v, = \/(4.00 m/s)? +2(—1.96 m/s>)(2.00 m) =2.857 m/s. Now solve the equation v, = vy, + a,z for ¢ to get

t=(2.857 m/s — 4.00 m/s)/(—1.96 m/s’) = 0.5834 s.

Now look at the motion in the section for which z; = 0.400: a, =—(0.400)(9.80 m/s®) =—3.92 m/s’, v, =0,

Vor = 2.857 m/s. Solving vf = vgx +2a,.(x—x,) forx—x, gives x —xy=—2.857 m/8)/[2(-3.92 m/s>)] = 1.041 m.
The box is at the point x =2.00 m + 1.041 m = 3.04 m.

Solving v, = vy, + ayt for ¢ gives 1 = (-2.857 m/s)/(=3.92 m/s’) = 0.7288 s. The total time is
0.5834s+0.7288 s =1.31s.

EVALUATE: We cannot do this problem in a single process because the acceleration, although constant in
each patch, is different in the two patches.

IDENTIFY: Kinematics will give us the acceleration of the person, and Newton’s second law will give us
the force (the target variable) that his arms exert on the rest of his body.

SET UP: Let the person’s weight be /¥, so W = 680 N. Assume constant acceleration during the speeding

up motion and assume that the body moves upward 15 cm in 0.50 s while speeding up. The constant-
acceleration kinematics formula y -y, = vyt + %ayt2 and XF, = ma, apply. The free-body diagram for
the person is given in Figure 5.67. F is the force exerted on him by his arms.

.‘A

A F fll

W

Figure 5.67
EXECUTE: vy, =0, y—yy=0.15m, £=0.50s. y—y,=vyt+ %ayt2 gives

a

= 2(y;y0) =2015 n;) =1.2 mss%. LF, =ma, gives F~W =ma. m =K, $0
¢ (0.50 5) g

a

F= W{l + —J =1.12W =762 N.
g

EVALUATE: The force is greater than his weight, which it must be if he is to accelerate upward.

IDENTIFY: The force is time-dependent, so the acceleration is not constant. Therefore we must use

calculus instead of the standard kinematics formulas. Newton’s second law applies.

SET UP: The acceleration is the time derivative of the velocity and 2F, = ma,,.
EXECUTE: Differentiating the velocity gives a, = dv,/dt = 2.00 m/s” + (1.20 m/s’)z. Find the time when
vy =9.00 m/s: 9.00 m/s = (2.00 m/s%)t + (0.600 m/s’)7. Solving this quadratic for ¢ and taking the positive
value gives ¢ = 2.549 s. At this time the acceleration is a = 2.00 m/s* + (1.20 m/s’)(2.549 s) = 5.059 m/s.
Now apply Newton’s second law to the box, calling T the tension in the rope: T — mg = ma, which gives

T = m(g + a) = (2.00 kg)(9.80 m/s> + 5.059 m/s?) = 29.7 N.
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5.69.

5.70.

5.71.

EVALUATE: The tension is greater than the weight of the box, which it must be to accelerate the box
upward. As time goes on, the acceleration, and hence the tension, would increase.

IDENTIFY: We know the forces on the box and want to find information about its position and velocity.
Newton’s second law will give us the box’s acceleration.

2F
SETUP: a,(t)= —2 We can integrate the acceleration to find the velocity and the velocity to find the
m

position. At an altitude of several hundred meters, the acceleration due to gravity is essentially the same as
it is at the earth’s surface.

EXECUTE: Let +y be upward. Newton’s second law gives T'—mg =ma,, so
ay(t) =(12.0 m/s3)t -9.8 m/s>. Integrating the acceleration gives vy (¥) =(6.00 /s’ )12 -(9.8 m/s2)t.
(@) (i) At r=1.00's, v, =-3.80 m/s. (ii) At 7=3.00s, v, =24.6 m/s.

(b) Integrating the velocity gives y— y, =(2.00 m/s3)t3 -(49 m/sz)tz. v, =0 at 1=1.63s. At 1=1.63s,
y=y9=871m~13.07 m =-4.36 m.
(c) Setting y—y, =0 and solving for ¢ gives ¢ =2.45 s.

EVALUATE: The box accelerates and initially moves downward until the tension exceeds the weight of the
box. Once the tension exceeds the weight, the box will begin to accelerate upward and will eventually
move upward, as we saw in part (b).

IDENTIFY: We can use the standard kinematics formulas because the force (and hence the acceleration) is
constant, and we can use Newton’s second law to find the force needed to cause that acceleration. Kinetic
friction, not static friction, is acting.

. . 1 . .
SET UP: From kinematics, we have x —xy = vy, + Eaxtz and XF, =ma, applies. Forces perpendicular

to the ramp balance. The force of kinetic friction is fi = 4 mgcosé.

EXECUTE: Call +x upward along the surface of the ramp. Kinematics gives

4 = 2(x = x) _ 2(8.00 m)
* 1 (6.00 s)*

for F and putting in the numbers for this problem gives

F = m(a_+ gsin@+ 1, mgcos) = (5.00 kg)(0.4444 m/s® +4.9 m/s* +3.395 m/s*) = 43.7 N.

= 0.4444 m/s°. XF, =ma, gives F —mgsinf— lmgcos6 =ma,. Solving

EVALUTE: As long as the box is moving, only kinetic friction, not static friction, acts on it. The force is
less than the weight of the box because only part of the box’s weight acts down the ramp. We should also
investigate if the force is great enough to start the box moving in the first place. In that case, static friction
would have it maximum value, so f; = un. The force F in this would be F' = ugngcos(30°) + mgsin(30°) =
mg(u,c0s30° + sin30°) = (5.00 kg)(9.80 m/s*)[(0.43)(cos30°) + sin30°] = 42.7 N. Since the force we found
is 43.7 N, it is great enough to overcome static friction and cause the box to move.

IDENTIFY: The system of boxes is accelerating, so we apply Newton’s second law to each box. The friction is
kinetic friction. We can use the known acceleration to find the tension and the mass of the second box.

SET UP: The force of frictionis f = wun, XF, =ma, applies to each box, and the forces perpendicular
to the surface balance.

EXECUTE: (a) Call the +x-axis along the surface. For the 5 kg block, the vertical forces balance, so

n+ Fsin53.1°—mg =0, which gives n =49.0 N—-31.99 N =17.01 N. The force of kinetic friction is

fk =p n=5.104 N. Applying Newton’s second law along the surface gives Fc0s53.1°~T — f; =ma.
Solving for T gives T = F c0s53.1°— f, —ma =24.02N-5.10N-7.50 N=11.4 N.
(b) For the second box, T'— f; =ma. T -, mg =ma. Solving for m gives

T 1142 N

m= = 2 2
Hog+a (03)9.8 m/s?)+1.5ms

=2.57 kg.
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5.72.

5.73.

5.74.

5.75.

EVALUATE: The normal force for box B is less than its weight due to the upward pull, but the normal
force for box 4 is equal to its weight because the rope pulls horizontally on 4.

IDENTIFY: The horizontal force has a component up the ramp and a component perpendicular to the surface
of the ramp. The upward component causes the upward acceleration and the perpendicular component affects
the normal force on the box. Newton’s second law applies. The forces perpendicular to the surface balance.
SET UP: Balance forces perpendicular to the ramp: n—mgcos@— F'sin@ =0. Applying Newton’s second

law parallel to the ramp surface gives F cos@ — fk —mgsinf =ma.

EXECUTE: Using the above equations gives n=mgcosé + F'sin@. The force of friction is f; = un, so
Jx = 1, (mgcos@+ Fsinb). Fcost - mgcost -, Fsing—mgsinf =ma. Solving for F gives

Fe m(a+ {4, gcosf +gsino)

- . Putting in the numbers, we get
cos@ — M, sin g
= (600 kg)[3.60 m/s? +(0.30)(9.80 m/s?)c0s37.0° +(9.80 m/s” )sin37.0°]
c0s37.0° - (0.30)sin37.0°
EVALUATE: Even though the push is horizontal, it can cause a vertical acceleration because it causes the

normal force to have a vertical component greater than the vertical component of the box’s weight.
IDENTIFY: Newton’s second law applies to the box.

SETUP: f, = wn, XF =ma_,and IF, =ma, apply to the box. Take the +x-axis down the surface of

=115N

the ramp and the +y-axis perpendicular to the surface upward.
EXECUTE: XF =ma, gives n + Fsin(33.0°) — mgcos(33.0°) = 0, which gives n = 51.59 N. The friction

force is f, = wn =(0.300)(51.59 N) = 15.48 N. Parallel to the surface we have XF = ma_ which gives
Fcos(33.0°) +mgsin(33.0°) - fi = ma, which gives a = 6.129 m/s". Finally the velocity formula gives us
Ve = Voo + at =0+ (6.129 m/s”)(2.00 s) = 12.3 m/s.
EVALUATE: Even though F is horizontal and mg is vertical, it is best to choose the axes as we have done,
rather than horizontal-vertical, because the acceleration is then in the x-direction. Taking x and y to be
horizontal-vertical would give the acceleration x- and y-components, which would complicate the solution.
IDENTIFY: This is a system having constant acceleration, so we can use the standard kinematics formulas
as well as Newton’s second law to find the unknown mass m,.
SET UP: Newton’s second law applies to each block. The standard kinematics formulas can be used to
find the acceleration because the acceleration is constant. The normal force on m; is m;gcosa, so the
force of friction on itis fi = t4mgcosa.
EXECUTE: Standard kinematics gives the acceleration of the system to be

_2(y-yy) _2(12.0 m)
4y =7 - 2

t (3.00 s)

Jx =(0.40)(117.7 N) =47.08 N. Applying Newton’s second law to m; gives T — fi —mygsina =ma,

=2.667 m/s”. For my,n=mgcosa=117.7 N, so the friction force on m is

where T is the tension in the cord. Solving for T gives
T = f +mgsina+ma=47.08 N+156.7 N +53.34 N =257.1 N. Newton’s second law for m, gives

T 257.1N

g—a 9.8 m/s? —2.667 m/s>
EVALUATE: We could treat these blocks as a two-block system. Newton’s second law would then give
myg —mygsina — Ly m g cosa = (my +m,)a, which gives the same result as above.

myg —T =mya, so my = =36.0 kg.

IDENTIFY: Newton’s second law applies, as do the constant-acceleration kinematics equations.
SET UP: Call the +x-axis horizontal and to the right and the +y-axis vertically upward. XF), =ma, and

XF, = ma, both apply to the book.
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EXECUTE: The book has no horizontal motion, so XF, = ma, =0, which gives us the normal force n:
n = Fcos(60.0°). The kinetic friction force is f, = i = (0.300)(96.0 N)(cos 60.0°) = 14.4 N. In the vertical
direction, we have EFy =ma,, which gives Fsin(60.0°) — mg — f, = ma. Solving for a gives us

a=1[(96.0 N)(sin 60.0°) — 49.0 N — 14.4 N]/(5.00 kg) = 3.948 m/s” upward. Now the velocity formula

v =v5, +2a,(y— ) gives v, = \/2(3.948 m/s2)(0.400 m) = 1.78 mvs.

EVALUATE: Only the upward component of the force /" makes the book accelerate upward, while the
horizontal component of T'is the magnitude of the normal force.

5.76. IDENTIFY: The system is in equilibrium. Apply Newton’s first law to block 4, to the hanging weight and
to the knot where the cords meet. Target variables are the two forces.

(a) SET UP: The free-body diagram for the hanging block is given in Figure 5.76a.

35 EXECUTE:
a=0

ZFy=may
I-w=0

T,=120N

Figure 5.76a

SET Up: The free-body diagram for the knot is given in Figure 5.76b.

¥y EXECUTE:
ZFy =ma,
T,sin45.0°-73 =0
Ty 120N
T, =— =
sin45.0° sin45.0°
7, =17.0N
Figure 5.76b
XF, =ma,

T,co0s45.0°=T1, =0
T, =T,c0s45.0°=12.0 N
SET Up: The free-body diagram for block 4 is given in Figure 5.76c.

EXECUTE:

ZE‘C = max

- f,=0

f,=T1=12.0N
Figure 5.76¢
EVALUATE: Also can apply XF), =ma, to this block:

n—wy =0
n=w,=60.0N

Then pn =(0.25)(60.0 N) =15.0 N; this is the maximum possible value for the static friction force.

We see that f, < fn; for this value of w the static friction force can hold the blocks in place.
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5.71.

5.78.

5.79.

(b) SET UP: We have all the same free-body diagrams and force equations as in part (a) but now the static
friction force has its largest possible value, f, = n=15.0 N. Then 7; = f, =15.0 N.

EXECUTE: From the equations for the forces on the knot
L 150N
T, c0s45.0°~T7 =0 implies 7, =7;/c0s45.0° = 150N 212N
co0s45.0°
T,sin45.0° 75 =0 implies 73 =7,5in45.0° =(21.2 N)sin45.0°=15.0 N
And finally 73 —w=0 implies w=75 =15.0 N.
EVALUATE: Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0) and w is
larger by this same ratio.
IDENTIFY: Apply XF =ma to each block.
SET Up: Constant speed means a = 0. When the blocks are moving, the friction force is f,, and when

they are at rest, the friction force is f;.

EXECUTE: (a) The tension in the cord must be m,g in order that the hanging block move at constant
speed. This tension must overcome friction and the component of the gravitational force along the incline,
S0 myg =(mgsina + g mgcosa) and m, = my(sinax + L4 cos ).

(b) In this case, the friction force acts in the same direction as the tension on the block of mass m;, so
myg = (mgsina — 4 nmgcosc), or my = my(sin o — [4 coscr).

(c) Similar to the analysis of parts (a) and (b), the largest m, could be is my(sine + (,coser) and the
smallest m, could be is m;(sina — f,cos ).

EVALUATE: In parts (a) and (b) the friction force changes direction when the direction of the motion of
m; changes. In part (c), for the largest m, the static friction force on m is directed down the incline and

for the smallest m, the static friction force on m; is directed up the incline.

IDENTIFY: The net force at any time is F,; = ma.

SETUP: At t=0, a=62g. The maximum acceleration is 140g at # =1.2 ms.

EXECUTE: (a) F,, =ma =62mg =62(210x107° kg)(9.80 m/s*) =1.3x10~* N. This force is 62 times the
flea’s weight.

(b) F =140mg = 2.9x107* N, at 1=1.2ms.

(c) Since the initial speed is zero, the maximum speed is the area under the a, —¢ graph. This gives 1.2 my/s.
EVALUATE: « is much larger than g and the net external force is much larger than the flea’s weight.
IDENTIFY: Apply ZF =md to each block. Use Newton’s third law to relate forces on 4 and on B.

SET Up: Constant speed means a =0.

EXECUTE: (a) Treat 4 and B as a single object of weight w = w, + wp=1.20 N+ 3.60 N =4.80 N.

The free-body diagram for this combined object is given in Figure 5.79a. XF), =ma, gives
n=w=480N. f = n=(0.300)(4.80 N)=144N. XF, =ma, gives F = f =144 N.

(b) The free-body force diagrams for blocks 4 and B are given in Figure 5.79b. n and f; are the normal and
friction forces applied to block B by the tabletop and are the same as in part (a). f,p is the friction force that
A applies to B. It is to the right because the force from A opposes the motion of B. njp is the downward force
that 4 exerts on B. fi 4 is the friction force that B applies to 4. It is to the left because block B wants 4 to
move with it. n, is the normal force that block B exerts on 4. By Newton’s third law, f; = fi, and these

forces are in opposite directions. Also, n, =np and these forces are in opposite directions.

XF, =ma, forblock 4 gives n, =w, =120 N, so ny =120 N.

fiy = Hen, =(0300)(1.20 N) =0.360 N, and f,, =0.360 N.
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5.80.

5.81.

5.82.

XF, =ma, forblock 4 gives T = f, , =0.360 N.
2F, =ma, forblock B gives F' = f, . + fi, =0360 N+1.44 N =1.80 N.

EVALUATE: In part (a) block 4 is at rest with respect to B and it has zero acceleration. There is no
horizontal force on A besides friction, and the friction force on A4 is zero. A larger force F is needed in part
(b), because of the friction force between the two blocks.

y ?

ny

wg

| ng ' .“'A
w block B block A
(a) (b) (o]

Figure 5.79

IDENTIFY: Apply F = ma to the passenger to find the maximum allowed acceleration. Then use a
constant acceleration equation to find the maximum speed.
SET UP: The free-body diagram for the passenger is given in Figure 5.80.

EXECUTE: XF|, =ma, gives n—mg=ma. n=1.6mg, so a=0.60g =5.88 m/s>.

y
y=yy=3.0m,a,6=5.88 m/s?, Voy =0 so vi = vgy +2a,(y—yp) gives v, =5.9m/s.
EVALUATE: A larger final speed would require a larger value of a,, which would mean a larger normal

force on the person.

tu

mg

Figure 5.80

IDENTIFY: a =dv/dt. Apply =F =md to yourself.
SET UP: The reading of the scale is equal to the normal force the scale applies to you.

EXECUTE: The elevator’s acceleration is a = % =3.0m/s% +2(0.20 m/s’)t =3.0 m/s? +(0.40 m/s>)z.

At 1=4.0s,a=3.0m/s>+ (0.40 m/s3)(4.0 s)=4.6 m/s?. From Newton’s second law, the net force on you
is F

ot = Facale —w=ma and F,,,, =w+ma = (64 kg)(9.8 m/s*) + (64 kg)(4.6 m/s*) =920 N.
EVALUATE: a« increases with time, so the scale reading is increasing.
IDENTIFY: Apply SF =ma to the hammer. Since the hammer is at rest relative to the bus, its acceleration

equals that of the bus.
SET Up: The free-body diagram for the hammer is given in Figure 5.82.
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EXECUTE: XF = ma_ gives Tsin56.0°—mg =0 so Tsin56.0° = mg. XF_ = ma_ gives T c0s56.0° = ma.
y y x x

.. . 1
Divide the second equation by the first: 4. anda=6.61 m/s™

g tan56.0°

EVALUATE: When the acceleration increases, the angle between the rope and the ceiling of the bus
decreases, and the angle the rope makes with the vertical increases.

a
—

56

mg

Figure 5.82

5.83. IDENTIFY: First calculate the maximum acceleration that the static friction force can give to the case.

Apply SF =ma to the case.

(a) SET Up: The static friction force is to the right in Figure 5.83a (northward) since it tries to make the
case move with the truck. The maximum value it can have is f, = U N.

EXECUTE:
EFy =ma,,
n—mg=0
n=mg

Js = U = lgmg

Figure 5.83a

SF, =ma,. f,=ma. lgmg=ma. a= g =(0.30)(9.80 m/s*)=2.94 m/s>. The truck’s acceleration is
less than this so the case doesn’t slip relative to the truck; the case’s acceleration is a =2.20 m/s’
(northward). Then f; =ma =(40.0 kg)(2.20 m/sz) =88.0 N, northward.

(b) IDENTIFY: Now the acceleration of the truck is greater than the acceleration that static friction can
give the case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction
force still tries to keep the case moving with the truck, so the acceleration of the case and the friction force

are both southward. The free-body diagram is sketched in Figure 5.83b.
SET UP:

EXECUTE:
XF, =ma,
n—mg=0
n=mg

fi = thomg =(0.20)(40.0 kg)(9.80 m/s?)
Jfx =78 N, southward

Figure 5.83b
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EVALUATE: f, =ma implies a =—=————=2.0 m/s?. The magnitude of the acceleration of the

case is less than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b)
the friction is in the direction of the motion and accelerates the case. Friction opposes relative motion
between two surfaces in contact.

5.84. IDENTIFY: Apply Newton’s first law to the rope. Let m; be the mass of that part of the rope that is on the
table, and let m, be the mass of that part of the rope that is hanging over the edge. (m; +m, =m, the total

mass of the rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the
length of the rope. Let T be the tension in the rope at that point that is at the edge of the table.
SET Up: The free-body diagram for the hanging section of the rope is given in Figure 5.84a.

y EXECUTE:
ZFy =ma,
a=0 Tr g
! T =myg

l m.,g

SET UP: The free-body diagram for that part of the rope that is on the table is given in Figure 5.84b.

Figure 5.84a

y EXECUTE:
LF, =ma,
n—mg=0

n=mg

Figure 5.84b

When the maximum amount of rope hangs over the edge the static friction has its maximum value:

fs = Ksn = g g

ZE‘C = max

T f,=0

T= Hgmg

Use the first equation to replace 7:

myg = Hgmg

my = Hsny

The fraction that hangs over is Moo A - s

m my + fmy 1+ Hs

EVALUATE: As f, — 0, the fraction goes to zero and as ff, — o, the fraction goes to unity.

5.85. IDENTIFY: Apply SF =ma to the point where the three wires join and also to one of the balls. By

symmetry the tension in each of the 35.0 cm wires is the same.
SET UP: The geometry of the situation is sketched in Figure 5.85a. The angle ¢ that each wire makes

. T . 12.
with the vertical is given by sing = 2 > em

and ¢ =15.26°. Let T, be the tension in the vertical wire
cm

and let Tj be the tension in each of the other two wires. Neglect the weight of the wires. The free-body
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diagram for the left-hand ball is given in Figure 5.85b and for the point where the wires join in Figure 5.85c.

n is the force one ball exerts on the other.

EXECUTE: (a) XF, =ma, applied to the ball gives T cos¢—mg = 0.

T, =" (15.0 kg)(9.80 m/s?)
cos¢@ cos15.26°

T,—2Tgcos¢p=0 and T, =2(152 N)cos¢ =294 N.

(b) XF, =ma, applied to the ball gives n—Tpsing =0 and n = (152 N)sin15.26° =40.0 N.

EVALUATE: T, equals the total weight of the two balls.

=152 N. Then XF), =ma, applied in Figure 5.85¢ gives

-—275 lT,
I
Tycosd| [d!
I
l )
11—t T,,.sm(b X
mg
(b)

Figure 5.85

5.86. IDENTIFY: Apply SF =ma to the car to calculate its acceleration. Then use a constant acceleration
equation to find the initial speed.
SET UP: Let +x be in the direction of the car’s initial velocity. The friction force f, is then in the
—x-direction. 192 ft =58.52 m.
EXECUTE: n=mg and f, = ymg. XF, =ma, gives —[4mg =ma, and

a, =—th.g =—(0.750)(9.80 m/s?) = —7.35 m/s>. v, =0 (stops), x—x, =58.52 m. v2 =3 +2a,(x—x,)

gives vy, =/—2a,(x—xq) = \/—2(—7.35 m/sz)(58.52 m) =29.3 m/s =65.5 mi/h. He was guilty.

2 2 2
V. —V, Vi
EVALUATE: x—x) = —XZ Ox —_ "0x
a a

. If his initial speed had been 45 mi/h he would have stopped in

X X

45 mi/h
65.5 mi/h

2
j (192 ft) =91 ft.

5.87. IDENTIFY: Apply SF =ma to each block. Forces between the blocks are related by Newton’s third law.
The target variable is the force F. Block B is pulled to the left at constant speed, so block 4 moves to the
right at constant speed and a =0 for each block.

SET UP: The free-body diagram for block 4 is given in Figure 5.87a. np, is the normal force that B
exerts on 4. fp, = [4np, is the kinetic friction force that B exerts on 4. Block 4 moves to the right

relative to B, and f5, opposes this motion, so f3, is to the left. Note also that F acts just on B, not on 4.
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Y EXECUTE:
=( =
¢ N pa ZF)’ may
nBA - WA = 0
fBA £
X nBA = 1.90 N
H’A
Figure 5.87a

5.88.

ZFX :max. T_fBA =0. T:fBA =0.57 N.
SET UP: The free-body diagram for block B is given in Figure 5.87b.

.\'

Figure 5.87b

EXECUTE: n,p is the normal force that block 4 exerts on block B. By Newton’s third law 7, and npy,
are equal in magnitude and opposite in direction, so 7,5 =1.90 N. f,p is the kinetic friction force that 4
exerts on B. Block B moves to the left relative to 4 and f,p opposes this motion, so f,p is to the right.
Sap = M g =(0.30)(1.90 N) =0.57 N. nand f, are the normal and friction force exerted by the floor
on block B; fi = t4n. Note that block B moves to the left relative to the floor and f, opposes this motion,
so fy is to the right.

XF,=ma,: n—wg—np=0. n=wp+n,up =420 N+1.90 N=6.10 N. Then

Sk =Hn=(030)(6.10N)=1.83N. XF, =ma,: fp+T+ fi —F =0.
F=T+f;p+f,=057TN+057N+1.83 N=3.0N.

EVALUATE: Note that f,p and f3, are a third law action-reaction pair, so they must be equal in
magnitude and opposite in direction and this is indeed what our calculation gives.

IDENTIFY: Apply XF =ma to the box. Compare the acceleration of the box to the acceleration of the
truck and use constant acceleration equations to describe the motion.

SET UP: Both objects have acceleration in the same direction; take this to be the +x-direction.

EXECUTE: If the box were to remain at rest relative to the truck, the friction force would need to cause an

acceleration of 2.20 m/sz; however, the maximum acceleration possible due to static friction is
(0.19)(9.80 m/sz) =1.86 m/sz, and so the box will move relative to the truck; the acceleration of the box

would be 4 g =(0.15)(9.80 m/s*) =1.47 m/s*. The difference between the distance the truck moves and
the distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time

(= = 2080m) ;o
Gk —box | (220 m/s? —1.47 m/s?)

In this time, the truck moves 1 ay,q#* =1(2.20 m/s*)(2.2215)* =543 m.
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EVALUATE: To prevent the box from sliding off the truck the coefficient of static friction would have to
be 4, =(2.20 m/s*)/g =0.224.

5.89. IDENTIFY: Apply F =ma to each block. Parts (a) and (b) will be done together.

a T

e BC

- a
l
m c

Figure 5.89a

Note that each block has the same magnitude of acceleration, but in different directions. For each block let
the direction of @ be a positive coordinate direction.

SET Up: The free-body diagram for block 4 is given in Figure 5.89b.

¥ EXECUTE:
2F, =ma,

“T Tan T p—myg=mya
Typ=my(a+g)

l T3 =4.00 kg(2.00 m/s* +9.80 m/s*) =47.2 N
my g

Figure 5.89b

SET UP: The free-body diagram for block B is given in Figure 5.89c.

EXECUTE:

ZFy =ma,

n—-mpg =0

n=mgg

Figure 5.89¢

fio = thn = fempg =(0.25)(12.0 kg)(9.80 m/s?) =29.4 N
XF =ma,

Tpe = Typ = fx =mpa

Tge =Typ + fi +mpa =472 N+29.4 N +(12.0 kg)(2.00 m/s?)
Tge =100.6 N

SET UpP: The free-body diagram for block C is sketched in Figure 5.89d (next page).
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EXECUTE:

XF, =ma,

mcg —Tpc =mca

me(g—a)=Tge
T, 100.6 N

me = BC — 3 2:129kg
g—a 9.80 m/s”—2.00 m/s

Figure 5.89d

5.90.

5.91.

EVALUATE: If all three blocks are considered together as a single object and £F =ma is applied to this
combined object, m-g —m g — thmpg =(m  +mp + mc)a. Using the values for f4, m, and mp given

in the problem and the mass m we calculated, this equation gives a =2.00 m/s?, which checks.

IDENTIFY: Apply =F =md to each block. They have the same magnitude of acceleration, a.
SET Up: Consider positive accelerations to be to the right (up and to the right for the left-hand block,
down and to the right for the right-hand block).

EXECUTE: (a) The forces along the inclines and the accelerations are related by
T — (100 kg)gsin30.0° = (100 kg)a and (50 kg)gsin53.1°— T = (50 kg)a, where T'is the tension in the

cord and a the mutual magnitude of acceleration. Adding these relations,
(50 kg sin53.1° —100 kg sin30.0°)g = (50 kg +100 kg)a, or a = —0.067g. Since a comes out negative, the

blocks will slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so
that positive accelerations were to the left, a would be +0.067¢.

(b) @ =0.067(9.80 m/s”) = 0.658 m/s”.

(¢) Substituting the value of @ (including the proper sign, depending on choice of coordinates) into either of
the above relations involving 7 yields 424 N.

EVALUATE: For part (a) we could have compared mgsin @ for each block to determine which direction
the system would move.

IDENTIFY: Let the tensions in the ropes be 7; and 75.

Figure 5.91a

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the
acceleration of that block.
SET Up: The free-body diagram for m is given in Figure 5.91b.
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EXECUTE:
2F. =ma,

L =ma

Figure 5.91b

SET UP: The free-body diagram for m, is given in Figure 5.91c.

EXECUTE:

. ZFy =ma,,

L l myg =T, =mya,
m.,g

Figure 5.91c¢

This gives us two equations, but there are four unknowns (7}, 75, a; and a, ) so two more equations are required.
SET UP: The free-body diagram for the moveable pulley (mass m) is given in Figure 5.91d.

T, T EXECUTE:
1 —
[ ZFy =ma,
mg + T, - 2T =ma
4
mg
T

Figure 5.91d

But our pulleys have negligible mass, so mg =ma =0 and T, = 27]. Combine these three equations to
eliminate 7} and 7,: myg—T, = mya, gives m,g — 21} =mya,. And then with 7} =ma; we have

myg —2mya) = mya,.

SET Up: There are still two unknowns, a; and a,. But the accelerations @, and a, are related. In any

time interval, if m; moves to the right a distance d, then in the same time m, moves downward a distance
d/2. One of the constant acceleration kinematic equations says x —xy = v,/ + %axtz, so if m, moves half

the distance it must have half the acceleration of m;: a, =a;/2, or a; = 2a,.
EXECUTE: This is the additional equation we need. Use it in the previous equation and get
myg —2my(2ay) = mya,.
ay(4my +my) =myg
m
a, = 28

2myg
4m1 + m2

and a; =2a, = .
4m1 +m2
EVALUATE: If my =0 or m; = oo, ay=a, =0. If my>m;, a, =g and a; =2g.

5.92. IDENTIFY: Apply ZF =ma to block B, to block 4 and B as a composite object, and to block C. If 4 and
B slide together all three blocks have the same magnitude of acceleration.
SET UP: If A4 and B don’t slip, the friction between them is static. The free-body diagrams for block B, for
blocks 4 and B, and for C are given in Figure 5.92. Block C accelerates downward and 4 and B accelerate
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5.93.

5.94.

5.95.

to the right. In each case take a positive coordinate direction to be in the direction of the acceleration. Since
block A moves to the right, the friction force f, on block B is to the right, to prevent relative motion

between the two blocks. When C has its largest mass, f; has its largest value: f; = t{n.
EXECUTE: XF, =ma, applied to the block B gives f, =mpa. n=mpg and f, = fimpg. Umpg =mpa and
a = g. XF, =ma, applied to blocks 4 + B gives T =m za = m pplg. XF, =ma, applied to block C gives
0.750
[1 —-0.750

EVALUATE: With no friction from the tabletop, the system accelerates no matter how small the mass of C'is.
If m is less than 39.0 kg, the friction force that 4 exerts on B is less than f4n. If m is greater than 39.0 kg,

m
meg =T =mca. meg —mypllg =melg. mc :1%;’75:(5.00 kg +8.00 kg)

S

j =39.0 kg.

blocks C and 4 have a larger acceleration than friction can give to block B, and 4 accelerates out from under B.

mgg Mmyp8

block B blocks A+B block C

Figure 5.92

IDENTIFY: Apply the method of Exercise 5.15 to calculate the acceleration of each object. Then apply
constant acceleration equations to the motion of the 2.00 kg object.

SET UP: After the 5.00 kg object reaches the floor, the 2.00 kg object is in free fall, with downward
acceleration g.

5.00 kg —2.00 kg
5.00 kg +2.00 kg

object will accelerate downward at 3g/7. Let the initial height above the ground be /,. When the large

EXECUTE: The 2.00-kg object will accelerate upward at g =3g/7, and the 5.00-kg

object hits the ground, the small object will be at a height 2/4,, and moving upward with a speed given by

vg =2ahy = 6ghy/7. The small object will continue to rise a distance vg/ 2g =3hy/7, and so the maximum
height reached will be 2k +3hy/7 =17h,/7 =1.46 m above the floor , which is 0.860 m above its initial
height.
EVALUATE: The small object is 1.20 m above the floor when the large object strikes the floor, and it rises
an additional 0.26 m after that.
IDENTIFY: Apply ZF =md to the box.
SET UP: The box has an upward acceleration of a =1.90 m/s>.
EXECUTE: The floor exerts an upward force » on the box, obtained from n—mg =ma, or n =m(a + g).
The friction force that needs to be balanced is

thon = fhem(a + g) = (0.32)(36.0 kg)(1.90 m/s> +9.80 m/s*) =135 N.
EVALUATE: If the elevator were not accelerating the normal force would be n = mg and the friction force
that would have to be overcome would be 113 N. The upward acceleration increases the normal force and
that increases the friction force.
IDENTIFY: Apply ZF =md to the block. The cart and the block have the same acceleration. The normal
force exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the
right. The friction force on the block is directed so as to hold the block up against the downward pull of
gravity. We want to calculate the minimum a required, so take static friction to have its maximum value,
Js = Hgn.
SET UP: The free-body diagram for the block is given in Figure 5.95.
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5.96.

5.97.

5.98.

EXECUTE:
2F. =ma,
n=ma

£ = pn = pyma

Figure 5.95

XF, =ma,: fi—mg=0

M.ma =mg, soa=g/l.
EVALUATE: An observer on the cart sees the block pinned there, with no reason for a horizontal force on
it because the block is at rest relative to the cart. Therefore, such an observer concludes that » =0 and thus

f; =0, and he doesn’t understand what holds the block up against the downward force of gravity. The
reason for this difficulty is that XF =ma does not apply in a coordinate frame attached to the cart. This
reference frame is accelerated, and hence not inertial. The smaller £ is, the larger a must be to keep the
block pinned against the front of the cart.

IDENTIFY: Apply SF =ma to each block.

SET UP: Use coordinates where +x is directed down the incline.

EXECUTE: (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be
pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have
the same acceleration. For the smaller block, (4.00 kg)g(sin30° —(0.25)cos30°)—T = (4.00 kg)a, or

11.11 N =T =(4.00 kg)a, and similarly for the larger, 15.44 N +T =(8.00 kg)a. Adding these two

relations, 26.55 N = (12.00 kg)a, a =2.21 m/s>.
(b) Substitution into either of the above relations gives 7 =2.27 N.

(¢) The string will be slack. The 4.00-kg block will have a =2.78 m/s® and the 8.00-kg block will have

a=1.93 /s, until the 4.00-kg block overtakes the 8.00-kg block and collides with it.

EVALUATE: If the string is cut the acceleration of each block will be independent of the mass of that
block and will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block
would have a smaller acceleration even though it has a larger mass, since it has a larger 4 .

IDENTIFY: Apply ZF =ma to the block and to the plank.

SET UP: Both objects have a =0.

EXECUTE: Let ng be the normal force between the plank and the block and 7, be the normal force
between the block and the incline. Then, nz =wcos @ and ny =ng +3wcos@ =4wcosé. The net
frictional force on the block is 4 (n, +ng) = f4 Swcos@. To move at constant speed, this must balance the

component of the block’s weight along the incline, so 3wsin@ = (4 Swcosd, and
M = %tan& = %tan37° =0.452.

EVALUATE: In the absence of the plank the block slides down at constant speed when the slope angle and
coefficient of friction are related by tan& = £4 . For 8=36.9°, 14 =0.75. A smaller 44 is needed when
the plank is present because the plank provides an additional friction force.

IDENTIFY: Apply Newton’s second law to Jack in the Ferris wheel.

SETUP: XF =ma and Jack’s acceleration is a,,q = v¥/R, and v = 2nR/T. At the highest point, the normal
force that the chair exerts on Jack is Y4 of his weight, or 0.25mg. Take +y downward.

EXECUTE: XF, =ma, givesmg—n = mv*/R. mg — 0.25mg = mv*/R, so v'/R = 0.75g. Using T = 2nR/T,
we get v'/R = 4n°R/T". Therefore 4n°R/T* = 0.750g. T = 1/(0.100 rev/s) = 10.0 s/rev, so

R = (0.7502)T*/(47%) = (0.750)(9.80 m/s>)[(10.0 s)/(2m)]* = 18.6 m.



5-50 Chapter 5

EVALUATE: This Ferris wheel would be about 120 ft in diameter, which is certainly large but not
impossible.

5.99. IDENTIFY: Apply ZF =md to the automobile.
2
SET UP: The “correct” banking angle is for zero friction and is given by tan S = v_(;?’ as derived in the
g

text. Use coordinates that are vertical and horizontal, since the acceleration is horizontal.

EXECUTE: For speeds larger than v, a frictional force is needed to keep the car from skidding. In this

case, the inward force will consist of a part due to the normal force n and the friction force

f; nsinf+ fcos B =ma,y. The normal and friction forces both have vertical components; since there is
. . o . _ 2 _(1.5v)? _

no vertical acceleration, n cosf— f sinff =mg. Using f = fn and a,g = T 225 gtanf,

these two relations become nsin S+ fncos f=2.25 mgtan B and ncos S — pnsin f=mg. Dividing to

R .
cancel n gives M =2.25 tanf3. Solving for 4 and simplifying yields t = M.
cos B — 4 sin 1+1.25sin” S
2
Using /3 =arctan (20 ’;VS) =18.79° gives 4, =0.34.
(9.80 m/s~)(120 m)

EVALUATE: If g is insufficient, the car skids away from the center of curvature of the roadway, so the

friction is inward.

5.100. IDENTIFY: Apply XF =ma to the car. The car moves in the arc of a horizontal circle, so @ = Ay,

directed toward the center of curvature of the roadway. The target variable is the speed of the car. a4 will
2
=v7R.

be calculated from the forces and then v will be calculated from a4

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At
maximum speed the static friction force has its maximum value f; = (n.

SET UpP: The free-body diagram for the car is sketched in Figure 5.100a.

5 EXECUTE:

XF, =ma,

o -5 n ncos 8 — fysin f—mg =0
But f, = un, so

ncos f— pinsin f—mg =0
: I cosp e

n _——
”'.ﬂl : cos B — g sin B

f sinB A
Figure 5.100a
SF, =ma,

nsin B+ fincos f = ma,,g

n(Sinﬂ + M COSﬂ) =Md,q
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5.101.

Use the ZF, equation to replace n:

mg : _

—  [{(smp + COos =

[COSﬂ—ﬂSSiHﬂJ( ﬂ Hs ﬁ) Mg
sin 3 + L4, cos

0 :( AR ﬂjg
cos f#— U sin B

dag = VIR implies v = JaqR =+/(8.73 m/s?)(50:m) = 21 m/s.

(b) IDENTIFY: To keep the car from sliding down the banking the static friction force is directed up the
incline. At the minimum speed the static friction force has its maximum value f; = ((n.

_(sin25° +(0.30)cos 25°

: (9.80 m/s>) =8.73 m/s”
c0s25°—(0.30)sin 25°

SET Up: The free-body diagram for the car is sketched in Figure 5.100b.

y a The free-body diagram is identical to that in
ncosp - part (a) except that now the components of f;
- R S AL have opposite directions. The force equations
Y N Jasinp. are all the same except for the opposite sign for
: terms containing /4.
: nsin

fcosp N \Bj

mg

Figure 5.100b

EXECUTE: g =| SRP—FC0sP | _[sin257=(030)00s25° | g g 12y — 1 43 2
cos S+ sin B €0s25°+(0.30)sin25°

v=JaqR =+/(1.43 m/s>)(50 m) =8.5 m/s.

EVALUATE: For v between these maximum and minimum values, the car is held on the road at a constant
height by a static friction force that is less than gn. When g, — 0, a,,q = gtan B. Our analysis agrees

with the result of the banking derived in the text for this special case.

IDENTIFY: Apply XF =ma to each block.

SET Up: For block B use coordinates parallel and perpendicular to the incline. Since they are connected
by ropes, blocks 4 and B also move with constant speed.

EXECUTE: (a) The free-body diagrams are sketched in Figure 5.101 (next page).

(b) The blocks move with constant speed, so there is no net force on block 4; the tension in the rope
connecting 4 and B must be equal to the frictional force on block 4, 7; =(0.35)(25.0 N) =8.8 N.

(¢) The weight of block C will be the tension in the rope connecting B and C; this is found by considering
the forces on block B. The components of force along the ramp are the tension in the first rope (8.8 N, from
part (b)), the component of the weight along the ramp, the friction on block B and the tension in the second
rope. Thus, the weight of block C is

we = 8.8 N+ wg(sin36.9° + 4 c0s36.9°) =8.8 N +(25.0 N)(sin36.9° + (0.35)c0s36.9°) =30.8 N

The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the
common weight w of blocks A4 and B, wx = w( 4 + (siné + f4_cos8)), giving the same result.

(d) Applying Newton’s second law to the remaining masses (B and C) gives:

a = g(we — [ wy cos 6 —wysin )/ (wg +w) =1.54 m/s>.,
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EVALUATE: Before the rope between 4 and B is cut the net external force on the system is zero. When the

rope is cut the friction force on A4 is removed from the system and there is a net force on the system of
blocks B and C.

fa T,

l Wy T, fs

wg

Figure 5.101

IDENTIFY: The analysis of this problem is similar to that of the conical pendulum in the text.
2
. / a v
SETUP: As shown in the text for a conical pendulum, tan = -4 = —

g Rg
EXECUTE:  Solving for v in terms of £ and R,
v=./gR tan f = \/(9.80 m/sz)(S0.0 m) tan30.0° =16.8 m/s, about 60.6 km/h.
EVALUATE: The greater the speed of the bus the larger will be the angle 4, so T will have a larger
horizontal, inward component.
IDENTIFY: Apply ZF =ma, with f = kv.

M ! except now the initial speed

SET UP: Follow the analysis that leads to the equation v, =v[l1-e
is vy, =3mg/k =3y rather than zero.
EXECUTE: The separated equation of motion has a lower limit of 3v, instead of zero; specifically,

dv :lnvt_v =In L_l :_it’ Orvzzvt|:1+e_(k/m)tj|
V=V —2v; 2v, 2 m 2

where v, = mg/k.
EVALUATE: As t — oo the speed approaches v;. The speed is always greater than v, and this limit is
approached from above.

IDENTIFY: The block has acceleration a4 = v2/r, directed to the left in the figure in the problem. Apply
XF =mi to the block.

SET UP: The block moves in a horizontal circle of radius » = \/ (1.25 m)2 —(1.00 m)2 =0.75 m. Each

o , 80 6 =36.9°. The free-body diagram for the
m

block is given in Figure 5.104. Let +x be to the left and let +y be upward.

string makes an angle 8 with the vertical. cosé =

EXECUTE: (a) 2F, =ma, gives T cos€—Tjcos6 —mg =0.

(4.00 kg)(9.80 m/s?)

T=T,-5 =800 N- =31.0N.
cosd €0s36.9°
2
(b) ZF, =ma, gives (T, +T})sinf = m—.
r

v= \/F(T“ t1)sind _ J(0'75 m)@B0.0 N +31.0 N)sin36.9° _ 3.53 m/s. The number of revolutions per

m 4.00 kg

second is Y = Lm/s =0.749 rev/s = 44.9 rev/min.
27zr  272(0.75 m)
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2 2
(©If =0, T,cos§=mg and T, =5 = @00KOBOMST) _ 455\ 7 Gino=m?".
cosd €0s36.9° r
v= \/FT“ sind _ (0.75 m)(49.0 N)sin36.9° _ 2.35 m/s. The number of revolutions per minute is
m 4.00 kg
(44.9 rev/min)(Mj =29.9 rev/min.
3.53 m/s

EVALUATE: The tension in the upper string must be greater than the tension in the lower string so that
together they produce an upward component of force that balances the weight of the block.

.‘.

Arad Tu _______
e ! T,cosf
|
I
|
I
I
: 0
T,sinf |
by
Tysinf |
| f
: PA mg
1 08
g Tcostl

Figure 5.104

5.105. IDENTIFY: Apply ZF =ma to the person. The person moves in a horizontal circle so his acceleration is
Apgg = v?/R, directed toward the center of the circle. The target variable is the coefficient of static friction
between the person and the surface of the cylinder.

27(2.5 m)

v =(0.60 rev/s)(ﬂj =(0.60 rev/s)[
1rev rev

j =9.425 m/s

(a) SET UP: The problem situation is sketched in Figure 5.105a.

Figure 5.105a
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The free-body diagram for the person is sketched
in Figure 5.105b.

The person is held up against gravity by the static
E friction force exerted on him by the wall.

The acceleration of the person is a,,y, directed in

toward the axis of rotation.
mg

Figure 5.105b

(b) EXECUTE: To calculate the minimum /4, required, take f; to have its maximum value, f; = 7.
F,=ma, fi—-mg=0
Hn=mg
XF,=ma,: n= mv?/R
Combine these two equations to eliminate n: ,usmvz/R =mg

_Rg _ (2.5 m)(9.80 m/s®)

STV T (9.425 mis)?

(c) EVALUATE: No, the mass of the person divided out of the equation for f/. Also, the smaller g is,

=0.28

the larger v must be to keep the person from sliding down. For smaller /i the cylinder must rotate faster to
make # large enough.

IDENTIFY: Apply 2F = ma to the person and to the cart.

SET UP:  The apparent weight, w,y, is the same as the upward force on the person exerted by the car seat.

EXECUTE: (a) The apparent weight is the actual weight of the person minus the centripetal force needed
to keep him moving in his circular path:

mv* (12 m/s)?

=mg———=(70ke) O-8 m/s”) - =434 N.

Yapp 40 m

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no

2
longer has to exert any upward force on it: mg —% =0. v=4Rg =+/(40 m)(9.8 m/sz) =19.8 m/s. The

answer doesn’t depend on the cart’s mass, because the centripetal force needed to hold it on the road is
proportional to its mass and so to its weight, which provides the centripetal force in this situation.
EVALUATE: At the speed calculated in part (b), the downward force needed for circular motion is
provided by gravity. For speeds greater than this, more downward force is needed and there is no source
for it and the cart leaves the circular path. For speeds less than this, less downward force than gravity is
needed, so the roadway must exert an upward vertical force.

IDENTIFY: Apply ZF =md to the circular motion of the bead. Also use ay,q = 47°R/T" to relate Apaq tO

the period of rotation 7.
SET UP: The bead and hoop are sketched in Figure 5.107a.
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oS The bead moves in a circle of radius R =rsin 3.

The normal force exerted on the bead by the hoop
is radially inward.

Figure 5.107a

The free-body diagram for the bead is sketched in Figure 5.107b.

v

EXECUTE:
ncosf ZFy =ma,
mo ncosff—mg =0
rad
I = n =mg/ cos B
I
n sin B ZF, =may

nsin f.=ma,,y

mg

Figure 5.107b

Combine these two equations to eliminate n:

( e 4 jsinﬁ =M,y

cos B
sinf _ ag
cosf g
Apaq = v?/R and v=27RIT, so Apaq = 47°R/T?, where T is the time for one revolution.
. 47°rsin
R=rsinf3, S0 anpgy =—2ﬂ
T

sin _ 4x*rsin B

Use this in the above equation: 3
cos T g
1 _4r? — 7?
72 r’ which gives cos 3= ég .
cosfB T°g Arr

This equation is satisfied by sin =0, so =0, or by
(a) 4.00 rev/s implies 7 =(1/4.00) s =0.250 s

2 2
Then cosf = (0'250;) 80 m/s”) and g =81.1°
47%(0.100 m)

(b) This would mean £ =90°. But cos90° =0, so this requires 7 — 0. So £ approaches 90° as the

hoop rotates very fast, but f=90° is not possible.
(c) 1.00 rev/s implies 7 =1.00 s
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7? . (1.00 s)%(9.80 m/s?) L _
The cosf = 5~ equation then says cos p= 5 =2.48, which is not possible. The only
4z‘r 47°(0.100 m)

way to have the XF =ma equations satisfied is for sin #=0. This means B =0; the bead sits at the
bottom of the hoop.
EVALUATE: £ —90° as T — 0 (hoop moves faster). The largest value T can have is given by
ng/(471'2r) =1 so T =2xJr/g =0.635 s. This corresponds to a rotation rate of
(1/0.635) rev/s =1.58 rev/s. For a rotation rate less than 1.58 rev/s, =0 is the only solution and the bead
sits at the bottom of the hoop. Part (c) is an example of this.

5.108.  IDENTIFY: Apply ZF =ma to the combined object of motorcycle plus rider.
SET UpP: The object has acceleration a,,q = v?/r, directed toward the center of the circular path.
EXECUTE: (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the

2

(downward) acceleration at the top of the sphere must exceed mg, so m% >mg, and
v>JgR =(9.80 m/s?)(13.0 m) =113 mis.
(b) The (upward) acceleration will then be 4g, so the upward normal force must be
5mg =5(110 kg)(9.80 m/s>) =5390 N.
EVALUATE: At any nonzero speed the normal force at the bottom of the path exceeds the weight of the
object.

5.109. IDENTIFY: The block begins to move when static friction has reached its maximum value. After that,
kinetic friction acts and the block accelerates, obeying Newton’s second law.
SETUP: XF, =ma, and f; ... = pusn, where 7 is the normal force (the weight of the block in this case).
EXECUTE: (a) & (b) XZF, =ma, gives T — ung = ma. The graph with the problem shows the acceleration
a of the block versus the tension 7 in the cord. So we solve the equation from Newton’s second law for a
versus 7, giving a = (1/m)T — ug. Therefore the slope of the graph will be 1/m and the intercept with the
vertical axis will be —u,g. Using the information given in the problem for the best-fit equation, we have
1/m =0.182 kg ™', so m = 5.4945 kg and —p4,.g =-2.842m/s%, so tx=0.290.
When the block is just ready to slip, we have f; ... = usn, which gives
5= (20.0 N)/[(5.4945 kg)(9.80 m/s)] = 0.371.
(¢) On the Moon, g is less than on earth, but the mass m of the block would be the same as would y.
Therefore the slope (1/m) would be the same, but the intercept (—u,g) would be less negative.
EVALUATE: Both coefficients of friction are reasonable or ordinary materials, so our results are
believable.

5.110. IDENTIFY: Near the top of the hill the car is traveling in a circular arc, so it has radial acceleration and

Newton’s second law applies. We have measurements for the force the car exerts on the road at various
speeds.
SET Up: The acceleration of the car is @,,q = v*/R and XF), =ma, applies to the car. Let the +y-axis be

downward, since that is the direction of the acceleration of the car.
EXECUTE: (a) Apply XF), =ma, to the car at the top of the hill: mg—n = mv*/R, where n is the force the

road exerts on the car (which is the same as the force the car exerts on the road). Solving for n gives

n =mg — (m/R)’. So if we plot n versus v, we should get a straight line having slope equal to —m/R and
intercept with the vertical axis at mg. We could make a table of v* and n using the given numbers given
with the problem, or we could use graphing software. The resulting graph is shown in Figure 5.110.
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Figure 5.110

(b) The best-fit equation for the graph in Figure 5.110 is n = [-18.12 N/(m/s)*]v* + 8794 N. Therefore
mg = 8794 N, which gives m = (8794 N)/(9.80 m/s’) = 897 kg.
The slope is equal to —m/R, so R = —m/slope = —(897 kg)/[-18.12 N/(m/s)’] = 49.5 m.

¢) At the maximum speed, n = 0. Using mg — n = mv™/R, this gives v =./gR = . S Jm) =
(c) At th i d, n=0. Usi */R, this gi R =+/(9.80 m/s?)(49.5 m)

22.0 m/s.
EVALUATE: We can double check (c) using our graph. Putting » = 0 into the best-fit equation, we get

v= \/(8794 N)(18.14 N-s%/m?) = 22.0 m/s, which checks. Also 22 m/s is about 49 mph, which is not an

unreasonabled speed on a hill.

IDENTIFY: A cable pulling parallel to the surface of a ramp accelerates 2170-kg metal blocks up a ramp
that rises at 40.0° above the horizontal. Newton’s second law applies to the blocks, and the constant-
acceleration kinematics formulas can be used.

SET Up: Call the +x-axis parallel to the ramp surface pointing upward because that is the direction of the
acceleration of the blocks, and let the y-axis be perpendicular to the surface. There is no acceleration in the

— _ 1
y-direction. XF, = ma_, fi = un, and x— x5 = v, ¢ +Eaxt .

. 1 . .
EXECUTE: (a) First use x—x, = vt + Eaxtz to find the acceleration of a block. Since vy, =0, we

have a, = 2(x — xo)/* = 2(8.00 m)/(4.20 s)* = 0.9070 m/s’. The forces in the y-direction balance, so

n = mgcos(40.0°), so fi = (0.350)(2170 kg)(9.80 m/s*)cos(40.0°) = 5207 N. Using XF,=ma,,

we have 7 — mgsin(40.0°) — f, = ma. Solving for T gives

T'= (2170 kg)(9.80 m/s%)sin(40.0°) + 5207 N + (2170 kg)(0.9070 m/s*) = 2.13x 10* N = 21.3 kN.

From the table shown with the problem, this tension is greater than the safe load of a 'z inch diameter cable
(which is 19.0 kN), so we need to use a 5/8-inch cable.

(b) We assume that the safe load (SL) is proportional to the cross-sectional area of the cable, which means
that SL o< m(D/2)* o< (n/4)D?, where D is the diameter of the cable. Therefore a graph of SL versus D
should give a straight line. We could use the data given in the table with the problem to make the graph by
hand, or we could use graphing software. The resulting graph is shown in Figure 5.111 (next page). The
best-fit line has a slope of 74.09 kN/in.> and a y-intercept of 0.499 kN. For a cable of diameter D = 9/16 in.,
this equation gives SL = (74.09 kN/in.?)(9/16 in.)* + 0.499 kN = 23.9 kN.
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Figure 5.111

(c¢) The acceleration is now zero, so the forces along the surface balance, giving

T + f, = mg sin(40.0°). Using the numbers we get 7' = 3.57 kN.

(d) The tension at the top of the cable must accelerate the block and the cable below it, so the tension at the
top would be larger. For a 5/8-inch cable, the mass per meter is 0.98 kg/m, so the 9.00-m long cable would
have a mass of (0.98 kg/m)(9.00 m) = 8.8 kg. This is only 0.4% of the mass of the block, so neglecting the
cable weight has little effect on accuracy.

EVALUATE: It is reasonable that the safe load of a cable is proportional to its cross-sectional area. If we
think of the cable as consisting of many tiny strings each pulling, doubling the area would double the
number of strings.

IDENTIFY: Apply 2F =ma to the block and to the wedge.

SET UP: For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction
to be vertical and positive upward. The normal force between the block and the wedge is #; the normal
force between the wedge and the horizontal surface will not enter, as the wedge is presumed to have zero
vertical acceleration. The horizontal acceleration of the wedge is 4, and the components of acceleration of
the block are a, and a,,

EXECUTE: (a) The equations of motion are then MA =—-nsina, ma, =nsino and ma, =ncoso —mg.

y
Note that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the
left. These are three equations in four unknowns, 4, a,,a,, and n. Solution is possible with the imposition

of the relation between 4, a, and a,. An observer on the wedge is not in an inertial frame, and should not

apply Newton’s laws, but the kinematic relation between the components of acceleration are not so
restricted. To such an observer, the vertical acceleration of the block is a, but the horizontal acceleration

of the block is a, — A. To this observer, the block descends at an angle ¢, so the relation needed is

ay

a, —

=—tan . At this point, algebra is unavoidable. A possible approach is to eliminate a, by noting

that @, =—— A, using this in the kinematic constraint to eliminate a, and then eliminating 7. The results are:
m

y

A= —sm
(M +m) taner + (M / tan )

- M
(M +m) tana + (M / tan @x)

dy
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—g(M +m) tancx
Y (M +m) tanor + (M / tan @)

(b) When M > m, A— 0, as expected (the large block won’t move). Also,

g _ tan o

N = gsinacosa which is the acceleration of the block (gsine in this

tan o + (1/tan @) 8 tan’er +1

case), with the factor of coso giving the horizontal component. Similarly, a,, ——g sin’ .

. . . . . M +m
(c) The trajectory is a straight line with slope — tan .

EVALUATE: If m>> M, our general results give a, =0 and a, =—g. The massive block accelerates
straight downward, as if it were in free fall.
IDENTIFY: Apply ZF = mad to the block and to the wedge.

SET UP: From Problem 5.112, ma, =nsinex and ma, =ncoso —mg for the block. a,, =0 gives

y
a, = gtanc.

EXECUTE: If the block is not to move vertically, both the block and the wedge have this horizontal
acceleration and the applied force must be F =(M +m)a = (M +m)gtanc.

EVALUATE: F —0 as ¢ — 0 and F — o as a— 90°.

IDENTIFY: Apply =F =ma to each of the three masses and to the pulley B.

SET UP: Take all accelerations to be positive downward. The equations of motion are straightforward, but
the kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If
the acceleration of pulley B is ap, then az =—a3, and ajp is the average of the accelerations of masses 1

and 2, or a; +a, =2ap =—2a;.

EXECUTE: (a) There can be no net force on the massless pulley B, so 7~ =27,. The five equations to be
solved are then myg —T, =ma;, myg—T,=mya,, myg—T- =mza;, a;+a,+2a; =0 and

2T, —T- =0. These are five equations in five unknowns, and may be solved by standard means.

The accelerations a; and a, may be eliminated using 2a; =—(a; +a,) =—[2g — T ((1/my) + (1/m,))].

The tension 7, may be eliminated by using 7, = (1/2)T = (1/2)m;(g — a3).

.. . . —4mym, + mymy + mm
Combining and solving for a; gives a; =g 12 273 173

(b) The acceleration of the pulley B has the same magnitude as a; and is in the opposite direction.

T T, = . .
(€ a=g-A=g-—C =g ﬂ( g —ay). Substituting the above expression for a; gives
1 3 3

_ 4m1m2 - 3m2m3 + nyms
ap = .

4m1m2 - 3m1m3 + mymy

(d) A similar analysis (or, interchanging the labels 1 and 2) gives a, = g
4mlm2 + m2m3 + mIM3

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate

equation of motion, giving 7, =g T =

dimymy + mymy + myms dimymy + mymy + myms
() If m; =my =m and my =2m, all of the accelerations are zero, T- = 2mg and T, =mg. All masses

and pulleys are in equilibrium, and the tensions are equal to the weights they support, which is what is
expected.
EVALUATE: It is useful to consider special cases. For example, when ny =m, > m5 our general result

gives a; =a, =+gand ay = g.
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IDENTIFY: Apply XF =ma to the ball at each position.

SET UP: When the ball is at rest, @ =0. When the ball is swinging in an arc it has acceleration component
2

v . .
a4 = ?, directed inward.

rad

EXECUTE: Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the
tension force must balance the weight, so T cosf=w or T, =w/cos . At point B, the ball is not in

equilibrium; its speed is instantaneously 0, so there is no radial acceleration, and the tension force must
balance the radial component of the weight, so 7 =wcos S and the ratio (73/7T,) = cos’ 3.

EVALUATE: At point B the net force on the ball is not zero; the ball has a tangential acceleration.
IDENTIFY: The forces must balance for the person not to slip.

SET UP and EXECUTE: As was done in earlier problems, balancing forces parallel to and perpendicular to
the surface of the rock leads to the equation u; =tan & = 1.2, so € = 50°, which is choice (b).

EVALUATE: The condition u, = tan @ applies only when the person is just ready to slip, which would be
the case at the maximum angle.

IDENTIFY: Friction changes from static friction to kinetic friction.

SET UP and EXECUTE: When she slipped, static friction must have been at its maximum value, and that
was enough to support her weight just before she slipped. But the kinetic friction will be less than the
maximum static friction, so the kinetic friction force will not be enough to balance her weight down the
incline. Therefore she will slide down the surface and continue to accelerate downward, making (b) the
correct choice.

EVALUATE: Shoes with a greater coefficient of static friction would enable her to walk more safely.
IDENTIFY: The person pushes off horizontally and acclerates herself, so Newton’s second law applies.
SET UP and EXECUTE: She runs horizontally, so her vertical acceleration is zero, which makes the normal
force n due to the ground equal to her weight mg. In the horizontal direction, static friction accelerates her
forward, and it must be its maximum value to achieve her maximum acceleration, Therefore f; = ma = ugn
= ugmg, which gives a = ug = 1.2g, making (d) the correct choice.

EVALUATE: Shoes with more friction would allow her to accelerate even faster.
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IDENTIFY and SET UP: For parts (a) through (d), identify the appropriate value of ¢ and use the relation
W = Fps = (F cos@)s. In part (e), apply the relation W, = Wdent + Woray + W, + W

EXECUTE: (a) Since you are applying a horizontal force, ¢ = 0°. Thus,

Wetudent = (2:40 N)(cos0°)(1.50 m) = 3.60 J.

(b) The friction force acts in the horizontal direction, opposite to the motion, so ¢ =180°.

W, =(Fycosg)s =(0.600 N)(cos180°)(1.50 m) =—-0.900 J.

(c) Since the normal force acts upward and perpendicular to the tabletop, ¢=90°.

W, =(ncos@)s = (ns)(cos90°) = 0.0 J.

(d) Since gravity acts downward and perpendicular to the tabletop, ¢ =270°.

Weray = (mg cos @)s = (mgs)(cos270%) = 0.0 J.

(©) Whiet =Wetudent + Weray * W, + W =3.60J+0.0 J+0.0 J - 0.900 J =2.70 J.

EVALUATE: Whenever a force acts perpendicular to the direction of motion, its contribution to the net
work is zero.

IDENTIFY: In each case the forces are constant and the displacement is along a straight line, so

W =F scosg.

SET Up: In part (a), when the cable pulls horizontally ¢ =0° and when it pulls at 35.0° above the
horizontal ¢ =35.0°. In part (b), if the cable pulls horizontally ¢ =180°. If the cable pulls on the car at
35.0° above the horizontal it pulls on the truck at 35.0° below the horizontal and ¢ 145.0°. For the
gravity force ¢ =90°, since the force is vertical and the displacement is horizontal.

EXECUTE: (a) When the cable is horizontal, W = (1350 N)(5.00 x 10° m)cos0° =6.75% 10° J. When the
cable is 35.0° above the horizontal, W = (1350 N)(5.00x 10 m)c0s35.0° =5.53x10° J.

(b) cos180° =—cos0° and cos145.0° =—co0s35.0°, so the answers are —6.75 X 10 J and -5.53x10° J.
(¢) Since cos@®=c0s90° =0, W =0 in both cases.

EVALUATE: Ifthe car and truck are taken together as the system, the tension in the cable does no net work.
IDENTIFY: Each force can be used in the relation W = Fjs = (F cos¢)s for parts (b) through (d). For part

Weorker + Weray + Wy + W .

worker grav

(e), apply the net work relation as W, =
SET Up: In order to move the crate at constant velocity, the worker must apply a force that equals the
force of friction, F,uer = fi = M-
EXECUTE: (a) The magnitude of the force the worker must apply is:

Fyomker = Jx = ten = Hhemg =(0.25)(30.0 kg)(9.80 m/s?) =74 N
(b) Since the force applied by the worker is horizontal and in the direction of the displacement, ¢ =0° and
the work is:

Worker = (Fworker €08 @)s =[(74 N)(cos0°)](4.5 m) = +333 J
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(¢) Friction acts in the direction opposite of motion, thus ¢ =180° and the work of friction is:
We =(ficos@)s =[(74 N)(cos180°)](4.5 m) =-333 J
(d) Both gravity and the normal force act perpendicular to the direction of displacement. Thus, neither
force does any work on the crate and W, =W, =0.0 J.
(e) Substituting into the net work relation, the net work done on the crate is:
Waet = Waorker ¥ Weray Wy + W, =+333J+0.0J+0.0J-3337=0.01J
EVALUATE: The net work done on the crate is zero because the two contributing forces, Fyoer and Fy,
are equal in magnitude and opposite in direction.
6.4. IDENTIFY: The forces are constant so Eq. (6.2) can be used to calculate the work. Constant speed implies
a=0. We must use =F =ma applied to the crate to find the forces acting on it.
(a) SET UP: The free-body diagram for the crate is given in Figure 6.4.
y . _
EXECUTE: XF), =ma,
n—mg — Fsin30°=0
n=mg + F'sin30°
Jx = Hn = phmg + F 4, sin30°
Fsin30®~ T
mg
Figure 6.4
XF, =ma,
Fcos30°— £, =0
Fcos30° — 4y mg — 4 sin30°F =0
2
Fe Hmg - _ 0.25(30.0 kg)(9.89 m/s”) —992 N
c0s30° — 14 sin30°  c0s30°—(0.25)sin30°
(b) Wi =(Fcos@)s =(99.2 N)(cos30°)(4.5 m) =387 J
(F cos30° is the horizontal component of F; the work done by F is the displacement times the
component of F in the direction of the displacement.)
(¢) We have an expression for f, from part (a):
Jx = 4 (mg + Fsin30°) = (0.250)[(30.0 kg)(9.80 m/sz) +(99.2 N)(sin30°)] =859 N
¢ =180° since f, is opposite to the displacement. Thus W, = (/i cos ¢)s = (85.9 N)(cos180°)(4.5 m) =387 J.
(d) The normal force is perpendicular to the displacement so ¢ =90° and W, =0. The gravity force
(the weight) is perpendicular to the displacement so ¢ =90° and W,, =0.
@) W =Wp + Wy + W, +W,, =+387 1 +(-387J)=0
EVALUATE: Forces with a component in the direction of the displacement do positive work, forces
opposite to the displacement do negative work, and forces perpendicular to the displacement do zero work.
The total work, obtained as the sum of the work done by each force, equals the work done by the net force.
In this problem, £ =0 since a =0 and W, =0, which agrees with the sum calculated in part (e).
6.5. IDENTIFY: The gravity force is constant and the displacement is along a straight line, so W = Fscos¢.

SET UP: The displacement is upward along the ladder and the gravity force is downward, so
¢=180.0°—-30.0°=150.0°. w=mg =735N.

EXECUTE: (a) W =(735 N)(2.75 m)cos150.0°=-1750 J.

(b) No, the gravity force is independent of the motion of the painter.

EVALUATE: Gravity is downward and the vertical component of the displacement is upward, so the
gravity force does negative work.
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6.6.

6.7.

6.8.

6.9.

IDENTIFY and SET UP: Wy = (F cos@)s, since the forces are constant. We can calculate the total work by
summing the work done by each force. The forces are sketched in Figure 6.6.

N EXECUTE: W, = Fjscos @,
g W, = (1.80x10° N)(0.75x10° m)cos14°
R ) W, =131x10° J
14° 14 W2 = FzSCOS¢2 = VVI
E
W
S

Figure 6.6
Wit =W+ W, = 2(1.31x10° J)=2.62x10° J
EVALUATE: Only the component F cos¢ of force in the direction of the displacement does work. These

components are in the direction of § so the forces do positive work.
IDENTIFY: All forces are constant and each block moves in a straight line, so W = Fscos¢@. The only

direction the system can move at constant speed is for the 12.0 N block to descend and the 20.0 N block to
move to the right.
SET UP: Since the 12.0 N block moves at constant speed, @ =0 for it and the tension 7 in the string is

T =12.0 N. Since the 20.0 N block moves to the right at constant speed, the friction force f, on itisto
the leftand f, =7 =12.0 N.

EXECUTE: (a) (i) ¢=0° and W =(12.0 N)(0.750 m)cos0°=9.00 J. (ii) ¢ =180° and

W =(12.0 N)(0.750 m)cos180° =-9.00 J.

(b) (i) =90° and W =0. (ii) #=0° and W =(12.0 N)(0.750 m)cos0° =9.00 J. (iii) ¢ =180° and
W =(12.0 N)(0.750 m)cos180° =-9.00 J. (iv) ¢ =90° and W =0.

(¢) W, =0 for each block.

EVALUATE: For each block there are two forces that do work, and for each block the two forces do work
of equal magnitude and opposite sign. When the force and displacement are in opposite directions, the
work done is negative.

IDENTIFY: Apply Eq. (6.5).

SET UP: ;f=;j=1 and {}=j;=0

EXECUTE: The work youdois F -5 = [(30 N)i — (40 N) j'][(—qo m)i — (3.0 m)}]

F-§=(30N)(—9.0 m) + (—40 N)(-3.0m) =—270 N-m +120 N-m = —150 J.

EVALUATE: The x-component of F does negative work and the y-component of F does positive work.
The total work done by F is the sum of the work done by each of its components.

IDENTIFY: Apply Eq. (6.2) or (6.3).

SET UP: The gravity force is in the —y-direction, so Fmg -§=-mg(y,—»)

EXECUTE: (a) (i) Tension force is always perpendicular to the displacement and does no work.

(i1) Work done by gravity is —mg(y, — ). When y; = y,, W,, =0.

(b) (i) Tension does no work. (ii) Let / be the length of the string. W,,, =-mg(y, — y;) =—mg(2l) =-25.1]
EVALUATE: In part (b) the displacement is upward and the gravity force is downward, so the gravity force
does negative work.



6-4

Chapter 6

6.10.

6.11.

6.12.

IDENTIFY and SET UP:  Use W = [;s =(F cos¢)s to calculate the work done in each of parts (a) through (c).

In part (d), the net work consists of the contributions due to all three forces, or wyo; = Wyray + W, + Wy

Figure 6.10

EXECUTE: (a) As the package slides, work is done by the frictional force which acts at ¢ =180° to the
displacement. The normal force is mgcos53.0°. Thus for g4 = 0.40,
Wy =F,s=(fcos@)s = (thncosP)s = (mgcos53.0°)](cos180°)s.

W, = (0.40)[(12.0 kg)(9.80 m/s?)(c0s53.0°)](cos180°)(2.00 m) =57 J.

(b) Work is done by the component of the gravitational force parallel to the displacement.
¢ =90°—-53°=37° and the work of gravity is

Weray = (mgcos@)s =[(12.0 kg)(9.80 m/s)(c0s37.0°)](2.00 m) = +188 J.
(¢) W, =0 since the normal force is perpendicular to the displacement.
(d) The net work done on the package is W, =Wy, + W, + W, =1881+0.0J =57 J =1311].

EVALUATE: The net work is positive because gravity does more positive work than the magnitude of the
negative work done by friction.

IDENTIFY: As the carton is pulled up the ramp, the forces acting on it are gravity, the tension in the rope,
and the normal force. Each of these forces may do work on the carton.

SETUP: Use W = Fs = (F cos ¢)s. Calculate the work done by each force. In each case, identify the angle ¢.

In part (d), the net work is the algebraic sum of the work done by each force.
EXECUTE: (a) Since the force exerted by the rope and the displacement are in the same direction, ¢ =0’
and W,,.. = (72.0 N)(cos0°)(5.20 m) = +374 J.

rope
(b) Gravity is downward and the displacement is at 30.0° above the horizontal, so
¢ =90.0°+30.0°=120.0°. W,,, =(128.0 N)(cos120°)(5.20 m) = —-333 J.

grav
(c¢) The normal force 7 is perpendicular to the surface of the ramp while the displacement is parallel to the
surface of the ramp, so ¢ =90° and W, =0.

(d) Woet =Wrope ¥ Wegay + W, =+3747-3331+0=+41J

grav

(e) Now ¢ =50.0°—30.0°=20.0° and W, . =(72.0 N)(c0s20.0°)(5.20 m) = +352 J

rope
EVALUATE: In part (b), gravity does negative work since the gravity force acts downward and the carton
moves upward. Less work is done by the rope in part (), but the net work is still positive.
IDENTIFY: Since the speed is constant, the acceleration and the net force on the monitor are zero.
SET UP: Use the fact that the net force on the monitor is zero to develop expressions for the friction force,
Jx» and the normal force, n. Then use W = Fps = (Fcos@)s to calculate V.
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6.13.

6.14.

6.15.

6.16.

fi

Figure 6.12

EXECUTE: (a) Summing forces along the incline, ZF =ma =0 = f, —mgsin@, giving f, =mgsing,
directed up the incline. Substituting gives W, = (f cos@)s = [(mgsin&)cosp]s.

W =[(10.0 kg)(9.80 m/sz)(sin36.9°)](cosO°)(5.50 m) =+324 J.

(b) The gravity force is downward and the displacement is directed up the incline so ¢ =126.9°.

Wgray = (10.0 kg)(9.80 m/s)(cos 126.9°)(5.50 m) =324 J.

(¢) The normal force, n, is perpendicular to the displacement and thus does zero work.

EVALUATE: Friction does positive work and gravity does negative work. The net work done is zero.
IDENTIFY: We want the work done by a known force acting through a known displacement.

SET UP: W =Fscos¢

EXECUTE: W = (48.0 N)(12.0 m)cos(173°) =-572 J.
EVALUATE: The force has a component opposite to the displacement, so it does negative work.
IDENTIFY: We want to find the work done by a known force acting through a known displacement.

SETUP: W =F-5=F,s,+ Fs,. We know the components of F but need to find the components of the
displacement §.

EXECUTE: Using the magnitude and direction of §, its components are x = (48.0 m)c0s240.0° =-24.0 m
and y =(48.0 m)sin240.0° = —41.57 m. Therefore, § = (—24.0 m)i +(=41.57 m)j. The definition of work

gives W = F -§ = (~68.0 N)(=24.0 m) + (36.0 N)(—41.57 m) = +1632 ] 1497 J = +135 J.

EVALUATE: The mass of the car is not needed since it is the given force that is doing the work.
IDENTIFY: We want the work done by the force, and we know the force and the displacement in terms of
their components.

SETUP: We can use either W = F -5 = F,s, + Fys, or W =Fscos ¢, depending on what we know.

EXECUTE: (a) We know the magnitudes of the two given vectors and the angle between them, so
W = Fs cos¢ =(30.0 N)(5.00 m)(cos37°) =120 J.

(b) As in (a), we have W = Fs cos ¢ = (30.0 N)(6.00 m)(cos127°) =-108 J.
(c) We know the components of both vectors, so we use W = F-§ = F,s, + Fis,.
W=F-§=Fs,+ Fs, =(30.0 N)(cos37°)(-2.00 m) + (30.00 N)(sin37°)(4.00 m) = 24.3 J.

EVALUATE: We could check parts (a) and (b) using the method from part (c).
IDENTIFY: The book changes its speed and hence its kinetic energy, so work must have been done on it.

SET UpP: Use the work-kinetic energy theorem W, = Ky — K;, with K = %mvz. In part (a) use K; and

K¢ to calculate W. In parts (b) and (c) use K; and W to calculate K.
EXECUTE: (a) Substituting the notation i=A4 and f =B,

Whet = K — Ky = 1(1.50 kg)[(1.25 m/s)* - (3.21 m/s)*] = —6.56 J.
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6.17.

6.18.

6.19.

6.20.

6.21.

(b) Noting i=B and f=C, K¢ = Ky + Wy =1(1.50 kg)(1.25 m/s)” = 0.750 J = +0.422 J. Ko =L1mv

net —

80 Vo =4/2K/m =0.750 m/s.
(¢) Similarly, K =7(1.50 kg)(1.25 m/s)* +0.750 J =1.922 J and v =1.60 ms.

EVALUATE: Negative W, corresponds to a decrease in kinetic energy (slowing down) and positive
Wt corresponds to an increase in kinetic energy (speeding up).

IDENTIFY: Find the kinetic energy of the cheetah knowing its mass and speed.

SETUP: Use K = Emv2 to relate v and K.

EXECUTE: (a) K = %mvz = %(70 kg)(32 m/s)® =3.6x10* J.

(b) K is proportional to v2, so K increases by a factor of 4 when v doubles.

EVALUATE: A running person, even with a mass of 70 kg, would have only 1/100 of the cheetah’s kinetic
energy since a person’s top speed is only about 1/10 that of the cheetah.

IDENTIFY: Use the equations for free-fall to find the speed of the weight when it reaches the ground and
use the formula for kinetic energy.

SET UP: Kinetic energy is K = %mvz. The mass of an electron is 9.11x10 2" kg. In part (b) take +y

downward, so a;=+9.80 m/s* and vy, = v, +2a,(y — ).

i
EXECUTE: (a) K =1(9.11x107" kg)(2.19%10° m/s)* =2.18 x10 ' J.

(b) v; =1j, +2a,(y=y,) gives v, = \/2(9.80 m/s*)(1.0m) =4.43 m/s. K =1(1.0 kg)(4.43 m/s)* =9.8 I.

(¢) Solving K = Lmv? forv gives v = 2K = FLP =2.6 m/s. Yes, this is reasonable.
2 ' m 30 kg

EVALUATE: A running speed of 6 m/s corresponds to running a 100-m dash in about 17 s, so 2.6 m/s is
reasonable for a running child.

IDENTIFY: K = %mv2. Since the meteor comes to rest the energy it delivers to the ground equals its
original kinetic energy.

SETUP: v=12 km/s =1.2x10* m/s. A 1.0 megaton bomb releases 4.184x10' J of energy.
EXECUTE: (a) K =1(1.4x10° kg)(1.2x10% m/s)* =1.0x10'° J.

1.0x10' J

4.184x10" J
EVALUATE: Part of the energy transferred to the ground lifts soil and rocks into the air and creates a large
crater.

(b)

=2.4. The energy is equivalent to 2.4 one-megaton bombs.

IDENTIFY: Only gravity does work on the watermelon, so Wy =W,y Wi =AK and K = %mvz.

SET Up: Since the watermelon is dropped from rest, K; =0.

EXECUTE: (a) Wy, = mgs = (4.80 kg)(9.80 m/s?)(18.0 m) =847 J.

2K, _ [2(84
) Q) Wy, =K, — K, s0 Ky =847 I. (i) v=,|—2 = 2647 _ 18 8 s,
m 4.80 kg

(¢) The work done by gravity would be the same. Air resistance would do negative work and W, would

be less than Werav- The answer in (a) would be unchanged and both answers in (b) would decrease.

EVALUATE: The gravity force is downward and the displacement is downward, so gravity does positive work.
IDENTIFY: W, =K, — K. In each case calculate ¥, from what we know about the force and the
displacement.

SET UP: The gravity force is mg, downward. The mass of the object isn’t given, so we expect that it will
divide out in the calculation.
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6.22.

6.23.

6.24.

EXECUTE: (a) K| =0. W, =W,,, =mgs. mgs = %mv% and

grav

vy =[2gs =4/2(9.80 m/s2)(95.0 m) = 43.2 mis.

(b) K, =0 (at the maximum height). W, , =W, .., =—mgs. —mgs = —Lmy? and
2 tot grav 2 1

vy =285 =1/2(9.80 m/s2)(525 m) =101 mss.

EVALUATE: In part (a), gravity does positive work and the speed increases. In part (b), gravity does
negative work and the speed decreases.

IDENTIFY: W, =K, — K. In each case calculate W, ; from what we know about the force and the

displacement.
SET UP: The gravity force is mg, downward. The friction force is fi = t4n = 4 mg and is directed

opposite to the displacement. The mass of the object isn’t given, so we expect that it will divide out in the
calculation.

EXECUTE: (a) Kj :%mvlz. K, =0. W, = Wf = -y mgs. — U mgs :—%mvf.
v (5.00ms)? 5
24hg  2(0.220)(9.80 m/s®)

(b) Ky =5mvi. Ky =gmvy. W =Wy =—fhmgs. Ky =W+ K.

0 m.

1,2 — 1,2
21y = = ngs + S mvy.

vy =AVE = 24,85 =+/(5.00 m/s)® — 2(0.220)(9.80 m/s>)(2.90 m) =3.53 mys.

(0) K; =%mv12 . Ky =0. W,y =—mgy,, where y, is the vertical height. —mgy, = —%mvl2 and

i (120ms)* .
2g 209.80 m/s?)

EVALUATE: In parts (a) and (b), friction does negative work and the kinetic energy is reduced. In part (c),

gravity does negative work and the speed decreases. The vertical height in part (c) is independent of the

slope angle of the hill.

IDENTIFY and SET UP:  Apply Eq. (6.6) to the box. Let point 1 be at the bottom of the incline and let point 2

be at the skier. Work is done by gravity and by friction. Solve for K; and from that obtain the required

) 5m.

initial speed.
EXECUTE: W, =K, - K
— 2 —
K] = %mVO N K2 =0
Work is done by gravity and friction, so Wy =W,,, +Wy.

Wing =-mg(y, = y)) =-mgh

W, =~ fs. The normal force is n =mgcosor and s = h/sincx, where s is the distance the box travels along
the incline.

Wy =—=(thmg cos @)(h/sin @) = - (h mgh/ tan o

Substituting these expressions into the work-energy theorem gives —mgh — f4 mgh/tan o = —1 mvg.

2
Solving for v, then gives v, =/2gh(1+ t4/tan ).

EVALUATE: The result is independent of the mass of the box. As & —90°, h=s and v, =4/2gh, the
same as throwing the box straight up into the air. For & =90° the normal force is zero so there is no
friction.

IDENTIFY: From the work-energy relation, W =W, = AK .
SET UP: As the rock rises, the gravitational force, F' =mg, does work on the rock. Since this force acts in
the direction opposite to the motion and displacement, s, the work is negative. Let / be the vertical distance

the rock travels.
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EXECUTE: (a) Applying Wy, = K, — K| we obtain —mgh = %mv% - %mvl2 . Dividing by m and solving
for v, v = \/vg +2gh. Substituting #=15.0 m and v, =25.0 m/s,
vy =+/(25.0 m/s)? +2(9.80 m/s2)(15.0 m) =303 m/s
(b) Solve the same work-energy relation for /. At the maximum height v, =0.
22 2 2
- 30.3 m/s)” — (0.0 m/
—mgh :%mvg—%mvlz and h=1""2 :( 5"~ 5 ) =46.8 m.
2g 2(9.80 m/s”)
EVALUATE: Note that the weight of the rock was never used in the calculations because both gravitational
potential and kinetic energy are proportional to mass, m. Thus any object, that attains 25.0 m/s at a height
of 15.0 m, must have an initial velocity of 30.3 m/s. As the rock moves upward gravity does negative work
and this reduces the kinetic energy of the rock.
6.25. IDENTIFY: Apply W = Fscos¢ and W, = AK.
SETUP: ¢=0°
EXECUTE: From Egs. (6.1), (6.5) and (6.6), and solving for F,
L2 —v2)  1(12.0kg)| (6.00 m/s)* — (4.00 m/s)?
7 = ARSI [ L48.0N
s N (2.50 m)
EVALUATE: The force is in the direction of the displacement, so the force does positive work and the
kinetic energy of the object increases.
6.26.  IDENTIFY: Apply W = Fscos¢ and W, = AK.
SET Up: Parallel to incline: force component WH =mgsina, down incline; displacement s = A/sing,
down incline. Perpendicular to the incline: s =0.
EXECUTE: (a) W|| = (mgsina)(h/sinc) =mgh. W, =0, since there is no displacement in this direction.
Wig = WH + W, =mgh, same as falling height 4.
(b) W, =K, — K, gives mgh= %mv2 and v =,/2gh, same as if had been dropped from height /2. The
work done by gravity depends only on the vertical displacement of the object. When the slope angle is
small, there is a small force component in the direction of the displacement but a large displacement in this
direction. When the slope angle is large, the force component in the direction of the displacement along the
incline is larger but the displacement in this direction is smaller.
(¢) h=15.0m, so v=4/2gh =17.1s.
EVALUATE: The acceleration and time of travel are different for an object sliding down an incline and an
object in free-fall, but the final velocity is the same in these two cases.
6.27. IDENTIFY: Apply W, =AK.

SETUP: v, =0, v, =v. f, =4 mg and f does negative work. The force F =36.0 N is in the

direction of the motion and does positive work.
EXECUTE: (a) If there is no work done by friction, the final kinetic energy is the work done by the applied
force, and solving for the speed,

- ’Z_W _ ,& _ [2B36.0N)(1.20 m) — 448 /s,
m m (4.30kg)

(b) The net work is Fs — fi.s = (F — 4 mg)s, so

be \/m _ \/2(36.0N—(0.30)(4.30kg)(9.80m/sz)(l.ZOm) =361 ms
m (4.30kg)

EVALUATE: The total work done is larger in the absence of friction and the final speed is larger in that case.
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6.28.

6.29.

6.30.

IDENTIFY and SET UP: Use Eq. (6.6) to calculate the work done by the foot on the ball. Then use Eq. (6.2)
to find the distance over which this force acts.
EXECUTE: W, =K, —K,

Ky =Lmvf =1(0.420 kg)(2.00 m/s)* =0.84 J

1
2
Ky =Lmv; =1(0.420 kg)(6.00 m/s)* =7.56 J
W =K,—K =7.561-0841=6.721]
The 40.0 N force is the only force doing work on the ball, so it must do 6.72 J of work. Wy = (F cos@)s
gives that s = W oo 6.721 =0.168 m.
Fcosg (40.0 N)(cos0)

EVALUATE: The force is in the direction of the motion so positive work is done and this is consistent with
an increase in kinetic energy.
(a) IDENTIFY and SET UP: Use Wy = (F cos¢)s to find the work done by the force. Then use

Wit = K5 — K to find the final kinetic energy, and then K, = %mv% gives the final speed.
EXECUTE: W, =K, —K;, so K, =W, + K
Ky =Lmvl =1(7.00 kg)(4.00 m/s)* =56.0J
The only force that does work on the wagon is the 10.0 N force. This force is in the direction of the
displacement so ¢ =0° and the force does positive work:

Wy = (Fcos@)s =(10.0 N)(cos0)(3.0 m) =30.0 J

Then K, =W, + K, =30.0 ] +56.0 ] =86.0 I.

K, :%mvg; vzz‘/&: %:496@5
m  \ 7.00 kg

(b) IDENTIFY: Apply ZF = ma to the wagon to calculate a. Then use a constant acceleration equation to
calculate the final speed. The free-body diagram is given in Figure 6.29.

SET UP:
y EXECUTE: XF, =ma,
a 2
F=ma,
n
F _10.0N
F a, =—=——— =143 m/s>
x m- 7.00 kg
mg
Figure 6.29

2 _ 2
Vi = Viy +2a5(x = xp)

Ve = VR +2a,(x— x) =+/(4.00 m/s)® +2(1.43 m/s?)(3.0 m) = 4.96 m/s

EVALUATE: This agrees with the result calculated in part (a). The force in the direction of the motion
does positive work and the kinetic energy and speed increase. In part (b), the equivalent statement is that
the force produces an acceleration in the direction of the velocity and this causes the magnitude of the
velocity to increase.

IDENTIFY: Apply W, =K, - K.

SETUP: K; =0. The normal force does no work. The work W done by gravity is W = mgh, where

h = Lsin@ is the vertical distance the block has dropped when it has traveled a distance L down the incline
and @ is the angle the plane makes with the horizontal.
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. 2K 2w - . .
EXECUTE: The work-energy theorem gives v=,|— =,|— =./2gh =/2gLsin 8. Using the given
m m
numbers, v = \/2(9.80 m/sz)(l.35 m)sin36.9° =3.99 m/s.
EVALUATE: The final speed of the block is the same as if it had been dropped from a height 4.
6.31. IDENTIFY: W, =K, — K. Only friction does work.
SETUP: Wiy =Wy, =—hmgs. K, =0 (car stops). Ky = %mvé.
2
EXECUTE: (a) W, =K, — K, gives — 4 mgs = —%mvz. s=—20_
248
2
(b) () thp =24, SH = ;—Og = constant o S,L4, = Splyp- S, = [ Z‘“’ Jsu =s,/2. The minimum stopping
kb
2
. y _ s | o S, _ S _ v | _
distance would be halved. (ii) vpp =2vp,. — = =constant, s0 —~=—r. 5, =s,| — | =4s,. The
Voo 2HheE Voa Vo Voa
stopping distance would become 4 times as great. (iii) Vo, = 2Vo,, Hip = 2Hia- % = Ey = constant, so
VO g
2
1 ) .
% = %. S, =S, [&J(VﬂJ =5, (—j (2)° =2s,. The stopping distance would double.
Voa Voh Her )\ Vou 2
EVALUATE: The stopping distance is directly proportional to the square of the initial speed and indirectly
proportional to the coefficient of kinetic friction.
6.32. IDENTIFY: We know (or can calculate) the change in the kinetic energy of the crate and want to find the
work needed to cause this change, so the work-energy theorem applies.
SErUp: W, =AK=K;-K; = %mv% —%mviz.
EXECUTE: W, = K¢ — K; =3(30.0 kg)(5.62 m/s)” — 1(30.0 kg)(3.90 m/s)’.
Wi =473.81-228.21=2461.
EVALUATE: Kinetic energy is a scalar and does not depend on direction, so only the initial and final
speeds are relevant.
6.33. IDENTIFY: The elastic aortal material behaves like a spring, so we can apply Hooke’s law to it.
SETUP: |F, | = F, where F is the pull on the strip or the force the strip exerts, and F' = k.
. . 1.50 N
EXECUTE: (a) Solving F = kx for k gives k =— =———=40.0 N/m
0.0375 m
(b) F =kx=(40.0 N/m)(0.0114 m) =0.456 N.
EVALUATE: It takes 0.40 N to stretch this material by 1.0 cm, so it is not as stiff as many laboratory
springs.
6.34. IDENTIFY: The work that must be done to move the end of a spring from x; to x,is W = %kx% - %/cxlz

The force required to hold the end of the spring at displacement x is F, = kx.
SET UP: When the spring is at its unstretched length, x = 0. When the spring is stretched, x >0, and
when the spring is compressed, x <0.

EXECUTE: (a) x; =0 and W =13, k:—Z:W:Z.MXIO“ N/m.
)C2 . m

(b) F, = kx=(2.67x10* N/m)(0.0300 m) =801 N.
(©) x, =0, x,=-0.0400 m. W =1(2.67x10* N/m)(~0.0400 m)? =21.4J.
F, = kx = (2.67 x10* N/m)(0.0400 m) =1070 N.
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EVALUATE: When a spring, initially unstretched, is either compressed or stretched, positive work is done
by the force that moves the end of the spring.

6.35. IDENTIFY: The springs obey Hooke’s law and balance the downward force of gravity.
SET UP: Use coordinates with +y upward. Label the masses 1, 2, and 3, with 1 the top mass and 3 the

bottom mass, and call the amounts the springs are stretched x;, x,, and x;. Each spring force is kx.
EXECUTE: (a) The three free-body diagrams are shown in Figure 6.35.

a=10 kx, a=0

—, .y — > X
mg kxy mg
kx,

Figure 6.35

(b) Balancing forces on each of the masses and using F' = kx gives kx; = mg so

L =mg _ (8.50ke)(9.80 m/s?)
ok 7.80 % 10° N/m

=1.068 cm. kx, =mg + kxy = 2mg S0 x, = 2(%) =2.136 cm.

kxy = mg + kxy =3mg so x; = 3(%) =3.204 cm. Adding the original lengths to the distance stretched,

the lengths of the springs, starting from the bottom one, are 13.1 cm, 14.1 cm, and 15.2 cm.
EVALUATE: The top spring stretches most because it supports the most weight, while the bottom spring
stretches least because it supports the least weight.
6.36. IDENTIFY: The magnitude of the work can be found by finding the area under the graph.
SET UP: The area under each triangle is 1/2 base x height. F, >0, so the work done is positive when
x increases during the displacement.
EXECUTE: (a) 1/2 (8m)(10 N)=401J.
(b) 1/2 (4m)(10 N)=201J.
(¢) /2 (12 m)(10N)=6017.
EVALUATE: The sum of the answers to parts (a) and (b) equals the answer to part (c).
6.37. IDENTIFY: Use the work-energy theorem and the results of Problem 6.36.
SETUP: For x=0 to x=8.0m, W, =40J. For x=0 to x=12.0m, W, =60 J.

EXECUTE: (a) v= w:zs:sm
10 kg
(b) v= (2)(60 ) =3.46 m/s.
10kg

EVALUATE: F is always in the +x-direction. For this motion F does positive work and the speed
continually increases during the motion.
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6.38.

6.39.

6.40.

6.41.

IDENTIFY: The spring obeys Hooke’s law.
SET UP: Solve F' = kx for x to determine the length of stretch and use W = + %kx2 to assess the

corresponding work.

k  300.0 N/m
The corresponding work done is W = %(300.0 N/m)(0.0500 m)2 =03751J.

EVALUATE: In F = kx, F is always the force applied to one end of the spring, thus we did not need to
double the 15.0 N force. Consider a free-body diagram of a spring at rest; forces of equal magnitude and
opposite direction are always applied to both ends of every section of the spring examined.

IDENTIFY: Apply Eq. (6.6) to the box.

SET UP: Let point 1 be just before the box reaches the end of the spring and let point 2 be where the
spring has maximum compression and the box has momentarily come to rest.

EXECUTE: W =K, -K

Ky =myg, K,=0

Work is done by the spring force. W, = —%kx%, where x, is the amount the spring is compressed.

—Lhd ==dmvj and x, = vy/m/k = (3.0 m/s),/(6.0 kg)/(7500 N/m) =8.5 cm

EVALUATE: The compression of the spring increases when either v, or m increases and decreases when k
increases (stiffer spring).

IDENTIFY: The force applied to the springs is F, = kx. The work done on a spring to move its end

from x; to x, is W = %kx% —%kxlz . Use the information that is given to calculate k.

SET UP: When the springs are compressed 0.200 m from their uncompressed length, x; =0 and
x, =—0.200 m. When the platform is moved 0.200 m farther, x, becomes —0.400 m.

2w 2(80.0J)
x2—x2 (0200 m)>—0
The magnitude of force that is required is 800 N.
(b) To compress the springs from x; =0 to x, =—-0.400 m, the work required is

W =Lho; —Liof =1(4000 N/m)(=0.400 m)* =320 J. The additional work required is

320 J-80J=2401J. For x=-0.400 m, F, = kx=-1600 N. The magnitude of force required is 1600 N.

EVALUATE: More work is required to move the end of the spring from x =—0.200 m to x =-0.400 m
than to move it from x =0 to x =—0.200 m, even though the displacement of the platform is the same in

EXECUTE: (a) k = = 4000 N/m. F, = kx = (4000 N/m)(=0.200 m) =800 N.

each case. The magnitude of the force increases as the compression of the spring increases.
IDENTIFY: Apply EF =md to calculate the M, required for the static friction force to equal the spring

force.
SET UpP: (a) The free-body diagram for the glider is given in Figure 6.41.

EXECUTE: ZFy =ma

y
n—mg =0
n=mg
Js = Hsmg

Figure 6.41
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6.42.

6.43.

XF, =ma,
fs - Fspring =0
umg —kd =0

_ kd _ (200 N/m)(0.086m) _
mg  (0.100 kg)(9.80 m/s?®)

(b) IDENTIFY and SET UP:  Apply F =ma to find the maximum amount the spring can be compressed
and still have the spring force balanced by friction. Then use W, ; = K, — K; to find the initial speed that

S

results in this compression of the spring when the glider stops.
EXECUTE: fmg =kd

= Humg__ (0.60)(0.100 kg)(9.80 m/s)

=0.0294 m
k 20.0 N/m
Now apply the work-energy theorem to the motion of the glider:
Wit = Ky = K,

K= %mvlz, K, =0 (instantaneously stops)

W =W, + Wi = ~%kd2 — tymgd (as in Example 6.7)

pring
Wioi ==%(20.0 N/m)(0.0294 m)” —0.47(0.100 kg)(9.80 m/s*)(0.0294 m) = —0.02218 J

Then W, = K, — K, gives —0.02218 J = —Lmy?.

2
Lo 20022180 o
! 0.100 kg ' '

EVALUATE: In Example 6.7 an initial speed of 1.50 m/s compresses the spring 0.086 m and in part (a) of
this problem we found that the glider doesn’t stay at rest. In part (b) we found that a smaller displacement
of 0.0294 m when the glider stops is required if it is to stay at rest. And we calculate a smaller initial speed
(0.67 m/s) to produce this smaller displacement.

IDENTIFY: For the spring, W = %kxlz —%kx% . Apply W,,; =K, - K.
SETUP: x;,=-0.025mand x, =0.
EXECUTE: (a) ¥ =1 =1(200 N/m)(~0.025 m)* =0.0625 J, which rounds to 0.063 J.

(b) The work-energy theorem gives v, = ‘/Z—W = 2(006257) =0.18 m/s.
m (4.0 kg)

EVALUATE: The block moves in the direction of the spring force, the spring does positive work and the
kinetic energy of the block increases.
IDENTIFY and SET UP: The magnitude of the work done by F, equals the area under the F, versus

x curve. The work is positive when F, and the displacement are in the same direction; it is negative when
they are in opposite directions.

EXECUTE: (a) F, is positive and the displacement Ax is positive, so W >0.

W =3(2.0N)(2.0 m)+ (2.0 N)(1.0 m) =+4.0 J

(b) During this displacement F, =0, so W =0.

(¢) F, is negative, Ax is positive, so W <0. W = —%(l ON)20m)=-1.0J

(d) The work is the sum of the answers to parts (a), (b), and (c),so W =4.0J+0-1.0J=+3.0 J.

(e) The work done for x =7.0 m to x =3.0 m is +1.0 J. This work is positive since the displacement and
the force are both in the —x-direction. The magnitude of the work done for x=3.0 m to x=2.0 m is 2.0 J,
the area under F, versus x. This work is negative since the displacement is in the —x-direction and the
force is in the +x-direction. Thus W =+1.0J-2.0J=-1.01J.
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6.44.

6.45.

6.46.

EVALUATE: The work done when the car moves from x=2.0m to x=0 is —%(2.0 N)(2.0 m) =-2.0 J.

Adding this to the work for x =7.0 m to x =2.0 m gives a total of W =-3.0J for x=7.0 m to x=0.
The work for x =7.0 m to x =0 is the negative of the work for x=0 to x=7.0 m.

IDENTIFY: Apply W, =K, — K.

SETUP: K =0. From Exercise 6.43, the work for x=0 to x=3.0m is4.0J. Wfor x=0 to x=4.0 m
isalso4.0J. For x=0 to x=7.0m, W =3.01.

EXECUTE: (a) K =4.0J, so v=~/2K/m =/2(4.0 )/(2.0 kg) =2.00 m/s.
(b) No work is done between x =3.0m and x =4.0 m, so the speed is the same, 2.00 m/s.
(¢) K=3.0J, so v=~2K/m =/2(3.01)/(2.0 kg) =1.73 m/s.

EVALUATE: In each case the work done by F is positive and the car gains kinetic energy.
IDENTIFY and SET UP:  Apply Eq. (6.6). Let point 1 be where the sled is released and point 2 be at x =0

for part (a) and at x = —0.200 m for part (b). Use Eq. (6.10) for the work done by the spring and calculate X,.

Then K, :%mvg gives v,.
EXECUTE: (a) W, =K, — K, so K, =K; +W,,
K; =0 (released with no initial velocity), K, = %mv%

The only force doing work is the spring force. Eq. (6.10) gives the work done on the spring to move its end
from x; to x,. The force the spring exerts on an object attached to it is /' = —kx, so the work the spring
does is

Wepr = —(%kx% —%kxlz) =%kx12 —%kzxg Here x; =-0.375 m and x, =0. Thus
Wepr = %(4000 N/m)(~0.375 m)* — 0 = 281 J.

Ky =K, +W, =0+2811=2811J.

Then K, =Lmvj implies v, = f& = [2EsLlC 2.83 m/s.
2 m 70.0 kg

(b) Ky =K, + W

K =0
Wiot =Wepe = %kxlz —%kxf Now x, =-0.200 m, so
Wepr = %(4000 N/m)(~0.375 m)? —%(4000 N/m)(=0.200 m)* = 281J—80J=201]J

Thus K, =0+201J=201]J and K, =1mv3 gives v, = 12K5 - [2COLD) s 40 s,
m 70.0 kg

EVALUATE: The spring does positive work and the sled gains speed as it returns to x = 0. More work is
done during the larger displacement in part (a), so the speed there is larger than in part (b).
IDENTIFY: F, =kx

SET UP: When the spring is in equilibrium, the same force is applied to both ends of any segment of the
spring.

EXECUTE: (a) When a force F is applied to each end of the original spring, the end of the spring is
displaced a distance x. Each half of the spring elongates a distance x;,, where x;, = x/2. Since F is also the

force applied to each half of the spring, F =kxand F =ky,x,. kx=kyx, and k, = l{iJ =2k.
xh

(b) The same reasoning as in part (a) gives £,

seg = 3k, where kg, is the force constant of each segment.

seg
EVALUATE: For half of the spring the same force produces less displacement than for the original spring.
Since k = F/x, smaller x for the same F means larger .
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6.47.

IDENTIFY and SET UP: Apply Eq. (6.6) to the glider. Work is done by the spring and by gravity. Take
point 1 to be where the glider is released. In part (a) point 2 is where the glider has traveled 1.80 m and
K, =0. There are two points shown in Figure 6.47a. In part (b) point 2 is where the glider has traveled

0.80 m.
EXECUTE: (a) W, = K, —K; =0. Solve for x;, the amount the spring is initially compressed.

2=0 I/Vtot:I/Vspr"-pr:O

So VVspr = _Ww
(The spring does positive work on the glider since
the spring force is directed up the incline, the same

as the direction of the displacement.)

1.80 m

Figure 6.47a
The directions of the displacement and of the gravity force are shown in Figure 6.47b.

g W, = (wcos @)s = (mgcos130.0°)s
W,, =(0.0900 kg)(9.80 m/sz)(cosl30.0°)(1 .80m)=-1.0207J

(The component of w parallel to the incline is
directed down the incline, opposite to the
displacement, so gravity does negative work.)

130.0°

Figure 6.47b

Wepe =W, =+1.020]

2W 2(1.02
Wsr=ikx12 S0 X = = ( OOJ)=O.0565m
P2 k \/640N/m

(b) The spring was compressed only 0.0565 m so at this point in the motion the glider is no longer in
contact with the spring. Points 1 and 2 are shown in Figure 6.47c.

080/ K,="? Wit = K3 = K,

4 m

g \/\ Ky =K+ W
v,=0 K, =0

Figure 6.47¢

Wit =Wepe + W,y

spr

From part (a), W, =1.020J and

W,, = (mg c0s130.0%)s = (0.0900 kg)(9.80 m/s*)(cos130.0°)(0.80 m) = —0.454

Then K, =Wy, +W, =+1.020 J-0.454 ] =+0.57 J.

EVALUATE: The kinetic energy in part (b) is positive, as it must be. In part (a), x, =0 since the spring

force is no longer applied past this point. In computing the work done by gravity we use the full 0.80 m the
glider moves.
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6.48.

6.49.

6.50.

6.51.

6.52.

IDENTIFY: Apply W, =K, — K| to the brick. Work is done by the spring force and by gravity.
SET UP: At the maximum height, v =0. Gravity does negative work, W, =—mgh. The work done by

grav
the spring is %kd 2. where d is the distance the spring is compressed initially.

EXECUTE: The initial and final kinetic energies of the brick are both zero, so the net work done
on the brick by the spring and gravity is zero, so (1/2)kd 2 mgh=0, or d =\2mgh/k =

\/2(1 .80kg)(9.80 m / sz)(3.6 m)/(450 N/ m) =0.53 m. The spring will provide an upward force while the

spring and the brick are in contact. When this force goes to zero, the spring is at its uncompressed length. But
when the spring reaches its uncompressed length the brick has an upward velocity and leaves the spring.
EVALUATE: Gravity does negative work because the gravity force is downward and the brick moves
upward. The spring force does positive work on the brick because the spring force is upward and the brick
moves upward.

IDENTIFY: The force does work on the box, which gives it kinetic energy, so the work-energy theorem
applies. The force is variable so we must integrate to calculate the work it does on the box.

SETUP: Wy = AK = Ky = K =dmvi —Lmf! and Wio = [ F(x)dx.
X1

14.0m

EXECUTE: W, = I: F(x)dx = I p

[18.0 N —(0.530 N/m)x]dx

Wit = (18.0 N)(14.0 m)—(0.265 N/m)(14.0 m)2 =252.0J-51.94 ] =200.1 J. The initial kinetic energy is

2(200.17)
6.00 kg
EVALUATE: We could not readily do this problem by integrating the acceleration over time because we

know the force as a function of x, not of . The work-energy theorem provides a much simpler method.
IDENTIFY: The force acts through a distance over time, so it does work on the crate and hence supplies
power to it. The force exerted by the worker is variable but the acceleration of the cart is constant.

SET UP: Use P = Fv to find the power, and we can use v = v, +at to find the instantaneous velocity.

EXECUTE: First find the instantaneous force and velocity: F = (5.40 N/s)(5.00 s)=27.0 N and
v=vy+at=(2.80 m/sz)(S.OO s) =14.0 m/s. Now find the power: P =(27.0 N)(14.0 m/s) =378 W.

EVALUATE: The instantaneous power will increase as the worker pushes harder and harder.
IDENTIFY: Apply the relation between energy and power.

=8.17 m/s.

. . 2w,
zero, so Wy =AK = Ky — K =%mv§. Solving for vy gives vg :\/ tot :\/
m

SETUP: Use P= % to solve for I, the energy the bulb uses. Then set this value equal to %mv2 and

solve for the speed.
EXECUTE: W = PAt=(100 W)(3600 s) =3.6 X 10°]

5
K =3.6%x10°] so v= /Z—K: 266x10°0) _ 166 s
m 70 kg

EVALUATE: Olympic runners achieve speeds up to approximately 10 m/s, or roughly one-tenth the result
calculated.

IDENTIFY: Knowing the rate at which energy is consumed, we want to find out the total energy used.
SET UpP: Find the elapsed time Az in each case by dividing the distance by the speed, At =d/v. Then
calculate the energy as W = PAt.

EXECUTE: Running: At = (5.0 km)/(10 km/h) =0.50 h =1.8 x 10°s. The energy used is
W =(700 W)(1.8 x 10°s) =1.3 x 10°J.

5.0km (3600s
3.0 km/h h

W = (290 W)(6.0 x10°s) =1.7 x 10°]J.

EVALUATE: The less intense exercise lasts longer and therefore burns up more energy than the intense exercise.

Walking: At =

j =6.0x10’s. The energy used is
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6.53.

6.54.

6.55.

6.56.

6.57.

6.58.

AW .
IDENTIFY: P, = YR AW is the energy released.

SET UP: AW is to be the same. ly:3.156><107 S.

EXECUTE: PF, At =AW =constant, s0 F,,_nAtun = Pry-mAlm-
_ Aty ) [ (2.5%10° y)(3.156%x107 sly) | _ 3
Pav-m _R'w-sun[ A::‘j—P[ 020 s =39x10"P.

EVALUATE: Since the power output of the magnetar is so much larger than that of our sun, the
mechanism by which it radiates energy must be quite different.
IDENTIFY: The thermal energy is produced as a result of the force of friction, F' = f4mg. The average

thermal power is thus the average rate of work done by friction or P = Fjv,,.
L =ty =(8.00 m/s +0
= 2 2
EXECUTE: P = Fv,, =[(0.200)(20.0 kg)(9.80 m/s?)](4.00 m/s) =157 W
EVALUATE: The power could also be determined as the rate of change of kinetic energy, AK/f, where the

SET UP: j=4.00 m/s

time is calculated from vy =v; +at and a is calculated from a force balance, XF = ma = (4 mg.
IDENTIFY: Use the relation P = Fy to relate the given force and velocity to the total power developed.
SETUP: 1hp=746 W

EXECUTE: The total power is P = Fjy = (165 N)(9.00 m/s) =1.49 x 10° W. Each rider therefore

=(1.49x10° W)/2 =745 W =1 hp.

EVALUATE: The result of one horsepower is very large; a rider could not sustain this output for long
periods of time.

IDENTIFY and SET Up: Calculate the power used to make the plane climb against gravity. Consider the
vertical motion since gravity is vertical.

EXECUTE: The rate at which work is being done against gravity is

P = Fv =mgv = (700 kg)(9.80 m/s*)(2.5 m/s) =17.15 kW.
This is the part of the engine power that is being used to make the airplane climb. The fraction this is of the
total is 17.15 kW/75 kW =0.23.

EVALUATE: The power we calculate for making the airplane climb is considerably less than the power
output of the engine.

contributes P, rider

AW T : .
IDENTIFY: P, =——. The work you do in lifting mass m a height /4 is mgh.
av At

SETUP: 1hp=746 W

EXECUTE: (a) The number per minute would be the average power divided by the work (mgh) required to
(0.50 hp)(746 W/hp)

(30 kg)(9.80 m/s?)(0.90 m)
(100 W)
(30 kg)(9.80 m/s?)(0.90 m)

EVALUATE: A 30-kg crate weighs about 66 1bs. It is not possible for a person to perform work at this rate.
IDENTIFY and SET UP:  Use Eq. (6.15) to relate the power provided and the amount of work done against
gravity in 16.0 s. The work done against gravity depends on the total weight which depends on the number
of passengers.
EXECUTE: Find the total mass that can be lifted:

_AW _mgh Py

B SO
¥oA t gh

746 W =2.984x10* W
1 hp

lift one box, =1.41/s, or 84.6/min.

(b) Similarly, =0.378/s, or 22.7/min.

£, =40 hp)(
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_ Bt _(2.984x10" W)(16.05)
T gh (9.80 m/s2)(20.0 m)
This is the total mass of elevator plus passengers. The mass of the passengers is
1.836x10° kg _
650kg

=2.436x10° kg

2.436x10° kg —600 kg =1.836 x10° kg. The number of passengers is 28.2.

28 passengers can ride.
EVALUATE: Typical elevator capacities are about half this, in order to have a margin of safety.
6.59. IDENTIFY: To lift the skiers, the rope must do positive work to counteract the negative work developed by

the component of the gravitational force acting on the total number of skiers, Fi,,, = Nmgsina.
SETUP: P=Fyv= Frope?

10|

EXECUTE: B = FigpeV = [+Nmg(cos @)]v.

1 m/s
P =[(50rid 70.0 kg)(9.80 m/s? 75.0)]| 12.0 km/h)| ——— | |.
ope = [(50 riders)( g)( m/s”)(cos )]{( m )(3_60 km/hﬂ

P =2.96x10* W =29.6 kW.

rope
EVALUATE: Some additional power would be needed to give the riders kinetic energy as they are
accelerated from rest.
6.60. IDENTIFY: We want to find the power supplied by a known force acting on a crate at a known velocity.
SET UpP: We know the vector components, so we use P = F-% =Fy + Fy,
EXECUTE: P =F, + F,v,=(-8.00 N)(3.20 m/s) + (3.00 N)(2.20 m/s) = —-19.0 W.
EVALUATE: The power is negative because the x-component of the force is opposite to the x-component
of the velocity and hence opposes the motion of the crate.
6.61. IDENTIFY: Relate power, work, and time.
SET UP: Work done in each stroke is W = Fs and B, = Wi/t.

EXECUTE: 100 strokes per second means P,, =100Fs/t with #=1.00 s, F =2mg and 5 =0.010 m.

P, =020 W.

EVALUATE: For a 70-kg person to apply a force of twice his weight through a distance of 0.50 m for
100 times per second, the average power output would be 7.0 x 10* W. This power output is very far

beyond the capability of a person.

6.62. IDENTIFY: The force has only an x-component and the motion is along the x-direction, so W = J.x2 F dx.
xl

SETUP: x =0 and x, =6.9 m.
EXECUTE: The work you do with your changing force is

X, X, X, X 2 X,
W= [ Fx)dx = (-20.0 N)dx - (3.0 N/m)xdx = (-20.0 N)x [ (3.0 N/m)(x*/2) [©

Xl Xl .Xl 1 1
W=-138N-m—-71.4 N-m=-209J.
EVALUATE: The work is negative because the cow continues to move forward (in the +x-direction) as

you vainly attempt to push her backward.
6.63. IDENTIFY and SET UP: Since the forces are constant, Eq. (6.2) can be used to calculate the work done by
each force. The forces on the suitcase are shown in Figure 6.63a.

Figure 6.63a
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6.64.

6.65.

In part (f), Eq. (6.6) is used to relate the total work to the initial and final kinetic energy.
EXECUTE: (a) Wr =(Fcos@)s
Both F and § are parallel to the incline and in the same direction, so ¢=90° and
Wy = Fs = (160 N)(3.80 m) = 608 J.
(b) The directions of the displacement and of the gravity force are shown in Figure 6.63b.
) W,, = (wcos@)s
$=122° so
W,, = (196 N)(cos122°)(3.80 m)
Wl w, ==3951J

0
32°) 122

Figure 6.63b

Alternatively, the component of w parallel to the incline is wsin32°. This component is down the incline
so its angle with § is ¢ =180°. W, 300 = (196 Nsin32°)(cos180°)(3.80 m) =—-395 J. The other
component of w, wcos32°, is perpendicular to § and hence does no work. Thus W,, =W, 050 ==3151,
which agrees with the above.

(c¢) The normal force is perpendicular to the displacement (¢ =90°), so W, =0.

(d) n=wco0s32° so f, = t4n = thwcos32° =(0.30)(196 N)cos32°=49.87 N

W =(fi cos@)x =(49.87 N)(cos180°)(3.80 m) =189 J.

() Wit =Wp + Wy + W, + W =+608 J=395J+0-189J =24 J.

) W =K, =K, Kl =0, s0 K, =W,

f2(24 1)
1 2 _ tot

~mvy = SO v

272 Wiot 2= 20.0 kg

EVALUATE: The total work done is positive and the kinetic energy of the suitcase increases as it moves up
the incline.
IDENTIFY: The work he does to lift his body a distance 4 is W = mgh. The work per unit mass is

W/m) = gh.

SET UP: The quantity gk has units of N/kg.

EXECUTE: (a) The man does work, (9.8 N/kg)(0.4 m)=3.92 J/kg.

(b) (3.921/kg)/(70J/kg) X100 =5.6%.

(¢) The child does work (9.8 N/kg)(0.2 m)=1.96 J/kg. (1.96 J/kg)/(70J/kg) x 100 = 2.8%.

(d) If both the man and the child can do work at the rate of 70 J/kg, and if the child only needs to use
1.96 J/kg instead of 3.92 J/kg, the child should be able to do more chin-ups.

EVALUATE: Since the child has arms half the length of his father’s arms, the child must lift his body only
0.20 m to do a chin-up.

IDENTIFY: Apply EF =md to each block to find the tension in the string. Each force is constant and

W = Fscos¢.

SET UP: The free-body diagram for each block is given in Figure 6.65 (next page).

my = 200N =2.04 kg and my = 120N

=1.22 kg.
EXECUTE: T - fi =mya. wg—T =mpa. wg— f, =(m, +mp)a.

(a)kaO.a:( ] JandT:WB(LJ:WB[ Wi j:7'50N'
m,+m, m,+mg w, +wy

20.0 N block: W, =Ts = (7.50 N)(0.750 m) =5.62 I.
12.0 N block: W, = (wp —T)s = (12.0 N—7.50 N)(0.750 m) =3.38 J.
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®) fi = hw, =650 N, q =28 Hi%a
my + mp
T=f +(w,— 4w, [LJ = 4w, +(w, —,ukwA)[ Wi ] T =6.50 N +(5.50 N)(0.625) = 9.94 N.
mA + mB A + WB
20.0 N block: W,y =(T — f,)s =(9.94 N—-6.50 N)(0.750 m) =2.58 J.
12.0 N block: W,y =(wp —T)s =(12.0 N-9.94 N)(0.750 m) =1.54 J.
EVALUATE: Since the two blocks move with equal speeds, for each block W, = K, — K| is proportional
to the mass (or weight) of that block. With friction the gain in kinetic energy is less, so the total work on
each block is less.
y T
— (] B X
n
A f —X ‘ ¢
Ik T wp = 120N |
wy = 20.0N y
(a (b)
Figure 6.65
6.66. IDENTIFY: W =Fscos¢ and W, = K, — K.
SETUP:  f, = 4 n. The normal force is n = mgcos@, with 6 =24.0°. The component of the weight
parallel to the incline is mgsin 6.
EXECUTE: (a) ¢=180° and
W =—fis = —(thmgeosO)s = —(0.31)(5.00 kg)(9.80 m/s?)(cos 24.0°)(2.80 m) =—38.9 J.
(b) (5.00 kg)(9.80 m/s?)(sin24.0°)(2.80 m) = 55.8 J.
(¢) The normal force does no work.
(d) W, =55.8]-389J=+1691.
(e) K, =K +W,,; =(1/2)(5.00 kg)(2.20 m/s)> +16.9 1=29.0 J, and so
vy = \/2(29.0 1)/(5.00 kg) =3.41 m/s.
EVALUATE: Friction does negative work and gravity does positive work. The net work is positive and the
kinetic energy of the object increases.
6.67. IDENTIFY: The initial kinetic energy of the head is absorbed by the neck bones during a sudden stop.
Newton’s second law applies to the passengers as well as to their heads.
SET UP: In part (a), the initial kinetic energy of the head is absorbed by the neck bones, so %mvﬁm =8.0 J. For
part (b), assume constant acceleration and use v; = v; + at with v; =0, to calculate a; then apply
F, . =ma to find the net accelerating force.
2(8.0J
Solve: (a) vy, = 2800) 1.8 m/s = 4.0 mph.
5.0kg
-vi _18m/is—0
() a=2"" = " =180 /s’ = 18g, and Fyq = ma = (5.0 kg)(180 m/s?) =900 N.
t 10.0x10"s
EVALUATE: The acceleration is very large, but if it lasts for only 10 ms it does not do much damage.
6.68. IDENTIFY: The force does work on the object, which changes its kinetic energy, so the work-energy

theorem applies. The force is variable so we must integrate to calculate the work it does on the object.

. — - 1,2 1 .2 —[*2
SETUP: Wy = AK = K — K; =2mvf —Lmv} and Wy, = [ F(x)dx.
X1
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6.69.

6.70.

6.71.

X, 5.00 m 20 2
EXECUTE: Wy, = [ F(x)dx = jo [-12.0 N +(0.300 N/m?)x*]dx.
xl

Wy, =—(12.0 N)(5.00 m) + (0.100 N/m?)(5.00 m)> = —60.0 J +12.5 ] =—47.5 .

Wiot = %mvf2 —%mviz =-47.5], so the final velocity is

Ve :\/vf _24750) (6.00 m/s)? _2G750) g1 s,
m 5.00 kg

EVALUATE: We could not readily do this problem by integrating the acceleration over time because we

know the force as a function of x, not of 7. The work-energy theorem provides a much simpler method.

IDENTIFY: Calculate the work done by friction and apply W, = K, — K. Since the friction force is not

constant, use Eq. (6.7) to calculate the work.

SET UP:  Let x be the distance past P. Since /4 increases linearly with x, £4 =0.100+ Ax. When

x=125m, f4 =0.600, so 4 =0.500/(12.5 m) = 0.0400/m.

i 1 . .
EXECUTE: (a) W, =AK =K, — K| gives — J tymgdx =0 —EmV12~ Using the above expression for 4,

2
X __1 %) X _1 2
gjo (0.100+ Ax)dv =—»f and g{(O.lOO)xz +A72}—5v1.

2
(9.80 m/sz)[(O.IOO)xz + (0.0400/m)%2} :%(4.50 m/s)?. Solving for x, gives x, =5.11 m.

(b) 14 =0.100+ (0.0400/m)(5.11 m) = 0.304

G (GO .
2ueg  2(0.100)(9.80 m/s?)

EVALUATE: The box goes farther when the friction coefficient doesn’t increase.

IDENTIFY: Use Eq. (6.7) to calculate W.
SET UP: x; =0. In part (a), x, =0.050 m. In part (b), x, =—0.050 m.

] 1
(€) Wior = Ky — K gives —iymgx, = 0‘5’”"12- x)

. NG SRS 2 (ST 3 C 4
EXECUTE: (a) W _Io Fdx _-[0 (kx—bx" +cx’)dx = 2x2 3x2 + 4x2.
W =(50.0 N/m) x7 — (233 N/m?) x3 + (3000 N/m>) x3. When x, =0.050m, W =0.121].

(b) When x, =—0.050m, 7 =0.17J.

¢) It’s easier to stretch the spring; the quadratic —bx? term is always in the —x-direction, and so the needed
pring q y

force, and hence the needed work, will be less when x, > 0.
EVALUATE: When x =0.050 m, F, =4.75 N. When x =-0.050 m, F, =—-8.25 N.

IDENTIFY and SET UP: Use F =ma to find the tension force 7. The block moves in uniform circular

motion and @ =d,q.

(a) The free-body diagram for the block is given in Figure 6.71.

EXECUTE: XF, =ma,

Arad 2
= n T= mv—
= R
X 2
0.70
T = 0.0600 ke) 270" _ 674 N,
e 0.40 m

Figure 6.71
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6.72.

6.73.

6.74.

v (2 80 m/s)?

(b) 7= m—-=(0.0600 ke) =47 N.

(c) SET UP. The tension changes as the distance of the block from the hole changes. We could use

W= L? F, dx to calculate the work. But a much simpler approach is to use W, = K, — K.

EXECUTE: The only force doing work on the block is the tension in the cord, so W, =Wr.
K= —mv1 = —(0 0600 kg)(0.70 m/s)* = 0.01470 J, K, = —mv2 = (O 0600 kg)(2.80 m/s)* =0.2352 J, so

Wi =Ky —K; =0.2352 J-0.01470 J = 0.22 J. This is the amount of work done by the person who pulled

the cord.
EVALUATE: The block moves inward, in the direction of the tension, so 7 does positive work and the
kinetic energy increases.

IDENTIFY: Use Eq. (6.7) to find the work done by F. Then apply W, = K, — Kj.

dx 1

SET UP: .[—2: —;.
X

EXECUTE: W = J—d O{L—LJ.

qX XX,
W=(2.12x1072° N~m2)[(0.200 m)—(1.25x10° m™! J:—2.65x10_17 J.

Note that x; is so large compared to x, that the term 1/x; is negligible. Then, using Eq. (6:13) and solving

o —17
v, = /vf W= 13.00x10° mfs)> +2(2L127J):2.41x105 m/s.
m (1.67x1077 kg)

for v,,

(b) With K, =0, W =K. Using W =——,
X2
o _2a _ 2(2.12x107%° N-m?)

=282x10""" m

& K mv  (1.67x107% kg)(3.00x10° m/s)>

(¢) The repulsive force has done no net work, so the kinetic energy and hence the speed of the proton have
their original values, and the speed is 3.00 % 10° m/s.

EVALUATE: As the proton moves toward the uranium nucleus the repulsive force does negative work and
the kinetic energy of the proton decreases. As the proton moves away from the uranium nucleus the
repulsive force does positive work and the kinetic energy of the proton increases.

IDENTIFY: The negative work done by the spring equals the change in kinetic energy of the car.

SET UP: The work done by a spring when it is compressed a distance x from equilibrium is —Ekxz.
K, =0.
EXECUTE: —%kx2 =K, - K, gives —kx2 = —mvl and

k = (mv})/x* =[(1200 kg)(0.65 m/s)*]/(0.090 m)? = 6.3x10* N/m.

EVALUATE: When the spring is compressed, the spring force is directed opposite to the displacement of
the object and the work done by the spring is negative.

IDENTIFY and SET UP: Use Eq. (6.6). You do positive work and gravity does negative work. Let point 1
be at the base of the bridge and point 2 be at the top of the bridge.

EXECUTE: (a) W, =K, — K,

K, ¢ =1(80.0 kg)(5.00 m/s)* =1000 J

L
2

Ky =1mv § 1(80.0 kg)(1.50 m/s)* =90 J

W, =90 J—1000 J =-910 ]
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6.75.

6.76.

(b) Neglecting friction, work is done by you (with the force you apply to the pedals) and by gravity:

Wiot =Wyou + Weravity- The gravity force is w=mg =(80.0 kg)(9.80 m/s?) =784 N, downward. The

displacement is 5.20 m, upward. Thus ¢ =180° and
W, =(Fcos@)s = (784 N)(5.20 m)cos180° =—-4077 J

gravity
Then I/Vtot Wyou Wgravity gives
Wyou =Wiot = Wegavity = 910 1= (—4077 1) = 43170 J

EVALUATE: The total work done is negative and you lose kinetic energy.

IDENTIFY and SET UP: Use Eq. (6.6). Work is done by the spring and by gravity. Let point 1 be where the
textbook is released and point 2 be where it stops sliding. x, =0 since at point 2 the spring is neither

stretched nor compressed. The situation is sketched in Figure 6.75.

EXECUTE:
vi=0 I/Vtot :KZ_KI
JWLH K, =0, K,=0
- Wio = Wisic + Wepe
Figure 6.75

Wepr = %kxlz, where x; =0.250 m (Spring force is in direction of motion of block so it does positive work.)

Wfric = —,ukmgd
Then W, = K, — K, gives %kxlz — Hymgd =0

kx? (250 N/m)(0.250 m)®
244mg  2(0.30) (2.50 kg) (9.80 m/s?)
EVALUATE: The positive work done by the spring equals the magnitude of the negative work done by
friction. The total work done during the motion between points 1 and 2 is zero, and the textbook starts and
ends with zero kinetic energy.
IDENTIFY: Apply W, =K, — K.

=1.1 m, measured from the point where the block was released.

SET UP: Let x, be the initial distance the spring is compressed. The work done by the spring is

lkxé - lkxz, where x is the final distance the spring is compressed.

EXECUTE: (a) Equating the work done by the spring to the gain in kinetic energy, + kxo = —mv2 SO

4
= /—xo = [00NmM 060 m) = 6.93 mys.
m 0.0300 kg

(b) W, must now include friction, so %mv2 =Wt = %kx — fxg, where f’is the magnitude of the friction
force. Then,
\/—xo Xp = 400 N/m ————(0.060 m)? —M(O.%O m) =4.90 m/s.
0.0300 kg (0.0300 kg)
(c) The greatest speed occurs when the acceleration (and the net force) are zero. Let x be the amount the
spring is still compressed, so the distance the ball has moved is xy —x. kx = f,x = -/ = 600N =
k 400 N/m

0.0150 m.
The ball is 0.0150 m from the end of the barrel, or 0.0450 m from its initial position.
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6.77.

6.78.

6.79.

6.80.

To find the speed, the net work is W, = %k(xg -x%)- f(xy—x), sothe maximum speed is

Vinax = \/ﬁ(xg —x2) - 2/ (xg —x).
m

m

Vi = \/M[(o.%o m)? - (0.0150 m)z] _ 200N 6 060 m—0.0150m) = 5.20 mis
(0.0300 kg) (0.0300 kg)

EVALUATE: The maximum speed with friction present (part (c)) is larger than the result of part (b) but

smaller than the result of part (a).

IDENTIFY: A constant horizontal force pushes a block against a spring on a rough floor. The work-energy

theorem and Newton’s second law both apply.

SET UpP: In part (a), we apply the work-energy theorem W, = K, — K, to the block. fi = uwn and Wiy, =

—Vs kx®. In part (b), we apply Newton’s second law to the block.

EXECUTE: (a) Wi+ Woing + W, =K, — K. Fx — /2 ko — mmgx =Y my> — 0. Putting in the numbers from
the problem gives (82.0 N)(0.800 m) — (130.0 N/m)(0.800 m)®/2 — (0.400)(4.00 kg)(9.80 m/s*)(0.800 m) =
(4.00 kg*/2, v=2.39 m/s.

(b) Looking at quantities parallel to the floor, with the positive direction toward the wall, Newton’s second
law gives F'— fi — Fpring = Ma.

F — wyumg —kx = ma: 82.0 N — (0.400)(4.00 kg)(9.80 m/s”) — (130.0 N/m)(0.800 m) = (4.00 kg)a
a=-9.42 m/s’. The minus sign means that the acceleration is away from the wall.

EVALUATE: The force you apply is toward the wall but the block is accelerating away from the wall.
IDENTIFY: A constant horizontal force pushes a frictionless block of ice against a spring on the floor. The
work-energy theorem and Newton’s second law both apply.

SETUP: In part (a), we apply the work-energy theorem W, = K, — K to the ice. Wyin, =—"2 k. In part (b),
we apply Newton’s second law to the ice.

EXECUTE: (a) Wp+ Wping =K, — Ky Fx =7/ =% m’ - 0. Putting in the numbers from the problem
gives (54.0 N)(0.400 m) = (76.0 N/m)(0.400 m)*/2 = (2.00 kg)v*/2, v= 3.94 m/s.

(b) Looking at quantities parallel to the floor, with the positive direction away from the post, Newton’s
second law gives F — Fyyins = ma, so F — kx = ma.

54.0 N — (76.0 N/m)(0.400 m) = (2.00 kg)a, which gives a = 11.8 m/s”. The acceleration is positive, so the
block is accelerating away from the post.

EvVALUATE: The given force must be greater than the spring force since the ice is accelerating away from
the post.

IDENTIFY: Apply W, = K, — K to the blocks.

SET Up: If Xis the distance the spring is compressed, the work done by the spring is —%kX 2. At
maximum compression, the spring (and hence the block) is not moving, so the block has no kinetic energy.
EXECUTE: (a) The work done by the block is equal to its initial kinetic energy, and the maximum

L .00 k
compression is found from 1 kX2 :lmvg and X = \/Evo - |[200ke

2 2 k 500 N/m
_ /500 N/m
5.00 kg

EVALUATE: The negative work done by the spring removes the kinetic energy of the block.
IDENTIFY: Apply W, =K, —K,. W =Fscos¢.
SET UP: The students do positive work, and the force that they exert makes an angle of 30.0° with the
direction of motion. Gravity does negative work, and is at an angle of 120.0° with the chair’s motion.
EXECUTE: The total work done is W,,; = ((600 N) cos30.0° + (85.0 kg)(9.80 m/sz) c0s120.0°)(2.50 m) =

2(257.87)
(85.0 kg)

(6.00 m/s) = 0.600 m.

(b) Solving for v, in terms of a known X, v, = \/EX (0.150 m) =1.50 m/s.
m

257.8 J, and so the speed at the top of the ramp is v, = \/vlz +% = \/(2.00 m/s)2 + =3.17 m/s.
m
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6.81.

6.82.

6.83.

EVALUATE: The component of gravity down the incline is mgsin30° =417 N and the component of the
push up the incline is (600 N)cos30° =520 N. The force component up the incline is greater than the

force component down the incline; the net work done is positive and the speed increases.

IDENTIFY and SET UP: Apply W, =K, — K| to the system consisting of both blocks. Since they are
connected by the cord, both blocks have the same speed at every point in the motion. Also, when the 6.00-kg
block has moved downward 1.50 m, the 8.00-kg block has moved 1.50 m to the right. The target variable,
M, will be a factor in the work done by friction. The forces on each block are shown in Figure 6.81.

i Bt EXECUTE:
T 1 2 ¢ 1
Ky = myvi 5
A ,",‘\ _
K, =0

m_ g
A &

Lmgf = (mA +mghi

Figure 6.81

The tension 7' in the rope does positive work on block B and the same magnitude of negative work on
block 4, so T does no net work on the system. Gravity does work W,,, =m gd on block 4, where

d =2.00 m. (Block B moves horizontally, so no work is done on it by gravity.) Friction does work
Wiic =—#hmpgd onblock B. Thus Wiy =W,,, + Wi =m gd — fhempgd. Then W, =K, — K, gives

mgd — thmpgd =—L(m, +mp)i’ and

my  30mg+mphi 6,00 ke | (6.00 ke +8.00 ke) (0.900 mis)” _
my mped  800kg 2(8.00 kg) (9.80 m/s?) (2.00 m)

EvALUATE: The weight of block 4 does positive work and the friction force on block B does negative
work, so the net work is positive and the kinetic energy of the blocks increases as block 4 descends. Note
that K, includes the kinetic energy of both blocks. We could have applied the work-energy theorem to

0.786

He =

block A4 alone, but then W, includes the work done on block A by the tension force.
IDENTIFY: Apply W, = K, — K to the system of the two blocks. The total work done is the sum of that

done by gravity (on the hanging block) and that done by friction (on the block on the table).
SET UP: Let 4 be the distance the 6.00 kg block descends. The work done by gravity is (6.00 kg)gh and
the work done by friction is —/4 (8.00 kg)gh.

EXECUTE: W, =(6.00 kg—(0.25)(8.00 kg))(9.80 m/s>)(1.50 m) = 58.8 J. This work increases the

kinetic energy of both blocks: W, = (m, + mz)v V= 2588 _ 2.90 m/s.
2 (14.00 kg)

EVALUATE: Since the two blocks are connected by the rope, they move the same distance /# and have the
same speed v.

IDENTIFY: Apply Eq. (6.6) to the skater.

SET UP: Let point 1 be just before she reaches the rough patch and let point 2 be where she exits from the
patch. Work is done by friction. We don’t know the skater’s mass so can’t calculate either friction or the
initial kinetic energy. Leave her mass m as a variable and expect that it will divide out of the final equation.
EXECUTE: fi =0.25mg so W, =W,y =—(0.25mg)s, where s is the length of the rough patch.

Wit = Ky = K
Ky =Lmd, Ky =tmd =1m(0.55%)" =03025(Lmi
The work-energy relation gives —(0.25mg)s =(0.3025 - l)%mvg .

The mass divides out, and solving gives s =1.3 m.
EVALUATE: Friction does negative work and this reduces her kinetic energy.
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6.84. IDENTIFY and SET UP: W =Pt
EXECUTE: (a) The hummingbird produces energy at a rate of 0.7 J/s to 1.75 J/s. At 10 beats/s, the bird
must expend between 0.07 J/beat and 0.175 J/beat.
(b) The steady output of the athlete is (500 W)/(70 kg) =7 W/kg, which is below the 10 W/kg necessary to
stay aloft. Though the athlete can expend 1400 W/70 kg =20 W/kg for short periods of time, no human-
powered aircraft could stay aloft for very long.
EVALUATE: Movies of early attempts at human-powered flight bear out our results.
6.85. IDENTIFY: To lift a mass m a height / requires work W = mgh. To accelerate mass m from rest to speed v
AW
. - 1,2 -
requires W =K, - Ky =-mv". B = A
SETUP: ¢t=60s
EXECUTE: (a) (800kg)(9.80 m/s?)(14.0m)=1.10x10° J.
(b) (1/2)(800 kg)(18.0 m/s?) =1.30x10° J.
1.10x10° J+1.30%10° J
(¢ LONOTHII0XN0TT _ 5 g4y,
60s
EVALUATE: Approximately the same amount of work is required to lift the water against gravity as to
accelerate it to its final speed.
6.86.  IDENTIFY and SET UP: Use Eq. (6.15). The work done on the water by gravity is mgh, where 4 =170 m.
Solve for the mass m of water for 1.00 s and then calculate the volume of water that has this mass.
. A
EXECUTE: The power output is £, =2000 MW =2.00x10° W. P, = TV;/ and 92% of the work done
on the water by gravity is converted to electrical power output, so in 1.00 s the amount of work done on the
water by gravity is
9
W= F At _ (2.00x10° W)(1.00 s) —2 174x10° T,
0.92 0.92
W =mgh, so the mass of water flowing over the dam in 1.00 s must be
/4 2.174x10°
m="= 0Ty 30%10° ke
gh  (9.80 m/s”)(170 m)
6
density =2 o= m. = 1'30X130 ke = =1.30x10° m>.
v density  1.00x10° kg/m
EVALUATE: The dam is 1270 m long, so this volume corresponds to about a m? flowing over each 1 m
length of the dam, a reasonable amount.
6.87. IDENTIFY and SET UP: Energy is B, t. The total energy expended in one day is the sum of the energy

expended in each type of activity.
EXECUTE: 1day=8.64x 10% s

Let ¢, be the time she spends walking and ;.. be the time she spends in other activities;

other =864 10% s =111
The energy expended in each activity is the power output times the time, so
E = Pt =(280 W)ty + (100 W)z o =1.1x107 J

(280 W)t + (100 W)(8.64 x10% s =1, ) =1.1x107 J
(180 W)t =2.36x10° 1
foae =1.31x10% s =218 min =3.6 h.

EVALUATE: Her average power for one day is (1.1X 107 1)/[(24)(3600 s)] =127 W. This is much closer to
her 100 W rate than to her 280 W rate, so most of her day is spent at the 100 W rate.
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6.89.
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6.91.

IDENTIFY: W = J-xz F.dx, and F, depends on both x and y.
X

SET UP: In each case, use the value of y that applies to the specified path. J.xdx = %xz. J.xzdx = %x3 .
EXECUTE: (a) Along this path, y is constant, with the value y =3.00 m.

(2.00 m)*
2

W= ay_[;z xdx = (2.50 N/m?)(3.00 m) =15.01, since x, =0 and x, =2.00 m.

(b) Since the force has no y-component, no work is done moving in the y-direction.
(c) Along this path, y varies with position along the path, given by y =1.5x, so F, = a(1.5x)x = 1.50x%, and

(2.00 m)®

W =" Fdx= 1.5aj"2 x2dx =1.5(2.50 N/m?) =10.0J.
X1 X1

EVALUATE: The force depends on the position of the object along its path.

IDENTIFY and SET UP: For part (a) calculate m from the volume of blood pumped by the heart in one day.
For part (b) use W calculated in part (a) in Eq. (6.15).

EXECUTE: (a) W =mgh, asin Example 6.10. We need the mass of blood lifted; we are given the volume

-3 3
V = (7500 L)EIXI?—Lmj =7.50 m’.

m =density X volume = (1.05 X 10° kg/m3)(7.50 m3) =7.875x10> kg
Then W = mgh = (7.875%10> kg)(9.80 m/s*)(1.63 m) =1.26 x10° J.

5

(b) Pav :A_W:wzl_46 W.

At (24 h)(3600 s/h)
EVALUATE: Compared to light bulbs or common electrical devices, the power output of the heart is rather small.
IDENTIFY: We know information about the force exerted by a stretched rubber band and want to know if
it obeys Hooke’s law.
SET Up: Hooke’s law is F = kx. The graph fits the equation F = 33.55x"**"!, with F in newtons and x in
meters.
EXECUTE: (a) For Hooke’s law, a graph of F versus x is a straight line through the origin. This graph is
not a straight line, so the rubber band does not obey Hooke’s law.

) ke = e = d—(33.55x0'4871) =16.34x"312%_ Because of the negative exponent for x, as x increases, k.
X dx

decreases.

0.3355x"%7dx = (33.55/1.4871) 0.0400" "

b 0.0400 m
(¢) The definition of work gives W = Idex = J.O'
a

W=0.188 J. From 0.0400 m to 0.0800 m, we follow the same procedure but with different limits of
integration. The result is W = (33.55/1.4871) (0.0800"**”" — 0.0400"**"") = 0.339 J.

(d) W =K, — K, =" mv* — 0, which gives 0.339 J = (0.300 kg)v*/2, v=1.50 m/s.

EVALUATE: The rubber band does not obey Hooke’s law, but it does obey the work-energy theorem.
IDENTIFY: We know a spring obeys Hooke’s law, and we want to use observations of the motion of a
block attached to this spring to determine its force constant and the coefficient of friction between the
block and the surface on which it is sliding. The work-energy theorem applies.

SETUP: Wiy =Ky — K, Weping = V5 k.

EXECUTE: (a) The spring force is initially greater than friction, so the block accelerates forward. But
eventually the spring force decreases enough so that it is less than the force of friction, and the block then
slows down (decelerates).

(b) The spring is initially compressed a distance x,, and after the block has moved a distance d, the spring
is compressed a distance x = x, — d. Therefore the work done by the spring is

1

W, Ekxg - %k(xo —d)?. The work done by friction is W, = —u,mgd.

spring =
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6.92.

6.93.

The work-energy theorem gives Wepine + Wy=K> — K, =2 mv. Using our previous results, we get

%kxg —%k(xo —d)* —pymgd = %va. Solving for v* gives v* :—idz +2d(%xo —,ukgj, where

Xo=0.400 m.

(¢) Figure 6.91 shows the resulting graph of v* versus d. Using a graphing program and a quadratic fit gives
V2 =-39.96d" + 16.31d. The maximum speed occurs when dv’/dd = 0, which gives (~39.96)(2d) + 16.31 =0,
so d=0.204 m. For this value of d, we have v* = (-39.96)(0.204 m)* + (16.31)(0.204 m), giving v=1.29 m/s.
V2 (m/s)
1.8

1.6 N
1.4 /
\

L/ \
\

; d(m)
0.3 0.4 0.5

0 0.1 0.2
Figure 6.91

(d) From our work in (b) and (c), we know that —k/m is the coefficient of d°, so —k/m =—-39.96, which gives

k =1(39.96)(0.300 kg) = 12.0 N/m. We also know that 2(kxo/m — pg) is the coefficient of d. Solving for

and putting in the numbers gives x; = 0.800.

EVALUATE: The graphing program makes analysis of complicated behavior relatively easy.

IDENTIFY: The power output of the runners is the work they do in running from the basement to the top

floor divided by the time it takes to make this run.

SETUP: P = W/t and W = mgh.

EXECUTE: (a) For each runner, P = mgh/t. We must read the time of each runner from the figure shown

with the problem. For example, for Tatiana we have P = (50.2 kg)(9.80 m/s*)(16.0 m)/32 s = 246.0 W,

which we must round to 2 significant figures because we cannot read the times any more accurate than that

using the figure in the text. Carrying out these calculations for all the runners, we get the following results.

Tatiana: 250 W, Bill: 210 W, Ricardo: 290 W, Melanie: 170 W. Ricardo had the greatest power output, and

Melanie had the least.

(b) Solving P = mgh/t for t gives t = mgh/P = (62.3 kg)(9.80 m/s*)(16.0 m)/(746 W) = 13.1 s, where we

have used the fact that 1 hp = 746 W.

EVALUATE: Even though Tatiana had the shortest time, her power output was less than Ricardo’s because

she weighs less than he does.

IDENTIFY: In part (a) follow the steps outlined in the problem. For parts (b), (c), and (d) apply the work-

energy theorem.

SET UP: J.xzdx = %xs

EXECUTE: (a) Denote the position of a piece of the spring by /; / =0 is the fixed pointand / = L is the

moving end of the spring. Then the velocity of the point corresponding to /, denoted u, is u(/) =v(I/L) (when

the spring is moving, / will be a function of time, and so u is an implicit function of time). The mass of a piece

2 2 2

= LM 2 and K = [ak =2 [Far =2

2 L 20 70 6

(b) 1ioc® =Lmv?, so v =(kim)x = /(3200 N/m)/(0.053 kg) (2.50x10™> m) =6.1 m/s.

of length dl is dm = (M/L)dl, and so dK = %(dm)u2
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6.94.

6.95.

6.96.

(c) With the mass of the spring included, the work that the spring does goes into the kinetic energies of
both the ball and the spring, so %loc2 = %mv2 + %MV2 . Solving for v,

v:\/ k- (3200 N/m) (2.50x102m) =3.9 mys.
m+ M3 (0.053 kg) + (0.243 kg)/3

2 2
(d) Algebraically, ~m? =27 _ 6405 and Lan? =D _6601.
2 (L+ M/3m) 6 (1+3m/M)
EVALUATE: For this ball and spring, Ko admy 3 0.053kg | _ 0.65. The percentage of the final
e M 0243 ke

kinetic energy that ends up with each object depends on the ratio of the masses of the two objects. As
expected, when the mass of the spring is a small fraction of the mass of the ball, the fraction of the kinetic
energy that ends up in the spring is small.

IDENTIFY: In both cases, a given amount of fuel represents a given amount of work J¥, that the engine

does in moving the plane forward against the resisting force. Write 17, in terms of the range R and speed v

and in terms of the time of flight 7' and v.
SET UP: In both cases assume v is constant, so Wy, = RF and R =vT.

EXECUTE: In terms of the range R and the constant speed v, W, = RF = R(ozv2 +£2J
v
In terms of the time of flight 7,R =vt, so W, =vIF = T(OW3 +£]
v

(a) Rather than solve for R as a function of v, differentiate the first of these relations with respect to v,

4 . dR dF . dR dF .
setting —2 =0 to obtain — F + R— = 0. For the maximum range, — =0, so — = 0. Performing

dv dv dv dv dv

the differentiation, 6;—F =2av—2p/v* =0, which is solved for
y

B : 5, 2 \I/4
ya £ = 32X Nm/s |35 g =118 kv
P 0.30 N-s*/m

(b) Similarly, the maximum time is found by setting di(F v) = 0; performing the differentiation,
v
1/4 5 2,2 1/4
3o~ prr =0, v=( L] [ EXAONmUS 52 90 kmih.
3o 3(0.30 N-s“/m?)
1/4

EVALUATE: When v=(f/a)"", F,; hasits minimum value F;, =2./a3. For this v,

R = (o.so)ﬁ and T, = (0.50)a”"*473'*. When v=(8/3a)""*, F,;. =2.3,JoB. For this v,
(071

Jop

R, = (0.43)ﬂ and 7, = (0.57)a_1/4ﬂ_3/4. R, >R, and T, >7Tj, as they should be.
Joip

IDENTIFY: Using 300 W of metabolic power, the person travels 3 times as fast when biking than when walking.

SETUpP: P = W/t,so W= Pt.

EXECUTE: When biking, the person travels 3 times as fast as when walking, so the bike trip takes 1/3 the

time. Since W = Pt and the power is the same, the energy when biking will be 1/3 of the energy when

walking, which makes choice (a) the correct one.

EVALUATE: Walking is obviously a better way to burn calories than biking.

IDENTIFY: When walking on a grade, metabolic power is required for walking horizontally as well as the

vertical climb.

SETUP: P = W/t, W = mgh.
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EXECUTE: Py = Photiz + Pert = Phroriz T M@H/t = Phosi, + mg(Vyer). The slope is a 5% grade, S0 vy =
0.05Vyori,. Therefore Py = 300 W + (70 kg)(9.80 m/s*)(0.05)(1.4 m/s) = 348 W ~ 350 W, which makes
choice (c¢) correct.

EVALUATE: Even a small grade of only 5% makes a difference of about 17% in power output.

IDENTIFY: Using 300 W of metabolic power, the person travels 3 times as fast when biking than when walking.
SETUP: K =Y m/.

EXECUTE: The speed when biking is 3 times the speed when walking. Since the kinetic energy is
proportional to the square of the speed, the kinetic energy will be 3> = 9 times as great when biking,
making choice (d) correct.

EVALUATE: Even a small increase in speed gives a considerable increase in kinetic energy due to the v°.
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7.1.

7.2.

7.3.

IDENTIFY: Uy, =mgy 50 AU,y =mg(y; — )
SETUpP: +y isupward.
EXECUTE: (a) AU = (75 kg)(9.80 m/s*)(2400 m —1500 m) = +6.6x10° J

(b) AU =(75 kg)(9.80 m/s>)(1350 m— 2400 m) =—7.7x10° J

EVALUATE: U,,,, increases when the altitude of the object increases.

IDENTIFY: The change in height of a jumper causes a change in their potential energy.
SET UP: Use AUgraV =mg(y, — )

EXECUTE: AU, = (72 kg)(9.80 m/s>)(0.60 m) = 420 J.

grav

EVALUATE: This gravitational potential energy comes from elastic potential energy stored in the jumper’s

tensed muscles.

IDENTIFY: Use the free-body diagram for the bag and Newton’s first law to find the force the worker

applies. Since the bag starts and ends at rest, K, —K; =0 and W, ; =0.

SET Up: A sketch showing the initial and final positions of the bag is given in Figure 7.3a. sing = 3;)_m
Sm

and ¢ =34.85°. The free-body diagram is given in Figure 7.3b. F is the horizontal force applied by the

worker. In the calculation of U,,,, take +y upward and y =0 at the initial position of the bag.

grav

EXECUTE: (a) XF, =0 gives Tcos¢ =mg and XF, =0 gives FF =Tsin¢. Combining these equations to

eliminate 7 gives F = mgtang = (90.0 kg)(9.80 m/sz)tan34.85° =610 N.

(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of 7 in
the direction of the displacement during the motion and the tension in the rope does no work.

(if) Wi =0 50

W orker = —nglV = Ugmv’2 - =mg(y, — ¥,) =(90.0 kg)(9.80 m/s’ )(0.6277 m) =550 J.

EVALUATE: The force applied by the worker varies during the motion of the bag and it would be difficult
to calculate W, ., directly.

U

grav,1

2872 m

T sind

0.6277 m

[ ] mg

(C) (®)
Figure 7.3
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7.4. IDENTIFY: The energy from the food goes into the increased gravitational potential energy of the hiker.
We must convert food calories to joules.

SET UP: The change in gravitational potential energy is AU, =mg (v — »;), while the increase in
kinetic energy is negligible. Set the food energy, expressed in joules, equal to the mechanical energy
developed.
EXECUTE: (a) The food energy equals mg( Yy = ¥;), SO

_ (140 food calories)(4186 J/1 food calorie) _
Vo=V = 3 =920 m.

(65 kg)(9.80 m/s”)

(b) The mechanical energy would be 20% of the results of part (a), so Ay =(0.20)(920 m) =180 m.
EVALUATE: Since only 20% of the food calories go into mechanical energy, the hiker needs much less of
climb to turn off the calories in the bar.

7.5. IDENTIFY and SET UP: Use K| +U; + Wy = K, +U,. Points 1 and 2 are shown in Figure 7.5.

(a) K; +U; +Wyyor =K, +U,. Solve for K, and then use X, :%mvg to obtain v,.
y v A TN Wyher =0 (The only force on the ball while
53.0°) % it is in the air is gravity.)
T Y% K, :%mvlz; K, :%mvg
220 m \\\ Ul = mgyl, yl = 22.0 m
l N U, =mgy, =0, since y, =0
for our choice of coordinates.
‘.'7
Figure 7.5
EXECUTE: %mvlz +mgy, :%mv%
- [ 2 ) 2 2 v
vy =\ + 2y =(12.0 m/s)® +2(9.80 m/s?)(22.0 m) = 24.0 m/s
EVALUATE: The projection angle of 53.1° doesn’t enter into the calculation. The kinetic energy depends
only on the magnitude of the velocity; it is independent of the direction of the velocity.
(b) Nothing changes in the calculation. The expression derived in part (a) for v, is independent of the
angle, so v, =24.0 m/s, the same as in part (a).
(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect.

7.6.  IDENTIFY: The normal force does no work, so only gravity does work and K; +U, =K, +U, applies.
SET UpP: K =0. The crate’s initial point is at a vertical height of d sino. above the bottom of the ramp.
EXECUTE: (a) y, =0, y; =dsina. Kj+Ugq,y ) =Ky +Ugpyy s gives Ugyy =K,. mgdsina :%mvg
and v, =,/2gdsina.

() ¥, =0, yy=—dsin. K;+Upyy) =Ky +Upyy s gives 0= Ky +Upyy 5. 0=Lmv3 +(—mgdsina)
and v, =,/2gdsina, the same as in part (a).

(¢) The normal force is perpendicular to the displacement and does no work.

EVALUATE: When we use U,,,, =mgy we can take any pointas y =0 but we must take +y to be
upward.

7.7. IDENTIFY: The take-off kinetic energy of the flea goes into gravitational potential energy.

SETUP: Use K| +U; =K, +U,. Let y, =0 and y, =/ and note that U, =0 while K, =0 at the

maximum height. Consequently, conservation of energy becomes mgh = %mvlz.
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EXECUTE: (a) v, =+/2gh = \/2(9.80 m/s’ )(0.20 m) = 2.0 m/s.
(b) K, =mgh=(0.50 x 10~ kg)(9.80 m/s*)(0.20 m) = 9.8 x 107" J. The kinetic energy per kilogram is

K =7
R

m  0.50x10%kg
(¢) The human can jump to a height of 4, = A, [j—h

i

=(0.20 m) Lﬁ; =200 m. To attain this
2.0x107m

height, he would require a takeoff speed of: v, =+/2gh = \/2(9.80 m/s’ )(200 m) =63 m/s.

K
(d) The human’s kinetic energy per kilogram is — = gh = (9.80 m/s? )(0.60 m) = 5.9 J/kg.
m

(e) EVALUATE: The flea stores the energy in its tensed legs.
IDENTIFY: The potential energy is transformed into kinetic energy which is then imparted to the bone.

SET UP: The initial gravitational potential energy must be absorbed by the leg bones. U, = mgh.

EXECUTE: (a) mgh =2(2001]), so h = =i 5~ =0.68 m =68 cm.

(60 kg)(9.80 m/s)
(b) EVALUATE: They flex when they land and their joints and muscles absorb most of the energy.
(c) EVALUATE: Their bones are more fragile so can absorb less energy without breaking and their
muscles and joints are weaker and less flexible and therefore less able to absorb energy.

IDENTIFY: W, = Kp — K 4. The forces on the rock are gravity, the normal force and friction.

SET UP: Let y=0 at point B and let +y be upward. y, =R =0.50 m. The work done by friction is
negative; W, =—-0.22J. 'K 4 =0. The free-body diagram for the rock at point B is given in Figure 7.9. The

acceleration of the rock at this point is a4 = v2/R, upward.
EXECUTE: (a) (i) The normal force is perpendicular to the displacement and does zero work.
() Woray =Ugray,a = Ugrav. 3 = mgy 4 = (0.20 kg)(9.80 m/s?)(0.50 m)=0.98 1.

(b) Wiy =W, + W+ Wy, =0+(=0.22 1) +0.98 1 =0.76 J. W,y =Ky —K 4 gives Lmv} =1W,.

vp = \/yj;m = \/2(0'76 D= 2.8 m/s.

0.20 kg

(¢) Gravity is constant and equal to mg. n is not constant; it is zero at 4 and not zero at B. Therefore,
Jx = Kn is also not constant.

(d) XF, =ma, applied to Figure 7.9 gives n—mg =may,q.

2 2
n=m| g+ |=(0.20 ke)| 9.80 m/s? + 23S |5y
R 0.50 m

EVALUATE: In the absence of friction, the speed of the rock at point B would be /2gR =3.1 m/s. As the
rock slides through point B, the normal force is greater than the weight mg =2.0 N of the rock.

" * (]

mg

Figure 7.9
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7.13.

IDENTIFY: The child’s energy is transformed from gravitational potential energy to kinetic energy as she
swings downward.

SET UP: Let y, =0. For part (a), U, =mgy,. For part (b) use K, +U, =K, +U, with U, =K, =0
and K, = %mvzz; the result is %mz)z2 = mgy,.

EXECUTE: (a) Figure 7.10 shows that the difference in potential energy at the top of the swing is
proportional to the height difference, y; =(2.20 m)(1 - cos42°) = 0.56 m. The difference in potential

energy is thus U, = mgy, = (25 kg)(9.80 m/sz)(0.56 m) =140 J.

o) v, = 2gy, = \/2(9.80 m/s?)(0.56 m) = 3.3 m/s..

EVALUATE: (c) The tension is radial while the displacement is tangent to the circular path; thus there is
no component of the tension along the direction of the displacement and the tension in the ropes does no
work on the child.

(2.20 m) cos 42°

Figure 7.10

IDENTIFY: Apply K| +U; + Wy, = K, + U, to the motion of the car.

SET UP: Take y =0 at point A. Let point 1 be 4 and point 2 be B.

EXECUTE: U, =0, U, =mg(2R)=28,224 ), Wyyper =Wy

Ky =1mvi =37,5001, K, =Lmvs =3840]

The work-energy relation then gives W, = K, +U, — K; =-5400 J.

EVALUATE: Friction does negative work. The final mechanical energy (K, +U, =32,064 J) is less than
the initial mechanical energy (K; +U; =37,500 J) because of the energy removed by friction work.
IDENTIFY: Only gravity does work, so apply K, +U; =K, +U,.

SETUP: v =0, so %mv% =mg(y, — )

EXECUTE: Tarzan is lower than his original height by a distance y; —y, =/(cos30° —co0s45°) so his

speed is v = \/Zgl(cos30° —c0s45°) =7.9 m/s, a bit quick for conversation.
EVALUATE: The result is independent of Tarzan’s mass.
(a) IDENTIFY and SETUp:  F s constant so Eq. (6.2) can be used. The situation is sketched in Figure 7.13a.

y //\ n=0
/

6.00 m ¥, =(6.00 m)sin36.9°
¥, =3.60 m

1Y

F

< 369° )

Figure 7.13a
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EXECUTE: W, =(Fcos¢)s = (110 N)(cos0°)(6.00 m) = 660 J.

EVALUATE: F is in the direction of the displacement and does positive work.

(b) IDENTIFY and SET UP: Calculate /¥ using but first we must calculate the friction force. Use the free-body
diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can be
calculated from f, = f4n. For this calculation use coordinates parallel and perpendicular to the incline.

EXECUTE: ZFy =ma,

n—mgcos36.9° =
n=mgcos36.9°
fk = ﬂkn = ,Ukmg €0s836.9°

Jx =(0.25)(10.0 kg)(9.80 m/s>)c0836.9°=19.6 N

mg cosa

Figure 7.13b
Wf = (f, cos@)s = (19.6 N)(cos180°)(6.00 m) = =117.6 J , which rounds to ~118 J.

EVALUATE: Friction does negative work.
(c) IDENTIFY and SET UP: U =mgy; take y =0 at the bottom of the ramp.
EXECUTE: AU =U, -U, =mg(y, — »,;) = (10.0 kg)(9.80 m/sz)(3.60 m —0) =352.8 J , which rounds to

353 1.

EVALUATE: The object moves upward and U increases.

(d) IDENTIFY and SET UP: Use K| +U; +W .. = K, +U, and solve for AK.
EXECUTE: AK =K, —K;=U;-U, + W

AK = Wother -AU

Wother =Wr + W, =6601-117.6J =542.4 ]

AU =35281]

Thus AK =542.4J-352.81=189.6 ], which rounds to 190 J.

EVALUATE: Wy, is positive. Some of W, .. goes to increasing U and the rest goes to increasing K.

(e) IDENTIFY: Apply ZF =ma to the oven. Solve for @ and then use a constant acceleration equation to
calculate v,.
SET UP: We can use the free-body diagram that is in part (b):
ZEY = max
F — f, —mgsin36.9° = ma

s o _ — 2 : o
EXECUTE: 4= F — fy —mgsin36.9° _ 110 N—19.6 N — (10 kg)(9.80 m/s")sin36.9

m 10.0 kg

SETUP: v, =0, a,=3.16 m/s>, x—x, =6.00m, v,, =?

=3.16 m/s>

2 .2
Vax = Viy +2a,(x—xp)

EXECUTE: v, =.2a (x-x,) = \/2(3.16 m/s?)(6.00 m) = 6.158 m/s . Then
AK =K, - K, =Lmv = 1(10.0 kg)(6.158 m/s)* =189.6 J, which rounds to 190 J.
2 2

EVALUATE: The result in (¢) using Newton’s second law agrees with the result calculated in part (d)
using energy methods.
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7.14.  IDENTIFY: Use the information given in the problem with F' =kx to find k. Then U, = %kxz.
SET UP: x is the amount the spring is stretched. When the weight is hung from the spring, F' =mg.
2
EXECUTE: F_mg _G.L5kg)O80msT) 2205 N/m.
x x 0.1340 m—0.1200 m
x= i\/tel = i\/ 20000 _ +0.0952 m =+9.52 cm. The spring could be either stretched 9.52 cm or
k 2205 N/m
compressed 9.52 cm. If it were stretched, the total length of the spring would be
12.00 cm +9.52 cm =21.52 cm. If it were compressed, the total length of the spring would be
12.00 cm —9.52 cm =2.48 cm.
EVALUATE: To stretch or compress the spring 9.52 cm requires a force F =kx=210 N.
7.15.  IDENTIFY: Apply Uy = %kxz.
SETUP: kx=F, so U, = %Fx, where F is the magnitude of force required to stretch or compress the
spring a distance x.
EXECUTE: (a) (1/2)(520 N)(0.200 m) =52.0 J.
(b) The potential energy is proportional to the square of the compression or extension;
(52.0 J) (0.050 m/0.200 m)> =3.25 J.
F _ 520N
EVALUATE: We could have calculated £ = — = = 2600 N/m_and then used Uy = L2
x 0.200 m 2
directly.
7.16. IDENTIFY: We treat the tendon like a spring and apply Hooke’s law to it. Knowing the force stretching
the tendon and how muchit stretched, we can find its force constant.
SET UP: Use F_ iondon = kx. Inpart (a), F, endon €quals mg, the weight of the object suspended from it.
In part (b), also apply U, = %loc2 to calculate the stored energy.
2
EXECUTE: (a) k = Fontendon (0250 ke)O-80 m/s™) _ 199 N/m.
x 0.0123 m
F, 1
(b) x =—ontendon — 38N _ 0.693m =69.3 cm; U, =1(199 N/m)(0.693 m)> =47.81.
k 199 N/m 2
EVALUATE: The 250 g object has a weight of 2.45 N. The 138 N force is much larger than this and
stretches the tendon a much greater distance.
7.17.  IDENTIFY: Apply U, = %kx?
SErUp: U, = %kxé x is the distance the spring is stretched or compressed.
EXECUTE: (a) (i) x =2x, gives Uy =2k(2x))” = 4(L kxg) =4U,. (ii) x =xy/2 gives
U =3k(x0/2)” =2 () = Uy/4.
(b) () U =20, gives Lhx” =2(1kxf) and x =x,v/2. (ii) U =Uy/2 gives L’ =L (1) and x = xp/3/2.
EVALUATE: U is proportional to x> and x is proportional to JU.
7.18. IDENTIFY: Apply energy conservation, K; +U; =K, +U, .

SET Up: Initially and at the highest point, v=0, so K; =K, =0. W 4. =0.

EXECUTE: (a) In going from rest in the slingshot’s pocket to rest at the maximum height, the potential
energy stored in the rubber band is converted to gravitational potential energy.

U =mgy =(10x10~ kg)(9.80 m/s>) (22.0 m) =2.16 J.

(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m.
(¢) The lack of air resistance and no deformation of the rubber band are two possible assumptions.
EVALUATE: The potential energy stored in the rubber band depends on & for the rubber band and the
maximum distance it is stretched.
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7.19.

7.20.

7.21.

IDENTIFY and SET UP: Use energy methods. There are changes in both elastic and gravitational potential
energy; elastic; U Z%kxz, gravitational: U =mgy.

Wa _ [20.200)
k 800 N/m

(b) The work done by gravity is equal to the gain in elastic potential energy: Wy, = U

mgx = Y4 kx’, s0 x = 2mg/k = 2(1.60 kg)(9.80 m/s”)/(800 N/m) = 0.0392 m = 3.92 cm.

EVALUATE: When the spring is compressed 3.92 cm, it exerts an upward force of 31.4 N on the book,

which is greater than the weight of the book (15.6 N). The book will be accelerated upward from this

position.

IDENTIFY: Use energy methods. There are changes in both elastic and gravitational potential energy.

SETUP: K| +U, +Wyy.. =K, +U,. Points 1 and 2 in the motion are sketched in Figure 7.20.

=0.0548 m =5.48 cm.

EXECUTE: (a) U, = %kx2 S0 x =

y The spring force and gravity are
the only forces doing work on the cheese,
# ] $0 Wyper =0 and U=U,,, +U,.

grav

]
7
#1 —EE}— X
==
=
Figure 7.20

EXECUTE: Cheese released from restimplies K; =0.

At the maximum height v, =0's0 K, =0. U} =U) g + U, 4ay
1 =0 implies Uj g,y =0

Uy =2k =1(1800 N/m)(0.15 m)* =20.25 1

(Here x; refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is

not the x-coordinate of the cheese in the coordinate system shown in the sketch.)
Uy =Us 1 Uy grav Us gray = MgVy, Where y; is the height we are solving for. U,y =0 since now the

spring is no longer compressed. Putting all this into K} +U; +Wyyer = Ky +U; gives U o =Uj gy

20.257) _ 20.257]
Yy = =1.72m
mg (l .20 kg)(9.80 m/s? )

EVALUATE: The description in terms of energy is very simple; the elastic potential energy originally
stored in the spring is converted into gravitational potential energy of the system.

IDENTIFY: The energy of the book-spring system is conserved. There are changes in both elastic and
gravitational potential energy.

SETUP: U, = =1 kx2 =mgy, Wyper =0

EXECUTE: (a) U =1k’ so x / = [22220) 28209 _ 0632 m=6.32 om
1600 N/m

(b) Points 1 and 2 in the motion are sketched in Figure 7.21. We have K| +U| + W, = K, +U,, where
Woiher = 0 (only work is that done by gravity and spring force), K; =0, K, =0, and y =0 at final position
of book. Using Uy =mg(h+d) and U, =Lkd® we obtain 0+mg(h+d)+0=1kd*. The original

gravitational potential energy of the system is converted into potential energy of the compressed spring.
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7.22.

Finally, we use the quadratic formula to solve for d: %kd 2 mgd —mgh =0, which gives

1 1 . . .
d= ;[mg + \/(mg)z + 4(EkJ(mgh)J . In our analysis we have assumed that d is positive, so we get

(1.20 kg)(9.80 m/s?) + \/[(1.20 kg)(9.80 m/s2)T +2(1600 N/m)(1.20 kg)(9.80 m/s>)(0.80 m)
d= 1600 N/m

5>

which gives d=0.12m=12 cm.
EVALUATE: It was important to recognize that the total displacement was /4 + d; gravity continues to do
work as the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an
upward force (192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward
from this position.

y V=0 y

= m

A
h = 0.80 m
¥

Figure 7.21

(a) IDENTIFY and SET Up: - Use energy methods. Both elastic and gravitational potential energy changes.
Work is done by friction.
Choose point 1 and let that be the origin, so y; =0. Let point 2 be 1.00 m below point 1, s0 y, =—1.00 m.

EXECUTE: K, +U; +W .. =K, +U,

K, = %mvf = 2(2000 kg)(4.0 m/s)> =16,000J, U; =0

Wother = —f|y2| =—(17,000 N)(1.00 m) =-17,000 J
K2 = %mvi

— — 2
U2 - U2,grav +U2,el =mgy, +%ky2
U, = (2000 kg)(9.80 m/s*)(~1.00 m) + 2(1.06 10* N/m)(1.00 m)*
U, =-19,600 J +5300 J = 14,300 J

Thus 16,000 J—17,000 J = Lmv) —14,300 3

2mvy =13,3007

vy = w =3.65m/s
2000 ke

EVALUATE: The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but
has slowed down.

(b) IDENTIFY: Apply £F =md to the elevator. We know the forces and can solve for a.

SET UP: The free-body diagram for the elevator is given in Figure 7.22.
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7.23.

7.24.

y EXECUTE:  Fg, = kd, where d is the distance
the spring is compressed
fi 1 B ZFy =ma,
x Ji + Epr —mg = ma
1 Jx thkd —mg =ma
mg

Figure 7.22

. fi thkd—mg 17,000 N +(1.06 x 10* N/m)(1.00 m)— (2000 kg)(9.80 m/s?)
m 2000 kg
We calculate that a is positive, so the acceleration is upward.
EVALUATE: The velocity is downward and the acceleration is upward, so the elevator is slowing down at

this point.

=4.00 m/s’

. . F_ - .
IDENTIFY: Only the spring does work and K; +U; =K, +U, applies. a=—= _/cx’ where F is the force
m._m

the spring exerts on the mass.
SET Up: Let point 1 be the initial position of the mass against the compressed spring, so K; =0 and

U, =115 J. Let point 2 be where the mass leaves the spring, so Uy, =0.

EXECUTE: (a) Kl + Uel,l = K2 + Uel,Z giVeS Uel,l = Kz. %mvg = Uel,l and

Wy, _ [2015)) _ Bk
m PR ONc -

K is largest when U, is least and this is when the mass leaves the spring. The mass achieves its maximum

speed of 3.03 m/s as it leaves the spring and then slides along the surface with constant speed.
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has

: . . 2U / 2(11.57 . .
its maximum compression. Uy :%kxz SO X =— kel =- 25(00 N/) =-0.0959 m. The minus sign
m

hkx _ (2500 N/m)(—0.0959 m)
m 2.50 kg
EVALUATE: If the end of the spring is displaced to the left when the spring is compressed, then a, in part

indicates compression. F' =—kx =ma, and a, =— =95.9 m/s.

(b) is to the right, and vice versa.

IDENTIFY: The spring force is conservative but the force of friction is nonconservative. Energy is
conserved during the process. Initially all the energy is stored in the spring, but part of this goes to kinetic
energy, part remains as elastic potential energy, and the rest does work against friction.

SET UP: Energy conservation: K; +U; + Wy, = K, +U,, the elastic energy in the spring is U = %ka,
and the work done by friction is Wf =—fi .S = — 4 mgs.

EXECUTE: The initial and final elastic potential energies are

Uy =Liag =1(840 N/m)(0.0300 m)* =0.378 J and U, =L/ =1(840 N/m)(0.0100 m)* =0.0420 J.
The initial and final kinetic energies are K; =0 and K, = %mv% . The work done by friction is

Wother =Wj5 = —fix8 = =4 mgs =—(0.40)(2.50 kg)(9.8 m/sz)(0.0200 m) =-0.196 J. Energy conservation
gives K, :%mvg =K +U; + W e —U, =0.378 T +(=0.196 J)—0.0420 J = 0.140 J. Solving for v, gives

v = \/ZL _ 00400 _ ool o
m 2.50 kg

EVALUATE: Mechanical energy is not conserved due to friction.
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7.25.

7.26.

7.217.

7.28.

IDENTIFY: Apply K, +U, +W_, =K, +U, and F =ma.

- K =0, U,y =0.

ther

SETUP: Wy =0. There is no change in U,

EXECUTE: %kx2 = %mvﬁ The relations for m, v, kand x are foe® = mvf and kx =5mg.

2

Dividing the first equation by the second gives x = 5—", and substituting this into the second gives
g

2

k=25"%_
vx

_ 55 (1160 kg)(9.80 m/s?)?
(2.50 m/s)?
_ (250 m/s)®
5(9.80 m/s”)

EVALUATE: Our results for £ and x do give the required values for a, and v,:

_ kx _ (446x10° N/m)(0.128 m)
Y om 1160 kg

IDENTIFY: W, = mgcosg.

SET UP: When he moves upward, ¢ =180° and when he moves downward, ¢ =0°. When he moves
parallel to the ground, ¢ =90°.

av = (75 kg)(9.80 m/sz)(7.0 m)cos180° =-5100 J.
(b) Wiy = (75 kg)(9.80 m/s%)(7.0 m)cos0° = +5100 J.

(¢) $=90° in each case and W,,, =0 in each case.

(d) The total work done on him by gravity during the round trip is —5100 J+5100 J = 0.

(e) Gravity is a conservative force since the total work done for a round trip is zero.

EVALUATE: The gravity force is independent of the position and motion of the object. When the object
moves upward gravity does negative work and when the object moves downward gravity does positive
work.

IDENTIFY: Since the force is constant, use W = Fscos¢.

SET UP: For both displacements, the direction of the friction force is opposite to the displacement and
@ =180°.

EXECUTE: (a) When the book moves to the left, the friction force is to the right, and the work is
—-(1.8N)(3.0m)=-541.

(b) The friction force is now to the left, and the work is again —5.4 J.

(¢) The total work is sum of the work in both directions, which is —10.8 J.

(d) The net work done by friction for the round trip is not zero, so friction is not a conservative force.
EVALUATE: The direction of the friction force depends on the motion of the object. For the gravity force,
which is conservative, the force does not depend on the motion of the object.

IDENTIFY and SET UP: The force is not constant so we must integrate to calculate the work.

2. . N
W:LFdl, F=—ox% .

(a) k =4.46x10° N/m

(b) x 0.128 m

a =49.2 m/s> =5.0g and v, :x\/Z =2.5 mJs.
m

EXECUTE: (a) Wg

rav

EXECUTE: (a) dl = dy}' (x is constant; the displacement is in the +y-direction)
F-dl =0 (since f-jZO) and thus W =0.

(b) dl =dxi

F-dl = (—ax2f) . (dxf) =—ax? dx

12 N/m?

— [N ,.2 —_1 . 35_ 1 3_.3y=_
W—J.XI( ax®) dx Jax \xl 30!()62 X)) 3

[(0.300 m)® - (0.10 m)3i| =-0.107]
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7.29.

7.30.

7.31.

7.32.

(c) dl =dxi asin part (b), but now x; =0.30 m and x, =0.10 m,so W = —%a(xg —x13) =+0.10J.

(d) EVALUATE: The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then
back to 0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the

starting and ending points are the same, so the force is conservative.
. —_1 3 3y =1 3 1 3
EXECUTE: VVx] —xy = _ga(xZ - ) - 50()61 _Eaxz

The definition of the potential energy function is W,

Y —xy = U1 —U,. Comparison of the two expressions

for W gives U :%ax3. This does correspond to U =0 when x =0.

EVALUATE: In part (a) the work done is zero because the force and displacement are perpendicular. In
part (b) the force is directed opposite to the displacement and the work done is negative. In part (c) the
force and displacement are in the same direction and the work done is positive.

IDENTIFY: Some of the mechanical energy of the skier is converted to internal energy by the
nonconservative force of friction on the rough patch. Use K| +U; + W .. = K, +U,.

E

SET UP: For part (a) use £ L i

mech, 2 =

- fis where fi = t4mg. Let y, =0 at the bottom of the

hill; then y, =2.50 m along the rough patch. The energy equation is %mvz2 = %mvl2 +mgy, — U mgs.

Solving for her final speed gives v, = \/ V12 +2gy, — 244, gs. For part (b), the internal energy is calculated

as the negative of the work done by friction: —Wf =+ fis =+ U mgs.

EXECUTE: (a) v, = \/(6.50 m/s)> + 2(9.80 m/s>)(2.50 m) — 2(0.300)(9.80 m/s” )(4.20 m) = 8.16 ms.

(b) Internal energy = g4 mgs = (0.300)(62.0 kg)(9.80 m/s? )(4.20 m) =766 J.

EVALUATE: Without friction the skier would be moving faster at the bottom of the hill than at the top, but
in this case she is moving slower because friction converted some of her initial kinetic energy into internal
energy.

IDENTIFY: Some of the initial gravitational potential energy is converted to kinetic energy, but some of it
is lost due to work by the nonconservative friction force.

SET UP: The energy of the box at the edge of the roof is given by: E ..y ¢ = Eyeep, i — fis- Setting

¢ =0 at this point, y; =(4.25 m) sin36° =2.50 m. Furthermore, by substituting K; =0 and K; = %mvf2

o

into the conservation equation, %mvf =mgy; — fiS or vy = \/2gyi =2 fsglw = \/2g( Vi — fySIw).

EXECUTE: vy = \/2(9.80 m/s?)[(2.50 m) — (22.0 N)(4.25 m)/(85.0 N)| =5.24 nvs.

EVALUATE: Friction does negative work and removes mechanical energy from the system. In the absence
of friction the final speed of the toolbox would be 7.00 m/s.
IDENTIFY: We know the potential energy function and want to find the force causing this energy.

dUu . o o
SETUP: F,=———. Thessign of F, indicates its direction.
dx
. __du _ 3 _ VA _ 4y, 3 _
EXECUTE: F, et —4ax” =-4(0.630 J/m™)x”. F,.(—0.800 m) =—-4(0.630 J/m™)(—0.80 m)” =1.29 N.
x
The force is in the +x-direction.
EVALUATE: F,>0 when x<0 and F, <0 when x>0, so the force is always directed towards the
origin.
dUu .
IDENTIFY and SET UP: Use F, = = to calculate the force from U(x). Use coordinates where the
X
origin is at one atom. The other atom then has coordinate x.
EXECUTE:
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The minus sign mean that £, is directed in the —x-direction, toward the origin. The force has magnitude
6C6/x7 and is attractive.
EVALUATE: U depends only onxso F is along the x-axis; it has no y- or z-components.
7.33. IDENTIFY: From the potential energy function of the block, we can find the force on it, and from the force
we can use Newton’s second law to find its acceleration.
SET UP: The force components are F, = —aa—U and F), = —a—U. The acceleration components are
x Y
a, =F,/m and a, = F,/m. The magnitude of the acceleration is a = ,/a)% + aﬁ and we can find its angle
with the +x axis using tan6 =a /a,.
EXECUTE: F, = —%—U =—(11.6 J/m*)x and F, = -aa—U =(10.8 J/m?)y*. At the point
x Y
(x=0.300m, »=0.600m), F,=—(11.6 J/m?)(0.300 m) =—3.48 N and
_ 3 o - N 2 B 2
F, =(10.8 J/m”)(0.600 m)~ =3.89 N. Therefore a, =—+=-87.0 m/s” and a, =— =97.2 m/s", giving
m m
2 2 2 97.2 ! . 8 T 0 -
a=.la; +a;, =130 m/s* and tand =——, so 6 =48.2°. The direction is 132° counterclockwise from
N 87.0
the +x-axis.
EVALUATE: The force is not constant, so the acceleration will not be the same at other points.
7.34.  IDENTIFY: Apply F - 005 U j.
ox dy
SET UP: i(ij 8 2 and LIRS =—i.
dx x2 x3 dy y2 y3
o A A, W 2« WU 2«
EXECUTE: F = —a—Ui _8_U J since U has no z-dependence. — =—— and —=—, so
ox ay dx X By y
F=-a _—§t+_—§] =2a l—3+i3 .
X y Xy
EVALUATE: F| and x have the same sign and F), and y have the same sign. When x>0, F| isin the
+x-direction, and so forth.
7.35. IDENTIFY and SET UP: Use F = —dU/dr to calculate the force from U. At equilibrium F =0.

(a) EXECUTE: The graphs are sketched in Figure 7.35.

a

F U=

\ 1’12
: z F:_d_U:+12_a_6_b

‘ :\/ dr rl3 1”7

_b
6

Figure 7.35

s du
(b) At equilibrium F =0, so r =0
r
+12a  6b _

r13 r7

0

F =0 implies

6br® =12a; solution is the equilibrium distance 7, = (2a/b)"°

U is a minimum at this »; the equilibrium is stable.
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7.36.

7.37.

(©) At r=2a/b)®, U =alr'? —b/r® = a(b/2a)* - b(b/2a) = —b*/4a.

At r > oo, U =0. The energy that must be added is —AU = b*/4a.

(d) r, =(2a/b)""® =1.13x1071" m gives that

2a/b=2.082x10"°" m® and b/4a =2.402x10% m™°

b*/4a = b(bl4a) =1.54x107"8 ]

b(2.402x10°° m™©)=1.54x107'% J and »=6.41x10""% J- m".

Then 2a/b=2.082x10"°" m® gives a = (5/2)(2.082%107%° m%) =

1(6.41x107% 1-m®) (2.082x107% m®) =6.67x107"" J-m"

EVALUATE: As the graphs in part (a) show, F(7) is the slope of U(r) at each r. U(r) has a minimum

where F =0.

IDENTIFY: Apply F, =—‘2—U ?
X

SET UP: Z—U is the slope of the U versus x graph.
x

i 2 . dUu ;
EXECUTE: (a) Considering only forces in the x-direction, F, =——— and so the force is zero when the
by

slope of the U vs x graph is zero, at points b and d.

(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this
point is stable.

(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy,
and the marble tends to move further away, and so d is an unstable point.

EVALUATE: At point b, F, is negative when the marble is displaced slightly to the right and F, is
positive when the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium
is stable. At point &, a small displacement in either direction produces a force directed away from d and the
equilibrium is unstable.

IDENTIFY: Apply F =ma to the bag and to the box. Apply K, +U +W_ .. =K, +U, tothe motion

of the system of the box and bucket after the bag is removed.
SETUP: Let y =0 at the final height of the bucket, so y; =2.00 m and y, =0. K; =0. The box and the

bucket move with the same speed v, so K, = %(mboX + mbucket)vz. Wother = —fid, with d =2.00 m and

Jx = Umyo, g. Before the bag is removed, the maximum possible friction force the roof can exert on the

box is (0.700)(80.0 kg +50.0 kg)(9.80 m/sz) =892 N. This is larger than the weight of the bucket (637 N),

so before the bag is removed the system is at rest.

EXECUTE: (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on
the bag for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N.
(b) Applying K, +U, + W

— : — 2 : —
ter = Ky U, gives my, g8V — fid —%mmtv , with m, =145.0 kg.

2
v= \/_(mbucketgyl - :ukmboxgd)~
Mot

V= \/#[(65.0 kg)(9.80 m/s)(2.00 m) — (0.400)(80.0 kg)(9.80 m/s?)(2.00 m)} =2.99 m/s.
145.0 kg

EVALUATE: If we apply ZF =md to the box and to the bucket we can calculate their common
acceleration a. Then a constant acceleration equation applied to either object gives v =2.99 m/s, in
agreement with our result obtained using energy methods.
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7.38.

7.39.

7.40.

IDENTIFY: For the system of two blocks, only gravity does work. Apply K; +U; =K, +U,.

SET Up: Call the blocks 4 and B, where 4 is the more massive one. v, =vp =0. Let y =0 for each
block to be at the initial height of that block, so y 4 =y =0. y4 =—1.20m and yz, =+1.20 m.

V42 =Vgy =V, =3.00 m/s.

EXECUTE: K ;+U, =K, +U, gives 0= %(mA + mB)v§ +g(1.20 m)(mg —m ), with my +mg=22.0 kg.
Therefore %(22.0 kg)(3.00 rn/s)2 +(9.80 m/s? )(1.20 m)(22.0 kg —2m ;). Solving for m, gives

m, =152 kg. And then m, =6.79 kg.

EVALUATE: The final kinetic energy of the two blocks is 99 J. The potential energy of block 4 decreases
by 179 J. The potential energy of block B increases by 80 J. The total decrease in potential energy is

179 J—80 J =99 J, which equals the increase in kinetic energy of the system.

IDENTIFY: Use K| +U; +W .. = K, +U, . The target variable /4 will be a factor in the work done by
friction.

SET UP: Let point 1 be where the block is released and let point 2 be where the block stops, as shown in
Figure 7.39.

Ky +Uy + Wotner = Ky +U,

Work is done on the block by
0 the spring and by friction,
8O Woner =W and U =U,.

|
(=]

L -

wl

1.00 m ——

Figure 7.39

EXECUTE: K; =K, =0

Uy =U, g =1hq =1(100 N/m)(0.200 m)* =2.00 J

U, =U, 4 =0, since after the block leaves the spring has given up all its stored energy

Wother =Wy = (fi cos@)s = ,ukmg(cos¢)s =—p mgs, since ¢ =180° (The friction force is directed

opposite to the displacement and does negative work.)
Putting all this into K; +U; + W 4. =K, +U, gives

Ul,el + Wf =0
Hemgs =U ¢
U
== 2001 =0.41.

mgs  (0.50 kg)(9.80 m/s2)(1.00 m)
EVALUATE: U +W, =0 says that the potential energy originally stored in the spring is taken out of the

system by the negative work done by friction.

IDENTIFY: Apply K| +U; + Wy = K, +U,.

SET Up: Only the spring force and gravity do work, so W ;.. =0. Let y =0 at the horizontal surface.
EXECUTE: (a) Equating the potential energy stored in the spring to the block's kinetic energy,

T =Lmy?, or v=\/Ex= A00NM 220 m) =3.11 mss.
m

2.00kg
(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational
Lie® 1(400 N/m)(0.220 m)°

=0.821 m.

otential energy, Li® =m [sin@, or L= =
P 2 g mgsin6  (2.00 kg)(9.80 m/s’)sin37.0°
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7.41.

7.42.

7.43.

EVALUATE: The total energy of the system is constant. Initially it is all elastic potential energy stored in
the spring, then it is all kinetic energy and finally it is all gravitational potential energy.

IDENTIFY: The mechanical energy of the roller coaster is conserved since there is no friction with the
track. We must also apply Newton’s second law for the circular motion.

SET UP: For part (a), apply conservation of energy to the motion from point 4 to point B:

Kp+Ugqy p = Kyt Ugray 4 With K, =0. Defining yz =0 and y, =13.0 m, conservation of energy
becomes %msz =mgyy or vg =./2gy,. In part (b), the free-body diagram for the roller coaster car at

point B is shown in Figure 7.41. 2F, = ma, gives mg + n = ma,q, where a4 = v2/r. Solving for the

. v
normal force gives n =m| —— g |.
r

Figure 7.41

EXECUTE: (3) v =42(9.80 m/s2)(13.0 m) =16.0 m/s.

A
(b) n = (350 kg) %—9.80 m/szj| =1.15x10*N.
m

EVALUATE: The normal force # is the force that the tracks exert on the roller coaster car. The car exerts a
force of equal magnitude and opposite direction on the tracks.

IDENTIFY: Mechanical energy is conserved since no nonconservative forces do work on the system.
Newton’s second law also applies.

SET UP: Relate / and vg. Apply YF =md at point B to find the minimum speed required at B for the car

not to fall off the track. At B, a = vé/R, downward. The minimum speed is when #» — 0 and mg = mv%;/R.
The minimum speed required is vz =/gR. K;=0and W =0.

EXECUTE: (a) Conservation of mechanical energy applied to points 4 and B gives U —~Up = %mvﬁ. The

speed at the top must be at least /gR. Thus, mg(h—2R) > %ng, or h> %R.

(b) Conservation of mechanical energy applied to points 4 and C gives U, —U =(2.50)Rmg =K, so

ve =4/(5.00)gR = \/(5.00)(9.80 /s’ )(14.0 m) =26.2 m/s. The radial acceleration is

2
Apaq = ?C =49.0 m/s>. The tangential direction is down, the normal force at point C is horizontal, there is

no friction, so the only downward force is gravity, and a,,, = g =9.80 m/s>.

EVALUATE: If 7> %R, then the downward acceleration at B due to the circular motion is greater than g
and the track must exert a downward normal force . n increases as 4 increases and hence

vy increases.

(a) IDENTIFY: Use K| +U, +Wy., =K, +U, to find the kinetic energy of the wood as it enters the

rough bottom.
SET UP: Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough
bottom. Let y =0 be at point 2.
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EXECUTE: U, =K, gives K, =mgy, =78.4 J.
IDENTIFY: Now apply K; +U; + W4, = K, +U, to the motion along the rough bottom.
SET UP: Let point 1 be where it enters the rough bottom and point 2 be where it stops.
Ky + Uy + Wotner = Ky U
EXECUTE: Wother = Wf = —,Ukmgs, Kz = U] = U2 = 0, K] =7841]
78.4 J — pmgs =0; solving for s gives s =20.0 m.
The wood stops after traveling 20.0 m along the rough bottom.
(b) Friction does —78.4 J of work.
EVALUATE: The piece of wood stops before it makes one trip across the rough bottom. The final mechanical
energy is zero. The negative friction work takes away all the mechanical energy initially in the system.
7.44. IDENTIFY: Apply K +U; + Wy, =K, +U, to the rock. W 4., = Wfk .
SET UP: Let y =0 at the foot of the hill, so U; =0 and U, =mgh, where 4 is the vertical height of the
rock above the foot of the hill when it stops.
EXECUTE: (a) At the maximum height, K, =0. K} +U; + Wy, =K; +U, gives
: 1 h
K oiom T Wfk = UTop. Emvé —,ukmgCOSBd =mgh. d =h/sin@, so Evg — ,ukgcoseﬁ =gh.
%(15 mis)? —(0.20)(9.8 m/s?) °?S:80 o= (9:8 mis?)which gives b 39.3 .
sin
(b) Compare maximum static friction force to the weight component down the plane.
Sy = H;mgcos8 =(0.75)(28 kg)(9.8 m/sz)cos40° =158 N.
mgsind = (28 kg)(9.8 m/sz)(sin 40°) =176 N > f,, so the rock will slide down.
(¢) Use same procedure as in part (a), with #=9.3m and Vg being the speed at the bottom of the hill.
h 1 5 -

+ =Kp. - —_—=— =/2gh-2 =11. .
Utop Wfk B- mgh ,ukmgcosﬁsine ; mvy and Vg \/ gh—2 4, ghcos@/sin@ 8 m/s
EVALUATE: For the round trip up the hill and back down, there is negative work done by friction and the
speed of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill.

7.45. IDENTIFY: Apply K, +U; + Wy =K, +U, to the motion of the stone.

SETUP: K;+U; +W 4 =K, +U,. Let point 1 be point 4 and point 2 be point B. Take y =0 at B.

EXECUTE:  mgy, +%mv12 :%mvg, with #=20.0 m and v; =10.0 m/s , sov, = «/vlz +2gh =22.2 m/s.
EVALUATE: The loss of gravitational potential energy equals the gain of kinetic energy.

(b) IDENTIFY: Apply K; +U; + W 4. =K, +U, to the motion of the stone from point B to where it
comes to rest against the spring.

SETUP: Use K; +U; + Wy, =K, +U,, with point 1 at B and point 2 where the spring has its maximum
compression x.

EXECUTE: U, =U, =K, =0; K;=<my with v =222 m/s. W,

other

- - 1,2
=W Wy = —H, mgs— Ekx ,
with s =100 m + x. The work-energy relation gives K + Wy, =0. %mvlz — M, mgs — %kx2 =0.

Putting in the numerical values gives x? +29.4x-750=0. The positive root to this equation is

x=16.4 m.

EVALUATE: Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes
into the potential energy stored in the spring.

(c) IDENTIFY and SET Up: Consider the forces.

EXECUTE: When the spring is compressed x =16.4 m the force it exerts on the stone is

F, = kx =32.8 N. The maximum possible static friction force is

max f, = f;mg = (0.80)(15.0 kg)(9.80 m/s?) =118 N.

EVALUATE: The spring force is less than the maximum possible static friction force so the stone remains at rest.
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7.46.

7.47.

7.48.

7.49.

IDENTIFY: Once the block leaves the top of the hill it moves in projectile motion. Use K| +U,; = K, +U,
to relate the speed vy at the bottom of the hill to the speed vp,, at the top and the 70 m height of the hill.
SET UP: For the projectile motion, take +y to be downward. a, =0, a, =g. vy, =vrep, Vo, =0. For

the motion up the hill only gravity does work. Take y =0 at the base of the hill.
EXECUTE: First get speed at the top of the hill for the block to clear the pit. y = % gtz.

20m= l(9.8 m/s?)r2. £=2.0s. Then Vropt =40 m._gives vy, =Hm_ 20 my/s.
2 2.0s

Energy conservation applied to the motion up the hill: Kggom =Utep + K1 gives

%mvé = mgh +%mv%op. vy = \[Vhop + 28k =/(20 ms)* +2(9.8 m/sT)(70 m) =42 ms.

EVALUATE: The result does not depend on the mass of the block.
IDENTIFY: Apply K| +U; +W 4o = K, +U, to the motion of the person.
SET UP: Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let

~lkx2, where x =11.0 m is the amount the cord is stretched at

y=0 atpoint2. y; =41.0 m. Wy, = >

point 2. The cord does negative work.

EXECUTE: K, =K, =U, =0, so mgy, —%kxz =0 and k=631 N/m.

Now apply F =kx to the test pulls:

F=hkx so x=F/k=0.602 m.

EVALUATE: All his initial gravitational potential energy is taken away by the negative work done by the
force exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord.
IDENTIFY: To be at equilibrium at the bottom, with the spring compressed a distance x,, the spring force

must balance the component of the weight down the ramp plus the largest value of the static friction, or
kxo =wsin@ + f. Apply energy conservation to the motion down the ramp.

SErUpr: K, =0, K, :%mvz, where v is the speed at the top of the ramp. Let U, =0, so U; =wLsiné,

where L is the total length traveled down the ramp.

. : 1 ) 1 . .
EXECUTE: Energy conservation gives Elcxg =(wsin@— )L + Emvz. With the given parameters,

%kxg =421J and kx; =1.066 X 10° N. Solving for k gives k£ =1350 N/m.
EVALUATE: x;, =0.790 m. wsin® =551 N. The decrease in gravitational potential energy is larger than

the amount of mechanical energy removed by the negative work done by friction. %mv2 =243]. The

energy stored in the spring is larger than the initial kinetic energy of the crate at the top of the ramp.
IDENTIFY: Use K| +U; + Wy, = K, +U,. Solve for K, and then for v,.

SET UP: Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of
the barrel, as shown in Figure 7.49. Use F' =kx to find the amount the spring is initially compressed by
the 4400 N force.

Ky + U+ Wotner = Ky +U,

Take y =0 at his initial position.
EXECUTE: K, =0, K, = %mv%
Wother = Wfric = _fS

W ther = _(40 N)(40 m) =-1601J

O

Figure 7.49
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Ul gray =0, Upe = %kd 2, where d is the distance the spring is initially compressed.
F=kd so d:E:M_ 0
k1100 N/m
and U, 4 =1(1100 N/m)(4.00 m)* =8800 J
Uy, grav = Mgy, = (60 kg)(9.80 m/sz)(2.5 m)=1470J, U, =0
Then Ky + U, +Woper = Ky +U, gives
8800 J-160 J =1mv3 +1470 1
2(7170 1
Imd 271701 and vy = |2 70D 15 5 s
2 60 kg
EVALUATE: Some of the potential energy stored in the compressed spring is taken away by the work done
by friction. The rest goes partly into gravitational potential energy and partly into kinetic energy.
7.50. IDENTIFY: Apply K| +U; + Wy = K, +U, to the motion of the rocket from the starting point to the
base of the ramp. Wy, is the work done by the thrust and by friction.
SET UP: Let point 1 be at the starting point and let point 2 be at the base of the ramp. v; =0,
v, =50.0 m/s. Let » =0 at the base and take +y upward. Then y, =0 and y; =dsin53°, where d is the
distance along the ramp from the base to the starting point. Friction does negative work.
EXECUTE: K; =0, U, =0. U +Wypor = Ky. Woiper = (2000 N)d — (500 N)d = (1500 N)d.
mgd sin53°+ (1500 N)d = Lmy3.
2 2
d= ‘ m\? | (1500 kg)(Sg).O m/s) L M5
2[mgsin53°+1500 N]  2[(1500 kg)(9.80 m/s~)sin53° +1500 N]
EVALUATE: The initial height is y; = (142 m)sin53° =113 m. An object free-falling from this distance
attains a speed v =,/2gy; =47.1 m/s. The rocket attains a greater speed than this because the forward
thrust is greater than the friction force.
7.51.  IDENTIFY: Apply K, +U, +W_, =K, +U, to the system consisting of the two buckets. If we ignore

ther
the inertia of the pulley we ignore the kinetic energy it has.

SETUP: K| +U; +W 4. =K, +U,. Points 1 and 2 in the motion are sketched in Figure 7.51.
Y X
' Y =200m Y2=0
Vi
‘B1=0 v T Yp,=200m
my v =y, =20 B2 -
Al AT B
mpg 2.00m 2.00 ml ‘ )
2. A2
] '
#1 #2
Figure 7.51

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the
12.0 kg bucket, so the net work done by the tension is zero.
Work is done on the system only by gravity, so Wygper =0 and U =Ugpy,-

EXECUTE: K, =0, K, = %m A"i,z +1m BV129,2 . But since the two buckets are connected by a rope they

2

move together and have the same speed: v, , =vz, =v,. Thus K, = %(mA + mB)vg =(8.00 kg)vg.
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7.52.

7.53.

Uy =m gy, =(12.0 kg)(9.80 m/s?)(2.00 m) =235.2 J.

Uy = mypgyp.> = (4.0 kg)(9.80 m/s2)(2.00 m) =78.4 J.
Puttlng all this into Kl + Ul + Wother = K2 +U2 giVeS Ul = K2 + Uz

2352 1=(8.00 kg)v? +78.4 1. v, = 235217847 _ 4 4 s
8.00 kg

EVALUATE: The gravitational potential energy decreases and the kinetic energy increases by the same

amount. We could apply K, +U, +W_, =K, +U, to one bucket, but then we would have to include in

Wiher the work done on the bucket by the tension 7.
IDENTIFY: K, +U, +W_, =K, +U, says Wy =K, +U, —(Ky+U)). Wy, is the work done on the

baseball by the force exerted by the air.

SETUP: U =mgy. K:%mv2, where v? :vf +v§.

EXECUTE: (a) The change in total energy is the work done by the air,
1
Wother = (K +Up) = (K +U)) = m(g("% —)+ 8y2]~

Wyher = (0.145 kg)((1/2[(18.6 m/s)* — (30.0 m/s)* — (40.0 m/s)*] + (9.80 m/s%)(53.6 m)).
Woiher =—80.0 J.

[y

(b) Slmllarly, Wother = (K3 + U3) - (K2 + U2 )
Wher = (0.145 kg)((1/2)[(11.9 m/s)* +(~28.7 m/s)* — (18.6 m/s)*]— (9.80 m/s*)(53.6 m)).
Woher ==31.3 1.

O
(c¢) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work

done by the air is smaller in magnitude.
EVALUATE: The initial kinetic energy of the baseball is %(0.145 kg)(50.0 m/s)2 =181J. For the total
motion from the ground, up to the maximum height, and back down the total work done by the airis 111 J.
The ball returns to the ground with 181 J—111J =70 J of kinetic energy and a speed of 31 m/s, less than
its initial speed of 50 m/s.

(2) IDENTIFY and SET UP:  Apply K, +U, + W, .

where the potato is released and point 2 be at the lowest point in its motion, as shown in Figure 7.53a.

= K, +U, to the motion of the potato. Let point 1 be

y=2.50m
T y2=0
The tension in the string is at all points in the
2.50m motion perpendicular to the displacement, so W, =0
l The only force that does work on the potato is gravity,
80 Wyiper = 0.

Figure 7.53a

EXECUTE: K;=0, K, :%mvg, U, =mgy;, U, =0. Thus U; =K,. mgy, :%mv%, which gives

vy = 22y, =4/2(9.80 m/s?)(2.50 m) =7.00 mys.

EVALUATE: The speed v, is the same as if the potato fell through 2.50 m.
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(b) IDENTIFY: Apply =F =md to the potato. The potato moves in an arc of a circle so its acceleration is
a4, where a4 = v?/R and is directed toward the center of the circle. Solve for one of the forces, the

tension 7 in the string.
SET UP: The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.53b.

y The acceleration a,,y is directed in toward

the center of the circular path, so at this
point it is upward.

mg

Figure 7.53b
2

EXECUTE: 2F, =ma, gives T —mg =may,q. Solving for T gives T =m(g +ay,q) = m[g +%], where

the radius R for the circular motion is the length L of the string. It is instructive to use the algebraic
expression for v, from part (a) rather than just putting in the numerical value: v, =./2gy; =+/2gL, so

2
v% =2gL. Then T = m{ g+ VTZJ = m[ g +%] =3mg. The tension at this point is three times the weight

of the potato, so 7 =3mg =3(0.300 kg)(9.80 m/sz) =8.82 N.
EVALUATE: The tension is greater than the weight; the acceleration is upward so the net force must be upward.

7.54.  IDENTIFY: Apply K, +U, +W_, =K, +U, to each stage of the motion.

SET Up: Let y =0 at the bottom of the slope. In part (a), Wy, is the work done by friction. In part (b),
Wiier 1s the work done by friction and the air resistance force. In part (c), W y,., is the work done by the
force exerted by the snowdrift.

EXECUTE: (a) The skier’s kinetic energy at the bottom can be found from the potential energy at the top

minus the work done by friction, Kj =mgh— W= (60.0 kg)(9.8 N/kg)(65.0 m)—10,500 J, or

K, =38,200J-10,500 J =27,720 J. Then v, = ,/ﬁ - [2217200) =30.4 m/s.
m 60 kg

() Ky =Ky = (W + W) =27,720 1= (ptmgd + fyi.d).
K, =27,720 1 -[(0.2)(588 N)(82 m) + (160 N)(82 m)] or K, =27,720 ] —22,763 ] =4957 J. Then,

v, = /2—K— 269579 15 9 s
2\ m 60 kg Co

(c¢) Use the work-energy theorem to find the force. W =AK, F =K/d =(4957 J)/(2.5 m) =2000 N.
EVALUATE: In each case, Wy, is negative and removes mechanical energy from the system.

7.55.  IDENTIFY and SET Up: First apply XF =md to the skier.
Find the angle ¢ where the normal force becomes zero, in terms of the speed v, at this point. Then apply
the work-energy theorem to the motion of the skier to obtain another equation that relates v, and «. Solve
these two equations for ¢.
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7.56.

Let point 2 be where the skier loses contact
with the snowball, as sketched in Figure 7.55a
Loses contact implies n — 0.

YI=R, y, =Rcosax

Figure 7.55a

First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.55b.
For this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a

circle, so her acceleration is a4 = v?/R, directed in towards the center of the snowball.

A pad 2 EXECUTE: XF|, =ma

Ve
\ ul:m

mgcosa

v
mgcosa—n = mv%/R

But n=0 so mgcosa:mv%/R

v% =Rgcosa

Figure 7.55b

Now use conservation of energy to get another equation relating v, to o
Ky + U+ Wotner =Ky U,

The only force that does work on the skier is gravity, so Wy, = 0.

K, =0, K, Z%mv%

U, =mgy, =mgR, U, =mgy, =mgRcosa

Then mgR = %mv% +mgRcoso

v% =2gR(1-cosa)

Combine this with the £F), =ma, equation:

Rgcosa=2gR(1-cosa)

cosar =2-2cosx

3cosax =2 so cosar =2/3 and o =48.2°

EVALUATE: She speeds up and her a4 increases as she loses gravitational potential energy. She loses
contact when she is going so fast that the radially inward component of her weight isn’t large enough to
keep her in the circular path. Note that & where she loses contact does not depend on her mass or on the
radius of the snowball.

IDENTIFY: Initially the ball has all kinetic energy, but at its highest point it has kinetic energy and
potential energy. Since it is thrown upward at an angle, its kinetic energy is not zero at its highest point.
SET UP: Apply conservation of energy: K+ Uy =K; +U,. Let y; =0, so y; = h, the maximum height.

At this maximum height, v |, =0 and vy  =v; \, s0 v¢ =v; = (15 m/s)(c0s60.0°) =7.5 m/s. Substituting

i,x°

into conservation of energy equation gives %mvi2 =mgh +%m(7.5 m/s)z.

v’ —(7.5m/s)” _ (15 m/s)* = (7.5 m/s)” _
2g 2(9.80 m/s?)

EXECUTE: Solve for h: h= 8.6 m.
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EVALUATE: If the ball were thrown straight up, its maximum height would be 11.5 m, since all of its
kinetic energy would be converted to potential energy. But in this case it reaches a lower height because it
still retains some kinetic energy at its highest point.

7.57. IDENTIFY and SET UP:

Y yA:R
V= 0 Y =Yc =0

vy = 4.80 m/s Ve =0
. [
X
T

B
Figure 7.57

(a) Apply conservation of energy to the motion from B to C:

Kp+Up + W per = Ko +U. The motion is described in Figure 7.57.

EXECUTE: The only force that does work on the package during this part of the motion is friction, so
Wother =Wy = fi(cos@)s = pt, mg(cos180°%)s =—p, mgs

Kg=imvg, Kc=0
Uy =0, Us=0
Thus KB+Wf =0

%mvé — M, mgs = 0

2
_ Vg _ (480 m)s)’ =g ¥
K 2gs 2(9.80 m/s?)(3.00 m)

EVALUATE: The negative friction work takes away all the kinetic energy.
(b) IDENTIFY and SET UP: Apply conservation of energy to the motion from 4 to B:

Ky+Uy +Wother =Kp +Up
EXECUTE: Work is done by gravity and by friction, so W, =W
K,=0, Kg=Lmvj=1(0.200 kg)(4.80 m/s)* =2.304 J
U, =mgy,=mgR =(0.200 kg)(9.80 m/s?)(1.60 m) =3.136 J, Up=0
Thus U, +W,=Kpg
W,=Kg-U,=2304]-3.136]=-0.83]
EVALUATE: W, is negative as expected; the friction force does negative work since it is directed

opposite to the displacement.
7.58.  IDENTIFY: Apply K, +U, +W,_

SETUpP: Let y =0 atthe lowest point of the path of the truck. Wy, is the work done by friction.
1y = ten = fmg cos .
EXECUTE: Denote the distance the truck moves up the ramp by x. K; = %mvg, U, =mgLsina, K, =0,

ther = K5 +U, to the initial and final positions of the truck.

U, =mgxsinf8 and W, = =—p mgxcosf. From Wy =(K, +U,)—(K; +U)), and solving for x, we

ther
K, +mgLsino _(vg/2g)+Lsin0(

mg(sinﬂ+,ur cosﬂ) - sinfB+ . cos B

EVALUATE: x increases when v, increases and decreases when . increases.

getx =
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7.59.

7.60.

(a) IDENTIFY: We are given that F, = —ax — Bx*, =60.0 N/m and 4 =18.0 N/m*. Use
We = Ix2 F_(x)dx to calculate I and then use W =-AU to identify the potential energy function
X Xl
U(x).
— —[*2
SETUP: Wy =U,-U, = j}q F,(x)dx
Let x; =0 and U; =0. Let x, be some arbitrary point x, so U, =U(x).
X X X
EXECUTE: U(x)= _Io F (x)dx = —J.O (—ax — fx?)dx = J.o (ax + fx)dx = %axz + %,Bx3.

EVALUATE: If =0, the spring does obey Hooke’s law, with & =, and our result reduces to %kxz.

(b) IDENTIFY: Apply K| +U; + W .. = K, +U, to the motion of the object.
SET UP: The system at points 1 and 2 is sketched in Figure 7.59.

:"'ZO v Ky + Uy + Wother =Ky + U,
#1 = The only force that does work on the object
_/\):/\/W\’ﬂ is the spring force, so Wy, =0.
| \'21—
T

Figure 7.59

EXECUTE: K, =0, K) =Lmy;

Uy =U(x) =Laxt +1 8% =1(60.0 N/m)(1.00 m)* +1(18.0 N/m*)(1.00 m)* =36.0J

U, =U(xy) =1 oo +1 B35 =1(60.0 N/m)(0.500 m)” +1(18.0 N/m?)(0.500 m)’ =8.25 1

Thus 36.0 J=1mv; +8.25 I, which gives v, = 23601-825)) _785 mss.
0.900 kg

EVALUATE: The elastic potential energy stored in the spring decreases and the kinetic energy of the
object increases.

IDENTIFY: Mechanical energy is conserved on the hill, which gives us the speed of the sled at the top.
After it leaves the cliff, we must use projectile motion.

SET UP: Use conservation of energy to find the speed of the sled at the edge of the cliff. Let y; =0 so

ye=h=11.0m. K;+U; =K, +U; gives %mvf2 +mgh = %mvi2 or vg =\/vi2 —2gh. Then analyze the

projectile motion of the sled: use the vertical component of motion to find the time # that the sled is in the
air; then use the horizontal component of the motion with a, =0 to find the horizontal displacement.

EXECUTE: v; :\/(22.5 m/s)> =2(9.80 m/s*)(11.0 m) =17.1m/s. y; =v; t+La,* gives

2 2(-11. .
r= |22 = /(—Omz) =1.50's. xp = v 0 +La,r® gives xp =vp ¢ =(17.1 m/s)(1.50 5) =25.6 m.
a, \-9.80 m/s ’ ’

EVALUATE: Conservation of energy can be used to find the speed of the sled at any point of the motion
but does not specify how far the sled travels while it is in the air.
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7.61. IDENTIFY: We have a conservative force, so we can relate the force and the potential energy function.
Energy conservation applies.

SETUP: F, =-dU/dx , U goes to 0 as x goes to infinity, and F(x) =

(x+ xo)2 .
o« a
EXECUTE: (a) Using dU = —F,dx, weget U,-U,_, = —j 5 dx = .
: . (x+ xo) x+Xx
. 1 ..
(b) Energy conservation tells us that U, = K, + U,. Therefore =—m?’ + . Putting in m =

x| + xO 2 x Xy + X0
0.500 kg, &« =0.800 N - m, x,=0.200 m, x; =0, and x, = 0.400 m, solving for v gives v=3.27 m/s.
EVALUATE: The potential energy is not infinite even though the integral in (a) is taken over an infinite
distance because the force rapidly gets smaller with increasing distance x.

7.62. IDENTIFY: Apply K| +U, +W_4.. =K, +U,. Uis the total elastic potential energy of the two springs.
SET Up: Call the two points in the motion where K, +U, +W_, =K, +U, is applied 4 and B to avoid
confusion with springs 1 and 2, that have force constants & and k,. At any point in the motion the
distance one spring is stretched equals the distance the other spring is compressed. Let +x be to the right.
Let point 4 be the initial position of the block, where it is released from rest, so x; 4, =+0.150 m and
x, ,==0.150 m.

EXECUTE: (a) With no friction, W 4,.. =0. K, =0 and U, = K +Up. The maximum speed is when

Uy =0and this is at x;5 = x,5 =0, when both springs are at their natural length.

1p 2 g1z .2 Z1.2 2 _ 2 _ 2
skixiy t5kyxy 4 = 5mvp. Xy =x34 =(0.150m)”, so

(0150 m) = | 2200 NVm #2000 N/m (, 55 > — 6 00 s,
3.00 kg

_ |tk

VB

(b) At maximum compression of spring 1, spring 2 has its maximum extension and vz = 0. Therefore, at
this point U, =Up. The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice
versa: x4 =-X,, and x5 =-x,5. Then U, =Ujp gives %(kl +k2)xl2A = %(kl +k2)x123 and

X3 = %14 =—0.150 m. The maximum compression of spring 1 is 15.0 cm.

EVALUATE: When friction is not present mechanical energy is conserved and is continually transformed

between kinetic energy of the block and potential energy in the springs. If friction is present, its work
removes mechanical energy from the system.

7.63.  IDENTIFY: Apply K, +U, +W_, =K, +U, to the motion of the block.
SETUP: Let y =0 at the floor. Let point 1 be the initial position of the block against the compressed
spring and let point 2 be just before the block strikes the floor.

EXECUTE: With U, =0,K, =0, K, =U,. 1mvj =L1kc® +mgh. Solving for v,,

2 2
v, = \/ hx \/ (1900 N/m)(0.035 m)” , » g g0 p/s2)(1.20 m) =7.01 ms.

—+2gh =
m (0.150 kg)

EVALUATE: The potential energy stored in the spring and the initial gravitational potential energy all go
into the final kinetic energy of the block.

7.64. IDENTIFY: At equilibrium the upward spring force equals the weight mg of the object. Apply
conservation of energy to the motion of the fish.
SET Up: The distance that the mass descends equals the distance the spring is stretched. K; =K, =0, so

U, (gravitational) = U, (spring)
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EXECUTE: Following the hint, the force constant k is found from mg =kd, or k =mg/d. When the fish
falls from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the

spring, which is %ky2 = %(mg/d)yz. Equating these, %%yz =mgy,ory=2d.

EVALUATE: At its lowest point the fish is not in equilibrium. The upward spring force at this point is
ky =2kd, and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has

an upward acceleration equal to g.
IDENTIFY: The spring does positive work on the box but friction does negative work.

SETUP: Uy = Lk’ and Woper = Wy = —pimgx.

EXECUTE: (a) Uy + Wy = K gives %2 ko + (—umgx) =" mv’. Using the numbers for the problem,
k=45.0 N/m, x = 0.280 m, u = 0.300, and m = 1.60 kg, solving for v gives v = 0.747 m/s.

(b) Call x the distance the spring is compressed when the speed of the box is a maximum and x, the initial
compression distance of the spring. Using an approach similar to that in part (a) gives

Vs kxy' — pmg(xo — x) = Yo mv’ + V5 kx’. Rearranging gives mv’ = kx,” — kx” — 2umg(x, — x). For the
maximum speed, d(v?)/dx = 0, which gives —2kx + 2umg = 0. Solving for x,.y, the compression distance at
maximum speed, gives X = uang/k. Now substitute this result into the expression above for mv?, put in
the numbers, and solve for v, giving v=0.931 m/s.

EVALUATE: Another way to find the result in (b) is to realize that the spring force decreases as x
decreases, but the friction force remains constant. Eventually these two forces will be equal in magnitude.
After that the friction force will be greater than the spring force, and friction will begin to slow down the
box. So the maximum box speed occurs when the spring force is equal to the friction force. At that instant,
kx = fr, which gives x = 0.105 m. Then energy conservation can be used to find v with this value of x.
IDENTIFY: The spring obeys Hooke’s law. Gravity and the spring provide the vertical forces on the brick.
The mechanical energy of the system is conserved.

SETUP: Use K; +U; = K; +U;. In part (a), setting y; =0, we have y; =x, the amount the spring will

stretch. Also, since K; = Ky =0, %kx2 = mgx. Inpart (b), y; =h + x, where 2 =1.0 m.

2mg _ 2(3.0 kg)(9.80 m/s®) _
k 1500 N/m

EXECUTE: (a) x = 0.039 m =3.9 cm.

(b) %kx2 =mg(h + x), kx2—2mgx—2mgh:0 and x:%(li 1+%

2
have x=_—&| 1+ 1+% =(3'0 kg)(9.80 m/s") 1+ 1+2(1'0 oo N/zm) =0.22 m=22 cm.
k mg 1500 N/m 3.0 kg(9.80 m/s”)

EVALUATE: In part (b) there is additional initial energy (from gravity), so the spring is stretched more.
IDENTIFY: Only conservative forces (gravity and the spring) act on the fish, so its mechanical energy is
conserved.
SET UP: Energy conservation tells us K} +U; + Wy, =K, +U,, where Wy, =0. U, =mgy,

- 2 17,2
K —%mv , and Ug,,g —%ky .
EXECUTE: (a) K| +U; + W, = K, +U,. Lety be the distance the fish has descended, so y =0.0500 m.

J. Since x must be positive, we

1 1 . .
K =0, Wyper =0, Uy =mgy, K, :Emvg, and U, =5ky2. Solving for K, gives

K, =U,-U, =mgy —%kyz =(3.00 kg)(9.8 m/s?)(0.0500 m) —%(900 N/m)(0.0500 m)?

K, =1.47J-1.125J=0.345 J. Solving for v, gives v, :\/ =0.480 m/s.

2K, _ [2(0.3457)
m

3.00 kg
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(b) The maximum speed is when K, is maximum, which is when dK,/dy = 0. Using K, =mgy —%ky2

2
gives % =mg —ky =0. Solving for y gives y = mg _(3.00kg)O8 m/s7) 0.03267 m. At this y,
y

k 900 N/m

K, =(3.00 kg)(9.8 m/s>)(0.03267 m)—%(900 N/m)(0.03267 m)>. K, =0.9604 J —0.4803 J =0.4801 J,

S0 vy = /& =0.566 m/s.
m

EVALUATE: The speed in part (b) is greater than the speed in part (a), as it should be since it is the
maximum speed.

IDENTIFY: The mechanical energy is conserved and Newton’s second law applies. The kinetic energy of
the cart (with riders) is transformed into elastic potential energy at maximum compression of the spring,
and the acceleration is greatest at that instant.

SETUP: F =ma, K, = Uy, an. = 3.00g.

1 1
EXECUTE: (a) and (b) dpay = kXpna/m and Emv2 = Eerznax, where m = 300 kg, v=6.00 m/s, and
amax = 3.00g. Solving these two equations simultaneously gives £ = 7210 N/m and x;,x = 1.22 m.
EVALUATE: The force constant is 72 N/cm, so this is a rather stiff spring, as it would have to be to stop a

300-kg cart with an acceleration of 3g.
(a) IDENTIFY and SET UP: Apply K, +U , + W .. = Kp +Up to the motion from 4 to B.

EXECUTE: K, =0, Kz=1mvj, U, =0, Up=Uyp =Lhkxj, where x5 =0.25m, and

W,

[}

ther = Wr = Fxp. Thus Fxp = %mvfz; + %kxé (The work done by F' goes partly to the potential energy of

the stretched spring and partly to the kinetic energy of the block.)
Fxy =(20.0 N)(0.25m)=5.0 J and Ly =1(40.0 N/m)(0.25 m)* =1.25 ]

Thus 5.0 J=Lmv3 +1257 and vy = e
2 0.500 kg

(b) IDENTIFY: Apply K, +U, +W_, =K, +U, to the motion of the block. Let point C be where the
block is closest to the wall. When the block is at point C the spring is compressed an amount |xc|, so the

block is 0.60 m— x| from the wall, and the distance between B and Cis xp +|xc|.

SET UP: The motion from A4 to B to C'is described in Figure 7.69.

1 VB KB + UB + Wother = KC + UC
] ——
_/Wm EXECUTE: W 4. =0
 — 1,2 _ B _
! (from part (a))
|
M ! Up=Llhkg=1257
1
C 1
i

K- =0 (instantaneously at rest at point
closest to wall)
—1 2
Uc =3k|xc|

Figure 7.69

. f 2(5.0] )
Thus 3.75J+1.25J = lk|xc|2 , giving |x | = 2600 =0.50 m. The distance of the block from the
2 ¢ 40.0 N/m

wallis 0.60 m—0.50 m =0.10 m.
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EVALUATE: The work (20.0 N)(0.25 m)=5.0J done by F puts 5.0 J of mechanical energy into the

system. No mechanical energy is taken away by friction, so the total energy at points B and C'is 5.0 J.
IDENTIFY: Applying Newton’s second law, we can use the known normal forces to find the speeds of the
block at the top and bottom of the circle. We can then use energy conservation to find the work done by
friction, which is the target variable.

2
SET UP: For circular motion XF = m% Energy conservation tells us that K, +U 4, +W ., = Kp +Ujp,
where W, is the work done by friction. Uy =mgy and K = —mv2
EXECUTE: Use the given values for the normal force to find the block’s speed at points 4 and B. At point 4,

2

Newton’s second law gives n, —mg = m%. So

2
\/—(nA \/OOOZ(())(())T (3.95 N—-0.392 N) =6.669 mV/s. Similarly at point B, np +mg = m%.
Solving for vy gives vz = \/E(nB +mg) = |20 6 680 N+0.392 N) =3.660 m/s. Now apply
m 0.0400 kg

K, +U +W_, .. =K, +U, to find the work done by friction. K 4, +U 4+ Wy, =Kp +Up.
Wother = Kp +Up =

O

/4

other

= l(0.040 kg)(3.66 m/s)? +(0.04 kg)(9.8 m/s?)(1.0 m)— %(0.04 kg)(6.669 m/s)>.

W, e = 02679 1 +0.392 J —0.8895 ] =—0.230 J.

EVALUATE: The work done by friction is negative, as it should be. This work is equal to the loss of
mechanical energy between the top and bottom of the circle.
IDENTIFY: We can apply Newton’s second law to the block. The only forces acting on the block are
gravity downward and the normal force from the track pointing toward the center of the circle. The
mechanical energy of the block is conserved since only gravity does work on it. The normal force does no
work since it is perpendicular to the displacement of the block. The target variable is the normal force at
the top of the track.
2

SET UP: For circular motion XF = m% Energy conservation tells us that K, +U 4 + Wy, = Kp +Up,
where Woher = 0- Ug =mgy and K ——mv2
EXECUTE: Let point 4 be at the bottom of the path and point B be at the top of the path. At the bottom of

2
the path, n, —mg = m% (from Newton’s second law).

vy = \/E(nA —-mg) = m@ 40 N-0.49 N) =6.82 m/s. Use energy conservation to find the
m 0.0500 kg

speed at point B. K, +U 4 +W 4. =Kp +Up, giving mvi = mvB +mg(2R). Solving for vy

1
2

gives v, = \/vj —4Rg = \/(6.82 m/s)? — 4(0.800 m)(9.8 m/s>) = 3.89 m/s. Then at point B,
2 2
Newton’s second law gives ng +mg = m? Solving for ng gives ng = m;{g—mg =
(3.89 m/s)?
0.800 m
EVALUATE: The normal force at the top is considerably less than it is at the bottom for two reasons: the

block is moving slower at the top and the downward force of gravity at the top aids the normal force in
keeping the block moving in a circle.

(0.0500 kg)[ -9.8 m/szj =0.456 N.



7-28 Chapter 7

7.72. IDENTIFY: Only gravity does work, so apply K; +U; =K, +U,. Use YF =md to calculate the tension.
SETUP: Let y =0 atthe bottom of the arc. Let point 1 be when the string makes a 45° angle with the
vertical and point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial
acceleration ay = vir.
EXECUTE: (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect
to the bottom of the circular arc) is mgl(1—cos @), where [ is the length of the string and @ is the angle the
string makes with the vertical. At the bottom of the swing, this potential energy has become kinetic energy,
so mgl(1-cos@) = %mvz, which gives v=/2gl(1-cosf) = \/2(9.80 m/sz)(O.SO m)(1—cos45°) =2.1 m/s.
(b) At 45° from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to
the radial component of the weight, or mg cosé = (0.12 kg)(9.80 m/sz) cos 45°=0.83 N.
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial
acceleration, mg + mv%/l =mg(1+2(1—cos45°)) =1.9N.
EVALUATE: When the string passes through the vertical, the tension is greater than the weight because the
acceleration is upward.

7.73.  IDENTIFY: Apply K, +U, +W_, =K, +U, to the motion of the block.
SET UP: The motion from A4 to B is described in Figure 7.73.

y vg = 7.00 mfs
/'/r
6.00 m
X
0= 30.()“)

Figure 7.73
The normal force is n =mgcos@, so fi = t4yn= mgcosb. y,=0; yp=(6.00m)sin30.0°=3.00 m.
KA + UA + Wother = KB + UB
EXECUTE: Work is done by gravity, by the spring force, and by friction, so Wy, =W, and
U= Uel + Ugrav
K,=0, Kp=1mvp=1(1.50 kg)(7.00 m/s)* =36.75 J
UA = Ue],A +Ugrav,A :Uel,A’ since Ugrav,A =0
Up =Uq p +Ugpay,p =0+ mgyp = (1.50 kg)(9.80 m/s?)(3.00 m) = 44.1]
Woher = Wf = (f, cos@)s = 4 mgcos&(cos180°)s = — L4 mg cosbs
W her = —(0.50)(1.50 kg)(9.80 m/sz)(cos30.0°)(6.00 m)=-38.197J
Thus U, 4—38.19J=36.75J+44.10 J, giving U, 4, =38.19J+36.75J+44.10J =119 J.
EVALUATE: U, must always be positive. Part of the energy initially stored in the spring was taken away
by friction work; the rest went partly into kinetic energy and partly into an increase in gravitational
potential energy.

7.74.  IDENTIFY: We know the potential energy function for a conservative force. Mechanical energy is

conserved.
SETUP: F, =—dU/dx and U(x) = —ax” + fx°.
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EXECUTE: (@) U, + K, =U,+ K, gives0+0=U,+ K,,s0 K, =-U, = 7(—ax§ +ﬂx§) =1 m. Using
m =0.0900 kg, x =4.00 m, & =2.00J/m’, and B =0.300 J/m’ , solving for v gives v = 16.9 m/s.

(b) F, =—dU/dx = —(20ax + 3ﬂx2). In addition, F, = ma,, so a, = F,/m. Using the numbers from (a),

gives a = 17.8 m/s’.
(¢) The maximum x will occur when U = 0 since the total energy is zero. Therefore

—ax® + Bx’=0, 50 Xy = 0t/ f = (2.00 J/m?»)/(0.300 J/m*) = 6.67 m.

EVALUATE: The object is released from rest but at a small (but not zero) x. Therefore F is small but not
zero initially, so it will start the object moving.

~ ~ =S 2. .
IDENTIFY: We are given that F = —Ot.xyzj, =250 N/m*. F isnot constant so use W = L F-dl to

calculate the work. F must be evaluated along the path.
(a) SETUP: The path is sketched in Figure 7.75a.

Y dl = dxi +dyj
3m F'-di:—axyz dy
On the path, x=y so F-dl =—ay3 dy

Figure 7.75a
2.
EXECUTE: W = L F.dl = j "2 (—ay) dy = —(a )3 - )
71

7 =0, y, =3.00m, so I = -1(2.50 N/m*)(3.00 m)* = =50.6 J
(b) SET UP: The path is sketched in Figure 7.75b.

Figure 7.75b

For the displacement from point 1 to point 2, dI = dxi, so F-dl =0 and W =0. (The force is
perpendicular to the displacement at each point along the path, so W =0.)

For the displacement from point 2 to point 3, dl = dy}, so F-dl = —a'xy2 dy. On this path, x =3.00 m, so
F -dl =—(2.50 N/m*)(3.00 m)y? dy = —(7.50 N/'m?)y? dy.

3.0 -
EXECUTE: W :j2 Fdl =—(7.50 N/m*)[ 3 y dy = ~(7.50 Nim*)4 (33 - 33)
y
72

W =—(7.50 N/mz)(%) (3.00 m)* =—67.5 1.

(c) EVALUATE: For these two paths between the same starting and ending points the work is different, so
the force is nonconservative.

dUu ce .
IDENTIFY: Use F, :—d— torelate F, and U(x). The equilibrium is stable where U(x) is a local
X

minimum and the equilibrium is unstable where U(x) is a local maximum.
SET UP: dU/dx is the slope of the graph of U versus x. K = E—U, so K is a maximum when U is a
minimum. The maximum x is where £ =U.
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EXECUTE: (a) The slope of the U vs. x curve is negative at point 4, so F, is positive because
F,.=-dU/dx.

(b) The slope of the curve at point B is positive, so the force is negative.

(¢) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at
around 0.75 m.

(d) The curve at point C looks pretty close to flat, so the force is zero.

(e) The object had zero kinetic energy at point 4, and in order to reach a point with more potential energy
than U(A), the kinetic energy would need to be negative. Kinetic energy is never negative, so the object
can never be at any point where the potential energy is larger than U(4). On the graph, that looks to be at

about 2.2 m.

(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m.
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C.
EVALUATE: If E is less than U at point C, the particle is trapped in one or the other of the potential
“wells” and cannot move from one allowed region of x to the other.

IDENTIFY: The mechanical energy of the system is conserved, and Newton’s second law applies. As the
pendulum swings, gravitational potential energy gets transformed to kinetic energy.

SET Up: For circular motion, F = mv*/r. Ugray = mgh.

EXECUTE: (a) Conservation of mechanical energy gives mgh = Y mv* + mgh,, where hy = 0.800 m.
Applying Newton’s second law at the bottom of the swing gives ' = mv*/L + mg. Combining these two
equations and solving for 7T as a function of % gives T = (2mg/L)h + mg(1 —2hy/L). In a graph of T versus
h, the slope is 2mg/L. Graphing the data given in the problem, we get the graph shown in Figure 7.77.
Using the best-fit equation, we get 7 = (9.293 N/m)A + 257.3 N. Therefore 2mg/L = 9.293 N/m. Using
mg =265 N and solving for L, we get L = 2(265 N)/(9.293 N/m) =57.0 m.

T(N)
400

350 /

300 /

0 T T T T T T y /1 (m)
0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

Figure 7.77

(b) Thax = 822 N, 50 7' = Tpax/2 =411 N. We use the equation for the graph with 7= 411 N and solve for 4.
411 N =(9.293 N/m)h + 257.3 N, which gives # =16.5 m.

(¢) The pendulum is losing energy because negative work is being done on it by friction with the air and at
the point of contact where it swings.

EVALUATE: The length of this pendulum may seem extremely large, but it is not unreasonable for a
museum exhibit, which can cover a height of several floor levels.
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IDENTIFY: Friction does negative work, and we canuse K, +U; +W .. = K, +U,.
SETUP: U, + Wyper = K>

. . 1 .
EXECUTE: (a) Using K, = U} + Wer gives Emv2 =mgh —(,ukmg cos 9).3‘ and geometry gives s =— Py
sin
2

H
2g| 1-
g[ tanﬁj
v =4.00 m/s. Using the coefficients of sliding friction from the table in the problem, this formula gives the

following results for 4. (1) 0.92 m (ii) 1.1 m (iii) 2.4 m.
(b) The mass divides out, so /4 is unchanged and remains at 1.1 m.

Combining these equations and solving for 4 gives & = . For each material, 8 = 52.0° and

(¢) In the formula for 4 in part (a), we solve for v giving V=2 gh(l - t’u kgj' As 6 increases (but
an

h remains the same), tan € increases, so the quantity in parentheses increases since tan € is in the
denominator. Therefore v increases.

EVALUATE: The answer in (¢) makes physical sense because with / constant, a larger value for & means
that the normal force decreases so the magnitude of the friction force also decreases, and therefore friction
is less able to oppose the motion of the block as it slides down the slope.

IDENTIFY: For a conservative force, mechanical energy is conserved and we can relate the force to its
potential energy function.

SET UP: F, =—dU/dx.

EXECUTE: (a) U + K = E = constant. If two points have the same kinetic energy, they must have the same
potential energy since the sum of U and K is constant. Since the kinetic energy curve symmetric, the
potential energy curve must also be symmetric.

(b) Atx =0 we can see from the graph with the problem that £ = K +0 = 0.14 J. Since F is constant, if
K=0atx=-1.5m, then U must be equal to 0.14 J at that point.

(¢) U(x) = E — K(x) = 0.14 J — K(x), so the graph of U(x) is like the sketch in Figure 7.79.

U
0.20
‘ 0.15 T
0.10 I
0.05 l

1.5
x(m)

‘ ’ 2> 9005 f
\ =0.10 I
: 4

Figure 7.79

(d) Since F, = —dU/dx, F(x)=0atx=0,+1.0 m, and —1.0 m.
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(e) F(x) is positive when the slope of the U(x) curve is negative, and F(x) is negative when the slope of the
U(x) curve is positive. Therefore F(x) is positive between x =—1.5 m and x =—1.0 m and between x = 0 and
x = 1.0 m. F(x) is negative between x =—1.0 m and 0 and between x = 1.0 mand x = 1.5 m.
(f) When released from x =—1.30 m, the sphere will move to the right until it reaches x = —0.55 m, at
which point it has 0.12 J of potential energy, the same as at is original point of release.
EVALUATE: Even though we do not have the equation of the kinetic energy function, we can still learn
much about the behavior of the system by studying its graph.

7.80. IDENTIFY: K =FE-U determines v(x).

SET UP: vis a maximum when U is a minimum and v is a minimum when U is a maximum.
F_=-dU/dx. The extreme values of x are where £ =U (x).

EXECUTE: (a) Eliminating £ in favor of & and xy(8 = a/xy),

2 2
U ) = g R O ST [x_oJ _(x_o) _
xz X xg x2 xox xg X X

%J(l —-1)=0. U(x) is positive for x <x

U(xo):[x
0

as positive). The graph of U(x) is sketched in Figure 7.80a.

B and negative for x > X, (o and f must be taken

2
mx, 3 3

2
(b) v(x) = _EU = \/{ 20 ] ([EJ —[ﬁj J The proton moves in the positive x-direction, speeding up
m

until it reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus
sign in the square root in the expression for v(x) indicates that the particle will be found only in the region

where U <0, thatis, x >x,. The graph of v(x) is sketched in Figure 7.80b.

(¢) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential

09

3 2
energy. This minimum occurs when ] =0, or — =2 ) 4R
dx dx x, kY X

which has the solution x =2x,. U(2x) = —iz, so v= >
4x; 2mx

0

. . . d L
(d) The maximum speed occurs at a point where ‘;—U =0, and since F, = —d—U, the force at this point

X X
is zero.
200
(e) x =3x, and U(3xp) = —9—2.
X0

v(x) = fi(U(xl)—U(x)) = 2{[__2%J_ﬁ2[(ﬁj _EJ] :\/20!2 {(ﬁj_[ﬁj _gj
m mi\9 x5 ) x|\ x X mxy |\ x x 9

The particle is confined to the region where U(x) <U(x;). The maximum speed still occurs at x = 2x0 s
but now the particle will oscillate between X, and some minimum value (see part (f)).

(f) Note that U(x)—U(x;) can be written as

ATl
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7.81.

7.82.

7.83.

7.84.

which is zero (and hence the kinetic energy is zero) at x = 3x, =x, and x = %xo. Thus, when the particle

is released from X it goes on to infinity, and doesn’t reach any maximum distance. When released from
X it oscillates between %xo and 3x0.

EVALUATE: In each case the proton is released from rest and E =U(x;), where X, is the point where it
is released. When X, =x, the total energy is zero. When X, =X, the total energy is negative. U(x) = 0

as x — oo, so for this case the proton can’t reach x — e» and the maximum x it can have is limited.

7] 2

x[xg ) '\'/"’n
(a (b)
Figure 7.80

IDENTIFY: We model the DNA molecule as an ideal spring.
SET UP: Hooke’s law is F' = kx.
EXECUTE: Since F is proportional to x, if a 3.0-pN force causes a 0.10-nm deflection, a 6.0-pN force,
which is twice as great, should use twice as much deflection, or 0.2 nm. This makes choice (¢) correct.
EVALUATE: A simple model can give rough but often meaningful insight into the behavior of a
complicated system.
IDENTIFY and SET Up: If a system obeys Hooke’s law, a graph of force versus displacement will be a
straight line through the origin having positive slope equal to the force constant.
EXECUTE: The graph is a straight line. Reading its slope from the graph gives (2.0 pN)/(20 nm) = 0.1
pN/nm, which makes choice (b) correct.
EVALUATE: The molecule would obey Hooke’s law only over a restricted range of displacements.
IDENTIFY and SET UP: The energy is the area under the force-displacement curve.
EXECUTE: Using the area under the triangular section from 0 to 50 nm, we have

= 1 (5.0 pN)(50 nm) = 1.25x 10" J = 1.2x 10" J, which makes choice (b) correct.

EVALUATE: This amount of energy is quite small, but recall that this is the energy of a microscopic
molecule.

IDENTIFY and SET UP: P = Fv and at constant speed x = v£. The DNA follows Hooke’s law, so F' = kx.
EXECUTE: P = Fv = kxv =k(vf)v = kv’t . Since k and v are constant, the power is proportional to the time,
so the graph of power versus time should be a straight line through the origin, which fits choice (a).
EVALUATE: The power increases with time because the force increases with x and x increases with ¢.
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8.1.

8.2.

8.3.

8.4.

IDENTIFY and SETUP: p=mv. K = %mvz.

EXECUTE: (a) p = (10,000 kg)(12.0 m/s) =1.20x10° kg-m/s
_p _1.20x10° kg-m/s _

b) (i) v=L2 =22 S8 _ 60,0 mis. (i) Lmpvd = Lmgyyuy.
(b) @) v r 2000 kg s. (i) 3mpvp = 5mguyVsyy, SO
Vsuy :\/ o :\/10’000 K€ 12,0 m/s) = 26.8 mvs

EVALUATE: The SUV must have less speed to have the same kinetic energy as the truck than to have the
same momentum as the truck.

IDENTIFY: Each momentum component is the mass times the corresponding velocity component.

SET UpP: Let +x be along the horizontal motion of the shotput. Let +y be vertically upward.

vy =veosf, v, =vsind.

EXECUTE: The horizontal component of the initial momentum is

P, =mv, =mvcos@=(7.30 kg)(15.0 m/s)cos40.0° =83.9 kg-m/s.
The vertical component of the initial momentum is

py =mv,, =mysin@ = (7.30 kg)(15.0 m/s)sin40.0° = 70.4 kg - m/s.

EVALUATE: The initial momentum is directed at 40.0° above the horizontal.
IDENTIFY and SET UP:  We use p = mv and add the respective components.
EXECUTE: (a) P, = py, + pce =0+ (10.0 kg)(-3.0 m/s) = -30 kg - m/s

P, =pyy+pey, = (5.0 kg)(-11.0 m/s) + 0 =55 kg - m/s

() P. = pp. + pey = (6.0 kg)(10.0 m/s cos60°) + (10.0 kg)(—3.0 m/s) =0

P, = pp, + pcy = (6.0 kg)(10.0 m/s sin60°) + 0 =52 kg - m/s

© P.=pyt ppet Pox =0+ (6.0 kg)(10.0 m/s cos60°) + (10.0 kg)(—3.0 m/s) =0

P, =pyt Py + Py = (5.0 kg)(=11.0 m/s) + (6.0 kg)(10.0 m/s sin60°) + 0 = —3.0 kg - m/s

EVALUATE: A4 has no x-component of momentum so P, is the same in (b) and (c). C has no y-component
of momentum so P, in (c) is the sum of P, in (a) and (b).

IDENTIFY: For each object p=mv and the net momentum of the system is P = p , + pp. The

momentum vectors are added by adding components. The magnitude and direction of the net momentum is
calculated from its x- and y-components.
SETUP: Let object 4 be the pickup and object B be the sedan. v, =—14.0 m/s, v, =0. v, =0,

vg, =+23.0 m/s.
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8.5.

8.6.

8.7.

EXECUTE: (a) P, = p + P, = My t mpvp. = (2500 kg)(—-14.0 m/s) +0 = -3.50x10* kg-m/s
P, = pyy + ppy =myv, tmpvg, = (1500 kg)(+23.0 m/s) = +3.45%10% kg-m/s
5

b

_3.50x10* kg-m/s

7 and 8=45.4°,
3.45x10" kg-m/s

(b) P=,/P? +P; =4.91x10* kg-m/s. From Figure 8.4, tan 6 =

The net momentum has magnitude 4.91x 10* kg-m/s and is directed at 45.4° west of north.

EVALUATE: The momenta of the two objects must be added as vectors. The momentum of one object is
west and the other is north. The momenta of the two objects are nearly equal in magnitude, so the net
momentum is directed approximately midway between west and north.

Figure 8.4

IDENTIFY: For each object, p=mv and K = %mvz. The total momentum is the vector sum of the

momenta of each object. The total kinetic energy is the scalar sum of the kinetic energies of each object.
SET UP: Let object 4 be the 110 kg lineman and object B the 125 kg lineman. Let +x be to the right,

S0 vy, =1+2.75 m/s and vp, =—-2.60 m/s.
EXECUTE: (a) P, =myv  +mpvp. = (110 kg)(2.75 m/s) + (125 kg)(—2.60 m/s) =-22.5 kg-m/s. The net

momentum has magnitude 22.5 kg-m/s and is directed to the left.
(b) K =Lm v} +Lmgvy =1(110 kg)(2.75 m/s)* +1(125 kg)(2.60 m/s)* =838 J
EVALUATE: The kinetic energy of an object is a scalar and is never negative. It depends only on the
magnitude of the velocity of the object, not on its direction. The momentum of an object is a vector and has
both magnitude and direction. When two objects are in motion, their total kinetic energy is greater than the
kinetic energy of either one. But if they are moving in opposite directions, the net momentum of the system
has a smaller magnitude than the magnitude of the momentum of either object.
IDENTIFY: We know the contact time of the ball with the racket, the change in velocity of the ball, and
the mass of the ball. From this information we can use the fact that the impulse is equal to the change in
momentum to find the force exerted on the ball by the racket.
SETUP: J,=Ap, and J, = F At. In part (a), take the +x-direction to be along the final direction of
motion of the ball. The initial speed of the ball is zero. In part (b), take the +x-direction to be in the
direction the ball is traveling before it is hit by the opponent’s racket.
EXECUTE: (a) J, =mvy, —mv;, = (57><1073 kg)(73 m/s—0) =4.16 kg-m/s. Using J, = F At gives

J

Fo=2x=2"S S 240 N
YA 30.0x107 s

(b) J, =mvy, —mvy, = (57x107 kg)(~55 m/s — 73 m/s) =—7.30 kg - m/s.

AN, LI

At 30.0x1077 s

EVALUATE: The signs of J, and F, show their direction. 140 N =31 1b. This very attainable force has a

large effect on the light ball. 140 N is 250 times the weight of the ball.
IDENTIFY: The average force on an object and the object’s change in momentum are related by

(Fp)y = % The weight of the ball is w = mg.
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8.8.

8.9.

8.10.

SET UP: Let +x be in the direction of the final velocity of the ball, so v, =0 and v, =25.0 m/s.

. - 0.0450 kg)(25.0 m/
EXECUTE: (), (ty—ty) = mvy, —mvy, gives (Fy,), = 2=y - ( 2l 5 =562 N

t—1 2.00x107 s
w=(0.0450 kg)(9.80 m/sz) =0.441 N. The force exerted by the club is much greater than the weight of
the ball, so the effect of the weight of the ball during the time of contact is not significant.
EVALUATE: Forces exerted during collisions typically are very large but act for a short time.
IDENTIFY: The change in momentum, the impulse, and the average force are related by J, =Ap, and

(Fu) =52

SET Up: Let the direction in which the batted ball is traveling be the +x-direction, so v;, =—45.0 m/s
and v,, =55.0 m/s.

EXECUTE: (a) Ap, = Py, — D1y = m(vy, — V) = (0.145 kg)[55.0 m/s — (—45.0 m/s)] =14.5 kg - m/s.
J.=Ap,, soJ, =14.5 kg m/s. Both the change in momentum and the impulse have magnitude 14.5 kg-m/s.

J, _145kg-m/s
®) (Fy), =E= =
(Fav)s At 2.00x107 s

EVALUATE: The force is in the direction of the momentum change.
IDENTIFY: Use J, = p, — p;,.. We know the initial momentum and the impulse so can solve for the final

=7250 N.

momentum and then the final velocity.
SET Up: Take the x-axis to be toward the right, so v;, = +3.00 m/s. Use J, = F, At to calculate the

impulse, since the force is constant.
EXECUTE: (a) J, = py,— D1

J. = F.(t —1) = (+25.0 N)(0.050 s) = +1.25 kg -m/s
Thus p,, =J, + p;, = +1.25 kg-m/s + (0.160 kg)(+3.00 m/s) = +1.73 kg -m/s

7l 0.160 kg
(b) J, =F.(t; —t;) =(=12.0 N)(0.050 s) =—0.600 kg-m/s (negative since force is to left)

Pax =J ¢+ Pre = —=0.600 kg-m/s +(0.160 kg)(+3.00 m/s) = —0.120 kg - m/s

vy, = P2x 2 T0120ke s 055 the Teft)
g

EVALUATE: In part (a) the impulse and initial momentum are in the same direction and v, increases. In
part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.
IDENTIFY: Apply J, =Ap, =mv,,—mv, and J,, =Ap, =mv,,—my,, to relate the change in
momentum to the components of the average force on it.

SET UP: Let +x be to the right and +y be upward.

EXECUTE: J, =Ap, =mv,y, —mv, =(0.145 kg)[-(52.0 m/s)cos30° —40.0 m/s] =—-12.33 kg- m/s.

Jy, =Ap), =mv,,, —mv;, =(0.145 kg)[(52.0 m/s)sin30° - 0] =3.770 kg - m/s.

The horizontal component is 12.33 kg-m/s, to the left and the vertical component is 3.770 kg-m/s,
upward.

J. _-1233kg-m/s _ Jy _3770kg-m/s _

F, . =-*%x= =-7050N. F, =—=——F—=2150N.

TN 1.75%107 s VA 175107 s
The horizontal component is 7050 N, to the left, and the vertical component is 2150 N, upward.
EVALUATE: The ball gains momentum to the left and upward and the force components are in these

directions.
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8.11.

8.12.

8.13.

8.14.

- 1, —
IDENTIFY: The force is not constant so J = L ? Fdt. The impulse is related to the change in velocity by
1
‘]x = m(v2x Vi )
. L .
SET UP: Only the x-component of the force is nonzero, so J, = LZ F.dt is the only nonzero component
1

of J. J, =m(vy, —v,). £, =2.00s, t,=3.50s.
F. _78125N

X

EXECUTE: (a) A=—%=—"""——=500 N/s’.
2 (1.255)

(M) J, = J.ZzAtzdt =146 - 1)) =1(500 N/s*)([3.50 s]’ —[2.00 s]°) =5.81x10° N s.

81x10° N- :
© Avy =vy =V =—%= 3-81x10 Noseg 2.70 m/s. The x-component of the velocity of the rocket
Tom 2150 kg

increases by 2.70 m/s.

EVALUATE: The change in velocity is in the same direction as the impulse, which in turn is in the
direction of the net force. In this problem the net force equals the force applied by the engine, since that is
the only force on the rocket.

IDENTIFY: The force imparts an impulse to the forehead, which changes the momentum of the skater.

SETUpP: J,=Ap, and J, = F,At. With 4=1.5x 10~ m?, the maximum force without breaking the
bone is (1.5 X% 107 mz)(l 03x10% N/mz) =1.5x10* N. Set the magnitude of the average force F,, during

the collision equal to this value. Use coordinates where +x is in his initial direction of motion. F, is
opposite to this direction, so F, =—1.5X 104 N.
EXECUTE: J, = F, At =(-1.5x10* N)(10.0x107's) = —150.0 N - s. J, = mx,, —mx,, and

EVALUATE: This speed is about the same as a jog. However, in most cases the skater would not be
completely stopped, so in that case a greater speed would not result in injury.

IDENTIFY: The force is constant during the 1.0 ms interval that it acts, so J = FA.

J =Py - P = m(, - W).

SET UP: Let +x be to the right, so v, =+5.00 m/s. Only the x-component of J is nonzero, and
J,=m(vy, —Viy)-

EXECUTE: (a) The magnitude of the impulse is J = FAt =(2.50x 10° N)(1.00 x 1073 s)=2.50 N-s. The

direction of the impulse is the direction of the force.

J +2.50 N-s
b) (i) vy, =—*+v,.. J. =+250N-s. v, =———
( )() 2x m 1x X 2x 2.00 kg

magnitude 6.25 m/s and is directed to the right. (i) Now J, =—2.50 N-s and

_—2.50N-s
2T 00 ke
right.
EVALUATE: When the force and initial velocity are in the same direction the speed increases, and when
they are in opposite directions the speed decreases.

IDENTIFY: We know the force acting on a box as a function of time and its initial momentum and want to
find its momentum at a later time. The target variable is the final momentum.

+5.00 m/s = 6.25 m/s. The stone’s velocity has

+5.00 m/s =3.75 m/s. The stone’s velocity has magnitude 3.75 m/s and is directed to the

SET UP: Use Ltz F(t)dt = P, — py tofind p, since we know p; and F().
1
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8.15.

8.16.

8.17.

8.18.

EXECUTE: p; =(-3.00 kg-m/s)t: +(4.00 kg-m/s).;' at £, =0, and #, =2.00 s. Work with the components

L2} 12}
of the force and momentum. j F,(t)dt =(0.280 N/s) j tdt = (0.140 N/s)r2 =0.560 N -s
4 4

Pay = Pr +0.560 N-s =-3.00 kg-m/s +0.560 N-s = ~2.44 kg ms.
j;z F,(0)dt = (~0.450 N/s%) ;2 £2dt = (~0.150 N/s?)3 =—1.20 N-s.
P2y = 1y + (=120 Nis) = 400 kg-m/s +(=1:20 N-s) = +2.80 kg-ms. So

Py =(-2.44 kg-m/s)i +(2.80 kg-m/s)j

EVALUATE: Since the given force has x- and y-components, it changes both components of the box’s
momentum.

IDENTIFY: The player imparts an impulse to the ball which gives it momentum, causing it to go upward.
SET UP: Take +y to be upward. Use the motion of the ball after it leaves the racket to find its speed just

after it is hit. After it leaves the racket a,, = —g. At the maximum height v, = 0. Use J,, =Ap, and the

. . . LN B .
kinematics equation v;, = v, +2a,(y— ) for constant acceleration.

EXECUTE: v; =, +2a,(y— ) gives vy, =./~2a,(y —y) = \/—2(—9.80 m/s%)(5.50 m) =10.4 m/s.
For the interaction with the racket v, =0 and v,, =10.4 m/s.

J, = mvy, —mv;, = (57 %107 kg)(10.4 m/s —0) = 0.593 kg m/s.

EVALUATE: We could have found the initial velocity using energy conservation instead of free-fall
kinematics.

IDENTIFY: Apply conservation of momentum to the system of the astronaut and tool.

SET UP: Let 4 be the astronaut and B be the tool. Let +x be the direction in which she throws the tool, so
Vgo, = 13.20 m/s. Assume she is initially at rest, so v, =vp;, =0. Solve for v ..

EXECUTE: B, =P, B, =mv, +mgvp, =0. P, =m v, +mgve, =0 and
Mgy, (225kg)(3.20 mis) _
m, 68.5 kg

the direction in which she throws the tool.

EVALUATE: Her mass is much larger than that of the tool, so to have the same magnitude of momentum
as the tool her speed is much less.

IDENTIFY: Since the rifle is loosely held there is no net external force on the system consisting of the
rifle, bullet, and propellant gases and the momentum of this system is conserved. Before the rifle is fired
everything in the system is at rest and the initial momentum of the system is zero.

SET UP: Let +x be in the direction of the bullet’s motion. The bullet has speed

601 m/s —1.85 m/s =599 m/s relative to the earth. P, = p;, + py, + pg,, the momenta of the rifle, bullet,
and gases. v, =—1.85m/s and v, =+599 m/s.

EXECUTE: Py, =R, =0. p,+ py, + pg, =0.

Py =~ Prx — Pox = —(2.80 kg)(—1.85 m/s) - (0.00720 kg)(599 m/s) and

Pgy = +5.18 kg-m/s —4.31 kg- m/s = 0.87 kg-m/s. The propellant gases have momentum 0.87 kg-m/s, in

—0.105 m/s. Her speed is 0.105 m/s and she moves opposite to

Vgox =~

the same direction as the bullet is traveling.

EVALUATE: The magnitude of the momentum of the recoiling rifle equals the magnitude of the
momentum of the bullet plus that of the gases as both exit the muzzle.

IDENTIFY: The total momentum of the two skaters is conserved, but not their kinetic energy.

SET UP:  There is no horizontal external force so, B, =F.,, p=mv, K=" m’.
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8.19.

8.20.

8.21.

8.22.

EXECUTE: (a) P, = F;,. The skaters are initially atrestso P, =0. 0=m (v ), +mp(vp ),

_ omg(vpg)y  (74.0 kg)(1.50 m/s) _
Car)e == T 638k -
my -6 Kg

—1.74 m/s. The lighter skater travels to the left

at 1.74 m/s.

(b) K;=0. Ky =Lmv, * +Lmgvg > =1(63.8 ke)(1.74 m/s)* +1(74.0 kg)(1.50 m/s)* =180 J.
EVALUATE: The kinetic energy of the system was produced by the work the two skaters do on each other.
IDENTIFY: Since drag effects are neglected, there is no net external force on the system of squid plus
expelled water, and the total momentum of the system is conserved. Since the squid is initially at rest, with

the water in its cavity, the initial momentum of the system is zero. For each object, K = %mvz.

SET Up: Let 4 be the squid and B be the water it expels, so m, = 6.50 kg—1.75 kg =4.75 kg. Let +x be

the direction in which the water is expelled. v,,, =-2.50 m/s. Solve for vp,,.

EXECUTE: (a) B, =0. B, =FB,, so 0=m v, +mpvp,..

_myvp, (475 kg)(=2.50 m/s)
mg 1.75 kg

(b) Ky =K 1 + Ky =2m vy +Lmpgvg, =1(4.75 kg)(2.50 m/s)* +1(1.75 kg)(6.79 m/s)* =55.2 J. The

initial kinetic energy is zero, so the kinetic energy produced is K, =55.2 J.

Vo = =+6.79 m/s.

EVALUATE: The two objects end up with momenta that are equal in magnitude and opposite in direction,
so the total momentum of the system remains zero. The kinetic energy is created by the work done by the
squid as it expels the water.

IDENTIFY: Apply conservation of momentum to the system of you and the ball. In part (a) both objects
have the same final velocity.

SETUpP: Let +x be in the direction the ball is traveling initially. m , = 0.600 kg (ball). mz =70.0 kg (you).

EXECUTE: (a) A, =B, gives (0.600 kg)(10.0 m/s) = (0.600 kg +70.0 kg)v, so v, =0.0850 m/s.
(b) B, =P, gives (0.600 kg)(10.0 m/s) = (0.600 kg)(—8.00 m/s) +(70.0 kg)vz, so vg, =0.154 m/s.

EVALUATE: When the ball bounces off it has a greater change in momentum and you acquire a greater
final speed.

IDENTIFY: Apply conservation of momentum to the system of the two pucks.

SET UP: Let +x be to the right.

EXECUTE: (a) B, = P,, says (0.250kg)v,; = (0.250 kg)(—0.120 m/s) +(0.350 kg)(0.650 m/s) and
v, =0.790 m/s.

(b) K; =1(0.250 kg)(0.790 m/s)* =0.0780 J.
K, =1(0.250 kg)(0.120 m/s)* +1(0.350 kg)(0.650 m/s)> =0.0757 J and AK = K, - K; =-0.0023 J.

EVALUATE: The total momentum of the system is conserved but the total kinetic energy decreases.

IDENTIFY: Since road friction is neglected, there is no net external force on the system of the two cars and
the total momentum of the system is conserved. For each object, K = %mvz.
SET UP: Let 4 be the 1750 kg car and B be the 1450 kg car. Let +x be to the right, so v, = +1.50 mV/s,

Vg, =—1.10 m/s, and v ,, =+0.250 m/s. Solve for vg,,.

myv g, T Mpvp, —Mmyv
. — — — T4V Alx BYBlx AV A2x
EXECUTE: (a) Plx _[)2)(' m 4V 41x +va31x =MV 0y +vaBzx. VBox — " .

B

- (1750 kg)(1.50 m/s) + (1450 kg)(—1.10 m/s)— (1750 kg)(0.250 m/s)
* 1450 kg
After the collision the lighter car is moving to the right with a speed of 0.409 m/s.
(b) K, =Lm w5 +Lmgvi =1(1750 kg)(1.50 m/s)* +1(1450 kg)(1.10 m/s)> = 2846 I.

Ky =Lm w3y +Lmpgvg, =1(1750 kg)(0.250 m/s)* +1.(1450 kg)(0.409 m/s)* =176 I.

=0.409 m/s.
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8.23.

8.24.

The change in kinetic energy is AK =K, —K; =176 ] -2846 ] =-2670 J.

EVALUATE: The total momentum of the system is constant because there is no net external force during
the collision. The kinetic energy of the system decreases because of negative work done by the forces the
cars exert on each other during the collision.

IDENTIFY: The momentum and the mechanical energy of the system are both conserved. The mechanical
energy consists of the kinetic energy of the masses and the elastic potential energy of the spring. The
potential energy stored in the spring is transformed into the kinetic energy of the two masses.

SET UP: Let the system be the two masses and the spring. The system is sketched in Figure 8.23, in its
initial and final situations. Use coordinates where +x is to the right. Call the masses A4 and B.

Ua Up
vy =0 vg =0

[a ] 8] «  [a] mw [B]

initial final

Figure 8.23

EXECUTE: A, =5, so 0=(0.900 kg)(—v,) + (0.900 kg)(vz) and, since the masses are equal, v, = vp.
Energy conservation says the potential energy originally stored in the spring is all converted into kinetic

energy of the masses, so kx1 ——mv 2 +5 mvB Since v, = vp, this equation gives

v, = xlf SO G s
2(0.900 kg)

EVALUATE: If the objects have different masses they will end up with different speeds. The lighter one
will have the greater speed, since they end up with equal magnitudes of momentum.
IDENTIFY: In part (a) no horizontal force implies P, is constant. In part (b) use

K+ U + Wy = K, +U, to find the potential energy initially in the spring.

SET UP: Initially both blocks are at rest.
= | vp1=0

|

VB2 = 1.20 m/s

=)
]

Bk

Figure 8.24

EXECUTE: (a) m v +mgVp), =M,V o, +tmpvp,
0=myv 5, tmgvp,,
v == T8 |y, = 300KE 50 sy ==3.60 ms
m 1.00 kg

Block A4 has a final speed of 3.60 m/s, and moves off in the opposite direction to B.
(b) Use energy conservation: K; +U; +W .. =K, +U,.

Only the spring force does work so W 4. =0 and U =U,.
K, =0 (the blocks initially are at rest)
U, =0 (no potential energy is left in the spring)
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Ky =dm iy +1mgvg, =1(1.00 kg)(3.60 m/s)” +1(3.00 kg)(1.20 m/s)* =8.64 J
U, =U, the potential energy stored in the compressed spring.
Thus U, =K, =8.64 J.
EVALUATE: The blocks have equal and opposite momenta as they move apart, since the total momentum
is zero. The kinetic energy of each block is positive and doesn’t depend on the direction of the block’s
velocity, just on its magnitude.

8.25. IDENTIFY: Since friction at the pond surface is neglected, there is no net external horizontal force, and the
horizontal component of the momentum of the system of hunter plus bullet is conserved. Both objects are
initially at rest, so the initial momentum of the system is zero. Gravity and the normal force exerted by the
ice together produce a net vertical force while the rifle is firing, so the vertical component of momentum is
not conserved.

SET UP: Let object 4 be the hunter and object B be the bullet. Let +x be the direction of the horizontal
component of velocity of the bullet. Solve for v, .
EXECUTE: (a) vg,, =+965m/s. B, =P, =0. 0=myv ,, +mpvp,, and
4.20x107 k
v gy Sy, = | 420107 K8 | g5 sy =—0.0559 s
my 72.5 kg
-3

(b) Vo, =V, COSO= (965 m/s)cos56.0° = 540 m/s. vy, = {%J(sm mik) 5 —0103 138,

D kg
EVALUATE: The mass of the bullet is much less than the mass of the hunter, so the final mass of the
hunter plus gun is still 72.5 kg, to three significant figures. Since the hunter has much larger mass, his final
speed is much less than the speed of the bullet.

8.26. IDENTIFY: Assume the nucleus is initially at rest. K = %mvz.

SET UP: Let +x be to the right. v, =—v, and vp,, =+v;.
EXECUTE: (a) B, =R, =0 gives m v, +mpvp, =0. vp :[&jm.
mp
2
(b) & = %mAVA = mAvi :@_
Kp %mBVZZS' mp (’"AVA/’”B)2 my
EVALUATE: The lighter fragment has the greater kinetic energy.
8.27. IDENTIFY: Each horizontal component of momentum is conserved. K = %mvz.

SET UP: Let +x be the direction of Rebecca’s initial velocity and let the +y axis make an angle of
36.9° with respect to the direction of her final velocity. vp, =vpj, =0. vgy, =13.0 m/s; vy, =0.

VR = (8.00 m/s)cos53.1° = 4.80 m/s; vg,,, =(8.00 nv/s)sin53.1° = 6.40 m/s. Solve for v, and vp, ).
EXECUTE: (a) B, =B, gives mpVpi, = MpVRoy T MpVpo,-

mg (Vr1x —VRax) _ (45.0 kg)(13.0 m/s —4.80 m/s)

VDoy = =5.68 m/s.
D2x mp, 65.0 kg
. m (45.0 kg)
B,=P, gives 0= + . Vpay =——VRa, =— 6.40 m/s) =—4.43 m/s.
=5y g MRVR2y ¥ MpVpy- VD2y mp R L65.0 kg)( )
L S - — v 4.4
The directions of vp;, Vg, and vp, are sketched in Figure 8.27. tan@ = D2y|_ 4.43 /s and
VD2 5.68 m/s

0=38.0° vp = vy, +vhy, =7.20 mis.

(b) K, =Lmpvi, =1(45.0 kg)(13.0 m/s)* =3.80x10° J.

Ky =Lmgvi, +Lmpvh, =1(45.0 kg)(8.00 m/s)” +1(65.0 kg)(7.20 m/s)* =3.12x10° J.
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8.28.

8.29.

8.30.

8.31.

AK =K, - K, =-680 J.
EVALUATE: Each component of momentum is separately conserved. The kinetic energy of the system decreases.

Figure 8.27

IDENTIFY and SET UP: Let the +x-direction be horizontal, along the direction the rock is thrown. There
is no net horizontal force, so P, is constant. Let object 4 be you and object B be the rock.

; mgvp €0s35.0°
EXECUTE: 0=-m v, +mgvy c0s35.0° gives v, =—L2-L8 —2"""_ = 0421 m/s.
ey
EVALUATE: P, is not conserved because there is a net external force in the vertical direction; as you

throw the rock the normal force exerted on you by the ice is larger than the total weight of the system.
IDENTIFY: In the absence of a horizontal force, we know that momentum is conserved.

SET UP: p = mv. Let +x be the direction you are moving. Before you catch it, the flour sack has no
momentum along the x-axis. The total mass of you and your skateboard is 60 kg. You, the skateboard, and
the flour sack are all moving with the same velocity, after the catch.

EXECUTE: (a) Since £} , = B, we have (60 kg)(4.5 m/s) = (62.5 kg) v . Solving for the final velocity

we obtain vy, =4.3 m/s.

(b) To bring the flour sack up to your speed, you must exert a horizontal force on it. Consequently, it
exerts an equal and opposite force on you, which slows you down.

(c) Since you exert a vertical force on the flour sack, your horizontal speed does not change and remains at

4.3 m/s. Since the flour sack is only accelerated in the vertical direction, its horizontal velocity-component
remains at 4.3 m/s as well.

EVALUATE: Unless you or the flour sack are deflected by an outside force, you will need to be ready to
catch the flour sack as it returns to your arms!

IDENTIFY: There is no net external force on the system of astronaut plus canister, so the momentum of the
system is conserved.

SET UP: Let object 4 be the astronaut and object B be the canister. Assume the astronaut is initially at
rest. After the collision she must be moving in the same direction as the canister. Let +x be the direction

in which the canister is traveling initially, so v, =0, v, =+2.40 m/s, vp, =+3.50 m/s, and
Vo, = +1.20 m/s. Solve for my.
EXECUTE: R, =Py myv . + MgV, Smyy o +mpvp),.

M = mA(VAZx_vAlx) — (78.4 kg)(2.40 m/s—())

L 3.50 m/s—1.20 m/s

EVALUATE: She must exert a force on the canister in the —x-direction to reduce its velocity component in
the +x-direction. By Newton’s third law, the canister exerts a force on her that is in the +x-direction and
she gains velocity in that direction.
IDENTIFY: The x- and y-components of the momentum of the system of the two asteroids are separately
conserved.
SET UP: The before and after diagrams are given in Figure 8.31 (next page) and the choice of coordinates
is indicated. Each asteroid has mass m.
EXECUTE: (a) R, =B, gives mv, =mv ,c0s30.0°+mvg, cos45.0°. 40.0 m/s =0.866v,, +0.707vg,

and 0.707vg, =40.0 m/s —0.866v 4.

=81.8 kg.
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P, =P, gives 0=mv,,sin30.0°—mvy,sin45.0° and 0.500v,, =0.707vz,.
Combining these two equations gives 0.500v 4, =40.0 m/s—0.866v,, and v, =29.3 m/s. Then
0.500)
vgy =| ——(29.3 m/s) =20.7 my/s.
B2 [0.707 ( )
) K, =Lm? K, =Lm? +1m?, K2 VitV L (293 M)’ +(20.7 mis)” 0.804
1 =MV By =75MVyn T35 MVp). K, an (40.0 m/s)? 004,
AK _Ky—K _ﬁ_l =-0.196
K, K, 1
19.6% of the original kinetic energy is dissipated during the collision.
EVALUATE: We could use any directions we wish for the x- and y-coordinate directions, but the particular
choice we have made is especially convenient.
y i
y A2
30°
A _____
X x
4:7]
Before After
Figure 8.31
8.32. IDENTIFY: There is no net external force on the system of the two skaters and the momentum of the
system is conserved.
SET UP: Let object 4 be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg.
Let +x be to the right, so v, =+4.00 m/s and vp,, =—2.50 m/s. After the collision, the two objects
are combined and move with velocity ¥,. Solve for v,,.
EXECUTE: R, =Py myv . +mpvp, =(mg+mp)vy,.
+ . . + . —2.
Vo = MY i * mpVpiy - (700 kg)(4.00 mis) + (65.0kg)(72.50 m's) 0.870 m/s. The two skaters move
my+mg 70.0 kg +65.0 kg
to the right at 0.870 m/s.
EVALUATE: There is a large decrease in kinetic energy.
8.33. IDENTIFY: Since drag effects are neglected there is no net external force on the system of two fish and the

momentum of the system is conserved. The mechanical energy equals the kinetic energy, which is

K= %mv2 for each object.

SET UP: Let object 4 be the 15.0 kg fish and B be the 4.50 kg fish. Let +x be the direction the large fish

is moving initially, so v, =1.10 m/s and v, =0. After the collision the two objects are combined and

move with velocity ¥,. Solve for v,,.

EXECUTE: (a) B, =Py, myvy tmpvg, = (my+mp)vy,.
_myv, tmpvp, _ (15.0 kg)(1.10 m/s) +0

o =0.846 m/s.
my+mg 15.0 kg +4.50 kg
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8.34.

8.35.

8.36.

(b) K, =Lm w3 +Lmgvi =1(15.0 kg)(1.10 m/s)* =9.08 J.

Ky =L (m, +mp)vi =1(19.5 kg)(0.846 m/s)* =6.98 J.
AK =K, —-K;=-2.10J. 2.10 J of mechanical energy is dissipated.

EVALUATE: The total kinetic energy always decreases in a collision where the two objects become
combined.
IDENTIFY: There is no net external force on the system of the two otters and the momentum of the system

is conserved. The mechanical energy equals the kinetic energy, which is K = Emv2 for each object.
SET UP: Let A be the 7.50 kg otter and B be the 5.75 kg otter. After the collision their combined velocity
is ¥,. Let +x be to the right, so v, =—=5.00 m/s and vg;, =+6.00 m/s. Solve for v,,.
EXECUTE: (a) Plx :[)2)(' mAVA1x+mBVle :(mA +mB)V2x.
2 m,+mp 7.50 kg +5.75 kg

(b) K, =Lm v} +Lmgvg, =1(7.50 kg)(5.00 m/s)* +1(5.75 kg)(6.00 m/s)* =197.2 J.
K, =L (m, +mpg)vs =1(13.25 kg)(0.226 m/s)* =0.338 J.
AK =K, —K; =-197 J. 197 J of mechanical energy is dissipated.

EVALUATE: The total kinetic energy always decreases in a collision where the two objects become
combined.

IDENTIFY: Treat the comet and probe as an isolated system for which momentum is conserved.

SET UP: In part (2) let object A be the probe and object B be the comet. Let —x be the direction the probe

is traveling just before the collision. After the collision the combined object moves with speed v,. The

—-0.226 m/s.

change in velocity is Av =v, —vp .. In part (a) the impact speed of 37,000 km/h is the speed of the probe
relative to the comet just before impact: v 4, —vp, =—37,000 km/h. In part (b) let object A be the comet

and object B be the earth. Let —x be the direction the comet is traveling just before the collision. The
impact speed is 40,000 km/h, so v 4, — Vg, =—40,000 km/h.

M4V 41, T Mpy
EXECUTE: (a) B, =P, v, =—44lx B Blx

mA +mB
m Mmp—my4—m m
Av=vy —vpi = (—AJ"AM + (MJVBIX = (—AJ(VAIX ~VBix)-
my+mg my+mg my+mg
Av= 372 ke ——|(=37,000 km/h) =—1.4x10" kmvh.
372 kg +0.10x10'* kg

The speed of the comet decreased by 1.4 X 107® kmv/h. This change is not noticeable.

10x10" k :

(b) Av= (1)410X g 53 (—40,000 km/h) =-6.7x10 8 km/h. The speed of the earth
0.10x10™" kg +5.97x10" kg

would change by 6.7x10® km/h. This change is not noticeable.

EVALUATE: v, —vp, isthe velocity of the projectile (probe or comet) relative to the target (comet or

earth). The expression for Av can be derived directly by applying momentum conservation in coordinates

in which the target is initially at rest.

IDENTIFY: The forces the two vehicles exert on each other during the collision are much larger than the

horizontal forces exerted by the road, and it is a good approximation to assume momentum conservation.

SET UP: Let +x be eastward. After the collision two vehicles move with a common velocity v,.

EXECUTE: (a) Plx = [)2)( gives mgcVscx + MV, = (mSC + my )sz.

mgeveey +mpv, _ (1050 kg)(=15.0 m/s) + (6320 kg)(+10.0 m/s)
mge +my 1050 kg + 6320 kg

V. = 6.44 mys.
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The final velocity is 6.44 m/s, eastward.

_ _ . _ mSC 1050 kg
(b) R, =P, =0 gives mgcvgc, T mrvy, =0. vp == == Ve, =— (=15.0 m/s) =2.50 my/s.

mr ’ 6320 kg

The truck would need to have initial speed 2.50 m/s.
(¢) part (a): AK =1(7370 kg)(6.44 m/s)* —1(1050 kg)(15.0 m/s)* —1 (6320 kg)(10.0 m/s)* = -2.81x10°
part (b): AK =0-21(1050 kg)(15.0 m/s)” — 1 (6320 kg)(2.50 m/s)* =—1.38x10° J. The change in kinetic
energy has the greater magnitude in part (a).
EVALUATE: In part (a) the eastward momentum of the truck has a greater magnitude than the westward
momentum of the car and the wreckage moves eastward after the collision. In part (b) the two vehicles
have equal magnitudes of momentum, the total momentum of the system is zero and the wreckage is at
rest after the collision.

8.37. IDENTIFY: The forces the two players exert on each other during the collision are much larger than the
horizontal forces exerted by the slippery ground and it is a good approximation to assume momentum
conservation. Each component of momentum is separately conserved.

SETUP: Let +x be eastand +y be north. After the collision the two players have velocity v,. Let the
linebacker be object 4 and the halfback be object B, so v, =0, v, =8.8 m/s, vg, =7.2 m/s and
vgiy = 0. Solve for v, and v,,,.
EXECUTE: B, =P, gives myv q, T mpvp, = (my+mg)v, ..
vy, = TVl tmpvp, _ B85 kg)(T21S) _ 5y, o
my+mpg 110 kg +85 kg
R, =B, gives myv y, + mgvgy, =(m+mp)vyy.
m v +mpvp, i
Vo= BB = (110 kg)B-8 m/s) _ 4 o6 s,
my+mg 110 kg +85 kg
v :,lvgx +v§y =59 m/s.
v
tan§=—2 :M and 6=58°.
Vo  3.14 m/s
The players move with a speed of 5.9 m/s and in a direction 58° north of east.
EVALUATE: Each component of momentum is separately conserved.
8.38. IDENTIFY: The momentum is conserved during the collision. Since the motions involved are in two

dimensions, we must consider the components separately.

SET UP: Use coordinates where +x is east and +y is south. The system of two cars before and after the
collision is sketched in Figure 8.38. Neglect friction from the road during the collision. The enmeshed cars
have a total mass of 2000 kg + 1500 kg = 3500 kg. Momentum conservation tells us that A, =P, and

By =B,
o [ 15w
A +
Al U,c0s65°
1
‘?65“I
!
]
I
U,sin65° - Us
Before After
Figure 8.38

EXECUTE: There are no external horizontal forces during the collision, so B, =P, and B, =P
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8.39.

8.40.

8.41.

(a) A, =PB, gives (1500 kg)(15 m/s) = (3500 kg)v,sin65° and v, =7.1 m/s.
(b) R, =P, gives (2000 kg)v ;4 = (3500 kg)v,c0865°. And then using v, =7.1 m/s, we have
Vi = 5.2 m/S.

EVALUATE: Momentum is a vector so we must treat each component separately.

IDENTIFY: The collision generates only internal forces to the Jack-Jill system, so momentum is
conserved.

SET Up: Call the x-axis Jack’s initial direction (eastward), and the y-axis perpendicular to that
(northward). The initial y-component of the momentum is zero. Call v Jill’s speed just after the collision
and call @ the angle her velocity makes with the +x-axis.

EXECUTE: In the x-direction: (55.0 kg)(8.00 m/s) = (55.0 kg)(5.00 m/s)(cos34.0°) + (48.0 kg)v cos 6.

In the y-direction: (55.0 kg)(5.00 m/s)(sin34.0°) = (48.0 kg)v sin 6.

Separating v sin @ and v cos @ and dividing gives

tan @ = (5.00 m/s)(sin34.0°)/[8.00 m/s — (5.00 m/s)(cos34.0°)] = 0.72532, so. 8 = 36.0° south of east.
Using the y-direction momentum equation gives

v =(55.0 kg)(5.00 m/s)(sin34.0°)/[(48.0 kg)(sin36.0°) = 5.46 m/s.

EvALUATE: Jill has a bit less mass than Jack, so the angle her momentum makes with the +x-axis (36.0°)
has to be a bit larger than Jack’s (34.0°) for their y-component momenta to be equal in magnitude.
IDENTIFY: The collision forces are large so gravity can be neglected during the collision. Therefore, the
horizontal and vertical components of the momentum of the system of the two birds are conserved.

SET UP: The system before and after the collision is sketched in Figure 8.40. Use the coordinates shown.

5.0mfs
Falcon X Falcon
2()‘()m/s
.\I
9.0m/s Raven —
Vraven-2 cos
I
{ (f)'gl
I
|
[ .
"r'm-n-zl _______ Vraven-2 Sin¢
Before After

Figure 8.40

EXECUTE: (a) There is no external force on the system so B, =5, and B, =P,.

B, =P, gives (1.5 kg)(9.0 m/s) = (1.5 kg)V,ayen2 €OS@ and v, e,.0cos@=9.0 m/s.

R, =P, gives (0.600 kg)(20.0 m/s) = (0.600 kg)(=5.0 m/s) + (1.5 kg)vyyen.o Sing and
Veaven-2 SiN @ =10.0 m/s.

10.0 m/s

and ¢ =48°.
9.0 m/s

Combining these two equations gives tan ¢ =

(b) Viayena=13.5m/s

EVALUATE: Due to its large initial speed the lighter falcon was able to produce a large change in the
raven’s direction of motion.

IDENTIFY: Since friction forces from the road are ignored, the x- and y-components of momentum are
conserved.

SET UP: Let object 4 be the subcompact and object B be the truck. After the collision the two objects
move together with velocity ¥,. Use the x- and y-coordinates given in the problem. v 4, =vg;, =0.

vy, =(16.0 m/s)sin24.0° = 6.5 m/s; v, = (16.0 mv/s)cos24.0° =14.6 mvs.
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EXECUTE: B, =P, gives m v, =(my+mp)v,,.

vy =] Matms |, [ 230ke*1900ke | (52195 ms.
my 950 kg

Ry =B, gives mpvpg,, =(my+mg)vy,.

my+m 950 kg +1900 k
Vi, :(%Jm = {&ngjaM m/s) =21.9 mvs.
B

Before the collision the subcompact car has speed 19.5 m/s and the truck has speed 21.9 m/s.
EVALUATE: Each component of momentum is independently conserved.

8.42. IDENTIFY: Apply conservation of momentum to the collision. Apply conservation of energy to the motion
of the block after the collision.
SET UP: Conservation of momentum applied to the collision between the bullet and the block: Let object A
be the bullet and object B be the block. Let v, be the speed of the bullet before the collision and let /" be the

speed of the block with the bullet inside just after the collision.

; v =0 :

Y A Yy o
—— (="

[a= fix

| X x

Figure 8.42a

P_ is constant gives m v, = (m 4 +mp)V.
Conservation of energy applied to the motion of the block after the collision:

v
= # _v=0

>
A+ B L .
l 0.310 m

Figure 8.42b

Ky +Uy + Wopner = Ky +U,

EXECUTE: Work is done by friction so Wy, =Wy = (fi COS@)s = —fis = — 4 mgs
U, =U, =0 (no work done by gravity)

K= Esz; K, =0 (block has come to rest)

Thus %sz — lmgs =0

V=28 = \/2(0.20)(9.80 m/s?)(0.310 m) =1.1 m/s
Use this result in the conservation of momentum equation

y = marms )y 5.00x107 kg +1.20 kg
m 5.00x107 kg

EVALUATE: When we apply conservation of momentum to the collision we are ignoring the impulse of
the friction force exerted by the surface during the collision. This is reasonable since this force is much
smaller than the forces the bullet and block exert on each other during the collision. This force does work
as the block moves after the collision, and takes away all the kinetic energy.

8.43. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion
after the collision. After the collision the kinetic energy of the combined object is converted to
gravitational potential energy.

](1.1 m/s) =266 m/s, which rounds to 270 m/s.
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8.44.

8.45.

SET UP: Immediately after the collision the combined object has speed V. Let / be the vertical height
through which the pendulum rises.
EXECUTE: (a) Conservation of momentum applied to the collision gives

(12.0x10° kg)(380 m/s) = (6.00 kg +12.0x10™> kg)V and ¥ =0.758 mys.

Conservation of energy applied to the motion after the collision gives %mtotV2 =m,gh and

2 2
p=t" 2 OT8MS 0293 m = 2.93 em.

2g  2(9.80 m/s?)
(b) K =Lmy} =1(12.0x107 kg)(380 m/s)* =866 J.
(©) K =Lmy/* =1(6.00 kg +12.0x10° kg)(0.758 m/s)* =1.73 I.

EVALUATE: Most of the initial kinetic energy of the bullet is dissipated in the collision.

IDENTIFY: During the collision, momentum is conserved. After the collision, mechanical energy is
conserved.

SET UP: The collision occurs over a short time interval and the block moves very little during the
collision, so the spring force during the collision can be neglected. Use coordinates where +x is to the

right. During the collision, momentum conservation gives A, = /.. After the collision, %mv2 = %kxz.
EXECUTE: Collision: There is no external horizontal force during the collision and A, = P, so
(3.00 kg)(8.00 m/s) = (15.0 kg)vyjoek, 2 —(3:00 kg)(2.00 m/s) and vyjoex » =2.00 ms.

Motion after the collision: When the spring has been compressed the maximum amount, all the initial

kinetic energy of the block has been converted into potential energy %loc2 that is stored in the compressed

spring. Conservation of energy gives %(15.0 kg)(2.00 m/s)2 =-(500.0 kg)xz, so x =0.346 m.

EVALUATE: We cannot say that the momentum was converted to potential energy, because momentum
and energy are different types of quantities.

IDENTIFY: The missile gives momentum to the ornament causing it to swing in a circular arc and thereby
be accelerated toward the center of the circle.

2
< ! : . v
SET UP: After the collision the ornament moves in an arc of a circle and has acceleration a,,q4 = —
During the collision, momentum is conserved, so B, = P,. The free-body diagram for the ornament plus
missile is given in Figure 8.45. Take +y to be upward, since that is the direction of the acceleration. Take
the +x-direction to be the initial direction of motion of the missile.

v
7‘ 1
Arag

v

e ——

LTS

Figure 8.45

EXECUTE: Apply conservation of momentum to the collision. Using A, =P, we get
(0.200 kg)(12.0 m/s) = (1.00 kg)V, which gives V' =2.40 m/s, the speed of the ornament immediately
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8.46.

8.47.

2
after the collision. Then XF, = ma, gives T — myg = myy r. Solving for T gives
r

(2.40 m/s)?

2
T=my,| g +— |=(1.00 kg)| 9.80 m/s> +
r 1.50 m

J =13.6 N.

EVALUATE: We cannot use energy conservation during the collision because it is an inelastic collision
(the objects stick together).

IDENTIFY: No net external horizontal force so P, is conserved. Elastic collision so K; = K, and can use

vBox ~Vazx = ~(Vaix = Vaix):
SET UP:

%, =080mis B = 220mis

before after

Figure 8.46

EXECUTE: From conservation of x-component of momentum:
MV g1x T MgVl =MV 105t MpVpoy
MV —MpVp =MV 1o T MpVpoy
(0.150 kg)(0.80-m/s) — (0.300 kg)(2.20 m/s) = (0.150 kg)v 4, . +(0.300 kg)vp,.,

-3.60 In/S = VAZX +2VBZX
From the relative velocity equation for an elastic collision Eq. 8.27:
VBZX _VAZ.X = _(VBIX _vAlx) = —(—2.20 m/S—O.SO l’n/S) =+3.00 m/S

3.00 m/s = —VaA2x +VBZX
Adding the two equations gives —0.60 m/s =3vp, . and vp,, =—0.20 m/s. Then
Vi2x = VBox —3.00 m/s =-3.20 m/s.

The 0.150 kg glider (4) is moving to the left at 3.20 m/s and the 0.300 kg glider (B) is moving to the left at
0.20 m/s.

EVALUATE: We can use our v,,, and v, to show that P, is constantand K; = K.
IDENTIFY: When the spring is compressed the maximum amount the two blocks aren’t moving relative to
each other and have the same velocity ¥ relative to the surface. Apply conservation of momentum to find
V" and conservation of energy to find the energy stored in the spring. Since the collision is elastic,
my—m 2m . .
Voo =| —4—2L |v,, and vp, =| ——4— |v . give the final velocity of each block after the
my+ng mytmg
collision.
SET UP: Let +x be the direction of the initial motion of 4.
EXECUTE: (a) Momentum conservation gives (2.00 kg)(2.00 m/s) =(8.00 kg)V so ¥ =0.500 m/s. Both
blocks are moving at 0.500 m/s, in the direction of the initial motion of block 4. Conservation of energy
says the initial kinetic energy of 4 equals the total kinetic energy at maximum compression plus the

potential energy U, stored in the bumpers: %(2.00 kg)(2.00 rn/s)2 =U,+ %(8.00 kg)(0.500 m/s)2 S0
U, =3.00J.

4t mp 8.00 kg
—x-direction at 1.00 m/s.

®) v, = [ij 1 = [Mja.oo m/s) =—1.00 m/s. Block A is moving in the
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8.48.

8.49.

8.50.

Vpy, = ﬂ v =M 2.00 m/s) =+1.00 m/s. Block B is moving in the +x-direction at
B2x Alx g
my+mpg 8.00 kg

1.00 m/s.

EVALUATE: When the spring is compressed the maximum amount, the system must still be moving in
order to conserve momentum.

IDENTIFY: Since the collision is elastic, both momentum conservation and equation

vBax —Vazx = ~(VB1x —Va1x) apply.

SET UP: Let object 4 be the 30.0 g marble and let object B be the 10.0 g marble. Let +x be to the right.
EXECUTE: (a) Conservation of momentum gives

(0.0300 kg)(0.200 m/s) +(0.0100 kg)(—0.400 m/s) = (0.0300 kg)v 4, +(0.0100 kg)vy,,.

3v 40 ¥ Vpay =0.200 m/s. vy, =Vyp = =(Vpiy —V41y) SAYS

Vpox — Va2, = —(—0.400 m/s—0.200 m/s) = +0.600 m/s. Solving this pair of equations gives

V2, =—0.100 m/s and vp,, =+0.500 m/s. The 30.0 g marble is moving to the left at 0.100 m/s and the
10.0 g marble is moving to the right at 0.500 m/s.

(b) For marble A, AP, =m v 45, —m4v 4, = (0.0300 kg)(—0.100 m/s — 0.200 m/s) = —0.00900 kg - m/s.
For marble B, APy = mpgvp,, —mpvp, = (0.0100 kg)(0.500 m/s —[-0.400 m/s]) = +0.00900 kg - m/s.
The changes in momentum have the same magnitude and opposite sign.

(¢) For marble 4, AK ; =Lmvi, —Lm w5 =1(0.0300 kg)([0.100 m/s]* —[0.200 m/s]*) = 4.5x107* J.

For marble B, AK 5 =Lmpgvg, —Lmyvg =1(0.0100 kg)([0.500 m/s]* —[0.400 m/s]*) = +4.5x107" 1.

The changes in kinetic energy have the same magnitude and opposite sign.
EVALUATE: The results of parts (b) and (c) show that momentum and kinetic energy are conserved in the
collision.

my—mp

IDENTIFY: Equation v, :[ Jv 11 applyies, with object 4 being the neutron.

my +mpg
SET UP: Let +x be the direction of the initial momentum of the neutron. The mass of a neutron is
my, =1.0 u.

1 =—V41,/3.0. The speed of the neutron after the

_ 1.0u-2.
EXECUTE: (a) vA2X=(mA mBJVAlx_ Lk AL

m, +mpg 1.0u+20u

collision is one-third its initial speed.

1
(b) Ky =Lmyvi =Lm, (v,/3.0)* = %Kl.

1Y 1Y
¢) After n collisions, =[—) . (—]
© n a2 =\ 3) Y (3,

1

=——— 50 3.0" =59,000. nlog3.0=10g59,000 and
59,000

n=10.

EVALUATE: Since the collision is elastic, in each collision the kinetic energy lost by the neutron equals

the kinetic energy gained by the deuteron.

IDENTIFY: Elastic collision. Solve for mass and speed of target nucleus.

SET UP: (a) Let 4 be the proton and B be the target nucleus. The collision is elastic, all velocities lie

. . . . my—m
along a line, and B is at rest before the collision. Hence the results of equations v, = (ij e

2m
and vp,, :[ﬁJVAlx apply.
AT mp

my—m . .
EXECUTE: v, = (M]vﬂx s mp(vy +vy,)=my(v,—v,), where v, is the velocity component of

mytmpg

A before the collision and v 4, is the velocity component of 4 after the collision. Here, v, =1.50% 107 m/s
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(take direction of incident beam to be positive) and v, =—-1.20x 10’ m/s (negative since traveling in
direction opposite to incident beam).

Vo=V, 1.50x107 m/s +1.20x107 m/s 2.70
mg =my X 1 =m 5 7 =m| —— [=9.00m.
VetV 1.50x10" m/s—1.20x10" m/s 0.30

2m 2m 2m
b) vy, =| —A— v, v = 4|y = 1.50x107 m/s) =3.00x10° m/s.
(b) vpy, [WZA*"”BJ Alx© VBx [mA+mBJ o (m+9.00mJ( )

EVALUATE: Can use our calculated vp, and mp to show that P, is constant and that K; = K.

+ +
8.51. IDENTIFY: Apply x,, =il "2 THsA3 7

my +m, +m3 +...
SETUP: m,=0.300 kg, mp =0.400 kg, mc =0.200 kg.

L~ MmyXytmpxp +meXe

EXECUTE: x,

4 mytmgtme

_ (0300 kg)(0.200 m) +(0.400 kg)(0.100 m) +(0.200 kg)(—0.300 m)

em =0.0444 m.
0.300 kg +0.400 kg +0.200 kg
_myy tmgygtmeyc
Yem = i
mytmgtme
+ - +
! (0.300 kg)(0.300 m) +(0.400 kg)(—0.400 m) + (0.200 kg)(0.600 m) =0.0556 m.

Fery 0.300 kg +0.400 kg +0.200 kg
EVALUATE: There is mass at both positive and negative x and at positive and negative y, and therefore the
center of mass is close to the origin.
8.52. IDENTIFY: Calculate x,.

Xt mpxy tmaxy -

SET UP: Apply x, with the sun as mass 1 and Jupiter as mass 2. Take the

my +m2 +m3 +...
origin at the sun and let Jupiter lie on the positive x-axis.
y

<— 778 x 10! m—

Sun \ Jupite
| A\ ¥ o
mg =199 X 1030 ke m;=190X10" kg
Figure 8.52
_mx; +myx,
cm ml + mz

EXECUTE: x; =0 and x, = 7.78x10'"' m

_ (1.90x10%” kg)(7.78x10'" m)

— 8
= S =742x10° m
1.99%10%° kg +1.90x10%” kg

me

The center of mass is 7.42x10% m from the center of the sun and is on the line connecting the centers of

the sun and Jupiter. The sun’s radius is 6.96 X 10% m so the center of mass lies just outside the sun.
EVALUATE: The mass of the sun is much greater than the mass of Jupiter, so the center of mass is much
closer to the sun. For each object we have considered all the mass as being at the center of mass
(geometrical center) of the object.
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8.53.

8.54.

8.55.

. . mx; +nmyxy tmyxg + -
IDENTIFY: The location of the center of mass is given by x,,, = ——1———2-2—3"3""" The mass can be
ml +m2 +m3 +...

expressed in terms of the diameter. Each object can be replaced by a point mass at its center.
SET UP: Use coordinates with the origin at the center of Pluto and the +x-direction toward Charon, so

xp =0, xc =19,700 km. m=pV = p27r =1L prd’.

1 3 3
MpXp + McX, m <Prde d
EXECUTE: Xy, = ——2—C€C = € lxc= b xc = € Ixe.
om mp +m, mp +m, L preds +L pred} di +d¢
p T Mc r e s P7dp T prdc pTdc

. [1250 km]®
Xem = 3 3
[2370 km]® +[1250 km]

J(19,700 km) =2.52x10° km.

The center of mass of the system is 2.52 %10 km from the center of Pluto.
EVALUATE: The center of mass is closer to Pluto because Pluto has more mass than Charon.

myx; + myx, +myx; + - myv, +mgvp
IDENTIFY: Apply Xo, =——L—22 33— "y =58~ 2%
mytmy +my - ; my+tmp

, and P. = Mv,_ .. Thereis

only one component of position and velocity.

SETUP: m, =1200 kg, mp =1800 kg. M =m,+mp =3000 kg. Let +x be to the right and let the

origin be at the center of mass of the station wagon.

m x, +mpxp _ 0+ (1800 kg)(40.0 m)
my+mg 1200 kg +1800 kg

The center of mass is between the two cars, 24.0 m to the right of the station wagon and 16.0 m behind the
lead car.

(b) P =myv,  +mpvg . = (1200 kg)(12.0 m/s) + (1800 kg)(20.0 m/s) = 5.04x10* kg-m/s.

_myvytmpvp o (1200 kg)(12.0 m/s) + (1800 kg)(20.0 m/s)
m,+mpg 1200 kg +1800 kg

=(3000 kg)(16.8 m/s) =5.04 x10% kg-m/s, the same as in part (b).

EVALUATE: The total momentum can be calculated either as the vector sum of the momenta of the

individual objects in the system, or as the total mass of the system times the velocity of the center of mass.

and v, = My +myyy ¥ nys + -

m1+m2+m3+... ml+m2+m3+...

EXECUTE: (a) x., = =24.0 m.

=16.8 m/s.

(c) Vem, x

(d) P. =My

cm—x

_mxy ¥ mpxy g+

IDENTIFY: Use x,, to find the x- and

y-coordinates of the center of mass of the machine part for each configuration of the part. In calculating the
center of mass of the machine part, each uniform bar can be represented by a point mass at its geometrical
center.

SET UP: Use coordinates with the axis at the hinge and the +x- and +y-axes along the horizontal and
vertical bars in the figure in the problem. Let (x;,y;) and (x;,y¢) be the coordinates of the bar before

and after the vertical bar is pivoted. Let object 1 be the horizontal bar, object 2 be the vertical bar and 3 be
the ball.
+ + . . +0+
my +my +my 4.00 kg +3.00 kg +2.00 kg

_my +myy, +mzy; _ 0+(3.00 kg)(0.900 m) +(2.00 kg)(1.80 m)
m +m2 +m3 9.00 kg

= (400 kg)(0.750 m) +(3.00 kg)(=0.900 m) +(2.00 keg)(~1.80 m) _
= =
9.00 kg

ye=0. xp—x;=-0.700 m and y; —y; =—0.700 m. The center of mass moves 0.700 m to the right and

=0.333 m.

=0.700 m.

i

—-0.366 m.

0.700 m upward.
EVALUATE: The vertical bar moves upward and to the right, so it is sensible for the center of mass of the
machine part to move in these directions.
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+ +

8.56.  IDENTIFY: Use x,, = ol Mo DM *
mtmytmyt--.
SET Up: The target variable is m;.
EXECUTE: x.,=2.0m, y,, =0
_mx +m2x2 _ ml(O) + (0.10 kg)(8.0 m) _ 0.80 kgm
my +m, my +(0.10 kg) m +0.10 kg’
0.80 kg-m

m +0.10 kg

0.80 kg-m

cm

Xem =2.0m gives 2.0 m =

m; +0.10 kg = =0.40 kg.

m; =0.30 kg.
EVALUATE: The cm is closer to m; so its mass is larger then m,.
(b) IDENTIFY: Use P =My,
SETUP: ¥, = (5.0 m/s) i.
P =My, =(0.10 kg +0.30 kg)(5.0 m/s) i =(2.0 kg-m/s)i.

to calculate P.

PO
(c) IDENTIFY: Use v, = Uil Rl
my + my
S
SErUp: v, = DM 7Y The target variable is v;. Particle 2 at rest says v, =0.
nmy + my
+ i +0. . :
EXECUTE: ¥, =| "2 |5~ 030kg+0.10KE | 5 1) 157 = (6.7 mys)s.
m 0.30 kg

EVALUATE: Using the result of part (c) we can calculate p, and p, and show that P as calculated in
part (b) does equal p; + p,.

8.57. IDENTIFY: There is no net external force on the system of James, Ramon, and the rope; the momentum of
the system is conserved, and the velocity of its center of mass is constant. Initially there is no motion, and
the velocity of the center of mass remains zero after Ramon has started to move.

SET UP: Let +x be in the direction of Ramon’s motion. Ramon has mass my =60.0 kg and James has

mass my =90.0 kg.

. _ MRVRy T vy,
EXECUTE: v, =+ 1

=0.
mg +my

m; 90.0 kg

EVALUATE: As they move, the two men have momenta that are equal in magnitude and opposite in
direction, and the total momentum of the system is zero. Also, Example 8.14 shows that Ramon moves
farther than James in the same time interval. This is consistent with Ramon having a greater speed.

+ +
8.58.  (a) IDENTIFY and SET UP: Apply y., = MV TV T3 T hd solve for my and m,.

m1+m2 +m3 +.-

Vi = _{m_ijm = —(60'0 kg}(l.lo m/s) =—0.733 m/s. James’ speed is 0.733 m/s.

+
EXECUTE: y,, = 21" "2
ny + my
+ +
my+my =2 F 0y (OO0 KGOOM) _ 5540 ang =075 ke,
Yem 24 m

EVALUATE: y_, iscloserto my since my >mj.
(b) IDENTIFY and SET UP: Apply a = dv/dt for the cm motion.
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8.59.

8.60.

8.61.

EXECUTE: d, = d;% = (1L5m/s)i.

(¢) IDENTIFY and SETUP:  Apply L F,, = Ma,,,.
EXECUTE: Y F,, = Ma,, =(1.25 kg)(1.5 m/s° ).

At 1=3.0s, YF,, =(1.25kg)(1.5m/s*)3.0 s)i =(5.6 N)i.
EVALUATE: v, is positive and increasing so a,,,_ is positive and F, isin the +x-direction. There

is no motion and no force component in the y-direction.
. _dP :
IDENTIFY: Apply X F = = to the airplane.
t
SET Up: %(t") =n"™!. 1N=1kg-m/s

EXECUTE: ‘;—f =[—(1.50 kg-m/s*)r]i +(0.25 kg-m/s*) j. F, =—(1.50 N/s)t, F, =0.25N, F, =0.

EVALUATE: There is no momentum or change in momentum in the z-direction and there is no force

component in this direction.
IDENTIFY: Raising your leg changes the location of its center of mass and hence the location of your

body’s center of mass.
SETUP: The leg in each position is sketched in Figure 8.60. Use the coordinates shown. The mass of each

part of the leg may be taken as concentrated at the center of that part. The location of the

9 9 3 nmx; + myxXy o o .
x-coordinate of the center of mass of two particles is x.,, =————==. and likewise for the y-coordinate.

m ok )
S e 23.0cm 23.0cm
=] R, [ ey, dt el
~ ———| . ~ ‘
— — — — 8.60kg 23.0cm
g &8 38 8 525kg |@
A o e P cm
ol (o] ol ol ]23.0‘”]]
¥ y
@ (b)
Figure 8.60
23.0 8.60 kg) +(69.0 525k
EXECUTE: (a) y,, =0, x., = ( cm)( )+ ( cm)( 8- 40.4 cm. The center of mass of
8.60 kg +5.25 kg

the leg is a horizontal distance of 40.4 cm from the hip.
. . + (46. . +(23. .
®) x,,, = (23.0 cm)(8.60 kg) +(46.0 cm)(5.25 kg) _ 31.70m and g, = 0+ (23.0 cm)(5.25 kg)
8.60 kg +5.25 kg 8.60 kg +5.25 kg
The center of mass is a vertical distance of 8.7 cm below the hip and a horizontal distance of 31.7 cm from the hip.
EVALUATE: Since the body is not a rigid object, the location of its center of mass is not fixed.

=8.7 cm.

Ve dm . . .
=——%—_ Assume that dm/dt is constant over the 5.0 s interval, since m doesn’t change
m

IDENTIFY: a

dm

much during that interval. The thrustis F =—v,, =
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8.62.

8.63.

8.64.

8.65.

SET UP: Take m to have the constant value 110 kg +70 kg =180 kg. dm/dt is negative since the mass of

the MMU decreases as gas is ejected.

EXECUTE: (a) S =— 4= —( 180 ke
v 490 m/s

ex

is (0.0106 kg/s)(5.0 s) =0.053 kg.

(b) F=—v,, ‘il—’;’ = (490 n/s)(—0.0106 kg/s) =5.19 N.

j (0.029 m/sz) =-0.0106 kg/s. In 5.0 s the mass that is ejected

EVALUATE: The mass change in the 5.0 s is a very small fraction of the total mass m, so it is accurate to
take m to be constant.

Am . e
IDENTIFY: Use F =-v e applied to a finite time interval.
t

SET UP: v, =1600 m/s

A

EXECUTE: (a) F =-v, T’? =—(1600 WS)LOOkg Al

1.00 s

(b) The absence of atmosphere would not prevent the rocket from operating. The rocket could be steered
by ejecting the gas in a direction with a component perpendicular to the rocket’s velocity and braked by
ejecting it in a direction parallel (as opposed to antiparallel) to the rocket’s velocity.

EVALUATE: The thrust depends on the speed of the ejected gas relative to the rocket and on the mass of
gas ejected per second.

IDENTIFY and SET UP:  Use v—v, = v, In(my/m).

+80.0 N.

vy =0 (“fired from rest”), so v/v,, = In(mgy/m).

v/,

/ =
Y or mimy=e "Vex.

Thus my/m =e”
If v is the final speed then m is the mass left when all the fuel has been expended; m/m,, is the fraction of
the initial mass that is not fuel.

(a) EXECUTE: v=1.00x10"¢=3.00x10> m/s gives

mimy = e—(3.00x105 m/s)/(2000 Ms) — 7 550166

EVALUATE: This is clearly not feasible, for so little of the initial mass to not be fuel.
(b) EXECUTE: v =3000 m/s gives m/mg = ¢ GO0 mN2000ms) — 553

EVALUATE: 22.3% of the total initial mass not fuel, so 77.7% is fuel; this is possible.
IDENTIFY: Use the heights to find v;,, and v,,, the velocity of the ball just before and just after it strikes

the slab. Then apply J,, = F)At = Ap,,.
SETUP: Let +y be downward.

EXECUTE: (a) %mv2 =mgh so v=%./2gh.

vy = +\/2(9.80 m/s>)(2.00 m) = 6.26 m/s. Yy = —\/2(9.80 m/s?)(1.60 m) = —5.60 m/s.

Jy, =Ap, =m(vy, —vy,) = (40.0x 10~ kg)(~5.60 m/s —6.26 m/s) = —0.474 kg - m/s.
The impulse is 0.474 kg-m/s, upward.
Iy 0474 kg /s
At 2.00x107 s

EVALUATE: The upward force, on the ball changes the direction of its momentum.
IDENTIFY: The impulse, force, and change in velocity are related by J, = F Az

(b) F, = —237 N. The average force on the ball is 237 N, upward.

SETUP: m=w/g =0.0571kg. Since the force is constant, F = Fav.
EXECUTE: (a) J, = F,Ar=(-380 N)(3.00x107> s)=—1.14 N s.
J, =F,At=(110 N)(3.00x107 5)=0.330 N -s.



Momentum, Impulse, and Collisions 8-23

8.66.

8.67.

8.68.

(b) vy, = £+vlv -_LI4Ns +20.0 n/s = 0.04 m/s.
m 700571 ke
J .
vy, = 2y = O3ONS 0 sy = 1.8 mis.
Y m 7Y 0.0571kg

EVALUATE: The change in velocity Av is in the same direction as the force, so Av has a negative
x-component and a positive y-component.

IDENTIFY: The total momentum of the system is conserved and is equal to zero, since the pucks are
released from rest.

SET UP: Each puck has the same mass m. Let +x be eastand +) be north. Let object 4 be the puck that
moves west. All three pucks have the same speed v.

EXECUTE: R, =P, gives 0=—mv+mvg, +mve, and v=vp, +ve. B, =5, gives 0=mvp, +mvg,

and vp, =—v(,. Since vg =ve and the y-components are equal in magnitude, the x-components must also

be equal: vp, = v, and v =vp +ve, says vp =ve, =v/2. If v, is positive then v, is negative. The

angle @ that puck B makes with the x-axis is given by cosé = i 2} and 6=60°. One puck moves in a
A4

direction 60° north of east and the other puck moves in a direction 60° south of east.

EVALUATE: Each component of momentum is separately conserved.

IDENTIFY and SET UP:  When the spring is compressed the maximum amount the two blocks aren’t
moving relative to each other and have the same velocity V relative to the surface. Apply conservation of
momentum to find ¥ and conservation of energy to find the energy stored in the spring. Let +x be the
direction of the initial motion of 4. The collision is elastic.

SETUP: p=mv,K="amV’, g, — V0, =—(Vg1x = V41, for an elastic collision.

EXECUTE: (a) The maximum energy stored in the spring is at maximum compression, at which time the
blocks have the same velocity. Momentum conservation gives m v 4, + mgvp = (m 4+ mp)V. Putting in

the numbers we have (2.00 kg)(2.00 m/s) + (10.0 kg)(—0.500 m/s) = (12.0 kg)V, giving
V'=-0.08333 m/s. The energy Uspin, Stored in the spring is the loss of kinetic of the system. Therefore

1 1 1 o
Uspring = K1 — K5 = Emszﬂ + Eval%] —E(mA + mB)Vz. Putting in the same set of numbers as above, and

using V'=-0.08333 m/s, we get Ugying = 5.21 J. At this time, the blocks are both moving to the left, so their
velocities are each —0.0833 m/s.

(b) Momentum conservation gives m v 4 +mgvp =m v, + mpvp,. Putting in the numbers gives

—1 m/s =2v,, + 10vg. Using vy, =V 0, =—(Vpix — V4ix) WE get

Vaar — Vo = —(—0.500 m/s — 2.00 m/s) = +2.50 m/s. Solving this equation and the momentum equation
simultaneously gives v, =2.17 m/s and v, = 0.333 m/s.

EVALUATE: The total kinetic energy before the collision is 5.25 J, and it is the same after, which is
consistent with an elastic collision.

IDENTIFY: Use a coordinate system attached to the ground. Take the x-axis to be east (along the tracks) and
the y-axis to be north (parallel to the ground and perpendicular to the tracks). Then P, is conserved and P, is

X
not conserved, due to the sideways force exerted by the tracks, the force that keeps the handcar on the tracks.

(a) SET UP: Let 4 be the 25.0 kg mass and B be the car (mass 175 kg). After the mass is thrown sideways
relative to the car it still has the same eastward component of velocity, 5.00 m/s as it had before it was thrown.

Vaay = 2.00 m/s
Via o = 500 m/s
y v, = 5.00 m/s ¥
——

m P,

A , =9

my +m ,;EI ”’uD Vpax = ¢

[ X I X
before after

Figure 8.68a
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RC is conserved so (mA + mB)Vl = M4V oy + mpVps
EXECUTE: (200 kg)(5.00 m/s) = (25.0 kg)(5.00 m/s) + (175 kg)vga..

_ 1000 kg - m/s—125 kg - m/s
VBox =
175 kg
The final velocity of the car is 5.00 m/s, east (unchanged).

EVALUATE: The thrower exerts a force on the mass in the y-direction and by Newton’s third law the mass
exerts an equal and opposite force in the —y-direction on the thrower and car.

=5.00 m/s.

(b) SET UP: We are applying P, = constant in coordinates attached to the ground, so we need the final
velocity of 4 relative to the ground. Use the relative velocity addition equation. Then use P, = constant to
find the final velocity of the car.
EXECUTE: ¥ p =V p+tVpp
vpg = +5.00 m/s
vg =—5.00 m/s (minus since the mass is moving west relative to the car). This gives v =0; the mass
is at rest relative to the earth after it is thrown backwards from the car.
As in part (@) (m+mp)vy =myv o +mgvp),.
Now v, », =0, so (m, +mp)v; =mpvp,.,.

200 kg

_| myt+mp _ _
Vs, =| ——2 |y = 5.00 m/s) =5.71 m/s.
Bax ( mg J ! [175 kgj( )

The final velocity of the car is 5.71 m/s, east.
EVALUATE: The thrower exerts a force in the —x-direction so the mass exerts a force on him in the
+x-direction, and he and the car speed up.

(c) SET UP: Let 4 be the 25.0 kg mass and B be the car (mass my =200 kg).

y, ;i =3500mis = 600 m/s ¥ =g
— Al 2x
| Im” DmA D my +m”

I X _
before after

Figure 8.68b

P is conserved so m v 4, + mgvp, = (m,+mp)v,,.

EXECUTE: —m v 4 +mpgvp =(my+mp)v,,.

_mpvg —myvq _ (200 kg)(5.00 m/s)—(25.0 kg)(6.00 m/s)
my+mg 200 kg +25.0 kg

The final velocity of the car is 3.78 m/s, east.

EVALUATE: The mass has negative p, so reduces the total P, of the system and the car slows down.

=3.78 m/s.

Vox

8.69. IDENTIFY: The x- and y-components of the momentum of the system are conserved.
SET Up: After the collision the combined object with mass m,,; =0.100 kg moves with velocity v,.

Solve for v, and vg,,

EXECUTE: (a) B, =P, gives m v . +mgvp + MV, = MygVay-

- M4V 4x + MpVpy — MiotVox

Vex =
mc
L (0:020ke)(~1.50 m/s) +(0.030 ke)(~0.50 m/s)e0s60° — (0.100 kg)(0.50 ms)
Cx — .
0.050 kg

Ve, =1.75 mis.
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8.70.

8.71.

8.72.

Ply = sz gives myv 4, + mpvp,+ meve, = Mgy .

S myV 4, T Mgvp, =M V) __(0.030 kg)(—0.50 m/s)sin 60°
<& me 0.050 kg

(b) ve =V, +v3, =177 mls. AK =K, — K.

AK =1(0.100 kg)(0.50 m/s)? ~[£(0.020 kg)(1.50 m/s)* +1.(0.030 kg)(0.50 m/s)* +1(0.050 kg)(1.77 m/s)?]
AK =-0.092J.

EVALUATE: Since there is no horizontal external force the vector momentum of the system is conserved.
The forces the spheres exert on each other do negative work during the collision and this reduces the
kinetic energy of the system.

IDENTIFY: Each component of horizontal momentum is conserved.

SETUP: Let +x be castand +y be north. vg;,, =vaj, =0. vgy, =(6.00 m/s)cos37.0° = 4.79 m/s,

Vgyy = (6.00 m/s)sin37.0° =3.61 m/s, vp,, =(9.00 m/s)cos23.0° =8.28 m/s and
VA2, =—(9.00 m/s)sin23.0° = —3.52 m/s.
EXECUTE: B, =P, gives mgVg), = MgVgsy + MaAVA2,.

_ MgVgy, + MAVADy - (80.0 kg)(4.79 m/S) + (50.0 kg)(8.28 m/S)

=+0.260 m/s.

V. =] =9.97 m/s.
Sl mg 80.0 kg
Sam’s speed before the collision was 9.97 m/s.
R, =P, gives mpvajy, =mgVsy,, +MavAy .
_ ms¥say ¥mAVA)y _ (80.0 ke)(3.61 mis) +(S0.0kg) (352 mis) _ o

v L=
R mg 50.0 kg

Abigail’s speed before the collision was 2.26 m/s.
(b) AK =3(80.0 kg)(6.00 m/s)? +%(50.0 kg)(9.00 m/s)> —%(80.0 kg)(9.97 m/s)> —%(50.0 kg)(2.26 m/s)>.

AK =-639 J.

EVALUATE: The total momentum is conserved because there is no net external horizontal force. The
kinetic energy decreases because the forces between the objects do negative work during the collision.
IDENTIFY: Momentum is conserved during the collision, and the wood (with the clay attached) is in free
fall as it falls since only gravity acts on it.

SET UP: Apply conservation of momentum to the collision to find the velocity 7 of the combined object just
after the collision. After the collision, the wood’s downward acceleration is g and it has no horizontal

acceleration, so we can use the standard kinematics equations: y — y, = v,/ + %a yt2 and x—xy = vyt + %axtz.
EXECUTE: Momentum conservation gives (0.500 kg)(24.0 m/s) =(8.50 kg)V’, so V' =1.412 m/s. Consider

the projectile motion after the collision: a, =+9.8 m/s?, Voy =0, y—yo =+2.20 m, and 7 is unknown.

20y-yp) _ \/2(2.20 m)
a, 9.8 m/s

=0.6701 s. The horizontal acceleration is zero

1 .
Y= :voyt+5ayt2 gives t:\/

1
S0 X—Xo = Vol +5axt2 = (1.412 m/s)(0.6701 s) = 0.946 m.

EVALUATE: The momentum is not conserved after the collision because an external force (gravity) acts
on the system. Mechanical energy is not conserved during the collision because the clay and block stick
together, making it an inelastic collision.

IDENTIFY: An inelastic collision (the objects stick together) occurs during which momentum is
conserved, followed by a swing during which mechanical energy is conserved. The target variable is the
initial speed of the bullet.
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8.73.

8.74.

8.75.

SET UP: Newton’s second law, = F = mda, will relate the tension in the cord to the speed of the block

during the swing. Mechanical energy is conserved after the collision, and momentum is conserved during
the collision.
EXECUTE: First find the speed v of the block, at a height of 0.800 m. The mass of the combined object is

0.812 kg. cos@= (l)z_m =0.50 so =60.0° is the angle the cord makes with the vertical. At this position,
.6m

2
. v
Newton’s second law gives T —mgcos@ = m?, where we have taken force components toward the center

of the circle. Solving for v gives v = \/E(T —mgcoséf) = \/ﬁ (4.80N—-3.979 N) =1.272 m/s. Now
m . g

apply conservation of energy to find the velocity V" of the combined object just after the collision:

%sz =mgh+ %mvz. Solving for V gives

V= \/Zgh +vi = \/2(9.8 m/s2)(0.8 m)+(1.272 m/s)2 =4.159 m/s. Now apply conservation of momentum
to the collision: (0.012 kg)v, = (0.812 kg)(4.159 m/s), which gives vy =281 m/s.

EVALUATE: We cannot solve this problem in a single step because different conservation laws apply to
the collision and the swing.

IDENTIFY: During the collision, momentum is conserved, but after the collision mechanical energy is
conserved. We cannot solve this problem in a single step because the collision and the motion after the

collision involve different conservation laws.
SET Up: Use coordinates where +x is to the right and +y is upward. Momentum is conserved during the

collision, so A, = P,. Energy is conserved after the collision, so K; =U,, where K = Emv2 and

U =mgh.

EXECUTE: Collision: There is no external horizontal force during the collision so A, = P,. This gives
(5.00 kg)(12.0 m/s) = (10.0 kg)v, and v, = 6.0 m/s.

Motion after the collision: Only gravity does work and the initial kinetic energy of the combined chunks is
converted entirely to gravitational potential energy when the chunk reaches its maximum height # above

the valley floor. Conservation of energy gives +m, v> = mygh and h=—=———""_=18m
2 Mot tot 2¢ 2098 m/sz)

EVALUATE: After the collision the energy of the system is %mtotv2 = %(10.0 kg)(6.0 m/s)2 =180 J when

it is all kinetic energy and the energy is m,gh = (10.0 kg)(9.8 m/s?)(1.8 m) =180 J when it is all
gravitational potential energy. Mechanical energy is conserved during the motion after the collision. But
before the collision the total energy of the system is %(5.0 kg)(12.0 rn/s)2 =360 J; 50% of the mechanical

energy is dissipated during the inelastic collision of the two chunks.
IDENTIFY: Momentum is conserved during the collision. After that we use energy conservation for B.
SET UP: P, = P, during the collision. For B, K; +U; = K, + U, after the collision.

EXECUTE: For the collision, P; = P,: (2.00 kg)(8.00 m/s) = (2.00 kg)(—2.00 m/s) + (4.00 kg)vs, which
gives vz = 5.00 m/s. Now look at B after the collision and apply K; +U; =K, +U,.

K, +U =K,+0: '/zmv32+mgh =Y my

v = (5.00 m/s)* + 2(9.80 m/s°)(2.60 m), which gives v =8.72 m/s.

EVALUATE: We cannot do this problem in a single step because we have two different conservation laws
involved: momentum during the collision and energy after the collision. The energy is not conserved
during the collision, and the momentum of B is not conserved after the collision.

IDENTIFY: The system initially has elastic potential energy in the spring. This will eventually be
converted to kinetic energy by the spring. The spring produces only internal forces on the two-block
system, so momentum is conserved. The spring force is conservative, so mechanical energy is conserved.
Newton’s second law applies.
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8.77.

8.78.

SETUP: K, +U; =K, +U,, B=P, p=mv, Uy="%k’, F = kx,  F = ma.
EXECUTE: (a) The spring exerts the same magnitude force on each block, so F' = kx = ma, which gives
a = lo/m. a; = (720 N/m)(0.225 m)/(1.00 kg) = 162 m/s”. a = kx/m = (720 N/m)?(0.225 m)/(3.00 kg) =
54.0 ns’.
(b) The initial momentum and kinetic energy are zero. After the blocks have separated from the spring,
momentum conservation tells us that 0 = p, — pp , which gives (1.00 kg)v, = (3.00 kg)vs, so v, = 3vp.

. . 1 1 1
Energy conservation gives K, +U; =K, +U,, 500 + % kx* =K, + Kz = Ekx2 :EmAvﬁ +Em3v125..
Substituting v, = 3vp into this last equation and solving for vz gives vz = 1.74 m/s and v, = 5.23 m/s.
EVALUATE: The kinetic energy of 4 is % (1.00 kg)(5.23 m/s)*= 13.7 J, and the kinetic energy of B is

% (3.00 kg)(1.74 m/s)* = 4.56 J. The two blocks do not share the energy equally, but they do have the

same magnitude momentum.

IDENTIFY: During the inelastic collision, momentum is conserved but not mechanical energy. After the
collision, momentum is not conserved and the kinetic energy of the cars is dissipated by nonconservative
friction.

SET UP: Treat the collision and motion after the collision as separate events. Apply conservation of
momentum to the collision and conservation of energy to the motion after the collision. The friction force
on the combined cars is 4 (m, + mp)g.

EXECUTE: Motion after the collision: The kinetic energy of the combined cars immediately after the
collision is taken away by the negative work done by friction: %(m gy tm B)V2 = Wy (my + mp)gd, where

d =7.15 m. This gives V' = /24 gd =9.54 m/s.

Collision: Momentum conservation gives m v, = (m, + mg)V, which gives

+ +
y = | Matmp \y, o [1500ke + 1900 Ke g 54 ) = 916 s,
= 1500 kg

(b) v, =21.6 m/s = 48 mph, which is 13 mph greater than the speed limit.

EVALUATE: We cannot solve this problem in a single step because the collision and the motion after the
collision involve different principles (momentum conservation and energy conservation).

IDENTIFY: During the inelastic collision, momentum is conserved (in two dimensions), but after the
collision we must use energy principles.

SET Up: The friction force is f4m,,g. Use energy considerations to find the velocity of the combined

object immediately after the collision. Apply conservation of momentum to the collision. Use coordinates
where +x is westand +y is south. For momentum conservation, we have R, =5, and B, = P,,,.

EXECUTE: Motion after collision: The negative work done by friction takes away all the kinetic energy
that the combined object has just after the collision. Calling ¢ the angle south of west at which the

enmeshed cars slid, we have tang = 643 m
539m

and ¢ =50.0°. The wreckage slides 8.39 m in a direction

50.0° south of west. Energy conservation gives %msz = thmygd, so

V=\2ed = \/2(0.75)(9.80 m/s?)(8.39 m) =11.1 m/s. The velocity components are
Ve=Vcos¢g=T7.13m/s; V, =V sing =8.50 m/s.

Collision: Ry = Py, gives (2200 kg)vgyy = (1500 kg + 2200 kg)V, and vgyy =12 m/s. R, =P, gives
(1500 kg)v. = (1500 kg + 2200 kg)V,, and v =21 m/s.

sedan sedan
EVALUATE: We cannot solve this problem in a single step because the collision and the motion after the
collision involve different principles (momentum conservation and energy conservation).

IDENTIFY: Find k for the spring from the forces when the frame hangs at rest, use constant acceleration
equations to find the speed of the putty just before it strikes the frame, apply conservation of momentum to
the collision between the putty and the frame, and then apply conservation of energy to the motion of the
frame after the collision.
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SET UP: Use the free-body diagram in Figure 8.78a for the frame when it hangs at rest on the end of the
spring to find the force constant & of the spring. Let s be the amount the spring is stretched.

ks (the spring
force)

mg

Figure 8.78a

mg _ (0.150 kg)(9.80 m/s”)
s 0.0400 m

SET Up: Next find the speed of the putty when it reaches the frame. The putty falls with acceleration
a =g, downward (see Figure 8.78b).

EXECUTE: XF), =ma, gives —mg+ks=0. k= =36.75 N/m.

Figure 8.78b

vo=0, =y =0300m, a=+9.80 m/sz, and we want to find v. The constant-acceleration

vi= vé +2a(y—y,) applies to this motion.

EXECUTE: v =/2a(y— yg) =+/2(9.80 m/s?)(0.300 m) = 2.425 ms.

SET UP: Apply conservation of momentum to the collision between the putty (4) and the frame (B). See
Figure 8.78c.

y -+ YAl ¥y
v, =9
==V, =0 é‘l 5
[ [ X
before after

Figure 8.78¢

P, is conserved, so —m v = —(m+mp)v,.

200 k

EXECUTE: vy =| —"4 |y =[ 9200Ke 15 475 mis) =1.386 ms.
my + mpg 0.350 kg

SET UP: Apply conservation of energy to the motion of the frame on the end of the spring after the

collision. Let point 1 be just after the putty strikes and point 2 be when the frame has its maximum

downward displacement. Let d be the amount the frame moves downward (see Figure 8.78d).

Figure 8.78d
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8.79.

8.80.

When the frame is at position 1 the spring is stretched a distance x; = 0.0400 m. When the frame is at
position 2 the spring is stretched a distance x, =0.040 m+d. Use coordinates with the y-direction upward
and y =0 atthe lowest point reached by the frame, so that y; =d and y, =0. Work is done on the frame
by gravity and by the spring force, 0 Wy, =0, and U =Ug +U,gpayity -
EXECUTE: K| +U;+W 4o =Ky +Uy. Wy =0.

Ky =1mvf =1(0.350 kg)(1.386 m/s)* =0.3362 1.

Uy = Uy +U) gray =3 +mgy; =$(36.75 N/m)(0.0400: m)* +(0.350 kg)(9.80 m/s*)d.

U, =0.02940 1+(343 N)d. U, =U, o +Us gray = 3 kx5 +mgy, =$(36.75 N/m)(0.0400 m +d)°.
U, =0.02940 J +(1.47 N)d +(18.375 N/m)d>. Thus

0.3362 J+0.02940 J +(3.43 N)d = 0.02940 J +(1.47 N)d + (18.375 N/m)d>.

(18.375 N/m)d . (1.96 N)d —0.3362 J = 0. Using the quadratic formula, with the positive solution, we

get d=0.199 m.

EvVALUATE: The collision is inelastic and mechanical energy is lost. Thus the decrease in gravitational
potential energy is not equal to the increase in potential energy stored in the spring.

IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion
after the collision.

SET UP: Let +x be to the right. The total mass is m = myye, + Mp1oex = 1.00 kg. The spring has force

|F|_ 0750N

EXECUTE: (a) Conservation of energy for the motion after the collision gives K; =U,. %sz = %kx2 and

v =x % =(0.150 m), 220N _ 5 60 mys.
m 1.00 kg

(b) Conservation of momentum applied to the collision gives my v, =mV.

mV  _ (1.00 kg)(2.60 m/s)
Miyallet 8.00x107> kg
EVALUATE: The initial kinetic energy of the bullet is 422 J. The energy stored in the spring at maximum
compression is 3.38 J. Most of the initial mechanical energy of the bullet is dissipated in the collision.
IDENTIFY: The horizontal components of momentum of the system of bullet plus stone are conserved.
The collision is elastic if K; =K.

SET UP: Let 4 be the bullet and B be the stone.

=325 m/s.

VI =

(a) L T

Y| v, =350 m/s y ;7
0 I

Al 0
- Vo, =

o Bl OT

=X

[ x | x

I l Vipee= 250 m/s

Figure 8.80

EXECUTE: P, is conserved so m v 4, + mMpVp, =MV o, +MpVp,..

Myv g = MpVpyy-

-3
Ve =| 4 vy = | SO0 KE 350 1) =21.0 ms
mg 0.100 kg
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P, is conserved SO m v 41, + mpvgy, = m v 5, tmpvg,.,.
0= —Mmgv 4 + mBVBzy.
00x107 k
Viay =| 2 |y, = SO K 50 1y =15.0 s
mg 0.100 kg
- [2 2 2 2
Vi =AVhy +Vhay =4(21.0 mis)? +(15.0 mis)® =25.8 ms,
v 15.0 m/ .
tan@ =22y = 2 S 0.7143; 6€=35.5° (defined in the sketch).
VBox 21.0 m/s
(b) To answer this question compare K; and K, for the system:
Ky =dm vy +Lmpvg, =1(6.00x107° kg)(350 m/s)> =368 J.
Ky =dm iy #dmpvg, =1(6.00x107° kg)(250 m/s)* +1(0.100 kg)(25.8 m/s)* =221 I.
AK =K, —-K;=221J-368 ) =-147J.
EVALUATE: The kinetic energy of the system decreases by 147 J as a result of the collision; the collision
is not elastic. Momentum is conserved because X F., , =0 and XF , =0. But there are internal forces
between the bullet and the stone. These forces do negative work that reduces K.

8.81. IDENTIFY: Apply conservation of momentum to the collision between the two people. Apply conservation
of energy to the motion of the stuntman before the collision and to the entwined people after the collision.
SET UP: For the motion of the stuntman, y; —y, =5.0 m. Let vg be the magnitude of his horizontal
velocity just before the collision. Let V' be the speed of the entwined people just after the collision. Let d be
the distance they slide along the floor.

EXECUTE: (a) Motion before the collision: K; +U; =K, +U,. K; =0 and %mv& =mg(y,— )
v =428 —»y) = \/2(9.80 m/s?)(5.0 m) =9.90 my/s.
Collision: mgvs = m, V. V =8y = BOOKE 46 06 11/ = 598 s
My 150.0 kg
(b) Motion after the collision: K; +U; +W 4. = K, +U, gives %mth2 — phmgd =0.
y? 5.28 m/s)*
= o . -57m.
24g  2(0.250)(9.80 m/s”)
EVALUATE: Mechanical energy is dissipated in the inelastic collision, so the kinetic energy just after the
collision is less than the initial potential energy of the stuntman.
8.82. IDENTIFY: Apply conservation of energy to the motion before and after the collision and apply

conservation of momentum to the collision.
SET UP: Let v be the speed of the mass released at the rim just before it strikes the second mass. Let each
object have mass m.

EXECUTE: Conservation of energy says %mv2 =mgR; v=4/2gR.
SET Up: This is speed v for the collision. Let v, be the speed of the combined object just after the collision.

EXECUTE: Conservation of momentum applied to the collision gives mv; =2mv, so v, =v/2 =/gR/2.
SET UP: Apply conservation of energy to the motion of the combined object after the collision. Let y; be
the final height above the bottom of the bowl.
EXECUTE: %(2m)v§ =(2m)gy;.
2
1 R
V3 :V_2 :_(g_J = R/4.
2g 2g\ 2
EVALUATE: Mechanical energy is lost in the collision, so the final gravitational potential energy is less
than the initial gravitational potential energy.
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8.83.

8.84.

8.85.

IDENTIFY: Eqgs. vy, = D~ Mp Ve and vg, = _2ma V1, give the outcome of the elastic
my+mg mytmg)

collision. Apply conservation of energy to the motion of the block after the collision.

SET UP: Object B is the block, initially at rest. If L is the length of the wire and @ is the angle it makes

with the vertical, the height of the block is y = L(1—cos#). Initially, y; =0.

2 . 2 2M
EXECUTE: Eq. vp,, = M V4, gives vp = M v = ——— |(4.00 m/s) =2.00 m/s.
mA+mB mA+mB M +3M

Conservation of energy gives %m Bv%; =mpgL(l—cosb).

2 2
cos@=1-—B =] (2.002m/s)

2gL 2(9.80 m/s)(0.500 m)
EVALUATE: Only a portion of the initial kinetic energy of the ball is transferred to the block in the collision.
IDENTIFY: Apply conservation of energy to the motion before and after the collision. Apply conservation
of momentum to the collision.

SET Up: First consider the motion after the collision. The combined object has mass m,; =25.0 kg.

=0.5918, which gives 8=53.7°.

Apply ZF =ma to the object at the top of the circular loop, where the object has speed v;. The

acceleration is a,,q = v32/R, downward.
2

EXECUTE: T +mg = m%

The minimum speed v; for the object not to fall out of the circle is given by setting 7 = 0. This gives

vy =+/Rg, where R=2.80 m.

SET UP: Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at the top of
the loop. Take y =0 at point 2. Only gravity does work, so K, +U, = K5 +U,

o 2_1 2
EXECUTE:  Smy vy = 5mg Vs +m g(2R).

Use v3 =4/Rg and solve for v,: v, =4/5gR =11.71 m/s.

SET UP: Now apply conservation of momentum to the collision between the dart and the sphere. Let v
be the speed of the dart before the collision.

EXECUTE: (5.00 kg)v; =(25.0 kg)(11.71 m/s), which gives v; =58.6 m/s.

EVALUATE: The collision is inelastic and mechanical energy is removed from the system by the negative
work done by the forces between the dart and the sphere.

IDENTIFY: Apply conservation of momentum to the collision between the bullet and the block and apply
conservation of energy to the motion of the block after the collision.

(a) SET UP: For the collision between the bullet and the block, let object 4 be the bullet and object B

be the block. Apply momentum conservation to find the speed vy, of the block just after the collision

(see Figure 8.85a).

Y vy =400 m/s Y Vo =27 V4, =190 m/s
—_— Vo, =0 —_—
- Bl -
k IoI
X X
before after

Figure 8.85a

EXECUTE: P, is conserved so m v, + MpVp, =MV o, T MpVps,. MV =MV 0 T HgVps ..
_my (v —vyo) _ 4.00x107° kg(400 m/s —190 m/s)
mg 0.800 kg

=1.05 m/s.

VB2x
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8.86.

8.87.

SET UP: For the motion of the block after the collision, let point 1 in the motion be just after the collision,
where the block has the speed 1.05 m/s calculated above, and let point 2 be where the block has come to
rest (see Figure 8.85b).

Ky + Uy +Woppher = Ky +U,.

v = 1.05 m/s

— v, =0
#1 |:] # D
X

0.720m ———

y

Figure 8.85b

EXECUTE: Work is done on the block by friction, s0 Wy, = Wp.

Wother =Wy = (f €08 P)s = — fis = —fhmgs, where s =0.720 m. U; =0, U, =0, K, :%mvlz, K, =0 (the

il (1.05 m/s)*
2gs  2(9.80 m/s?)(0.720 m)

(b) For the bullet, K, =2mvi =1(4.00x107> kg)(400 m/s)* =320 J and
Ky =1my3 =1(4.00x107° kg)(190 m/s)* =722 J. AK =K, — K| =72.2 J—-320 ] =248 J. The kinetic

energy of the bullet decreases by 248 J.
(c) Immediately after the collision the speed of the block is 1.05 m/s, so its kinetic energy is

K =1my? =1(0.800 kg)(1.05 m/s)* =0.441 J.

EVALUATE: The collision is highly inelastic. The bullet loses 248 J of kinetic energy but only 0.441 J is
gained by the block. But momentum is conserved in the collision. All the momentum lost by the bullet is
gained by the block.

IDENTIFY:  Apply conservation of momentum to the collision and conservation of energy to the motion of
the block after the collision.

SET UP: Let +x be to the right. Let the bullet be 4 and the block be B. Let V' be the velocity of the block
just after the collision.

EXECUTE: Motion of block after the collision: Ky =U gray5. %mBV2 =mpgh.

=0.0781.

block has come to rest). Thus %mvlz — p4mgs = 0. Therefore 14 =

V = J2gh =/2(9.80 m/s?)(0.38 1072 m) = 0.273 m/s.
Collision: vg, =0273 m/s. B, =P, gives m v 4 =myv o +mpvp,.
gy —mgve, _ (5.00x107 kg)(450 m/s)— (1.00 kg)(0.273 nvs)
- m, - 5.00x107 kg

EVALUATE: We assume the block moves very little during the time it takes the bullet to pass through it.
IDENTIFY: Apply conservation of energy to the motion of the package before the collision and apply
conservation of the horizontal component of momentum to the collision.

(a) SETUP: Apply conservation of energy to the motion of the package from point 1 as it leaves the chute to
point 2 just before it lands in the cart. Take y =0 at point 2, so y; =4.00 m. Only gravity does work, so

=395 m/s.

Va2

EXECUTE: %mvl2 +mgy, = %mv%

vy =i +2gy =9.35 m/s.

(b) SET Up: In the collision between the package and the cart, momentum is conserved in the horizontal
direction. (But not in the vertical direction, due to the vertical force the floor exerts on the cart.) Take +x

to be to the right. Let 4 be the package and B be the cart.
EXECUTE: P, is constant gives m v, + mgvp, =(m,+mg)v, .
Vg1 = —5.00 m/s.
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V1, = (3.00 m/s)cos37.0°. (The horizontal velocity of the package is constant during its free fall.)
Solving for v, gives v,, =-3.29 m/s. The cart is moving to the left at 3.29 m/s after the package lands in it.

EVALUATE: The cart is slowed by its collision with the package, whose horizontal component of
momentum is in the opposite direction to the motion of the cart.

IDENTIFY: Apply conservation of momentum to the system of the neutron and its decay products.
SET UP: Let the proton be moving in the +x-direction with speed v, after the decay. The initial

momentum of the neutron is zero, so to conserve momentum the electron must be moving in the

—x-direction after the decay. Let the speed of the electron be v,.

m
EXECUTE: R, =P, gives 0=m,v, —mv, and v, = (m—pj vp- The total kinetic energy after the decay is
(S

2
m m
=Ly 2l =Ly | 2P 24 L 2o, 2 L
Kior =gmeve +5myv, zme[m J vp tomyvy 2mpvp(l+ J

=544x107* =0.0544%.

K 1 1
Thus, —2 = =

K 1+my/m, 1+1836
EVALUATE: Most of the released energy goes to the electron, since it is much lighter than the proton.
IDENTIFY: The momentum of the system is conserved.
SETUP: Let +x be to the right. A, =0. p.., p,. and p,,. are the momenta of the electron, polonium

nucleus, and antineutrino, respectively.
EXECUTE: R, =P, gives P+ Poe T Pane = 0. Pany = —(Pex T Pox)-
Pane = —(5.60x107%% kg-m/s +[3.50 1072 kg][-1.14 x10° m/s]) =-1.61x10"* kg-mJs.

The antineutrino has momentum to the left with magnitude 1.61 x107% kg-m/s.

EVALUATE: The antineutrino interacts very weakly with matter and most easily shows its presence by the
momentum it carries away.
IDENTIFY: Since there is no friction, the horizontal component of momentum of the system of Jonathan,
Jane, and the sleigh is conserved.
SETUP: Let +x be to the right. w, =800 N, wz =600 N and w, =1000 N.
EXECUTE: R, =P, gives 0=myv ,, +mpvps,. +mcves,.
MgV Y MpVEyy _ WaVarx Y WEVEyx
me We '

= (800 N)[—(5.00 m/s)cos30.0°]+ (600 N)[+(7.00 m/s)c0s36.9°]

2 1000 N
The sleigh’s velocity is 0.105 m/s, to the right.
EVALUATE: The vertical component of the momentum of the system consisting of the two people and the
sleigh is not conserved, because of the net force exerted on the sleigh by the ice while they jump.
IDENTIFY: No net external force acts on the Burt-Ernie-log system, so the center of mass of the system
does not move.

Veax =

=0.105 m/s.

SETUP:  x,,, = A0 1Mty TG

em ml+m2 +m3

EXECUTE: Use coordinates where the origin is at Burt’s end of the log and where +x is toward Ernie,

which makes x; = 0 for Burt initially. The initial coordinate of the center of mass is

= (20.0 kg)(1.5 m) +(40.0 kg)(3.0 m)
om,1 90.0 kg

. Let d be the distance the log moves toward Ernie’s original

position. The final location of the center of mass is x,, , = (30.0 ke)d + (1.5 kgg-l(-)a(’))i(Z0.0 kg)* (400 ke)d .
: 0 kg

The center of mass does not move, $0 x| = Xy 2, Which gives
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(20.0 kg)(1.5 m) +(40.0 kg)(3.0 m) =(30.0 kg)d +(20.0 kg)(1.5 m +d) +(40.0 kg)d. Solving for d gives
d=133m.

EVALUATE: Burt, Ernie, and the log all move, but the center of mass of the system does not move.
IDENTIFY: There is no net horizontal external force so v, is constant.

SET UP: Let +x be to the right, with the origin at the initial position of the left-hand end of the canoe.
my =45.0 kg, mp =60.0 kg. The center of mass of the canoe is at its center.

_myX g tmpxp

EXECUTE: Initially, v, =0, so the center of mass doesn’t move. Initially, x_; . After

my + mp
myx o tmpx .
she walks, x5 = w. Xeml = Xemn 8IVeS m Xy +mpXp = m X o + mpxp,. She walks to a
myTmg
point 1.00 m from the right-hand end of the canoe, so she is 1.50 m to the right of the center of mass of the
canoe and x4, =xp, +1.50 m.

(45.0 kg)(1.00 m) +(60.0 kg)(2.50 m) = (45.0 kg)(xpz, +1.50 m) +(60.0 kg)xp,.
(105.0 kg)xp, =127.5 kg-m and xz, =1.21 m. xp, —xp; =1.21 m—2.50 m =—-1.29 m. The canoe moves

1.29 m to the left.

EVALUATE: When the woman walks to the right, the canoe moves to the left. The woman walks 3.00 m to the
right relative to the canoe and the canoe moves 1.29 m to the left, so she moves 3.00 m—1.29 m=1.71 m to
the right relative to the water. Note that this distance is (60.0 kg/45.0 kg)(1.29 m).

IDENTIFY: Take as the system you and the slab. There is no horizontal force, so horizontal momentum is

conserved. Since P =My, , if P is constant, ¥, is constant (for a system of constant mass). Use

coordinates fixed to the ice, with the direction you walk as the x-direction. ¥, is constant and initially

Vem = 0.
"
P
v —-
~— [concrete shab]
|
Figure 8.93
__ mpv, tmgyg 9
cm + -
my + mg
mgv,, +mgvg = 0.
MV, tmgvg, =0.

Ve = —(my/mg)vy = —(mp,/5m,,)2.00 m/s = —0.400 ms.

The slab moves at 0.400 m/s, in the direction opposite to the direction you are walking.

EVALUATE: The initial momentum of the system is zero. You gain momentum in the +x-direction so the
slab gains momentum in the —x-direction. The slab exerts a force on you in the +x-direction so you exert

a force on the slab in the —x-direction.
IDENTIFY: The explosion produces only internal forces for the fragments, so the momentum of the two-
fragment system is conserved. Therefore the explosion does not affect the motion of the center of mass of
this system.
SET UP: The center of mass follows a parabolic path just as a single particle would. Its horizontal range

2 .
= M. The center of mass of a two-particle system is x_,, = w

g my +

EXECUTE: (a) The range formula gives R = (18.0 m/s)*(sin102°)/(9.80 m/s>) = 32.34 m, which rounds to 32.3 m.
(b) The center of mass is 32.3 m from the firing point and one fragment lands at x, = 26.0 m. Using the center
of mass formula, with the origin at the firing point and calling m the mass of each fragment, we have
32.34 m = [m(26.0 m) + mx,]/(2m), which gives x, = 38.68 m, which rounds to 38.7 m.

iSR
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EVALUATE: Since the fragments have equal masses, their center of mass should be midway between them.
So it should be at (26.0 m + 38.68 m)/2 = 32.3 m, which it is.

IDENTIFY: The explosion releases energy which goes into the kinetic energy of the two fragments. The
explosive forces are internal to the two-fragment system, so momentum is conserved.

SET Up: Call the fragments 4 and B, with m, =2.0 kg and mp = 5.0 kg. After the explosion fragment 4

moves in the +x-direction with speed v, and fragment B moves in the —x-direction with speed V.

5.0 kg
2.0 kg

. m
EXEcUTE: P, =F, gives O0=myv,+mp(-vpg) and v, :[—ijB :[
. . m,

JVB = 2.5VB.

Ky _3myid _$Q0kg)25vp)° 125

Kp %vaBz 3(5.0 kg)vy 5.
EVALUATE: In an explosion the lighter fragment receives the most of the liberated energy, which agrees
with our results here.

IDENTIFY: Conservation of x- and y-components of momentum applies to the collision. At the highest
point of the trajectory the vertical component of the velocity of the projectile is zero.
SET Up: Let +y be upward and +x be horizontal and to the right. Let the two fragments be 4 and B,

=25.K,=1001 so Kz =250 1.

each with mass m. For the projectile before the explosion and the fragments after the explosion. a, =0,
a, =-9.80 m/s’.

EXECUTE: (a) vf = vgy +2a,(y—yp) with v, =0 gives that the maximum height of the projectile is

2 . o012
v
= -— G0N oh T 62'0 1 =244.9 m. Just before the explosion the projectile is moving to the right
2a, 2(—9.80 m/s”)

with horizontal velocity v, = vy, =v;c0s60.0° =40.0 m/s. After the explosion v, =0 since fragment 4 falls

vertically. Conservation of momentum applied to the explosion gives (2m)(40.0 m/s) = mvg, and

Vg, =80.0 m/s. Fragment B has zero initial vertical velocity so y—y, = v,/ + %aytz gives a time of fall of

a, \ -9.80 m/s®

(80.0 m/s)(7.07 s) =566 m. It also took the projectile 7.07 s to travel from launch to maximum height and
during this time it travels a horizontal distance of ([80.0 m/s]cos60.0°)(7.07 s) =283 m. The second
fragment lands 283 m +566 m =849 m from the firing point.

(b) For the explosion, K; =1(20.0 kg)(40.0 m/s)* =1.60x10" J.

t= \/ _2h \/ . - =7.07 s. During this time the fragment travels horizontally a distance

K, = %(10.0 kg)(80.0 m/s)2 =3.20x10% J. The energy released in the explosion is 1.60 % 104 J.

EVALUATE: The kinetic energy of the projectile just after it is launched is 6.40x 10% J. We can calculate
the speed of each fragment just before it strikes the ground and verify that the total kinetic energy of the
fragments just before they strike the ground is 6.40x10% J+1.60x10* 1 =8.00x10* J. Fragment 4 has
speed 69.3 m/s just before it strikes the ground, and hence has kinetic energy 2.40 X 10% I. Fragment B has

speed \/ (80.0 m/s)2 +(69.3 m/s)2 =105.8 m/s just before it strikes the ground, and hence has kinetic

energy 5.60 x10* J. Also, the center of mass of the system has the same horizontal range
2

R= v—osin(ZaO) =565 m that the projectile would have had if no explosion had occurred. One fragment
g

lands at R/2 so the other, equal mass fragment lands at a distance 3R/2 from the launch point.
IDENTIFY: The rocket moves in projectile motion before the explosion and its fragments move in projectile
motion after the explosion. Apply conservation of energy and conservation of momentum to the explosion.



8-36

Chapter 8

8.98.

8.99.

(a) SET UP: Apply conservation of energy to the explosion. Just before the explosion the rocket is at its
maximum height and has zero kinetic energy. Let 4 be the piece with mass 1.40 kg and B be the piece with
mass 0.28 kg. Let v, and vy be the speeds of the two pieces immediately after the collision.

EXECUTE: Lm v} +1mgv} =860

SET UP: Since the two fragments reach the ground at the same time, their velocities just after the
explosion must be horizontal. The initial momentum of the rocket before the explosion is zero, so after the
explosion the pieces must be moving in opposite horizontal directions and have equal magnitude of
momentum: m v, = mgvp.

EXECUTE: Use this to eliminate v, in the first equation and solve for vp:

Limgvg(1+mpg/m,) =860 and vg =71.6 mys.
Then v, = (mp/m )vg =14.3 m/s.
(b) SET UpP: Use the vertical motion from the maximum height to the ground to find the time it takes the
pieces to fall to the ground after the explosion. Take +y downward.

voy =0, a, =+9.80 m/s®, y—y,=80.0m, t=?

y
EXECUTE:  y—yy = vyt +%ayz‘2 gives ¢t =4.04 s.

During this time the horizontal distance each piece moves is x, =v,#=57.8 m and xp = vzt =289.1 m.
They move in opposite directions, so they are x, +xz =347 m apart when they land.

EVALUATE: Fragment 4 has more mass so it is moving slower right after the collision, and it travels
horizontally a smaller distance as it falls to the ground.

IDENTIFY: Apply conservation of momentum to the explosion. At the highest point of its trajectory the
shell is moving horizontally. If one fragment received some upward momentum in the explosion, the other
fragment would have had to receive a downward component. Since they each hit the ground at the same
time, each must have zero vertical velocity immediately after the explosion.

SET UP: Let +x be horizontal, along the initial direction of motion of the projectile and let +y be
upward. At its maximum height the projectile has v, =v,c0s55.0° =86.0 m/s. Let the heavier fragment be
A and the lighter fragment be B. m, =9.00 kg and mjz =3.00 kg.

EXECUTE: Since fragment 4 returns to the launch point, immediately after the explosion it has
v 4 =—86.0 m/s. Conservation of momentum applied to the explosion gives

(12.0 kg)(86.0 m/s) = (9.00 kg)(—86.0 m/s) +(3.00 kg)vp, and vp, =602 my/s. The horizontal range of the

2
projectile, if no explosion occurred, would be R = v—osin(ZaO) =2157 m. The horizontal distance each
g

fragment travels is proportional to its initial speed and the heavier fragment travels a horizontal distance
R/2=1078 m after the explosion, so the lighter fragment travels a horizontal distance

602 : :
(—86 m] (1078 m) =7546 m from the point of explosion and 1078 m +7546 m = 8624 m from the launch
m

point. The energy released in the explosion is
K,-K :%(9.00 kg)(86.0 m/s)> +%(3.00 kg)(602 m/s)? —%(12.0 ke)(86.0 m/s)? =5.33%10° J.

EVALUATE: The center of mass of the system has the same horizontal range R =2157 m as if the
explosion didn’t occur. This gives (12.0 kg)(2157 m) =(9.00 kg)(0) +(3.00 kg)d and d = 8630 m, where d

is the distance from the launch point to where the lighter fragment lands. This agrees with our calculation.
IDENTIFY: Apply conservation of energy to the motion of the wagon before the collision. After the
collision the combined object moves with constant speed on the level ground. In the collision the
horizontal component of momentum is conserved.

SET Up: Let the wagon be object 4 and treat the two people together as object B. Let +x be horizontal
and to the right. Let V be the speed of the combined object after the collision.
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EXECUTE: (a) The speed v,; of the wagon just before the collision is given by conservation of energy
applied to the motion of the wagon prior to the collision. U; = K, says m ,g([50 m][sin6.0°]) = %mAvfﬂ.
v =10.12 m/s. B, =P, for the collision says m v 4 =(m,+mg)V and
” _( 300 kg

L300 kg+75.0 kg +60.0 kg
(6.98 m/s)(5.0 s) =34.9 m, and the people will have time to jump out of the wagon before it reaches the
edge of the cliff.
(b) For the wagon, K; = %(300 kg)(10.12 m/s)2 =1.54x10* J. Assume that the two heroes drop from a

}(10.12 m/s) = 6.98 m/s. In 5.0 s the wagon travels

small height, so their kinetic energy just before the wagon can be neglected compared to K, of the wagon.
K, = %(435 kg)(6.98 m/s)2 =1.06x10* J. The kinetic energy of the system decreases by

K, —K, =4.8x10° J.

EVALUATE: The wagon slows down when the two heroes drop into it. The mass that is moving
horizontally increases, so the speed decreases to maintain the same horizontal momentum. In the collision
the vertical momentum is not conserved, because of the net external force due to the ground.

IDENTIFY: Impulse is equal to the area under the curve in a graph of force versus time.

SETUp: J, =Ap =FA¢

EXECUTE: (a) Impulse is the area under F-f curve

J.=[7500 N + ¥ (7500 N + 3500 N) + 3500 N](1.50 s) = 2.475 x 10* N-s.

(b) The total mass of the car and driver is (3071 1b)(4.448 N/Ib)/(9.80 m/s) = 1394 kg.

J. = Apy=mv,— 0,50 v, = J/m=(2.475 x 10" Ns) /(1394 kg) = 17.8 m/s.

(¢) The braking force must produce an impulse opposite to the one that accelerated the car, so
J.=-2.475x10" N-s. Therefore J, = F, A ¢ gives At =J/F, = (24,750 N-s )/(-5200 N) =4.76 s.

(d) Wire = AK =—K=—Yamv* =% (1394 kg)(17.76 m/s)* =—2.20 x 10° J.

(©) Wirake = —B.S, 50 5 = Wi/ By = =(2.20 x 10° J)/(-5200 N) = 42.3 m.

EVALUATE: The result in (e) could be checked by using kinematics with an average velocity of

(17.8 m/s)/2 for 4.76 s.

IDENTIFY: As the bullet strikes and embeds itself in the block, momentum is conserved. After that, we use
Ky +U +Wper = Ky +U,, where Wy, is due to kinetic friction.

SET Up: Momentum conservation during the collision gives myv, = (my, + m)V , where m is the mass of
the block and m; is the mass of the bullet. After the collision, K} +U,; + Wy, =K, +U, gives

1 1 .
EM v M Mgd = Ekd 2, where M is the mass of the block plus the bullet.

EXECUTE: (a) From the energy equation above, we can see that the greatest compression of the spring
will occur for the greatest V (since M >> m,,), and the greatest V" will occur for the bullet with the greatest
initial momentum. Using the data in the table with the problem, we get the following momenta expressed
in units of grain - ft/s.

A: 1334 x10° grain - ft/s B: 1.181 x 10° grain - ft/s C: 2.042x10° grain- ft/s

D: 1.638 x 10° grain - ft/s E: 1.869 x 10° grain - ft/s

From these results, it is clear that bullet C will produce the maximum compression of the spring and bullet
B will produce the least compression.

(b) For bullet C, we use py, = myvy, = (my, + m)V. Converting mass (in grains) and speed to SI units gives m,
=0.01555 kg and v, = 259.38 m/s, we have

(0.01555 kg)(259.38 m/s) = (0.01555 kg + 2.00 kg)V, so ¥'=2.001 m/s.

Now use %M = H Mgd = %kd 2 and solve for k, giving

k= (2.016 kg)[(2.001 m/s)* — 2(0.38)(9.80 m/s*)(0.25 m)]/(0.25 m)* = 69.1 N/m, which rounds to 69 N/m.
(c) For bullet B, m, =125 grains = 0.00810 kg and v, = 945 ft/s = 288.0 m/s. Momentum conservation gives
V= (0.00810 kg)(288.0 m/s)/(2.00810 kg) = 1.162 m/s.
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Using ;MV2 H Mgd = —kdz, the above numbers give 33.554" + 7.478d — 1.356 = 0. The quadratic

formula, using the positive square root, gives d = 0.118 m, which rounds to 0.12 m.

EVALUATE: This method for measuring muzzle velocity involves a spring displacement of around 12 cm,
which should be readily measurable.

IDENTIFY Momentum is conserved during the collision. After the collision, we can use energy methods.
SETUP: p=mv, K| +U, + Wy, =K, +U,, where W, is due to kinetic friction. We need to use

components of momentum. Call +x eastward and +y northward.
EXECUTE: (a) Momentum conservation gives
=[6500 Ib)/g]vp = [(9542 1b)/g]v,,c0s(39°)
= [(3042 1b)/g](50 mph) = [(9542 1b)/g]v,,sin(39°)
SolVlng for vp gives vp = 28.9 mph, which rounds to 29 mph.
(b) The above equations also give that the velocity of the wreckage just after impact is 25.3 mph = 37.1 ft/s.

. 1 1
Using K| +U; +W, .. = K, +U,, we have Emvl — mgd —Emvz Solving for v, gives

1) :\/vlz — 244 gd. Using v; =37.1 ft/s, g=32.2 ft/s” and d = 35 ft, we get v, = 19.1 ft/s = 13 mph.

EVALUATE: We were able to minimize unit conversions by working in British units instead of SI units
since the data was given in British units.
IDENTIFY: From our analysis of motion with constant acceleration, if v =a¢ and a is constant, then

—xo = vt +Lar’.

SET UP: Take vy =0, x, =0 andlet +x downward.
EXECUTE: (a) % =a, v=at and x= %atz. Substituting into xg = x% +v? gives

%at2g :%atza +a’t* = =34’ a*t?. The nonzero solution is a = g/3.

(b) x=1ar® =1 gr =1(9.80 m/s?)(3.00 5)* =14.7 m.

(¢) m=kx=(2.00 gm)(14.7 m) =294 g.

EVALUATE: The acceleration is less than g because the small water droplets are initially at rest, before
they adhere to the falling drop. The small droplets are suspended by buoyant forces that we ignore for the

raindrops.
IDENTIFY and SET UP:  dm = pdV. dV = Adx. Since the thin rod lies along the x-axis, y, =0. The

mass of the rod is given by M = J.dm.

1 ¢L L A L
EXECUTE: (a) x., = —j xdm = ﬁA‘[ xdx = P4 . The volume of the rod is AL and M = pAL.
M0 M ‘0 M 2

2
Xem = 5 AjL = % The center of mass of the uniform rod is at its geometrical center, midway between its ends.
p.
L, Aol? _rL _ aAl?
(b) x, -—j xdm_—j prdx_—j de==tre M= jdm_jo pAdx_aAj xdv ===
3

Therefore, x, Aol ( 2 3 j 2L

3 aAL 3

EVALUATE: When the density increases with x, the center of mass is to the right of the center of the rod.

1 1
IDENTIFY: X, = ﬁj.xdm and y., = M-‘- ydm. At the upper surface of the plate, y2 +x% =d”.

SET UP: To find x_,, divide the plate into thin strips parallel to the y-axis, as shown in Figure 8.105a. To
find y,,,, divide the plate into thin strips parallel to the x-axis as shown in Figure 8.105b. The plate has

volume one-half that of a circular disk, so V' = Eﬂazt and M = % pﬂ'azt.
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EXECUTE: In Figure 8.105a each strip has length y = a®—x*. Xem = ﬁj.xdm, where
dm = ptydx = pt a*—x?dx. Xem = %I ¢ xva? = x*dx =0, since the integrand is an odd function of x.
—a
. 1
X.m = 0 because of symmetry. In Figure 8.105b each strip has length 2x = N y2. Vem = ﬁf ydm,

where dm =2pitxdy = 2pt\/a2 - yzdy. Yem = %J‘ ¢ y\/az - y2 dy. The integral can be evaluated using
—a

u=a’- y2, du =—-2ydy. This substitution gives

_2pt( 1\p0 o, 2ptdd [ 2ptd® 2 ) _4a
Yem = | =% J-z“ du = - 2 | T
M\ 2)a M 3 N\prd®t) 37

4 : . :
EVALUATE: I =0.424. y., islessthan a/2, as expected, since the plate becomes wider
V4

as y decreases.

y
_d
f
X X
I 2 !
@ ®)

Figure 8.105

8.106. IDENTIFY and SET UP: p = mv.
EXECUTE: p =mv = (0.30 x 107 kg)(2.5 m/s)=7.5 x 10 * kg-m/s, which makes choice (a) correct.

EVALUATE: This is a small amount of momentum for a speed of 2.5 m/s, but the water drop is very light.
8.107.  IDENTIFY and SET UP: Momentum is conserved, p = mv.
EXECUTE: (65 X 107 kg)vgen = 7.5 X 107* kg-m/s, so vgg, = 0.012 m/s, which makes choice (b) correct.

EVALUATE: The fish is much ligher than the water drop and thus moves much slower.
8.108. IDENTIFY and SETUP: J=F,t= Ap.
EXECUTE: F,,=Ap/t= (7.5><10_4 kg - m/s)/(0.0050 s) = 0.15 N, which is choice (d).
EVALUATE: This is a rather small force, but it acts on a very light-weight water drop, so it can give the
water considerable speed.

8.109.  IDENTIFY and SET UP: Momentum is conserved in the collision with the insect. p = mv.
EXECUTE: Using P, = P, gives 7.5 X 10* kg-m/s = (Mipseet + 3.0 x 10°* kg)(2.0 m/s), which gives

Minseet = 0.075 g, so choice (b) is correct.
EVALUATE: The insect has considerably less mass than the water drop.
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IDENTIFY: s =r6@, with @ in radians.
SET UP: 7 rad =180°.
s _1.50m =
EXECUTE: (a) 6 =—=———=0.600 rad =34.4
r

by =3 AN Gl B B0
6 (128°)(r rad/180°)
(¢) s =76 =(1.50 m)(0.700 rad) =1.05 m
EVALUATE: An angle is the ratio of two lengths and is dimensionless. But, when s =76 is used, & must

be in radians. Or, if 8@ =s/r is used to calculate @, the calculation gives @ in radians.

IDENTIFY: 60— 6, = wt, since the angular velocity is constant.
SETUP: 1 rpm =(27/60) rad/s.
EXECUTE: (a) w=(1900)(27 rad/60 s) =199 rad/s

(b) 35°=(35°)(#/180°) =0.611rad. ¢ ~6-6 _06lird_ 3.1x107 s
w 199 rad/s
EVALUATE: In ¢ = -6 we must use the same angular measure (radians, degrees or revolutions) for
w

both 8 -6, and @.

d
IDENTIFY: o, (¢)= :)Z
t

. Using @, =d0/dt gives 0- 6, = [ @, dr.
1

SET Up: it" =nt""" and jt”dt = Lt” 1

dt n+1
EXECUTE: (a) 4 must have units of rad/s and B must have units of rad/s>.
(b) . (r)=2Bt=(3.00 rad/s>)z. (i) For =0, e, =0. (ii) For =5.00 s, o, =15.0 rad/s’.
) 6,-6, :jjlz (A + Br*)dt = A(ty — 1)) + 1 B(t; - ). For ,=0 and 1, =2.00's,
6, — 6 = (2.75 rad/s)(2.00 5) +1(1.50 rad/s*)(2.00 5)* =9.50 rad.

EVALUATE: Both «, and w, are positive and the angular speed is increasing.

Aw,

IDENTIFY: o, =dw,/dt. «,., :Tz,
t

SET Up: i(tz y=2¢
dt

dow,

EXECUTE: (a) o, (f) = t =— 2t =(-1.60rad/s> ).
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9.5.

9.6.

9.7.

() @.(3.0 )= (~1.60rad/s>)(3.0 s) = — 4.80 rad/s>.

= w,(3.0 5)—w_(0) _= 2.20 rad/s — 5.00 rad/s =~ 240 rad/s?,
30s 3.0s

which is half as large (in magnitude) as the acceleration at # =3.0 s.
_o,(0)+a,3.05)
2

EVALUATE: ¢,(t) increases linearly with time, so «,, ., . 0,(0)=0.

de . A0 _6,-6
IDENTIFY and SET UP: Use @, = o to calculate the angular velocity and @,,_, = ™ = % to
27h

calculate the average angular velocity for the specified time interval.
EXECUTE: 6=yt + f3°; 7=0.400 rad/s, B=0.0120 rad/s’

() o, _49_ ¥+ 31
dt
(b) At t=0, w, =y =0.400 rad/s
(©) At 1=5.00's, . =0.400 rad/s +3(0.0120 rad/s*)(5.00 s)> =1.30 rad/s
an—Z = AA_Q - 02 —~ Hl
I -4
For £, =0, 6 =0.
For t, =5.00 s, 6, =(0.400 rad/s)(5.00 s) + (0.012 rad/s>)(5.00 s)> =3.50 rad
3.50rad -0
So wav—z s |
5.00s5—0

EVALUATE: The average of the instantaneous angular velocities at the beginning and end of the time
interval is %(0.400 rad/s +1.30 rad/s) =0.850 rad/s. This is larger than @,,_,, because @,(¢) is increasing

=0.700 rad/s.

faster than linearly.

de do. AO
IDENTIFY: @.(t)=—. o, (1) =—=. ==
(1) dt =0 dt VT2 A

SETUP: @, = (250 rad/s) — (40.0 rad/s® ) — (4.50 rad/s®)t>. ¢, =— (40.0 rad/s*) — (9.00 rad/s*)z.
EXECUTE: (a) Setting @, =0 results in a quadratic in £. The only positive root is # =4.23 s.
(b) At t=423s, o, =—78.1rad/s’.
(c) At t=4.23s, 8 =586rad =93.3 rev.
(d) At =0, @, =250 rad/s.

586 rad
() @, . = 1235

EVALUATE: Between 1 =0 and 1 =4.23 s, w, decreases from 250 rad/s to zero. @, is not linear in ¢, so

=138 rad/s.

,

v 18 not midway between the values of @, at the beginning and end of the interval.

IDENTIFY: w,(¢)= ﬁ
dt

Ca(h)= d:)Z. Use the values of 8 and w, at 1 =0 and ¢, at 1.50 s to calculate
t
a, b, and c.

d _
SETUP: —¢" =nt" !
dt

EXECUTE: (a) w,(t)=b- 3ct?. a,(ty=—6ct. At t=0, §=a=r/4rad and w, =b=2.00 rad/s. At
1=150s, o, =—6¢(1.50 s)=1.25rad/s* and ¢ =—0.139 rad/s’.
(b) @=r/4rad and o, =0 at t=0.

(©) . =350rad/s® at r=——2=—— """ "0 —49205. At t=420s,
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9.8.

9.9.

9.10.

0= % rad + (2.00 rad/s)(4.20 s) — (—=0.139 rad/s*)(4.20 s)* =19.5 rad.

@, =2.00 rad/s — 3(=0.139 rad/s>)(4.20 s)* =9.36 rad/s.
EVALUATE: 6, w,, and «, all increase as ¢ increases.
dw,
dt
O+ O
Lh—4

IDENTIFY: ¢, = . 0-6,=w,,.t. When w, is linear in ¢, o,
z 0 av-z z

v for the time interval # to ¢, is

Wyy.z =

M _ 4.00 rad/s = (=6.00 rad/s)
At 7.00s

SET UP: From the information given, «, = =1.429 rad/s?.

@_(1) ==6.00 rad/s + (1.429 rad/s® 1.

EXECUTE: (a) The angular acceleration is positive, since the angular velocity increases steadily from a
negative value to a positive value.

(b) It takes time ¢ = %oz _ —(~6.00 rad/s)/(1.429 rad/s®) = 4.20 s for the wheel to stop (@, =0). During
o

Z
this time its speed is decreasing. For the next 2.80 s its speed is increasing from 0 rad/s to +4.00 rad/s.

—0. + 4.
(c) The average angular velocity is B 48 r2d =-1.00rad/s. 8—6, = w,,_,t then leads to

av-z
2

displacement of —7.00 rad after 7.00 s.

EVALUATE: When ¢, and @, have the same sign, the angular speed is increasing; this is the case for
t=4.20s to t=7.00s. When o, and @, have opposite signs, the angular speed is decreasing; this is the
case between ¢ =0 and 7 =4.20s.

IDENTIFY: Apply the constant angular acceleration equations.
SET UP: Let the direction the wheel is rotating be positive.

EXECUTE: (a) @, =, + ot =1.50 rad/s +(0.200 rad/s?)(2.50 s) = 2.00 rad/s.
(b) -6, = w,t + %azﬂ = (1.50 rad/s)(2.50 s) +2(0.200 rad/s®)(2.50 s)* = 4.38 rad.

+ . X
EVALUATE: 6-6, = [wozz @; jt = (1 SUmh 5 il rad/sj(Z.SO s)=4.38 rad, the same as calculated
with another equation in part (b).

IDENTIFY: Apply the constant angular acceleration equations to the motion of the fan.

(a) SETUP:  @,, = (500 rev/min)(l1 min/60 s) =8.333 rev/s, @, = (200 rev/min)(1 min/60 s) =3.333 rev’/s,

t=4.00s, o, =7

z

wz = a)()Z + azt
w
EXECUTE: o, =—=

z

— @, _3.333rev/s—8.333 rev/s _
t 4.00s

—1.25 rev/s?

6-6,=2
60— 6y = ay.t +La.t* =(8.333 rev/s)(4.00 s) +1(~1.25 rev/s*)(4.00 5)* =23 3 rev

(b) SETUP: w, =0 (comes to rest); @y, =3.333 rev/s; o, =—1.25 rev/sz; t=?

z
a)Z :a)OZ +azt

,

Exgcurp: =22 "%z _ 0-3.333 rev/s

o, —1.25 rev/s?

EVALUATE: The angular acceleration is negative because the angular velocity is decreasing. The average
angular velocity during the 4.00 s time interval is 350 rev/min and 60— 6, = w,,_,t gives

6 — 6, =23.3 rev, which checks.

=2.67s
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9.11. IDENTIFY: Apply the constant angular acceleration equations to the motion. The target variables
are tand 6 —6,.
SETUP: (a) o, =1.50 rad/s?; ay, =0 (starts from rest); @, =36.0 rad/s; t=7?
a)Z = a)OZ + azt

.

Execute: (=% "%z - 360 rad/s 0

=240
a, 1.50 rad/s’

(b) 0-6,="

60— 60y =yt +Lar® =0+1(1.50 rad/s*)(24.0 5)* =432 rad

6 — 6, =432 rad(l rev/27 rad) = 68.8 rev

EVALUATE: We could use 8 -6, = %(a)z + ), )t to calculate 86, = %(O +36.0 rad/s)(24.0 s) =432 rad,

which checks.
9.12. IDENTIFY: Inpart (b) apply the equation derived in part (a).
SET UpP: Let the direction the propeller is rotating be positive.

. . 1K | _w, —a o _ 1 2
EXECUTE:  (a) Solving @, = @y, Tt for ¢ gives ¢ —T. Rewriting 6 —6) = ay.t + Ja.t” as

z

0-6,=ta,, + %azt) and substituting for 7 gives

- 1 + 1
0- 00 :[%](%Z +%(wz - a)Oz)) =;(wz - %z)(%j =g(a)z2 _a)gz)9

which when rearranged gives @’ = wfo +20,(60-6,).

z

®) a, = %{ J(wf —ap) = %( ] j((16.0 rad/s)? — (12.0 rad/s)*) =8.00 rad/s’

0-6, 7.00 rad

+
EVALUATE: We could also use 6 —6, = [%jt to calculate £ =0.500 s. Then w, =@, + ot

gives o, =8.00 rad/ s2, which agrees with our results in part (b).
9.13. IDENTIFY: Use a constant angular acceleration equation and solve for @, .
SET Up: Let the direction of rotation of the flywheel be positive.
EXECUTE: 6 -6, =yt + %aztz gives
0-6, 30.0 rad
sz :———0!2 [=—
t 2 4.00 s
EVALUATE: At the end of the 4.00 s interval, @, = @, + ¢t =12.0 rad/s.

-6, = [0)02 + o, jt :(3.00 rad/s +12.0 rad/s

. %(2.25 rad/s?)(4.00 s) = 3.00 rad/s.

2 2

9.14. IDENTIFY: Apply the constant angular acceleration equations.
SET Up: Let the direction of the rotation of the blade be positive. @,, =0.

J(4.00 s) =30.0 rad, which checks.

W, — @y, _ 140 rad/s -0
t 6.00 s

(66 :(“’OZ; @, Jt = (0 * 142 ra‘VSJ(aoo $) =420 rad

EVALUATE: We could also use 8 -6, = @yt + %0@2. This equation gives

EXECUTE: w, =@y, +a,t gives o, = =23.3 rad/s’.

0-6,= %(23.3 rad/sz)(6.00 s)2 =419 rad, in agreement with the result obtained above.
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9.15.

9.16.

9.17.

9.18.

IDENTIFY: Apply constant angular acceleration equations.
SET UP: Let the direction the flywheel is rotating be positive.
60— 6, =200 rev, w,, =500 rev/min =8.333 rev/s, t =30.0 s.

+
EXECUTE: (a) -6, = (%Jr gives @, =5.00 rev/s =300 rpm
(b) Use the information in part (a) to find «,: @, =@, +a,t gives o, =—0.1111 rev/s>. Then w, =0,
+
o, =— 0.1111rev/s?, Wy, =8.333rev/s in @, =@y, +o,t gives t=75.0s and 6 -6, = (%)t

gives 8 — 6, =312 rev.

EVALUATE: The mass and diameter of the flywheel are not used in the calculation.

IDENTIFY: Apply the constant angular acceleration equations separately to the time intervals 0 to 2.00 s
and 2.00 s until the wheel stops.

(a) SET UP: Consider the motion from # =0 to #=2.00 s:

0-6,=? ay,=24.0rad/s; o, =30.0 rad/sz; t=2.00s

EXECUTE: 0 -6 =yt +a.t” =(24.0 rad/s)(2.00 ) +£(30.0 rad/s*)(2.00 s)°
6 — 6, =48.0 rad + 60.0 rad =108 rad

Total angular displacement from ¢ =0 until stops: 108 rad + 432 rad =540 rad

Note: At t=2.00s, @, =ay, +a,t=24.0 rad/s +(30.0 rad/sz)(Z.OO s) =84.0 rad/s; angular speed when

breaker trips.
(b) SET UP: _ Consider the motion from when the circuit breaker trips until the wheel stops. For this
calculation let # =0 when the breaker trips.

t=? 8-6,=432rad; w, =0; @y, =84.0 rad/s (from part (a))
6 -6, :(%Z_-'_ wZ]t
2
/= 2(6—6,) _ _2(432 rad)
wy, +@, 84.0rad/s+0

EXECUTE: =10.3s

The wheel stops 10.3 s after the breaker trips so 2.00 s +10.3 s =12.3 s from the beginning.

(¢) SETUP: «, =7?; consider the same motion as in part (b):

a)Z = a)OZ + azl

EXECUTE: @, = @, — @y, _0-84.0rad/s _
t 103s

EVALUATE: The angular acceleration is positive while the wheel is speeding up and negative while it is

—8.16 rad/s’

slowing down. We could also use a)z2 = a)gz +20,(0 - 6,) to calculate

2_ 0 _ 2
a, = @, — @ _0-(®4.0rads)” —8.16 rad/s” for the acceleration after the breaker trips.
2(6-6,) 2(432 rad)
IDENTIFY: Apply Eq. (9.12) to relate @, to 8 —6,.

SET Up: Establish a proportionality.

EXECUTE: From a)z2 = a)zzo +20,(6-6,), with @), =0, the number of revolutions is proportional to the
square of the initial angular velocity, so tripling the initial angular velocity increases the number of
revolutions by 9, to 9.00 rev.

EVALUATE: We don’t have enough information to calculate ¢,; all we need to know is that it is constant.
IDENTIFY: The linear distance the elevator travels, its speed and the magnitude of its acceleration are
equal to the tangential displacement, speed and acceleration of a point on the rim of the disk. s =76,
v=r@ and a =ra. In these equations the angular quantities must be in radians.

SETUP: 1rev=27zrad. 1rpm =0.1047 rad/s. & rad =180°. For the disk, » =1.25 m.



9-6

Chapter 9

9.19.

9.20.

9.21.

9.22.

EVALUATE: When we use s =76, v=rw and a,, =ra to solve for 6, w and ¢, the results are in rad,

rad/s, and rad/s’.

IDENTIFY: When the angular speed is constant, @ = 6/t. vy, =rw, a,, =ro and a4 = r@”. In these
equations radians must be used for the angular quantities.

SET UP: The radius of the earth is R, =6.37 X 10° m and the earth rotates once in 1 day =86,400 s. The

orbit radius of the earth is 1.50x10"" m and the earth completes one orbit in 1y =3.156x10" s. When
is constant, @ = 6/t.
27 rad

— = =1.99x1077 radss.
3.156x10" s

EXECUTE: (a) @ =1rev=2zrad in £ =3.156x10" s. =

_ 2mrad
86,400 s

(©) v=ro=(1.50x10"" m)(1.99x107" rad/s) = 2.98x10* mys.

(b) =1rev=2zrad in £ =86,400s. @ =7.27x107° rad/s

(d) v =ro=(637x10° m)(7.27 x 10~ rad/s) = 463 m/s.
(e) a,, =re” =(637x10° m)(7.27 x 10~ rad/s)® = 0.0337 m/s”. ay, =r@=0. =0 since the

angular velocity is constant.
EVALUATE: The tangential speeds associated with these motions are large even though the angular speeds
are very small, because the radius for the circular path in each case is quite large.
IDENTIFY: Linear and angular velocities are related by v =r®. Use @, =@, + &,t to calculate «,.
SETUP: w=v/r gives @ inrad/s.
1.25 m/ 1.2
—; =50.0 rad/s, 5—m/3s =21.6 rad/s.
25.0x107° m 58.0x107 m
(b) (1.25 m/s)(74.0 min)(60 s/min) =5.55 km.
_21.55 rad/s —50.0 rad/s _ -3 2
= (740 min)(60 s/mim) 0 41X107 rad/s”.

EVALUATE: The width of the tracks is very small, so the total track length on the disc is huge.
IDENTIFY: Use constant acceleration equations to calculate the angular velocity at the end of two
revolutions. v =ra.

SETUP: 2rev=4rxrad. »=0.200 m.

EXECUTE: (a) @’ =}, +20.(60-6,). w, =\20..(6-6,) = J2(3.00 rad/s?)(47 rad) = 8.68 rad/s.
dpg = r@* =(0.200 m)(8.68 rad/s)® =15.1 m/s>.

EXECUTE: (a)

(©) e,

() v=rw=(0.200 m)(8.68 rad/s) =1.74 m/s. a,y=—=-———"2=15.1 m/s’.
r

EVALUATE: r@® and v*/r are completely equivalent expressions for a,.
IDENTIFY: v=rw and a,, =ra.

SET UP: The linear acceleration of the bucket equals a,,, for a point on the rim of the axle.

EXECUTE: (a) v= R, 2.00cm/s = R L2V |[1min )2z rad) 0 R=2.55 om.
min 60 s 1rev

D=2R=5.09 cm.
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9.23.

9.24.

a . 2
b) a, =R, o=—20="""" =157rad/s’.
(B) G R 0.0255m

EVALUATE: In v=Rw and a,, =Ro, o and o must be in radians.
IDENTIFY and SET UP: Use constant acceleration equations to find @ and ¢ after each displacement.

Use a,, = R and a, = r@?® to find the components of the linear acceleration.
EXECUTE: (a) at the start =0

flywheel starts from rest so @ =@, =0

ayyy, = rer =(0.300 m)(0.600 rad/s*) =0.180 m/s’

Apag = re* =0

a=/aky+ad, =0.180 m/s

(b) 6-6,=60°

gy = rar =0.180 m/s?

Calculate w:

6 -6, = 60°(x rad/180°) =1.047 rad; @y, =0; o, =0.600 rad/s?; w, =?
@’ = ax, +20.,(0 - 6))

w. = \[20.(0-6)) = \/2(0.600 rad/s®)(1.047 rad) =1.121 rad/s and @ = ..
Then ag,y = re’ =(0.300 m)(1.121 rad/s)* =0.377 m/s.

a=Jakq + atn =7(0.377 m/s2)* +(0.180 m/s?)> =0.418 m/s>

(c) 6—6y=120°

ay,, = ra=0.180 m/s?

Calculate w:

60— 6, =120°(xr rad/180°) =2.094 rad; @y, =0; «a, =0.600 rad/s’; @, =7

@ = ap, +20.(0-6))
w, =20..(0-6) = \/2(0.600 rad/s?)(2.094 rad) =1.585 rad/s and @= ..

Then a,,y = r&” =(0.300 m)(1.585 rad/s)* = 0.754 m/s>.

a =y +ad, =4(0.754 m/s2)? +(0.180 m/s2)> =0.775 m/s’.
EVALUATE: « is constant so ¢, isconstant. @ increases so a,,q Increases.

IDENTIFY: Apply constant angular acceleration equations. v =r@. A point on the rim has both tangential
and radial components of acceleration.

. = — 2
SETUP: a,, =ro and a4 =ro”.

EXECUTE: (a)w, =ay, +a,t = 0.250 rev/s +(0.900 rev/sz)(O.ZOO 8) =0.430 rev/s
(Note that since @y, and ¢, are given in terms of revolutions, it’s not necessary to convert to radians).
(b) w,,.,At =(0.340rev/s)(0.2 s) =0.068 rev.

(c¢) Here, the conversion to radians must be made to use v = r@, and

vVro= [0'7520 mj(0.430 rev/s)(2z rad/rev) =1.01m/s.
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9.25.

9.26.

9.27.

9.28.

(d) Combining a.q = r@* and ay, = Re,

— 2 2 _ 2 N2 2
a_\/arad+atan _\/(w }”) +(ar) .

a= \/[((0.430 rev/s) (27 rad/rev))?(0.375 m)T + [(0.900 rev/s2)(27 rad/rev)(0.375 m)]z.

a=346m/s>.
EVALUATE: If the angular acceleration is constant, a,, is constant but a,,4 increases as @ increases.
IDENTIFY: Use a,,q =r@° and solve for r.

SETUP: a4 = re’ so r= Arag! @, where @ must be in rad/s

EXECUTE: a4 =3000g =3000(9.80 m/s*) = 29,400 m/s*

1 minj( 27 rad

60 s

Qg _ 29,400 m/s?
@ (523.6 rad/s)?
EVALUATE: The diameter is then 0.214 m, which is larger than 0.127 m, so the claim is not realistic.

IDENTIFY: ay, =ra, v=rw and a4 = v, 60— 6y = 0, _,t.

= (5000 rev/min)(
1 rev

j =523.6 rad/s

SET UP: When ¢, is constant, @, . = %. Let the direction the wheel is rotating be positive.

= =i :Z:—SOO m/s = =
(b) At t=3.00s, v=50.0m/s and @ = 0.200m 250 rad/s and at ¢ =0,

v=50.0m/s +(-10.0 m/sz)(O —3.00 s) =80.0 m/s, @=400rad/s.
(©) w,,_.t=(325rad/s)(3.00's) =975 rad =155 rev.

d) v=\la, = \/(9.80 m/s2)(0.2()0 m) =1.40 m/s. This speed will be reached at time
50.0 m/s —1.40 m/s

10.0 m/s?
calculation.)

EVALUATE: At 1=0, a4 =re’ =3.20x10* m/s>. At 1=3.00 s, a,,q =1.25x10* m/s>. For a4 =g
the wheel must be rotating more slowly than at 3.00 s so it occurs some time after 3.00 s.

=4.86s after £ =3.00 s, or at =7.86 s. (There are many equivalent ways to do this

IDENTIFY: v=rw and a4 = ra’ =v:Ir.
SET UP: 27 rad =1rev, so & rad/s =30 rev/min.

-3
EXECUTE: (a) ar =(1250 rev/min)(30”r;3‘/ir/§in)[12'7 x;O m] =0.831ms.

v _ (0.831m/s)*
ro (12.7%1073 m)/2
EVALUATE: In v=r®@, @ mustbe in rad/s.

(b) =109 m/s?.

IDENTIFY and SET UP: Use [ = Zmiriz. Treat the spheres as point masses and ignore / of the light rods.
EXECUTE: The object is shown in Figure 9.28a.
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9.29.

(@
0.400 m
< 70.200kg
0.200 kg
l —
0.200 kg %:200ks
Figure 9.28a

(b) The object is shown in Figure 9.28b.

0.200 kg 0.200 kg
[ 0.200 m
axis _ v
[ 0.200 m
0.200 kg 0.200 kg
Figure 9.28b

(c) The object is shown in Figure 9.28c.

\ axis
Y 0.200 kg
0.200 kg
0.200 kg R
N

Figure 9.28¢

r :\/(0.200 m)? +(0.200 m)> =0.2828 m
I =Y mr? =4(0.200 kg)(0.2828 m)*
1=0.0640 kg - m?>

#=0.200 m
1= mr* = 4(0.200 kg)(0.200 m)>
1=0.0320 kg - m?

r=0.2828 m
1 =Y myr? =2(0.200 kg)(0.2828 m)*
1=0.0320 kg-m?

EVALUATE: In general / depends on the axis and our answer for part (a) is larger than for parts (b) and (c).

It just happens that / is the same in parts (b) and (c).

IDENTIFY: Use Table 9.2. The correct expression to use in each case depends on the shape of the object

and the location of the axis.

SET UP: In each case express the mass in kg and the length in m, so the moment of inertia will be in

kg~m2.

EXECUTE: (a) (i) / =1 MI* =1(2.50 kg)(0.750 m)?
3 3

i) 7=LMmI? =1(0.469 kg- m?) =0.117 kg - m>. (iii) For a very thin rod, all of the mass is at the axis
12 4 g g

and 7/ =0.

=0.469 kg - m>.

() (i) 7 =2MR? =2(3.00 kg)(0.190 m)? =0.0433 kg - m*.
5 5

(ii) 7 =2MR> =3(0.0433 kg- m*) =0.0722 kg - m’.

(¢) (i) 1 =MR?* =(8.00 kg)(0.0600 m)* = 0.0288 kg - m>.
(ii) 7 =1MR> =1(8.00 kg)(0.0600 m)* =0.0144 kg - m”,

EVALUATE: [ depends on how the mass of the object is distributed relative to the axis.
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9.30. IDENTIFY: Treat each block as a point mass, so for each block 7 = mr?, where r is the distance of the
block from the axis. The total / for the object is the sum of the 7 for each of'its pieces.
SET UP: In part (a) two blocks are a distance L/2 from the axis and the third block is on the axis. In
part (b) two blocks are a distance L/4 from the axis and one is a distance 3L/4 from the axis.
EXECUTE: (a) [ =2m(L/2)* =1mL’.
1 11
(b) 1=2m(L/4)* +m(3L/4)* = T —ml*(2+9)= —6mL2
EVALUATE: For the same object / is in general different for different axes.
9.31. IDENTIFY: [ for the object is the sum of the values of / for each part.
SET UP: For the bar, for an axis perpendicular to the bar, use the appropriate expression from Table 9.2.
For a point mass, 7 = mr?, where r is the distance of the mass from the axis.
1 LN
EXECUTE: (a) I = Iy, + oy = EMbaILZ + 216 (5] .
1
[= (400 kg)(2.00 m)? +2(0.300 kg)(1.00 m)*> =1.93 kg - m>
1 1
M) 1= gmb,er2 +my L = 3(4.00 kg)(2.00 m)? +(0.300 kg)(2.00 m)> = 6.53 kg - m>
(¢) 1 =0 because all masses are on the axis.
(d) All the mass is a distance d =0.500 m from the axis and
I=my d* +2m,d* = My d* = (4.60 kg)(0.500 m)* = 1.15 kg - m*.
EVALUATE: [ for an object depends on the location and direction of the axis.
9.32. IDENTIFY: Moment of inertia of a bar.
SETUP: Loy = lMLZ, Lopnter = Lo
3 12
EXECUTE: (a) ML2 = (0.400 kg)(0.600 m)2/12 0.0120 kg- m?
(b) Now we want the moment of inertia of two bars about their ends. Each has mass M/2 and length L/2.
2 2
L2 = l(ﬂj(é) + l(ﬂj(ﬁj =Ly =0.0120 kg-m”’.
3 302 \2 302 \2 12
EVALUATE: Neither the bend nor the 60° angle affects the moment of inertia. In (a) and (b), we can think
of the rod as two 0.200-kg rods, each 0.300 m long, with the moment of inertia calculated about one end.
9.33.  IDENTIFY and SETUP: [ =Y ms;> implies 1 =1 S
EXECUTE: [, = MR? = (1.40 kg)(0.300 m)® =0.126 kg - m*
Each spoke can be treated as a slender rod with the axis through one end, so
Lipokes = 8( MI*) =% 3(0.280 kg)(0.300 m)? =0.0672 kg - m?
I =T + Lgpokes =0.126 kg - m? +0.0672 kg- m? =0.193 kg - m?
EVALUATE: Our result is smaller than mmtR2 =(3.64 kg)(0.300 m)2 =0.328 kg - m?, since the mass of
each spoke is distributed between » =0 and r =R
9.34. IDENTIFY: K = %I @”. Use Table 9.2 to calculate /.

SETUP: [ =LMI*. 11pm=0.1047 rad/s

0.1047 rad/s

EXECUTE: (a) 1 =7 (117 kg)(2.08 m)’ =422 kg-m’. @=(2400 reV/min)( L rev/min

j =251 rad/s.

K =110 =1(42.2 kg-m?)(251 rad/s)* =1.33x10° J.

1
2
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9.35.

9.36.

9.37.

9.38.

— 2 2 — 2 .2 — — 2 _ 2
(b) K =5M Loy, Ky =5MyLa. L=1, and K; =K,, so Mo] =M.

— /Ml — / M
=@y, |— =(2400 rpm), | ———— =2770 rpm
“ M, ( ) 0.750M,

EVALUATE: The rotational kinetic energy is proportional to the square of the angular speed and directly
proportional to the mass of the object.
IDENTIFY: [ for the compound disk is the sum of / of the solid disk and of the ring.

SET UP: For the solid disk, I = %mdrdz. For the ring, /, = %mr(rl2 + rzz), where
1 =50.0 cm, , =70.0 cm. The mass of the disk and ring is their area times their area density.

EXECUTE: [=1;+]1,.

Disk: my =(3.00 g/em®)zrf =23.56 kg. I, :%mdrdz =2.945 kg - m?.

Ring: m, =(2.00 g/em®)z(r7 —17) =15.08 kg. I, :%mr(rﬁ +7r7)=5.580 kg-m”.

I=1,+1 =852 kg-m’.
EVALUATE: Even though m <my, I. >, since the mass of the ring is farther from the axis.

IDENTIFY: We can use angular kinematics (for constant angular acceleration) to find the angular velocity
of the wheel. Then knowing its kinetic energy, we can find its moment of inertia, which is the target variable.

SETUP: 0-6, = [%Z jz and K—%Iw

EXECUTE: Converting the angle to radians gives 6 — 6, =(8.20 rev)(2z rad/l rev) =51.52 rad.

0-6,= [a)()z Jt gives @, = 2(9_00) = 261 ) =8.587 rad/s. Solving K =lla)2 for I gives
2 t 12.0 s 2
I :% k. (0l ~=0.976 kg-m’.
o~ (8.587 rad/s)

. . 2 1
EVALUATE: The angular velocity must be in radians to use the formula K = 5[ .
IDENTIFY: Knowing the kinetic energy, mass and radius of the sphere, we can find its angular velocity.

From this we can find the tangential velocity (the target variable) of a point on the rim.
SETUP: K =11 @* and = lMRz for a solid uniform sphere. The tagential velocity is v = re.

EXECUTE: —2MR2—2(280kg)(0380m) =1.617 kg-m* K—11w s0

,f 2(236 D =17.085 rad/s.
1.617 kg - m?

v = re = (0.380 m)(17.085 rad/s) = 6.49 mys.

EVALUATE: This is the speed of a point on the surface of the sphere that is farthest from the axis of
rotation (the “equator” of the sphere). Points off the “equator” would have smaller tangential velocity but
the same angular velocity.

IDENTIFY: Knowing the angular acceleration of the sphere, we can use angular kinematics (with constant
angular acceleration) to find its angular velocity. Then using its mass and radius, we can find its kinetic
energy, the target variable.

SETUP: @’ =, +20,(0-6), K = %Ia)z, and I = %MR2 for a uniform hollow spherical shell.
EXECUTE: [= %MR2 = %(8.20 kg)(0.220 m)? =0.2646 kg - m?. Converting the angle to radians gives
6 -6, =(6.00 rev)(27r rad/l rev) =37.70 rad. The angular velocity is @’ = @y, +2¢, (6 —6,), which gives

@, =.20,(0-6,) = \/2(0.890 rad/sz)(37.70 rad) =8.192 rad/s.
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9.39.

9.40.

9.41.

9.42.

9.43.

K= %(0.2646 kg - m?)(8.192 rad/s)> =8.88 J.
EVALUATE: The angular velocity must be in radians to use the formula K = %I .

IDENTIFY: K :%I @?, with @ in rad/s. Solve for 1.

SET UP: 1 rev/min =(27/60) rad/s. AK =-5001J

EXECUTE: @, =650 rev/min = 68.1 rad/s. @ =520 rev/min =54.5 rad/s. AK =K;—K; =11(af - )
_ 2(AK) _ 2(-500J)

S @F -} (545 rad/s)> —(68.1 rad/s)’

1

and /

=0.600 kg - m*

EVALUATE: In K :%Ia)z, @ must be in rad/s.
IDENTIFY: K = %I @”. Use Table 9.2 to relate 7 to the mass M of the disk.

SET UP: 45.0 rpm =4.71 rad/s. For a uniform solid disk, / = %MRz.
2K _ 2(0.250J)

=0.0225 kg - m.
@* (471 rad/s)?

EXECUTE: (a) [ =

(b) 1=1MR* and M == ==—""="—=_—-=0.500 kg.

EVALUATE: No matter what the shape is, the rotational kinetic energy is proportional to the mass of the
object.

IDENTIFY and SET UP: Combine K = %I @* and a.q= r@* to solve for K. Use Table 9.2 to get /.

EXECUTE: K :%Ia)2

g = RP, 50 ©=1Jagy/R =+/(3500 m/s2)/1.20 m = 54.0 rads
For a disk, 7 =1MR*=1(70.0 kg)(1.20 m)* =50.4 kg - m’

Thus K =170” =1(50.4 kg-m?)(54.0 rad/s)* =7.35%10" J
EVALUATE: The limit on a4 limits @ which in turn limits K.

IDENTIFY: The work done on the cylinder equals its gain in kinetic energy.
SET Up: The work done on the cylinder is PL, where L is the length of the rope. K; =0. K, = %I .

I =mr? =(Ejr2.
g

EXECUTE: PL= lﬁv{ or P= lﬁﬁ - (40.0 N)(6.00 m/s)’ =14
2g 2g L 2(9.80 m/s?)(5.00 m)

EVALUATE: The linear speed v of the end of the rope equals the tangential speed of a point on the rim of

the cylinder. When K is expressed in terms of v, the radius r of the cylinder doesn’t appear.

IDENTIFY: Apply conservation of energy to the system of stone plus pulley. v =r@ relates the motion of

the stone to the rotation of the pulley.

7 N.

SET UP: For a uniform solid disk, 7 = %MRz. Let point 1 be when the stone is at its initial position and
point 2 be when it has descended the desired distance. Let +y be upward and take y =0 at the initial

position of the stone, so y; =0 and y, =—h, where 4 is the distance the stone descends.

EXECUTE: (a) K, =11,0". I, =1M R* =1(2.50 kg)(0.200 m)* =0.0500 kg - m”.

_ 2K, _ 2(4.500)) _ o _
0= |— = |—————— =13.4 rad/s. The stone has speed v =R®=(0.200 m)(13.4 rad/s) = 2.68 m/s.
I, 0.0500 kg - m
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9.44.

9.45.

9.46.

The stone has kinetic energy K| =% = %(1 50 kg)(2.68 m/s)’> =539 J. K, +U, =K, +U, gives
0=K,+U,. 0=4.501+5.39J+mg(-h). h= 9891 5-=0.673 m.
(1.50 kg)(9.80 m/s”)
(b) Ko =K, +K;=9.89J. —m—% 5%.
Kwt 9.891]

EVALUATE: The gravitational potential energy of the pulley doesn’t change as it rotates. The tension in
the wire does positive work on the pulley and negative work of the same magnitude on the stone, so no net
work on the system

IDENTIFY: K = I @’ for the pulley and K = mv for the bucket. The speed of the bucket and the
rotational speed of the pulley are related by v = Ra).

SETUP: K, =1K,

EXECUTE: 1Ia) _1(2mv)..1 mR*@’. 1=1 mR?.

EVALUATE: The result is independent of the rotational speed of the pulley and the linear speed of the mass.

IDENTIFY: With constant acceleration, we can use kinematics to find the speed of the falling object. Then
we can apply the work-energy expression to the entire system and find the moment of inertia of the wheel.
Finally, using its radius we can find its mass, the target variable.

Yo, +vy

SET UP: With constant acceleration, y — y, :( ]t. The angular velocity of the wheel is related to

v
the linear velocity of the falling mass by @, = % The work-energy theoremis Kj +U; + W .. =K, +U,,

and the moment of inertia of a uniform disk is / = %MRZ.

Voy TV, .
EXECUTE: Find v, the velocity of the block after it has descended 3.00 m. y -y, :( oy 5 2 ]t gives

YT 200s R 0280m

energy expression: K| +U; + W .. =K, +U,, giving mg(3.00 m) = %mv + ;Ia) Solving for 7 gives

1= %{mg(lOO m)—lmvz].
w 2

2

=TI ma {(4.20 kg)(9.8 m/s?)(3.00 m)—%(4.20 kg)(3.00 m/s)z}, [=1.824 kg-m”. For a solid

disk, 7 = MR2 gives M =—="—"""—"—2=_— ~=46.5kg.

EVALUATE: The gravitational potential of the falling object is converted into the kinetic energy of that
object and the rotational kinetic energy of the wheel.
IDENTIFY: The work the person does is the negative of the work done by gravity.

Wgrav = grav,l _Ugrav,Z' Ugrav = ng cm*
SET UP: The center of mass of the ladder is at its center, 1.00 m from each end.
Yem, =(1.00 m)sin53.0°=0.799 m. y;, , =1.00 m.

EXECUTE: =(9.00 kg)(9.80 m/s? )(0.799 m—1.00 m) =—17.7 J. The work done by the person is

grav
17.7J. The increase in gravitational potential energy of the ladder is Ugay,1 — Ugravy = Wy = T17.7 J.
EVALUATE: The gravity force is downward and the center of mass of the ladder moves upward, so gravity
does negative work. The person pushes upward and does positive work.
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9.47.

9.48.

9.49.

9.50.

9.51.

IDENTIFY: The general expression for [is [ = Zm,-r[z. K= %I .

SET UP: R will be multiplied by f.

EXECUTE: (a) In the equation / = Zmirl-z, each term will have the mass multiplied by f 3 and the
distance multiplied by f, and so the moment of inertia is multiplied by f3( f )? = 7.

(b) (2.51)(48)° =6.37x10% J.

EVALUATE: Mass and volume are proportional to each other so both scale by the same factor.
IDENTIFY: Apply the parallel-axis theorem.
SET UP: The center of mass of the hoop is at its geometrical center.

EXECUTE: In the parallel-axis theorem, /., = MR?* andd = R*,s0 I p= 2MR?.,

EVALUATE: [is larger for an axis at the edge than for an axis at the center. Some mass is closer than
distance R from the axis but some is also farther away. Since / for each piece of the hoop is proportional to
the square of the distance from the axis, the increase in distance has a larger effect.

IDENTIFY: Use the parallel-axis theorem to relate / for the wood sphere about the desired axis to / for an
axis along a diameter.

SET UP: For a thin-walled hollow sphere, axis along a diameter, [ = %MRZ.

For a solid sphere with mass M and radius R, I, = %MRz, for an axis along a diameter.
. — 2 — 2}

EXECUTE: Find d such that Ip =1 +Md~ with Ip —%MR :

2MR* =2 MR* + Md®

The factors of M divide out and the equation becomes (% = %)R2 =q?

d =J(10=6)/15R =2R/\/15=0.516R.

The axis is parallel to a diameter and is 0.516R from the center.

EVALUATE: [ (lead) > (wood) even though M and R are the same since for a hollow sphere all the
mass is a distance R from the axis. The parallel-axis theorem says /p >/, so there must be a d where
Ip(wood) =1, (lead).

IDENTIFY: Consider the plate as made of slender rods placed side-by-side.

SET UP: The expression in Table 9.2 gives / for a rod and an axis through the center of the rod.

EXECUTE: (a) [ is the same as for a rod with length a: 1 = %Maz.

(b) I is the same as for a rod with length b: 7 = %sz.

EVALUATE: [is smaller when the axis is through the center of the plate than when it is along one edge.
IDENTIFY and SET UP: Use the parallel-axis theorem. The cm of the sheet is at its geometrical center. The
object is sketched in Figure 9.51.

EXECUTE: [Ip=1_, +Md>.

From Table 9.2,
Iom =5 M(a” +57).

b The distance d of P from the cm is

d =+(a/2)* +(b/2)*.

Figure 9.51

Thus Ip = I, +Md> =LM(a® +67)+ M(La® +167) = (L + DM (@® +67) = 1M (a® +1?)

EVALUATE: [p =4I, . For an axis through P mass is farther from the axis.
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9.52.

9.53.

9.54.

IDENTIFY: Use the equations in Table 9.2. [ for the rod is the sum of 7 for each segment. The parallel-axis
theorem says [, = I, +Md>.
SET UP: The bent rod and axes a and b are shown in Figure 9.52. Each segment has length L/2 and

mass M/2.
EXECUTE: (a) For each segment the moment of inertia is for a rod with mass M/2, length L/2 and the

2

. 1M\ L 1 1

axis through one end. For one segment, [, =—| — || — | = — MI*. For the rod, 1, =21 = — MI*,
302 A2 24 12

(b) The center of mass of each segment is at the center of the segment, a distance of L/4 from each end.

2
1 (ML 1 . .
For each segment, / , = E(?J(E} = %ML2 . Axis b is a distance L/4 from the cm of each segment,

2
. ) ; 1 M(L 1
so for each segment the parallel axis theorem gives / for axis b to be I = %ML2 + ?[ZJ = QML2 and
Y
Iy =21y == ML.

EVALUATE: [ for these two axes are the same.

< L/4 >

cm a

Figure 9.52

IDENTIFY: Apply I = .[ v dm.

SETUP: dm = pdV = p(2rzrL dr), where L is the thickness of the disk. M =zLpR>.

EXECUTE: The analysis is identical to that of Example 9.10, with the lower limit in the integral being zero
and the upper limit being R. The result is / =1 MR>.

IDENTIFY: Use / :jrz dm.
SeT Up:

y

‘ dx

| — — X
] ——>
Figure 9.54

Take the x-axis to lie along the rod, with the origin at the left end. Consider a thin slice at coordinate x and
width dx, as shown in Figure 9.54. The mass per unit length for this rod is M/L, so the mass of this slice is
dm=(M/L) dx.

EXECUTE: [ = j()L (ML) dx = (M/L)J.()sz dx = (MILY(L/3) = L M1

EVALUATE: This result agrees with the table in the text.
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9.55. IDENTIFY: Apply /= jrz dm and M = j dm.
SET UP: For this case, dm = yx dx.
L o2
EXECUTE: (a) M =|dm=| yxdx=y—| =+—
@ M= [dm=[prdc=y- =5

. o L o

(b) I= 'fo x*(yx)dx = }/T = %Lz. This is larger than the moment of inertia of a uniform rod of the
0

same mass and length, since the mass density is greater farther away from the axis than nearer the axis.

L L xZ x3 x4 L4 M

O I=| L-xVyxdx=y| (Px-2Lx"+x)dx=y| ! —-2L—+=— | =y—=—1".

© 1= (L-x)yxdx=y] ( e =y = oy Rtara:
This is a third of the result of part (b), reflecting the fact that more of the mass is concentrated at the
right end.
EVALUATE: For a uniform rod with an axis at one end, / = %MLz. The result in (b) is larger than this and
the result in (¢) is smaller than this.

9.56. IDENTIFY: Using the equation for the angle as a function of time, we can find the angular acceleration of
the disk at a given time and use this to find the linear acceleration of a point on the rim (the target
variable).
SET UP:  We can use the definitions of the angular velocity and the angular acceleration: @, (¢) = ? and
o,(t)= d;t)z . The acceleration components are a,,q = R’ and Ay = Ro, and the magnitude of the
acceleration is a = \[arzad + atzan.

de 2 dwz 2

EXECUTE: @, (f) = o =1.10 rad/s + (12.6 rad/s*)z. e, (?) = 7 =12.6 rad/s® (constant).
6=0.100 rev =0.6283 rad gives 6.30#> +1.10r — 0.6283 = 0, so ¢ = 0.2403 s, using the positive root. At
this ¢, w_(¢) =4.1278 rad/s and ¢_(¢) = 12.6 rad/s>. Fora point on the rim, a_, = Rw* = 6.815m/s> and
a, = Rx=504m/s?, so a=lay +a’, =848m/s’.
EVALUATE: Since the angular acceleration is constant, we could use the constant acceleration formulas as
a check. For example, the coefficient of £ is %0{2 =6.30 rad/s” gives a =12.6 rad/s’.

9.57. IDENTIFY: The target variable is the horizontal distance the piece travels before hitting the floor. Using

the angular acceleration of the blade, we can find its angular velocity when the piece breaks off. This will
give us the linear horizontal speed of the piece. It is then in free fall, so we can use the linear kinematics
equations.

SET UP: a)z2 = a)ozz +20,(6—6,) for the blade, and v = rw is the horizontal velocity of the piece.
Y—Yo =V, t %aytz for the falling piece.

EXECUTE: Find the initial horizontal velocity of the piece just after it breaks off.
8—6, =155 rev)(2x rad/1 rev) =973.9 rad.

o, =(2.00 rev/s®)(27 rad/1 rev) = 12.566 rad/s®. @? = e, +20.,(0-6)).

w, =\2a,(0-6)) = \/2(12.566 rad/sz)(973.9 rad) =156.45 rad/s. The horizontal velocity of the piece is
v=rw=(0.120 m)(156.45 rad/s) =18.774 m/s. Now consider the projectile motion of the piece. Take
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+y downward and use the vertical motion to find 7. Solving y —yy = vy +%ayt2 for ¢ gives

t= \/Z(y —X) - \/2(902';83 rzn) =0.4091 s. Then x—xy = vy, +La,r? = (18.774 m/s)(0.4091 5) = 7.68 m.
a . S

y
EVALUATE: Once the piece is free of the blade, the only force acting on it is gravity so its acceleration

is g downward.

[0)
9.58.  IDENTIFY and SETUP: Use @, = — and &, =—=. Aslongas o, >0, @, increases. At the # when
dt dt

o, =0, w, is at its maximum positive value and then starts to decrease when ¢, becomes negative.
0(t) = yt* = %, y=3.20rad/s>, S =0.500 rad/s’®
_do _d(?-pr) _

E : {) R L SO W
XECUTE: (a) @, () p "z 7t=34
_do, _dQy-3p1%) _
b =T 2. -0
(b) o, (1) = - y—6pt

(¢) The maximum angular velocity occurs when o, = 0.

2y ¥ _ 3.20rad/s?

Atthis 7, @, =2yt —3t> =2(3.20 rad/s>)(2.133 s) —3(0.500 rad/s>)(2.133 s)* = 6.83 rad/s

The maximum positive angular velocity is 6.83 rad/s and it occurs at 2.13 s.
EVALUATE:  For large # both @, and ¢, are negative and @, increases in magnitude. In fact, @, — —oo

at ¢ —eo. So the answer in (c) is not the largest angular speed, just the largest positive angular velocity.
9.59.  IDENTIFY: The angular acceleration « of the disk is related to the linear acceleration a of the ball by

. L t t
a = Ra. Since the acceleration is not constant, use @, — @, = Io o,dt and 66, = I() w.dt torelate 6,
®,, a,,and ¢ for the disk. @y, =0.

1 0/
SET UP: _[t"dt :Tlt"H. In @ =R, «isin rad/s’.

n
7
EXECUTE: (a) A= a4 :m =0.600 m/s’
t 3.00s
3
M) a=2%= (0.600 m/sTyr _ (2.40 rad/s®)t
R 0.250 m

(©) @ :j’ (2.40 rad/s®)rdt = (1.20 rad/s* ). w. =15.0 rad/s for ¢ = 150radls _ 554
= Jo : 1.20 rad/s®

d) 6-6,= j;a)zdt = jo’(l 20 rad/s®)r*dt = (0.400 rad/s®):>. For 1 =3.54s, @—6,=17.7 rad.

EVALUATE: If the disk had turned at a constant angular velocity of 15.0 rad/s for 3.54 s it would have
turned through an angle of 53.1 rad in 3.54 s. It actually turns through less than half this because the
angular velocity is increasing in time and is less than 15.0 rad/s at all but the end of the interval.

9.60. IDENTIFY: The flywheel gains rotational kinetic energy as it spins. This kinetic energy depends on the
flywheel’s rate of spin but also on its moment of inertia. The angular acceleration is constant.

SerUp: K =110’ I1=1mR*, w=w,+at, m=pV = paR*h.

EXECUTE: K =1/0? = LA mR*)(@, + a1)? = %[(pﬁth)RzJ(0+m)2. Solving for / gives

1
2
4K

h=————— =4(800 J)/[1(8600 kg/m’)(0.250 m)*(3.00 rad/s*)*(8.00 s)’] = 0.0526 m = 5.26 cm.
PR (at)
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9.61.

9.62.

9.63.

EVALUATE: If we could turn the disk into a thin-walled cylinder of the same mass and radius, the
moment of inertia would be twice as great, so we could store twice as much energy as for the given disk.
IDENTIFY: As it turns, the wheel gives kinetic energy to the marble, and this energy is converted into
gravitational potential energy as the marble reaches its highest point in the air.

SET UP: The marble starts from rest at point 4 at the same level as the center of the wheel and after
20.0 revolutions it leaves the rim of the wheel at point 4. K| +U; =K, +U, applies once the marble has

left the cup. While the marble is turning with the wheel, w* = wé +20(0- 6,) applies.

EXECUTE: Applying K| +U; =K, +U, gives v, =./2gh. The marble is at the rim of the wheel, so

v, = Rw,. Using this formula in the angular velocity formula gives (/R =0+ 2c(6— 6y). The marble
turns through 20.0 rev = 40.0z rad, R = 0.260 m, and # = 12.0 m. Solving the previous equation for o
gives @ = gh/A0R* = (9.80 m/s%)(12.0 m)/[407(0.260 m)*] = 13.8 rad/s’.

EVALUATE: The marble has a tangential acceleration g, = R @ = (0.260 m)(13.8 rad/s”) = 3.59 m/s’
upward just before it leaves the cup. But this acceleration ends the instant the marble leaves the cup, and
after that its acceleration is 9.80 m/s* downward due to gravity.

IDENTIFY: Apply conservation of energy to the system of drum plus falling mass, and compare the results
for earth and for Mars.

SETUP: Kyym = %Ia)z. K :%mvz. v =Rwso if Ky, is the same, wis the same and v is the same

on both planets.: Therefore, K, is the same. Let y =0 at the initial height of the mass and take +y
upward. Configuration 1 is when the mass is at its initial position and 2 is when the mass has descended
5.00m, so y; =0and y, =-h, where # is the height the mass descends.

EXECUTE: (a) K| +U, =K, +U, gives 0=Km + Knass —M8H. K gum T Kinass are the same on both

mass

2
. _ gg | _ 9.80 m/s” | _
lanets, so mgphg =mgyiy. Iy =hg| == [=(5.00 m)] —— (=132 m.
p EEE EMmiM- im E[gM] {3.71 2

- 2 _
(b) mthM - Kdrum +Kmass' %mv = mthM - Kdrum and

2(250.0 7)
= /2 )/ N— N e
’ \/ Emiv 15.0 kg

EVALUATE: We did the calculations without knowing the moment of inertia / of the drum, or the mass
and radius of the drum.

IDENTIFY and SET UP: All points on the belt move with the same speed. Since the belt doesn’t slip, the
speed of the belt is the same as the speed of a point on the rim of the shaft and on the rim of the wheel, and
these speeds are related to the angular speed of each circular object by v =ra.

EXECUTE:

=8.04 m/s

2K - \/2(3.71 m/s?)(13.2 m)—
m

Figure 9.63

(@) v =ray

@y =(60.0 rev/s)(2x rad/l rev) =377 rad/s

VI THO = (0.45x107% m)(377 rad/s) =1.70 m/s

(b) v =v,

nay =n,

a, =(1/n)wy =(0.45 c/1.80 cm)(377 rad/s) =94.2 rad/s

EVALUATE: The wheel has a larger radius than the shaft so turns slower to have the same tangential speed
for points on the rim.
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9.66.
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IDENTIFY: The speed of all points on the belt is the same, so 1@, = r,@, applies to the two pulleys.

SET UP: The second pulley, with half the diameter of the first, must have twice the angular velocity, and
this is the angular velocity of the saw blade. 7 rad/s =30 rev/min.
. 0.208
EXECUTE: (a) v, =(2(3450 rev/min)) z rad/s’, 08 m
30 rev/min 2

j:75.1m/s.

2
(b) a,y = @Pr =| 23450 rev/min)| 22 IS (0'208 M 1= 5.43%10 m/s2,
30 rev/min 2

so the force holding sawdust on the blade would have to be about 5500 times as strong as gravity.
EVALUATE: In v=rwand a,y = r@, ® must be in rad/s.

IDENTIFY: Apply v=ra.

SET Up: - Points on the chain all move at the same speed, so 7@, = r;@;.

EXECUTE: The angular velocity of the rear wheel is @, =—+ ==———=15.15 rad/s.
rr
The angular velocity of the front wheel is @; = 0.600 rev/s = 3.77 rad/s. r, =r(@;/®,)=2.99 cm.
EVALUATE: The rear sprocket and wheel have the same angular velocity and the front sprocket and wheel
have the same angular velocity. r@ is the same for both, so the rear sprocket has a smaller radius since it
has a larger angular velocity. The speed of a point on the chain is v = r,@, =(2.99 x 1072 m)(15.15 rad/s) =
0.453 m/s. The linear speed of the bicycle is 5.00 m/s.
IDENTIFY: Use the constant angular acceleration equations, applied to the first revolution and to the first
two revolutions.
SET UP: Let the direction the disk is rotating be positive. 1rev =27 rad. Let ¢ be the time for the first
revolution. The time for the first two revolutions is ¢+ 0.0865 s.

EXECUTE: (a) 6—6 = w,t +%azt2 applied to the first revolution and then to the first two revolutions
gives 27 rad = %aztz and 47z rad = S, (¢ +0.0865 s)z. Eliminating ¢, between these equations gives

27 rad
tZ

47 rad = (t+0.0865 s)>. 2% = (¢ +0.0865 s)’. \/Et = *(t +0.0865 s). The positive root is

008655
J2-1

(b) 27 rad = Eaztz and £ =0.209 s gives o, =288 rad/s’

=0.209 s.

EVALUATE: At the start of the second revolution, @, = (288 rad/s’ )(0.209 s) = 60.19 rad/s. The distance
the disk rotates in the next 0.0865 s is
0-6) = wy,t +%azt2 =(60.19 rad/s)(0.0865 s) +%(288 rad/sz)(0.0865 s)2 =6.28 rad, which is two

revolutions.

IDENTIFY: K =110, ayy=r@’. m=pV.

SET UP: For a disk with the axis at the center, / = %ng V= t7rR2, where ¢ =0.100 m is the thickness
of the flywheel. p =7800 kg/m3 is the density of the iron.

2K 2(10.0x10% J)
@ (9.425radls)?
m=pV = prR’t. 1=1mR* =1pmR*. This gives R =(21/prt)"* =3.68 m and the diameter is 7.36 m.

EXECUTE: (a) ®=90.0 rpm =9.425rad/s. [= =2.252x10° kg-m?>.

(b) a,,q = Ro* =327 m/s*
EVALUATE: In K = %1 @, wmust be in rads. dg,q 18 about 33g; the flywheel material must have large

cohesive strength to prevent the flywheel from flying apart.
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IDENTIFY: The moment of inertia of the section that is removed must be one-half the moment of inertia of
the original disk.

o . . . 1
SET UP: For a solid disk, / = %mRz. Call m the mass of the removed piece and R its radius. /,, = EIMO'
EXECUTE: [, = %IMO gives %mR2 = %(%MOR(%). We need to find m. Since the disk is uniform, the

mass of a given segment will be proportional to the area of that segment. In this case, the segment is the

. Ap _ 7R _R® (R .
piece cut out of the center. So U 7[—2 =—5, which gives m =M, k—zJ . Combining the two
o Ary 7Ry Ry 0

oo (R 2 : R _
results gives 5 M, kR—g) R =5(3MRy), from which we get R = S 0.841R,.
EVALUATE: Notice that the piece that is removed does not have one-half the mass of the original disk, nor
it its radius one-half the original radius.
IDENTIFY: The falling wood accelerates downward as the wheel undergoes angular acceleration.
Newton’s second law applies to the wood and the wheel, and the linear kinematics formulas apply to the

wood because it has constant acceleration.

S G
SETUp: XF =ma, t7=Ia, a,, =Ra, y—yOZVOyt+5ayt.

EXECUTE: Firstuse y—y = vyt +%ayt2 to find the downward acceleration of the wood. With v, =0,
we have a, = 2(y — Vo) = 2(12.0 m)/(4.00 s)* = 1.50 m/s”. Now apply Newton’s second to the wood to
find the tension in the rope. ZF =ma gives mg — T = ma, T = m(g — a), which gives

T=(8.20 kg)(9.80 m/s” — 1.50 m/sz) =68.06 N. Now use a,,, = R and apply Newton’s second law (in
its rotational form) to the wheel. 7 = I gives TR = I, [ = TR/ = TRAa/R) = TR/a

1= (68.06 N)(0.320 m)*/(1.50 m/s®) = 4.65 kg-m".

EVALUATE: The tension in the rope affects the acceleration of the wood and causes the angular
acceleration of the wheel.
IDENTIFY: Using energy considerations, the system gains as kinetic energy the lost potential energy, mgR.

SET UP: The kinetic energy is K = %Ia)2 +%mv2, with / :EmRz for the disk. v=Raw.

EXECUTE: K = %Ia)2 +%m(a)R)2 :%(1 + mRz)a)z. Using / :EmR2 and solving for , ? :%% and

. 2 . .
EVALUATE: The small object has speed v = \/; \J2gR. If it was not attached to the disk and was dropped

from a height A, it would attain a speed /2gR. Being attached to the disk reduces its final speed by a

factor of \/2 .
3

IDENTIFY: Use conservation of energy. The stick rotates about a fixed axis so K = %1 @*. Once we have

o use v =rw to calculate v for the end of the stick.
SET UP: The object is sketched in Figure 9.71.
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9.72.

y Take the origin of coordinates at the
v =0 lowest point reached by the stick and

———, take the positive y-direction to be upward.

cm 1.00 m

0.500 m

9

Figure 9.71

EXECUTE: (a) Use U = Mgy .. AU =U, —U; = Mg(Yema — Yem1)- The center of mass of the meter stick
is at its geometrical center, so y.;,; =1.00 m and y ., =0.50 m. Then

AU = (0.180 kg)(9.80 m/s*)(0.50 m —1.00 m) = —0.882 J.

(b) Use conservation of energy: K; +U; + Wy, = K, +U,. Gravity is the only force that does work on
the meter stick, so Wy =0. K; =0. Thus K, =U; -U, =-AU, where AU was calculated in part (a).
K, = %1 (022 SO %I a)z2 =—AU and @, = m . For stick pivoted about one end, I = %ML2 where

6(—-AU) =\/ 6(0.882J) =5.42 rad/s.

L=1.00 m, so =
“ J MI? (0.180 kg)(1.00 m)*
(¢) v=rw=(1.00 m)(5.42 rad/s) =5.42 m/s.

(d) For a particle in free fall, with +y upward, Voy 05 y =y =1 .00 m; a, =-9.80 m/sz; and v, =?
Solving the equation vﬁ = vgy +2a,(y—yo) for v, gives

v, =2, (v =) = ~/2(-9.80 m/s>)(~1.00 m) = - 4.43 m/s.

EVALUATE: The magnitude of the answer in part (¢) is larger. U, ,,, is the same for the stick as for a

particle falling from a height of 1.00 m. For the stick K = %I a)lz = %(%ML2 )(v/L)2 = %Mvz. For the stick

and for the particle, K, is the same but the same K gives a larger v for the end of the stick than for the

particle. The reason is that all the other points along the stick are moving slower than the end opposite

the axis.

IDENTIFY: The student accelerates downward and causes the wheel to turn. Newton’s second law applies
to the student and to the wheel. The acceleration is constant so the kinematics formulas apply.

- B = — 1 2 —
SETUP: X7=/e, LF =ma, y—y, = Vy,t +5ayt » Yy SV tayt
EXECUTE: Apply 7= /o to the wheel: TR =1 =I(a /R),s0 T =1a /R*.
Apply SF =mi to the student: mg—T=ma,so T =m(g—a).

Equating these two expressions for T"and solving for the acceleration gives a = Now apply

m+IR>

. . . [2(y— 2(y— +I/R?
kinematics for y — y, to the student, using vy, = 0, and solve for ¢. ¢ = = 0) = \/ 0= yo)lm+ 1/ ).
a mg
y

Putting in y — yy=12.0 m, m = 43.0 kg, I =9.60 kg - m?, and R = 0.300 m, we gett=2.92s.

mg
m+1I/R

Now use v, =V, ta,t togetv, where a = 5 Putting in the numbers listed above, the result is

v, =8.22 mys.
EVALUATE: If the wheel were massless, her speed would simply be v =./2gy = 15.3 m/s, so the effect of

the massive wheel reduces her speed by nearly half.
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9.74.

9.75.

IDENTIFY: Mechanical energy is conserved since there is no friction.
SErUpr: K +U;=K,+U,, K= %I @” (for rotational motion), K = %mv2 (for linear motion),

I= %ML2 for a slender rod.

EXECUTE: Take the initial position with the rod horizontal, and the final position with the rod vertical.
The heavier sphere will be at the bottom and the lighter one at the top. Call the gravitational potential
energy zero with the rod horizontal, which makes the initial potential energy zero. The initial kinetic
energy is also zero. Applying K; +U,; = K, +U, and calling A and B the spheres gives

0=Kx+ K+ Kiog T Uy + U + Uspq - Uoq = 0 in the final position since its center of mass has not moved.

Therefore 0 = %mAvi + %vaé + %Ia)2 + mAgé - mBgé. We also know that v, = vg = (L/2) w.

Calling v the speed of the spheres, we get 0= %msz +%va2 + %(%)(ML2 Y2v/IL)? + mygLt—mpgLt
Putting in m, = 0.0200 kg, mp = 0.0500 kg, M = 0.120 kg, and L = 800 m, we get v = 1.46 m/s.

EVALUATE: As the rod turns, the heavier sphere loses potential energy but the lighter one gains potential
energy.

IDENTIFY: ~Apply conservation of energy to the system of cylinder and rope.

SET Up: Taking the zero of gravitational potential energy to be at the axle, the initial potential energy is
zero (the rope is wrapped in a circle with center on the axle). When the rope has unwound, its center of
mass is a distance 7R below the axle, since the length of the rope is 27R and half this distance is the
position of the center of the mass. Initially, every part of the rope is moving with speed @R, and when the

rope has unwound, and the cylinder has angular speed @, the speed of the rope is @R (the upper end of
the rope has the same tangential speed at the edge of the cylinder). I =(1/ 2)MR2 for a uniform cylinder.
M m
= 5

e jR2a)2 —mgnR. Solving for @ gives

EXECUTE: K| =K, +U,. (%4.%] R} :(

Z+ %, and the speed of any part of the rope is v = wR.
m

EVALUATE: When m — 0, @ — ay, When m >>M, a)=,/a)§ +27[Tg and v:\/vg +27gR. This is the

final speed when an object with initial speed v, descends a distance 7R.

=

IDENTIFY: Apply conservation of energy to the system consisting of blocks 4 and B and the pulley.
SET UP: The system at points 1 and 2 of its motion is sketched in Figure 9.75.

A D A | | N(‘)z

#1

Figure 9.75

Use the work-energy relation K; +U; +W_ .. = K, +U,. Use coordinates where +y is upward and where

the origin is at the position of block B after it has descended. The tension in the rope does positive work on
block A4 and negative work of the same magnitude on block B, so the net work done by the tension in the
rope is zero. Both blocks have the same speed.
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9.71.

EXECUTE: Gravity does work on block B and kinetic friction does work on block A. Therefore
I/Vother = Wf = _iukmAgd~

K, =0 (system is released from rest)

Uy =mpgyp =mpgd; Uy =mpgyp, =0

-1 2,1 2,1 2
K2 —EmAVZ +EmBV2 +51602

But v(blocks) = Rax(pulley), so @ =v,/R and
Ky =3 (my +mp)v3 +31(v,/R)* =5 (m 4+ my +TR?)v3
Putting all this into the work-energy relation gives

mpgd — thm4gd =L (m, +my + IR )v)

(my +mp +I/R2)v§ =2gd(mg — thmy)

_ [|28d(mp — phm )
¢} (——y
my + mp +I/R
EVALUATE: If mg >>m, and I/R?, then vy =+/2gd; block B falls freely. If  is very large, v, is very
small. Must have mp > 4 m  for motion, so the weight of B will be larger than the friction force on A.
I/R? has units of mass and is in a sense the “effective mass” of the pulley.
IDENTIFY: Apply conservation of energy to the system of two blocks and the pulley.

SET UP: Let the potential energy of each block be zero at its initial position. The kinetic energy of the
system is the sum of the kinetic energies of each object. v = Rw, where v is the common speed of the

blocks and @1s the angular velocity of the pulley.
EXECUTE: The amount of gravitational potential energy which has become kinetic energy is

K =(4.00 kg —2.00 kg)(9.80 m/sz)(S.OO m) =98.0 J. In terms of the common speed v of the blocks, the
2
kinetic energy of the system is K = %(ml +my )v2 +%I (%j .

(0.380 kg - m?)

k=1 400 kg +2.00 kg + 5
2 (0.160 m)

y= |00 307 .
10.422 kg

EVALUATE: If the pulley is massless, 98.0 J = %(4.00 kg+2.00 kg)v2 and v =5.72 m/s. The moment of

] =12(10.422 kg). Solving for v gives

inertia of the pulley reduces the final speed of the blocks.
IDENTIFY: [ =1 +1,. Apply conservation of energy to the system. The calculation is similar to Example 9.8.

SET UP: =" for part (b) and @ = Y for part (c).
Ry R,

EXECUTE: (a) [ =1M R} +1M,R; =1((0.80 kg)(2.50x107 m)” +(1.60 kg)(5.00x107 m)?)
1=225x10"" kg-m°.

2gh

(b) The method of Example 9.8 yields v= | ——=——.
1+ (I/mR})

=3.40 ms.

(1+((2.25%107 kg-m?)/(1.50 kg)(0.025 m)>))

(c) The same calculation, with R, instead of R; gives v =4.95 m/s.

v= \/ 2(9.80 m/s*)(2.00 m)

EVALUATE: The final speed of the block is greater when the string is wrapped around the larger disk.
v =Rw, so when R =R, the factor that relates v to @is larger. For R = R, a larger fraction of the total
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9.79.

9.80.

kinetic energy resides with the block. The total kinetic energy is the same in both cases (equal to mgh), so
when R = R, the kinetic energy and speed of the block are greater.

IDENTIFY: The potential energy of the falling block is transformed into kinetic energy of the block and
kinetic energy of the turning wheel, but some of it is lost to the work by friction. Energy conservation
applies, with the target variable being the angular velocity of the wheel when the block has fallen a given
distance.

SETUP: K| +U, + Wy =K, +U,, where K = %mvz, U = mgh, and Wy, is the work done by friction.
EXECUTE: Energy conservation gives mgh+(—9.00 J) :%mv2 + %I @*. v=Rw, so %mv2 = %mRza)2
and mgh+(-9.001J) = %(mR2 +1)a)2. Solving for @ gives

o= Jz[mgh +(=9.001)] _ \/2[(0.340 kg)(9.8 m/s*)(3.00 m) = 9.00 J] _ T,

mR* +1 (0.340 kg)(0.180 m)? +0.480 kg - m?

EVALUATE: Friction does negative work because it opposes the turning of the wheel.

IDENTIFY: Apply conservation of energy to relate the height of the mass to the kinetic energy of the
cylinder.

SET UP: First use K(cylinder) =480 J to find @ for the cylinder and v for the mass.

Execute: 1=1MR*=1(10.0 kg)(0.150 m)* =0.1125 kg-m*. K =1iw’ so =~/2K/[ =92.38 rad/s.

v=Rw=13.86 m/s.
SET Up: Use conservation of energy K; +U; =K, +U, to solve for the distance the mass descends. Take

» =0 atlowest point of the mass, so y, =0 and y; = A, the distance the mass descends.
EXECUTE: K, =U, =0 so U =K,. mgh :%mv2 +%1a)2, where m =12.0 kg. For the cylinder,
1 :%MRZ and w=Vv/R, so %10)2 :%MVZ. Solving mgh :%mv2 +%Mv2 for & gives

=g(l +%) =139 m.
EVALUATE: For the cylinder K

Kmass = (2m/M)KC

=110’ =LA MR*)WIRY =1 M. K, =Im?, so

g =[2(12.0 kg)/10.0 kg](480 J) =1150 J. The mass has 1150 J of kinetic energy when
the cylinder has 480 J of kinetic energy and at this point the system has total energy 1630 J since U, =0.
Initially the total energy of the system is U; = mgy, = mgh =1630 J, so the total energy is shown to be

conserved.
IDENTIFY: Energy conservation: Loss of U of box equals gain in K of system. Both the cylinder and

pulley have kinetic energy of the form K = %I .

1 2 1 2 1 2
mboxgh - E MpyoxVoox T E I pulleywpulley + E I cylindera)cylinder'
Vv Vv
. — _box — box
SET UP: Opey = and Doylinder = .
pulley cylinder

Let B =box, P = pulley, and C = cylinder.

2 2
. 1y 2 if, 2\ Ve | pa1(1, 2\[VB S LN S S S S
EXECUTE:  mpgh =3 mgvg +E(EmPrP)[r_J +3(§mc”c)(r_] . mth—EvaB +ZmPVB +ZmCVB
P C

2
and vy :\/ mggh :\/(3.00 k)80 m/s*)(2.50m) _, o

Smg + pmp + pme 1.50 kg +4(7.00 kg)
EVALUATE: If the box was disconnected from the rope and dropped from rest, after falling 2.50 m its
speed would be v =4/2g(2.50 m) =7.00 m/s. Since in the problem some of the energy of the system goes

into kinetic energy of the cylinder and of the pulley, the final speed of the box is less than this.
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9.81. IDENTIFY: The total kinetic energy of a walker is the sum of his translational kinetic energy plus the
rotational kinetic of his arms and legs. We can model these parts of the body as uniform bars.

SET UP: For a uniform bar pivoted about one end, 7 = %mLz. v=5.0km/h =1.4 m/s.

Ko =4 mv? and K. o =%Ia)2.

1
tran 2

1 rad
EXECUTE: (a) 60°= (%) rad. The average angular speed of each arm and leg is 31 =1.05 rad/s.
s

(b) Adding the moments of inertia gives
I=dmy L+t Lie,” = 1[(0.13)(75 kg)(0.70 m)* +(0.37)(75 kg)(0.90 m)*]. 1 =9.08 kg-m”.

3 '"*arm™~arm

Ko =110 =1(9.08 kg-m*)(1.05 rad/s)* =5.0 J.
(©) Kiggn = 2mv* =1(75 kg)(1.4 m/s)* = 73.5 T and Ky = Ky + Koy =785 1.
(dy Kot =397 _ 649,

K 78.57]

tran
EVALUATE: If you swing your arms more vigorously more of your energy input goes into the kinetic
energy of walking and it is more effective exercise. Carrying weights in our hands would also be effective.

9.82.  IDENTIFY: The total kinetic energy of a runner is the sum of his translational kinetic energy plus the
rotational kinetic of his arms and legs. We can model these parts of the body as uniform bars.

SETUP: Now v =12 km/h =3.33 m/s. [;; =9.08 kg- m? as in the previous problem.

EXECUTE: (a) @,, = z3rad 2.1rad/s.
05s
(b) Ky = 110" =1(9.08 kg-m*)(2.1 rad/s)” = 20 J.
(€) Kian =2mv’ = 1(75 kg)(3.33 m/s)” = 416 J. Therefore
K = Kipan + Kpog =416 T + 207 = 436 1.
() Ko = 290026 046, 50 Koy i 4.6% of Ko
K, 4361

EVALUATE: The amount rotational energy depends on the geometry of the object.

9.83. IDENTIFY: We know (or can calculate) the masses and geometric measurements of the various parts of
the body. We can model them as familiar objects, such as uniform spheres, rods, and cylinders, and
calculate their moments of inertia and kinetic energies.

SET UP: My total mass is m = 90 kg. I model my head as a uniform sphere of radius 8 cm. I model my trunk
and legs as a uniform solid cylinder of radius 12 em. I model my arms as slender rods of length 60 cm.

® =72 rev/min = 7.5 rad/s. For a solid uniform sphere, / =2/5 MR, for a solid cylinder, 7 = %MR2 , and for

a rod rotated about one end 7 = 1/3 ML’
EXECUTE: (a) Using the formulas indicated above, we have Jio = Iicad + Lirunktiees + Jarms, Which gives

Liop =2(0.070m)(0.080 m)® +1(0.80m)(0.12 m)? +2(1)(0.13m)(0.60 m)? =3.3 kg m? where we have
used m =90 kg.

(b) Ky =110 =1(3.3 kg-m*)(7.5 rad/s)” =93 1.

EVALUATE: According to these estimates about 85% of the total / is due to the outstretched arms. If the
initial translational kinetic energy %mv2 of the skater is converted to this rotational kinetic energy as he

goes into a spin, his initial speed must be 1.4 m/s.
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9.84. IDENTIFY: Apply the parallel-axis theorem to each side of the square.
SET UP: Each side has length a and mass /4, and the moment of inertia of each side about an axis
perpendicular to the side and through its center is %(%Muz ) = ﬁMaz.
EXECUTE: The moment of inertia of each side about the axis through the center of the square is, from the
2 2 2
perpendicular axis theorem, A:[L_?g + %[%) = M_a. The total moment of inertia is the sum of the
2 2
contributions from the four sides, or 4x >a = M;
EVALUATE: If all the mass of a side were at its center, a distance a/2 from the axis, we would have
2
M 1 ..
1= 4(7][%) = ZMaZ. If all the mass was divided equally among the four corners of the square, a
2
. . ¥a M a A 2 .
distance a/+/2 from the axis, we would have [ = 4[?) (ﬁj = EMa . The actual / is between these two
values.
9.85. IDENTIFY: The density depends on the distance from the center of the sphere, so it is a function of ». We
need to integrate to find the mass and the moment of inertia.
SETUP: M = [dm=[pdV and I=[dl.
EXECUTE: (a) Divide the sphere into thin spherical shells of radius » and thickness dr. The volume of
cach shell is dV = 4zrdr. p(r)=a—br, with a =3.00x10° kg/m> and 5 =9.00x10° kg/m*. Integrating
. R 2 4l 3
ives M = |dm=\|pdV =| (a—br)dmr-dr=—nR’| a——DbR |.
g Jdm=[pav =] (a~br) i [ 2 j
_4 3 3 3 3 3 4 i
M = 55(0.200 m)’| 3.00x10° kg/m —2(9.00><10 kg/m™)(0.200 m) | = 55.3 kg.
(b) The moment of inertia of each thin spherical shell is
dl = grzdm = grzpdV = grz(a - br)47£r2dr = 8—”r“(a —br)dr.
3 3 3 3
R R
1=( dr :8—”j Aa-brydr =R a=LR)
0 370 15 6
I= %(0.200 m)’ (3.00><1o3 kg/m’ —%(9.00><103 kg/m*)(0.200 m)j =0.804 kg - m°.
EVALUATE: We cannot use the formulas M = pV and [ = %MR2 because this sphere is not uniform
throughout. Its density increases toward the surface. For a uniform sphere with density 3.00x10° kg/m3,
the mass is gﬂ'R3 p =100.5 kg. The mass of the sphere in this problem is less than this. For a uniform
sphere with mass 55.3 kgand R =0.200 m, / = %MR2 =0.885 kg- m?. The moment of inertia for the
sphere in this problem is less than this, since the density decreases with distance from the center of
the sphere.
9.86. IDENTIFY: Write K in terms of the period 7 and take derivatives of both sides of this equation to relate

dK/dt to dT/dt.
SETUP: w= 27Ttand K= %Ia)z. The speed of light is ¢ = 3.00x10% my/s.

2 2 2
27 I. K = fﬂﬁ The rate of energy loss is il [d—T. Solving for the
T dt T3 dt T3 dt

moment of inertia / in terms of the power P,

EXECUTE: (a) K =
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9.87.

9.88.

_PT? 1 _ (5x10° W)(0.03315)° ls
4z dT/dt ar? 422x1073 s

38 2
M) R= |2l = [20:08x10 kgmm ) —9.9%10% m, about 10 km.
oM\ 2(1.4)(1.99x10%° kg)

=1.09%10°% kg - m?

_27R _27(9.9x10°m)

©v =1.9%x10° m/s =6.3x10¢.
T (0.0331s)
M M 17 3 . . . . .
(@) p=—=——==6.9%10 "kg/m”, which is much higher than the density of ordinary rock by
V. (4z/3)R

14 orders of magnitude, and is comparable to nuclear mass densities.

EVALUATE: [is huge because M is huge. A small rate of change in the period corresponds to a large
release of energy.

IDENTIFY: The graph with the problem in the text shows that the angular acceleration increases linearly
with time and is therefore not constant.

SETUP: w, =d6/dt, o, =dw,/dt.

EXECUTE: (a) Since the angular acceleration is not constant, Eq. (9.11) cannot be used, so we must use
o, =dw,/dt and @_=df/dt and integrate to find the angle. The graph passes through the origin and has

a constant positive slope of 6/5 rad/s’, so the equation for a, is a, =(1.2 rad/s’)z. Using o, =dw,/dt

gives @, =@, + j.é o,dt =0+ .[(; (1.2 rad/s*)rdt = (0.60 rad/s>)t>. Now we must use w, =d@/dt and
integrate again to get the angle.
6,-6 = jo’ w.dt = _[;(0.60 rad/s®)e2dt = (0.20 rad/s®)® = (0.20 rad/s>)(5.0.5)° = 25 rad.

(b) The result of our first integration gives @, = (0.60 rad/s’)(5.0 s)* = 15 rad/s.
(c) The result of our second integration gives 4z rad = (0.20 rad/sz)t3, so ¢t = 3.98 s. Therefore
@, = (0.60 rad/s*)(3.98 5)* = 9.48 rad/s.

EVALUATE: When the constant-acceleration angular kinematics formulas do not apply, we must go back to
basic definitions.

IDENTIFY and SET Up:  The graph of &’ versus (6— 00)2 is shown in Figure 9.88. It is a straight line with

a positive slope. The angular acceleration is constant.

16.00

14.00 e

0.00 , , , ,
0.00 5.00 10.00 15.00 20.00

(6-6,)? (rad?)

Figure 9.88
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EXECUTE: (a) From graphing software, the slope is 0.921 m*/s* and the y-intercept is 0.233 m?/s”.
(b) The resultant acceleration is a* = atzan + arza g Oan =70, and a4 = ra)g , where
a)ﬁ = aﬁo +20,(0-6)) =0+ 2a,(6—6,). Therefore the resultant acceleration is
a=(ro, )+ [2ro,(0-6)
a'= 4’ (0-6,)° + (ra.)’.
From this result, we see that the slope of the graph is 4r2a§, S0 4r2a§ =0.921 m%/s*. Solving for o,
. 921m%/s*
gives o, = 09—m/s2 =0.600 rad/s’.
4(0.800 m)
(¢) Using @? = @2 +20.,(6-6;) gives @? =0+ 2(0.600 rad/s’)(37/4 rad), @, =1.6815 rad/s. The speed
isv=rm, =(0.800 m)(1.6815 rad/s) = 1.35 m/s.
(d) Call ¢ the angle between the linear velocity and the resultant acceleration. The resultant velocity is
2 2
tangent to the circle, so tang = Grad T 2 @y i also the case that wg =2a,A8, so
Aian I"CYZ e
2a,A
tan ¢ =2 %20 — )A9=2(n/2) = 7. Thus ¢ = arctan 7 = 72.3°.
Z
EVALUATE: According to the work in parts (a) and (b), the y-intercept of the graph is (rc, )2 and is
; . 233 m%s* .
equal to 0.233 m’/s*. Solving for o, gives a, = % =0.60 rad/s’, as we found in part (b).
(0.800 m)
9.89.  IDENTIFY and SET UP: The equation of the graph in the text is @ = (165 cm/s’)7>. For constant
acceleration, the second time derivative of the position (d in this case) is a constant.
2
EXECUTE: (a) % = (330 cm/s*)r and dd(j ) _ 330 cm/s’, which is a constant. Therefore the
t
acceleration of the metal block is a constant 330 cm/s” = 3.30 m/s’.

d(d L
b)v= % = (330 cm/s”)z. When d = 1.50 m = 150 cm, we have 150 cm = (165 cm/s>)#*, which gives
t=10.9535 s. Thus v = 330 cm/s”)(0.9535 s) = 315 cm/s = 3.15 m/s.

(¢) Energy conservation K, +U; =K, +U, gives mgd =41 * + %mv2. Using @ = v/r, solving for I and
putting in the numbers m = 5.60 kg, d=1.50 m, »=0.178 m, v = 3.15 m/s, we get / = 0.348 kg - m?.
(d) Newton’s second law gives mg — T = ma, T = m(g — a) = (5.60 kg)(9.80 m/s* — 3.30 m/s’) = 36.4 N.
EVALUATE: When dealing with non-uniform objects, such as this flywheel, we cannot use the standard
moment of inertia formulas and must resort to other ways.

9.90.  IDENTIFY: Apply /= [r* dm.

2.2

4
- and dI :”—;’%24 dz.

SET UP: Let z be the coordinate along the vertical axis. 7(z) = % dm = rmp

4 4
h h
EXECUTE: [ :Idl :QR_I 4 dz :ER—[ZSJ :iﬂpR“h. The volume of a right circular cone is
2 ptdo 10 4L Jo 10
( 7oR*h)
V =1zR%h, the mass is lfrpth andso [ =3 7R R? :iMRZ.
3 3 1ol 3 10

EVALUATE: For a uniform cylinder of radius R and for an axis through its center, / = %MRZ. 1 for the

cone is less, as expected, since the cone is constructed from a series of parallel discs whose radii decrease
from R to zero along the vertical axis of the cone.
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9.91. IDENTIFY: Follow the steps outlined in the problem.
SETUP: @, =dO/dt. o, =d*w./di*.

EXECUTE: (a) ds=rd6=rd0+ [0d0 sos(0)=r0+ gﬁz. 6 must be in radians.

(b) Setting s =vt =R0 + gé’z gives a quadratic in &. The positive solution is

o) =%[,1r02 +2 vt —ro}.

(The negative solution would be going backwards, to values of » smaller than 7. )

dow 2
(c) Differentiating, @, () =49 _ Y o =—== By

— -
dt |} +2pvt dt (”02 +2v)"?
is not constant.

(d) 7, =25.0 mm. € must be measured in radians, so £ =(1.55um/rev)(1 rev/27x rad) = 0.247 ym/rad.
Using 6(¢) from part (b), the total angle turned in 74.0 min = 4440 s is
1

e=—( 2(2.47x1077 m/rad)(1.25 m/s)(4440 s) +(25.0x107> m)*> —25.0x10> m
2.47x1077 m/rad \/ ( ) X )*( )

6= 1.337x10° rad, which is 2.13x10* rev.
(e) The graphs are sketched in Figure 9.91.
EVALUATE: @, must decrease as r increases, to keep v = r@ constant. For @, to decrease in time,

The angular acceleration ¢,

o, must be negative.

50 0
/
40N ~0.005
30 . ad  —001 /
wz(%) \\ a () /
20 ~0.015 /
10 ~0.02
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

t(s) 1(s)
Figure 9.91

9.92. IDENTIFY and SET UP: For constant angular speed 6 = ar.
EXECUTE: (a) €= ar = (14 rev/s)(2x rad/rev)(1/120 s) = 42°, which is choice (d).
EVALUATE: This is quite a large rotation in just one frame.

o (OB
9.93. IDENTIFY and SET UP: The average angular acceleration is «,, = 0
t

EXECUTE: (a) @), = ‘”_t‘"o = [8 rev/s — (~14 rev/s)J/(10 s) = (2.2 rev/s)(2n rad/rev) = 447/10 rad/s’
which is choice (d).
EVALUATE: This is nearly 14 rad/s’.

9.94. IDENTIFY and SET UP: The rotational kinetic energy is K = %I ®* and the kinetic energy due to running

is K =%mv2.
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EXECUTE: Equating the two kinetic energies gives %mv2 = %I *. Using [ = EmRz, we have

l(lmrz)a)z = lmvz, which gives v = o (0.05 m)(14 rev/s)(27 rad/rev) =3.11 m/s, choice (c).
2\2 2 NG ND)

EVALUATE: This is about 3 times as fast as a human walks.
9.95.  IDENTIFY and SETUpP: [ = %mR2.

EXECUTE: (a) [ = %mRz, so if we double the radius but keep the mass fixed, the moment of inertia

increases by a factor of 4, which is choice (d).
EVALUATE: The difference in length of the two eels plays no part in their moment of inertia if their mass is

the same in both cases.
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10.1. IpENTIFY: Use 7 =FI to calculate the magnitude of the torque and use the right-hand rule illustrated in
Section 10.1 in the textbook to calculate the torque direction.
(a) SET UP: Consider Figure 10.1a.
F EXECUTE: 7 =FI
[ =rsing = (4.00 m)sin 90°

5 I =400 m
axis @ - 7=(10.0 N)(4.00 m) =40.0 N- m

Figure 10.1a

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector 7
is directed out of the plane of the figure.
(b) SET Up: Consider Figure 10.1b.

EXECUTE: 7=FI

F
\ [ = rsing = (4.00 m)sin120°
400 m ’s‘f’ = 120%)

1=3.464 m
7=(10.0N)(3.464 m)=34.6 N-m

axis @ o B

r

Figure 10.1b

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector 7
is directed out of the plane of the figure.
(¢) SET Up: Consider Figure 10.1c.

K EXECUTE: 7 =FI
4.00 m /<¢= 30° =rsing = (4.00 m)sin30°
nike el 1=2.00 m
r £=(10.0 N)(2.00 m) =20.0 N - m
Figure 10.1¢

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector 7
is directed out of the plane of the figure.
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(d) SET Up: Consider Figure 10.1d.
2.00m EXECUTE: 7=Fl
axis @ . [ =rsing =(2.00 m)sin60° =1.732 m
_—T—**\<f:mw £=(10.0N)(1.732 m) =173 N-m
F
Figure 10.1d
This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector 7 is
directed into the plane of the figure.
(e) SET Up: Consider Figure 10.1e.
¥ EXECUTE: 7=FI
axig ) r=0s0/=0 and 7=0
Figure 10.1e
(f) SET Up: Consider Figure 10.1f.
s @ 1N EXECUTE: 7=FI
r Uzb:lso" [ =rsing, ¢=180°,
so /=0 and =0

Figure 10.1f
EVALUATE: The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of
the force passes through the axis.

10.2. IDENTIFY: 7 = F] with /=rsing. Add the two torques to calculate the net torque.
SET UP: Let counterclockwise torques be positive.
EXECUTE: 7, =—F/, =—=(8.00 N)(5.00 m) =—40.0 N - m.
7, =+F,l, =(12.0 N)(2.00 m)sin30.0°=+12.0 N-m. 2.7= 7 + 7, =—28.0 N-m. The net torque is
28.0 N - m, clockwise.
EVALUATE: Even though F <F,, the magnitude of 7 is greater than the magnitude of 7,, because F
has a larger moment arm.

10.3. IDENTIFY and SET UP: Use 7 = FI to calculate the magnitude of each torque and use the right-hand rule

(Figure 10.4 in the textbook) to determine the direction. Consider Figure 10.3.

AN b

N 7
N 7/
N 0.090 m 0.090 m 7
¢ =135
¢y =135°
r fl
0.090 m
F
F., 1
TTL T TaisNe L
A F

)(l)3 = 90°
\
N

N

Figure 10.3
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10.4.

10.5.

Let counterclockwise be the positive sense of rotation.

EXECUTE: 7 =7, =7, =4/(0.090 m)* +(0.090 m)> =0.1273 m
7 =-Hl

l; = rsingy =(0.1273 m)sin135° =0.0900 m

7, =—(18.0 N)(0.0900 m) =-1.62 N-m

7, is directed into paper

T, =+FKl,

I, =r,sing, =(0.1273 m)sin135° = 0.0900 m

7, = +(26.0 N)(0.0900 m) = +2.34 N - m

7, is directed out of paper

T3 = +F;l3

I3 =nsing; =(0.1273 m)sin90° = 0.1273 m

73 =+(14.0 N)(0.1273 m) = +1.78 N-m

7, is directed out of paper
2T=0+7,+73=—1.62N-m+234N-m+1.78 N-m=2.50 N-m

EVALUATE: The net torque is positive, which means it tends to produce a counterclockwise rotation; the
vector torque is directed out of the plane of the paper. In summing the torques it is important to include
+ or — signs to show direction.

IDENTIFY: Use 7 = Fl =rFsing to calculate the magnitude of each torque and use the right-hand rule to
determine the direction of each torque. Add the torques to find the net torque.

SET UP: Let counterclockwise torques be positive. For the 11.9 N force (F]), #=0. For the 14.6 N force
(Fy), r=0.350m and ¢ =40.0°. For the 8.50 N force (£3), » =0.350 m and ¢ =90.0°.

EXECUTE: 77 =0. 7, =—(14.6 N)(0.350 m)sin40.0° = -3.285 N - m.

73 = +(8.50 N)(0.350 m)sin90.0° =+2.975 N-m. 2 7=-3.285N-m+2.975N-m =-0.31 N- m. The net
torque is 0.31 N - m and is clockwise.

EVALUATE: If we treat the torques as vectors, 7, is into the page and 7, is out of the page.

IDENTIFY and SET UP: Calculate the torque using Eq. (10.3) and also determine the direction of the
torque using the right-hand rule.

(a) 7 =(=0.450 m)i + (0.150 m)j; F =(=5.00 N)i + (4.00 N)j. The sketch is given in Figure 10.5.

Figure 10.5

EXECUTE: (b) When the fingers of your right hand curl from the direction of 7 into the direction of F
(through the smaller of the two angles, angle @) your thumb points into the page (the direction of 7, the
—z-direction).

(¢) 7=F x F =[(=0.450 m)i + (0.150 m)j]x[(~ 5.00 N)i + (4.00 N) /]

A A

F=+(2.25N-m)i xi —(1.80 N-m)i X j— (0.750 N-m)jxi +(0.600 N -m)jx j
ixi=jxj=0

iX k, jxf:—lg
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10.6.

10.7.

10.8.

10.9.

10.10.

Thus 7 =— (1.80 N-m)k — (0.750 N - m)(—k) = (- 1.05 N - m)&.

EVALUATE: The calculation gives that 7 is in the —z-direction. This agrees with what we got from the
right-hand rule.

IDENTIFY: Knowing the force on a bar and the point where it acts, we want to find the position vector for
the point where the force acts and the torque the force exerts on the bar.

SET UP: The position vector is ¥ = xi + yj and the torque is 7 =F x F.

EXECUTE: (a) Using x=3.00 m and y =4.00 m, we have 7 =(3.00 m)i +(4.00 m)j.

(b) 7=Fx F =[3.00 m)i + (4.00 m)j]x[7.00 N)i +(=3.00 N)J].

7=(=9.00 N-m)k +(~28.0 N - m)(—k) = (~37.0 N - m)k. The torque has magnitude 37.0 N-m and is in
the —z-direction.

EVALUATE: Applying the right-hand rule for the vector product to 7 x F shows that the torque must be
in the —z-direction because it is perpendicular to both ¥ and F, which are both in the x-y plane.
IDENTIFY: Use 7 = FI = rFsing for the magnitude of the torque and the right-hand rule for the direction.
SET UP: Inpart (a), » =0.250 m and ¢ =37°.

EXECUTE: (a) 7=(17.0 N)(0.250 m)sin37° =2.56 N - m. The torque is counterclockwise.

(b) The torque is maximum when ¢ =90° and the force is perpendicular to the wrench. This maximum
torque is (17.0 N)(0.250 m) =4.25 N - m.

EVALUATE: If the force is directed along the handle then the torque is zero. The torque increases as the
angle between the force and the handle increases.

IDENTIFY: The constant force produces a torque which gives a constant angular acceleration to the disk
and a linear acceleration to points on the disk.

SETUP: X7, =Ier, applies to the disk, a)z2 = a)gz +20,(6 - 6) because the angular acceleration is

constant. The acceleration components of the rim are a,,, =ra and a_, = r@’, and the magnitude of the

. . _ v 2
acceleration is a =/ay,, *+ a. 4.

EXECUTE: (a) X7, =lo, gives Fr =|¢,. For a uniform disk,
Fr _ (30.0 N)(0.200 m)
I 0.800 kg - m”

6—6,=0.200 rev=1.257 rad. @, =0, so @’ =g, +20,(6 - 6,) gives

I=LMR* =1(40.0 kg)(0.200 m)* = 0.800 kg - m>. @, = =7.50 rad/s>.

w, = \/2(7.50 rad/sz)(l 257 rad) = 4.342 rad/s. v=ra=(0.200 m)(4.342 rad/s) =0.868 m/s.
(b) ay,, =ra=(0.200 m)(7.50 rad/s*) =1.50 m/s>. a4 = ra” =(0.200 m)(4.342 rad/s)* =3.771 m/s>.

a= \/atzan + arzad =4.06 m/s>.

EVALUATE: The net acceleration is neither toward the center nor tangent to the disk.
IDENTIFY: Apply 27, =lc,.

SETUP: @y, =0. @, =(400 reV/min)[Mj =41.9 rad/s
60 s/min
w_ — @,
EXECUTE: 7, =@, = 1%02 = (1.60 kg - m%% =838 N -m.
. S

EVALUATE: In 7, =/, &, must be in rad/s?.
IDENTIFY: Apply 27, =Ie, to the wheel. The acceleration a of a point on the cord and the angular

acceleration ¢ of the wheel are related by a = Ror.
SET UpP: Let the direction of rotation of the wheel be positive. The wheel has the shape of a disk and

1= %MRZ. The free-body diagram for the wheel is sketched in Figure 10.10a for a horizontal pull and
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10.11.

10.12.

in Figure 10.10b for a vertical pull. P is the pull on the cord and F is the force exerted on the wheel by
the axle.

7, _ (40.0 N)(0.250 m) =34.8 rad/s?

1 1(920 kg) (0250 m)®

EXECUTE: (a) ., =

a=Ra =(0.250 m)(34.8 rad/s>) =8.70 m/s>.
(b) F,==P, F,=Mg. F=yP?+(Mg)> =/(40.0 N)* +([9.20 kg][9.80 m/s’])? =98.6 N.

F 2
tang = u - Mg _ 020 ke)O.80 m/s7) and @ =66.1°. The force exerted by the axle has magnitude

|F.| P 40.0 N
98.6 N and is directed at 66.1° above the horizontal, away from the direction of the pull on the cord.
(¢) The pull exerts the same torque as in part (a), so the answers to part (a) don’t change. In part (b),
F+P=Mg and F =Mg— P =(9.20 kg)(9.80 m/sz) —40.0 N =50.2 N. The force exerted by the axle has
magnitude 50.2 N and is upward.
EVALUATE: The weight of the wheel and the force exerted by the axle produce no torque because they act
at the axle.

(b)
Figure 10.10

IDENTIFY: Use 2.7, =, to calculate ¢. Use a constant angular acceleration kinematic equation to
relate «,, w,, andt.
SET UP: For a solid uniform sphere and an axis through its center, / = %MRz. Let the direction the sphere

is spinning be the positive sense of rotation. The moment arm for the friction force is / =0.0150 m and the

torque due to this force is negative.
7, _ —(0.0200 N)(0.0150 m) _

z _ 2
7 7 3 14.8 rad/s
< (0.225 kg)(0.0150 m)

EXECUTE: (a) o, =

. - —22.5 rad/
() 0, —wy, =-22.5radls. w, =y, +o,t gives t = @~ % - ra 52
o, —14.8 rad/s

EVALUATE: The fact that ¢, is negative means its direction is opposite to the direction of spin. The

=1.52s.

negative ¢, causes @, to decrease.

IDENTIFY: Apply X F =md to the stone and Y. 7, = I, to the pulley. Use a constant acceleration
equation to find a for the stone.

SET UP: For the motion of the stone take +y to be downward. The pulley has 7 = %MRZ. a=Ra.
EXECUTE: (a) y— y = vy, +3a,t” gives 126 m=14,(3.005)* and a, =2.80 m/s”.

Then ZFy =ma,, applied to the stone gives mg —T =ma.
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2.7, = I, applied to the pulley gives TR = %MRza = %MRz(a/R). T= %Ma.
Combining these two equations to eliminate 7' gives
2
oM _a :[10.0 kg} 2.820 m/s =200k
2\g-a 2 9.80 m/s” —2.80 m/s
b)) T =%Ma =3(10.0 kg)(2.80 m/s?)=14.0 N
EVALUATE: The tension in the wire is less than the weight mg =19.6 N of the stone, because the stone
has a downward acceleration.
10.13. IDENTIFY: Apply > F =mi to each book and apply Y.z, = ¢, to the pulley. Use a constant
acceleration equation to find the common acceleration of the books.
SETUP: m; =2.00 kg, m, =3.00 kg. Let 7; be the tension in the part of the cord attached to m; and
T, be the tension in the part of the cord attached to m,. Let the +x-direction be in the direction of the
acceleration of each book. a = Ra.
. Abig= 2(1.2
EXECUTE: (a) x— Xy =V, ! +%ax12 gives a, = & sz) - 2020 mg =3.75 m/s”. a; =3.75 m/s? so
t (0.800 s)
T, =ma; =7.50N and 7, =m,(g —a;) =182 N.
(b) The torque on the pulley is (7, —7;)R =0.803 N - m, and the angular acceleration is
o =a;/R =50 rad/s*, so I =7/ =0.016 kg - m>.
EVALUATE: The tensions in the two parts of the cord must be different, so there will be a net torque on
the pulley.
10.14. IDENTIFY: Apply ZFy =ma, to the bucket, with +y downward. Apply 27, =1, to the cylinder, with

the direction the cylinder rotates positive.
SET UP: The free-body diagram for the bucket is given in Figure 10.14a and the free-body diagram for

the cylinder is given in Figure 10.14b. [ = %MRZ. a(bucket) = Ra(cylinder)
EXECUTE: (a) For the bucket, mg — T = ma. For the cylinder, 2.7, =Ic, gives TR = %MR2(Z. a=alR

then gives T = %Ma. Combining these two equations gives mg — %Ma =ma and

e —[ 150 ke J(9.80m/s2)=7.00m/52.

a= =
m+M/2 |15.0kg+6.0 kg
T =m(g —a)=(15.0 kg)(9.80 m/s*> — 7.00 m/s>) =42.0 N.

(b) v; =v5, +2a,(y - yy) gives v, = \/2(7.00 m/s?)(10.0 m) =11.8 my/s.

(©) a,=7.00m/s>, vy, =0, y=y,=10.0m. y—y,=vt+Llai* gives

t:\/2(y—y0) :\/2(10.0 m o

a, 7.00 m/s>
@ >F ), =ma,, applied to the cylinder gives n—T — Mg =0 and
n=T+mg=42.0 N+ (12.0 kg)(9.80 m/s*) =160 N.

EVALUATE: The tension in the rope is less than the weight of the bucket, because the bucket has a
downward acceleration. If the rope were cut, so the bucket would be in free fall, the bucket would strike

. /2 10.0
the water in ¢ = 9(80—111712) =1.43 s and would have a final speed of 14.0 m/s. The presence of the
. s

cylinder slows the fall of the bucket.
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10.15.

10.16.

Figure 10.14

IDENTIFY: The constant force produces a torque which gives a constant angular acceleration to the wheel.
SET UP: - @, =@, + ot because the angular acceleration is constant, and > 7, = e, applies to

the wheel.
EXECUTE: @), =0 and @, =12.0 rev/s =75.40 rad/s. @, =@, + o.t, so

o, = @; — M i e 37.70 rad/s>. >z, =Ia, gives
t 2.00s
7 _ Fr _(80.0 N)(0.120 m) £ 0255 kg m2.

a, 37.70 rad/s’
EVALUATE: The units of the answer are the proper ones for moment of inertia.
IDENTIFY: Apply > F =mi to each box and 2.7, = Ia, to the pulley. The magnitude a of the

acceleration of each box is related to the magnitude of the angular acceleration « of the pulley by a = Ra.
SET UP: The free-body diagrams for each object are shown in Figure 10.16. For the pulley, R =0.250 m

and 7 = %MRZ. T, and T, are the tensions in the wire on either side of the pulley. m; =12.0 kg,

m, =5.00 kg and M =2.00 kg. F is the force that the axle exerts on the pulley. For the pulley, let

clockwise rotation be positive.
EXECUTE: (a) LF, =ma, for the 12.0 kg box gives T; =mja. 2 F, =ma, for the 5.00 kg weight gives

myg —T, =mya. 37, =Ia, for the pulley gives (T, ~T)R=(LMR*)or. a=Rar and Ty -T; =1 Ma.
Adding these three equations gives m,g = (m; +m, + %M )a and

a= 2 — 8= 5.00 ke (9.80 m/s®) =2.72 m/s®. Then
m +m, + EM

12.0 kg +5.00 kg +1.00 kg
T, =mya = (12.0 kg)(2.72 m/s?) =32.6 N. m,g —T, =m,a gives
Ty = my(g — a) = (5.00 kg)(9.80 m/s> — 2.72 m/s*>) =35.4 N. The tension to the left of the pulley is 32.6 N
and below the pulley it is 35.4 N.
(b) a=2.72 m/s’
(¢) For the pulley, 2 F, =ma, gives F, =T} =32.6 N and X F, =ma, gives
F, = Mg +T, =(2.00 kg)(9.80 m/s*) +354 N =55.0 N.
EVALUATE: The equation m,g =(m; +m, + %M )a says that the external force m,g must accelerate all

three objects.
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Figure 10.16
10.17. IDENTIFY: Since there is rolling without slipping, v,,, = R@. The kinetic energy is given by
Kot = Ko + Koy Where K = %Mv%m and K = %Icma)z. The velocity of any point on the rim
of the hoop is the vector sum of the tangential velocity of the rim and the velocity of the center of mass of
the hoop.
SETUP: @=2.60rad/s and R =0.600 m. For a hoop rotating about an axis at its center, / = MR?.
EXECUTE: (2) v, = R =(0.600 m)(2.60 rad/s) =1.56 m/s.
() K =13, + 110 = LM, + L(MR*) (v /R?) = M3, = (2.20 kg)(1.56 m/s)” =5.35 1
(©) (i) v=2v, =3.12m/s. v is to the right. (ii) v=0
ey 2 D el \/_ ] = : s o :
(i) v= \/ch +vi = \/vcm +(Rw)” =V2v, =221 m/s. v at this pointis at 45° below the horizontal.
(d) To someone moving to the right at v=v,, the hoop appears to rotate about a stationary axis at its
center. (i) v = Rw =1.56 m/s, to the right. (i) v =1.56 m/s, to the left. (iii) v =1.56 m/s, downward.
EVALUATE: For the special case of a hoop, the total kinetic energy is equally divided between the motion
of the center of mass and the rotation about the axis through the center of mass. In the rest frame of the
ground, different points on the hoop have different speed.
10.18. IDENTIFY: The tumbler has kinetic energy due to the linear motion of his center of mass plus kinetic
energy due to his rotational motion about his center of mass.
SETUP: vy, = Ro. @=0.50revls =3.14 rad/s. [ =1MR® with R=0.50 m. K, =1MvZ, and
- 2
Krot - %Icmw :
EXECUTE: (a) K, = K, + Koy With K, _Mvcm and K, = I a)
= Ro = (0.50 m)(3.14 rad/s) =1.57 m/s. K., =5(75 kg)(1.57 m/s)> =92.4 J.
K =1 1n0” = LMR?@? = 1007 =4621. K, =9241+4621=140 1.
K 46.2
(b) _rot — 2 =339%,.
K 1401
EVALUATE: The kinetic energy due to the gymnast’s rolling motion makes a substantial contribution
(33%) to his total kinetic energy.
10.19. IDENTIFY: Apply K =K, + K.

SET Up: For an object that is rolling without slipping, v, = Rw.
EXECUTE: The fraction of the total kinetic energy that is rotational is
/2)1,,0" _ 1 1
W2MV2, + (U@ 1+ (M Wi @ T+ (MR*/1,,,)
(a I, = (1/2)MR2, so the above ratio is 1/3.
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10.20.

10.21.

® I.,= (2/5)MR? so the above ratio is 2/7.
© I, = (2/3)MR? so the ratio is 2/5.
(d) 1., =(5/8)MR? so the ratio is 5/13.

EVALUATE: The moment of inertia of each object takes the form 7 = ﬂMRz. The ratio of rotational

B

! =—"—. The ratio increases as f increases.
1+1/8 1+

IDENTIFY: Only gravity does work, so W .. =0 and conservation of energy gives K; +U; =K, +U,.

kinetic energy to total kinetic energy can be written as

- 2 2
Ky =IMve, +31,0°.
SETUP: Let y, =0, so U, =0 and y; =0.750 m. The hoop is released from rest so K; =0. v, = Rw.
For a hoop with an axis at its center, [, = MR?.

EXECUTE: (a) Conservation of energy gives U; =K,. K, = %MRZC()Z + %(MRz)a)2 = MR*@? so

)
MR*a? = Mgy, o= = V(9.80 mis*)0.750 m) =33.9 radss.
R 0.0800 m
(b) v=Rew=(0.0800 m)(33.9 rad/s) =2.71 m/s

EVALUATE: An object released from rest and falling in free fall for 0.750 m attains a speed of
+/22(0.750 m) =3.83 m/s. The final speed of the hoop is less than this because some of its energy is in

kinetic energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the
hoop to be less than its weight.

IDENTIFY: Apply 2. F;m =md,, and X7, =I . tothe motion of the ball.
(a) SET UP: The free-body diagram is given in Figure 10.21a.

EXECUTE: ZFy =ma

y

n=mg cos and f, = i mg cos@

2F. =ma,

mg sin @ — Umg cos @ = ma

g(sin@— i, cosb) =a (Eq. 1)
Figure 10.21a
SET UP: Consider Figure 10.21b.

@ n and mg act at the center of the ball

and provide no torque.

Figure 10.21b

EXECUTE: Y.7=7, = fimg cos6R; [=2mR’
2, =1 o, gives U, mgcos OR = ngza

No slipping means « =a/R, so g cosf = %a (Eq. 2)



10-10 Chapter 10

We have two equations in the two unknowns a and f4. Solving gives a = % gsin@ and
M= %tanH = %tan 65.0°=0.613.
(b) Repeat the calculation of part (a), but now 7 = ngz .a= % gsin@ and
s =%tanf = Ztan 65.0° = 0.858
The value of £ calculated in part (a) is not large enough to prevent slipping for the hollow ball.
(c) EVALUATE: There is no slipping at the point of contact. More friction is required for a hollow ball
since for a given m and R it has a larger / and more torque is needed to provide the same ¢. Note that the
required £/, is independent of the mass or radius of the ball and only depends on how that mass is
distributed.

10.22. IDENTIFY: Apply X F =ma to the translational motion of the center of mass and 27, =Ia, tothe
rotation about the center of mass.
SET UP: Let +x be down the incline and let the shell be turning in the positive direction. The free-body
diagram for the shell is given in Figure 10.22. From Table 9.2, I, :%mRz :
EXECUTE: (a) X F, =ma, gives mgsin f— [ =mag,. 27, =Ia, gives fR= (%mRz)a. With
o =a.,/R this becomes f = %macm. Combining the equations gives mg sinff— %macm =mag, and

_3gsinf_ 3(9.80 m/s”)(sin38.0°) _ > . | Py
== 5 =3.62 m/s°. [ =2mag, =2(2.00 kg)(3.62 m/s*) =4.83 N. The
friction is static since there is no slipping at the point of contact. n = mg cos f=15.45 N.
s :i :M =(0.313.
n 1545N

(b) The acceleration is independent of m and doesn’t change. The friction force is proportional to m so will
double; f =9.66 N. The normal force will also double, so the minimum £/ required for no slipping
wouldn’t change.
EVALUATE: If there is no friction and the object slides without rolling, the acceleration is g sin/.
Friction and rolling without slipping reduce a to 0.60 times this value.
Figure 10.22

10.23. IDENTIFY: Apply conservation of energy to the motion of the wheel.

SET Up: The wheel at points 1 and 2 of its motion is shown in Figure 10.23.
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10.24.

@90 Take y = 0 at the center of the wheel when it is
at the bottom of the hill.

®; =250 rad/sr.\
2=

#1

Figure 10.23

The wheel has both translational and rotational motion so its kinetic energy is K = %1 cma)2 + %Mvczm.

EXECUTE: K| +U;+W .. =K, +U,
w

other

=W, =—2600 ] (the friction work is negative)
K, =41af +1Mv}; v=Ro and 1=0800MR* so
K, =1(0.800)MR*af + L MR’} = 0.900MR* &
K, =0, U, =0, U, =Mgh
Thus 0.900MR>@; + Wy, = Mgh
M =wlg =392 N/(9.80 m/s?) =40.0 kg
_ 0.900MR* @} + Wy,
Mg
, = (0900)(40.0 kg)(0.600 m)*(25.0 rad/s)* =2600 J _
(40.0 kg)(9.80 m/s?)

EVALUATE: Friction does negative work and reduces 4.
IDENTIFY: Apply conservation of energy to the motion of the marble.

h

14.0 m

SETUP: K =%mv2 + %10)2, with [ = %MR2. Vem = R for no slipping.
Let y =0 at the bottom of the bowl. The marble at its initial and final locations is sketched in
Figure 10.24.

EXECUTE: (a) Motion from the release point to the bottom of the bowl: mgh = %mv2 + %I .

2 v [io
-1 2 1 2 —
mgh —Emv + E(ng J(E] and v= 7—gh

Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction
torque on the marble, %mv2 + K =mgh+ K. h'= Va8 2y,

(b) mgh=mgh’ so W' =h.

EVALUATE: (c) With friction on both halves, all the initial potential energy gets converted back to

potential energy. Without friction on the right half some of the energy is still in rotational kinetic energy
when the marble is at its maximum height.

h

Rough

2 Smooth
(no slipping)

Figure 10.24
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10.25.

10.26.

IDENTIFY: As the cylinder falls, its potential energy is transformed into both translational and rotational
kinetic energy. Its mechanical energy is conserved.

SET UP: The hollow cylinder has = %m(Rs +R§), where R, =0.200 m and R, =0.350 m. Use
coordinates where +y is upward and y =0 at the initial position of the cylinder. Then y; =0 and

¥, =—d, where d is the distance it has fallen. v, = Rw. K, = %Mvﬁm and K, = Icmwz.

1
2
EXECUTE: (a) Conservation of energy gives K;+ U; =K, + U,. K;=0, U;=0. 0=U,+ K, and

om F @ 1107 = LA mRY A RN eu/Ry)” = Lm[1+ (R, /R,) oy 5O

— 1
0=—-mgd + 3mv om

(L+ S0+ R /R DVam _ (1+0.663)(6.66 m/s)
2g 2(9.80 m/s?)

) K, = %mvgm since there is no rotation. So mgd = %mv%m which gives

=3.76 m.

LA+1[1+(R, /R Do = gd and d =

Ve = v/22d =/2(9.80 m/s2)(3.76 m) = 8.58 ms.

(c) In part (a) the cylinder has rotational as well as translational kinetic energy and therefore less
translational speed at a given kinetic energy. The kinetic energy comes from a decrease in gravitational
potential energy and that is the same, so in (a) the translational speed is less.

EVALUATE: If part (a) were repeated for a solid cylinder, R, =0 and d =3.39 m. For a thin-walled
hollow cylinder, R, =R, and d =4.52 cm. Note that all of these answers are independent of the mass m
of the cylinder.

IDENTIFY: Apply Y7, =Ie, and ¥ F =md to the motion of the bowling ball.

SETUP: a, =Ra. f,=n. Let +x be directed down the incline.

EXECUTE: (a) The free-body diagram is sketched in Figure 10.26.
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up
the hill.

(b) The friction force results in an angular acceleration, given by /az= fR. > F =ma applied to the

motion of the center of mass gives mg sinf— f =ma_,,, and the acceleration and angular acceleration are

cm?

related by a.,, = Ra.

Combining, mg sinf =may, (1 + %) = magy, (7/5). agy, =(5/7)g sinf.
m

. . 2 2 .
(¢) From either of the above relations between fand a.,,, [ =—ma, = 7mg sinff < pn = pgmgeosf.

5
U = (2/T)tanp.
EVALUATE: If 1, =0, a., =mgsinf. a., isless when friction is present. The ball rolls farther uphill

when friction is present, because the friction removes the rotational kinetic energy and converts it to
gravitational potential energy. In the absence of friction the ball retains the rotational kinetic energy that is
has initially.

Figure 10.26
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10.27.

10.28.

10.29.

IDENTIFY: As the ball rolls up the hill, its kinetic energy (translational and rotational) is transformed into
gravitational potential energy. Since there is no slipping, its mechanical energy is conserved.

SET UP: The ball has moment of inertia /7, = %mRz. Rolling without slipping means v.,, = Rw. Use
coordinates where +y is upward and y =0 at the bottom of the hill, so y; =0 and y, =/ =5.00 m. The
ball’s kinetic energy is K = %mvim + %Icma)2 and its potential energy is U = mgh.

EXECUTE: (a) Conservation of energy gives K| +U; = K, +U,. U; =0, K, =0 (the ball stops).

2
Therefore K; =U, and %mv2 +11. @® = mgh. %Icma)ZZ%(%mRz)(chmj :émvfm, so

7 ‘em
2
(S)mvgm = mgh. Therefore v, ‘f6‘§h \/6(9'80 m/ss )C-00m) 7.67 m/s and
= Mo - 76T s g g s
R 0.113m

(b) K,y =+ Ia) =1 mv = 1(0.426 kg)(7.67 m/s)> =8.35J.

EVALUATE: Its translational kinetic energy at the base of the hill is %mv% =3K., =12.52 7. Its total
kinetic energy is 20.9 J, which equals its final potential energy:

mgh = (0.426 kg)(9.80 m/s*)(5.00 m) = 20.9 .

IDENTIFY: At the top of the hill the wheel has translational and rotational kinetic energy plus gravitational
potential energy. The potential energy is transformed into additional kinetic energy as the wheel rolls down
the hill.

SET UP: The'wheel has 7 = MR?, with M =225 kg and R =0.425 m. Rolling without slipping means

m = Re for the wheel. Initially the wheel has v, =11.0 m/s. Use coordinates where +y is upward
and y =0 at the bottom of the hill, so y; =75.0 m and y, = 0. The total kinetic energy of the wheel is
K= —mv I a)2 and its potential energy is U = mgh.

EXECUTE: (a) Conservation of energy gives K; +U; = K, +U,.

K

2
1 2= 102 41 24 Yem | = 2 2
FMVen + 5 Icma) MV +5(mR )[—) Cm Therefore K| =mvyy, | and Ky =mvg, 5.

2
Uy =mgy, Uy =mgy, =0, so mgy, +mvy = chmz Solving for v, , gives

Vema = Va1 + @1 =y(11.0 m/s)? +(9.80 m/s?)(75.0 m) = 29.3 mls.

(b) From (b) we have K, = mvZ,, = (2.25 kg)(29.3 m/s)” =1.93x10°J.

EVALUATE: Because of the shape of the wheel (thin-walled cylinder), the kinetic energy is shared equally
between the translational and rotational forms. This is not true for other shapes, such as solid disks or
spheres.

(a) IDENTIFY: Use 2.7, = /e, to find ¢, and then use a constant angular acceleration equation to

find w,.

SET UP: The free-body diagram is given in Figure 10.29.

a, ¥ EXECUTE: Apply 27, = /¢, to find the
angular acceleration:
FR=1 aZ
o, = ER S ABONN@AO M) _ 5057 ras?

Figure 10.29
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SET Up: Use the constant ¢, kinematic equations to find w,.

w, =7 a, (initially at rest); o, =0.02057 rad/s?; 1=15.0's

EXECUTE: @, =@, +o,t=0+(0.02057 rad/s*)(15.0 s) =0.309 rad/s

(b) IDENTIFY and SET UP: Calculate the work from W =7,A6, using a constant angular acceleration
equation to calculate & —§,, or use the work-energy theorem. We will do it both ways.
EXECUTE: (1) W =7,A0

AO=6-6y =yt +La.r’ =0+1(0.02057 rad/s*)(15.0 s)* =2.314 rad
7,=FR=(18.0N)(240m)=432N-m

Then W =7,A6 =(43.2 N-m)(2.314 rad) =100 J.

or

() Wi =Ky — K4

Wit =W, the work done by the child

K =0; K, =110 =1(2100 kg- m*)(0.309 rad/s)* =100 I

Thus W =100 J, the same as before.

EVALUATE: Either method yields the same result for .

A
(c) IDENTIFY and SETUP: Use P = AW to calculate P, .
At

EXECUTE: P, =——=—-=6.67 W.

EVALUATE: Work is in joules, power is in watts.

10.30. IDENTIFY: Apply P=7w and W =7A86.
SET UP: P must be in watts, A@ must be in radians, and @ must be in rad/s. 1 rev =27 rad.
1hp =746 W. x rad/s =30 rev/min.

EXECUTE: (a) 7= E = PN W/hpj/ =519 N -m.
@ (2400 rev/min)(” Tagys )
30 rev/min

(b) W =71A0 =(519 N-m)(2x rad) =3260 J
EVALUATE: @ =40 rev/s, so the time for one revolution is 0.025s. P=1 306%10° W, so in one
revolution, W = Pt =3260 J, which agrees with our result.

10.31. IDENTIFY: Apply > 7. =/, and constant angular acceleration equations to the motion of the wheel.
SETUP: 1rev=2xrad. 7 rad/s =30 rev/min.

EXECUTE: (a) 7,=lc, =1 W, — Dz
t
((72)(2.80 ke)(0.100 m)?) 1200 rev/min)(;) rodis j
7,= >3 reviming _ o o4 N m
DS
(b) @, A= (600 reV/mlr?)(z,S s =25.0rev =157 rad.
60 s/min

(¢) W =7A0=(0.704 N - m)(157 rad) = 111 J.

2
(d K=11o?= i((l/z)(z.so kg)(0.100 m)2) (1200 reV/min)(l rads j =111J.
2 2 30 rev/min

the same as in part (c).
EVALUATE: The agreement between the results of parts (c) and (d) illustrates the work-energy theorem.
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10.32.

10.33.

10.34.

10.35.

IDENTIFY: The power output of the motor is related to the torque it produces and to its angular velocity
by P=7,w., where @, must be in rad/s.

z7z

6.00 kJ
s

=100 W.

SET UP: The work output of the motor in 60.0 s is %(9.00 kJ)=6.00kJ, so P=
w, = 2500 rev/min = 262 rad/s.

EXECUTE: 7,=—=———=0382N'm
@, 262 rad/s

Z
EVALUATE: For a constant power output, the torque developed decreases when the rotation speed of the
motor increases.

(a) IDENTIFY and SET UP:  Use P =7 @, and solve for 7,, where @, must be in rad/s.
EXECUTE: @, = (4000 rev/min)(27 rad/l rev)(1 min/60 s) =418.9 rad/s

418.9 rad/s

(b) IDENTIFY and SET UP: Apply X F =ma to the drum. Find the tension 7 in the rope using 7, from
part (a). The system is sketched in Figure 10.33.

()

z

EXECUTE: v constant implies a =0

and T'=w
T 7, =TR implies
T'=7,/R=358 N -m/0.200 m =1790 N
VT D Thus a weight w=1790 N can be lifted.

w

Figure 10.33

(c) IDENTIFY and SET Up: Use v = Rw.
EXECUTE: The drum has w=418.9 rad/s, so v=(0.200 m)(418.9 rad/s) = 83.8 my/s.

EVALUATE: The rate at which 7 is doing work on the drum is P =7v = (1790 N)(83.8 m/s) =150 kW.
This agrees with the work output of the motor.

IDENTIFY: Apply 2.7, =Iex, to the motion of the propeller and then use constant acceleration equations
to analyze the motion. W =7AG6.

SerUp: [ =Lmr? =L.(117 kg)(2.08 m)* =42.2 kg m”.

EXECUTE: (a) @=L =—20 N _ 46 radss?.

(b) @’ =ax, +20,(6-6,) gives @=-206 = \/2(46.2 rad/s?)(5.0 rev)(27r rad/rev) = 53.9 rad/s.
(€) W =76 =(1950 N - m)(5.00 rev)(27 rad/rev) = 6.13x10% J.

4

@ =% o S3I0AS gy p WSO g 5w,
o, 46.2 rad/s At 117 s

(€ P=1e = (1950 N-m )(53.9 rad/s) = 105 kW.

EVALUATE: P =7w. 7 isconstant and @ is linear in ¢, so F,, is half the instantaneous power at the end

of the 5.00 revolutions. We could also calculate ¥ from
W=AK =110 =1(42.2 kg- m*)(53.9 rad/s)” =6.13x10* J.
(a) IDENTIFY: Use L =mvrsing.

SET UP: Consider Figure 10.35 (next page).



10-16 Chapter 10
- /\rb = 143.1° EXECUTE: L = mvrsing =
:,D A - - (2.00 kg)(12.0 m/s)(8.00 m)sin143.1°
2 3
36. _ 2
) : [ = rsin 36.9°= rsin ¢ L=115 kg -m~/s
mg
axis
Figure 10.35
To find the direction of L apply the right-hand rule by turning # into the direction of ¥ by pushing on it
with the fingers of your right hand. Your thumb points into the page, in the direction of L.
dL
(b) IDENTIFY and SET UP: By 7 = — the rate of change of the angular momentum of the rock equals
dt
the torque of the net force acting on it.
EXECUTE: 7 =mg(8.00 m) cos 36.9° =125 kg - m?/s*
To find the direction of 7 and hence of dL/dt, apply the right-hand rule by turning 7 into the direction of
the gravity force by pushing on it with the fingers of your right hand. Your thumb points out of the page, in
the direction of dL/dt.
EVALUATE: L and dL/dt are in opposite directions, so L is decreasing. The gravity force is accelerating
the rock downward, toward the axis. Its horizontal velocity is constant but the distance / is decreasing and
hence L is decreasing.
10.36. IDENTIFY: L=Il® and I=13y + I oman-
SETUP: @ =0.80 tev/s = 5.026 rad/s. Iyg = 1mgg R* and Ljoman = Myoman R
EXECUTE: [ = (55 kg +50.0 kg)(4.0 m)? =1680 kg - m>.
L =(1680 kg - m?)(5.026 rad/s) =8.4x10° kg - m’/s.
EVALUATE: The disk and the woman have similar values of 7, even though the disk has twice the mass.
10.37. IDENTIFY and SETUP: Use L =/w.
EXECUTE: The second hand makes 1 revolution in 1 minute, so
® = (1.00 rev/min)(27 rad/1 rev)(1 min/60 s) = 0.1047 rad/s.
For a slender rod, with the axis about one end,
=1MI* =1(6.00x107 kg)(0.150 m)* =4.50x 10 kg-m”.
Then L =Iw=(4.50x10"> kg-m?>)(0.1047 rad/s) =4.71x10~° kg-m?/s.
EVALUATE: L is clockwise.
10.38. IDENTIFY: L, =/w,

SET UP: For a particle of mass m moving in a circular path at a distance  from the axis, 7 = mr? and

v =r®. For a uniform sphere of mass M and radius R and an axis through its center, / = %MRZ. The earth

has mass mg =5.97 x10%* kg, radius Ry =6.37x% 10° m and orbit radius 7 =1.50x10"" m. The earth

completes one rotation on its axis in 24 h =86,400 s and one orbitin 1y = 3.156x107 s.
27 rad
3.156x107 s

The radius of the earth is much less than its orbit radius, so it is very reasonable to model it as a particle for
this calculation.

EXECUTE: (a) L, = lw, = mr’@, =(5.97x10%** kg)(1.50x10"! m)z( j: 2.67x10% kg-m?/s.

M} =7.07x10% kg-m?/s
86,400 s

EVALUATE: The angular momentum associated with each of these motions is very large.

(b) L, =Im, = (2 MR*)w=2(5.97x10** kg)(6.38x10° m)z[
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10.39.

10.40.

10.41.

IDENTIFY: @, =d@/dt. L, =1w, and 7, =dL./dt.

SET UP: For a hollow, thin-walled sphere rolling about an axis through its center, 7 = %MRZ.
R=0.240 m.

EXECUTE: (a) 4=1.50 rad/s> and B =1.10 rad/s®, so that 6(t) will have units of radians.

®) () o, :% =2Ar+4Br>. At t=3.00s,

@, =2(1.50 rad/s?)(3.00 s) + 4(1.10 rad/s*)(3.00 s)’ =128 rad/s.
L, =(ZMR*)w, =2(12.0 kg)(0.240 m)* (128 rad/s) = 59.0 kg-m*/s.
Gi) 7. =2 = 199 _ 104 +128/%) and

dt dt

7, = 2(12.0 kg)(0.240 m)? [2(1.50 rad/s?) +12(1.10 rad/s*)(3.00 s)z] =56.1N - m.

EVALUATE: The angular speed of rotation is increasing. This increase is due to an acceleration ¢, that is
produced by the torque on the sphere. When [ is constant, as it is here, 7, =dL,/dt = Ildw,/dt = 1c,.
IDENTIFY and SET UP: L is conserved if there is no net external torque.

Use conservation of angular momentum to find @ at the new radius and use K = %I @ to find the change

in kinetic energy, which is equal to the work done on the block.
EXECUTE: (a) Yes, angular momentum is conserved. The moment arm for the tension in the cord is zero
so this force exerts no torque and there is no net torque on the block.

(b) L, =L, so o = I,w,. Block treated as a point mass, so / = mr%, where r is the distance of the block

from the hole.

miy @y = mrs @,

2 2
(5 a O.300mj _
=1 = 2.85 rad/s) =11.4 rad/
X (rzj “ (O.lSOm Sosr i

17,2 1 S S
(©) Ky =5haf =5mi @ =5my

v, = r,o, = (0.300 m)(2.85 rad/s) = 0.855 m/s

K, = %mvf = 2(0.0250 kg)(0.855 m/s)?> =0.00914 J

- 2
K, —%mvz
v, =@, =(0.150 m)(11.4 rad/s) = 1.71 m/s

K,

=2mv; = % (0.0250 kg)(1.71 m/s*)* = 0.03655 J

AK =K, - K;=0.03655J -0.00914 J =0.0274 J =27.4 mJ.

(@) Wiy =AK

But W, =W, the work done by the tension in the cord, so W =0.0274 J.

EVALUATE: Smaller » means smaller /. L =/® is constant so @ increases and K increases. The work
done by the tension is positive since it is directed inward and the block moves inward, toward the hole.
IDENTIFY: Apply conservation of angular momentum.

SET UP: For a uniform sphere and an axis through its center, / = %MRz.

EXECUTE: The moment of inertia is proportional to the square of the radius, and so the angular velocity
will be proportional to the inverse of the square of the radius, and the final angular velocity is

2 5 2
0= ﬁ _ 27 rad 7.0x10° km —46%10° rad/s.
R, (30 d)(86,400 s/d) 16 km
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10.44.

10.45.

10.46.

EVALUATE: K = %I w* = %La). L is constant and @ increases by a large factor, so there is a large

increase in the rotational kinetic energy of the star. This energy comes from potential energy associated
with the gravity force within the star.

IDENTIFY and SET UP: Apply conservation of angular momentum to the diver.

SET UP: The number of revolutions she makes in a certain time is proportional to her angular velocity.

The ratio of her untucked to tucked angular velocity is (3.6 kg - m? )/(18 kg - mz).

EXECUTE: If she had not tucked, she would have made (2 rev)(3.6 kg - m? )/(18 kg - mz) =0.40 rev
in the last 1.0 s, so she would have made (0.40 rev)(1.5/1.0) =0.60 rev_in the total 1.5 s.

EVALUATE: Untucked she rotates slower and completes fewer revolutions.
IDENTIFY: Apply conservation of angular momentum to the motion of the skater.

SET UP: For a thin-walled hollow cylinder 7 = mR?. For a slender rod rotating about an axis through its
1.7

center, / —Eml 4

EXECUTE: L, =L; so [iw =I;w;.

I; =040 kg-m” +-L(8.0 kg)(1.8 m)* =2.56 kg-m*. /¢ =0.40 kg-m” +(8.0 kg)(0.25 m)” =0.90 kg - m”.

2
o = L ® = 256l<—gr112 (0.40 rev/s) =1.14 rev/s.
I; 0.90 kg-m

EVALUATE: K = %I @’ = %Lw. @ increases and L is constant, so K increases. The increase in kinetic

energy comes from the work done by the skater when he pulls in his hands.
IDENTIFY: Apply conservation of angular momentum to the collision.
SET UP: Let the width of the door be /. The initial angular momentum of the mud is mv(/2), since it

strikes the door at its center. For the axis at the hinge, /4., = %Ml 2 and T ud = m(l/2)%.

_ L mv(l/2)

EXECUTE: w=—= 5 ok

I (1/3)MI” +m(l/2)

o= (0.500 kg)(12.0 m/s)(0.500 m)
(1/3)(40.0 kg)(1.00 m)?* + (0.500 kg)(0.500 m)*

Ignoring the mass of the mud in the denominator of the above expression gives @ = 0.225 rad/s,

so the mass of the mud in the moment of inertia does affect the third significant figure.

EVALUATE: Angular momentum is conserved but there is a large decrease in the kinetic energy of the

system.

IDENTIFY and SET UP: There is no net external torque about the rotation axis so the angular momentum

L =1w is conserved.

EXECUTE: (a) L, =L, gives [jo = ,w,, so @, =(I}/1;)®
I = I, =L MR* = 1(120 kg)(2.00 m)* = 240 kg - m”

=0.223 rad/s.

I, =1y +1,=240 kg-m® + mR*> =240 kg - m* + (70 kg)(2.00 m)* =520 kg - m’
w, =(I1/1))m = (240 kg - m?/520 kg - m?)(3.00 rad/s) =1.38 rad/s

) K; =110f =1(240 kg- m)(3.00 rad/s)* =1080 J

K, =1505 =1(520 kg- m*)(1.38 rad/s)* =495 J

EVALUATE: The kinetic energy decreases because of the negative work done on the turntable and the
parachutist by the friction force between these two objects.

The angular speed decreases because / increases when the parachutist is added to the system.

IDENTIFY: Apply conservation of angular momentum to the system of earth plus asteroid.

SET Up: Take the axis to be the earth’s rotation axis. The asteroid may be treated as a point mass and it
has zero angular momentum before the collision, since it is headed toward the center of the earth. For the
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10.47.

10.48.

10.49.

earth, L, =/w, and [ = %MRZ, where M is the mass of the earth and R is its radius. The length of a day is

T= 27 rad , where @ is the earth’s angular rotation rate.
w
EXECUTE: Conservation of angular momentum applied to the collision between the earth and asteroid
-
gives ZMR*ay = (mR* +2MR*)w, and m=2M [w]w—zz] T, =1.2507; gives é =1';j and

@ =1.2500,. % =0.250. m =2(0.250)M =0.100M.

EVALUATE: If the asteroid hit the surface of the earth tangentially it could have some angular momentum
with respect to the earth’s rotation axis, and could either speed up or slow down the earth’s rotation rate.

(a) IDENTIFY and SET UP: Apply conservation of angular momentum L, with the axis at the nail. Let
object A be the bug and object B be the bar. Initially, all objects are at rest and Z; = 0. Just after the bug
jumps, it has angular momentum in one direction of rotation and the bar is rotating with angular velocity wp
in the opposite direction.

EXECUTE: L, =m v r —[gwp where » =1.00 m and /p =%m3r2

Ly =L, gives myv r Z%mBrza)B

g =TAVA =120 rad/s
mBV
(b) K;=0;
Ky =Lmv + 105 =1(0.0100 kg)(0.200 m/s)* +1.(2(0.0500 ke)(1.00.m)*)(0.120 rad/s)* =3.2x107* J.

(c¢) The increase in kinetic energy comes from work done by the bug when it pushes against the bar in
order to jump.

EVALUATE: There is no external torque applied to the system and the total angular momentum of the
system is constant. There are internal forces, forces the bug and bar exert on each other. The forces exert
torques and change the angular momentum of the bug and the bar, but these changes are equal in
magnitude and opposite in direction. These internal forces do positive work on the two objects and the
kinetic energy of each object and of the system increases.

IDENTIFY: As the bug moves outward, it increases the moment of inertia of the rod-bug system. The
angular momentum of this system is conserved because no unbalanced external torques act on it.

A . 1 . .
SET UP: The moment of inertia of the rod is 7 = EMLZ, and conservation of angular momentum gives

Loy =L,
-3 2
EXECUTE: (a) [ =~ MI2 gives M :% - 33.00x10 k% ™) ~0.0360 ke.
3 I (0.500 m)
() L =Ly, s0 L,y = Lo, @y =~ =205 _ 6350 rads, so
0.500 m

(3.00x107 kg-m?)(0.400 rad/s) = (3.00x10 kg-m? + my,,(0.500 m)*)(0.320 rad’s).

_ (3.00x107 kg-m?)(0.400 rad/s — 0.320 rad/s)
bug (0.320 rad/s)(0.500 m)>
EVALUATE: This is a 3.00 mg bug, which is not unreasonable.

IDENTIFY: Apply conservation of angular momentum to the collision.
SET UP: The system before and after the collision is sketched in Figure 10.49. Let counterclockwise

=3.00x107> kg.

rotation be positive. The bar has 7 = Emsz.

EXECUTE: (a) Conservation of angular momentum: mvyd =—myvd + %msza}.
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90.0 N

(3.00 kg)(10.0 m/s)(1.50 m) = — (3.00 kg)(6.00 m/s)(1.50 m) + %(9 e j(z.oo m)’ @
. S

w=5.88 rad/s.

(b) There are no unbalanced torques about the pivot, so angular momentum is conserved. But the pivot
exerts an unbalanced horizontal external force on the system, so the linear momentum is not conserved.
EVALUATE: Kinetic energy is not conserved in the collision.

Before: Pivot After:

Ve

d

o—' —-—

Vo m, v ‘

Figure 10.49

10.50. IDENTIFY: If we take the raven and the gate as a system, the torque about the pivot is zero, so the angular
momentum of the system about the pivot is conserved.

SET Up: The system before and after the collision is sketched in Figure 10.50. The gate has [ = %MLz.

Take counterclockwise torques to be positive.

Pivot Pivot
® T °
0.75m=¢
vy l U2
— o
m T
0.75m
M l ~_"
w
Before After

Figure 10.50

EXECUTE: (a) The gravity forces exert no torque at the moment of collision and angular momentum is
conserved. L; = L,. mvl =—mvyl+1 .0 with [ =L/2.

gate
o= MOV 3m(v +vy) _ 3(L1kg)(S0mis+2.0mis) o
mr? 2ML 2(4.5 kg)(1.5 m)

(b) Linear momentum is not conserved; there is an external force exerted by the pivot. But the force on the
pivot has zero torque. There is no external torque and angular momentum is conserved.

EVALUATE: K, =1(1.1kg)(5.0 m/s)® =13.8J.
K, =1(1.1kg)(2.0 m/s)* +1(1[4.5 kg][1.5 m/s]*)(1.71 rad/s)* = 7.1 J. This is an inelastic collision and
10.51. IDENTIFY: The precession angular velocity is Q = ?, where @ is in rad/s. Also apply X F =md to the
[0

gyroscope.
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10.53.

10.54.

SET Up: The total mass of the gyroscope is m, + m; =0.140 kg + 0.0250 kg = 0.165 kg.

Q :M :M =2.856 rad/s.

EXECUTE: (a) F, =wy, =(0.165 kg)(9.80 m/s?) =1.62 N

_ wr _(0.165 kg)(9.80 m/s%)(0.0400 m)

IQ  (1.20x107* kg-m?)(2.856 rad/s)
(¢) If the figure in the problem is viewed from above, 7 is in the direction of the precession and L is
along the axis of the rotor, away from the pivot.

EVALUATE: There is no vertical component of acceleration associated with the motion, so the force from
the pivot equals the weight of the gyroscope. The larger @ is, the slower the rate of precession.

b) » =189 rad/s =1.80x10° rev/min

IDENTIFY: The precession angular speed is related to the acceleration due to gravity by Q = g, with
2]

w=mg.

SETUP: Q. =0.50rad/s, g =g and gy; =0.165g. For the gyroscope, m, r, I, and @ are the same on

the moon as on the earth.

mgr Q  mr Q Q
EXECUTE: = _g' — =— =constant, so el L

lo g lo g &M

Qy =Qp [g—MJ =0.165Q; =(0.165)(0.50 rad/s) = 0.0825 rad/s.
&k

EVALUATE: In the limit that g — 0 the precession rate — 0.

IDENTIFY: An external torque will cause precession of the telescope.

SETUP: [=MR? with R=25x102m. 1.0x107°degree =1.745x 10" rad.

®=19,200 rpm =2.01x 10 rad/s. t =5.0 h =1.8x10%s.

= Ad_1745x% 108 rad
At 1.8 x10%s

the numbers gives 7 = (9.694 x 10~ rad/s)(2.0 kg)(2.5% 1072 m)? (2.01x 10’ rad/s)= 2.4 x 107> N - m.

EVALUATE: The external torque must be very small for this degree of stability.
IDENTIFY: Apply 27, =, and constant acceleration equations to the motion of the grindstone.

EXECUTE: =9.694 x 10 P rad/s. Q= Ii so 7 =Qlw = QMRw. Putting in
(1]

SET Up: Let the direction of rotation of the grindstone be positive. The friction force is f = 4 n and

27 rad (1 min
60 s

produces torque fR. w= (120rev/min)( j =4rrad/s. 1= %MR2 =1.69 kg - m?.

1 rev
EXECUTE: (a) The net torque must be

T:]a:[%:(lﬁg kg.m2)47rrad/s
! 9.00 s

This torque must be the sum of the applied force FR and the opposing frictional torques 7, at the axle and

=236 N-m.

SR = pnR due to the knife. F = %(T +7p + [4nR).

1
F= 500 m[(2.36 N-m) +(6.50 N -m) + (0.60)(160 N)(0.260 m)] =67.6 N.

(b) To maintain a constant angular velocity, the net torque 7 is zero, and the force F” is

F’ =;(6.50 N-m+24.96 N-m)=62.9 N.
0.500 m
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10.56.

10.57.

: : : . . __dL .
(¢) The time ¢ needed to come to a stop is found by taking the magnitudes in 7 = %, with 7=17;

constant; ¢ = L_of_ (47 rad/s)(1.69 kg - m2) =3.27s.

T T 6.50 N-m
EVALUATE: The time for a given change in @ is proportional to ¢, which is in turn proportional to the
236 N-m
6.50N-m’
IDENTIFY: Use the kinematic information to solve for the angular acceleration of the grindstone. Assume
that the grindstone is rotating counterclockwise and let that be the positive sense of rotation. Then apply
2.7, =Ie, to calculate the friction force and use f, =4 n to calculate 4.

SETUP: @), =850 rev/min(27 rad/1 rev)(1 min/60 s) =89.0 rad/s

t=750s; @, =0 (comes to rest); o, =?

net torque, so the time in part (c) can also be found as 7 =(9.00 s)

EXECUTE: w, =w,, +o,t
_0—-89.0rad/s _

aZ
7.50 s
SETUP: Apply X7, =Ier, to the grindstone. The free-body diagram is given in Figure 10.55.

—11.9 rad/s?

Figure 10.55
The normal force has zero moment arm for rotation about an axis at the center of the grindstone, and
therefore zero torque. The only torque on the grindstone is that due to the friction force f, exerted by the
ax; for this force the moment arm is / = R and the torque is negative.
EXECUTE: X7, =—f, R=—/4nR
1=1MR* (solid disk, axis through center)
Thus X7, = /e, gives — (4 nR = (LMR*)or,

MR 0 kg)(0.2 ~11. 2
= o, :_(50 0 kg)(0.260 m)( 9 rad/s”) —0.483

2n 2(160 N)

EVALUATE: The friction torque is clockwise and slows down the counterclockwise rotation of the
grindstone.
IDENTIFY: Use a constant acceleration equation to calculate ¢, and then apply 27, = /¢,.

SETUP: [ =2MR*+2mR’, where M =8.40 kg, m =2.00 kg, so /=0.600 kg-m’.
@,, =75.0 rpm =7.854 rad/s; @, =50.0 rpm =5.236 rad/s; 1 =30.0 s.

EXECUTE: @, =@, +a.t gives @, =-0.08726 rad/s”. 7, =Ia, =—0.0524 N-m.

EVALUATE: The torque is negative because its direction is opposite to the direction of rotation, which
must be the case for the speed to decrease.
IDENTIFY: Use 2.7, = /e, to find the angular acceleration just after the ball falls off and use

conservation of energy to find the angular velocity of the bar as it swings through the vertical position.
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SET UP: The axis of rotation is at the axle. For this axis the bar has [ = %mbarLz, where m, =3.80 kg

and L =0.800 m. Energy conservation gives K; +U; =K, +U,. The gravitational potential energy of the
bar doesn’t change. Let y; =0, so y, =—L/2.

EXECUTE: (a) TZ = mbang(L/2) and 1= Iball + Ibar = %mbar[‘z + mbau (L/Z)z. ZTZ = ]0(2 gives

Mg (L/2) _28 ( My j and
1 2 2
Embar[‘ + mball(l‘/z) L My + mbar/3

2

= 2(9.80 m/s”) 2.50 kg — 163 rad/s2.
0.800 m | 2.50 kg +[3.80 kg]/3

(b) As the bar rotates, the moment arm for the weight of the ball decreases and the angular acceleration of

the bar decreases.

(© K +U; =K, +Uy. 0=K, +Us. $(Iyye + Ty )0 == g (~L/2).

y . My &L _ g Amyy _ 9.80 m/s? 4(2.50 kg)

Mg L2184 + my, 1212\ L mpgy + mpg. /3 0.800 m { 2.50 kg + (3.80 kg)/3
@ =5.70 rad/s.
EVALUATE: As the bar swings through the vertical, the linear speed of the ball that is still attached to the
bar is v =(0.400 m)(5.70 rad/s) =2.28 m/s. A point mass in free-fall acquires a speed of 2.80 m/s after
falling 0.400 m; the ball on the bar acquires a speed less than this.
IDENTIFY: Newton’s second law in its linear form applies to the elevator and counterweight, in its

rotational form it applies to the pulley. We have constant acceleration, so we can use the standard linear
kinematics formulas.

z

22,500 N

SET UP: For the pulley / = %MRz. The elevator has mass my; = 5 = 2300 kg. The free-body
s

diagrams for the elevator, the pulley, and the counterweight are shown in Figure 10.58. Apply ZF =md to
the elevator and to the counterweight. For the elevator take +y upward and for the counterweight take +y
downward, in each case in the direction of the acceleration of the object. Apply > 7= I to the pulley,

with clockwise as the positive sense of rotation. # is the normal force applied to the pulley by the axle. The

elevator and counterweight each have acceleration a, where a = Rat. y—yo = Uyt + %aytz applies.

y \ T n
| >
T, | 1 A

A i

a
“‘ \ /
' myg T, \
Mg Y T
mg Y
Elevator Counterweight Pulley
Figure 10.58

EXECUTE: Solve parts (a) and (b) together. Calculate the acceleration of the elevator:

2(y —yo) _ 2(6.75 m)
1 (3.00 5)°

2 F, =ma, for the elevator gives 7, — mg =ma and

T, = my(a + g) = (2300 kg)(1.50 m/s* + 9.80 m/s*) = 2.60 x 10* N

=1.50 m/s.

Y=Yy = Uyt + %ayt2 gives a =
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27 =1a for the pulley gives (T, — T;) = (%MRz)a. With o =a/R this becomes T, — T} = %Ma.
T, =T, + 1 Ma = 2.60 x 10*N +1(875 kg)(1.50 m/s*) = 2.67 x 10* N
ZFy =ma, forthe counterweight gives m,g — T, = mya and

T, _  267x10°N
g-a 9.80m/s’—1.50 m/s

m2=

=322x10°kg

and w=3.16 x 10*N.

EVALUATE: The tension in the cable must be different on either side of the pulley in order to produce the
net torque on the pulley required to give it an angular acceleration. The tension in the cable attached to the
elevator is greater than the weight of the elevator and the elevator accelerates upward. The tension in the
cable attached to the counterweight is less than the weight of the counterweight and the counterweight
accelerates downward.

IDENTIFY: Blocks 4 and B have linear acceleration and therefore obey the linear form of Newton’s
second law ZFy =ma,,. The wheel C has angular acceleration, so it obeys the rotational form of Newton’s
second law 27, = /..

SET UP: 4 accelerates downward, B accelerates upward and the wheel turns clockwise. Apply ZFy =ma,
to blocks 4 and B. Let +y be downward for A and +y be upward for B. Apply 2. 7, = I, to the wheel, with the
clockwise sense of rotation positive. Each block has the same magnitude of acceleration, @, and a = Re.

Call the T, the tension in the cord between C and 4 and T the tension between C and B.
EXECUTE: For 4, X F, =ma, gives myg — T, =mya. For B, X F, =ma, gives Ty —mpg =mpa. For

. 1 .
the wheel, 27, = Ie, gives T,R —TzR =l =I1(a/R)w and T, — Ty = [?Ja. Adding these three

. ) 1 .
equations gives (m—mp)g = [mA +mp + Fja. Solving for a, we have

a=|—"4"TB o= RO 2l 5 - - |(9.80 m/s?) = 0.921 mys>.
m,+mg+ /R 4.00 kg + 2.00 kg + (0.220 kg-m2)/(0.120 m)

T, =m, (g - a)=(4.00 kg)(9.80 m/s* — 0.921 m/s*) = 35.5 N.
Ty = my(g + a) = (2.00 kg)(9.80 m/s> +0.921 m/s>) =214 N.

EVALUATE: The tensions must be different in order to produce a torque that accelerates the wheel when
the blocks accelerate.

IDENTIFY: Apply X F =md to the crate and X7, = I, to the cylinder. The motions are connected by
a(crate) = Ror(cylinder).
SET UP: The force diagram for the crate is given in Figure 10.60a.

y EXECUTE: Applying 2. F, =ma, gives
i f a T —mg =ma. Solving for T gives
x T =m(g +a) = (50 kg)(9.80 m/s +1.40 m/s>) =560 N.
mg

Figure 10.60a

SET UP: The force diagram for the cylinder is given in Figure 10.60b.
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10.62.

y @ EXECUTE: X7, =[c, gives FI—-TR =Ic,, where
[=0.12m and R=0.25m. a=Ra so o, =alR.
Therefore FI=TR + la/R.

n

-

Mg

Figure 10.60b

Ia

F:T(£)+—=(56O N)[ =1300 N.
1) R

0.25 m) A kg-m?)(1.40 m/s>)
0.12m (0.25 m)(0.12 m)

EVALUATE: The tension in the rope is greater than the weight of the crate since the crate accelerates
upward. If F were applied to the rim of the cylinder (/=0.25 m), it would have the value F =625 N. This
is greater than 7 because it must accelerate the cylinder as well as the crate. And F' is larger than this
because it is applied closer to the axis than R so has a smaller moment arm and must be larger to give the
same torque.

IDENTIFY: Apply X F., =md,, and X7, =1, totheroll.

SET UP: At the point of contact, the wall exerts a friction force f directed downward and a normal force n
directed to the right. This is a situation where the net force on the roll is zero, but the net torque is not zero.
EXECUTE: (a) Balancing vertical forces, F;,qcos@ = f +w+ F, and balancing horizontal forces

F,

rod SIN@ = n. With f° = 4 n, these equations become Fj 4cosé =y n+ F+w, E _;sin@=n. Eliminating
w+F ~ (16:0 kg)(9.80 m/s*) +(60.0 N)

cosf — f4 sinf cos 30°—(0.25)sin30°

(b) With respect to the center of the roll, the rod and the normal force exert zero torque. The magnitude of

the net torque is (F — f)R, and f = (4 n may be found by insertion of the value found for F, ; into either

of the above relations; i.e., f =l F;,q5in@ =36.57 N. Then,

-2
_7 _ (600N -36.57 N)JI8.0x102m) _ ., . >

! (0.260 kg - m?)

EVALUATE: If the applied force F'is increased, F, 4 increases and this causes » and fto increase. The

=293 N.

n and solving for F 4 gives F 4 =

angle @ changes as the amount of paper unrolls and this affects & for a given F.
IDENTIFY: Apply Y7, =, to the flywheel and ¥ F =ma to the block. The target variables are the

tension in the string and the acceleration of the block.
(a) SETUP: Apply > 7, = e, to the rotation of the flywheel about the axis. The free-body diagram for

the flywheel is given in Figure 10.62a.

n @ EXECUTE: The forces
n and Mg act at the axis so
have zero torque.

4\ 27, =TR
< TR =1,

Mg

Figure 10.62a
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SETUP: Apply X F =mi to the translational motion of the block. The free-body diagram for the block is
given in Figure 10.62b.
EXECUTE: XF), =ma,
n—mg cos 36.9°=0
/ n=mg co0s 36.9°
Jx = Mn = 4y mg cos 36.9°
mg cos 6 ﬁ,
Figure 10.62b
2 F,. =ma,
mg sin36.9°—T — 14y mg c0s36.9° = ma
mg(sin36.9° — 14,c0s36.9°) —T = ma
But we also know that @y = R¥uheer» SO & = a/R. Using this in the 2.7, = I, equation gives
TR=1Ia/R and T = (I/R2 )a. Use this to replace 7 in the > F, = ma, equation:
mg(sin36.9° — 14,c0836.9%) — (I/R*)a = ma
u= mg(sin36.9° — £4,c0s36.9°)
m+ /R
Y= (5.00 kg)(9.80 m/s*)[sin36.9° = (0.25)c0$36.9°] 112wt
5.00 kg +0.500 kg - m?/(0.200 m)?
®) T :M(l.m m/s?)=14.0 N
(0.200 m)
EVALUATE: If the string is cut the block will slide down the incline with
a = gsin36.9° — 14 g c0s36.9° =3.92 m/s>. The actual acceleration is less than this because mg sin36.9°
must also accelerate the flywheel. mg sin36.9°— f; =19.6 N. T is less than this; there must be more force
on the block directed down the incline than up the incline since the block accelerates down the incline.
10.63. IDENTIFY: Apply > F =ma to the block and > 7, =1er, to the combined disks.

SET UP: For adisk, /4y = %MRZ, so I for the disk combination is 7 =2.25x10™> kg-m?.
EXECUTE: For a tension 7 in the string, mg—T =ma and TR =l = I%.

m _ g
m+IR> 1+ ImR>’
block and R is the radius of the disk to which the string is attached.
(a) With m =1.50 kg and R =2.50x10%m, a =2.88 m/s>.

(b) With m =1.50 kgand R=5.00x10""m, a =6.13 m/s’.
The acceleration is larger in case (b); with the string attached to the larger disk, the tension in the string is

capable of applying a larger torque.
EVALUATE: @ =V/R, where v is the speed of the block and @ is the angular speed of the disks. When R

is larger, in part (b), a smaller fraction of the kinetic energy resides with the disks. The block gains more
speed as it falls a certain distance and therefore has a larger acceleration.

Eliminating 7 and solving for a gives a =g

where m is the mass of the hanging
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10.64.

10.65.

10.66.

IDENTIFY: Apply both ¥ F =ma and 2.7, =Ia, to the motion of the roller. Rolling without slipping
means a,, = Ra. Target variables are a,, andf.
SET UP: The free-body diagram for the roller is given in Figure 10.64.

y EXECUTE: Apply X F =ma
@ to the translational motion of the

G center of mass:
N : 2F, =ma,
F =5
/l ‘ x - Macm

Mg

Figure 10.64

Apply 27, =Ie, to the rotation about the center of mass:

X7, = /R

thin-walled hollow cylinder: I = MR?

Then Y7, =Ie, implies fR = MR*c.

But o, = Ra, so f=May,.

Using this in the > F, =ma, equation gives F —Ma,,, = Ma,,,.
ayy = F/2M, and then f =Ma,, =M (F/2M) = F/2.

EvVALUATE: If the surface were frictionless the object would slide without rolling and the acceleration
would be a,, = F/M. The acceleration is less when the object rolls.

IDENTIFY: Apply > F =md to each object and apply X7, = e, to the pulley.
SET Up: Call the 75.0 N weight 4 and the 125 N weight B. Let T, and T be the tensions in the cord to
the left and to the right of the pulley. For the pulley, 7 = %MRZ, where Mg =80.0 N and R =0.300 m.

The 125 N weight accelerates downward with acceleration a, the 75.0 N weight accelerates upward with
acceleration a and the pulley rotates clockwise with angular acceleration ¢, where a = Ro.

EXECUTE: Y. F =ma applied to the 75.0 N weight gives T, —w, =m  a. ¥ F =md applied to the 125.0 N
weight gives wg —Tp =mga. 2.7, = Io, applied to the pulley gives (Tz —T,)R = (%MRz)wZ and
T-T,= %Ma. Combining these three equations gives wg —w, =(m  +mg +M/2)a and

= Wp — W, g:( 125N-75.0N Jg:0.2083g.
Wyt W+ Wyyiiey/2 750N+I125N+40.0 N

T, =w,(1+alg)=1.2083w, =90.62 N. T, =wy(1—alg)=0.792wz =98.96 N. ¥ F =ma applied to the

pulley gives that the force F applied by the hook to the pulley is F' =T + T + Wy, =270 N. The force

the ceiling applies to the hook is 270 N.

EVALUATE: The force the hook exerts on the pulley is less than the total weight of the system, since the
net effect of the motion of the system is a downward acceleration of mass.

IDENTIFY: Newton’s second law in its linear form applies to the person, and in its rotational form it
applies to the wheel.

SETUP:  SF =ma, Y7, =la,, and @, = Ro. For a uniform disk, 7 :%MRZ. Call m the mass of the

person and M the mass of the wheel.
EXECUTE: (a) For the person, XF =ma gives mg— T = ma, so T = m(g — a).
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For the wheel, X7, = |, gives TR = I &, = I(a/R), which gives T = Ia/R’.
Combining the two expressions for 7 and using / = %MR2 gives
(%MRz) (a/R*) = m(g — a). Solving for M gives M = 2m(g — a)/a. Putting in m = 90.0 kg and a = g/4 gives
M =540 kg.
(b) As we saw in (a), T = m(g — a) = 3mg/4 = 3(90.0 kg)(9.80 m/s’)/4 = 662 N.
EVALUATE: The tension is 2 the person’s weight because it must reduce his acceleration by %.
10.67. IDENTIFY: Apply Y F,, =md,, to the motion of the center of mass and apply > 7, =/ e, to the
rotation about the center of mass.
SETUP: [= 2(%mR2) =mR?. The moment arm for T'is b.
EXECUTE: The tension is related to the acceleration of the yo-yo by (2m)g —T =(2m)a, and to the
angular acceleration by 76 =l =1 %. Dividing the second equation by b and adding to the first to
o . 2 2 2 -
eliminate 7 yields a =g i cot 5, @ =g————. The tension is found by
2m+1/b") 2+ (R/b) 2b+ R“/b
substitution into either of the two equations:
RIb)? 2m
T=(Qm)(g-a)=2mg)|1-——— |=2mg (EF) _= E__
2 +(R/b) 2+(R/b)° (2(b/R)” +1)
EVALUATE: a —0 when b —0. As b—> R, a— 2g/3.
10.68. IDENTIFY: Apply conservation of energy to the motion of the shell, to find its linear speed v at points A

and B. Apply 3 F =ma to the circular motion of the shell in the circular part of the track to find the
normal force exerted by the track at each point. Since » << R the shell can be treated as a point mass
moving in a circle of radius R when applying Y. F = ma. But as the shell rolls along the track, it has both
translational and rotational kinetic energy.

SETUpP: K| +U, =K, +U,. Let 1 be at the starting point and take y =0 to be at the bottom of the track,
so yy=hy. K Z%mvz +%1a)2. I =%mr2 and w=v/r, so K =%mv2. During the circular motion,

Apad = Vv2/R.
— v2
EXECUTE: (a) Y F =ma atpoint 4 gives n + mg = m? The minimum speed for the shell not to fall off

the track is when n — 0 and v* = gR. Let point 2 be 4,50 y, =2R and v% =gR. Then
K +U; =K, +U, gives mghy =2mgR +2m(gR). hy=(2+2)R=1IR.

(b) Let point 2 be B, s0 y, =R. Then K, +U, =K, +U, gives mghy =mgR +2mv;. With h=11R  this

2

gives V2 :%gR. Then Y F =md at B gives n :m%:%mg.

(¢) Now K = %mv2 instead of %mvz. The shell would be moving faster at 4 than with friction and would

still make the complete loop.
(d) In part (c): mghy =mg(2R) + %mvz. hy = %R gives V= %gR. > F =mi at point 4 gives

2 2
v v . L . .
mg+n= m? and n = m{? - g] = %mg. In part (a), n =0, since at this point gravity alone supplies the
net downward force that is required for the circular motion.

EVALUATE: The normal force at 4 is greater when friction is absent because the speed of the shell at 4 is
greater when friction is absent than when there is rolling without slipping.
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10.70.

10.71.

IDENTIFY: As it rolls down the rough slope, the basketball gains rotational kinetic energy as well as
translational kinetic energy. But as it moves up the smooth slope, its rotational kinetic energy does not
change since there is no friction.

SErUp: [, = %mRz. When it rolls without slipping, v, = Rw. When there is no friction the angular

speed of rotation is constant. Take +y upward and let y =0 in the valley.
EXECUTE: (a) Find the speed v, inthe level valley: K; + U, =K, + U,. yy=H,, y,=0. K; =0,

2
v,
U, =0. Therefore, U = K,. mgH, :%mv%m +%Icma)2. %Icma)2 =%(%mR2)[%j = %mvim, so

6gH, _. . . . . _
mgH, = %mv%m and vgm = gS O Find the height H it goes up the other side. Its rotational kinetic energy

stays constant as it rolls on the frictionless surface. %mv%m + %Icma)2 = %1 Cma)2 +mgH.

2
gAY =if
28

(b) Some of the initial potential energy has been converted into rotational kinetic energy so there is less
potential energy at the second height H than at the first height H,.

EVALUATE: Mechanical energy is conserved throughout this motion. But the initial gravitational potential
energy on the rough slope is not all transformed into potential energy on the smooth slope because some of
that energy remains as rotational kinetic energy at the highest point on the smooth slope.

IDENTIFY: Apply conservation of energy to the motion of the ball as it rolls up the hill. After the ball
leaves the edge of the cliff it moves in projectile motion and constant acceleration equations can be used.
(a) SET UP: Use conservation of energy to find the speed v, of the ball just before it leaves the top of the

cliff. Let point 1 be at the bottom of the hill and point 2 be at the top of the hill. Take y =0 at the bottom
of the hill, so y; =0 and y, =28.0 m.
EXECUTE: K| +U, =K, +U,

1

2 417,92 = I 2 Ry
Fmvi S 1ay =mgy, +smvy + 1w,

Rolling without slipping means @ =v/r and %1(02 = %(%mrz)(v/r)2 = %mvz.

7 2 = 7 2
ToMVI =mgy,y T yymvy

vy =i —Lgy, =15.26 m/s

SET UP: Consider the projectile motion of the ball, from just after it leaves the top of the cliff until just
before it lands. Take +y to be downward. Use the vertical motion to find the time in the air:

vo, =0, a, =9.80 m/s”>, y—y,=280m, t=?

EXECUTE: y—y, =v,t + %ayt2 gives t=2.39 s

During this time the ball travels horizontally

X —Xg = Vgt =(15.26 m/s)(2.39 5) =36.5 m.

Just before it lands, v, =v),, +a,f =23.4 m/s and v, =v,, =15.3 m/s

v= V2 12 =28.0 m/s

(b) EVALUATE: At the bottom of the hill, @ =v/r =(25.0 m/s)/r. The rotation rate doesn’t change while
the ball is in the air, after it leaves the top of the cliff, so just before it lands @ = (15.3 m/s)/r. The total
kinetic energy is the same at the bottom of the hill and just before it lands, but just before it lands less of
this energy is rotational kinetic energy, so the translational kinetic energy is greater.

IDENTIFY: Apply conservation of energy to the motion of the boulder.

SETUP: K= %mv2 + %Ia)2 and v = Rw when there is rolling without slipping. 7 = ngz.

EXECUTE: Break into two parts, the rough and smooth sections.
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10.72.

10.73.

2
2 1
Rough: mgh = mv += Ia) mghl——mv2+2(5 RZJ[RJ . v2:70gh1.

Smooth: Rotational kinetic energy does not change. mgh, + %mv2 +K. = mv}%om)m + Ko

1
rot 2

2
EVALUATE: If all the hill was rough enough to cause rolling without slipping,

VBottom = /70g(50 m) =26.5 m/s. A smaller fraction of the initial gravitational potential energy goes into

translational kinetic energy of the center of mass than if part of the hill is smooth. If the entire hill is

ghy + ! ( ghlj ;vgmm VBottom = \/ 170 ghy +2gh, = \/g (9.80 m/s?)(25 m) +2(9.80 m/s*)(25 m) = 29.0 ms.

smooth and the boulder slides without slipping, Vgiom = v28(50 m) =31.3 m/s. In this case all the initial

gravitational potential energy goes into the kinetic energy of the translational motion.
IDENTIFY: Apply Newton’s second law in its linear and rotational form to the cylinder. The cylinder does
not slip on the surface of the ramp.

SErUp: Y F,, =Ma,,, Xt,=1a,, I :%mRZ , and a, = Re for no slipping. Take the x-axis parallel
to the surface of the ramp; call up the ramp positive since that is the direction in which the cylinders must
accelerate. Take the y-axis perpendicular to the surface. For uniform acceleration x —xg = v, + %axtz.
EXECUTE: (a) The forces balance in the y-direction, so the normal force »n is n = mg cosé. In the
x-direction, XF, = ma, gives

F—f;—mg sin @ = ma.

Now apply 27, = /e, .

SR= (% mR?) (a/R), which gives a = 2f/m. Putting this result into the previous result gives

F — f; — mg sin @ = m(2f/m) = 2f.

Solving for F gives

F=3f+mgsin@ =3un +mgsin@ =3umgcosO + mgsin@ = mgBu,cosO +sinf)
F = (460 kg)(9.80 m/s*)[3(0.120) cos37° + sin 37°] = 4010 N.

(b) From part (a) we have

a = 2f/m= (Qugng cos 8 )/m=2u.g cos 6.

Linear kinematics using x — xq = vy,¢ +%axt2 gives

=2.53s.

. \/Z(x—xo) _|20x-x _ | 6.00 m
a \2usgcos®  |(0.120)(9.80 m/s*)cos37°
EVALUATE: Just lifting the 460-kg vertically would require a force of mg = 4510 N, so we don’t do very

much better by rolling them up the slope since friction opposes the linear motion.
IDENTIFY: Apply conservation of energy to the motion of the wheel.

SETUP: K = ;mv += I @*. No slipping means that @ =v/R. Uniform density means

m, = A27R and mg = ﬂ,R where m, is the mass of the rim and m is the mass of each spoke. For the

wheel, I =1y, + [i,okes- For each spoke, 1= m R?.

EXECUTE: (a) mgh = mv +- Ia) I=1;,+]I

2 1 2
rim spokes — er +6(§msR )

Also, m=m, + mg = 27ZR/1 + 6R/1 =2RA(r +3). Substituting into the conservation of energy equation
gives 2RA(T +3)gh =L 2RA)(x +3)(Rw)® +1 [ZﬂR/IRz +6(LARR )]

2
= (7§+3)gh = |(Z+3)0-80 WZS )O80m) _ 104 radss and v = R =26.0 m/s
Rz +2) (0210 m)>(z +2)
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10.74.

10.75.

10.76.

(b) Doubling the density would have no effect because it does not appear in the answer. @ is inversely
proportional to R so doubling the diameter would double the radius which would reduce @ by half, but

v = Rw would be unchanged.

EVALUATE: Changing the masses of the rim and spokes by different amounts would alter the speed v at
the bottom of the hill.

IDENTIFY: The rings and the rod exert forces on each other, but there is no net force or torque on the
system, and so the angular momentum will be constant.

SET UP: Fortherod, /= %MLz. For each ring, 7 = mr2, where r is their distance from the axis.

EXECUTE: (a) As the rings slide toward the ends, the moment of inertia changes, and the final angular
Lmr? + 2mrf] _ [5.00x104 kg m? J )

I I
velocity is given by @, = @y o =m

—, SO
LML+ 2mig 2.00x10= kg-m? | 4

@, =12.0 rev/min.

(b) The forces and torques that the rings and the rod exert on each other will vanish, but the common
angular velocity will be the same, 12.0 rev/min.

EVALUATE: Note that conversion from rev/min to rad/s was not necessary. The angular velocity of the
rod decreases as the rings move away from the rotation axis.

IDENTIFY: Use conservation of energy to relate the speed of the block to the distance it has descended.
Then use a constant acceleration equation to relate these quantities to the acceleration.

SET UP: For the cylinder, 7 = %M (2R)2, and for the pulley, /= %MRZ.

EXECUTE: Doing this problem using kinematics involves four unknowns (six, counting the two angular
accelerations), while using energy considerations simplifies the calculations greatly. If the block and the
cylinder both have speed v, the pulley has angular velocity v/R and the cylinder has angular velocity
v/2R, the total kinetic energy is

2

This kinetic energy must be the work done by gravity; if the hanging mass descends a distance y,

2 2
K :%[Mvz + @(wmf + MR Ry + a2 :%MV2~

K = Mgy, or vi= (2/3)gy. For constant acceleration, o 2ay, and comparison of the two expressions
gives a =g/3.
EVALUATE: If the pulley were massless and the cylinder slid without rolling, Mg =2Ma and a = g/2.

The rotation of the objects reduces the acceleration of the block.

IDENTIFY: As Jane grabs the helpless Tarzan from the jaws of the hippo, the angular momentum of the
Jane-Vine-Tarzan system is conserved about the point at which the vine swings. Before and after that,
mechanical energy is conserved.

SET UP: Take +y upward and y =0 at the ground. The center of mass of the vine is 4.00 m from either

end. Treat the motion in three parts: (i) Jane swinging to where the vine is vertical. Apply conservation of
energy. (ii) The inelastic collision between Jane and Tarzan. Apply conservation of angular momentum.
(iii) The motion of the combined object after the collision. Apply conservation of energy. The vine has

I=1im

3 vinel> and Jane has I = my,, /%, so the system of Jane plus vine has /,,, = (%mvine + Myl

Angular momentum is L =/@.
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b L ]
Q™ 1\
o A 1.50m
mas_~~— *
L
Myape 5“\ 1.50m
% _________________ A
Myine @ h
vine,2
Nine.t =4.00m
5.00m
L '”Junc% v=0
Initial Final

Figure 10.76a

EXECUTE: (a) The initial and final positions of Jane and the vine for the first stage of the motion are
sketched in Figure 10.76a. The initial height of the center of the vine is A4, | = 6.50 m and its final
height is /. , =4.00 m. Conservation of energy gives U; + K; =U, + K,. K;=0 so

2[my,0e (5.00 m)+m ;. (2.50 m)]g

1 2
(§ Myine T Myane )l

s

mJaneg(S-OO m) +mvineg(6-50 m) = mvineg(4-00 m) +%Itotw2' o= \/

2[(60.0 kg)(5.00 m) +(30.0 kg)(2.50 m)](9.80 nvs?)

> =1.28 rad/s.
[1(30.0 kg) +60.0 kg |(8.00 m)

which gives @ = \/

(b) Conservation of angular momentum applied to the collision gives I; = L,, so fjo; = 1,®,.
w, =1.28 rad/s.

I = [%(30.0 kg)+60.0 kg](s.oo m)® = 4.48 x 10° kg - m>.
Iy = I + My el® = 448 X 10° kg - m? +(72.0 kg)(8.00 m)? =9.09 x 10° kg - m?.

3 2
0 = L@ = m (1.28 rad/s) = 0.631 rad/s.
I 9.09%10%kg - m

L

Jane + Tarzan

Figure 10.76b

(¢) The final position of Tarzan and Jane, when they have swung to their maximum height, is shown in
Figure 10.76b. If Tarzan and Jane rise to a height /£, then the center of the vine rises to a height 4/2.

Conservation of energy gives %I @ = (Myge +Mrgrgan )G+ Myinegh/2, Where I=9.09x10°kg-m? and
® =0.631rad/s, from part (b).
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10.77.

10.78.

10.79.

b= I1ef _ (9.09x10°kg-m?)(0.631 rad/s)?
2(Mygne +MTarzan +0.5myin )2 2(60.0 kg+72.0 kg +15.0 kg)(9.80 m/s?)

EVALUATE: Mechanical energy is lost in the inelastic collision.

IDENTIFY: Apply conservation of energy to the motion of the first ball before the collision and to the

motion of the second ball after the collision. Apply conservation of angular momentum to the collision
between the first ball and the bar.

SET UP: The speed of the ball just before it hits the bar is v =/2gy =15.34 m/s. Use conservation of

angular momentum to find the angular velocity @ of the bar just after the collision. Take the axis at the
center of the bar.

EXECUTE: L = mvr =(5.00 kg)(15.34 m/s)(2.00 m) =153.4 kg - m?/s

Immediately after the collision the bar and both balls are rotating together.
Ly = liqo

26 m.

Lo =5 M7 + 2mr® = L1(8.00 kg)(4.00 m)* +2(5.00 kg)(2.00 m)” =50.67 kg: m”

L =L =1534kg m’/s
w=L,/I,; =3.027 rad/s
Justafter the collision the second ball has linear speed v =r@ =(2.00 m)(3.027 rad/s) =6.055 m/s and is

moving upward. %mv2 =mgy gives y =1.87 m for the height the second ball goes.

EVALUATE: Mechanical energy is lost in the inelastic collision and some of the final energy is in the
rotation of the bar with the first ball stuck to it. As a result, the second ball does not reach the height from
which the first ball was dropped.

. du
IDENTIFY: Apply 27 =—.
dt
SET UP: The door has 7 = gmlz. The torque applied by the force is rF,,, where r =//2.
EXECUTE: X7,  =rF,, and AL =rF, At =rJ. The angular velocity @ is then
AL _ rF, At _ (I/2)F, At _ 3 F, At

a):
1 1 %mlz 2 ml

, where [ is the width of the door. Substitution of the given

numeral values gives @ = 0.514 rad/s.

EVALUATE: The final angular velocity of the door is proportional to both the magnitude of the average
force and also to the time it acts.

IDENTIFY: Apply conservation of angular momentum to the collision. Linear momentum is not conserved
because of the force applied to the rod at the axis. But since this external force acts at the axis, it produces
no torque and angular momentum is conserved.

SET UP: The system before and after the collision is sketched in Figure 10.79.

EXECUTE: (a) my, =%,

R EXECUTE: Ly = myvr =1 moqv(L/2)
L L
5 K -1
v | 2 | 2 Ly =gmqvL
——
my L Ly =(l1oq 1)@
2
m —1 2
r_Od ]rod - Emrod[‘
v=0 N e _ 21 5
Ib - mbr - Zml.od (L/Z)
before after

—1 2
Ib - Emrodl’

Figure 10.79
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- : 1 =l 2,1 2
Thus Ly =L, gives gmyqvL = (3mpoql” +1emyogl”)@

%v = %La)

w= %V/L

(b) K; :%mv :%mrodv

Ky =110 = L(Lq + 1)0" =L Emgg 7 +-Lm,ogP)(6v/19L)

1

2
_ 119y 62, 2_3 2
Ky =5 (59)(15) MrogV™ = 155 MrodV

Then K2 2 B2"d”” 31
1 g MrodV
EVALUATE: The collision is inelastic and K, <Kj.
10.80. IDENTIFY: As you walk toward the center of the turntable, the angular momentum of the system (you plus
turntable) is conserved. By getting closer to the center, you are decreasing the moment of inertia of the
system. Newton’s second law applies to you, and static friction provides the centripetal force on you.

SETUP: [y, =1,,, I = m” for a point mass, 8.4 =r@’, fi™ =pn, and F =ma.

EXECUTE: At the closest distance, the friction force is

Newton’s second law gives

fi=ma=mrew’
Combining these two equations gives

umg = m o’
I I, +mrf
A 2 _1y _| 4y Tmny o g .
Conservation of angular momentum gives @ = 7% ol e ay. Solving the earlier equation for u
+mr
t
2 (1 +mig i a)g r
and using the previous result gives [, =——= It—OZ ——. Putting in m = 70.0 kg, » = 3.00 m, and
+mr g
t

I,=1200kg - m?, and using @, = 2m/(8.0 s), we get ;= 0.780.
EVALUATE: This coefficient of static friction is a physically reasonable.

10.81. IDENTIFY: As the disks are connected, their angular momentum is conserved, but some of their initial
kinetic energy is converted to thermal energy. The 2400 J of thermal energy is equal to the loss of
rotational kinetic energy.

— — 2
SETUP: [0 =10, K=1lo"

. . lw
EXECUTE: Angular momentum conservation gives [ 0, =, +1p)0 — 0= #. The loss of
+
47 1B

kinetic energy is AK =K, - K, =11 . -2, +1 ;)@ . Combining these two equations gives

1,00 I o
AK = A_ZC‘)O(I —ﬁ}. The loss of kinetic energy should be no more than 2400 J, so
47 1p

2

1,03 1 . L. I
A—w‘){l ——AJ <2400 J. The quantity Azwo is the kinetic energy of 4, K. Therefore we can solve the
A B

2

1,+1,

inequality for K, giving K, <(2400]J )( ] Since I, = Ip/3, the maximum kinetic energy of 4 is

B

3200J.
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EVALUATE: This situation is the rotational analog to a collision in which one object is initially at rest and
they stick together. As in that situation, the momentum (angular in this case) is conserved but the kinetic
energy is not.

IDENTIFY: This is a collision in which one object is initially stationary and they stick together. The rod is
pivoted at one end, so it can only rotate after it is struck. The puck has angular momentum, some of which
is transferred to the rod, but the angular momentum of the puck-rod system is conserved.

SET UP: The initial angular momentum of the puck is mvr, the final angular momentum of the rod is | @,

and I,q =1 MI*.
EXECUTE: After the collision, @ = 2n/T, where T=0.736 s, r = L, and I = I,,4 + I, Conservation of
(M + mLz)(Mj

mL

angular momentum gives mvr = (%ML2 +ml*)o. Solving for v gives v = . Putting in

m=0.163 kg, M= 0.800 kg, L =2.00 m, 7= 0.736 s gives v=45.0 m/s.

EVALUATE: This situation is the rotational analog to a collision in which one object is initially at rest and
they stick together. As in that situation, the momentum (angular in this case) is conserved but the kinetic
energy is not.

IDENTIFY: We must break this problem up into three parts: the motion on the waterslide, the collision
with the pole, and the swing of the pole after the collision. On the slide, mechanical energy is conserved.
During the collision with the pole, angular momentum is conserved. During the swing of the pole after the
collision, mechanical energy is conserved.

SET UP: On the slide and after the collision, K; +U; =K, +U, isvalid. 1. = EMLZ, the initial angular

pole —

momentum of the person is mvr = myL, the final angular momentum of the pole-person system is
2
(1., .. L. e
(Iperson T L pote)@=| mL +T o. The kinetic energy after the collision is K =5 /0" =

2
%[mLz + ﬂ]a)2
3

EXECUTE: We work backward, starting with the swinging motion after the collision. We take the zero of
potential energy to be the bottom of the pole just after the person grabs it. K, +U; =K, +U, gives

Kl + Uperson,l + Upole,l =0+ Upole,2 + Uperson,Z
1 L L L
—Iw” +0+Mg= =mgL(1—cos8) + Mg| = +=(1-cos8)
2 2 2 2
Solving for @ and using the moment of inertia of the person-plus-pole we get
= gL(1—cos®)2m+M) _ [(9.80 m/s”)(6.00 m)(1 - cos 72.0°)[2(7().0 kg +24.0 kg)]
ML +mL? 1(24.0 kg)(6.00 m)* +(70.0 kg)(6.00 m)°

o = 1.54 rad/s.
Now we use conservation of angular momentum during the collision to find the speed of the person just
before the collision.

2
_ 2 ML
mvL = (lperSOn + Ipole)a) = [mL + TJQ)

Solving for v and putting in the numbers gives
v= %(%MLZ +ml?) = Z’—L(3m +M) = (1.54 rad/s)(6.00 m)[3(70.0 kg) + 24.0 kg]/[3(70.0 kg)]
m m

v=10.30 m/s.
Now use energy conservation to find the initial height 4.
0+ Ul = K2 +0

mgh = %mv2

h =1v*2g=(10.30 m/s)*/[2(9.80 m/s*)] = 5.41 m.
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EVALUATE: The final height reached by the person at the end of the swing is 4; = (6.00 m)(1 — cos72°) =
4.15 m, which is less than the original heighgt of 5.41 m. Part of the reason for the decreased height is the
fact that the pole also swings up, and part is due to the loss of kinetic energy during the inelastic collision.
We cannot do this problem in a single step because different conservation laws are involved.

IDENTIFY: Angular momentum is conserved, so /,@, = I,,.

SET Up: For constant mass the moment of inertia is proportional to the square of the radius.
EXECUTE: R;®, =R w,, or R;@, =(R,+AR)’ (@, + Aw)= R} @, + 2R, AR®, + R; Aw, where the terms in

EVALUATE: AR/R,and Aw/@, are each very small so the neglect of terms containing ARA@wor (Aw)’

is an accurate simplifying approximation.

IDENTIFY: Apply conservation of angular momentum to the collision between the bird and the bar and
apply conservation of energy to the motion of the bar after the collision.

SET Up: For conservation of angular momentum take the axis at the hinge. For this axis the initial angular
momentum of the bird is m,;;(0.500 m)v, where m,;, =0.500 kg and v =2.25 m/s. For this axis the

moment of inertia is / :%mbarL2 T3-50 kg)(0.750 m)2 =0.281kg- m?. For conservation of energy, the
gravitational potential energy of the bar is U =m,, gy, ., where y,__ is the height of the center of the bar.
Take y.,; =0, s0 y..,=-0.375 m.

EXECUTE: (a) L, =L, gives my;4(0.500 m)v = (%mbarL2 .

o= 3mpirg (0.500 m)v _ 3(0.500 kg)(0.500 m)(2.25 m/s)

O (1.50 kg)(0.750 m)>
(b) U, + K| =U, + K, applied to the motion of the bar after the collision gives

=2.00 rad/s.

2
L1ax =my,g(-0375m) +11as. @, = \/wf + g (0.375 m).

w, = \/(2.00 rad/s)? +ﬁ(l.50 kg)(9.80 m/s>)(0.375 m) = 6.58 rad/s.
. g-m

EVALUATE: Mechanical energy is not conserved in the collision. The kinetic energy of the bar just after
the collision is less than the kinetic energy of the bird just before the collision.
IDENTIFY: Angular momentum is conserved, since the tension in the string is in the radial direction and

therefore produces no torque. Apply > F =md to the block, with a = Araq = v2Ir.

SET UP: The block’s angular momentum with respect to the hole is L = mvr.
2
EXECUTE: The tension is related to the block’s mass and speed, and the radius of the circle, by 7 = mv—.
r

1_m™V ¢ _(mwr) I . . . .
T=m’== ——= % =—. The radius at which the string breaks is
rooom r mr mr

2 (mvge)[(0.130 kg)(4.00 m/s)(0.800 m) |
“mT_ mT._ (0.130 kg)(30.0 N)

max max

, from which » =0.354 m.

0.800 m
0.354 m

can verify that using 7= mv*/R that v =9.04 m/s and r = 0.354 m do give 7 =30.0 N.
IDENTIFY: Apply conservation of momentum to the system of the runner and turntable.
SET UP: Let the positive sense of rotation be the direction the turntable is rotating initially.

EVALUATE: Just before the string breaks, the speed of the rock is (4.00 m/s)( j =9.04 m/s. We
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EXECUTE: The initial angular momentum is /@, —mRv,, with the minus sign indicating that runner’s

motion is opposite the motion of the part of the turntable under his feet. The final angular momentum is
1w, —mRy,
I+mR*

o = (80 kg - m?)(0.200 rad/s) — (55.0 kg)(3.00 m)(2.8 m/s) _
? (80 kg-m?) +(55.0 kg)(3.00 m)’

EVALUATE: The minus sign indicates that the turntable has reversed its direction of motion. This

happened because the man had the larger magnitude of angular momentum initially.

IDENTIFY: We use the power and angular velocity to calculate the torque.

SETUp: P=1tw, 1hp=746 W.

EXECUTE: (a) First make the necessary conversions: 1 ft-1b =(0.3048 m)(4.448 N) =1.356 N-m

1 rpm = 1 rev/min = (2n rad)/(60 s) = 0.1047 rad/s.

Solve for torque and use the above conversions:

7 =Pl =[(285 hp)/(5300 rpm)]{(746 W/hp)/[(0.1047 rad/s)/rpm]} =383 N-m =283 ft-Ib.

As we can see, 283 ft-1b is less than the maximum 305 ft - Ib.

(b) P=7w =305 ft-1b) (3900 rpm)(1.356 N-m/ft-Ib) [(0.1047 rad/s)/rpm] = 169 kW = 226 hp.
The power of 226 hp is smaller than the maximum of 285 hp.

(¢) Make the following conversions:

1.356 N-m \( 0.1047 rad/s 1hp
hp = z(ft- b
P )a)(rpm)( 1ft-Ib ][ 1 rpm ](746 W

1.9031 x 107, which gives ¢ = 5254.

(d) From (¢), P = 7@ gives 580 hp = 7 (6000 rpm)/5254, so = =508 ft-Ib.

EVALUATE: Torque, power, and angular velocity are often expressed in diverse units, so conversions are
frequently necessary.

IDENTIFY: All the objects have the same mass and start from rest at the same height /. They roll without
slipping, so their mechanical energy is conserved. Newton’s second law, in its linear and rotational forms,
applies to each object. Since the objects have different mass distributions, they will take different times to
reach the bottom of the ramp.

SETUP: K, +U, =K, +U,, LF.,=Ma

o,(I +mR*), so @, =

—0.776 rad/s.

j= 1.9031 x 10 z(ft-Ib)@(rpm), so 1/c =

- - -1 2
Xr=le, Ktot - Kcm + Krot’ Kcm - _Mvcm’

cm> B

-1 2
Krot - Elcmw .

EXECUTE: (a) We can express the moment of inertia of a round object as / = cmR’, where ¢ depends on
the shape and mass distribution. Energy conservation gives K; +U; =K, +U,, so

\4 . .
mgh=1mv? + 11 =Lmv? + LemR?@® =Tmv* +LemR? (—j = Ly’ (1+¢). Solving for v’ gives

V= f%h This v is the speed at the bottom of the ramp. The object with the greatest speed v will also have
c

the greatest average speed down the ramp and will therefore take the shortest time to reach the bottom. Thus
the object with the smallest ¢ will have the greatest v and therefore the shortest time in the bar graph shown

with the problem. For a solid cylinder, 7 = %mR2 so ¢ = %, for a hollow cylinder, 7 = mR%, soc=1,and

likewise we get ¢ = 2/5 for a solid sphere and ¢ = 2/3 for a hollow sphere. The smallest value of ¢ is 2/5 for
a solid sphere, so that object must take the shortest time, which makes it object 4. The largest value of ¢ is 1
for a hollow cylinder, so that object takes the longest time, which makes it object D. The hollow sphere has
a larger c than the solid cylinder, so it takes longer than the solid cylinder, so C must be the hollow sphere
and B the solid cylinder. Summarizing these results, we have

A: solid sphere, ¢ = 2/5

B: solid cylinder, ¢ = 1/2

C: hollow sphere, ¢ =2/3

D: hollow cylinder, ¢ = 1
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(b) All the objects start from rest at the same initial height and roll without slipping, so they all have the
same kinetic energy at the bottom of the ramp.

(¢) Using K, = %I Cma)2, we have K, = ¥ (cmR*)(v/R)* = Y2 mev*. Using our result for v* from (a) gives

2gh 1 . . .
K, =ime| 282 |= mgh| —— |. From this result, we see that the object with the largest ¢ has the largest
rot 2 l+c ) 1

+ —

c
rotational kinetic energy because the denominator in the parentheses is the smallest. Therefore the hollow
cylinder, with ¢ = 1, has the largest rotational kinetic energy.

(d) Apply Newton’s second law. Perpendicular to the ramp surface, we get n =mg cos @ for the normal
force. Parallel to the surface, with down the ramp as positive, we get mg sin @ — f; = ma. Taking torques
about the center of the rolling object gives fR = I = (mcR*)(a/R), which gives f, = mca, so ma = fJc.
Putting this into the previous equation gives mg sin @ — f; = fi/c, which can be written as

mg sin @ = f(1 + 1/c). We want the minimum coefficient of friction to prevent slipping, so

Jfs = un = ugng cos 6. Putting this into the previous equation gives mg sin @ = (ugng cos 8)(1 + 1/c).

p . t
Solving for u gives 4 = an419
1+-—

e

. We want u such that none of the objects will slip, so we must find the

maximum u,. That will occur when ¢ has its largest value since that will make the denominator smallest,
and that is for the hollow cylinder for which ¢ = 1. This gives u, = (tan 35.0°)/2 = 0.350.
EVALUATE: As a check, part (a) could be solved using Newton’s second law, as we did in part (d). As a
check in part (d), find g, for the solid sphere which has the smallest value of ¢. This gives
_ tan35.0° _ tan35.0°
/‘Is - 1 -
I+—
2/5
0.350 is more than enough to prevent slipping of the solid sphere.
IDENTIFY: The work done by the force F is equal to the kinetic energy gained by the flywheel. This work
is the area under the curve in a F-versus-d graph.

SETUP: W=Fd K :%Iwz, V=rao.

=0.200. This is less than the 0.350 we found in (d), so a coefficient of friction of

EXECUTE: (a) The pull is constant, so the linear and angular accelerations are constant. Therefore
v =2v,, =2(d/t), so @ =v/R =2d/tR. The work done is equal to the kinetic energy of the flywheel, so

Fd =

24\’
lip? =17 22 i i
5 lo 3 I( ® j . Solving for 7 gives

I = FAR*2d = (25.0 N)(2.00 s)%(0.166 m)*/[2(8.35 m)] = 0.165 kg - m>.

(b) The kinetic energy gained is equal to the work done which is equal to the area under the curve on the
F-d graph. This gives

K =(60.0 N)(3.00 m) + % (60.0 N)(3.00 m) = 270 J.

(©) K :%Ia)2 S0 W= JK = ﬂj)z = 57.2 rad/s. Converting to rpm gives
1 0.165 kg-m

(57.2 rad/s)[(60 s)/(1 min)][(1 rev)/(2x rad)] = 546 rpm.

EVALUATE: In this case, we could have deduced the equation for F as a function of d from the graph and
integrated to find the work. But for a more complicated F-d dependence, that would have been impossible,
but we could still estimate the area quite accurately from the graph.

IDENTIFY: The answer to part (a) can be taken from the solution to Problem 10.86. The work-energy
theorem says W = AK.

SET UP: Problem 10.86 uses conservation of angular momentum to show that rv; =rv,.

EXECUTE: (a) T :mvlzrlz/r3_
(b) T and d¥ are always antiparallel. T - d¥ = — Tdr.
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n
W=—\"Tdr=mvn | —=—n|——
i n

I P

qudr_mvlz 2|:1 1:|

2
(©) v, =v(#i/r,), so AK = %m(v% - vlz) = %[(1’1 /r2)2 - IJ, which is equal to the work found in part (b).

EVALUATE: The work done by T'is positive, since T is toward the hole in the surface and the block
moves toward the hole. Positive work means the kinetic energy of the object increases.

IDENTIFY: Apply ¥ F,, =md,, and Xz, =1, to the motion of the cylinder. Use constant
acceleration equations to relate a, to the distance the object travels. Use the work-energy theorem to find
the work done by friction.

SET UP: The cylinder has 7, = %MRZ.

EXECUTE: (a) The free-body diagram is sketched in Figure 10.92. The friction force is

iy A - ~ Lo SR MR 2ihg
f=n= Mg, so a=p4g. The magnitude of the angular acceleration is *— = ———=— =—"*=,
S C I a2Mmr* R
Ray _ _ Ray _ Ry
a+Ro  phg+24g 3ihg

(b) Setting v=at = @R = (@, — a¢)R and solving for ¢ gives ¢ =

2 2 2
R R
and d=La® =1(y g)[ “’OJ =%
20 2T e ) 18ug

(¢) The final kinetic energy is (3/ 4)Mv2 =3/4M (at)z, so the change in kinetic energy is

y.
3 RC{)O 1 95 1 2 2
AK =M _ MR2af = — ~MR*ap.
4 (/Jkg3,ukgj 4Py T

LMRay 2

2
TMRay 3

(=)}

EVALUATE: The fraction of the initial kinetic energy that is removed by friction work is

This fraction is independent of the initial angular speed @j,.

[ <

Mg
Figure 10.92
. _ TZ _wr
IDENTIFY: The vertical forces must sum to zero. Apply Q =—=%= 7S
w
4

SET UP: Denote the upward forces that the hands exert as F; and Fp. 7= (F; — F)r, where
r=0.200 m.

o . lo
EXECUTE: The conditions that F; and Fp must satisfy are F; + Fp =w and F; — F, =Q—, where the
r

second equation is 7 =QL, divided by r. These two equations can be solved for the forces by first adding

and then subtracting, yielding F; = %[w + Q]—wj and Fp = %(w - Ql—wj Using the values
r r



10-40 Chapter 10

w=mg =(8.00 kg)(9.80 m/sz) =78.4 N and

lo _ (8.00 kg)(0.325 m)?(5.00 rev/sx 27 rad/rev)
r (0.200 m)

F; =392 N+Q(66.4 N-s), Fp =392 N-Q(66.4 N-s).

(a) Q=0,F;, =F, =392 N.

(b) ©=0.05rev/s =0.314 rad/s, F; =60.0 N, Fp =18.4 N.

(¢) Q=0.3rev/s=1.89 rad/s, F; =165 N, F =—86.2 N, with the minus sign indicating a downward force.

392N

(d) Fr =0 gives Q=————=0.590 rad/s, which is 0.0940 rev/s.
66.4 N-s

EVALUATE: The larger the precession rate €, the greater the torque on the wheel and the greater the

=132.7 kg- m/s gives

difference between the forces exerted by the two hands.
10.94. IDENTIFY: The rotational form of Newton’s second law applies.
SETUP: 27=]0r and w, =@y, + o, t.
EXECUTE: X7 = | = Aw/At, where [ = Lion + Ly. SolvIng for Leron 81VeS Lyeson = T/ — 1.
25Nxm
Iperson = 7~
1.0 rad/s
( 3.0s )
EVALUATE: The moment of inertia of the turntable is considerably less than that of the person, which is a
good thing. If the moment of inertia of the table were much greater than that of the person, the person’s
body would have a small effect on the angular acceleration of the table, making it hard to get an accurate
measurement.
10.95. IDENTIFY and SETUP: Moment of inertia depends on the distribution of mass.
EXECUTE: Extending her legs increases the person’s moment of inertia to increase. With a constant torque
on the turntable, this would decrease her angular acceleration, which is choice (c).
EVALUATE: The person being studied should be told to lie still during the procedure.
10.96. IDENTIFY and SET UpP: The torque is the product of the force times the lever arm, and X7 = /.
EXECUTE: Doubling the lever arm with a constant force doubles the torque, which then doubles the angular
acceleration, so choice (b) is correct.
EVALUATE: Doubling the diameter of the pulley would also allow the tension to be decreased by a factor
of 2 and still keep the same original angular acceleration.
10.97. IDENTIFY and SET UP: The parallel-axis theorem, 7 = I,, + md", applies to the person.
EXECUTE: The measured moment of inertia would be 7, but this would be greater than [, so the measured
value would be too large, choice (a).
EVALUATE: Care is essential to position the person properly on the turntable.

—1.5 kg x m?=6.0 kg x m?, which is choice (b).
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mx, + mox, +msyx; +... . . .
IDENTIFY: Use x.. =—11 2112 373 to calculate x.... The center of gravity of the bar is at its
cm cm g y
m tmy +my+..

center and it can be treated as a point mass at that point.
SET Up: Use coordinates with the origin at the left end of the bar and the +x-axis along the bar.

m; =0.120 kg, m, =0.055 kg, m; =0.110 kg.

_ myx; +myx, + myx; _ (0.120 kg)(0.250 m) +0 +(0.110 kg)(0.500 m)
e my +my +my 0.120 kg +0.055 kg +0.110 kg
fulcrum should be placed 29.8 cm to the right of the left-hand end.

EVALUATE: The mass at the right-hand end is greater than the mass at the left-hand end. So the center of
gravity is to the right of the center of the bar.

EXECUTE: x =0.298 m. The

mxy +myx, +myxy +i g .
IDENTIFY: Use X, = ————2-2 373 to calculate x_,, of the composite object.
mytmy +myt...

SET Up: Use coordinates where the origin is at the original center of gravity of the object and +x is to the
right. With the 1.50 kg mass added, x., =—2.20 cm, m; =5.00 kg and m, =1.50 kg. x; =0.

m+my)  _[5.00kg+1.50 kg
AR D = SR EERY 0 <2
1.50 kg

The additional mass should be attached 9.53 cm to the left of the original center of gravity.

EVALUATE: The new center of gravity is somewhere between the added mass and the original center of
gravity.

IDENTIFY: Treat the rod and clamp as point masses. The center of gravity of the rod is at its midpoint, and
we know the location of the center of gravity of the rod-clamp system.

. ) -
EXECUTE: X, =———. X, —[

. ](—2.20 cm) =-9.53 cm.
ml + m2

my

SETUP: x, = 5 ¥y
my +m,
_ (1.80 kg)(1.00 m) +(2.40 kg)x,

- 1.80 kg +2.40 kg '
% = (1.20 m)(1.80 kg +2.40 kg) — (1.80 kg)(1.00 m) _ 13
2.40 kg
EVALUATE: The clamp is to the right of the center of gravity of the system, so the center of gravity of the

system lies between that of the rod and the clamp, which is reasonable.
IDENTIFY: Apply the first and second conditions for equilibrium to the trap door.
SET Up: For > 7, =0 take the axis at the hinge. Then the torque due to the applied force must balance the

EXECUTE: 1.20m

5m

torque due to the weight of the door.

EXECUTE: (a) The force is applied at the center of gravity, so the applied force must have the same
magnitude as the weight of the door, or 300 N. In this case the hinge exerts no force.

(b) With respect to the hinges, the moment arm of the applied force is twice the distance to the center of
mass, so the force has half the magnitude of the weight, or 150 N.
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The hinges supply an upward force of 300 N—-150 N =150 N.

EVALUATE: Less force must be applied when it is applied farther from the hinges.

IDENTIFY: Apply >z, =0 to the ladder.

SET UP: Take the axis to be at point A. The free-body diagram for the ladder is given in Figure 11.5. The

torque due to F must balance the torque due to the weight of the ladder.
EXECUTE: F(8.0 m)sin40° = (3400 N)(10.0 m), so /' = 6.6 kN.

EVALUATE: The force required is greater than the weight of the ladder, because the moment arm for F is
less than the moment arm for w.

40°\[<—8.0m—>ja Py,

C >
10.0 m—)l
P,

3400N

Figure 11.5

IDENTIFY: Apply the first and second conditions of equilibrium to the board.
SET UP: ' The free-body diagram for the board is given in Figure 11.6. Since the board is uniform its center
of gravity is 1.50 m from each end. Apply 2. #, =0, with +y upward. Apply Xz, =0 with the axis at the

end where the first person applies a force and with counterclockwise torques positive.
EXECUTE: X F, =0 gives [{ +F, —w=0 and F, =w=F =160 N-60N=100N. X7 =0 gives

Fx—w(l1.50m)=0 and x= i | 1.50m)= [Mj (1.50 m) =2.40 m. The other person lifts with a
F, 100 N

force of 100 N at a point 2.40 m from the end where the other person lifts.

EVALUATE: By considering the axis at the center of gravity we can see that a larger force is applied by

the person who pushes closer to the center of gravity.

F, X AF>

-
Axis €<——1.50m

Figure 11.6

IDENTIFY: Apply 2F, =0 and 27, =0 to the board.
SET UP: Let +y be upward. Let x be the distance of the center of gravity of the motor from the end of the
board where the 400 N force is applied.

EXECUTE: (a) If the board is taken to be massless, the weight of the motor is the sum of the applied
(2.00 m)(600 N)
(1000 N)

applied, and so is 0.800 m from the end where the 600 N force is applied.
(b) The weight of the motor is 400 N + 600 N —200 N =800 N. Applying > 7, =0 with the axis at the end
of the board where the 400 N acts gives (600 N)(2.00 m) =(200 N)(1.00 m) + (800 N)x and x =1.25 m.

The center of gravity of the motor is 0.75 m from the end of the board where the 600 N force is applied.
EVALUATE: The motor is closest to the end of the board where the larger force is applied.

forces, 1000 N. The motor is a distance =1.20 m from the end where the 400 N force is
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IDENTIFY: Apply the first and second conditions of equilibrium to the shelf.

SET Up: The free-body diagram for the shelf is given in Figure 11.8. Take the axis at the left-hand end of the

shelf and let counterclockwise torque be positive. The center of gravity of the uniform shelf is at its center.

EXECUTE: (a) 27, =0 gives —w,;(0.200 m)—w,(0.300 m) +7,(0.400 m) =0.

T, = (25.0 N)(0.200 m) +(50.0 N)(0.300 m)
0.400 m

2F, =0 gives ; +T, —w, —w, =0 and 7; =25.0 N. The tension in the left-hand wire is 25.0 N and the

tension in the right-hand wire is 50.0 N.

EVALUATE: We can verify that 27, =0 1is zero for any axis, for example for an axis at the right-hand end

of the shelf.

=50.0N

20.0 cm 10.0cm,10.0 cm 20.0 cm |

w, = 250N

w, = 50.0N
Figure 11.8

IDENTIFY: Apply the conditions for equilibrium to the bar. Set each tension equal to its maximum value.
SET UP: Let cable 4 be at the left-hand end. Take the axis to be at the left-hand end of the bar and x be the
distance of the weight w from this end. The free-body diagram for the bar is given in Figure 11.9.
EXECUTE: (a) 2 F, =0 gives T + Tz —w— W, =0 and

w=T,+Tp — Wy =500.0 N +400.0 N—-350.0 N =550 N.

(b) 27, =0 gives T5(1.50 m)—wx —w,(0.750 m) = 0.

‘= T5(1.50 m) —w,,(0.750 m) _ (400.0 N)(1.50 m)— (350 N)(0.750 m)

w 550 N
be placed 0.614 m from the left-hand end of the bar (cable 4).
EVALUATE: If the weight is moved to the left, 7, exceeds 500.0 N and if it is moved to the right T

exceeds 400.0 N.

=0.614 m. The weight should

0.750 m->|

Figure 11.9
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11.10.

11.11.

11.12.

IDENTIFY: Apply the first and second conditions for equilibrium to the ladder.
SET UP: Let n, be the upward normal force exerted by the ground and let »; be the horizontal normal

force exerted by the wall. The maximum possible static friction force that can be exerted by the ground

is /JSnz.

EXECUTE: (a) Since the wall is frictionless, the only vertical forces are the weights of the man and the
ladder, and the normal force n,. For the vertical forces to balance, n, =w; +w,, =160 N +740 N =900 N,
and the maximum frictional force is 1, =(0.40)(900 N) =360 N.

(b) Note that the ladder makes contact with the wall at a height of 4.0 m above the ground. Balancing
torques about the point of contact with the ground,

(4.0 m)n; =(1.5 m)(160 N) + (1.0 m)(3/5)(740 N) =684 N-m, so n; =171.0 N. This horizontal force
must be balanced by the friction force, which must then be 170 N to two figures.

(c) Setting the friction force, and hence #;, equal to the maximum of 360 N and solving for the distance x
along the ladder, (4.0 m)(360 N) =(1.50 m)(160 N) + x(3/5)(740 N), so x =2.7 m.

EVALUATE: The normal force exerted by the ground doesn’t change as the man climbs up the ladder. But
the normal force exerted by the wall and the friction force exerted by the ground both increase as he moves

up the ladder.
IDENTIFY: The system of the person and diving board is at rest so the two conditions of equilibrium

apply.
(a) SET UP: The free-body diagram for the diving board is given in Figure 11.11. Take the origin of
coordinates at the left-hand end of the board (point 4).

17"1 is the force applied at the support
@ point and F, is the force at the end
that is held down.

| 280N Yso0N

3.00m
Figure 11.11

EXECUTE: Y.7,=0 gives +F (1.0 m)—(500 N)(3.00 m)— (280 N)(1.50 m)=0
£ = (500 N)(3.00 m) + (280 N)(1.50 m)
! 1.00 m

=1920 N

(b) XF, =ma,

F,—F,-280N-500N=0

F,=F-280 N-500 N=1920 N-280 N-500 N=1140 N

EVALUATE: We can check our answers by calculating the net torque about some point and checking that
2.7, =0 for that point also. Net torque about the right-hand end of the board:

(1140 N)(3.00 m) + (280 N)(1.50 m)— (1920 N)(2.00 m) = 3420 N-m +420 N-m—3840 N-m =0, which

checks.

IDENTIFY: Apply the first and second conditions of equilibrium to the beam.

SET UP: The boy exerts a downward force on the beam that is equal to his weight.

EXECUTE: (a) The graphs are given in Figure 11.12.

(b) x=6.25 m when F;, =0, which is 1.25 m beyond point B.

(c) Take torques about the right end. When the beam is just balanced, F, =0, so Fz =900 N.

(300 N)(4.50 m)
(900 N)

The distance that point B must be from the right end is then =1.50 m.
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11.13.

EVALUATE: When the beam is on the verge of tipping it starts to lift off the support 4 and the normal
force F, exerted by the support goes to zero.

F(N)
1000
900
800

700

600

500

400
300

200

s : X (m)
2000 05 1 15 2 25 3 35 4 45 5 55 6 65 7

Figure 11.12

IDENTIFY: Apply the first and second conditions of equilibrium to the strut.

(a) SET UP: The free-body diagram for the strut is given in Figure 11.13a. Take the origin of coordinates
at the hinge (point A) and +y upward. Let F;, and F, be the horizontal and vertical components of the
force F exerted on the strut by the pivot. The tension in the vertical cable is the weight w of the

suspended object. The weight w of the strut can be taken to act at the center of the strut. Let L be the length
of the strut.

EXECUTE:
2F, =ma,
F,-w-w=0
F, =2w

L sin 30°

WPo—
(L[2) cos 30°

L cos 30°
Figure 11.13a

Sum torques about point 4. The pivot force has zero moment arm for this axis and so doesn’t enter into the
torque equation.

7,=0

TLsin30.0°—w((L/2)c0s30.0°) —w(Lc0s30.0°) =0

T'sin30.0° - (3w/2)c0s30.0° =0
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_3wc0s30.0° _ 2 60w
2sin30.0°
Then > F, =ma, implies T — F, =0 and F, =2.60w.

We now have the components of F so can find its magnitude and direction (Figure 11.13b).

F=\|F*+F?

F=@.60w) +(2.00m)

F =328w

tan@ = £ _ 200w
F o 2.60w

0=37.6°

Figure 11.13b

(b) SET UP: ' The free-body diagram for the strut is given in Figure 11.13c.

T cos 30°

L sin 45°

RS- |
(L[2) cos 45°

L cos 45°

Figure 11.13c

The tension T has been replaced by its x and y components. The torque due to 7 equals the sum of the
torques of its components, and the latter are easier to calculate.

EXECUTE: 27, =0+ (T c0s30.0°)(Lsin45.0°) — (T'sin30.0°)(Lcos45.0°) —
w| (L/2)c0s45.0° |- w(Lcos45.0°) = 0

The length L divides out of the equation. The equation can also be simplified by noting that
sin45.0° = cos45.0°.

Then 7T'(c0s30.0°—sin30.0°) =3w/2.
r= 2(cos30.0§v—vsin30.0°) -
2F, =ma,

F, —Tcos30.0°=0

F, =Tco0s30.0° = (4.10w)(c0s30.0°) =3.55w
2F,=ma,

F,—w—-w-Ts5in30.0°=0

4.10w
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11.14.

11.15.

F,=2w+ (4.10w)sin30.0° = 4.05w

From Figure 11.13d,
F=\F+F}

F =(3.55w)% +(4.05w)2 =5.39w

g = P 405w
Fy, 3.55w
6=48.8°

Figure 11.13d

EVALUATE: In each case the force exerted by the pivot does not act along the strut. Consider the net
torque about the upper end of the strut. If the pivot force acted along the strut, it would have zero torque
about this point. The two forces acting at this point also have zero torque and there would be one nonzero
torque, due to the weight of the strut. The net torque about this point would then not be zero, violating the
second condition of equilibrium.

IDENTIFY: Apply the first and second conditions of equilibrium to the beam.

SET Up: The free-body diagram for the beam is given in Figure 11.14. H,, and H, are the vertical and
horizontal components of the force exerted on the beam at the wall (by the hinge). Since the beam is
uniform, its center of gravity is 2.00 m from each end. The angle 6 has cos@ =0.800 and siné = 0.600.
The tension T has been replaced by its x- and y-components.

EXECUTE: (a) H,, H; and T, =T cosé all produce zero torque. 2.7, =0 gives
—w(2.00 m) — W;,q(4.00 m) +7'sin &(4.00 m) =0 and

(190 N)(2.00 m) + (300 N)(4.00 m)
- (4.00 m)(0.600)

(b) 2F, =0 gives Hy —Tcos#=0 and H, =(658.3N)(0.800) =527 N. ZFy =0 gives
Hy,—w=Wgq *Tsin@=0 and H =w+ w_, —Tsin@=190 N +300 N — (658 N)(0.600) = 95 N.

T = 658.3 N, which rounds to 658 N.

EVALUATE: For an axis at the right-hand end of the beam, only w and H, produce torque. The torque
due to w is counterclockwise so the torque due to A, must be clockwise. To produce a clockwise torque,

H,, must be upward, in agreement with our result from > £, =0.

Hy,

./7 2.00m it 2.00m —>
Axis

w Wioad

Figure 11.14

IDENTIFY: The boom is at rest, so the forces and torques on it must each balance.
SETUP: 27=0, XF, =0, 2F, =0. The free-body is shown in Figure 11.15 (next page). Call L the
length of the boom.
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Wioad
X
Figure 11.15
EXECUTE: (a) 27=0 gives 7(Lsin60.0°) — wyy,q(Lc0s60.0°) — w(0.35Lc0s60.0°) =0 and
7 = Moad cos60.0- + w(0.35¢0s60.0°) i (5000 N)cos60.0 + (2600 N)(0.35c0s60.0°) —341%10° N,
sin60.0° sin 60.0°
(b) X F, =0 gives F, —T =0 and F, =3410 N.
2F,=0 gives F, —w—Wg,q =0 and F,=5000 N +2600 N = 7600 N
EVALUATE: The bottom of the boom is the best point about which to take torques because only one
unknown (the tension) appears in our equation. Using the top (or the center of mass) would give a torque
equation with two (or three) unknowns.
11.16. IDENTIFY: Apply the conditions of equilibrium to the wheelbarrow plus its contents. The upward force

applied by the person is 650 N.

SET UP: The free-body diagram for the wheelbarrow is given in Figure 11.16. F =650 N, w,; =80.0 N
and w is the weight of the load placed in the wheelbarrow.

EXECUTE: (a) 27, =0 with the axis at the center of gravity gives 7(0.50 m)— F(0.90 m)=0 and

n=rF220M) 170N, SF, =0 gives F+n—w, —w=0 and
0.50 m y W

w=F+n—wy, =650 N+1170 N—-80.0 N =1740 N.

(b) The extra force is applied by the ground pushing up on the wheel.

EVALUATE: You can verify that > 7, =0 for any axis, for example for an axis where the wheel contacts
the ground.

0.90 m 0.50 m

axis

Ywap T W

Figure 11.16
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11.17.

11.18.

IDENTIFY: The beam is at rest so the forces and torques on it must each balance.
SETUP: 27=0, XF, =0, XF, =0. The distance along the beam from the hinge to where the cable is
0Om

attached is 3.0 m. The angle ¢ that the cable makes with the beam is given by sin¢g = :'0—, S0
Om

¢ =53.1°. The center of gravity of the beam is 4.5 m from the hinge. Use coordinates with +y upward
and +x to the right. Take the pivot at the hinge and let counterclockwise torque be positive. Express the
hinge force as components H, and H}. Assume H, is downward and that H} is to the right. If one of

these components is actually in the opposite direction we will get a negative value for it. Set the tension in
the cable equal to its maximum possible value, 7' =1.00 kN.

EXECUTE: (a) The free-body diagram is shown in Figure 11.17, with T resolved into its x- and y-
components.

r (r
[

I\

I

I

o I
Hinge Tcosd

Pivot H, X
«~—3.0m—

H, w
45m

Figure 11.17

(b) X7=0 gives (T'sin@)(3.0 m) — w(4.5m)=0
_ (T'sing)(3.00 m) _ (1000 N)(sin53.1°)(3.00 m)
4.50 m 4.50 m
(c) Z2F, =0 gives H, —Tcos¢=0 and Hy =(1.00 kN)(cos53.1°) =600 N
ZFy =0 gives T'sing—H,—w=0 and H, = (1.00 kN)(sin53.1°) = 533 N =267 N.

EVALUATE: Tcos¢, H, and H,; all have zero moment arms for a pivot at the hinge and therefore

=533N

produce zero torque. If we consider a pivot at the point where the cable is attached we can see that H,

must be downward to produce a torque that opposes the torque due to w.
IDENTIFY: Apply the conditions for equilibrium to the crane.
SET UP: The free-body diagram for the crane is sketched in Figure 11.18 (next page). £}, and F, are the

components of the force exerted by the axle. 7 pulls to the left so F, is to the right. T also pulls

downward and the two weights are downward, so F, is upward.

EXECUTE: (a) 27, =0 gives T([13 m]sin25°) —w,([7.0 m]cos55°) — w;, ([16.0 m]cos55°) = 0.

T= (11,000 N)([16.0 m]cos55°) + (15,000 N)([7.0 m]cos55°)
(13.0 m)sin25°

(b) XF, =0 gives F, —Tcos30°=0 and F, =2.54x10* N.

S F,=0 gives F, —Tsin30°—w,—w, =0 and F, =4.06x10* N.

=2.93x10* N.

4
EVALUATE: tanf = by _406x10° N and € =58°. The force exerted by the axle is not directed along

F, 2.54x10* N
the crane.
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11.19.

wp = 11,000N

Figure 11.18

IDENTIFY: Apply the first and second conditions of equilibrium to the rod.
SET Up: The force diagram for the rod is given in Figure 11.19.

TI RN = sy iy Ta
A AT l”"‘m Q) T,sinf A ~ A
] - |
;30° 0 T,cos 6
T, cos 30” 1.50 m 1.00 m 10‘50 m \ -
axis
90N

190N

Figure 11.19

EXECUTE: 2.7, =0, axis at right end of rod, counterclockwise torque is positive
(190 N)(1.50 m) + (90 N)(0.50 m) — (7] sin30.0°)(3.00 m) = 0
_285N-m+45N-m

Tl 1.50 m =220N

Y F. =ma,

Tycos8—Tjcos30°=0 and T, cos@ = (220 N)(cos30°) =190.5 N
ZFy =ma,

T sin30° + T, sind—190 N—-90N =0
T,sing =280 N — (220 N)sin30° =170 N
T, sind 170 N

Then ———— gives tanf =0.89239 and 6 =41.7°
T,cos¢ 190.5N
And T, = M =255N.
sin41.7°

EVALUATE: The monkey is closer to the right rope than to the left one, so the tension is larger in the right
rope. The horizontal components of the tensions must be equal in magnitude and opposite in direction.
Since 7, >1T;, the rope on the right must be at a greater angle above the horizontal to have the same

horizontal component as the tension in the other rope.
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11.20.

11.21.

11.22.

IDENTIFY: Apply the first and second conditions for equilibrium to the beam.

SET UP: The free-body diagram for the beam is given in Figure 11.20.

EXECUTE: The cable is given as perpendicular to the beam, so the tension is found by taking torques
about the pivot point; 7(3.00 m) = (1.40 kN)(2.00 m)co0s25.0° + (5.00 kN)(4.50 m)cos25.0°, and

T =7.64 kN. The vertical component of the force exerted on the beam by the pivot is the net weight minus
the upward component of 7, 6.00 kN — 7' c0s25.0° = —0.53 kN. The vertical component is downward. The
horizontal force is 7'sin25.0° =3.23 kN.

EVALUATE: The vertical component of the tension is nearly the same magnitude as the total weight of the
object and the vertical component of the force exerted by the pivot is much less than its horizontal component.

5.00 kN
Figure 11.20

(a) IDENTIFY and SET UP: Use 7 = FI to calculate the torque (magnitude and direction) for each force
and add the torques as vectors. See Figure 11.21a.

@ EXECUTE:
i F, 7, = Fl; = +(8.00 N)(3.00 m)
axis@ Y 7,=+240N-m
3.00m I 7, =—Fyl, =—(8.00 N)(/ +3.00 m)

7, ==240 N-m—(8.00 N)/

Figure 11.21a

27, =7+7, =+240 N-m—-24.0 N-m—(8.00 N)/ =—(8.00 N)/

Want / that makes > 7, =—6.40 N-m (net torque must be clockwise)

—(8.00 N)/ =—6.40 N-m

[=(6.40 N-m)/8.00 N =0.800 m

(b) |72| > |Tl| since F, has a larger moment arm; the net torque is clockwise.

(c) See Figure 11.21b.

@ 7, =—Fl, =—(8.00 N)]
FA I |E

S 2% 7, =0 since F, is at the axis

Figure 11.21b

27, =—640 N-m gives —(8.00 N)/ =—6.40 N-m
/=0.800 m, same as in part (a).
EVALUATE: The force couple gives the same magnitude of torque for the pivot at any point.

IDENTIFY: The person is in equilibrium, so the torques on him must balance. The target variable is the
force exerted by the deltoid muscle.
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11.23.

11.24.

SET UP: The free-body diagram for the arm is given in Figure 11.22. Take the pivot at the shoulder joint
and let counterclockwise torques be positive. Use coordinates as shown. Let F be the force exerted by the
deltoid muscle. There are also the weight of the arm and forces at the shoulder joint, but none of these
forces produce any torque when the arm is in this position. The forces F and T have been replaced by their
x- and y-components. 2.7, =0.

64.0cm

Fsin12°

. IIS.Ocm
pivot

Fcos 12°
Figure 11.22

EXECUTE: X7, =0 gives (Fsin12.0°)(15.0 cm)— (7 cos35°)(64.0 cm) = 0.

Fe (36.0 N)(cos35°)(64.0 cm)
(sin12.0°)(15.0 cm)

EVALUATE: The force exerted by the deltoid muscle is much larger than the tension in the cable because

the deltoid muscle makes a small angle (only 12.0°) with the humerus.

IDENTIFY: The student’s head is at rest, so the torques on it must balance. The target variable is the

tension in her neck muscles.

SET UP: Let the pivot be at point P and let counterclockwise torques be positive. >z, = 0.

=605 N.

EXECUTE: (a) The free-body diagram is given in Figure 11.23.

cm

11.0cm

Pivot

~0
)

T
Figure 11.23

(b) X7, =0 gives w(11.0 cm)(sin40.0°) - 7'(1.50 cm) = 0.

7= (4.50 kg)(9.80 m/s?)(11.0 cm)sin40.0°
1.50 cm

EVALUATE: Her head weighs about 45 N but the tension in her neck muscles must be much larger

because the tension has a small moment arm.

loFy

ANl

=208 N.

IDENTIFY: Use Y =
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SETUP: A4=50.0 cm® =50.0x10™* m>.

EXECUTE: relaxed: Y = (0'2(10 1r12)(25.0 N) 5 =333x10* Pa
(50.0x107* m?)(3.0x1072 m)
maximum tension: ¥ = (0.200 m)(500 N) =6.67x10° Pa

(50.0x10™* m?)(3.0x1072 m)
EVALUATE: The muscle tissue is much more difficult to stretch when it is under maximum tension.

F
11.25. IDENTIFY and SET UP: Apply ¥ = ISI_AJZ_ and solve for 4 and then use 4 = 71> to get the radius and

d =2r to calculate the diameter.

LhF|
AN
For steel, ¥ =2.0x10'! Pa (Table 11.1)
(2.00 m)(700 N)
(20x10'"" Pa)(0.25% 1072 m)

A=7r2, so r=~JAlr =N2.8x10° m2/7 =9.44x10™* m

d=2r=19x10" m = 1.9 mm.
EVALUATE: Steel wire of this diameter doesn’t stretch much; Al/l; = 0.12%.

ING . . .
EXECUTE: Y = so A= % (4 is the cross-section area of the wire)

Thus A = =28x107° m>.

L F
11.26. IDENTIFY: Apply ¥ =0+
pply AN

SET UP: From Table 11.1, for steel, Y =2.0x10"" Pa and for copper, Y =1.1x10"! Pa.
A=n(d*/4)=177x10~* m?. F, =4000 N for each rod.

o AR A 4 _
EXECUTE: (a) The strain is —l =—. For steel —l = (2000} =1.1x107*

I, Y4 Iy (2.0x10" Pa)(1.77x107* m?)

Similarly, the strain for copper is 2.1x 1074
(b) Steel: (1.1x1074)(0.750 m) =83x10~> m. Copper: (2.1x107%)(0.750 m)=1.6x10~* m.
EVALUATE: Copper has a smaller Y and therefore a greater elongation.

I F
11.27. IDENTIFY: Apply ¥ =L
pely Y 5500
SETUP: A4=050 cm?=0.50x10"* m?
(4.00 m)(5000 N)

EXECUTE: Y = =2.0x10'"! Pa

(0.50x10™* m?)(0.20x107% m)
EVALUATE: Our result is the same as that given for steel in Table 11.1.

ILWF
11.28. IDENTIFY: Apply ¥ =L
pply AN

SETUP: A=xr’= 7[(3.5><1073 m)2 =3.85x10~> m?. The force applied to the end of the rope is the

weight of the climber: F| =(65.0 kg)(9.80 rn/sz) =637 N.
(45.0 m)(637 N)
(3.85x107 m?)(1.10 m)

EVALUATE: Our result is a lot smaller than the values given in Table 11.1. An object made of rope
material is much easier to stretch than if the object were made of metal.
11.29. IpENTIFY: Use the first condition of equilibrium to calculate the tensions 7; and 7, in the wires

EXECUTE: Y = =6.77x10° Pa

(Figure 11.29a, next page). Then use Eq. (11.10) to calculate the strain and elongation of each wire.
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0.50 mi

m, = 6.0kg
0.50 mi
m,=10.0 kg

Figure 11.29a

SET UP: The free-body diagram for m, is given in Figure 11.27b.

EXECUTE:
ZFy =ma,
T2 V— ng = O

7,=98.0N

Figure 11.29b

SET Up: The free-body-diagram for m is given in Figure 11.29c.

Y EXECUTE:
T ZFy =ma,
=T, -mg=0
i L=T, +mg
7,=98.0N+588 N=157N
mg
Figure 11.29¢
. F
@) Y= stre.ss so strain = stress _
strain Y AY
. . T; 1 _
upper wire: strain = —— = — 527 N m =3.1x107°
AY  (25x107" m7)(2.0x10"" Pa)
i_ 98 N

lower wire: strain = =2.0x1073

AY  (25x107" m?)(2.0x10!"! Pa)

(b) strain = Al/ly so Al =[,(strain)
upper wire: Al =(0.50 m)(3.1x107)=1.6x10" m=1.6 mm
lower wire: Al =(0.50 m)(2.0x107)=1.0x10"> m =1.0 mm
EVALUATE: The tension is greater in the upper wire because it must support both objects. The wires have
the same length and diameter, so the one with the greater tension has the greater strain and elongation.
_ stress _IFy

’ AN
SET UP: The cross-sectional area of the post is 4 = 7l = 7(0.125 m)2 =0.0491 m>. The force applied to the
end of the post is F, = (8000 kg)(9.80 m/s>) =7.84x10* N. The Young’s modulus of steel is ¥ =2.0x10'" Pa.

4
EXECUTE: (a) stress = iy = _784x10° N =-1.60x10° Pa. The minus sign indicates that the stress is

11.30. IDENTIFY: Apply stress:%, strain

compressive.
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11.31.

11.32.

11.33.

11.34.

11.35.

st 1.60x10° P _ o
(b) strain = S r;:ss =— 60x 10" Pa =-8.0x107%. The minus sign indicates that the length decreases.

20x10'"! Pa
(¢) Al =[y(strain) =(2.50 m)(—-8.0x107°)=-2.0x107 m

EVALUATE: The fractional change in length of the post is very small.
IDENTIFY: The amount of compression depends on the bulk modulus of the bone.

serUp: 2 =2 40 1atm=1.01x10° Pa.
v, B
AV 9 7
EXECUTE: () Ap ===~ =~(15x10 Pa)(-0.0010) =1.5x10" Pa =150 atm.
0

(b) The depth for a pressure increase of 1.5%107 Pa is 1.5 km.

EVALUATE: An extremely large pressure increase is needed for just a 0.10% bone compression, so pressure
changes do not appreciably affect the bones. Unprotected dives do not approach a depth of 1.5 km, so bone
compression is not a concern for divers.

Ap

AV
IDENTIFY: Apply — =——.
pply 7 B

VoA I ) :
SETUP: AV = —OTP. Ap is positive when the pressure increases.

EXECUTE: (a) The volume would increase slightly.

(b) The volume change would be twice as great.

(¢) The volume change is inversely proportional to the bulk modulus for a given pressure change, so the
volume change of the lead ingot would be four times that of the gold.

EVALUATE: For lead, B =4.1x10'" Pa, so Ap/B is very small and the fractional change in volume is

very small.
AV _ Ap
IDENTIFY and SET UP: Use — =——— and k£ = 1/B to calculate B and £.
0
6 3
EXECUTE: =— Ap = Gl Pa)(6(§0 Gy =+48%10° Pa
AVIV, (-0.45 cm™)

k=1/B=1/48x10° Pa=21x10"'" pa~!
EVALUATE: £ is the same as for glycerine (Table 11.2).

IDENTIFY: Apply AVEE _Q' Density =m/V.
Vo B

SET Up: At the surface the pressure is 1.0x10° Pa, so Ap =1.16x10% Pa. Vo =1.00 m?>. At the surface
1.00 m* of water has mass 1.03x10° kg.

Ap)hy
AV

(Ap)V, _ (116x10° Pa)(1.00 m*) _
B 2.2x10° Pa
(b) At this depth 1.03x10° kg of seawater has volume V,, + AV =0.9473 m>. The density is

1.03x10° kg

09473 m*
EVALUATE: The density is increased because the volume is compressed due to the increased pressure.
Fih
il [

EXECUTE: (a) B=-— gives AV =— -0.0527 m*

=1.09%10° kg/m’.

IDENTIFY: The forces on the cube must balance. The deformation x is related to the force by S =

F| =F since F is applied parallel to the upper face.
SETUP: A4 =(0.0600 m)* and / =0.0600 m. Table 11.1 gives S =4.4x10'" Pa for copper and

0.6x10' Pa for lead.
EXECUTE: (a) Since the horizontal forces balance, the glue exerts a force F' in the opposite direction.
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11.36.

11.37.

11.38.

11.39.

11.40.

11.41.

) F= AxS _ (00600 m)*(0.250x10~> m)(4.4x10' Pa)
h 0.0600 m

Fh __(66x10° N)(0.0600 m)

A4S (0.0600 m)2(0.6x10'° Pa)

EVALUATE: Lead has a smaller S than copper, so the lead cube has a greater deformation than the copper cube.

=6.6x10° N

(¢) x= =1.8 mm
Fj h
IDENTIFY: Apply S =——.
Ax
SETUP: F;=9.0x10° N. 4=(0.100 m)(0.500x10~ m). /=0100m. From Table 11.1,
§=75%10" Pa for steel.

=2.4x1072

E 5
EXECUTE: (a) Shear strain = il [~ Ox10 2 N) m
AS  [(0.100 m)(0.500x10™" m)][7.5x10"" Pa]

(b) Since shear strain = x/A, x = (Shear strain)- 4 =(0.024)(0.100 m) = 24%107 m.

EVALUATE: This very large force produces a small displacement; x/4 =2.4%.
IDENTIFY: The force components parallel to the face of the cube produce a shear which can deform the cube.

E
SETUP: S = A—;, where ¢ = x/ h. Fy is the component of the force tangent to the surface, so

F =(1375 N)cos8.50° =1360 N. ¢ must be in radians, ¢ =1.24° =0.0216 rad.

EXECUTE: S = 1360 N =7.36x10° Pa.

(0.0925 m)?(0.0216 rad)
EVALUATE: The shear modulus of this material is much less than the values for metals given in Table 11.1
in the text.
IDENTIFY: The breaking stress of the wire is the value of F/4 at which the wire breaks.

SET UP: From Table 11.3, the breaking stress of brass is 4.7 X 10® Pa. The area 4 of the wire is related to

its diameter by 4 = 7zd>/4.

EXECUTE: A= % =745%107" m?, sod =44/ =097 mm.
4.7x10® Pa

EVALUATE: The maximum force a wire can withstand without breaking is proportional to the square of
its diameter.

IDENTIFY and SET UP: Use stress =

EXECUTE: Tensile stress = F— S s = 3.41x107 Pa
A4 zr 7(092x107° m)

EVALUATE: A modest force produces a very large stress because the cross-sectional area is small.

. o . IWF
IDENTIFY: The proportional limit and breaking stress are values of the stress, F| /4. Use Y = ﬁ to

calculate Al.
SET UP: For steel, ¥ =20x10'" Pa. F=w.
EXECUTE: (a) w=(1.6x107)(20x10'° Pa)(5x107° m?)=1.60x10> N.

(b) Al = [F—jjl—; =(1.6x107)(4.0 m) =6.4 mm

(¢) (65%x107)(20x10'° Pa)(5x107° m?)=6.5%10° N.
EVALUATE: At the proportional limit, the fractional change in the length of the wire is 0.16%.
IDENTIFY: The elastic limit is a value of the stress, F|/A. Apply ¥ F =mi to the elevator in order to

find the tension in the cable.
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11.42.

LN
A
Figure 11.41. F| is the tension in the cable.

EXECUTE: F) = A(080x10® Pa) =(3.00x10™ m*)(0.80x10° Pa) =2.40x10* N. ¥ F, = ma, applied to

SET Up: (2.40%10% Pa) =0.80x10® Pa. The free-body diagram for the elevator is given in

1
3

. F 2.40x10* N
the elevator gives F| —mg =ma and a = L _g= Sx0 N
m 1200 kg

EVALUATE: The tension in the cable is about twice the weight of the elevator.

~9.80 m/s> =10.2 m/s>

.\.

F, t"

mg
Figure 11.41

IDENTIFY: Apply the first and second conditions of equilibrium to the door.

SET UpP: The free-body diagram for the door is given in Figure 11.42. Let H, 1 and H , be the forces exerted
by the upper and lower hinges. Take the origin of coordinates at the bottom hinge (point 4) and +y upward.

EXECUTE:
We are given that
H,, @ H,, =H, =w/2=165N.
0.5m Y F, =ma,
o4 Hyy — Hy, =0
Hyy = Hyy,
The horizontal components

H. M of the hinge forces are equal
in magnitude and opposite in

H"h
X direction.
A 05m

0.5m

1.0m

Y
Figure 11.42

Sum torques about point 4. H,,, H,,, and H,, all have zero moment arm and hence zero torque about
an axis at this point. Thus X7, =0 gives Hj;,(1.00 m)—w(0.50 m) =0

050 m
Hy =w =1(330 N)=165 N.
th (I.OOm] 2 )

The horizontal component of each hinge force is 165 N.
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11.44.

11.45.

EVALUATE: The horizontal components of the force exerted by each hinge are the only horizontal forces
so must be equal in magnitude and opposite in direction. With an axis at 4, the torque due to the horizontal
force exerted by the upper hinge must be counterclockwise to oppose the clockwise torque exerted by the
weight of the door. So, the horizontal force exerted by the upper hinge must be to the left. You can also
verify that the net torque is also zero if the axis is at the upper hinge.

IDENTIFY: The center of gravity of the combined object must be at the fulcrum. Use

_myxy v myxy tmaxy +

X,

om to calculate x.,.

mtmy, +my+ ..
SET UP: The center of gravity of the sand is at the middle of the box. Use coordinates with the origin at
the fulcrum and +x to the right. Let m; =25.0 kg, so x; =0.500 m. Let m, =mg,4, so x, =—0.625 m.
Xem = 0.
—

+
D0 T — 0 and my = —my L =—(25.0 kg)
my +my X

EXECUTE:  x,,

—0.625 m

EVALUATE: The mass of sand required is less than the mass of the plank since the center of the box is
farther from the fulcrum than the center of gravity of the plank is.

IDENTIFY:  Apply > 7, =0 to the bridge.

[Mj =200 kg.

SET UP: Let the axis of rotation be at the left end of the bridge and let counterclockwise torques be positive.
EXECUTE: If Lancelot were at the end of the bridge, the tension in the cable would be (from taking
torques about the hinge of the bridge) obtained from

7(12.0 m) = (600 kg)(9.80 m/s*)(12.0 m) + (200 kg)(9.80 m/s”)(6.0 m), so T = 6860 N.

This exceeds the maximum tension that the cable can have, so Lancelot is going into the drink. To find the
distance x Lancelot can ride, replace the 12.0 m multiplying Lancelot’s weight by x and the tension

T by T, =5.80x10° N and solve for x;

= (580%10° N)(12.0 m)— (200 kg)(9.80 m/s>)(6.0 m)

(600 kg)(9.80 m/s?)
EVALUATE: Before Lancelot goes onto the bridge, the tension in the supporting cable is
= (6.0 m)(200 kg)(9.80 m/s?)

120 m
along the bridge, the increase in tension is proportional to x, the distance he has moved along the bridge.

ax

=984 m.

=980 N, well below the breaking strength of the cable. As he moves

IDENTIFY: Apply the conditions of equilibrium to the climber. For the minimum coefficient of friction the
static friction force has the value f; = tn.

SET Up: The free-body diagram for the climber is given in Figure 11.45. f; and n are the vertical and horizontal
components of the force exerted by the cliff face on the climber. The moment arm for the force 7'is (1.4 m)cos10°.

EXECUTE: (a) 27, =0 gives T(1.4 m)cos10°—w(1.1 m)cos35.0°=0.

7= (11 m)cos35.0°

(1.4 m)cos10° (82.0 kg)(9.80 m/s?) =525 N

(b) 2 F, =0 gives n=Tsin25.0°=222N. X F, =0 gives f;+Tcos25°—w=0 and
£, =(82.0 kg)(9.80 m/s>) — (525 N)cos 25° = 328 N.

EVALUATE: To achieve this large value of £/ the climber must wear special rough-soled shoes.
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e \.\6\

i n W

Figure 11.45

IDENTIFY: The beam is at rest, so the forces and torques on it must balance.

SET Up: The weight of the beam acts 4.0 m from each end. Take the pivot at the hinge and let
counterclockwise torques be positive. Represent the force exerted by the hinge by its horizontal and
vertical components, iy, and H,. X F, =0, XF, =0 and 27, =0.

EXECUTE: (a) The free-body diagram for the beam is given in Figure 11.46a.

T Tsin10°
W= 2.0m
Tcos 10° 3(°
2.0m
H, 4.0m Gj‘
30°
-4 »
Hy,

Figure 11.46

(b) The moment arm for 7 is sketched in Figure 11.46b and is equal to (6.0 m)sin40.0°. > 7, =0 gives

(1150 kg)(9.80 m/s*)(4.0 m)(cos30.0°)
(6.0 m)(sin 40.0°)

=1.01x10* N.

T(6.0 m)(sin40.0°) —w(4.0 m)(cos30.0°)=0. T =

(c) 2F, =0 gives Hy —Tco0s10.0°=0 and Hy =T cos10.0° =9.97x10° N.

EVALUATE: The tension is less than the weight of the beam because it has a larger moment arm than the
weight force has.
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11.47. IDENTIFY: In each case, to achieve balance the center of gravity of the system must be at the fulcrum. Use
+ +
Xy =R T TS T 4 focate x,,, with m; replaced by w;.
nmy +m2 +m3 +..
SET UP: Let the origin be at the left-hand end of the rod and take the +x-axis to lie along the rod. Let
w; =255 N (the rod) so x; =1.00 m, let w, =225 N so x, =2.00 m and let wy =W¥. In part (a)
x3 =0.500 m and in part (b) x;3 =0.750 m.
+ + + - -
EXECUTE: (a) x,, =1.25m. x,, = WA T Way T WY gives wy = (1% 1y Mo = Wiy = Wy and
wptwy +ws X3~ Xem
W= (480 N)(1.25 m) — (255 N)(1.00 m) — (225 N)(2.00 m) _ 140 N.
0.500 m—1.25m
(b) Now wy; =W =140 N and x; =0.750 m.
2 1. +(22 2. + (14 .
- (255 N)(1.00 m) + (225 N)(2.00 m) + (140 N)(0.750 m) 131 m. ¥ must be moved
255 N +225 N +140 N
1.31m—-1.25m =6 cm to the right.
EVALUATE: Moving W to the right means x_,, for the system moves to the right.
11.48. IDENTIFY: Apply > 7, =0 to the hammer.
SET UP: Take the axis of rotation to be at point 4.
EXECUTE: The force 17‘1 is directed along the length of the nail, and so has a moment arm of
(0.080 m)sin 60°. The moment arm of 17“2 is 0.300 m, so
py= QO8O0 mISINGOT _ 00 3y(0.231) =924 N.
(0.300 m)
EVALUATE: The force F, that must be applied to the hammer handle is much less than the force that the
hammer applies to the nail, because of the large difference in the lengths of the moment arms.
11.49. IDENTIFY: Apply the conditions of equilibrium to the horizontal beam. Since the two wires are

symmetrically placed on either side of the middle of the sign, their tensions are equal and are each equal to
T, =mg/2=137 N.
SET UP: The free-body diagram for the beam is given in Figure 11.49. F, and F; are the vertical and

horizontal forces exerted by the hinge on the beam. Since the cable is 2.00 m long and the beam is 1.50 m

long, cos@ = 1.50m

and 6 =41.4°. The tension 7 in the cable has been replaced by its horizontal and
m

vertical components.
EXECUTE: (a) 27, =0 gives T,(sin41.4°)(1.50 m) — wy ¢, (0.750 m) — T, (1.50 m) — T, (0.60 m) = 0.

7 - (16.0kg)(9.80 m/s2)(0.750 m) + (137 N)(1.50 m +0.60 m) _
¢ (1.50 m)(sin41.4°)

408.6 N, which rounds to 409 N.

(b) XF, =0 gives F, +T,sin41.4° —wyg,, —2T,, =0 and

F =2T +w
v w

beam

s 0 — 2 . o) —
—T,sin41.4°=2(137 N) +(16.0 kg)(9.80 m/s”) — (408.6 N)(sin41.4°) = 161 N. The
hinge must be able to supply a vertical force of 161 N.

EVALUATE: The force from the two wires could be replaced by the weight of the sign acting at a point
0.60 m to the left of the right-hand edge of the sign.
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11.50.

11.51.

&
F,
Fy,
— e
0.600 m 0.900 m
Ty Y T,

} 0.750 m |
Figure 11.49

IDENTIFY: Apply the first and second conditions of equilibrium to the bar.
SET UP: The free-body diagram for the bar is given in Figure 11.50. n is the normal force exerted on the
bar by the surface. There is no friction force at this surface. H; and H, are the components of the force

exerted on the bar by the hinge. The components of the force of the bar on the hinge will be equal in
magnitude and opposite in direction.

EXECUTE:

2 F.=ma,

F=H, =220N
D
n-H,=0

H, =n, but we don’t

know either of these
forces.

3.00m

Figure 11.50

275 =0 gives F(4.00 m)—n(3.00 m)=0.
7= (4.00 m/3.00 m)F = £(220 N) = 293N and then H,, =293 N.

Force of bar on hinge:

horizontal component 220 N, to right

vertical component 293 N, upward

EVALUATE: H,/H  =220/293=0.75=3.00/4.00, so the force the hinge exerts on the bar is directed

along the bar. 7 and F have zero torque about point 4, so the line of action of the hinge force H must
pass through this point also if the net torque is to be zero.

IDENTIFY: We want to locate the center of mass of the leg-cast system. We can treat each segment of the
leg and cast as a point-mass located at its center of mass.

SET Up: The force diagram for the leg is given in Figure 11.51 (next page). The weight of each piece acts
at the center of mass of that piece. The mass of the upper leg is m, =(0.215)(37 kg)=7.955 kg. The mass

of the lower leg is my =(0.140)(37 kg) =5.18 kg. Use the coordinates shown, with the origin at the hip

. XMy + XMy XoastM,
and the x-axis along the leg, and use x,,, =4l -~ _ “cast"cast

ny) + nmy + Meast
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"‘Clll
Hip * X
wi
y Wyl Weast
Figure 11.51
~ = Xty + Xymy + XoaetMeast
EXECUTE: Using x,,, = , we have
My o my + Meast
_ (18.0 cm)(7.955 kg) +(69.0 cm)(5.18 kg) +(78.0 cm)(5.50 kg) _ 49.9 cm
o 7.955 kg +5.18 kg +5.50 kg '
EVALUATE: The strap is attached to the left of the center of mass of the cast, but it is still supported by
the rigid cast since the cast extends beyond its center of mass.
11.52. IDENTIFY: Apply the first and second conditions for equilibrium to the bridge.
SET Up: Find torques about the hinge. Use L as the length of the bridge and wy and wg_for the weights
of the truck and the raised section of the bridge. Take +) to be upward and +x to be to the right.
EXECUTE: (a) 7L sin70° = wT(%L)cos30° + wB(%L)cos30°, S0
3 1 2 o
=my +5mp)(9.80 m/s”)cos30
r=Gr a7k ) =2:84%10° N.
sin70°
(b) Horizontal: T'cos(70°—30°) = 2.18x10° N (to the right).
Vertical: wy + wg —T'sin40° =2.88x10° N (upward).
EVALUATE: If ¢ is the angle of the hinge force above the horizontal,
2.88x10° N . : : :
tang = 88X—05 and ¢ =52.9°. The hinge force is not directed along the bridge.
2.18x10° N
11.53. IDENTIFY: The leg is not rotating, so the external torques on it must balance.

SET UP: The free-body diagram for the leg is given in Figure 11.53. Take the pivot at the hip joint and let
counterclockwise torque be positive. There are also forces on the leg exerted by the hip joint but these
forces produce no torque and aren’t shown. >z, =0 for no rotation.

EXECUTE: (a) X7, =0 gives 7(10 cm)(sin &) — w(44 cm)(cosé) =0.

2
7= 4.4v.vc036’ _ 44w and for 0= 60°, T = 4.4(15 kg)(9.80 m/s*)
sin@ tan @ tan 60°

=370 N.

10cm w

Pivot

Figure 11.53

(b) For @=5°, T =7400 N. The tension is much greater when he just starts to raise his leg off the ground.
(¢) T - as 8 — 0. The person could not raise his leg. If the leg is horizontal so 8 is zero, the moment
arm for 7 is zero and T produces no torque to rotate the leg against the torque due to its weight.
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11.55.

EVALUATE: Most of the exercise benefit of leg-raises occurs when the person just starts to raise his legs
off the ground.

IDENTIFY: The arm is stationary, so the forces and torques must each balance.

SETUp: X7=0, XF, =0, ZFy =0. Let the forearm be at an angle ¢ below the horizontal. Take the

pivot at the elbow joint and let counterclockwise torques be positive. Let +y be upward and let +x be to
the right. Each forearm has mass m,, = %(0.0600)(72 kg) = 2.16 kg. The weight held in each hand is
w=mg, with m =7.50 kg. T is the force the biceps muscle exerts on the forearm. E is the force

exerted by the elbow and has components £, and Ej,.
EXECUTE: (a) The free-body diagram is shown in Figure 11.54.

pivot

Figure 11.54
(b) X7=0 gives T(5.5 cm)(cos &) — Wy, (16.0 cm)(cos &) — w(38.0 cm)(cosb) = 0

160wy, +38.0w _ 16.0(2.16 kg)(9.80 m/s?) + 38.0(7.50 kg)(9.80 m/s’)
55 5.5

(¢) XF, =0 gives E;, =0. 2F, =0 gives T— E, — Wy, =W =0, s0

T =569 N

E, =T — Wy — w=569 N — (2.16 kg)(9.80 m/s?) — (7.50 kg)(9.80 m/s*) = 474 N

Since we calculate E, to be positive, we correctly assumed that it was downward when we drew the free-body

diagram.
(d) The weight and the pull of the biceps are both always vertical in this situation, so the factor cosé&

divides out of the >, 7 =0 equation in part (b). Therefore the force T stays the same as she raises her arm.

EVALUATE: The biceps force must be much greater than the weight of the forearm and the weight in her

hand because it has such a small lever arm compared to those two forces.

IDENTIFY: The presence of the fetus causes the woman’s center of mass to shift forward. Figure 11.55

(next page) shows the cylinder and sphere model suggested in the problem.

SETUP: x., = N T X Y The mass of each object can be considered as located at its center
my +m2 +m3 +..

of mass, at its geometrical center. Use coordinates that have the origin at the center of the cylinder and the
x-axis horizontal.
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om0 Kg +10 kg

y
AN
h—
15cm A Scm

\_/

Figure 11.55

EXECUTE: (a) Before pregnancy, x,

em,i = 0. The center of mass of the pregnant woman is at

0+ (20 10 k; . .
= (20 em)( g) = 2.9 cm. Her center of mass moves a horizontal distance of 2.9 cm forward.

(b) The woman must shift her upper body backward to keep her center of mass from extending past her feet.
(¢) The unnatural posture and curved back strains the back muscles.

EVALUATE: Observation of a pregnant woman walking should confirm the results found here.
IDENTIFY: Apply the first and second conditions of equilibrium to each rod.

SET UP: Apply ZFy =0 with +y upward and apply > 7, =0 with the pivot at the point of suspension

for each rod.
EXECUTE: (a) The free-body diagram for each rod is given in Figure 11.56.
(b) X7, =0 for the lowerrod: (6.0 N)(4.0 cm)=w,(8.0 cm) and w, =3.0 N.

2 F, =0 for the lower rod: S;=6.0N+w, =9.0 N.

S

27, =0 for the middle rod: wz(3.0 cm)=(5.0 cm)S; and wp :[ ](9.0 N)=15.0 N.

5.
3.

S

2 F, =0 for the middle rod: S, =9.0 N +5; =24.0N.
2.7, =0 for the upper rod: S,(2.0 cm) =w(6.0 cm) and w = [%)(24.0 N)=8.0 N.

2 F, =0 for the upper rod: S, =S, +w =32.0N.
In summary, wy, =3.0 N, wp =15.0 N, w-=80N. § =320N, §,=24.0N, S;=9.0N.

(¢) The center of gravity of the entire mobile must lic along a vertical line that passes through the point
where S; is located.

EVALUATE: For the mobile as a whole the vertical forces must balance, so S} =w, +wg +wc +6.0 N.

S S,

4.0 cm 8.0cm 3.0cm 5.0 ecm

6.0N Wy wg Sy
Lower rod Middle rod

S

20cm 6.0cm

S, we
Upper rod
Figure 11.56
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IDENTIFY: Apply 27, =0 to the beam.
SET UpP: The free-body diagram for the beam is given in Figure 11.57.
EXECUTE: 2 7, =0, axis at hinge, gives 7(6.0 m)(sin40°) — (6490 N)(3.75 m)(cos30°) =0 and
T =5500 N.
EVALUATE: The tension in the cable is less than the weight of the beam. T'sin40° is the component of 7
that is perpendicular to the beam.

axis H,y,

Figure 11.57

IDENTIFY: Apply the first and second conditions of equilibrium to the drawbridge.
SET UP: The free-body diagram for the drawbridge is given in Figure 11.58 (next page). H, and H, are

the components of the force the hinge exerts on the bridge. In part (c), apply 2.7, = [« to the rotating

bridge and in part (d) apply energy conservation to the bridge.
EXECUTE: (a) 2.7, =0 with the axis at the hinge gives —w(7.0 m)(cos37°) + 7(3.5 m)(sin37°) =0 and

c0s37° _ (45,000 N)
sin37° tan37°
(b) 2F, =0 gives Hy, =T =1.19x10° N. X F, =0 gives H, =w=4.50x10* N.

T=2w =1.19%10° N.

H =+ HZ+H?=127x10° N. tanf =% and @ =20.7°. The hinge force has magnitude 1.27x10° N
h

and is directed at 20.7° above the horizontal.
(c) We can treat the bridge as a uniform bar rotating around one end, so 7/ =1/3 ml*. Y, 7, =10, gives

3gc0s37° _ 3(9.80 m/s?)cos37°
2L 2(14.0 m)

mg(L/2)cos37° =1/3 mL*a.. Solving for & gives a = =0.839 rad/s?.

(d) Energy conservation gives U; = K,, giving mgh =1/2 I * = 1/2)(1/3 mLz)a)2 . Trigonometry gives
h =L/2 sin37°. Canceling m, the energy conservation equation gives g(L/2) sin37° = (1/6)L2a)2 . Solving

: o 2 T o
for w gives w= ’3g5m37 :\/3(9'80 m/s”)sin37 =1.12 rad/s.
L 14.0 m

EVALUATE: The hinge force is not directed along the bridge. If it were, it would have zero torque for an
axis at the center of gravity of the bridge and for that axis the tension in the cable would produce a single,
unbalanced torque.
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Figure 11.58

11.59. IDENTIFY: The amount the tendon stretches depends on Young’s modulus for the tendon material. The
foot is in rotational equilibrium, so the torques on it balance.
SETUp: Y = Fug . The foot is in rotational equilibrium, so Xz, = 0.

0
EXECUTE: (a) The free-body diagram for the foot is given in Figure 11.59. T'is the tension in the tendon
and 4 is the force exerted on the foot by the ankle. n = (75 kg)g, the weight of the person.
7Y
4.6cm 12.5¢m
Figure 11.59
(b) Apply > 7, =0, letting counterclockwise torques be positive and with the pivot at the ankle:
T(4.6 cm) — n(12.5 cm) = 0. T = (142'65 Cmj(75 ke)(9.80 m/s2) = 2000 N, which is 2.72 times his weight.
cm
(¢) The foot pulls downward on the tendon with a force of 2000 N.
Al = (ﬁj[a = 62000 N (25 cm) = 4.4 mm.
Y4 (1470 x10” Pa)(78 X107 m*)

EVALUATE: The tension is quite large, but the Achilles tendon stretches about 4.4 mm, which is only
about 1/6 of an inch, so it must be a strong tendon.

11.60 IDENTIFY: Apply > 7, =0 to the beam.
SET UP: The center of mass of the beam is 1.0 m from the suspension point.
EXECUTE: (a) Taking torques about the suspension point,
w(4.00 m)sin30° + (140.0 N)(1.00 m)sin30° = (100 N)(2.00 m)sin30°.
The common factor of sin30° divides out, from which w=15.0 N.
(b) In this case, a common factor of sin45° would be factored out, and the result would be the same.
EVALUATE: All the forces are vertical, so the moments are all horizontal and all contain the factor siné,
where 6 is the angle the beam makes with the horizontal.

11.61. IDENTIFY: Apply > 7, =0 to the flagpole.

SET UP: The free-body diagram for the flagpole is given in Figure 11.61. Let clockwise torques be
positive. @ is the angle the cable makes with the horizontal pole.

EXECUTE: (a) Taking torques about the hinged end of the pole

(200 N)(2.50 m) + (600 N)(5.00 m)—7;,(5.00 m) =0. 7}, =700 N. The x-component of the tension is then
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11.62.

11.63.

T,
T, = \/(1000 N)? = (700 N)®> =714 N. tanf= % = T—} The height above the pole that the wire must

Om T,

be attached is (5.00 m);—(l)g =490 m.

. . 4.4
(b) The y-component of the tension remains 700 N. Now tan 8 = 0m and 8 =41.35°, so
m
T,
r=—r=_T0N __ 44 N, an increase of 60 N.

sinf sin41.35°
EVALUATE: As the wire is fastened closer to the hinged end of the pole, the moment arm for 7 decreases
and 7 must increase to produce the same torque about that end.

T

Lo ™S

600 N
Figure 11.61

IDENTIFY: Apply > F =0 to each object, including the point where D, C, and B are joined. Apply

2.7, =0 to the rod.

SET UP: To find 7~ and T), use a coordinate system with axes parallel to the cords.

EXECUTE: A and B are straightforward, the tensions being the weights suspended:

T, =(0.0360 kg)(9.80 m/s?) =0.353 N and T} = (0.0240 kg +0.0360 kg)(9.80 m/s*) = 0.588 N.
Applying 2 F, =0 and ZFy =0 to the point where the cords are joined, 7> =75 c0s36.9°=0.470 N and
Tp =Tpc0s53.1°=0.353 N. To find T}, take torques about the point where string F is attached.

T;(1.00 m) = T, sin36.9°(0.800 m) + T sin 53.1°(0.200 m) + (0.120 kg)(9.80 m/s)(0.500 m) and
T; =0.833 N.

Tr may be found similarly, or from the fact that 7y, + 7 must be the total weight of the ornament.

(0.180kg)(9.80m/s%) =1.76 N, from which Tp =0.931N.
EVALUATE: The vertical line through the spheres is closer to F than to E, so we expect T > T, and this

is indeed the case.
IDENTIFY: The torques must balance since the person is not rotating.
SET UP: Figure 11.63a (next page) shows the distances and angles. 8 + ¢ =90°. 6 =56.3° and

¢ =33.7°. The distances x; and x, are x; = (90 cm)cos@ =50.0 cm and x, = (135 cm)cos¢ =112 cm.
The free-body diagram for the person is given in Figure 11.63b. w; =277 N is the weight of his feet and
legs, and w; =473 N is the weight of his trunk. n; and f; are the total normal and friction forces exerted
on his feet and n, and f;, are those forces on his hands. The free-body diagram for his legs is given in

Figure 11.63c. F is the force exerted on his legs by his hip joints. For balance, >. 7, =0.
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(b)
F
7 Axis
S
9
»)
ng b@
Y
ff W)

©
Figure 11.63
EXECUTE: (a) Consider the force diagram of Figure 11.63b. > 7, =0 with the pivot at his feet and
counterclockwise torques positive gives n, (162 cm)— (277 N)(27.2 cm) — (473 N)(103.8 cm) = 0.
n, =350 N, so there is a normal force of 175 N at each hand. n; +n, —w —w, =0 so
ng =wy +w, —ny, =750 N-350 N =400 N, so there is a normal force of 200 N at each foot.
(b) Consider the force diagram of Figure 11.63¢c. > 7, =0 with the pivot at his hips and counterclockwise
torques positive gives f;(74.9 cm) +w;(22.8 cm) —n;(50.0 cm) =0.

400 N)(50. — (277 N)(22. . -
fr= (400 N)(30.0 em) — (277 N)(22.8 cm) =182.7 N. There is a friction force of 91 N at each foot.
74.9 cm
2 F, =0 in Figure 11.63b gives f;, = f;, so there is a friction force of 91 N at each hand.
EVALUATE: In this position the normal forces at his feet and at his hands don’t differ very much.
11.64. IDENTIFY: The bar is in equilibrium until the cable breaks, so the forces and torques on it must all

balance.

SET UP: Look at the bar when the cable is just ready to break. At that time, the tension in it is 455 N.

LF, =0, ZF, =0, X7 =0.

EXECUTE: (a) Take torques about the hinge, calling L your distance from the hinge. > 7, =0 gives

(455 N)(sin37.0°)(8.00 m) — (65.0 kg)(9.80 m/s”)L(cos64.0°) — (30.0 kg)(9.80 m/s*)(4.00 m)(cos64.0°) = 0.
Solving for L gives L = 6.00 m from the hinge, which is 2.00 m from the upper end of the bar.

(b) Calling H the magnitude of the hinge force, £ F =0 gives H, = (455 N)(c0s27.0°) = 405.4 N.

F, =0 gives H, = (65.0 kg)(9.80 m/s’) + (30.0 kg)(9.80 m/s’) + (455 N)(sin27.0°) = 1138 N.
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11.65.

11.66.

H=[H!+H? = /(4054 N)’ +(1138 N)’ =1210N.

o

. . H, 1138 N
The angle that H makes above the horizontal is ¢ =arctan—= = arctanm =70

EVALUATE: The bar rises at 64.0° above the horizontal but the hinge force points at 70.4° above the
horizontal, so the hinge force does not point along the bar.

IDENTIFY: Apply the equilibrium conditions to the crate. When the crate is on the verge of tipping it
touches the floor only at its lower left-hand corner and the normal force acts at this point. The minimum
coefficient of static friction is given by the equation f = fn.

SET Up: The free-body diagram for the crate when it is ready to tip is given in Figure 11.65.
EXECUTE: (a) X7, =0 gives P(1.50 m)sin53.0°—w(1.10 m) = 0.

| 2110 Aes 0N
[1.50 m][sin53.0°]

(b) XF, =0 gives n—w~—Pcos53.0°=0.
n=w+Pcos53.0°=1250 N +(1.15x10° N)cos53°=1.94x10> N
(¢) XF, =0 gives f, = Psin53.0°=(1.15x10° N)sin53.0° =918 N.

1.94x10° N
EVALUATE: The normal force is greater than the weight because P has a downward component.

.\‘
= G
P sin 53° I

1
1 Q
! >
| o]
‘/(ﬁl
P Pcos53° 1.10m 1.10m—>{ 1.50 m
S
>

Figure 11.65
IDENTIFY: Apply 27, =0 to the meterstick.

SET UP: The wall exerts an upward static friction force f'and a horizontal normal force n on the stick.
Denote the length of the stick by /. f = fn.

EXECUTE: (a) Taking torques about the right end of the stick, the friction force is half the weight of the
stick, f =w/2. Taking torques about the point where the cord is attached to the wall (the tension in the

cord and the friction force exert no torque about this point), and noting that the moment arm of the normal
force is /tan@, ntan@ =w/2. Then, (f/n) =tand <0.40, so @ <arctan (0.40) =22°.

. . / l .
(b) Taking torques as in part (a), fI = wz +w(l—x) and n/ tan 8 = wz + wx. In terms of the coefficient of

Y tan . Solving for x, x> I 3tan6-fy =30.2 cm.
I2+x [+2x 2 U +tand

friction f4, f > S _U2+d-x) tan @ = 3-2
(c) In the above expression, setting x =10 cm and / =100 cm and solving for £ gives
S (3-20/tan @

A =0.625.
1+20/1
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EVALUATE: For 6 =15° and without the block suspended from the stick, a value of £ >0.268 is
required to prevent slipping. Hanging the block from the stick increases the value of £/ that is required.
11.67. IDENTIFY: Apply the first and second conditions of equilibrium to the crate.
SET Up: The free-body diagram for the crate is given in Figure 11.67.
y [, =(0.375 m)cos45°
[, =(1.25 m)cos45°
@ Let F, and F, be the vertical
forces exerted by you and your
friend. Take the origin at the
lower left-hand corner of the
crate (point A).
X
)
Figure 11.67
EXECUTE: X F, =ma, gives Fj +F,—w=0
F +F, =w=(200 kg)(9.80 m/s>) =1960 N
27, =0 gives Foly —wl, =0
A =wl 2 |=1960 N(Mj:sgoN
I 1.25 mcos45°
Then F; =w-F, =1960 N-590 N =1370 N.
EVALUATE: The person below (you) applies a force of 1370 N. The person above (your friend) applies a
force of 590 N. It is better to be the person above. As the sketch shows, the moment arm for F; is less than
for F,, so must have F, > F, to compensate.
11.68. IDENTIFY: Apply the first and second conditions for equilibrium to the forearm.

SET UP: The free-body diagram is given in Figure 11.68a, and when holding the weight in Figure 11.68b.
Let +y be upward.

EXECUTE: (a) 2 Tgpow =0 gives Fp(3.80 cm) =(15.0 N)(15.0 cm) and Fz =59.2 N.

(b) > Tppow =0 gives F(3.80 cm) =(15.0 N)(15.0 cm) +(80.0 N)(33.0 cm) and F =754 N. The biceps
force has a short lever arm, so it must be large to balance the torques.

(¢) 2F, =0 gives —F; +F3—150 N-80.0 N=0 and F; =754 N-15.0 N-80.0 N=659 N.

EVALUATE: (d) The biceps muscle acts perpendicular to the forearm, so its lever arm stays the same, but
those of the other two forces decrease as the arm is raised. Therefore the tension in the biceps muscle
decreases.
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11.69.

11.70.

11.71.

Fg Fg 80.0N
3.80 1 3.80 1
i cm |
I ]
-— 150 —* —= 50—
cm
L ] cm Y
Fg w(15.0N) Fg w (15.0N)
l- ------- 33.0cm  ------- -
(@) (®)

Figure 11.68

IDENTIFY: Apply 27, =0 to the forearm.

SET UpP: The free-body diagram for the forearm is given in Figure 11.10 in the textbook.
EXECUTE: (a) X7, =0, axis at elbow gives

h hD
wL — (T sin 6)D =0.sin = —— sow=T——
h* + D? LK + D?

w, =T h—D

max max L\/m'

2
(b) Dinax = Tina (1 - 2D 5 |; the derivative is positive.
> J2+p2 B+D

EVALUATE:  (c) The result of part (b) shows that w,,,, increases when D increases, since the derivative is

positive. is larger for a chimp since D is larger.

Wmax
IDENTIFY: The beam is at rest, so the forces and torques on it must all balance.

SET Up: The cables could point inward toward each other or outward away from each other. We shall
assume they point away from each other. Call d the distance of the center of gravity from the left end, call
w the weight of the beam, and call T the tension in the right-hand cable. XF, =0, ZFy =0, 27, =0.

EXECUTE: XF, =0 gives (620 N)(sin30.0°) — 7(sin50.0°) = 0, so T = 404.68 N.
F, =0 gives (620 N)(c0s30.0°) + (404.68 N)(c0s50.0°) —w =0, so w = 797 N.

Taking torques about the left end, >z, =0 gives (404.68 N)(c0s50.0°)(4.00 m) — (797 N)d = 0, so

d=1.31 m from the left end of the beam, or 2.69 m from the right end.

EVALUATE: The center of gravity is closer to the cable having the greater tension. The answer would be
no different if we assumed that the cables pointed inward toward each other.

IDENTIFY: The beam is at rest, so the forces and torques on it must all balance.

SETUpP: XF, =0, ZFy =0, 27, =0. Look at the situation where the cable is just about to break, in
which case the tension in it is 650 N.

EXECUTE: (a) Taking torques about the hinge, with L the length of the beam, >z, =0 gives

(650 N)(sin30.0°)L — mg(L/2)(c0s22.0°) = 0, which gives m = 71.535 kg, which rounds to 71.5 kg.

(b) Now m = 61.5 kg. Taking torques about the hinge and calling 7 the tension, we have
LT(sin30.0°) = (61.5 kg)(9.80 m/s*)(L/2)(c0s22.0°), so T = 559 N.

Call H the magnitude of the hinge force. £F =0 gives H, = (559 N)(sin38.0°) = 344.24 N
ZFy =0 gives H, + (559 N)(c0s38.0°) — (61.5 kg)(9.80 m/s’), so H,=162.1 N.

H= \/H)f + H}z, = \/(344‘24 N)? +(162.1 N)> =380 N. The angle that the hinge force makes above the

, . H 162.1N
horizontal is ¢ = arctan— = arctan6— =25.2°

. 344.24N
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11.72.

11.73.

11.74.

EVALUATE: The hinge force points at 25.2° above the horizontal but the beam makes an angle of 22.0°
below the horizontal, so the hinge force does not point along the beam. We never needed to know the
length of the beam since it always canceled out in the equations.

IDENTIFY: Apply > 7, =0 to the wheel.

SET UP: Take torques about the upper corner of the curb.

EXECUTE: The force F acts at a perpendicular distance R—/ and the weight acts at a perpendicular

distance \/ R*- (R- h)2 = \/ 2Rh—h?. Setting the torques equal for the minimum necessary force,

V2Rh - h?
R-h
(b) The torque due to gravity is the same, but the force F acts at a perpendicular distance 2R — &,

so the minimum force is (mg)V2Rh— hz/(ZR —h).
EVALUATE: (c) Less force is required when the force is applied at the top of the wheel, since in this case

F has a larger moment arm.
IDENTIFY: Apply the first and second conditions of equilibrium to the gate.
SET UP: The free-body diagram for the gate is given in Figure 11.73.

F=mg

! A

A (m,n“ ™~

Tcos 30.0°

T'sin 30.0°

2.00 m 2.00m

2.00 m

B { Wi

Figure 11.73

Use coordinates with the origin at B. Let H 4 and H p be the forces exerted by the hinges at 4 and B. The

problem states that H 4 has no horizontal component. Replace the tension T by its horizontal and vertical

components.
EXECUTE: (a) 275 =0 gives +(7'sin30.0°)(4.00 m) + (7 c0s30.0°)(2.00 m) —w(2.00 m) =0
T(25in30.0° +c0s30.0°) =w

w 700 N

T=— = — =375N.
2sin30.0° +c0s30.0°  2sin30.0° + c0s30.0°

(b) X F, =ma, says Hpy —Tc0s30.0°=0

H g, =Tc0s30.0° = (375 N)cos30.0° =325 N.

(¢) XF, =ma, says H,, + Hg, +Tsin30.0°-w=0

H, +Hp,, =w-Tsin300°=700 N - (375 N)sin300° = 512 N.

EVALUATE: T has a horizontal component to the left so H, must be to the right, as these are the only

two horizontal forces. Note that we cannot determine / 4, and Hp, separately, only their sum.

myxy +myx, +mayx; +.. . .
IDENTIFY: Use X, = ———2-2 33 to locate the x-coordinate of the center of gravity of the
ny +m2 +m3 +..

block combinations.
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SET UP: The center of mass and the center of gravity are the same point. For two identical blocks, the
center of gravity is midway between the center of the two blocks.
EXECUTE: (a) The center of gravity of the top block can be as far out as the edge of the lower block. The
center of gravity of this combination is then 3L/4 to the left of the right edge of the upper block, so the
overhang is 3L/4.
(b) Take the two-block combination from part (a), and place it on top of the third block such that the
overhang of 3L/4 is from the right edge of the third block; that is, the center of gravity of the first two
blocks is above the right edge of the third block. The center of mass of the three-block combination,
measured from the right end of the bottom block; is —L/6 and so the largest possible overhang is
(3L/4) + (L/6) =11L/12. Similarly, placing this three-block combination with its center of gravity over the
right edge of the fourth block allows an extra overhang of L/8, for a total of 25L/24.
(c) As the result of part (b) shows, with only four blocks, the overhang can be larger than the length of a
single block.

18L 22L 25L

EVALUATE: The sequence of maximum overhangs is s s e
24" 24 24

... The increase of overhang

when one more block is added is decreasing.

IDENTIFY: Apply the first and second conditions of equilibrium, first to both marbles considered as a
composite object and then to the bottom marble.

(a) SET UP: The forces on each marble are shown in Figure 11.75.

EXECUTE:
Fp=2w=147N
sin@ = R/2R so 8 =30°
2.7, =0, axisat P
Fr(2Rcos@)—=wR =0
Fo=—"8 =0424N
2cos30°
F,=F-=0424N

Figure 11.75

(b) Consider the forces on the bottom marble. The horizontal forces must sum to zero, so F, = nsiné.

_ _Fy
sin30°
Could use instead that the vertical forces sum to zero

Fg—mg—ncos@=0

=0.848 N

n= Fp—mg

cos30°
EVALUATE: If we consider each marble separately, the line of action of every force passes through the
center of the marble so there is clearly no torque about that point for each marble. We can use the results
we obtained to show that > F, =0 and 2 F, =0 for the top marble.

=0.848 N, which checks.
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11.76.

11.77.

IDENTIFY: Apply > 7, =0 to the right-hand beam.
SET Up: Use the hinge as the axis of rotation and take counterclockwise rotation as positive. If F;.. is
—-2w=0 and F;, =w. LetL

the tension in each wire and w =260 N is the weight of each beam, 2F wire

wire

be the length of each beam.
. .0 L 6 L.#6 .
EXECUTE: (a) 27, =0 gives F;,.L smE — F,—cos——w—sin— =0, where @ is the angle between the
beams and F, is the force exerted by the cross bar. The length drops out, and all other quantities except F;, are
F e 8iN(0/2) — oW sin(6/2) ~
=(2F
; cos(6/2)

known, so F =

o
wire — W) tanE. Therefore

o

F, = (260 N)tan>>- = 130 N,
2

(b) The crossbar is under compression, as can be seen by imagining the behavior of the two beams if the
crossbar were removed. It is the crossbar that holds them apart.

(c¢) The upward pull of the wire on each beam is balanced by the downward pull of gravity, due to the
symmetry of the arrangement. The hinge therefore exerts no vertical force. It must, however, balance the
outward push of the crossbar. The hinge exerts a force 130 N horizontally to the left for the right-hand
beam and 130 N to the right for the left-hand beam. Again, it’s instructive to visualize what the beams
would do if the hinge were removed.

EVALUATE: The force exerted on each beam increases as 6 increases and exceeds the weight of the beam
for 68>90°.

IDENTIFY: Apply the first and second conditions of equilibrium to the bale.

(a) SET UP: Find the angle where the bale starts to tip. When it starts to tip only the lower left-hand
corner of the bale makes contact with the conveyor belt. Therefore the line of action of the normal force »n
passes through the left-hand edge of the bale. Consider X7, =0 with point A at the lower left-hand corner.

Then 7, =0 and 7, =0, so it must be that 7,,, =0 also. This means that the line of action of the gravity

must pass through point A. Thus the free-body diagram must be as shown in Figure 11.77a.

0.125m

0.250 m
B =27°, angle where tips

EXECUTE: tan/f =

Figure 11.77a

SET Up: At the angle where the bale is ready to slip down the incline f; has its maximum possible value,
fs = n. The free-body diagram for the bale, with the origin of coordinates at the cg is given in
Figure 11.77b.
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11.78.

11.79.

EXECUTE:

ZFy =ma,

n—mgcos =0
n=mgcosf

fs = Hgmg cos 5

(f; has maximum value

when bale ready to slip)

2F. =ma,
fo—mgsinf=0
Umgcos S —mgsin f=0
tan 4 = 4

MU, =0.60 gives that S =31°
Figure 11.77b

B =27° totip; S =31° to slip, so tips first

(b) The magnitude of the friction force didn’t enter into the calculation of the tipping angle; still tips at

B =27°. For , =0.40 slips at = arctan(0.40) = 22°.

Now the bale will start to slide down the incline before it tips.

EVALUATE: With a smaller £ the slope angle S where the bale slips is smaller.

IDENTIFY: Apply the equilibrium conditions to the pole. The horizontal component of the tension in the

wire is 22.0 N.

SET UP: The free-body diagram for the pole is given in Figure 11.78. The tension in the cord equals the

weight W. F, and F; are the components of the force exerted by the hinge. If either of these forces is

actually in the opposite direction to what we have assumed, we will get a negative value when we solve for it.

EXECUTE: (a) Tsin37.0°=22.0N so 7 =36.6 N. X7, =0 gives (7'sin37.0°)(1.75 m)—-W (1.35 m) =0.

= (220 N)(1.75 m)
1.35m

(b) ZFy =0 gives F, —Tc0s37.0°-~w=0 and F, =(36.6 N)cos37.0°+55.0 N=842N. X F, =0

gives W —T'sin37.0°— F, =0 and F, =28.5 N—22.0 N=6.5 N. The magnitude of the hinge force is

F=\F}+F?=845N.

EVALUATE: If we consider torques about an axis at the top of the pole, we see that F; must be to the left

=28.5N.

in order for its torque to oppose the torque produced by the force .

y

0.40 m
L
37°
@,
T F, 1.35m
_Fy zuxis ]
w= 550N

Figure 11.78

IDENTIFY: Apply the first and second conditions of equilibrium to the door.
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(a) SET UP: The free-body diagram for the door is given in Figure 11.79.
y
T ”A T ”If @
A ‘—-»;k . B ‘—--»l kB
1.00 m 1.00 m D ——
—#——x 050m h
le————
F
Yw
Figure 11.79
Take the origin of coordinates at the center of the door (at the cg). Let n,, f, 4, np, and f,p be the
normal and friction forces exerted on the door at each wheel.
EXECUTE: X F|, =ma,
nyg+ng—w=0
ny+ng =w=950N
Y F.=ma,
Jia* fig — £ =0
F=fa* fep
ka = /'IknA’ ka = ,UknB, so F = ,Uk(nA =t nB) ! /JkW: (052)(950 N) =494 N
Z Tp = 0
ng, fis» and fip all have zero moment arms and hence zero torque about this point.
Thus +w(1.00 m)—n,(2.00 m)— F(h) =0
n = w(1.00 m)—F(h) _ (950 N)(1.00 m)—(494 N)(1.60 m) _ 20 N
4 200m 200 m
And then np =950 N—-n, =950 N -80 N =870 N.
(b) SET Up: If/ is too large the torque of F will cause wheel A4 to leave the track. When wheel 4 just
starts to lift off the track n, and f, 4 both go to zero.
EXECUTE: The equations in part (a) still apply.
ny+ng—w=0 gives ng =w=950 N
Then fip = thnp =0.52(950 N) =494 N
F = fiq* fup =494 N
+w(1.00 m)—n,(2.00 m)—-F(h)=0
h= w(1.00 m) _ (950 N)(1.00 m) _ 192 m
F 494 N
EVALUATE: The result in part (b) is larger than the value of % in part (a). Increasing / increases the
clockwise torque about B due to F" and therefore decreases the clockwise torque that n, must apply.
11.80. IDENTIFY: Apply > 7, =0 to the slab.

3.75m so [ =65.0°
m

SET Up: The free-body diagram is given in Figure 11.80a. tan § =

20.0°+ B+ =90° so o =5.0°. The distance from the axis to the center of the block is

2 2
375m + L75m)" _ 207 m.
2 2




Equilibrium and Elasticity 11-37

11.81.

EXECUTE: (a) w(2.07 m)sin5.0°—T7'(3.75 m)sin52.0°=0. 7 =0.061w. Each worker must exert a force
of 0.012w, where w is the weight of the slab.

(b) As @ increases, the moment arm for w decreases and the moment arm for 7 increases, so the worker
needs to exert less force.

(¢) T — 0 when w passes through the support point. This situation is sketched in Figure 11.80b.
_(1.75m)/2
T (3.75m)/2

EVALUATE: The moment arm for 7 is much greater than the moment arm for w, so the force the workers
apply is much less than the weight of the slab.

tan @ and 6 =25.0°. If @ exceeds this value the gravity torque causes the slab to tip over.

Figure 11.80

IDENTIFY: Apply Newton’s second law to the mass to find the tension in the wire. Then apply Y = %

to the wire to find the elongation this tensile force produces.

(a) SET Up: Calculate the tension in the wire as the mass passes through the lowest point. The free-body
diagram for the mass is given in Figure 11.81a.

y The mass moves in an arc of a
T a circle with radius R =0.70 m.
f " It has acceleration 4,4 directed
X in toward the center of the circle,

so at this point @, is upward.
mg

Figure 11.81a

EXECUTE: ZFy =ma,

T—-mg= mRa@’ so that T = m(g +Ra)2).
But @ must be in rad/s:
@ = (120 rev/min)(27 rad/1 rev)(1 min/60 s) =12.57 rad/s.

Then T = (12.0 kg)[9.80 m/s? +(0.70 m)(12.57 rad/s)z} = 1445 N.

Now calculate the elongation Al of the wire that this tensile force produces:

TN T (1445 N)(0.70 m)

AAl Y4 (70x10" Pa)(0.014x107* m?)

Y =0.0103m=1.0 cm.
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(b) SET UP: The acceleration a4 is directed in toward the center of the circular path, and at this point in
the motion this direction is downward. The free-body diagram is given in Figure 11.81b.
_‘A EXECUTE:
‘ 2F, =ma,
mg : lamd mg +7T = meZ
T =m(Ra* - g)
y
Figure 11.81b
T=(120 kg)[(0.70 m)(12.57 rad/s)> —9.80 m/s2] =1210 N.
Fl 1210 N)(0. =
Al =20 = A2IONOTOM) -5 610~ m=0.86 om.
Y4 (7.0x10" Pa)(0.014x10™" m~)

EVALUATE: = At the lowest point 7 and w are in opposite directions and at the highest point they are in the
same direction, so T is greater at the lowest point and the elongation is greatest there. The elongation is at
most 1.4% of the length.

11.82. IDENTIFY: Foraspring, F =kx. ¥ :Llo.

AA]
SETUp: F| =F =W and Al =x. For copper, ¥ =11x10'" Pa.
YA YA .. .
EXECUTE: (a) F = [l—]Al :(—]x. This in the form of F = kx, with & :?.
0 0 0
Y4 _ (11x10'° Pa)z(6.455x107* m)* 5
(b) k=—== =1.9x10° N/m
Iy 0.750 m

(€) W =kx =(19x10° N/m)(1.25%10> m) =240 N
EVALUATE: For the wire the force constant is very large, much larger than for a typical spring.

11.83. IDENTIFY: Use the second condition of equilibrium to relate the tension in the two wires to the distance w

. H I F i . .
is from the left end. Use stress = 7l and Y = % to relate the tension in each wire to its stress and

strain.
(a) SET UP: stress = F| /A, so equal stress implies 7/4 same for each wire.

7,/2.00 mm? = T,/4.00 mm? so Ty =2.007,

The question is where along the rod to hang the weight in order to produce this relation between the
tensions in the two wires. Let the weight be suspended at point C, a distance x to the right of wire A. The
free-body diagram for the rod is given in Figure 11.83.

@ EXECUTE:
AT g Tp 27c=0
c +73(1.05m—-x)-T,x=0
x 1.05m- x

Figure 11.83

But T =2.007, so 2.007,(1.05m-x)-T,x=0
210 m—-2.00x =x and x =2.10 m/3.00 =0.70 m (measured from A4).
(b) SETUP: Y =stress/strain gives that strain =stress/Y = F|/AY.
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EXECUTE: Equal strain thus implies
Ty - Tp
(2.00 mm?)(1.80x10' Pa)  (4.00 mm?)(1.20x10'" Pa)
4.00\(1.20

Tg=|— || — |T, =1.3337,.

i [2.00)[1.80) A A
The > 7~ =0 equation still gives T5(1.05 m—x)—T,x =0.
But now T =1.3337 so (1.3337,)(1.05 m—x)—-T,x=0.
1.40 m =2.33x and x =1.40 m/2.33 =0.60 m (measured from A4).

EVALUATE: Wire B has twice the diameter so it takes twice the tension to produce the same stress. For
equal stress the moment arm for 7 (0.35 m) is half that for 7, (0.70 m), since the torques must be equal.

The smaller Y for B partially compensates for the larger area in determining the strain and for equal strain
the moment arms are closer to being equal.

IDENTIFY: Apply Y :% and calculate Al.

SET UP: When the ride is at rest the tension /| in the rod is the weight 1900 N of the car and occupants.
When the ride is operating, the tension £, in the rod is obtained by applying > F = md to a car and its
occupants. The free-body diagram is shown in Figure 11.84. The car travels in a circle of radius » =/sin#,
where / is the length of the rod and @ is the angle the rod makes with the vertical. For steel,

Y =2.0x10"! Pa. @ =12.0 rev/min = 1.2566 rad/s.
IWF, _ (15.0 m)(1900 N)

YA (20x10' Pa)(800x107* m?)

EXECUTE: (a) Al= =1.78x10~* m=0.18 mm

(b) X F, = ma, gives F|sin@=mra’* =mlsinfw’ and

F|, = mla’ =($jas.o m)(1.2566 rad/s)> =4.592x10° N.
5 S

3
Al = 4.592x10° N
1900 N

J(O.IS mm) = 0.44 mm.

EVALUATE: X F|, =ma, gives F| cosf =mg and cos =mg/F|. As @ increases F| increases and

cos@ becomes small. Smaller cos@ means @ increases, so the rods move toward the horizontal as @
increases.

F cos@

F,sin®

mg
Figure 11.84
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IDENTIFY: Apply % =Y [?—l

0
The acceleration as he stops depends on the force exerted on his legs by the ground.
SET UP: In considering his motion take +) downward. Assume constant acceleration as he is stopped by

the floor.

j. The height from which he jumps determines his speed at the ground.

EXECUTE: (a) F| = YA{?—ZJ =(3.0x107™* m?)(14x10° Pa)(0.010) =4.2x10* N

0

(b) As he is stopped by the ground, the net force on him is F,, = F| —mg, where F| is the force exerted

et

on him by the ground. From part (a), F|, =2(4.2x10* N)=8.4x10* N and
F =8.4x10% N—(70 kg)(9.80 m/s*) =833x10* N. F,

et = ma gives a =119x10% m/s?.

a, = ~1.19x10° m/s? since the acceleration is upward. v, =vy, +a,t gives

Voy =—ayt = (—1.19><103 m/s2)(0.030 s) =35.7 m/s. His speed at the ground therefore is v =35.7 m/s.

This speed is related to his initial height 4 above the floor by %mv2 =mgh and

2g  2(9.80 m/s?)

EVALUATE: Our estimate is based solely on compressive stress; other injuries are likely at a much lower
height.

IDENTIFY: The graph gives the change in length of the wire as a function of the weight hanging from it,

which is equal to the tension in the wire. Young’s modulus Y applies to the stretching of the wire. Energy
conservation and Newton’s second law apply to the swinging sphere.

IhF 7 ~ -2
SET UP: Y:Z—g, K, +U, =K, +U,, IF =md, a,q=v’/R.

I
EXECUTE: (a) Solve Y =lgl—121‘ for Al and realize that F, =mg: Al = Jo m. Therefore, in the graph of
AY

Al versus m, the slope is equal to gly/4Y. The equation of the graph is given in the problem as
Al = (0.422 mm/kg)m, so the slope is 0.422 mm/kg, so gly/4Y = 0.422 mm/kg = 4.22 x 10~* m/kg. Solving

gly
A(4.22x107* m/kg)
_ (9.80 m/s)(22.0 m)
T 2(4.30x107 m)>(4.22x10™* m/kg)
(b) Use energy conservation to find the speed of the sphere. K, +U, =K, +U, gives

for Y gives Y = . Using 4 = =" and putting in the given numbers gives

=8.80x10" Pa.

1
mgL (1- cosé) = —mv’. Solving for v using 8 = 36.0° and L = 22.0 m gives v = 9.075 ms.
2

Now apply Newton’s second law to the sphere at the bottom of the swing. ZF =méd and a,,q = ViR give
T—mg =mv’/L, so T = mv’/L +mg = (9.50 kg)(9.075 m/s)*/(22.0 m) + (9.50 kg)(9.80 m/s”) = 129 N.
Using the value of Y found in part (a), we have

- FLIO
Ay
EVALUATE: For a wire 22 m long, 5.5 mm is a very small stretch, 0.0055/22 = 0.025%.

IDENTIFY: The bar is at rest, so the forces and torques on it must all balance.

SETUP: XF, =0, 27, =0.

EXECUTE: (a) The free-body diagram is shown in Figure 11.87a, where F), is the force due to the knife-
edge pivot.

Al =(129 N)(22.0 m)/[m(4.30x107* m)*(8.80x 10" Pa)]=0.00554 m =5.54 mm.
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|
0.200 m\:j

1.50 m F

1.88 m
Figure 11.87a

(b) 27, =0, with torques taken about the location of the knife-edge pivot, gives

(2.00 kg)g(1.30 m) — Mg(0.38 m) — m,g(x — 1.50 m) = 0

Solving for x gives

x =[(2.00 kg)(1.30 m) — M(0.38 m)](1/m,) +1.50 m

The graph of this equation (x versus 1/m;,) is a straight line of slope [(2.00 kg)(1.30 m) — #(0.38 m)].
(c) The plot of x versus 1/m;, is shown in Figure 11.87b. The equation of the best-fit line is

x =(1.9955 m - kg )/m, + 1.504 m. The slope of the best-fit line is 1.9955 m-Kkg, so

[(2.00 kg)(1.30 m) — M(0.38 m)] = 1.9955 m- kg, which gives M = 1.59 kg.

4.00

3.50

3.00 /O//
2.50 /C/o/v
2.00

x(m)

<
1.50
1.00
0.50
0.00 T T T T T 1
0.00 0.20 0.40 0.60 0.80 1.00 1.20
1/m, (kg h

Figure 11.87b

(d) The y-intercept of the best-fit line is 1.50 m. This is plausible. As the graph approaches the y-axis, 1/m,
approaches zero, which means that m;, is getting extremely large. In that case, it would be much larger than
any other masses involved, so to balance the system, m, would have to be at the knife-point pivot, which is
atx=1.50 m.

EVALUATE: The fact that the graph gave a physically plausible result in part (d) suggests that this
graphical analysis is reasonable.

IDENTIFY: The bar is at rest, so the forces and torques on it must all balance.

SETUp: XF, =0,XF, =0, Xz =0.

EXECUTE: (a) Take torques about the hinge, calling m the mass of the bar and L its length. >z, =0 gives

mgL/2

X Sin

L
XT sin@ = mg—. Solving for T gives T = . Therefore the alternative having the largest value of
2

XSin@ will have the smallest tension, and the one with the smallest value of XSing will have the greatest
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tension. Calculating XsSin@ for each alternative gives the following values. A: 1.00 m, B: 1.30 m,

C: 0.451 m, D: 0.483 m. Therefore alternative B gives the smallest tension and C produces the largest
tension

(b) Calling H the magnitude of the hinge force, 2F, =0 gives H, =T cos 6. Using the value of T from
mg L/2 cos =18 L/2
xsin @ X tan
Xtan @ is the smallest, and H, is least when Xtan@ is greatest. Calculating Xtan@ for each alternative
gives A: 1.15 m, B: 2.60 m, C: 0.565 m, D: 1.87 m. Therefore alternative C gives the greatest H, and B
gives the smallest H..

(c) Taking torques about the point where the cable is connected to the bar, 27, =0 gives

part (a), we get H, = . From this result, we can see that H, is greatest when

H x=mg(x—L/2). Solving for H, gives H, = mg(1 — L/2x). Since H, could be positive or negative, we

R : 2.
should calculate all four possibilities. For alternative A, we have H =m g[l 2 88 m) =0.500mg. For B
m

2. s
we have H = mg(l -3 88 mj =0.333mg, and likewise we get H, =—0.333mg for C and H, =—1.00mg
m

for D. Therefore alternative D gives the largest /7, and B and C both give the smallest value.

(d) Alternative B is clearly optimal because it results in the smallest values for 7, f,, and H,. It might be a
good idea to avoid alternative C because it has the greatest 7 and H..

EVALUATE: As a check, part () could be solved by using XF), = 0.

IDENTIFY: Apply the equilibrium conditions to the ladder combination and also to each ladder.

SET UP: The geometry of the 3-4-5 right triangle simplifies some of the intermediate algebra. Denote the
forces on the ends of the ladders by F; and Fj, (left and right). The contact forces at the ground will be
vertical, since the floor is assumed to be frictionless.

EXECUTE: (a) Taking torques about the right end, F;(5.00 m) = (480 N)(3.40 m) + (360 N)(0.90 m),

so F; =391 N. Fj; may be found in a similar manner, or from F =840 N—F; =449 N.

(b) The tension in the rope may be found by finding the torque on each ladder, using the point 4 as the
origin. The lever arm of the rope is 1.50 m. For the left ladder,

T(1.50 m) = F; (3.20 m)— (480 N)(1.60 m), so 7' =322.1 N (322 N to three figures). As a check, using the
torques on the right ladder, 7(1.50 m) = F(1.80 m)— (360 N)(0.90 m) gives the same result.

(¢) The horizontal component of the force at A must be equal to the tension found in part (b). The vertical
force must be equal in magnitude to the difference between the weight of each ladder and the force on the
bottom of each ladder, 480 N —391 N =449 N —-360 N =89 N. The magnitude of the force at 4 is then
J(322.1N)2 +(89 N)? =334 N,

(d) The easiest way to do this is to see that the added load will be distributed at the floor in such a way that
Fj =F; +(036)(800 N) =679 N, and Fy = Fp +(0.64)(800 N) =961 N. Using these forces in the form for
the tension found in part (b) gives

_ F’; (320 m)— (480 N)(1.60 m) _ F’x(1.80 m)— (360 N)(0.90 m)
- (1.50 m) - (1.50 m)

EVALUATE: The presence of the painter increases the tension in the rope, even though his weight is
vertical and the tension force is horizontal.
IDENTIFY: Apply 27, =0 to the post, for various choices of the location of the rotation axis.

T =937 N.

SET UP: When the post is on the verge of slipping, f; has its largest possible value, f; = fn.

EXECUTE: (a) Taking torques about the point where the rope is fastened to the ground, the lever arm of
the applied force is #/2 and the lever arm of both the weight and the normal force is Atan@, and so

F% =(n—w)htané.



Equilibrium and Elasticity 11-43

11.91.

11.92.

fand n and solving for F gives F < w(

Taking torques about the upper point (where the rope is attached to the post), fh=F 5 Using f < n

and solving for F, F < ZW(i _

M, tanf

ELE S
030 tan36.9°

-1 -1
J =2(400 N)( J =400 N.

(b) The above relations between F, n and f become F %h =(n—w)h tan, f = %F , and eliminating

2/5  3/5
M, tand

-1
J , and substitution of numerical values gives

750 N to two figures.
(c) If the force is applied a distance y above the ground, the above relations become

. . 1—y/h /h

Fy=(n—w)htan@, F(h—y)= fh, which become, on eliminating » and f, w=F A=y _ Gk .
M tan &

As the term in square brackets approaches zero, the necessary force becomes unboundedly large. The
limiting value of y is found by setting the term in square brackets equal to zero. Solving for y gives
y_ tanf _  tan36.9°
h p,+tand 030+tan36.9°
EVALUATE: For the post to slip, for an axis at the top of the post the torque due to F must balance the

torque due to the friction force. As the point of application of F approaches the top of the post, its moment
arm for this axis approaches zero.

=0.71.

IDENTIFY: Apply ¥ —hfL to calculate Al
AAl
SET UP: For steel, ¥ = 2.0x10'" Pa.
WFL - (450kg)980 m/s?)(1.50 m)

— —4
AL (20><1010 Pa)(5.00x10_7 m?) =6.62x10 " m, or 0.66 mm to two

EXECUTE: (a) From Y =

figures.
(b) (4.50 kg)(9.80 m/s>)(0.0500x1072 m) = 0.022 J.
(¢) The magnitude F will vary with distance; the average force is Y4(0.0250 cm/l;) =16.7 N, and so the

work done by the applied force is (16.7 N)(0.0500 % 1072 m)=835x107° J.
(d) The average force the wire exerts is (4.50 kg)g +16.7 N =60.8 N. The work done is negative, and

equal to —(60.8 N)(0.0500%107% m) =—3.04x1072 J.

. F . . Y4
(e) The equation Y = {3—5 can be put into the form of Hooke’s law, with k = 7 Uy = %lcxz, S0
0

AUy =Lk(x3 =xi). x=662x10"* m and x, =0.500x10~ m+x =11.62x10~* m. The change in

elastic potential energy is

(20x10'° Pa)(5.00x1077 m?)
2(1.50 m)

the result of part (d).
EVALUATE: The tensile force in the wire is conservative and obeys the relation W =—-AU.

IDENTIFY and SET UP: The forces and torques on the competitor must balance, so ZF, =0, ZFy =0,
and > 7, =0.

EXECUTE: Take torques about his feet, giving (7, — 75)(1.5 m)(c0s30°) = mg(1.0 m)(sin30°). Solving for
T, gives T> = 1160 N — [(80.0 kg)(9.80 m/s*)/(1.5 m)]tan30° = 858 N ~ 860 N, which is choice (c).
EVALUATE: We find 7, < T as expected.

[(1 162x107 m)® - (662 x 107 m)zJ =3.04x1072 J, the negative of
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IDENTIFY and SET UP: The forces and torques on the competitor must balance, so ZF, =0, EFy =0,

and 27, =0.

EXECUTE: As in the previous problem, 7} — T, is proportional to tané, so as @ increases, so does tané
and so does 7 — T, which makes choice (a) correct.

EVALUATE: The result is physically reasonable. As he leans back, the ropes get lower, which reduces
their moment arm, and his weight also gets lower, which increases its moment arm. Therefore to keep
balance, the diffrerence in the tensions must be greater than before.

IDENTIFY and SET UP:  Apply 7 = Fl.

EXECUTE: The moment arm for 77 has increased, so 7} can be smaller and still produce the same torque
needed to balance the torque due to gravity, so choice (c) is correct.

EVALUATE: If the rope is held too high, it will be hard for the competitor to hold it, so there is a limit on
how much the holding height can be effectively increased.

IDENTIFY and SET UP: The competitor will slip if the static friction force would need to be greater than its

maximum possible value. ;™™ = gin.
EXECUTE: From earlier work, we know that 7; — 7, = 1160 N — 858 N = 302 N. The maximum static
friction force is /" = g = (0.50)(80.0 kg)(9.80 m/s”) = 392 N. He needs only 302 N to balance the

tension difference, yet the static friction force could be as great as 392 N, so he is not even ready to slip.
Therefore he will not move, choice (d).
EVALUATE: The friction force is 302 N, not 392 N, because he is not just ready to slip.
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