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 1.1. IDENTIFY:   Convert units from mi to km and from km to ft. 
SET UP:   1 in 2 54 cm,. = . 1 km 1000 m,= 12 in 1 ft,. = 1 mi 5280 ft.=  

EXECUTE:   (a) 2 3
5280 ft 12 in 2 54 cm 1 m 1 km1 00 mi (1 00 mi) 1 61 km

1 mi 1 ft 1 in 10  cm 10  m
. .⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞. = . = .⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

(b) 
3 2

310  m 10  cm 1 in 1 ft1 00 km (1 00 km) 3 28 10  ft
1 km 1 m 2 54 cm 12 in

⎛ ⎞⎛ ⎞ .⎛ ⎞⎛ ⎞. = . = . ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ . .⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
EVALUATE:   A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in 
a km.  

 1.2. IDENTIFY:   Convert volume units from L to 3in ..  
SET UP:   31 L 1000 cm .=  1 in 2 54 cm. = .  

EXECUTE: 
33

31000 cm 1 in0 473 L 28 9 in
1 L 2 54 cm

⎛ ⎞ .⎛ ⎞. × × = . . .⎜ ⎟ ⎜ ⎟⎜ ⎟ .⎝ ⎠⎝ ⎠
  

EVALUATE:   31 in.  is greater than 31 cm ,  so the volume in 3in.  is a smaller number than the volume in 
3cm ,  which is 3473 cm .  

 1.3. IDENTIFY:   We know the speed of light in m/s. / .t d v= Convert 1.00 ft to m and t from s to ns. 
SET UP:   The speed of light is 83 00 10  m/s.v = . × 1 ft 0 3048 m.= . 91 s 10  ns.=  

EXECUTE: 9
8

0 3048 m 1 02 10  s 1 02 ns
3 00 10  m/s

t −.= = . × = .
. ×

  

EVALUATE:   In 1.00 s light travels 8 5 53 00 10  m 3 00 10  km 1 86 10  mi.. × = . × = . ×  
 1.4. IDENTIFY:   Convert the units from g to kg and from 3cm to 3m .  

SET UP:   1 kg 1000 g.=  1 m 100 cm.=  

EXECUTE: 
3

4
3 3

g 1 kg 100 cm kg19 3 1 93 10
1000 g 1 mcm m
⎛ ⎞ ⎛ ⎞. × × = . ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

EVALUATE:   The ratio that converts cm to m is cubed, because we need to convert 3cm to 3m .  
 1.5. IDENTIFY:   Convert volume units from 3in.  to L. 

SET UP:   31 L 1000 cm .=  1 in 2 54 cm.. = .  
EXECUTE:   3 3 3(327 in ) (2 54 cm/in ) (1L/1000 cm ) 5 36 L. × . . ×  = .   

EVALUATE:   The volume is 35360 cm .  31 cm is less than 31 in ,.  so the volume in 3cm is a larger number 

than the volume in 3in ..  
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 1.6. IDENTIFY:   Convert 2ft to 2m and then to hectares. 
SET UP:   4 21 00 hectare 1 00 10  m .. = . ×  1 ft 0 3048 m.= .  

EXECUTE:   The area is 
22

4 2
43 600 ft 0 3048 m 1 00 hectare(12 0 acres) 4 86 hectares.

1 acre 1 00 ft 1 00 10  m
,⎛ ⎞ . .⎛ ⎞ ⎛ ⎞. = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ . . ×⎝ ⎠ ⎝ ⎠⎝ ⎠

 

EVALUATE:   Since 1 ft 0 3048 m,= . 2 2 21 ft (0 3048)  m .= .  
 1.7. IDENTIFY:   Convert seconds to years. 1 gigasecond is a billion seconds. 

SET UP:   91 gigasecond 1 10  s.= ×  1 day 24 h.= 1 h 3600 s.=  

EXECUTE:   9 1 h 1 day 1 y1 00 gigasecond (1 00 10  s) 31 7 y.
3600 s 24 h 365 days

⎛ ⎞⎛ ⎞⎛ ⎞. = . × = .⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

  

EVALUATE:   The conversion 71 y 3 156 10  s= . ×  assumes 1 y 365 24 d,= . which is the average for one 
extra day every four years, in leap years. The problem says instead to assume a 365-day year. 

 1.8. IDENTIFY:   Apply the given conversion factors. 
SET UP:   1 furlong 0 1250 mi and 1 fortnight 14 days= . = .  1 day 24 h= .  

EXECUTE:   0 125 mi 1 fortnight 1 day(180 000 furlongs fortnight) 67 mi/h
1 furlong 14 days 24 h

, /
⎛ ⎞⎛ ⎞. ⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
  

EVALUATE:   A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a 
much smaller number. 

 1.9. IDENTIFY:   Convert miles/gallon to km/L. 
SET UP:   1 mi 1 609 km.= .  1 gallon 3 788 L= . .  

EXECUTE:   (a) 1 609 km 1 gallon55 0 miles/gallon (55 0 miles/gallon) 23 4 km/L.
1 mi 3 788 L

.⎛ ⎞⎛ ⎞. = . = .⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠
 

(b) The volume of gas required is 1500 km 64 1 L.
23 4 km/L

= .
.

64 1 L 1 4 tanks.
45 L/tank

. = .  

EVALUATE:   1 mi/gal 0 425  km/L.= .  A km is very roughly half a mile and there are roughly 4 liters in a 

gallon, so 2
41 mi/gal  km/L,∼  which is roughly our result. 

 1.10. IDENTIFY:   Convert units. 
SET UP:   Use the unit conversions given in the problem. Also, 100 cm 1 m= and 1000 g 1 kg.=  

EXECUTE:   (a) mi 1 h 5280 ft ft60 88
h 3600 s 1 mi s

⎛ ⎞⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

(b) 2 2
ft 30 48 cm 1 m m32 9 8

1ft 100 cms s
⎛ ⎞.⎛ ⎞ ⎛ ⎞  = .⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(c) 
3

3
3 3

g 100 cm 1 kg kg1 0 10
1 m 1000 gcm m

⎛ ⎞⎛ ⎞⎛ ⎞. =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The relations 60 mi/h 88 ft/s= and 3 3 31 g/cm 10  kg/m= are exact. The relation 
2 232 ft/s 9 8 m/s= . is accurate to only two significant figures. 

 1.11. IDENTIFY:   We know the density and mass; thus we can find the volume using the relation 
density mass/volume / .m V= =  The radius is then found from the volume equation for a sphere and the 
result for the volume. 
SET UP:   3Density 19 5 g/cm= .  and critical 60 0 kgm = . .  For a sphere 34

3 .V rπ=  

EXECUTE:   3
critical 3

60 0 kg 1000 g/density 3080 cm .
1 0 kg19 5 g/cm

V m
⎛ ⎞⎛ ⎞.= = =⎜ ⎟⎜ ⎟⎜ ⎟ .. ⎝ ⎠⎝ ⎠

  



Units, Physical Quantities, and Vectors   1-3 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

33 33 3 (3080 cm ) 9 0 cm.
4 4
V

r
π π

= = = .  

EVALUATE:   The density is very large, so the 130-pound sphere is small in size. 
 1.12. IDENTIFY:   Convert units. 

SET UP:   We know the equalities 31 mg 10  g,−=  1 µg 610  g,−  and 31 kg 10  g.=  

EXECUTE:   (a) 
3

5
6

10  g 1 g(410 mg/day) 4.10 10 g/day.
1 mg 10  g

µ µ
−

−

⎛ ⎞⎛ ⎞ = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 
310  g(12 mg/kg)(75 kg) (900 mg) 0.900 g.

1 mg

−⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 

(c) The mass of each tablet is 
3

310  g(2.0 mg) 2.0 10  g.
1 mg

−
−⎛ ⎞ = ×⎜ ⎟

⎝ ⎠
 The number of tablets required each day is 

the number of grams recommended per day divided by the number of grams per tablet: 

3
0.0030 g/day 1.5 tablet/day.

2.0 10  g/tablet− =
×

Take 2 tablets each day. 

(d) 3
1 mg(0.000070 g/day) 0.070 mg/day.

10  g−
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   Quantities in medicine and nutrition are frequently expressed in a wide variety of units. 
 1.13. IDENTIFY:   Model the bacteria as spheres. Use the diameter to find the radius, then find the volume and 

surface area using the radius. 
SET UP:   From Appendix B, the volume V of a sphere in terms of its radius is 34

3V rπ=  while its surface 

area A is 24A rπ= .  The radius is one-half the diameter or /2 1 0 mr d µ= = .  .  Finally, the necessary 

equalities for this problem are:   61 m 10  m;µ − =  21 cm 10  m;−=  and 31 mm 10  m−= .  

EXECUTE:   
3 36

3 3 12 34 4
3 3 2

10  m 1 cm(1 0 m) 4 2 10  cm
1 m 10  m

V rπ π µ
µ

−
−

−
⎛ ⎞ ⎛ ⎞= = .  = . ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 and 

2 26
2 2 5 2

3
10  m 1 mm4 4 (1 0 m) 1 3 10  mm
1 m 10  m

A rπ π µ
µ

−
−

−
⎛ ⎞ ⎛ ⎞= = .  = . ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

EVALUATE:   On a human scale, the results are extremely small. This is reasonable because bacteria are not 
visible without a microscope. 

 1.14. IDENTIFY:   When numbers are multiplied or divided, the number of significant figures in the result can be 
no greater than in the factor with the fewest significant figures. When we add or subtract numbers it is the 
location of the decimal that matters. 
SET UP:   12 mm has two significant figures and 5.98 mm has three significant figures. 
EXECUTE:   (a) 2(12 mm) (5 98 mm) 72 mm× . = (two significant figures) 

(b) 5 98 mm 0 50
12 mm
. = . (also two significant figures) 

(c) 36 mm (to the nearest millimeter) 
(d) 6 mm 
(e) 2.0 (two significant figures) 
EVALUATE:   The length of the rectangle is known only to the nearest mm, so the answers in parts (c) and 
(d) are known only to the nearest mm. 

 1.15. IDENTIFY:   Use your calculator to display 710 .π × Compare that number to the number of seconds in a year. 
SET UP:   1 yr 365 24 days,= .  1 day 24 h,=  and 1 h 3600 s= .  
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EXECUTE:   724 h 3600 s(365 24 days/1 yr) 3 15567 10  s;
1 day 1 h
⎛ ⎞⎛ ⎞. = . …×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 7 710  s 3 14159 10  sπ × = . …×  

The approximate expression is accurate to two significant figures. The percent error is 0.45%. 
EVALUATE:   The close agreement is a numerical accident. 

 1.16. IDENTIFY:   To asses the accuracy of the approximations, we must convert them to decimals. 
SET UP:   Use a calculator to calculate the decimal equivalent of each fraction and then round the numeral 
to the specified number of significant figures. Compare to π rounded to the same number of significant 
figures. 
EXECUTE:    (a) 22/7 = 3.14286 (b) 355/113 = 3.14159 (c) The exact value of π rounded to six significant 
figures is 3.14159. 
EVALUATE:   We see that 355/113 is a much better approximation to π than is 22/7. 

 1.17. IDENTIFY:   Express 200 kg in pounds. Express each of 200 m, 200 cm and 200 mm in inches. Express 
200 months in years. 
SET UP:   A mass of 1 kg is equivalent to a weight of about 2.2 lbs.1 in 2 54 cm.. = .  1 y 12 months.=  
EXECUTE:   (a) 200 kg is a weight of 440 lb. This is much larger than the typical weight of a man. 

(b) 4 31 in200 m (2 00 10  cm) 7 9 10  inches.
2 54 cm

.⎛ ⎞= . × = . ×⎜ ⎟.⎝ ⎠
 This is much greater than the height of a person. 

(c) 200 cm 2 00 m 79 inches 6 6 ft.= . = = . Some people are this tall, but not an ordinary man. 
(d) 200 mm 0 200 m 7 9 inches.= . = . This is much too short. 

(e) 1 y200 months (200 mon) 17 y.
12 mon
⎛ ⎞= =⎜ ⎟
⎝ ⎠

This is the age of a teenager; a middle-aged man is much 

older than this. 
EVALUATE:   None are plausible. When specifying the value of a measured quantity it is essential to give 
the units in which it is being expressed. 

 1.18. IDENTIFY:   Estimate the number of people and then use the estimates given in the problem to calculate the 
number of gallons. 
SET UP:   Estimate 83 10× people, so 82 10× cars. 
EXECUTE:   (Number of cars miles/car day)/(mi/gal) gallons/day× =   

8 8(2 10  cars 10000 mi/yr/car 1 yr/365 days)/(20 mi/gal) 3 10  gal/day× × × = ×  
EVALUATE:   The number of gallons of gas used each day approximately equals the population of the U.S. 

 1.19. IDENTIFY:   Estimate the number of blinks per minute. Convert minutes to years. Estimate the typical 
lifetime in years. 
SET UP:   Estimate that we blink 10 times per minute.1 y 365 days.=  1 day 24 h,= 1 h 60 min.= Use 80 
years for the lifetime. 

EXECUTE:   The number of blinks is 860 min 24 h 365 days(10 per min) (80 y/lifetime) 4 10
1 h 1 day 1 y

⎛ ⎞⎛ ⎞⎛ ⎞ = ×⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

  EVALUATE:   Our estimate of the number of blinks per minute can be off by a factor of two but our 
calculation is surely accurate to a power of 10. 

 1.20. IDENTIFY:   Approximate the number of breaths per minute. Convert minutes to years and 3cm to 3m to 
find the volume in 3m breathed in a year. 

SET UP:   Assume 10 breaths/min. 524 h 60 min1 y (365 d) 5 3 10  min.
1 d 1 h

⎛ ⎞⎛ ⎞= = . ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

210  cm 1 m= so 

6 3 310  cm 1 m .= The volume of a sphere is 3 34 1
3 6 ,V r dπ π= = where r is the radius and d is the diameter. 

Don’t forget to account for four astronauts. 

EXECUTE:   (a) The volume is 
5

6 3 4 35 3 10  min(4)(10 breaths/min)(500 10  m ) 1 10  m /yr.
1 y

− ⎛ ⎞. ×× = ×⎜ ⎟⎜ ⎟
⎝ ⎠
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(b) 
1/31/3 4 36 6[1 10  m ] 27 mV

d
π π

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Our estimate assumes that each 3cm of air is breathed in only once, where in reality not all 
the oxygen is absorbed from the air in each breath. Therefore, a somewhat smaller volume would actually 
be required. 

1.21.  IDENTIFY:   Estimation problem. 
SET UP:   Estimate that the pile is 18 in 18 in 5 ft 8 in.× .× ..  Use the density of gold to calculate the mass of 
gold in the pile and from this calculate the dollar value. 
EXECUTE:   The volume of gold in the pile is 318 in 18 in 68 in 22,000 inV = .× .× . = . .  Convert to 3cm :  

3 3 3 5 322,000 in (1000 cm /61 02 in ) 3 6 10  cmV = . . . = . × .  

The density of gold is 319 3 g/cm ,.  so the mass of this volume of gold is  
3 5 3 6(19 3 g/cm )(3 6 10  cm ) 7 10  gm = . . × = × .  

The monetary value of one gram is $10, so the gold has a value of 6 7($10/gram)(7 10  grams) $7 10 ,× = ×  

or about 6$100 10×  (one hundred million dollars). 
EVALUATE:   This is quite a large pile of gold, so such a large monetary value is reasonable. 

1.22.  IDENTIFY:   Estimate the number of beats per minute and the duration of a lifetime. The volume of blood 
pumped during this interval is then the volume per beat multiplied by the total beats. 
SET UP:   An average middle-aged (40 year-old) adult at rest has a heart rate of roughly 75 beats per 
minute. To calculate the number of beats in a lifetime, use the current average lifespan of 80 years. 

EXECUTE:   9
beats

60 min 24 h 365 days 80 yr(75 beats/min) 3 10  beats/lifespan
1 h 1 day yr lifespan

N
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
  

9
3 7

blood 3
1 L 1 gal 3 10  beats(50 cm /beat) 4 10  gal/lifespan

3 788 L lifespan1000 cm
V

⎛ ⎞×⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠⎝ ⎠
 

EVALUATE:   This is a very large volume. 
 1.23. IDENTIFY:   Estimate the diameter of a drop and from that calculate the volume of a drop, in 3m .  Convert 

3m to L. 
SET UP:   Estimate the diameter of a drop to be 2 mm.d =  The volume of a spherical drop is 

3 3 3 34 1
3 6 . 10  cm 1 L.V r dπ π= = =  

EXECUTE:   3 3 31
6 (0 2 cm) 4 10  cm .V π −= . = ×  The number of drops in 1.0 L is 

3
5

3 3
1000 cm 2 10

4 10  cm− = ×
×

 

EVALUATE:   Since 3,V d∼  if our estimate of the diameter of a drop is off by a factor of 2 then our 
estimate of the number of drops is off by a factor of 8. 

 1.24. IDENTIFY:   Draw the vector addition diagram to scale. 
SET UP:   The two vectors A

G
and B

G
are specified in the figure that accompanies the problem. 

EXECUTE:   (a) The diagram for = +R A B
GG G

is given in Figure 1.24a. Measuring the length and angle of 
R
G

gives 9 0 mR = . and an angle of 34 .θ = °  
(b) The diagram for = −E A B

GG G
 is given in Figure 1.24b. Measuring the length and angle of E

G
 gives 

22 mD = and an angle of 250 .θ = °  
(c) − − = −( + ),A B A B

G G
so − −A B

G G
 has a magnitude of 9.0 m (the same as +A B

G G
) and an angle with the 

x+  axis of 214° (opposite to the direction of ).+A B
G G

 

(d) − = −( − ),B A A B
G GG G

so −B A
GG

has a magnitude of 22 m and an angle with the x+  axis of 70°  (opposite 

to the direction of −A B
G G

). 
EVALUATE:   The vector −A

G
is equal in magnitude and opposite in direction to the vector .A

G
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Figure 1.24 
 

 1.25. IDENTIFY:   Draw each subsequent displacement tail to head with the previous displacement. The resultant 
displacement is the single vector that points from the starting point to the stopping point. 
SET UP:   Call the three displacements ,A

G
,B
G

 and .C
G

 The resultant displacement R
G

 is given by 
.= + +R A B C

G GG G
 

EXECUTE:   The vector addition diagram is given in Figure 1.25. Careful measurement gives that R
G

 is 
7 8 km, 38  north of east.. D  
EVALUATE:   The magnitude of the resultant displacement, 7.8 km, is less than the sum of the magnitudes 
of the individual displacements, 2 6 km 4 0 km 3 1 km.. + . + .  

 
 

 

Figure 1.25 

 1.26. IDENTIFY:   Since she returns to the starting point, the vector sum of the four displacements must be zero. 
SET UP:   Call the three given displacements ,A

G
,B
G

 and ,C
G

 and call the fourth displacement .D
G

 
0.+ + + =A B C D

G GG G
 

EXECUTE:   The vector addition diagram is sketched in Figure 1.26. Careful measurement gives that D
G

 
is144 m, 41  south of west° .  
EVALUATE:   D

G
 is equal in magnitude and opposite in direction to the sum .+ +A B C

G GG
 

 

 

Figure 1.26 
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 1.27. IDENTIFY:   For each vector ,V
G

 use that cosxV V θ=  and sin ,yV V θ=  when θ  is the angle V
G

 makes 
with the x+  axis, measured counterclockwise from the axis. 
SET UP:   For ,A

G
 270 0 .θ = . °  For ,B

G
60 0 .θ = . °  For ,C

G
205 0 .θ = . °  For ,D

G
143 0 .θ = . °  

EXECUTE:   0,xA =  8 00 m.yA = − . 7 50 m,xB = . 13 0 m.yB = . 10 9 m,xC = − . 5 07 m.yC = − .  

7 99 m,xD = − . 6 02 m.yD = .  
EVALUATE:   The signs of the components correspond to the quadrant in which the vector lies. 

 1.28. IDENTIFY:   tan ,y

x

A

A
θ =  for θ  measured counterclockwise from the x+ -axis. 

SET UP:   A sketch of ,xA yA  and A
G

 tells us the quadrant in which A
G

 lies. 
EXECUTE:    

(a) 1 00 mtan 0 500.
2 00 m

y

x

A

A
θ − .= = = − .

.
1tan ( 0 500) 360 26 6 333 .θ −= − . = ° − . ° = °  

(b) 1 00 mtan 0 500.
2 00 m

y

x

A

A
θ .= = = .

.
1tan (0 500) 26 6 .θ −= . = . °  

(c) 1 00 mtan 0 500.
2 00 m

y

x

A

A
θ .= = = − .

− .
1tan ( 0 500) 180 26 6 153 .θ −= − . = ° − . ° = °  

(d) 1 00 mtan 0 500.
2 00 m

y

x

A

A
θ − .= = = .

− .
1tan (0 500) 180 26 6 207θ −= . = ° + . ° = °  

EVALUATE:   The angles 26 6. ° and 207° have the same tangent. Our sketch tells us which is the correct 
value of .θ  

 1.29. IDENTIFY:   Given the direction and one component of a vector, find the other component and the 
magnitude. 
SET UP:   Use the tangent of the given angle and the definition of vector magnitude. 

EXECUTE:   (a) tan32.0 x

y

A
A

° =  

(9.60 m)tan32.0 6.00 m.xA = ° = 6.00 m.xA = −  

(b) 2 2 11.3 m.x yA A A= + =  

EVALUATE:   The magnitude is greater than either of the components. 
 1.30. IDENTIFY:   Given the direction and one component of a vector, find the other component and the 

magnitude. 
SET UP:   Use the tangent of the given angle and the definition of vector magnitude. 

EXECUTE:   (a) tan34.0 x

y

A
A

° =  

16.0 m 23.72 m
tan34.0 tan34.0

x
y

A
A = = =

° °
 

23.7 m.yA = −  

(b) 2 2 28.6 m.x yA A A= + =  

EVALUATE:   The magnitude is greater than either of the components. 
 1.31. IDENTIFY:   If ,= +C A B

G G G
 then x x xC A B= + and .y y yC A B= +  Use xC and yC to find the magnitude and 

direction of .C
G
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SET UP:   From Figure E1.24 in the textbook, 0,xA =  8 00 myA = − . and sin30 0 7 50 m,xB B= + . ° = .  

cos30 0 13 0 m.yB B= + . ° = .  

EXECUTE:   (a) = +C A B
G G G

so 7 50 mx x xC A B= + = . and 5 00 m.y y yC A B= + = + . 9 01 m.C = .  

5 00 mtan
7 50 m

y

x

C

C
θ .= =

.
 and 33 7 .θ = . °  

(b) ,+ = +B A A B
G GG G

so +B A
GG

 has magnitude 9.01 m and direction specified by 33 7 .. °  
(c) = −D A B

GG G
so 7 50 mx x xD A B= − = − . and 21 0 m.y y yD A B= − = − . 22 3 m.D = .  

21 0 mtan
7 50 m

y

x

D

D
φ − .= =

− .
and 70 3 .φ = . ° D

G
is in the rd3  quadrant and the angle θ counterclockwise from the 

x+  axis is 180 70 3 250 3 .° + . ° = . °  
(d) ( ),− = − −B A A B

G GG G
so −B A

GG
has magnitude 22.3 m and direction specified by 70 3 .θ = . °  

EVALUATE:   These results agree with those calculated from a scale drawing in Problem 1.24. 
 1.32. IDENTIFY:   Find the vector sum of the three given displacements. 

SET UP:   Use coordinates for which x+  is east and y+  is north. The driver’s vector displacements are: 

2 6 km, 0  of north;  4 0 km, 0  of east; 3 1 km, 45  north of east.= . ° = . ° = . °A B C
K KK

 
EXECUTE:   0 4 0 km (3 1 km)cos(45 ) 6 2 km;x x x xR A B C= + + = + . + . ° = .  y y y yR A B C= + + =  

2 6 km 0 (3 1 km)(sin 45 ) 4 8 km;. + + . ° = . 2 2 7 8 km;x yR R R= + = . 1tan [(4 8 km)/(6 2 km)] 38 ;θ −= . . = °  

7 8 km, 38  north of east= . ° .R
K

 This result is confirmed by the sketch in Figure 1.32. 
EVALUATE:   Both xR  and yR  are positive and R

G
 is in the first quadrant. 

 

Figure 1.32 
 1.33. IDENTIFY:   Vector addition problem. We are given the magnitude and direction of three vectors and are 

asked to find their sum. 
SET UP:    

 

 3.25 kmA =  

2.20 kmB =  

1.50 kmC =  
 

Figure 1.33a   
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Select a coordinate system where x+  is east and y+  is north. Let ,A
G

,
G
B  and C

G
 be the three 

displacements of the professor. Then the resultant displacement R
G

 is given by .= + +R A B C
G GG G

 By the 
method of components, x x x xR A B C= + + and .y y y yR A B C= + +  Find the x and y components of each 
vector; add them to find the components of the resultant. Then the magnitude and direction of the resultant 
can be found from its x and y components that we have calculated. As always it is essential to draw a 
sketch. 
EXECUTE:    

 

 
0, 3.25 kmx yA A= = +  

2.20 km,xB = − 0yB =  

0, 1.50 kmx yC C= = −  

x x x xR A B C= + +  
0 2.20 km 0 2.20 kmxR = − + = −  

y y y yR A B C= + +  

3.25 km 0 1.50 km 1.75 kmyR = + − =  
 

Figure 1.33b   
 
 

 
2 2 2 2( 2.20 km) (1.75 km)x yR R R= + = − +  

2.81 kmR =  
1.75 kmtan 0.800
2.20 km

y

x

R
R

θ = = = −
−

 

141.5θ = °  
 

Figure 1.33c   
 

The angle θ  measured counterclockwise from the -axis.x+  In terms of compass directions, the resultant 
displacement is 38.5  N°  of W. 
EVALUATE:   0xR <  and 0,yR >  so R

G
 is in the 2nd quadrant. This agrees with the vector addition 

diagram. 

 1.34. IDENTIFY:   Use = +2 2

x y
A A A  and θ =tan y

x

A

A
 to calculate the magnitude and direction of each of the 

given vectors. 
SET UP:   A sketch of ,xA yA and A

G
tells us the quadrant in which A

G
lies. 

EXECUTE:   (a) 2 2( 8 60 cm) (5 20 cm) 10 0 cm,− . + . = . 5.20arctan 148.8
8.60

⎛ ⎞ = °⎜ ⎟−⎝ ⎠
 (which is180 31 2° − . ° ). 

(b) 2 2( 9 7 m) ( 2 45 m) 10 0 m,− . + − . = . 2.45arctan 14 180 194 .
9.7

−⎛ ⎞ = ° + ° = °⎜ ⎟−⎝ ⎠
 

(c) 2 2(7 75 km) ( 2 70 km) 8 21 km,. + − . = . 2.7arctan 340.8
7.75
−⎛ ⎞ = °⎜ ⎟

⎝ ⎠
 (which is 360 19 2° − . ° ). 

EVALUATE:   In each case the angle is measured counterclockwise from the x+  axis. Our results for θ  
agree with our sketches. 
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 1.35. IDENTIFY:   Vector addition problem. ( )− = + − .A B A B
G GG G

 

SET UP:   Find the x- and y-components of A
G

 and .B
G

 Then the x- and y-components of the vector sum are 
calculated from the x- and y-components of A

G
 and .B

G
 

EXECUTE:    
 

 cos(60 0 )xA A= . °  
(2 80 cm)cos(60 0 ) 1 40 cmxA = . . ° = + .  

sin (60 0 )yA A= . °  

(2 80 cm)sin (60 0 ) 2 425 cmyA = . . ° = + .  

cos( 60 0 )xB B= − . °  
(1 90 cm)cos( 60 0 ) 0 95 cmxB = . − . ° = + .  

sin ( 60 0 )yB B= − . °  

(1 90 cm)sin ( 60 0 ) 1 645 cmyB = . − . ° = − .  
Note that the signs of the components correspond  
to the directions of the component vectors. 

Figure 1.35a   
 

(a) Now let = + .R A B
GG G

 
1 40 cm 0 95 cm 2 35 cmx x xR A B= + = + . + . = + . .  
2 425 cm 1 645 cm 0 78 cmy y yR A B= + = + . − . = + . .  

 

 2 2 2 2(2 35 cm) (0 78 cm)x yR R R= + = . + .
2 48 cmR = .  

0 78 cmtan 0 3319
2 35 cm

y

x

R

R
θ + .= = = + .

+ .
 

18 4θ = . °  

Figure 1.35b   
 

EVALUATE:   The vector addition diagram for = +R A B
GG G

 is 
 

 R
G

is in the 1st quadrant, with | | | | ,y xR R<  
in agreement with our calculation. 

Figure 1.35c   
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(b) EXECUTE:   Now let = − .R A B
GG G

 
1 40 cm 0 95 cm 0 45 cmx x xR A B= − = + . − . = + . .  
2 425 cm 1 645 cm 4 070 cmy y yR A B= − = + . + . = + . .  

 

 2 2 2 2(0 45 cm) (4 070 cm)x yR R R= + = . + .  

4 09 cmR = .  
4 070 cmtan 9 044
0 45 cm

y

x

R

R
θ .= = = + .

.
 

83 7θ = . °  

Figure 1.35d   
 

EVALUATE:   The vector addition diagram for ( )= + −R A B
GG G

 is 
 

 R
G

is in the 1st quadrant, with | | | |,x yR R<  
in agreement with our calculation. 

Figure 1.35e   
 

(c) EXECUTE:    
 

 ( )− = − −B A A B
G GG G

 

−B A
GG

and −A B
G G

 are equal in magnitude and 
opposite in direction. 

4 09 cmR = .  and 83 7 180 264θ = . ° + ° = °  

Figure 1.35f   
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EVALUATE:   The vector addition diagram for ( )= + −R B A
GG G

 is 
 
 

 R
G

 is in the 3rd quadrant, with | | | |,x yR R<  
in agreement with our calculation. 

Figure 1.35g   
 
 1.36. IDENTIFY:   The general expression for a vector written in terms of components and unit vectors is 

ˆ ˆ.x yA A= +A i j
G

 

SET UP:   ˆ ˆ5 0 5 0(4 6 ) 20 30. = . − = −B i j i j
G GG

 
EXECUTE:   (a) 5 0,xA = . 6 3yA = − .  (b) 11 2,xA = . 9 91yA = − .  (c) 15 0,xA = − . 22 4yA = .   

(d) 20,xA = 30yA = −  
EVALUATE:   The components are signed scalars. 

 1.37. IDENTIFY:   Find the components of each vector and then use the general equation ˆ ˆ
x yA A= +A i j

G
 for a 

vector in terms of its components and unit vectors. 
SET UP:   0,xA = 8 00 m.yA = − . 7 50 m,xB = . 13 0 m.yB = . 10 9 m,xC = − . 5 07 m.yC = − .  

7 99 m,xD = − . 6 02 m.yD = .  

EXECUTE:   ˆ( 8 00 m) ;= − .A j
G ˆ ˆ(7 50 m) (13 0 m) ;= . + .B i j

G ˆ ˆ( 10 9 m) ( 5 07 m) ;= − . + − .C i j
G

 
ˆ ˆ( 7 99 m) (6 02 m) .= − . + .D i j

G
 

EVALUATE:   All these vectors lie in the xy-plane and have no z-component. 
 1.38. IDENTIFY:   Find A and B. Find the vector difference using components. 

SET UP:   Identify the x- and y-components and use = +2 2

x y
A A A . 

EXECUTE:   (a) ˆ ˆ4.00 7.00 ;= +A i j
G

4.00;xA = + 7.00.yA = +  
2 2 2 2(4.00) (7.00) 8.06.x yA A A= + = + = ˆ ˆ5.00 2.00 ;= −B i j

G
5.00;xB = + 2.00;yB = −  

2 2 2 2(5.00) ( 2.00) 5.39.x yB B B= + = + − =  

EVALUATE:   Note that the magnitudes of A
G

 and B
G

 are each larger than either of their components. 

EXECUTE:   (b) ˆ ˆ ˆ ˆ ˆ ˆ4.00 7.00 (5.00 2.00 ) (4.00 5.00) (7.00 2.00) .− = + − − = − + +A B i j i j i j
G G

 
ˆ ˆ1.00 9.00− = − +A B i j

G G
 

(c) Let ˆ ˆ1.00 9.00 .− = − +=R A B i j
GG G

 Then 1.00,xR = − 9.00.yR =  
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 2 2
x yR R R= +  

2 2( 1.00) (9.00) 9.06.R = − + =  

9.00tan 9.00
1.00

y

x

R
R

θ = = = −
−

 

83.6 180 96.3 .θ = − ° + ° = °  

Figure 1.38   
 

EVALUATE:   0xR <  and 0,yR >  so R
G

 is in the 2nd quadrant. 

 1.39. IDENTIFY:   Use trigonometry to find the components of each vector. Use = + +"
x x x

R A B  and 

= + +"y y yR A B  to find the components of the vector sum. The equation ˆ ˆ
x yA A= +A i j

G
 expresses a 

vector in terms of its components. 
SET UP:   Use the coordinates in the figure that accompanies the problem. 

EXECUTE:   (a) ˆ ˆ ˆ ˆ(3 60 m)cos70 0 (3 60 m)sin 70 0 (1 23 m) (3 38 m)= . . ° + . . ° = . + .A i j i j
G

 
ˆ ˆ ˆ ˆ(2 40 m)cos30 0 (2 40 m)sin30 0 ( 2 08 m) ( 1 20 m)= − . . ° − . . ° = − . + − .B i j i j

G
 

ˆ ˆ ˆ ˆ( ) (3 00) (4 00) (3 00)(1 23 m) (3 00)(3 38 m) (4 00)( 2 08 m) (4 00)( 1 20 m)= .  − . = . . + . . − . − . − . − .b C A B i j i j
G G G

 

ˆ ˆ(12.01 m) (14.94 m)= +C i j
G

 

 (c) From = +2 2

x y
A A A  and θ =tan y

x

A

A
, 

2 2 14 94 m(12 01 m) (14 94 m) 19 17 m, arctan 51 2
12 01 m

C
.⎛ ⎞= . + . = . = . °⎜ ⎟.⎝ ⎠

 

EVALUATE:   xC and yC are both positive, so θ is in the first quadrant. 
 1.40. IDENTIFY:   We use the vector components and trigonometry to find the angles. 

SET UP:   Use the fact that θ =tan /
y x

A A .  

EXECUTE:   (a) θ =
−

=
6.00

3.00
tan /

y x
A A  . θ  = 117° with the +x-axis. 

(b) θ ==
2.00

tan /
7.00y x

B B .  θ  = 15.9°. 

 (c) First find the components of 
G
C . Cx = Ax + Bx = ---3.00 + 7.00 = 4.00,  

Cy = Ay + By = 6.00 + 2.00 = 8.00 

θ == =
8.00

tan / 2.00
4.00y x

C C .  θ  = 63.4° 

EVALUATE: Sketching each of the three vectors to scale will show that the answers are reasonable. 
 1.41. IDENTIFY:   A

G
 and B

G
 are given in unit vector form. Find A, B and the vector difference − .A B

G G
 

SET UP:   2 00 3 00 4 00 ,= − . + . + .A i j k
G G G G

3 00 1 00 3 00= . + . − .B i j k
G G GG

 

Use 2 2 2
x y zA A A A= + +  to find the magnitudes of the vectors. 

EXECUTE:   (a) 2 2 2 2 2 2( 2 00) (3 00) (4 00) 5 38x y zA A A A= + + = − . + . + . = .  
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2 2 2 2 2 2(3 00) (1 00) ( 3 00) 4 36x y zB B B B= + + = . + . + − . = .  

(b) ˆ ˆ ˆ ˆ ˆ ˆ( 2 00 3 00 4 00 ) (3 00 1 00 3 00 )− = − . + . + . − . + . − .A B i j k i j k
G G

 
ˆ ˆ ˆ ˆ ˆ ˆ( 2 00 3 00) (3 00 1 00) (4 00 ( 3 00)) 5 00 2 00 7 00− = − . − . + . − . + . − − . = − . + . + . .A B i j k i j k

G G
 

(c) Let ,= −C A B
G G G

 so 5 00,xC = − . 2 00,yC = + . 7 00zC = + .  

2 2 2 2 2 2( 5 00) (2 00) (7 00) 8 83x y zC C C C= + + = − . + . + . = .  

( ),− = − −B A A B
G GG G

 so −A B
G G

 and −B A
GG

 have the same magnitude but opposite directions. 
EVALUATE:   A, B, and C are each larger than any of their components. 

 1.42. IDENTIFY:   Target variables are ⋅A B
G G

 and the angle φ  between the two vectors. 
SET UP:   We are given A

G
 and B

G
 in unit vector form and can take the scalar product using 

x x y y z zA B A B A B⋅ = + +A B
G G

. The angle φ  can then be found from cosAB φ⋅ =A B
G G

. 

EXECUTE:   (a) ˆ ˆ4.00 7.00 ,= +A i j
G ˆ ˆ5.00 2.00 ;= −B i j

G
8.06,A = 5.39.B =  

ˆ ˆ ˆ ˆ(4.00 7.00 ) (5.00 2.00 ) (4.00)(5.00) (7.00)( 2.00)⋅ = + ⋅ − = + − =A B i j i j
G G

20.0 14.0 6.00.− = +  

(b) 6.00cos 0.1382;
(8.06)(5.39)AB

φ ⋅= = =A B
G G

82.1 .φ = °  

EVALUATE:   The component of B
G

 along A
G

 is in the same direction as ,A
G

 so the scalar product is 
positive and the angle φ  is less than 90 .°  

 1.43. IDENTIFY:   cosAB φ⋅ =A B
G G

 

SET UP:   For A
G

 and ,B
G

 150 0 .φ = . °  For B
G

 and ,C
G

 145 0 .φ = . °  For A
G

 and ,C
G

 65 0 .φ = . °  

EXECUTE:   (a) 2(8 00 m)(15 0 m)cos150 0 104 m⋅ = . . . ° = −A B
G G

 

(b) 2(15 0 m)(12 0 m)cos145 0 148 m⋅ = . . . ° = −B C
GG

 

(c) 2(8 00 m)(12 0 m)cos65 0 40 6 m⋅ = . . . ° = .A C
G G

 
EVALUATE:   When 90φ < °  the scalar product is positive and when 90φ > °  the scalar product is negative. 

 1.44. IDENTIFY:   Target variable is the vector ×A B
G G

 expressed in terms of unit vectors. 
SET UP:   We are given A

G
 and B

G
 in unit vector form and can take the vector product using 

ˆ ˆ ˆ ˆ 0× = × =i i j j , ˆ ˆ ˆ,× =i j k  and ˆ ˆ ˆ× = −j i k . 

EXECUTE:   ˆ ˆ4.00 7.00 ,= +A i j
G

 ˆ ˆ5.00 2.00 .= −B i j
G

 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(4.00 7.00 ) (5.00 2.00 ) 20.0 8.00 35.0 14.0 .× = + × − = × − × + × − ×A B i j i j i i i j j i j j

G G
 But ˆ ˆ ˆ ˆ 0× = × =i i j j  

and ˆ ˆ ˆ,× =i j k ˆ ˆ ˆ,× = −j i k  so ˆ ˆ ˆ8.00 35.0( ) 43.0 .× = − + − = −A B k k k
G G

 The magnitude of ×A B
G G

 is 43.0. 

EVALUATE:   Sketch the vectors A
G

 and B
G

 in a coordinate system where the xy-plane is in the plane of the 
paper and the z-axis is directed out toward you. By the right-hand rule ×A B

G G
 is directed into the plane of 

the paper, in the -direction.z−  This agrees with the above calculation that used unit vectors. 
 

 

Figure 1.44 
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 1.45. IDENTIFY:   For all of these pairs of vectors, the angle is found from combining cosAB φ⋅ =A B
G G

 and 

x x y y z zA B A B A B⋅ = + +A B
G G

, to give the angleφ  as arccos arccos .x x y yA B A B
AB AB

φ
+⎛ ⎞ ⎛ ⎞⋅= =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

A B
G G

 

SET UP:   x x y y z zA B A B A B⋅ = + +A B
G G

 shows how to obtain the components for a vector written in terms 
of unit vectors. 

EXECUTE:   (a) 22, 40, 13,A B⋅ = −  =  =A B
G G

 and so 22arccos 165 .
40 13

φ −⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

(b) 60, 34, 136,A B⋅ = = =A B
G G 60arccos 28 .

34 136
φ ⎛ ⎞= = °⎜ ⎟

⎝ ⎠
 

(c) 0⋅ =A B
G G

 and 90 .φ = °  

EVALUATE:   If 0,⋅ >A B
G G

0 90 .φ≤ < °  If 0,⋅ <A B
G G

90 180 .φ° < ≤ °  If 0,⋅ =A B
G G

90φ = °  and the two 
vectors are perpendicular. 

 1.46. IDENTIFY:   The right-hand rule gives the direction and φ× =
G G

| | sinABA B  gives the magnitude. 
SET UP:   120 0 .φ = . °  
EXECUTE:   (a) The direction of ×A B

G G
is into the page (the -directionz− ). The magnitude of the vector 

product is 2sin (2 80 cm)(1 90 cm)sin120 4 61 cm .AB φ = . . ° = .  

(b) Rather than repeat the calculations, ×B A
GG

 = – ×A B
G G

may be used to see that ×B A
GG

 has magnitude 
24.61 cm  and is in the -directionz+  (out of the page). 

EVALUATE:   For part (a) we could use the components of the cross product and note that the only non-
vanishing component is (2 80 cm)cos60 0 ( 1 90 cm)sin60z x y y xC A B A B= − = . . ° − . °  

2        (2 80 cm)sin 60 0 (1 90 cm)cos60 0 4 61 cm .− . . ° . . ° = − .  
This gives the same result. 

 1.47. IDENTIFY:   ×A D
G G

 has magnitude sin .AD φ  Its direction is given by the right-hand rule. 
SET UP:   180 53 127φ = ° − ° = °  

EXECUTE:   (a) 2| | (8 00 m)(10 0 m)sin127 63 9 m .× = . . ° = .A D
G G

 The right-hand rule says ×A D
G G

 is in the 
-directionz−  (into the page). 

( ) ×b D A
GG

 has the same magnitude as ×A D
G G

 and is in the opposite direction. 

EVALUATE:   The component of D
G

 perpendicular to A
G

 is sin53 0 7 99 m.D D⊥ = . ° = .  
2| | 63 9 m ,AD⊥× = = .A D

G G
 which agrees with our previous result. 

 1.48. IDENTIFY:   Apply Eqs. (1.16) and (1.20). 
SET UP:   The angle between the vectors is 20 90 30 140° + ° + ° = °.  
EXECUTE:   (a) cosAB φ⋅ =A B

G G
 gives 2(3 60 m)(2 40 m)cos140 6 62 m⋅ = . . ° = − . .A B

G G
 

(b) From φ× =
G G

| | sinABA B , the magnitude of the cross product is 2(3 60 m)(2 40 m)sin140 5 55 m. . ° = .  
and the direction, from the right-hand rule, is out of the page (the -directionz+ ). 
EVALUATE:   We could also use x x y y z zA B A B A B⋅ = + +A B

G G
 and the cross product, with the components 

of A
G

and .B
G

 
 1.49. IDENTIFY:   We model the earth, white dwarf, and neutron star as spheres. Density is mass divided by 

volume. 
SET UP:    We know that density = mass/volume = m/V where 34

3V rπ=  for a sphere. From Appendix B, 

the earth has mass of 245 97 10  kgm = . ×  and a radius of 66 37 10 mr = . ×  whereas for the sun at the end of 

its lifetime, 301 99 10 kgm = . ×  and r = 7500 6km 7 5 10 m= . × .  The star possesses a radius of r = 10 km = 
41 0 10 m. ×  and a mass of 301 99 10 kgm = . × .  
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EXECUTE:   (a) The earth has volume 3 6 3 21 34 4
3 3 (6 37 10 m) 1 0827 10 mV rπ π= = . × = . × .  Its density is 

324 3
3 3 3

21 3 2
5 97 10  kg 10  g 1 mdensity (5 51 10  kg/m ) 5 51 g/cm

1 kg1 0827 10  m 10  cm
m
V

⎛ ⎞. × ⎛ ⎞= = = . × = .⎜ ⎟⎜ ⎟⎜ ⎟. × ⎝ ⎠⎝ ⎠
 

(b) 3 6 3 21 34 4
3 3 (7 5 10 m) 1 77 10 mV rπ π= = . × = . ×  

30 3
9 3 6 3

21 3 3
1 99 10  kg 1 g/cmdensity (1 1 10  kg/m ) 1 1 10 g/cm
1 77 10  m 1000 kg/m

m
V

⎛ ⎞. ×= = = . × = . ×⎜ ⎟⎜ ⎟. × ⎝ ⎠
 

(c) 3 4 3 12 34 4
3 3 (1 0 10 m) 4 19 10 mV rπ π= = . × = . ×  

30 3
17 3 14 3

12 3 3
1 99 10 kg 1 g/cmdensity (4 7 10 kg/m ) 4 7 10 g/cm
4 19 10 m 1000 kg/m

m
V

⎛ ⎞. ×= = = . × = . ×⎜ ⎟⎜ ⎟. × ⎝ ⎠
 

EVALUATE:   For a fixed mass, the density scales as 31/r .  Thus, the answer to (c) can also be obtained 
from (b) as  

36
6 3 14 3

4
7 50 10 m(1 1 10 g/cm ) 4 7 10 g/cm
1 0 10 m

⎛ ⎞. ×. × = . × .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

 1.50. IDENTIFY:   Area is length times width. Do unit conversions. 
SET UP:   1 mi 5280 ft.= 31 ft 7 477 gal.= .  

EXECUTE:   (a) The area of one acre is 21 1 1
8 80 640mi  mi  mi ,× = so there are 640 acres to a square mile. 

(b) 
22

21 mi 5280 ft(1 acre) 43,560 ft
640 acre 1 mi

⎛ ⎞ ⎛ ⎞× × =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

(all of the above conversions are exact). 

(c) (1 acre-foot) 3 5
3

7 477 gal(43,560 ft ) 3 26 10  gal,
1 ft

.⎛ ⎞= × = . ×⎜ ⎟
⎝ ⎠

which is rounded to three significant figures. 

EVALUATE:   An acre is much larger than a square foot but less than a square mile. A volume of 1 acre-
foot is much larger than a gallon. 

 1.51. IDENTIFY:   The density relates mass and volume. Use the given mass and density to find the volume and 
from this the radius. 
SET UP:   The earth has mass 24

E 5 97 10  kgm = . ×  and radius 6
E 6 37 10  m.r = . ×  The volume of a sphere is 

34
3 .V rπ= 3 31 76 g/cm 1760 km/m .ρ = . =  

EXECUTE:   (a) The planet has mass 25
E5 5 3 28 10  kg.m m= . = . ×  

25
22 3

3
3 28 10  kg 1 86 10  m .
1760 kg/m

m
V

ρ
. ×= = = . ×  

1/31/3 22 3
7 43 3[1 86 10  m ] 1 64 10  m 1 64 10  km

4 4
V

r
π π

⎛ ⎞. ×⎛ ⎞= = = . × = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

(b) E2 57r r= .  

EVALUATE:   Volume V is proportional to mass and radius r is proportional to 1/3,V  so r is proportional to 
1/3.m  If the planet and earth had the same density its radius would be 1/3

E E(5 5) 1 8 .r r. = .  The radius of the 
planet is greater than this, so its density must be less than that of the earth. 

 1.52. IDENTIFY and SET UP:   Unit conversion. 

EXECUTE:   (a) 91 420 10  cycles/s,f = . ×  so 10
9

1 s 7 04 10  s
1 420 10

−= . ×
. ×

 for one cycle. 

(b) 12
10

3600 s/h 5 11 10  cycles/h
7 04 10  s/cycle− = . ×
. ×
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(c) Calculate the number of seconds in 4600 million 9years 4 6 10  y= . ×  and divide by the time for 1 cycle: 
9 7

26
10

(4 6 10  y)(3 156 10  s/y) 2 1 10  cycles
7 04 10  s/cycle−

. × . × = . ×
. ×

 

(d) The clock is off by 1 s in 5100,000 y 1 10  y,= ×  so in 94 60 10  y. ×  it is off by 
9

4
5

4 60 10(1s) 4 6 10  s
1 10

⎛ ⎞. × = . ×⎜ ⎟⎜ ⎟×⎝ ⎠
 (about 13 h). 

EVALUATE:   In each case the units in the calculation combine algebraically to give the correct units for the 
answer. 

 1.53. IDENTIFY:   Using the density of the oxygen and volume of a breath, we want the mass of oxygen (the 
target variable in part (a)) breathed in per day and the dimensions of the tank in which it is stored. 
SET UP:   The mass is the density times the volume. Estimate 12 breaths per minute. We know 1 day = 24 h, 
1 h = 60 min and 1000 L = 1 m3. The volume of a cube having faces of length l is 3.V l=  

EXECUTE:   (a) ( ) 60 min 24 h12 breaths/min 17,280 breaths/day.
1 h 1 day

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 The volume of air breathed in 

one day is 31
2(  L/breath)(17,280 breaths/day) 8640 L 8.64 m .= =  The mass of air breathed in one day is the 

density of air times the volume of air breathed: 3 3(1.29 kg/m )(8.64 m ) 11.1 kg.m = =  As 20% of this 
quantity is oxygen, the mass of oxygen breathed in 1 day is (0.20)(11.1 kg) 2.2 kg 2200 g.= =  

(b) V = 38.64 m  and 3 ,V l=  so 1/3 2.1 m.l V= =  

EVALUATE:   A person could not survive one day in a closed tank of this size because the exhaled air is 
breathed back into the tank and thus reduces the percent of oxygen in the air in the tank. That is, a person 
cannot extract all of the oxygen from the air in an enclosed space. 

 1.54. IDENTIFY:   Use the extreme values in the piece’s length and width to find the uncertainty in the area. 
SET UP:   The length could be as large as 7.61 cm and the width could be as large as 1.91 cm. 
EXECUTE:   (a) The area is 14.44 ± 0.095 cm2.  

(b) The fractional uncertainty in the area is 
2

2

0.095 cm 0.66%,
14.44 cm

=  and the fractional uncertainties in the 

length and width are 0.01 cm 0.13%
7.61 cm

=  and 0.01 cm 0.53%.
1.9 cm

=  The sum of these fractional uncertainties is 

0.13% 0.53% 0.66%,+ =  in agreement with the fractional uncertainty in the area. 
EVALUATE:   The fractional uncertainty in a product of numbers is greater than the fractional uncertainty in 
any of the individual numbers. 

 1.55. IDENTIFY:   Calculate the average volume and diameter and the uncertainty in these quantities. 
SET UP:   Using the extreme values of the input data gives us the largest and smallest values of the target 
variables and from these we get the uncertainty. 

EXECUTE:   (a) The volume of a disk of diameter d and thickness t is 2( /2)V d tπ= .  

The average volume is 2 3(8 50 cm/2) (0 050 cm) 2 837 cmV π= . . = . .  But t is given to only two significant 

figures so the answer should be expressed to two significant figures: 32 8 cmV = . .  
We can find the uncertainty in the volume as follows. The volume could be as large as 

2 3(8 52 cm/2) (0 055 cm) 3 1 cm ,V π= . . = .  which is 30 3 cm.  larger than the average value. The volume 

could be as small as 2 3(8 48 cm/2) (0 045 cm) 2 5 cm ,V π= . . = .  which is 30 3 cm.  smaller than the average 

value. The uncertainty is 30 3 cm ,± .  and we express the volume as 32 8 0 3 cmV = . ± . .  
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(b) The ratio of the average diameter to the average thickness is 8 50 cm/0 050 cm 170. . = .  By taking the 
largest possible value of the diameter and the smallest possible thickness we get the largest possible value 
for this ratio: 8 52 cm/0 045 cm 190. . = .  The smallest possible value of the ratio is 8 48/0 055 150. . = .  Thus 
the uncertainty is 20±  and we write the ratio as 170 20± .  
EVALUATE:   The thickness is uncertain by 10% and the percentage uncertainty in the diameter is much 
less, so the percentage uncertainty in the volume and in the ratio should be about 10%. 

 1.56. IDENTIFY:   Estimate the volume of each object. The mass m is the density times the volume. 
SET UP:   The volume of a sphere of radius r is 34

3 .V rπ=  The volume of a cylinder of radius r and length 

l is 2 .V r lπ=  The density of water is 31000 kg/m .  

EXECUTE:   (a) Estimate the volume as that of a sphere of diameter 10 cm: 4 35 2 10 m .V −= . ×  
3 4 3(0 98)(1000 kg m )(5 2 10 m ) 0 5 kg.m / −= . . × = .  

(b) Approximate as a sphere of radius 0 25 mr µ= .  (probably an overestimate): 20 36 5 10 m .V −= . ×  
3 20 3 17 14(0 98)(1000 kg m )(6 5 10  m ) 6 10  kg 6 10  g.m / − − −= . . × = × = ×  

(c) Estimate the volume as that of a cylinder of length 1 cm and radius 3 mm: 2 7 32 8 10 m .V r lπ −= = . ×  
3 7 3 4(0 98)(1000 kg/m )(2 8 10  m ) 3 10  kg 0 3 g.m − −= . . × = × = .   

EVALUATE:   The mass is directly proportional to the volume. 
 1.57. IDENTIFY:   The number of atoms is your mass divided by the mass of one atom. 

SET UP:   Assume a 70-kg person and that the human body is mostly water. Use Appendix D to find the 
mass of one 2H O  molecule: 27 2618 015 u 1 661 10  kg/u 2 992 10  kg/molecule− −. × . × = . × .  

EXECUTE:   26 27(70 kg)/(2 992 10  kg/molecule) 2 34 10−. × = . ×  molecules. Each 2H O molecule has  

3 atoms, so there are about 276 10× atoms. 
EVALUATE:   Assuming carbon to be the most common atom gives 273 10×  molecules, which is a result of 
the same order of magnitude. 

 1.58. IDENTIFY:   We know the vector sum and want to find the magnitude of the vectors. Use the method of 
components. 
SET UP:   The two vectors A

G
and B

G
and their resultant C

G
are shown in Figure 1.58. Let y+  be in the 

direction of the resultant. .A B=  
EXECUTE:   .y y yC A B= +  372 N 2 cos36 0A= . °  gives 230 N.A =  
EVALUATE:   The sum of the magnitudes of the two forces exceeds the magnitude of the resultant force 
because only a component of each force is upward. 

 

 

Figure 1.58 
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 1.59. IDENTIFY:   We know the magnitude and direction of the sum of the two vector pulls and the direction of 
one pull. We also know that one pull has twice the magnitude of the other. There are two unknowns, the 
magnitude of the smaller pull and its direction. x x xA B C+ = and y y yA B C+ =  give two equations for these 
two unknowns. 
SET UP:   Let the smaller pull be A

G
and the larger pull be .B

G
2 .B A= +C = A B

G G G
 has magnitude 460.0 N 

and is northward. Let x+  be east and y+  be north. sin 21.0xB B= − ° and cos21.0 .yB B= ° 0,xC =  

460.0 N.yC =  A
G

must have an eastward component to cancel the westward component of B.
G

 There are 

then two possibilities, as sketched in Figures 1.59 a and b. A
G

can have a northward component or A
G

 can 
have a southward component. 
EXECUTE:   In either Figure 1.59 a or b, x x xA B C+ =  and 2B A= gives (2 )sin 21.0 sinA A φ° =  and 

45.79 .φ = °  In Figure 1.59a, y y yA B C+ =  gives 2 cos21.0 cos45.79 460.0 NA A° + ° = , so 179.4 N.A =  In 
Figure 1.59b, 2 cos21.0 cos45.79 460.0 NA A° − ° =  and 393 N.A =  One solution is for the smaller pull to 
be 45.8° east of north. In this case, the smaller pull is 179 N and the larger pull is 358 N. The other 
solution is for the smaller pull to be 45.8° south of east. In this case the smaller pull is 393 N and the larger 
pull is 786 N. 
EVALUATE:   For the first solution, with A

G
 east of north, each worker has to exert less force to produce the 

given resultant force and this is the sensible direction for the worker to pull. 
 

 

Figure 1.59 
 

 1.60. IDENTIFY:   Let D
G

 be the fourth force. Find D
G

such that 0,+ + + =A B C D
G GG G

 so ( ).= − + +D A B C
G GG G

 

SET UP:   Use components and solve for the components xD and yD of .D
G

 

EXECUTE:   cos30 0 86 6 N,  sin30 0 50 00 N.x yA A A A= + . ° = + . = + . ° = + .  

sin30 0 40 00 N, cos30 0 69 28N.x yB B B B= − . ° = − . = + . ° = + .  

cos53 0 24 07 N, sin53 0 31 90N.x yC C C C= − . ° = − . = − . ° = − .  

Then 22 53 N,xD = − . 87 34 NyD = − .  and 2 2 90 2 N.x yD D D= + = . tan | / | 87 34/22 53.y xD Dα = = . .  

75 54 .α = . °  180 256 ,φ α= ° + = °  counterclockwise from the -axisx+ .  
EVALUATE:   As shown in Figure 1.60, since xD and yD are both negative, D

G
 must lie in the third quadrant. 

 

Figure 1.60 
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 1.61. IDENTIFY:   Vector addition. Target variable is the 4th displacement. 
SET UP:   Use a coordinate system where east is in the -directionx+ and north is in the -directiony+ .  

Let ,A
G

,B
G

 and C
G

 be the three displacements that are given and let D
G

 be the fourth unmeasured 
displacement. Then the resultant displacement is = + + + .R A B C D

G GG G G
 And since she ends up back where 

she started, 0= .R
G

 
0 ,= + + +A B C D

G GG G
 so ( )= − + +D A B C

G GG G
 

( )x x x xD A B C= − + +  and ( )y y y yD A B C= − + +  
EXECUTE:    

 

 180 m,xA = −  0yA =  

cos315 (210 m)cos315 148 5 mxB B= ° = ° = + .  
sin315 (210 m)sin315 148 5 myB B= ° = ° = − .  

cos60 (280 m)cos60 140 mxC C= ° = ° = +  
sin 60 (280 m)sin 60 242 5 myC C= ° = ° = + .  

Figure 1.61a   
 

( ) ( 180 m 148 5 m 140 m) 108 5 mx x x xD A B C= − + + = − − + . + = − .  
( ) (0 148 5 m 242 5 m) 94 0 my y y yD A B C= − + + = − − . + . = − .  

 

 2 2
x yD D D= +  

2 2( 108 5 m) ( 94 0 m) 144 mD = − . + − . =
94 0 mtan 0 8664
108 5 m

y

x

D

D
θ − .= = = .

− .
 

180 40 9 220 9θ = ° + . ° = . °  
( D
G

 is in the third quadrant since both  
xD  and yD  are negative.) 

Figure 1.61b   
 
The direction of D

G
 can also be specified in terms of 180 40 9 ;φ θ= − ° = . ° D

G
 is 41°  south of west. 

EVALUATE:   The vector addition diagram, approximately to scale, is 
 

 Vector D
G

in this diagram agrees qualitatively  
with our calculation using components. 

Figure 1.61c   



Units, Physical Quantities, and Vectors   1-21 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

 1.62. IDENTIFY:   Find the vector sum of the two displacements. 
SET UP:   Call the two displacements A

G
and ,B

G
 where 170 kmA =  and 230 km.B =  .+ =A B R

G G G
 

A
G

and B
G

are as shown in Figure 1.62. 
EXECUTE:   (170 km)sin 68 (230 km)cos36 343.7 km.x x xR A B= + = ° + ° =  

(170 km)cos68 (230 km)sin36 71.5 km.y y yR A B= + = ° − ° = −  

2 2 2 2(343.7 km) ( 71.5 km) 351 km.x yR R R= + = + − = 71.5 kmtan | | 0 208.
343.7 km

y
R

x

R

R
θ = = = .  

11.8  south of east.Rθ = °  

EVALUATE:   Our calculation using components agrees with R
G

shown in the vector addition diagram, 
Figure 1.62. 

 

 

Figure 1.62 
 

 1.63. IDENTIFY:   We know the resultant of two forces of known equal magnitudes and want to find that 
magnitude (the target variable). 
SET UP:   Use coordinates having a horizontal x+  axis and an upward y+  axis. Then x x xA B R+ =  and 

12.8 N.xR =  
SOLVE: x x xA B R+ =  and cos32 sin32 .xA B R° + ° =  Since ,A B=  

2 cos32 ,xA R° =  so 7.55 N.
(2)(cos32 )

xR
A = =

°
 

EVALUATE: The magnitude of the x component of each pull is 6.40 N, so the magnitude of each pull  
(7.55 N) is greater than its x component, as it should be. 

 1.64. IDENTIFY:   Solve for one of the vectors in the vector sum. Use components. 
SET UP:   Use coordinates for which x+  is east and y+  is north. The vector displacements are: 

2 00 km, 0 of east; 3 50 m, 45  south of east;= . ° = . °A B
K K

and 5 80 m, 0  east= . °R
K

 
EXECUTE:   5 80 km (2 00 km) (3 50 km)(cos45 ) 1 33 km;x x x xC R A B= − − = . − . − . ° = .  y y y yC R A B= − −  

0 km 0 km ( 3 50 km)(sin 45 ) 2 47 km;= − − − . ° = .  2 2(1 33 km) (2 47 km) 2 81 km;C = . + . = .  
1tan [(2 47 km)/(1 33 km)] 61 7  north of eastθ −= . . = . ° .  The vector addition diagram in Figure 1.64 shows 

good qualitative agreement with these values. 
EVALUATE:   The third leg lies in the first quadrant since its x and y components are both positive. 

 

 

Figure 1.64 
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 1.65. IDENTIFY:   We have two known vectors and a third unknown vector, and we know the resultant of these 
three vectors. 
SET UP:   Use coordinates for which x+  is east and y+  is north. The vector displacements are: 

23.0 km at 34.0° south of east; 46.0 km due north;= =A B
K K

32.0 km due west=R
K

; C
G

 is unknown.  
EXECUTE:   32.0 km (23.0 km)cos34.0° 0 51.07 km;x x x xC R A B= − − = − − − = −   

0 ( 23.0 km)sin34.0° 46.0 km 33.14 km;y y y yC R A B= − − = − − − = −  

2 2
x yC C C= +  = 60.9 km 

Calling θ  the angle that C
G

 makes with the –x-axis (the westward direction), we have 
33.14tan /
51.07y xC Cθ = = ;  θ  = 33.0° south of west. 

EVALUATE:   A graphical vector sum will confirm this result. 
 1.66. IDENTIFY:   The four displacements return her to her starting point, so ( ),= − + +D A B C

G GG G
 where ,A

G
,
G
B  

and C
G

are in the three given displacements and D
G

 is the displacement for her return. 
SET UP:   Let x+  be east and y+  be north. 
EXECUTE:   (a) [(147 km)sin85 (106 km)sin167 (166 km)sin 235 ] 34 3 km.xD = − ° + ° + ° = − .  

[(147 km)cos85 (106 km)cos167 (166 km)cos235 ] 185 7 km.yD = − ° + ° + ° = + .  

2 2( 34 3 km) (185 7 km) 189 km.D = − . + . =  

(b) The direction relative to north is 34.3 kmarctan 10.5 .
185.7 km

φ ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 Since 0xD <  and 0,yD >  the 

direction of D
G

 is 10 5. °  west of north. 
EVALUATE:   The four displacements add to zero. 

 1.67. IDENTIFY:   We want to find the resultant of three known displacement vectors: = + +R A B C
G GG G

. 
SET UP:   Let x+  be east and y+  be north and find the components of the vectors. 
EXECUTE:  The magnitudes are A = 20.8 m, B = 38.0 m, C = 18.0 m. The components are 
Ax = 0, Ay = 28.0 m, Bx = 38.0 m, By = 0, 
Cx = –(18.0 m)(sin33.0°) = –9.804 m, Cy = –(18.0 m)(cos33.0°) = –15.10 m 
Rx = Ax + Bx + Cx = 0 + 38.0 m + (–9.80 m) = 28.2 m 
Ry = Ay + By + Cy = 20.8 m + 0 + (–15.10 m) = 5.70 m 

2 2
x yR R R= +  = 28.8 m is the distance you must run. Calling Rθ  the angle the resultant makes with the 

+x-axis (the easterly direction), we have 
tan Rθ  = Ry/Rx = (5.70 km)/(28.2 km);  Rθ  = 11.4° north of east. 
EVALUATE:   A graphical sketch will confirm this result. 

 1.68. IDENTIFY:   Let the three given displacements be ,A
G

 B
G

 and ,C
G

 where 40 steps,A =  80 stepsB = and 

50 steps.C =  .= + +R A B C
G GG G

 The displacement C
G

that will return him to his hut is .−R
G

 
SET UP:   Let the east direction be the -directionx+ and the north direction be the -directiony+ .  
EXECUTE:   (a) The three displacements and their resultant are sketched in Figure 1.68. 
(b) (40)cos45 (80)cos60 11 7xR = ° − ° = − . and (40)sin 45 (80)sin60 50 47 6yR = ° + ° − = . .  

The magnitude and direction of the resultant are 2 2( 11 7) (47 6) 49,− . + . = 47.6acrtan 76 ,
11.7
⎛ ⎞ = °⎜ ⎟
⎝ ⎠

 north of 

west. We know that R
G

is in the second quadrant because 0,xR < 0.yR >  To return to the hut, the explorer 
must take 49 steps in a direction 76° south of east, which is 14° east of south. 
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EVALUATE:   It is useful to show ,xR ,yR and R
G

on a sketch, so we can specify what angle we are 
computing. 

 

 

Figure 1.68 
 

 1.69. IDENTIFY:  We know the resultant of two vectors and one of the vectors, and we want to find the second 
vector.  
SET UP:   Let the westerly direction be the -directionx+ and the northerly direction be the -directiony+ .  

We also know that = +R A B
GG G

 where R
G

 is the vector from you to the truck. Your GPS tells you that you 
are 122.0 m from the truck in a direction of 58.0° east of south, so a vector from the truck to you is 122.0 
m at 58.0° east of south. Therefore the vector from you to the truck is 122.0 m at 58.0° west of north. Thus 
R
G

 = 122.0 m at 58.0° west of north and A
G

 is 72.0 m due west. We want to find the magnitude and 
direction of vector B

G
. 

EXECUTE:   Bx = Rx – Ax = (122.0 m)(sin 58.0°) – 72.0 m = 31.462 m 

By = Ry – Ay = (122.0 m)(cos 58.0°) – 0 = 64.450 m;  2 2 71.9 mx yB B B= + = . 

θ = = =
64.650 m

tan / 2.05486
31.462 mB y xB B ;  θB  = 64.1° north of west. 

EVALUATE:   A graphical sum will show that the results are reasonable. 
 1.70. IDENTIFY:   We use vector addition. One vector and the sum are given; find the magnitude and direction of 

the second vector. 
SET UP:   Let x+  be east and y+  be north. Let A

G
 be the displacement 285 km at 62.0° north of west and 

let B
G

 be the unknown displacement. 
+ =A B R
G G G

 where 115 km,=R
G

 east 
= −B R A

GG G
 

,x x xB R A= −  y y yB R A= −  

EXECUTE:   cos62 0 133.8 km,xA A= − . ° = − sin 62 0 251.6 kmyA A= + . ° = +  

115 km, 0x yR R= =  
Bx = Rx – Ax = 115 km – (–133.8 km) = 248.8 km 
By = Ry – Ay = 0 – 251.6 km = –251.6 km 

2 2 354 km.x yB B B= + =  Since B
G

 has a positive x component and a negative y component, it must lie in 

the fourth quadrant. Its angle with the +x-axis is given by tan | / | (251.6 km)/(248.8 km)y xB Bα = = , so 
45.3α = °  south of east. 

 
 

EVALUATE:   A graphical vector sum will confirm these results. 
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 1.71. IDENTIFY:   Vector addition. One force and the vector sum are given; find the second force. 
SET UP:   Use components. Let y+  be upward. 

 B
G

 is the force the biceps exerts. 

Figure 1.71a   
 

 

E
G

 is the force the elbow exerts. ,+ =E B R
G G G

 where 132 5 NR = .  and is upward. 
,x x xE R B= − y y yE R B= −  

EXECUTE:   sin 43 158 2 N,xB B= − ° = − . cos43 169 7 N,yB B= + ° = + . 0,xR = 132 5 NyR = + .  

Then 158 2 N,xE = + . 37.2 N.yE = −  

2 2 160 N;x yE E E= + =  
 

 tan | / | 37 2/158 2y xE Eα = = . .  
13 ,α = °  below horizontal 

Figure 1.71b   
 

 

EVALUATE:   The x-component of E
G

 cancels the x-component of .B
G

 The resultant upward force is less 
than the upward component of ,B

G
 so yE  must be downward. 

 1.72. IDENTIFY:   Find the vector sum of the four displacements. 
SET UP:   Take the beginning of the journey as the origin, with north being the y-direction, east the  
x-direction, and the z-axis vertical. The first displacement is then ˆ( 30 m) ,− k  the second is ˆ( 15 m) ,− j  the 

third is ˆ(200 m) ,i  and the fourth is ˆ(100 m) .j  
EXECUTE:   (a) Adding the four displacements gives 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 30 m) ( 15 m) (200 m) (100 m) (200 m) (85 m) (30 m)− + − + + = + − .k j i j i j k  
(b) The total distance traveled is the sum of the distances of the individual segments: 
30 m 15 m 200 m 100 m 345 m+ + + = .  The magnitude of the total displacement is: 

2 2 2 2 2 2(200 m) (85 m) ( 30 m) 219 mx y zD D D D= + + = + + − = .  

EVALUATE:   The magnitude of the displacement is much less than the distance traveled along the path. 
 

 1.73. IDENTIFY:   The sum of the four displacements must be zero. Use components. 
SET UP:   Call the displacements ,A

G
 ,B
G

 ,
G
C and ,D

G
 where D

G
 is the final unknown displacement for the 

return from the treasure to the oak tree. Vectors ,A
G

 ,B
G

 andC
G

are sketched in Figure 1.73a. 
0+ + + =A B C D

G GG G
 says 0x x x xA B C D+ + + =  and 0.y y y yA B C D+ + + = 825 m,A = 1250 m,B =  and 

1000 m.C =  Let x+  be eastward and y+  be north. 
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EXECUTE:   (a) 0x x x xA B C D+ + + =  gives 
( ) [0 (1250 m)sin30 0 (1000 m)cos32 0 ] 223.0 m.x x x xD A B C= − + + = − − . ° + . ° = − 0y y y yA B C D+ + + =  

gives ( ) [ 825 m (1250 m)cos30 0 (1000 m)sin32 0 ] 787.4 m.y y y yD A B C= − + + = − − + . ° + . ° = −  The fourth 

displacement D
G

and its components are sketched in Figure 1.73b. 2 2 818.4 m.x yD D D= + =  

| | 223.0 mtan
| | 787.4 m

x

y

D
D

φ = =  and 15.8 .φ = °  You should head 15.8° west of south and must walk 818 m. 

(b) The vector diagram is sketched in Figure 1.73c. The final displacement D
G

 from this diagram agrees 
with the vector D

G
calculated in part (a) using components. 

EVALUATE:   Note that D
G

is the negative of the sum of ,A
G

,B
G

 and C
G

, as it should be. 
 

 

Figure 1.73 
 

 1.74. IDENTIFY:   The displacements are vectors in which we want to find the magnitude of the resultant and 
know the other vectors. 
SET UP:   Calling A

G
 the vector from you to the first post, B

G
 the vector from you to the second post, and 

C
G

 the vector from the first  post to the second post, we have .+A C = B
G G G

 We want to find the magnitude 
of vector B

G
. We use components and the magnitude of  C

G
. Let +x be toward the east and +y be toward 

the north. 
EXECUTE:    Bx = 0 and By is unknown. Cx = –Ax = –(52.0 m)(cos 37.0°) = –41.529 m Ax = 41.53 m 

68.0 m,C =  so 2 2 –53.8455 m.y xC C C= ± − =  We use the minus sign because the second post is south of 
the first post. 
By = Ay + Cy = (52.0 m)(sin 37°) + (–53.8455 m) = –22.551 m. 
Therefore you are 22.6 m from the second post. 

  EVALUATE:   By is negative since post is south of you (in the negative y direction), but the distance to you 
is positive.  

 1.75. IDENTIFY:   We are given the resultant of three vectors, two of which we know, and want to find the 
magnitude and direction of the third vector. 
SET UP:   Calling C

G
 the unknown vector and A

G
 and B

G
 the known vectors, we have .+ + =A B C R

G GG G
 The 

components are x x x xA B C R+ + =  and .y y y yA B C R+ + =  
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EXECUTE:   The components of the known vectors are 12.0 m,xA = 0,yA =  

sin50.0 21.45 m,xB B= − ° = − cos50.0 18.00 m,yB B= ° = + 0,xR =  and 10.0 m.yR = −  Therefore the 

components of C
G

 are 0 12.0 m ( 21.45 m) 9.45 mx x x xC R A B= − − = − − − =  and 
10.0 m 0 18.0 m 28.0 m.y y y yC R A B= − − = − − − = −  

Using these components to find the magnitude and direction of 
G
C  gives 29.6 mC =  and 9.45tan

28.0
θ =  and 

18.6θ = °  east of south. 
EVALUATE:   A graphical sketch shows that this answer is reasonable. 

 1.76. IDENTIFY:   The displacements are vectors in which we know the magnitude of the resultant and want to 
find the magnitude of one of the other vectors. 
SET UP:   Calling A

G
 the vector of Ricardo’s displacement from the tree, B

G
 the vector of Jane’s 

displacement from the tree, and C
G

 the vector from Ricardo to Jane, we have .+ =A C B
G G G

 Let the +x-axis 
be to the east and the +y-axis be to the north. Solving using components we have x xA C B+ =x  and 

.y y yA C B+ =  

EXECUTE:    (a) The components of A
G

 and B
G

 are (26.0 m)sin60.0 22.52 m,xA = − ° = −  
(26.0 m)cos60.0 13.0 m,yA = ° = + (16.0 m)cos30.0 13.86 m,xB = − ° = −  

(16.0 m)sin30.0 8.00 m,yB = − ° = − 13.86 m ( 22.52 m) 8.66 m,x x xC B A= − = − − − = +  

8.00 m (13.0 m) 21.0 my y yC B A= − = − − = −  
Finding the magnitude from the components gives 22.7 m.C =  

(b) Finding the direction from the components gives 8.66tan
21.0

θ =  and 22.4 ,θ = °  east of south. 

EVALUATE:   A graphical sketch confirms that this answer is reasonable. 
 1.77. IDENTIFY:   If the vector from your tent to Joe’s is A

G
 and from your tent to Karl’s is ,B

G
 then the vector 

from Karl’s tent to Joe’s tent is −A B
G G

. 
SET UP:   Take your tent’s position as the origin. Let x+  be east and y+  be north. 
EXECUTE:   The position vector for Joe’s tent is 

ˆ ˆ ˆ ˆ([21 0 m]cos 23 ) ([21 0 m]sin 23 ) (19 33 m) (8 205 m). ° − . ° = . − . .i j i j  

The position vector for Karl’s tent is ˆ ˆ ˆ ˆ([32 0 m]cos 37 ) ([32 0 m]sin 37 ) (25 56 m) (19 26 m). ° + . ° = . + . .i j i j  
The difference between the two positions is 

ˆ ˆ ˆ ˆ(19 33 m 25 56 m) ( 8 205 m 19 25 m) (6 23 m) (27 46 m). − . + − . − . = − . − . .i j i j  The magnitude of this vector is 

the distance between the two tents: 2 2( 6 23 m) ( 27 46 m) 28 2 mD = − . + − . = .  
EVALUATE:   If both tents were due east of yours, the distance between them would be 
32 0 m 21 0 m 11 0 m.. − . = .  If Joe’s was due north of yours and Karl’s was due south of yours, then the 
distance between them would be 32 0 m 21 0 m 53 0 m.. + . = .  The actual distance between them lies 
between these limiting values. 

 1.78. IDENTIFY:   Calculate the scalar product and use Eq. (1.16) to determine .φ  
SET UP:   The unit vectors are perpendicular to each other. 
EXECUTE:   The direction vectors each have magnitude 3,  and their scalar product is 
(1)(1) (1)( 1) (1)( 1) 1,+ − + − = −  so from Eq. (1.16) the angle between the bonds is 

1 1arccos arccos 109 .
33 3

−⎛ ⎞ ⎛ ⎞= − = °⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

EVALUATE:   The angle between the two vectors in the bond directions is greater than 90 .°  
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 1.79. IDENTIFY:   We know the scalar product and the magnitude of the vector product of two vectors and want 
to know the angle between them. 
SET UP:   The scalar product is cosAB θ⋅A B =

G G
 and the vector product is sinAB .θ×A B =

G G
 

EXECUTE:   cos 6 00AB .θ⋅ = −A B =
G G

and sin 9 00AB . .θ× = +A B =
G G

 Taking the ratio gives 9.00tan ,
6.00

θ =
−

 

so 124 .θ = °  
EVALUATE:   Since the scalar product is negative, the angle must be between 90° and 180°. 

 1.80. IDENTIFY:   Find the angle between specified pairs of vectors. 

SET UP:   Use cos
AB

φ ⋅= A B
G G

 

EXECUTE:   (a) ˆ=A k
G

 (along line ab) 
ˆ ˆ ˆ= + +B i j k

G
 (along line ad) 

1,A = 2 2 21 1 1 3B = + + =  
ˆ ˆ ˆ ˆ( ) 1⋅ = ⋅ + + =A B k i j k

G G
 

So cos 1/ 3;
AB

φ ⋅= =A B
G G

54 7φ = . °  

(b) ˆ ˆ ˆ= + +A i j k
G

 (along line ad) 
ˆ ˆ= +B j k

G
 (along line ac) 

2 2 21 1 1 3;A = + + =  2 21 1 2B = + =  
ˆ ˆ ˆ ˆ ˆ( ) ( ) 1 1 2⋅ = + + ⋅ + = + =A B i j k i j

G G
 

So 2 2cos ;
3 2 6AB

φ ⋅= = =A B
G G

 35 3φ = . °  

EVALUATE:   Each angle is computed to be less than 90 ,°  in agreement with what is deduced from  
the figure shown with this problem in the textbook. 

 1.81. IDENTIFY:   We know the magnitude of two vectors and their scalar product and want to find the 
magnitude of their vector product. 
SET UP:   The scalar product is cosAB φ⋅ =A B

G G
 and the vector product is φ× =

G G
| | sinABA B . 

EXECUTE:   cosAB φ⋅ =A B
G G

 = 90.0 m2, which gives 
2 2112.0 m 112.0 mcos 0.5833,

(12.0 m)(16.0 m)AB
φ = = =  so 

54.31 .φ = °  Therefore 2sin (12 0 m)(16 0 m)(sin54 31 ) 156 mAB . . . .φ× = ° =A B =
G G

 

EVALUATE:   The magnitude of the vector product is greater than the scalar product because the angle 
between the vectors is greater than 45º. 

 1.82. IDENTIFY:   The cross product ×A B
G G

is perpendicular to both A
G

and .B
G

 
SET UP:   Use Eq. (1.23) to calculate the components of .×A B

G G
 

EXECUTE:   The cross product is 
6 00 11 00ˆ ˆ ˆ ˆ ˆ ˆ( 13 00) (6 00) ( 11 00) 13 (1 00) .

13 00 13 00
⎡ . . ⎤⎛ ⎞− . + . + − . = − . + −⎜ ⎟⎢ ⎥. .⎝ ⎠⎣ ⎦

i j k i j k  The magnitude of the vector in 

square brackets is 1 93,.  and so a unit vector in this direction is 

ˆ ˆ ˆ(1 00) (6 00/13 00) (11 00/13 00) .
1 93

⎡ ⎤− . + . . − . .
⎢ ⎥.⎢ ⎥⎣ ⎦

i j k  
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The negative of this vector, 
ˆ ˆ ˆ(1 00) (6 00/13 00) (11 00/13 00) ,

1 93
⎡ ⎤. − . . + . .
⎢ ⎥.⎢ ⎥⎣ ⎦

i j k  

is also a unit vector perpendicular to A
G

 and .B
G

 
EVALUATE:   Any two vectors that are not parallel or antiparallel form a plane and a vector perpendicular 
to both vectors is perpendicular to this plane. 

 1.83. IDENTIFY:   We know the scalar product of two vectors, both their directions, and the magnitude of one of 
them, and we want to find the magnitude of the other vector. 
SET UP:   cosAB φ⋅ =A B

G G
. Since we know the direction of each vector, we can find the angle between 

them. 
EXECUTE:   The angle between the vectors is 79.0 .θ = °  Since cosAB φ⋅ =A B

G G
, we have 

248.0 m 28.0 m.
cos (9.00 m)cos79.0

B
A φ

⋅= = =
°

A B
G G

 

EVALUATE:   Vector B
G

 has the same units as vector .A
G

  
 1.84. IDENTIFY:   Calculate the magnitude of the vector product and then use | | sin .AB θ× =A B

G G
 

SET UP:   The magnitude of a vector is related to its components by Eq. (1.11). 

EXECUTE:   | | sin .AB θ× =A B
G G

 
2 2( 5 00) (2 00)| |sin 0 5984

(3 00)(3 00)AB
θ − . + .×= = = .

. .
A B
G G

 and  

1sin (0 5984) 36 8θ −= . = . °.  

EVALUATE:   We haven’t found A
G

and ,B
G

 just the angle between them. 
 1.85. IDENTIFY and SET UP:   The target variables are the components of .C

G
 We are given A

G
 and .B

G
 We also 

know ⋅A C
G G

 and ,⋅B C
GG

 and this gives us two equations in the two unknowns xC  and yC .  

EXECUTE:   A
G

 and C
G

 are perpendicular, so 0⋅ = .A C
G G

0,x x y yA C A C+ =  which gives 5 0 6 5 0x yC C. − . = .  

15 0,⋅ = .B C
GG

 so 3 5 7 0 15 0x yC C. − . = .  

We have two equations in two unknowns xC  and yC .  Solving gives 8 0xC = − .  and 6.1.yC = −  

EVALUATE:   We can check that our result does give us a vector C
G

 that satisfies the two equations 
0⋅ =A C

G G
 and 15 0⋅ = . .B C

GG
 

 1.86. (a) IDENTIFY:   Prove that ( ) ( )⋅ × = × ⋅ .A B C A B C
G G G GG G

 
SET UP:   Express the scalar and vector products in terms of components. 
EXECUTE:    

( ) ( ) ( ) ( )x x y y zA A⋅ × = × + × + ×zA B C B C B C A B C
G G G G GG G G G

 

( ) ( ) ( ) ( )x y z z y y z x x z z x y y xA B C B C A B C B C A B C B C⋅ × = − + − + −A B C
G GG

 

( ) ( ) ( ) ( )x x y y z zC C C× ⋅ = × + × + ×A B C A B A B A B
G G G G GG G G G

 

( ) ( ) ( ) ( )y z z y x z x x z y x y y x zA B A B C A B A B C A B A B C× ⋅ = − + − + −A B C
G GG

 

Comparison of the expressions for ( )⋅ ×A B C
G GG

 and ( )× ⋅A B C
G GG

 shows they contain the same terms, so 

( ) ( )⋅ × = × ⋅ .A B C A B C
G G G GG G

 

(b) IDENTIFY:   Calculate ( ) ,× ⋅A B C
G GG

 given the magnitude and direction of ,A
G

,
G
B  and .C

G
 

SET UP:   Use φ× =
G G

| | sinABA B  to find the magnitude and direction of × .A B
G G

 Then we know the 

components of ×A B
G G

 and of C
G

 and can use an expression like x x y y z zA B A B A B⋅ = + +A B
G G

 to find the 
scalar product in terms of components. 
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EXECUTE:   5 00;A = . 26 0 ;Aθ = . ° 4 00,B = . 63 0Bθ = . °  

| | sinAB φ× = .A B
G G

 

The angle φ  between A
G

 and B
G

 is equal to 63 0 26 0 37 0B Aφ θ θ= − = . ° − . ° = . °.  So 

| | (5 00)(4 00)sin37 0 12 04,× = . . . ° = .A B
G G

 and by the right hand-rule ×A B
G G

 is in the -directionz+ .  Thus 

( ) (12 04)(6 00) 72 2× ⋅ = . . = .A B C
G GG

 

EVALUATE:   ×A B
G G

 is a vector, so taking its scalar product with C
G

 is a legitimate vector operation. 
( )× ⋅A B C
G GG

 is a scalar product between two vectors so the result is a scalar. 
 1.87. IDENTIFY:   Express all the densities in the same units to make a comparison. 
  SET UP:   Density ρ  is mass divided by volume. Use the numbers given in the table in the problem and 

convert all the densities to kg/m3. 

  EXECUTE:   Sample A: ρ = =
×

⎛ ⎞
⎜ ⎟
⎝ ⎠ 3

-6 3A

1 kg
8.00 g

1000 g
4790 kg/m

1.67  10  m
 

  Sample B: ρ =

×

=

×

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

3

6 3

3-6

-6

B

1 kg
6.00 10  g

1000 g
640 kg/m

9.38  10  µm
10  m

1 µm

 

  Sample C: ρ =

×

=

×

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

3

–3 3

-3

C 3

1 kg
8.00 10  g

1000 g
3200 kg/m

2.50  10  cm
1 m

100 cm

 

  Sample D: ρ =
×

=

× ⎛ ⎞
⎜ ⎟
⎝ ⎠

3

3 3

3

-4

D

9.00 10  kg
320 kg/m

2.81  10  mm
1 m

1000 mm

 

  Sample E: ρ =

×

=

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

3

–2 3

9

3

4

E

9.00 10  ng

6380 kg/m

1.41  10  mm

1 g 1 kg

10  ng 1000 g

1 m

1000 mm

 

  Sample F: ρ =

×

=

×

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

3

8 3

3

6

-5

F

6.00 10  g

480 kg/m

1.25  10  µm

1 kg

1000 g

1 m

10  µm

 

  EVALUATE:  In order of increasing density, the samples are D, F, B, C, A, E. 
 1.88. IDENTIFY:   We know the magnitude of the resultant of two vectors at four known angles between them, 

and we want to find out the magnitude of each of these two vectors. 
  SET UP:   Use the information in the table in the problem for θ  = 0.0° and 90.0°. Call A and B the 

magnitudes of the vectors. 
  EXECUTE:   (a) At 0°: The vectors point in the same direction, so A + B = 8.00 N. 
  At 90.0°: The vectors are perpendicular to each other, so A2 + B2 = R2 = (5.83 N)2 = 33.99 N2. 
  Solving these two equations simultaneously gives 
  B = 8.00 N – A  
  A2 + (8.00 N – A)2 = 33.99 N2 
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  A2 + 64.00 N2 – 16.00 N A + A2 = 33.99 N2 
  The quadratic formula gives two solutions:  A = 5.00 N and B = 3.00 N or A = 3.00 N and B = 5.00 N. In 

either case, the larger force has magnitude 5.00 N. 
  (b) Let A = 5.00 N and B = 3.00 N, with the larger vector along the x-axis and the smaller one making an 

angle of +30.0° with the +x-axis in the first quadrant. The components of the resultant are 
  Rx = Ax + Bx = 5.00 N + (3.00 N)(cos 30.0°) = 7.598 N 
  Ry = Ay + By = 0 + (3.00 N)(sin 30.0°) = 1.500 N 

  = +2 2

x y
R R R  = 7.74 N 

  EVALUATE:  To check our answer, we could use the other resultants and angles given in the table with the 
problem. 

 1.89. IDENTIFY:   Use the x and y coordinates for each object to find the vector from one object to the other; the 
distance between two objects is the magnitude of this vector. Use the scalar product to find the angle 
between two vectors. 
SET UP:   If object A has coordinates ( , )A Ax y and object B has coordinates ( , ),B Bx y the vector ABr

G from A 
to B has x-component B Ax x− and y-component .B Ay y−  
EXECUTE:   (a) The diagram is sketched in Figure 1.89. 

(b) (i) In AU, 2 2(0 3182) (0 9329) 0 9857. + . = . .  

(ii) In AU, 2 2 2(1 3087) ( 0 4423) ( 0 0414) 1 3820. + − . + − . = . .  

(iii) In AU, 2 2 2(0 3182 1 3087) (0 9329 ( 0 4423)) (0 0414) 1 695. − . + . − − . + . = . .  
(c) The angle between the directions from the Earth to the Sun and to Mars is obtained from the dot 
product. Combining Eqs. (1.16) and (1.19), 

( 0 3182)(1 3087 0 3182) ( 0 9329)( 0 4423 0 9329) (0)arccos 54.6 .
(0.9857)(1.695)

φ ⎛ ⎞− . . − . + − . − . − . += = °⎜ ⎟
⎝ ⎠

 

(d) Mars could not have been visible at midnight, because the Sun-Mars angle is less than 90 .°  
EVALUATE:   Our calculations correctly give that Mars is farther from the Sun than the earth is. Note that 
on this date Mars was farther from the earth than it is from the Sun. 

 

Figure 1.89 
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 1.90. IDENTIFY:   Add the vector displacements of the receiver and then find the vector from the quarterback to 
the receiver. 
SET UP:   Add the x-components and the y-components. 
EXECUTE:   The receiver’s position is 

ˆ ˆ ˆ ˆ[( 1 0 9 0 6 0 12 0)yd] [( 5 0 11 0 4 0 18 0) yd] (16 0 yd) (28 0 yd) .+ . + . − . + . + − . + . + . + . = . + .i j i j  
The vector from the quarterback to the receiver is the receiver’s position minus the quarterback’s position, 

or ˆ ˆ(16 0 yd) (35 0 yd) ,. + .i j  a vector with magnitude 2 2(16 0 yd) (35 0 yd) 38 5 yd.. + . = .  The angle is 

16 0arctan 24 6
35 0

.⎛ ⎞ = . °⎜ ⎟.⎝ ⎠
to the right of downfield. 

EVALUATE:   The vector from the quarterback to receiver has positive x-component and positive  
y-component. 

 1.91. IDENTIFY:   Draw the vector addition diagram for the position vectors. 
SET UP:   Use coordinates in which the Sun to Merak line lies along the x-axis. Let A

G
be the position 

vector of Alkaid relative to the Sun, M
G

is the position vector of Merak relative to the Sun, and R
G

 is the 
position vector for Alkaid relative to Merak. 138 lyA = and 77 ly.M =  

EXECUTE:   The relative positions are shown in Figure 1.91. .+ =M R A
GG G

x x xA M R= + so 
(138 ly)cos25 6 77 ly 47 5 ly.x x xR A M= − = . ° − = . (138 ly)sin 25 6 0 59 6 ly.y y yR A M= − = . ° − = .  

76 2 lyR = . is the distance between Alkaid and Merak. 

(b) The angle is angle φ  in Figure 1.91. 47 5 lycos
76 2 ly

xR
R

θ .= =
.

and 51 4 .θ = . °  Then 180 129 .φ θ= ° − = °  

EVALUATE:   The concepts of vector addition and components make these calculations very simple. 
 

 

Figure 1.91 
 
 1.92. IDENTIFY:   The total volume of the gas-exchanging region of the lungs must be at least as great as the 

total volume of all the alveoli, which is the product of the volume per alveoli times the number of alveoli. 
SET UP:   V = NValv, and we use the numbers given in the introduction to the problem. 
EXECUTE:   V = NValv = (480 ×  106)(4.2 ×  106 µm3) = 2.02 ×  1015 µm3. Converting to liters gives 

= × =⎛ ⎞
⎜ ⎟
⎝ ⎠

3

15 3

6

1 m
2.02 10  m 2.02 L

10  µm
V ≈ 2.0 L. Therefore choice (c) is correct. 

EVALUATE:   A volume of 2 L is reasonable for the lungs. 
 1.93. IDENTIFY:   We know the volume and want to find the diameter of a typical alveolus, assuming it to be a 

sphere. 
SET UP:   The volume of a sphere of radius r is V = 4/3 πr3 and its diameter is D = 2r. 
EXECUTE:    Solving for the radius in terms of the volume gives r = (3V/4π)1/3, so the diameter is 

D = 2r = 2(3V/4π)1/3 = 
( )×⎡ ⎤

⎢ ⎥
⎣ ⎦

6 3 1/ 3

2
3 4.2 10  µm

4π
 = 200 µm. Converting to mm gives 

D = (200 µm)[(1 mm)/(1000 µm)] = 0.20 mm, so choice (a) is correct. 
EVALUATE:   A sphere that is 0.20 mm in diameter should be visible to the naked eye for someone with 
good eyesight. 
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 1.94. IDENTIFY:   Draw conclusions from a given graph. 
SET UP:   The dots lie more-or-less along a horizontal line, which means that the average alveolar volume 
does not vary significantly as the lung volume increases.  
EXECUTE:   The volume of individual alveoli does not vary (as stated in the introduction). The graph 
shows that the volume occupied by alveoli stays constant for higher and higher lung volumes, so there 
must be more of them, which makes choice (c) the correct one.  
EVALUATE:   It is reasonable that a large lung would need more alveoli than a small lung because a large 
lung probably belongs to a larger person than a small lung. 
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 2.1. IDENTIFY:   av-xx v t∆ = ∆  
SET UP:   We know the average velocity is 6.25 m/s. 
EXECUTE:   av- 25 0 mxx v t∆ = ∆ = .  
EVALUATE:   In round numbers, 6 m/s × 4 s = 24 m ≈ 25 m, so the answer is reasonable. 

 2.2. IDENTIFY:   av-x
xv
t

∆=
∆

 

SET UP:   613 5 days 1 166 10  s.. = . ×  At the release point, 65 150 10  m.x = + . ×  

EXECUTE:   (a) 
6

2 1
av- 6

5 150 10  m 4 42 m/s.
1 166 10  sx

x xv
t

− − . ×= = = − .
∆ . ×

 

(b) For the round trip, 2 1x x=  and 0.x∆ =  The average velocity is zero. 
EVALUATE:   The average velocity for the trip from the nest to the release point is positive. 

 2.3. IDENTIFY:   Target variable is the time t∆  it takes to make the trip in heavy traffic. Use Eq. (2.2) that 
relates the average velocity to the displacement and average time. 

SET UP:   av-x
xv
t

∆=
∆

 so av-xx v t∆ = ∆  and 
av-x

xt
v
∆∆ = .  

EXECUTE:   Use the information given for normal driving conditions to calculate the distance between the 
two cities, where the time is 1 h and 50 min, which is 110 min: 

av- (105 km/h)(1 h/60 min)(110 min) 192.5 kmxx v t∆ = ∆ = = .  

Now use av-xv  for heavy traffic to calculate ;t∆ x∆  is the same as before: 

av-

192.5 km 2.75 h 2 h
70 km/hx

xt
v
∆∆ = = = =  and 45 min. 

The additional time is (2 h and 45 min) – (1 h and 50 min) = (1 h and 105 min) – (1 h and 50 min) = 55 min. 
EVALUATE:   At the normal speed of 105 km/s the trip takes 110 min, but at the reduced speed of 70 km/h it 
takes 165 min. So decreasing your average speed by about 30% adds 55 min to the time, which is 50% of 110 
min. Thus a 30% reduction in speed leads to a 50% increase in travel time. This result (perhaps surprising) 
occurs because the time interval is inversely proportional to the average speed, not directly proportional to it. 

 2.4. IDENTIFY:   The average velocity is av- .x
xv
t

∆=
∆

 Use the average speed for each segment to find the time 

traveled in that segment. The average speed is the distance traveled divided by the time. 
SET UP:   The post is 80 m west of the pillar. The total distance traveled is 200 m 280 m 480 m.+ =  

EXECUTE:   (a) The eastward run takes time 
200 m 40 0 s
5 0 m/s

= .
.

 and the westward run takes 

280 m 70 0 s.
4 0 m/s

= .
.

 The average speed for the entire trip is 480 m 4 4 m/s.
110 0 s

= .
.

 

(b) av-
80 m 0 73 m/s.

110 0 sx
xv
t

∆ −= = = − .
∆ .

 The average velocity is directed westward. 

MOTION ALONG A STRAIGHT LINE 

2
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EVALUATE:   The displacement is much less than the distance traveled, and the magnitude of the average 
velocity is much less than the average speed. The average speed for the entire trip has a value that lies 
between the average speed for the two segments. 

 2.5. IDENTIFY:   Given two displacements, we want the average velocity and the average speed. 

SET UP:   The average velocity is av-x
xv
t

∆=
∆

 and the average speed is just the total distance walked divided 

by the total time to walk this distance. 
EXECUTE:   (a) Let +x be east. 60 0 m 40 0 m 20 0 mx∆ = . − . = .  and 28 0 s 36 0 s 64 0 s.t∆ = . + . = .  So 

av-
20 0 m 0 312 m/s.
64 0 sx

xv
t

∆ .= = = .
∆ .

 

(b) 60 0 m 40 0 maverage speed 1 56 m/s
64 0 s

. + .= = .
.

 

EVALUATE:   The average speed is much greater than the average velocity because the total distance 
walked is much greater than the magnitude of the displacement vector. 

 2.6. IDENTIFY:   The average velocity is av- .x
xv
t

∆=
∆

 Use ( )x t  to find x for each t. 

SET UP:   (0) 0,x = (2 00 s) 5 60 m,x . = .  and (4 00 s) 20 8 mx . = .  

EXECUTE:   (a) av-
5 60 m 0 2 80 m/s

2 00 sxv . −= = + .
.

 

(b) av-
20 8 m 0 5 20 m/s

4 00 sxv . −= = + .
.

 

(c) av-
20 8 m 5 60 m 7 60 m/s

2 00 sxv . − .= = + .
.

 

EVALUATE:   The average velocity depends on the time interval being considered. 

 2.7. (a) IDENTIFY:   Calculate the average velocity using av- .x
xv
t

∆=
∆

 

SET UP:   av-x
xv
t

∆=
∆

 so use ( )x t  to find the displacement x∆  for this time interval. 

EXECUTE:   0 :t =  0x =  
10 0 s:t = .  2 2 3 3(2 40 m/s )(10 0 s) (0 120 m/s )(10 0 s) 240 m 120 m 120 mx = . . − . . = − = .  

Then av-
120 m 12 0 m/s
10 0 sx

xv
t

∆= = = . .
∆ .  

 

(b) IDENTIFY:   Use x
dxv
dt

=  to calculate ( )xv t  and evaluate this expression at each specified t. 

SET UP:   22 3x
dxv bt ct
dt

= = − .  

EXECUTE:   (i) 0 :t = 0xv =  

(ii) 5 0 s:t = . 2 3 22(2 40 m/s )(5 0 s) 3(0 120 m/s )(5 0 s) 24 0 m/s 9 0 m/s 15 0 m/sxv = . . − . . = . − . = . .  

(iii) 10 0 s:t = . 2 3 22(2 40 m/s )(10 0 s) 3(0 120 m/s )(10 0 s) 48 0 m/s 36 0 m/s 12 0 m/sxv = . . − . . = . − . = . .  
(c) IDENTIFY:   Find the value of t when ( )xv t  from part (b) is zero. 

SET UP:   22 3xv bt ct= −  
0xv =  at 0t = .  

0xv =  next when 22 3 0bt ct− =  

EXECUTE:   2 3b ct=  so 
2

3

2 2(2 40 m/s ) 13 3 s
3 3(0 120 m/s )
bt
c

.= = = .
.

 

EVALUATE:   ( )xv t  for this motion says the car starts from rest, speeds up, and then slows down again. 
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 2.8. IDENTIFY:   We know the position x(t) of the bird as a function of time and want to find its instantaneous 
velocity at a particular time. 

SET UP:   The instantaneous velocity is ( )x
dxv t
dt

=
3 328 0 m (12 4 m/s) (0 0450 m/s )

.
d t t

dt

⎡ ⎤. + . − .⎣ ⎦=  

EXECUTE:   3 2( ) 12 4 m/s (0 135 m/s ) .x
dxv t t
dt

= = . − .  Evaluating this at 8 0 st = .  gives 3 76 m/s.xv = .  

EVALUATE:   The acceleration is not constant in this case. 

 2.9. IDENTIFY:   The average velocity is given by av- .x
xv
t

∆=
∆

 We can find the displacement t∆  for each 

constant velocity time interval. The average speed is the distance traveled divided by the time. 
SET UP:   For 0t =  to 2 0 s,t = . 2 0 m/s.xv = .  For 2 0 st = .  to 3 0 s,t = . 3 0 m/s.xv = .  In part (b), 

3 0 m/sxv = − .  for 2 0 st = .  to 3 0 s.t = .  When the velocity is constant, .xx v t∆ = ∆  
EXECUTE:   (a) For 0t =  to 2 0 s,t = . (2 0 m/s)(2 0 s) 4 0 m.x∆ = . . = .  For 2 0 st = .  to 3 0 s,t = .  

(3 0 m/s)(1 0 s) 3 0 m.x∆ = . . = .  For the first 3.0 s, 4 0 m 3 0 m 7 0 m.x∆ = . + . = .  The distance traveled is 

also 7.0 m. The average velocity is av-
7 0 m 2 33 m/s.
3 0 sx

xv
t

∆ .= = = .
∆ .

 The average speed is also 2.33 m/s. 

(b) For 2 0 st = . to 3.0 s, ( 3 0 m/s)(1 0 s) 3 0 m.x∆ = − . . = − .  For the first 3.0 s, 
4 0 m ( 3 0 m) 1 0 m.x∆ = . + − . = + .  The ball travels 4.0 m in the +x-direction and then 3.0 m in the  

−x-direction, so the distance traveled is still 7.0 m. av-
1 0 m 0 33 m/s.
3 0 sx

xv
t

∆ .= = = .
∆ .

 The average speed is 

7 00 m 2 33 m/s.
3 00 s
. = .
.

 

EVALUATE:   When the motion is always in the same direction, the displacement and the distance traveled 
are equal and the average velocity has the same magnitude as the average speed. When the motion changes 
direction during the time interval, those quantities are different. 

 2.10. IDENTIFY and SET UP:   The instantaneous velocity is the slope of the tangent to the x versus t graph. 
EXECUTE:   (a) The velocity is zero where the graph is horizontal; point IV. 
(b) The velocity is constant and positive where the graph is a straight line with positive slope; point I. 
(c) The velocity is constant and negative where the graph is a straight line with negative slope; point V. 
(d) The slope is positive and increasing at point II. 
(e) The slope is positive and decreasing at point III. 
EVALUATE:   The sign of the velocity indicates its direction. 

 2.11. IDENTIFY:   Find the instantaneous velocity of a car using a graph of its position as a function of time. 
SET UP:   The instantaneous velocity at any point is the slope of the x versus t graph at that point. Estimate 
the slope from the graph. 
EXECUTE:   A: 6 7 m/s;xv = .  B: 6 7 m/s;xv = .  C: 0;xv =  D: 40 0 m/s;xv = − .  E: 40 0 m/s;xv = − .   
F: 40 0 m/s;xv = − .  G: 0xv = .  
EVALUATE:   The sign of xv  shows the direction the car is moving. xv  is constant when x versus t is a 
straight line. 

 2.12. IDENTIFY:   av- .x
x

va
t

∆=
∆

( )xa t  is the slope of the xv versus t graph. 

SET UP:   60 km/h 16 7 m/s= .  

EXECUTE:   (a) (i) 2
av-

16 7 m/s 0 1 7 m/s .
10 sxa . −= = .  (ii) 2

av-
0 16 7 m/s 1 7 m/s .

10 sxa − .= = − .  

(iii) 0xv∆ =  and av- 0.xa =  (iv) 0xv∆ =  and av- 0.xa =  
(b) At 20 s,t =  xv  is constant and 0.xa =  At 35 s,t =  the graph of xv  versus t is a straight line and 

2
av- 1 7 m/s .x xa a= = − .  
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EVALUATE:   When av-xa  and xv  have the same sign the speed is increasing. When they have opposite 
signs, the speed is decreasing. 

 2.13. IDENTIFY:   The average acceleration for a time interval t∆  is given by av- .x
x

va
t

∆=
∆

 

SET UP:   Assume the car is moving in the x+  direction. 1 mi/h 0 447 m/s,= .  so 60 mi/h 26 82 m/s,= .  
200 mi/h = 89.40 m/s and 253 mi/h 113 1 m/s.= .  
EXECUTE:   (a) The graph of xv versus t is sketched in Figure 2.13. The graph is not a straight line, so the 
acceleration is not constant. 

(b) (i) 2
av-

26 82 m/s 0 12 8 m/s
2 1 sxa . −= = .

.
 (ii) 2

av-
89 40 m/s 26 82 m/s 3 50 m/s

20 0 s 2 1 sxa .  − .= = .
. − .

 

(iii) 2
av-

113 1m/s 89 40 m/s 0 718 m/s .
53 s 20 0 sxa .  − .= = .

− .
 The slope of the graph of xv versus t decreases as t 

increases. This is consistent with an average acceleration that decreases in magnitude during each 
successive time interval. 
EVALUATE:   The average acceleration depends on the chosen time interval. For the interval between 0 and 

53 s, 2
av-

113 1m/s 0 2 13 m/s .
53 sxa .  −= = .  

 

 

Figure 2.13 
 

 2.14. IDENTIFY:   We know the velocity v(t) of the car as a function of time and want to find its acceleration at 
the instant that its velocity is 12.0 m/s. 

SET UP:   We know that vx(t) = (0.860 m/s3)t2 and that 
3 2(0 860 m/s )

( ) .x
x

d tdva t
dt dt

⎡ ⎤.⎣ ⎦= =  

EXECUTE:   3( ) (1 72 m/s ) .x
x

dva t t
dt

= = .  When 12 0 m/s,xv = . (0.860 m/s3)t2 = 12.0 m/s, which gives 

3.735 s.t =  At this time, 26 42 m/s .xa = .  
EVALUATE:   The acceleration of this car is not constant. 

 2.15. IDENTIFY and SET UP:   Use x
dxv
dt

=  and x
x

dva
dt

=  to calculate ( )xv t  and ( )xa t .  

EXECUTE:   22 00 cm/s (0 125 cm/s )x
dxv t
dt

= = . − .  

20 125 cm/sx
x

dva
dt

= = − .  

(a) At 0,t = 50 0 cm,x = . 2 00 cm/s,xv = . 20 125 cm/sxa = − . .  
(b) Set 0xv =  and solve for t: 16 0 st = . .  
(c) Set 50 0 cmx = .  and solve for t. This gives 0t =  and 32 0 st = . .  The turtle returns to the starting point 
after 32.0 s. 
(d) The turtle is 10.0 cm from starting point when 60 0 cmx = .  or 40 0 cmx = . .  
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Set 60 0 cmx = .  and solve for t: 6 20 st = .  and 25 8 st = . .  
At 6 20 s,t = . 1 23 cm/sxv = + . .  
At 25 8 s,t = . 1 23 cm/sxv = − . .  
Set 40 0 cmx = .  and solve for t: 36 4 st = .  (other root to the quadratic equation is negative and hence 
nonphysical). 
At 36 4 s,t = . 2 55 cm/sxv = − . .  
(e) The graphs are sketched in Figure 2.15. 

 

 

Figure 2.15 
 

EVALUATE:   The acceleration is constant and negative. xv  is linear in time. It is initially positive, 
decreases to zero, and then becomes negative with increasing magnitude. The turtle initially moves farther 
away from the origin but then stops and moves in the -directionx− .  

 2.16. IDENTIFY:   Use av-
x

x
va
t

∆=
∆

, with 10 st∆ =  in all cases. 

SET UP:   xv is negative if the motion is to the left. 

EXECUTE:   (a) 2[(5 0 m/s) (15 0 m/s)]/(10 s) 1 0 m/s. − . = − .  

(b) 2[( 15 0 m/s) ( 5 0 m/s)]/(10 s) 1 0 m/s− . − − . = − .  

(c) 2[( 15 0 m/s) ( 15 0 m/s)]/(10 s) 3 0 m/s− . − + . = − .  
EVALUATE:   In all cases, the negative acceleration indicates an acceleration to the left. 

 2.17. IDENTIFY:   The average acceleration is av- .x
x

va
t

∆=
∆

 Use ( )xv t  to find xv  at each t. The instantaneous 

acceleration is .x
x

dva
dt

=  

SET UP:   (0) 3 00 m/sxv = .  and (5 00 s) 5 50 m/s.xv . = .  

EXECUTE:   (a) 2
av-

5 50 m/s 3 00 m/s 0 500 m/s
5 00 s

x
x

va
t

∆ . − .= = = .
∆ .

 

(b) 3 3(0 100 m/s )(2 ) (0 200 m/s ) .x
x

dva t t
dt

= = . = .  At 0,t =  0.xa =  At 5 00 s,t = . 21 00 m/s .xa = .  

(c) Graphs of ( )xv t  and ( )xa t  are given in Figure 2.17 (next page). 
EVALUATE:   ( )xa t  is the slope of ( )xv t  and increases as t increases. The average acceleration for 0t =  to 

5 00 st = .  equals the instantaneous acceleration at the midpoint of the time interval, 2 50 s,t = .  since 
( )xa t  is a linear function of t. 
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Figure 2.17 
 

 2.18. IDENTIFY:   ( )x
dxv t
dt

=  and ( ) x
x

dva t
dt

=  

SET UP:   1( )n nd t nt
dt

−=  for 1.n ≥  

EXECUTE:   (a) 2 6 5( ) (9 60 m/s ) (0 600 m/s )xv t t t= . − .  and 2 6 4( ) 9 60 m/s (3 00 m/s ) .xa t t= . − .  Setting 

0xv =  gives 0t =  and 2 00 s.t = .  At 0,t =  2 17 mx = .  and 29 60 m/s .xa = .  At 2 00 s,t = .  15 0 mx = .  

and 238 4 m/s .xa = − .  
(b) The graphs are given in Figure 2.18. 
EVALUATE:   For the entire time interval from 0t =  to 2 00 s,t = .  the velocity xv  is positive and x 
increases. While xa  is also positive the speed increases and while xa  is negative the speed decreases. 

 

 

Figure 2.18 
 

 2.19. IDENTIFY:   Use the constant acceleration equations to find 0xv  and xa .  
(a) SET UP:   The situation is sketched in Figure 2.19. 

 

 

 

 
0 70 0 mx x− = .  

6 00 st = .  
15.0 m/sxv =  

0 ?xv =  

Figure 2.19   
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EXECUTE:   Use 0
0 ,

2
x xv vx x t+⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 so 0

0
2( ) 2(70 0 m) 15 0 m/s 8.33 m/s

6 00 sx x
x xv v

t
− .= − = − . = .

.  
 

(b) Use 0 ,x x xv v a t= +  so 20 15 0 m/s 5 0 m/s 1 11 m/s
6 00 s

x x
x

v va
t

− . − .= = = . .
.  

 

EVALUATE:   The average velocity is (70 0 m)/(6 00 s) 11.7 m/s. .  = .  The final velocity is larger than this, 
so the antelope must be speeding up during the time interval; 0x xv v<  and 0xa > .  

 2.20. IDENTIFY:   In (a) find the time to reach the speed of sound with an acceleration of 5g, and in (b) find his 
speed at the end of 5.0 s if he has an acceleration of 5g. 
SET UP:   Let x+  be in his direction of motion and assume constant acceleration of 5g so the standard 
kinematics equations apply so 0 .x x xv v a t= +  (a) 3(331 m/s) 993 m/s,xv = = 0 0,xv =  and 

25 49 0 m/sxa g= = . .  (b) 5 0 st = .  

EXECUTE:   (a) 0x x xv v a t= +  and 0
2

993 m/s 0 20 3 s.
49 0 m/s

x x

x

v vt
a
− −  = = = .

.
 Yes, the time required is larger 

than 5.0 s. 
(b) 2

0 0 (49 0 m/s )(5 0 s) 245 m/s.x x xv v a t= + = + . . =  
EVALUATE:   In 5.0 s he can only reach about 2/3 the speed of sound without blacking out. 

 2.21. IDENTIFY:   For constant acceleration, the standard kinematics equations apply. 
SET UP:   Assume the ball starts from rest and moves in the -directionx+ .  
EXECUTE:   (a) 0 1 50 m,x x− = . 45 0 m/sxv = .  and 0 0.xv = 2 2

0 02 ( )x x xv v a x x= + −  gives 
2 2 2

20

0

(45 0 m/s) 675 m/s .
2( ) 2(1 50 m)

x x
x

v va
x x
− .= = =
− .

 

(b) 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 gives 0

0

2( ) 2(1 50 m) 0 0667 s
45 0 m/sx x

x xt
v v

− .= = = .
+ .

 

EVALUATE:   We could also use 0x x xv v a t= +  to find 2

45 0 m/s 0 0667 s
675 m/s

x

x

vt
a

.= = = .  which agrees with 

our previous result. The acceleration of the ball is very large. 
 2.22. IDENTIFY:   For constant acceleration, the standard kinematics equations apply. 

SET UP:   Assume the ball moves in the directionx+ .  
EXECUTE:   (a) 73 14 m/s,xv = .  0 0xv =  and 30 0 ms.t = .  0x x xv v a t= +  gives 

20
3

73 14 m/s 0 2440 m/s .
30 0 10  s

x x
x

v va
t −

− . −= = =
. ×

 

(b) 30
0

0 73 14 m/s (30 0 10  s) 1 10 m
2 2

x xv vx x t −+ + .⎛ ⎞ ⎛ ⎞− = = . × = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EVALUATE:   We could also use 21
0 0 2x xx x v t a t− = +  to calculate 0:x x−  

2 3 21
0 2 (2440 m/s )(30 0 10  s) 1 10 m,x x −− = . × = .  which agrees with our previous result. The acceleration 

of the ball is very large. 
 2.23. IDENTIFY:   Assume that the acceleration is constant and apply the constant acceleration kinematic 

equations. Set | |xa  equal to its maximum allowed value. 

SET UP:   Let x+  be the direction of the initial velocity of the car. 2250 m/s .xa = −  
105 km/h 29 17 m/s.= .  
EXECUTE:   0 29 17 m/s.xv = . 0.xv = 2 2

0 02 ( )x x xv v a x x= + −  gives 
2 2 2

0
0 2

0 (29 17 m/s) 1 70 m.
2 2( 250 m/s )

x x

x

v vx x
a
− − .− = = = .

−
 

EVALUATE:   The car frame stops over a shorter distance and has a larger magnitude of acceleration. Part 
of your 1.70 m stopping distance is the stopping distance of the car and part is how far you move relative to 
the car while stopping. 
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 2.24. IDENTIFY:   In (a) we want the time to reach Mach 4 with an acceleration of 4g, and in (b) we want to 
know how far he can travel if he maintains this acceleration during this time. 
SET UP:   Let x+  be the direction the jet travels and take 0 0x = .  With constant acceleration, the equations 

0x x xv v a t= +  and 21
0 0 2x xx x v t a t= + +  both apply. 24 39 2 m/s ,xa g= = . 4(331 m/s) 1324 m/s,xv = =  and 

0 0xv = .  

EXECUTE:   (a) Solving 0x x xv v a t= +  for t gives 0
2

1324 m/s 0 33 8 s.
39 2 m/s

x x

x

v vt
a
− −= = = .

.
 

(b) 2 2 2 41 1
0 0 2 2 (39 2 m/s )(33 8 s) 2 24 10 m 22 4 km.x xx x v t a t= + + = . . = . × = .  

EVALUATE:   The answer in (a) is about ½ min, so if he wanted to reach Mach 4 any sooner than that, he 
would be in danger of blacking out. 

 2.25. IDENTIFY:   If a person comes to a stop in 36 ms while slowing down with an acceleration of 60g, how far 
does he travel during this time? 
SET UP:   Let x+  be the direction the person travels. 0xv =  (he stops), xa  is negative since it is opposite 

to the direction of the motion, and 236 ms 3 6 10 st −= = . × .  The equations 0x x xv v a t= +  and 
21

0 0 2x xx x v t a t= + +  both apply since the acceleration is constant. 

EXECUTE:   Solving 0x x xv v a t= +  for v0x gives 0x xv a t= − .  Then 21
0 0 2x xx x v t a t= + +  gives 

2 2 2 21 1
2 2 ( 588 m/s )(3 6 10 s) 38 cmxx a t −= − = − − . × = .  

EVALUATE:   Notice that we were not given the initial speed, but we could find it:  
2 3

0 ( 588 m/s )(36 10 s) 21 m/s 47 mphx xv a t −= − = − − × = = .  
 2.26. IDENTIFY:   In (a) the hip pad must reduce the person’s speed from 2.0 m/s to 1.3 m/s over a distance of 

2.0 cm, and we want the acceleration over this distance, assuming constant acceleration. In (b) we want to 
find out how long the acceleration in (a) lasts. 
SET UP:   Let y+  be downward. 0 2 0 m/s,yv = . 1 3 m/s,yv = .  and 0 0 020 my y− = . .  The equations 

2 2
0 02 ( )y y yv v a y y= + −  and 0

0 2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 apply for constant acceleration. 

EXECUTE:   (a) Solving 2 2
0 02 ( )y y yv v a y y= + −  for ay gives 

2 2 2 2
0 2

0

(1 3 m/s) (2 0 m/s) 58 m/s 5 9 .
2( ) 2(0 020 m)

y y
y

v v
a g

y y
− . − .= = = − = − .
− .

 

(b) 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 gives 0

0

2( ) 2(0 020 m) 12 ms.
2 0 m/s 1 3 m/sy y

y yt
v v

− .= = =
+ . + .

 

EVALUATE:   The acceleration is very large, but it only lasts for 12 ms so it produces a small velocity change. 
 2.27. IDENTIFY:   We know the initial and final velocities of the object, and the distance over which the velocity 

change occurs. From this we want to find the magnitude and duration of the acceleration of the object. 
SET UP:   The constant-acceleration kinematics formulas apply. 

2 2
0 02 ( ),x x xv v a x x= + −  where 

0 0,xv = 35.0 10 m/s,xv = ×  and 0 4.0 m.x x− =  

EXECUTE:   (a) 2 2
0 02 ( )x x xv v a x x= + − gives 

2 2 3 2
6 2 50

0

(5.0 10 m/s) 3.1 10 m/s 3.2 10 .
2( ) 2(4.0 m)

x x
x

v va g
x x
− ×= = = × = ×
−

 

(b) 0x x xv v a t= +  gives 
3

0
6 2

5.0 10 m/s 1.6 ms.
3.1 10 m/s

x x

x

v vt
a
− ×= = =

×
 

EVALUATE:   (c) The calculated a is less than 450,000 g so the acceleration required doesn’t rule out this 
hypothesis. 

 2.28. IDENTIFY:   Apply constant acceleration equations to the motion of the car. 
SET UP:   Let x+  be the direction the car is moving. 

EXECUTE:   (a) From 2 2
0 02 ( )x x xv v a x x= + − , with 0 0,xv =

2 2
2

0

(20 m/s) 1 67 m/s
2( ) 2(120 m)

x
x

va
x x

 = = = .  .
−  
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(b) Using Eq. (2.14), 02( )/ 2(120 m)/(20 m/s) 12 sxt x x v= − =   =  .  
(c) (12 s)(20 m/s) 240  m = .  
EVALUATE:   The average velocity of the car is half the constant speed of the traffic, so the traffic travels 
twice as far. 

 2.29. IDENTIFY:   The average acceleration is av- .x
x

va
t

∆=
∆

 For constant acceleration, the standard kinematics 

equations apply. 
SET UP:   Assume the rocket ship travels in the +x direction. 161 km/h 44 72 m/s= .  and 
1610 km/h 447 2 m/s.= .  1 00 min 60 0 s. = .  

EXECUTE:   (a) (i) 2
av-

44 72 m/s 0 5 59 m/s
8 00 s

x
x

va
t

∆ . −= = = .
∆ .

 

(ii) 2
av-

447 2 m/s 44 72 m/s 7 74 m/s
60 0 s 8 00 sxa . − .= = .

. − .
 

(b) (i) 8 00 s,t = . 0 0,xv =  and 44 72 m/s.xv = . 0
0

0 44 72 m/s (8 00 s) 179 m.
2 2

x xv vx x t+ + .⎛ ⎞ ⎛ ⎞− = = . =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(ii) 60 0 s 8 00 s 52 0 s,t∆ = . − . = . 0 44 72 m/s,xv = .  and 447 2 m/s.xv = .  

40
0

44 72 m/s 447 2 m/s (52 0 s) 1 28 10  m.
2 2

x xv vx x t+ . + .⎛ ⎞ ⎛ ⎞− = = . = . ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   When the acceleration is constant the instantaneous acceleration throughout the time interval 
equals the average acceleration for that time interval. We could have calculated the distance in part (a) as 

2 2 21 1
0 0 2 2 (5 59 m/s )(8 00 s) 179 m,x xx x v t a t− = + = . . =  which agrees with our previous calculation. 

 2.30. IDENTIFY:   The acceleration xa  is the slope of the graph of xv  versus t. 
SET UP:   The signs of xv  and of xa  indicate their directions. 
EXECUTE:   (a) Reading from the graph, at 4 0 s,t = . 2 7 cm/s,xv = .  to the right and at 7 0 s,t = .  

1 3 cm/s,xv = .  to the left. 

(b) xv  versus t is a straight line with slope 28 0 cm/s 1 3 cm/s .
6 0 s

.− = − .
.

 The acceleration is constant and  

equal to 21 3 cm/s ,.  to the left. It has this value at all times. 
(c) Since the acceleration is constant, 21

0 0 2 .x xx x v t a t− = +  For 0t =  to 4.5 s, 
2 21

0 2(8 0 cm/s)(4 5 s) ( 1 3 cm/s )(4 5 s) 22 8 cm.x x− = . . + − . . = .  For 0t =  to 7.5 s, 
2 21

0 2(8 0 cm/s)(7 5 s) ( 1 3 cm/s )(7 5 s) 23 4 cmx x− = . . + − . . = .  
(d) The graphs of xa and x versus t are given in Figure 2.30. 

EVALUATE:   In part (c) we could have instead used 0
0 .

2
x xv vx x t+⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 

 

 

Figure 2.30 
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 2.31. (a) IDENTIFY and SET UP:   The acceleration xa  at time t is the slope of the tangent to the xv  versus t 
curve at time t. 
EXECUTE:   At 3 s,t =  the xv  versus t curve is a horizontal straight line, with zero slope. Thus 0xa = .  

At 7 s,t =  the xv  versus t curve is a straight-line segment with slope 245 m/s 20 m/s 6 3 m/s
9 s 5 s

− = . .
−

 

Thus 26 3 m/sxa = . .  

At 11 st =  the curve is again a straight-line segment, now with slope 20 45 m/s 11 2 m/s
13 s 9 s

− − = − . .
−

 

Thus 211 2 m/sxa = − . .  
EVALUATE:   0xa =  when xv  is constant, 0xa >  when xv  is positive and the speed is increasing, and 

0xa <  when xv  is positive and the speed is decreasing. 
(b) IDENTIFY:   Calculate the displacement during the specified time interval. 
SET UP:   We can use the constant acceleration equations only for time intervals during which the 
acceleration is constant. If necessary, break the motion up into constant acceleration segments and apply 
the constant acceleration equations for each segment. For the time interval 0t =  to 5 st =  the acceleration 
is constant and equal to zero. For the time interval 5 st =  to 9 st =  the acceleration is constant and equal 
to 26 25 m/s. .  For the interval 9 st =  to 13 st =  the acceleration is constant and equal to 211 2 m/s− . .  
EXECUTE:   During the first 5 seconds the acceleration is constant, so the constant acceleration kinematic 
formulas can be used. 

0 20 m/sxv =  0xa =  5 st =  0 ?x x− =  

0 0xx x v t− = ( 0xa =  so no 21
2 xa t  term) 

0 (20 m/s)(5 s) 100 m;x x− = =  this is the distance the officer travels in the first 5 seconds. 
During the interval 5 st =  to 9 s the acceleration is again constant. The constant acceleration formulas can 
be applied to this 4-second interval. It is convenient to restart our clock so the interval starts at time 0t =  
and ends at time 4 st = .  (Note that the acceleration is not constant over the entire 0t =  to 9 st =  
interval.) 

0 20 m/sxv =  26 25 m/sxa = .  4 st =  0 100 mx =  0 ?x x− =  
21

0 0 2x xx x v t a t− = +  
2 21

0 2(20 m/s)(4 s) (6 25 m/s )(4 s) 80 m 50 m 130 m.x x− = + . = + =  
Thus 0 130 m 100 m 130 m 230 mx x− + = + = .  
At 9 st =  the officer is at 230 m,x =  so she has traveled 230 m in the first 9 seconds. 
During the interval 9 st =  to 13 st =  the acceleration is again constant. The constant acceleration 
formulas can be applied for this 4-second interval but not for the whole 0t =  to 13 st =  interval. To use 
the equations restart our clock so this interval begins at time 0t =  and ends at time 4 st = .  

0 45 m/sxv =  (at the start of this time interval) 
211 2 m/sxa = − . 4 st =  0 230 mx = 0 ?x x− =  

21
0 0 2x xx x v t a t− = +  

2 21
0 2(45 m/s)(4 s) ( 11 2 m/s )(4 s) 180 m 89 6 m 90 4 m.x x− = + − . = − . = .  

Thus 0 90 4 m 230 m 90 4 m 320 mx x= + . = + . = .  
At 13 st =  the officer is at 320 m,x =  so she has traveled 320 m in the first 13 seconds. 
EVALUATE:   The velocity xv  is always positive so the displacement is always positive and displacement 
and distance traveled are the same. The average velocity for time interval t∆  is av- /xv x t= ∆ ∆ .  For 0t =  to 
5 s, av- 20 m/sxv = .  For 0t =  to 9 s, av- 26 m/sxv = .  For 0t =  to 13 s, av- 25 m/sxv = .  These results are 
consistent with the figure in the textbook. 

 2.32. IDENTIFY:   ( )xv t  is the slope of the x versus t graph. Car B moves with constant speed and zero 
acceleration. Car A moves with positive acceleration; assume the acceleration is constant. 



Motion Along a Straight Line    2-11 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

SET UP:   For car B, xv  is positive and 0.xa =  For car A, xa  is positive and xv  increases with t. 
EXECUTE:   (a) The motion diagrams for the cars are given in Figure 2.32a. 
(b) The two cars have the same position at times when their x-t graphs cross. The figure in the problem 
shows this occurs at approximately 1 st =  and 3 s.t =  
(c) The graphs of xv  versus t for each car are sketched in Figure 2.32b. 
(d) The cars have the same velocity when their x-t graphs have the same slope. This occurs at 
approximately 2 s.t =  
(e) Car A passes car B when Ax  moves above Bx  in the x-t graph. This happens at 3 s.t =  
(f) Car B passes car A when Bx  moves above Ax  in the x-t graph. This happens at 1 s.t =  
EVALUATE:   When 0,xa =  the graph of xv  versus t is a horizontal line. When xa  is positive, the graph of 

xv  versus t is a straight line with positive slope. 
 

 

Figure 2.32 
 

 2.33. IDENTIFY:   For constant acceleration, the kinematics formulas apply. We can use the total displacement 
ande final velocity to calculate the acceleration and then use the acceleration and shorter distance to find 
the speed. 
SET UP:   Take +x to be down the incline, so the motion is in the +x direction. The formula  

2 2
0 02 ( )x xv v a x x= + −  applies. 

EXECUTE:   First look at the motion over 6.80 m.  We use the following numbers: v0x = 0, x – x0 = 6.80 m, 
and vx = 3.80 /s. Solving the above equation for ax gives ax = 1.062 m/s2. Now look at the motion over the 
3.40 m using v0x = 0, ax = 1.062 m/s2 and x – x0 = 3.40 m. Solving the same equation, but this time for vx, 
gives vx = 2.69 m/s. 
EVALUATE:   Even though the block has traveled half way down the incline, its speed is not half of its 
speed at the bottom. 

 2.34. IDENTIFY:   Apply the constant acceleration equations to the motion of each vehicle. The truck passes the 
car when they are at the same x at the same 0.t >  
SET UP:   The truck has 0.xa =  The car has 0 0.xv =  Let x+  be in the direction of motion of the vehicles. 

Both vehicles start at 0 0.x =  The car has 2
C 2.80 m/s .a =  The truck has 20 0 m/s.xv = .  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives T 0Tx v t=  and 21

C C2 .x a t=  Setting T Cx x= gives 0t =  and 

1
0T C2 ,v a t=  so 0T

2
C

2 2(20 0 m/s) 14.29 s.
2.80 m/s

vt
a

.= = =  At this t, T (20 0 m/s)(14.29 s) 286 mx = . =  and 

2 21
2 (3 20 m/s )(14.29 s) 286 m.x = . =  The car and truck have each traveled 286 m. 

(b) At 14.29 s,t =  the car has 2
0 (2.80 m/s )(14.29 s) 40 m/s.x x xv v a t= + = =  

(c) T 0Tx v t=  and 21
C C2 .x a t=  The x-t graph of the motion for each vehicle is sketched in Figure 2.34a. 

(d) T 0T.v v=  C C .v a t=  The -xv t  graph for each vehicle is sketched in Figure 2.34b (next page). 
EVALUATE:   When the car overtakes the truck its speed is twice that of the truck. 
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Figure 2.34 
 

 2.35. IDENTIFY:   Apply the constant acceleration equations to the motion of the flea. After the flea leaves the 
ground, ,ya g=  downward. Take the origin at the ground and the positive direction to be upward. 

(a) SET UP:   At the maximum height 0yv = .  

0yv =  0 0 440 my y− = .  29 80 m/sya = − .  0 ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
0 02 ( ) 2( 9 80 m/s )(0 440 m) 2 94 m/sy yv a y y= − − = − − . . = .  

(b) SET UP:   When the flea has returned to the ground 0 0y y− = .  

0 0y y− =  0 2 94 m/syv = + .  29 80 m/sya = − .  ?t =  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   With 0 0y y− =  this gives 0
2

2 2(2 94 m/s) 0 600 s
9 80 m/s

y

y

v
t

a
.= − = − = . .

− .
 

EVALUATE:   We can use 0y y yv v a t= +  to show that with 0 2 94 m/s,yv = . 0yv =  after 0.300 s. 
 2.36. IDENTIFY:   The rock has a constant downward acceleration of 9.80 m/s2. We know its initial velocity and 

position and its final position. 
SET UP:   We can use the kinematics formulas for constant acceleration. 
EXECUTE:   (a) 0 30 m,y y− = − 0 22 0 m/s,yv = . 29 80 m/s .ya = − .  The kinematics formulas give 

2 2 2
0 02 ( ) (22 0 m/s) 2( 9 80 m/s )( 30 m) 32.74 m/s,y y yv v a y y= − + − = − . + − . − = −  so the speed is 32.7 m/s. 

 (b) 0y y yv v a t= +  and 0
2

32.74 m/s 22 0 m/s 5.59 s.
9 80 m/s

y y

y

v v
t

a
− − − .= = =

− .
 

EVALUATE:   The vertical velocity in part (a) is negative because the rock is moving downward, but the 
speed is always positive. The 5.59 s is the total time in the air. 

 2.37. IDENTIFY:   The pin has a constant downward acceleration of 9.80 m/s2 and returns to its initial position. 
SET UP:   We can use the kinematics formulas for constant acceleration. 

EXECUTE:   The kinematics formulas give 2
0 0

1 .
2y yy y v t a t− = +  We know that 0 0,y y− =  so 

0
2

2 2(8 20 m/s) 1 67 s.
9 80 m/s

y

y

v
t

a
.= − = − = + .

− .
 

EVALUATE:   It takes the pin half this time to reach its highest point and the remainder of the time to 
return. 

 2.38. IDENTIFY:   The putty has a constant downward acceleration of 9.80 m/s2. We know the initial velocity of 
the putty and the distance it travels. 
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SET UP:   We can use the kinematics formulas for constant acceleration. 
EXECUTE:   (a) v0y = 9.50 m/s and y – y0 = 3.60 m, which gives 

2 2 2
0 02 ( ) (9 50 m/s) 2( 9 80 m/s )(3 60 m) 4 44 m/sy y yv v a y y= + − = . + − . . = .  

(b) 0
2

4 44 m/s 9 50 m/s 0 517 s
9 8 m/s

y y

y

v v
t

a
− . − .= = = .

− .
 

EVALUATE:   The putty is stopped by the ceiling, not by gravity. 
 2.39. IDENTIFY:   A ball on Mars that is hit directly upward returns to the same level in 8.5 s with a constant 

downward acceleration of 0.379g. How high did it go and how fast was it initially traveling upward? 
SET UP:   Take y+  upward. 0yv =  at the maximum height. 20 379 3 71 m/sya g= − . = − . .  The constant-

acceleration formulas 0y y yv v a t= +  and 21
0 0 2y yy y v t a t= + +  both apply. 

EXECUTE:   Consider the motion from the maximum height back to the initial level. For this motion 
0 0yv =  and 4 25 st = . . 2 2 21 1

0 0 2 2 ( 3 71 m/s )(4 25 s) 33 5 m.y yy y v t a t= + + = − . . = − .  The ball went 33.5 m 
above its original position. 
(b) Consider the motion from just after it was hit to the maximum height. For this motion 0yv =  and 

4 25 st = . . 0y y yv v a t= +  gives 2
0 ( 3 71 m/s )(4 25 s) 15 8 m/sy yv a t= − = − − . . = . .  

(c) The graphs are sketched in Figure 2.39. 
 

 

Figure 2.39 
 

EVALUATE:   The answers can be checked several ways. For example, 0,yv = 0 15 8 m/s,yv = .  and 

23 71 m/sya = − .  in 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (15 8 m/s) 33 6 m,
2 2( 3 71 m/s )

y y

y

v v
y y

a
− − .− = = = .

− .
 which 

agrees with the height calculated in (a). 
 2.40. IDENTIFY:   Apply constant acceleration equations to the motion of the lander. 

SET UP:   Let y+  be downward. Since the lander is in free-fall, 21 6 m/s .ya = + .  

EXECUTE:   0 0 8 m/s,yv = . 0 5 0 m,y y− = . 21 6 m/sya = + .  in 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 02 ( ) (0 8 m/s) 2(1 6 m/s )(5 0 m) 4 1 m/s.y y yv v a y y= + − = . + . . = .  

EVALUATE:   The same descent on earth would result in a final speed of 9.9 m/s, since the acceleration due 
to gravity on earth is much larger than on the moon. 

 2.41. IDENTIFY:   Apply constant acceleration equations to the motion of the meterstick. The time the meterstick 
falls is your reaction time. 
SET UP:   Let y+  be downward. The meter stick has 0 0yv =  and 29 80 m/s .ya = .  Let d be the distance the 
meterstick falls. 

EXECUTE:   (a) 21
0 0 2y yy y v t a t− = +  gives 2 2(4 90 m/s )d t= .  and 2 .

4 90 m/s
dt =

.
 

(b) 2

0 176 m 0 190 s
4 90 m/s

t .= = .
.  

 

EVALUATE:   The reaction time is proportional to the square of the distance the stick falls. 
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 2.42. IDENTIFY:   Apply constant acceleration equations to the vertical motion of the brick. 
SET UP:   Let y+  be downward. 29 80 m/sya = .  

EXECUTE:   (a) 2
0 0, 1.90 s, 9 80 m/s .y yv t a= = = . 2 2 21 1

0 0 2 2 (9 80 m/s )(1.90 s) 17.7 m.y yy y v t a t− = + = . =   
The building is 17.7 m tall. 
(b) 2

0 0 (9 80 m/s )(1.90 s) 18.6 m/sy y yv v a t= + = + . =  

(c) The graphs of ,ya yv  and y versus t are given in Figure 2.42. Take 0y =  at the ground. 

EVALUATE:   We could use either 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
or 2 2

0 02 ( )y y yv v a y y= + − to check our results. 

 

 

Figure 2.42 
 

 2.43. IDENTIFY:   When the only force is gravity the acceleration is 29 80 m/s ,.  downward. There are two 
intervals of constant acceleration and the constant acceleration equations apply during each of these 
intervals. 
SET UP:   Let y+  be upward. Let 0y =  at the launch pad. The final velocity for the first phase of the 
motion is the initial velocity for the free-fall phase. 
EXECUTE:   (a) Find the velocity when the engines cut off. 0 525 m,y y− = 22 25 m/s ,ya = . 0 0.yv =  

2 2
0 02 ( )y y yv v a y y= + −  gives 22(2 25 m/s )(525 m) 48 6 m/s.yv = . = .  

Now consider the motion from engine cut-off to maximum height: 0 525 m,y = 0 48 6 m/s,yv = + . 0yv =  

(at the maximum height), 29 80 m/s .ya = − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (48 6 m/s) 121 m
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .− = = =

− .
 and 121 m 525 m 646 m.y = + =  

(b) Consider the motion from engine failure until just before the rocket strikes the ground:  
0 525 m,y y− = −  29 80 m/s ,ya = − . 0 48 6 m/s.yv = + . 2 2

0 02 ( )y y yv v a y y= + −  gives  
2 2(48 6 m/s) 2( 9 80 m/s )( 525 m) 112 m/s.yv = − . + − . − = −  Then 0y y yv v a t= +  gives 

0
2

112 m/s 48 6 m/s 16 4 s.
9 80 m/s

y y

y

v v
t

a
− − − .= = = .

− .
 

(c) Find the time from blast-off until engine failure: 0 525 m,y y− = 0 0,yv = 22 25 m/s .ya = + .  

21
0 0 2y yy y v t a t− = +  gives 0

2

2( ) 2(525 m) 21 6 s.
2 25 m/sy

y yt
a
−= = = .

.
 The rocket strikes the launch pad 

21 6 s 16 4 s 38 0 s. + . = .  after blast-off. The acceleration ya is 22 25 m/s+ .  from 0t =  to 21 6 s.t = .  It is 
29 80 m/s− .  from 21 6 st = .  to 38 0 s..  0y y yv v a t= +  applies during each constant acceleration segment, 

so the graph of yv  versus t is a straight line with positive slope of 22 25 m/s.  during the blast-off phase 

and with negative slope of 29 80 m/s− .  after engine failure. During each phase 21
0 0 2 .y yy y v t a t− = +  The 

sign of ya  determines the curvature of ( ).y t  At 38 0 st = .  the rocket has returned to 0.y =  The graphs 
are sketched in Figure 2.43. 
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EVALUATE:   In part (b) we could have found the time from 21
0 0 2 ,y yy y v t a t− = +  finding yv  first allows 

us to avoid solving for t from a quadratic equation. 
 

Figure 2.43 
 

 2.44. IDENTIFY:   Apply constant acceleration equations to the vertical motion of the sandbag. 
SET UP:   Take y+  upward. 29 80 m/s .ya = − .  The initial velocity of the sandbag equals the velocity of 

the balloon, so 0 5 00 m/s.yv = + .  When the balloon reaches the ground, 0 40 0 m.y y− = − .  At its 

maximum height the sandbag has 0.yv =  
EXECUTE:   (a) 

0 250 s:t = . 2 2 21 1
0 0 2 2(5 00 m/s)(0 250 s) ( 9 80 m/s )(0 250 s) 0 94 m.y yy y v t a t− = + = . . + − . . = .  The 

sandbag is 40.9 m above the ground. 
2

0 5 00 m/s ( 9 80 m/s )(0 250 s) 2 55 m/s.y y yv v a t= + = + . + − . . = .  

1 00 s:t = . 2 21
0 2(5 00 m/s)(1 00 s) ( 9 80 m/s )(1 00 s) 0 10 m.y y− = . . + − . . = .  The sandbag is 40.1 m above 

the ground. 2
0 5 00 m/s ( 9 80 m/s )(1 00 s) 4 80 m/s.y y yv v a t= + = + . + − . . = − .  

(b) 0 40 0 m,y y− = − . 0 5 00 m/s,yv = . 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 

2 240 0 m (5 00 m/s) (4 90 m/s ) .t t− . = . − . 2 2(4 90 m/s ) (5 00 m/s) 40 0 m 0t t. − . − . =  and 

( )21 5 00 ( 5 00) 4(4 90)( 40 0) s (0 51 2 90) s.
9 80

t = . ± − . − . − . = . ± .
.

 t must be positive, so 3 41 s.t = .  

(c) 2
0 5 00 m/s ( 9 80 m/s )(3 41 s) 28 4 m/sy y yv v a t= + = + . + − . . = − .  

(d) 0 5 00 m/s,yv = . 29 80 m/s ,ya = − . 0.yv = 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (5 00 m/s) 1 28 m.
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .− = = = .

− .
 The maximum height is 41.3 m above the ground. 

(e) The graphs of ,ya ,yv  and y versus t are given in Figure 2.44. Take 0y =  at the ground. 
EVALUATE:   The sandbag initially travels upward with decreasing velocity and then moves downward 
with increasing speed. 

 

 

Figure 2.44 
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 2.45. IDENTIFY:   Use the constant acceleration equations to calculate xa  and 0x x− .  
(a) SET UP:   224 m/s,xv = 0 0,xv = 0 900 s,t = . ?xa =  

0x x xv v a t= +  

EXECUTE:   20 224 m/s 0 249 m/s
0 900 s

x x
x

v va
t

− −= = =
.

 

(b) 2 2/ (249 m/s )/(9 80 m/s ) 25 4xa g = . = .  

(c) 2 2 21 1
0 0 2 20 (249 m/s )(0 900 s) 101 mx xx x v t a t− = + = + . =  

(d) SET UP:   Calculate the acceleration, assuming it is constant: 
1 40 s,t = . 0 283 m/s,xv = 0xv =  (stops), ?xa =  

0x x xv v a t= +  

EXECUTE:   20 0 283 m/s 202 m/s
1 40 s

x x
x

v va
t

− −= = = −
.  

 

2 2/ ( 202 m/s )/(9 80 m/s ) 20 6;xa g = − . = − . 20 6xa g= − .  
If the acceleration while the sled is stopping is constant then the magnitude of the acceleration is only 20.6g. 
But if the acceleration is not constant it is certainly possible that at some point the instantaneous acceleration 
could be as large as 40g. 
EVALUATE:   It is reasonable that for this motion the acceleration is much larger than g. 

 2.46. IDENTIFY:   Since air resistance is ignored, the egg is in free-fall and has a constant downward acceleration 
of magnitude 29 80 m/s ..  Apply the constant acceleration equations to the motion of the egg. 
SET UP:   Take y+  to be upward. At the maximum height, 0.yv =  

EXECUTE:   (a) 0 30 0 m,y y− = − . 5 00 s,t = . 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 

20 1 1
0 2 2

30 0 m ( 9 80 m/s )(5 00 s) 18 5 m/s.
5 00 sy y

y yv a t
t

− − .= − = − − . . = + .
.

 

(b) 0 18 5 m/s,yv = + . 0yv =  (at the maximum height), 29 80 m/s .ya = − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (18 5 m/s) 17 5 m.
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .− = = = .

− .
 

(c) At the maximum height 0.yv =  

(d) The acceleration is constant and equal to 29 80 m/s ,.  downward, at all points in the motion, including 
at the maximum height. 
(e) The graphs are sketched in Figure 2.46. 

EVALUATE:   The time for the egg to reach its maximum height is 0
2

18 5 m/s 1 89 s.
9 8 m/s

y y

y

v v
t

a
− − .= = = .

− .
 The 

egg has returned to the level of the cornice after 3.78 s and after 5.00 s it has traveled downward from the 
cornice for 1.22 s. 

 

 

Figure 2.46 
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 2.47. IDENTIFY:   We can avoid solving for the common height by considering the relation between height, time 
of fall, and acceleration due to gravity, and setting up a ratio involving time of fall and acceleration due to 
gravity. 
SET UP:   Let Eng  be the acceleration due to gravity on Enceladus and let g be this quantity on earth. Let h 
be the common height from which the object is dropped. Let y+  be downward, so 0 .y y h− = 0 0yv =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 21

E2h gt=  and 21
En En2 .h g t=  Combining these two equations gives 

2 2
E En Engt g t=  and 

2 2
2 2E

En
En

1 75 s(9 80 m/s ) 0 0868 m/s .
18 6 s

tg g
t

⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   The acceleration due to gravity is inversely proportional to the square of the time of fall. 
 2.48. IDENTIFY:   Since air resistance is ignored, the boulder is in free-fall and has a constant downward 

acceleration of magnitude 29 80 m/s ..  Apply the constant acceleration equations to the motion of the 
boulder. 
SET UP:   Take y+  to be upward. 

EXECUTE:   (a) 0 40 0 m/s,yv = + . 20 0 m/s,yv = + . 29 80 m/s .ya = − . 0y y yv v a t= +  gives 

0
2

20 0 m/s 40 0 m/s 2 04 s.
9 80 m/s

y y

y

v v
t

a
− . − .= = = + .

− .
 

(b) 20 0 m/s.yv = − . 0
2

20 0 m/s 40 0 m/s 6 12 s.
9 80 m/s

y y

y

v v
t

a
− − . − .= = = + .

− .
 

(c) 0 0,y y− = 0 40 0 m/s,yv = + . 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 0t =  and 

0
2

2 2(40 0 m/s) 8 16 s.
9 80 m/s

y

y

v
t

a
.= − = − = + .

− .
 

(d) 0,yv = 0 40 0 m/s,yv = + . 29 80 m/s .ya = − . 0y y yv v a t= +  gives 0
2

0 40 0 m/s 4 08 s.
9 80 m/s

y y

y

v v
t

a
− − .= = = .

− .
 

(e) The acceleration is 29 80 m/s ,.  downward, at all points in the motion. 
(f) The graphs are sketched in Figure 2.48. 
EVALUATE:   0yv =  at the maximum height. The time to reach the maximum height is half the total time 
in the air, so the answer in part (d) is half the answer in part (c). Also note that 2 04 s 4 08 s 6 12 s.. < . < .  
The boulder is going upward until it reaches its maximum height and after the maximum height it is 
traveling downward. 

 

Figure 2.48 
 

 2.49. IDENTIFY:   The rock has a constant downward acceleration of  9.80 m/s2. The constant-acceleration 
kinematics formulas apply. 
SET UP:    The formulas 21

0 0 2y yy y v t a t= + +  and 2 2
0 02 ( )y y yv v a y y= + −  both apply. Call +y upward. 

First find the initial velocity and then the final speed. 
EXECUTE:   (a) 6.00 s after it is thrown, the rock is back at its original height, so y = y0 at that instant. 
Using ay = –9.80 m/s2 and t = 6.00 s, the equation 21

0 0 2y yy y v t a t= + +  gives v0y = 29.4 m/s. When the rock 



2-18   Chapter 2 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

reaches the water, y – y0 = –28.0 m. The equation 2 2
0 02 ( )y y yv v a y y= + −  gives vy = –37.6 m/s, so its speed is 

37.6 m/s. 
EVALUATE:   The final speed is greater than the initial speed because the rock accelerated on its way down 
below the bridge. 

 2.50. IDENTIFY:   The acceleration is not constant, so we must use calculus instead of the standard kinematics 
formulas. 

SET UP:   The general calculus formulas are 0 0

t

x x xv v a dt= + ∫  and 0 0
.

t

xx x v dt= + ∫  First integrate ax to find 

v(t), and then integrate that to find x(t). 

EXECUTE:   Find v(t): 3
0 00 0

( ) (0.0320 m/s )(15.0 s ) .
t t

x x x xv t v a dt v t dt= + = + − −∫ ∫  Carrying out the integral 

and putting in the numbers gives vx(t) = 8.00 m/s – (0.0320 m/s3)[(15.0 s)t – t2/2]. Now use this result to 
find x(t).  

23
0 0 20 0

8.00 m/s (0.0320 m/s )((15.0 s) ) ,
t t t

xx x v dt x t dt+ ⎡ ⎤= + = − −⎣ ⎦∫ ∫  which gives  

x = x0 + (8.00 m/s)t – (0.0320 m/s3)[(7.50 s)t2 – t3/6)]. Using x0 = –14.0 m and t = 10.0 s, we get x = 47.3 m. 
EVALUATE:   The standard kinematics formulas apply only when the acceleration is constant. 

 2.51. IDENTIFY:   The acceleration is not constant, but we know how it varies with time. We can use the 
definitions of instantaneous velocity and position to find the rocket’s position and speed. 

SET UP:   The basic definitions of velocity and position are 0 0
( )

t

y y yv t v a dt= + ∫  and 0 0
.

t

yy y v dt− = ∫  

EXECUTE:   (a) 3 3 2

0 0
( ) (2 80 m/s ) (1 40 m/s )

t t

y yv t a dt tdt t= = . = .∫ ∫  

3 2 3 3
0 0 0

(1 40 m/s ) (0 4667 m/s ) .
t t

yy y v dt t dt t− = = . = .∫ ∫  For 10 0 s,t = . 0 467 m.y y− =  

(b) 0 325 my y− =  so 3 3(0 4667 m/s ) 325 mt. =  and 8 864 s.t = .  At this time 
3 2(1 40 m/s )(8 864 s) 110 m/s.yv = . . =  

EVALUATE:   The time in part (b) is less than 10.0 s, so the given formulas are valid. 
 2.52. IDENTIFY:   The acceleration is not constant so the constant acceleration equations cannot be used. Instead, 

use 0 0

t

x x xv v a dt= + ∫  and 0 0

t

xx x v dt= + ∫ . Use the values of xv  and of x at 1 0 st = .  to evaluate 0xv  and 0.x  

SET UP:   11 ,
1

n nt dt t
n

+=
+∫  for 0.n ≥  

EXECUTE:   (a) 2 3 21
0 0 020

(0 60 m/s ) .
t

x x x xv v tdt v t v tα α= + = + = + .∫ 5 0 m/sxv = .  when 1 0 st = .  gives 

0 4 4 m/s.xv = .  Then, at 2 0 s,t = . 3 24 4 m/s (0 60 m/s )(2 0 s) 6 8 m/s.xv = . + . . = .  

(b) 2 31 1
0 0 0 02 60

( ) .
t

x xx x v t dt x v t tα α= + + = + +∫ 6 0 mx = .  at 1 0 st = .  gives 0 1 4 m.x = .  Then, at 

2 0 s,t = . 3 31
61 4 m (4 4 m/s)(2 0 s) (1 2 m/s )(2 0 s) 11 8 m.x = . + . . + . . = .  

(c) 3 3( ) 1 4 m (4 4 m/s) (0 20 m/s ) .x t t t= . + . + . 3 2( ) 4 4 m/s (0 60 m/s ) .xv t t= . + . 3( ) (1 20 m/s ) .xa t t= .  The 
graphs are sketched in Figure 2.52. 

EVALUATE:   We can verify that x
x

dva
dt

=  and .x
dxv
dt

=  
 

 

Figure 2.52 
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 2.53. (a) IDENTIFY:   Integrate ( )xa t  to find ( )xv t  and then integrate ( )xv t  to find ( ).x t  

SET UP:   0 0

t

x x xv v a dt= +  ∫ , 2
xa At Bt= −  with 31 50 m/sA = .  and 40 120 m/s .B = .  

EXECUTE:   2 2 31 1
0 0 2 30

( )
t

x x xv v At Bt dt v At Bt= + −  = + −∫  

At rest at 0t =  says that 0 0,xv =  so 
2 3 3 2 4 31 1 1 1

2 3 2 3(1 50 m/s ) (0 120 m/s )xv At Bt t t= − = . − .  
3 2 4 3(0 75 m/s ) (0 040 m/s )xv t t= . − .  

SET UP:   0 0

t

xx x v dt− +  ∫  

EXECUTE:   2 3 3 41 1 1 1
0 02 3 6 120

( )
t

x x At Bt dt x At Bt= + −  = + −∫  

At the origin at 0t =  says that 0 0,x =  so 
3 4 3 3 4 41 1 1 1

6 12 6 12(1 50 m/s ) (0 120 m/s )x At Bt t t= − = . − .  
3 3 4 4(0 25 m/s ) (0 010 m/s )x t t= . − .  

EVALUATE:   We can check our results by using them to verify that ( )x
dxv t
dt

=  and ( ) x
x

dva t
dt

= .  

(b) IDENTIFY and SET UP:   At time t, when xv  is a maximum, 0xdv
dt

= .  (Since ,x
x

dva
dt

=  the maximum 

velocity is when 0xa = .  For earlier times xa  is positive so xv  is still increasing. For later times xa  is 
negative and xv  is decreasing.) 

EXECUTE:   0x
x

dva
dt

= =  so 2 0At Bt− =  

One root is 0,t =  but at this time 0xv =  and not a maximum. 

The other root is 
3

4

1 50 m/s 12 5 s
0 120 m/s

At
B

.= = = .
.

 

At this time 3 2 4 3(0 75 m/s ) (0 040 m/s )xv t t= . − .  gives 
3 2 4 3(0 75 m/s )(12 5 s) (0 040 m/s )(12 5 s) 117 2 m/s 78 1 m/s 39 1 m/sxv = . . − . . = . − . = . .  

EVALUATE:   For 12 5 s,t < . 0xa >  and xv  is increasing. For 12 5 s,t > . 0xa <  and xv  is decreasing. 
 2.54. IDENTIFY:   ( )a t  is the slope of the v versus t graph and the distance traveled is the area under the  

v versus t graph. 
SET UP:   The v versus t graph can be approximated by the graph sketched in Figure 2.54 (next page). 
EXECUTE:   (a) Slope 0 for 1 3 ms.a t= = ≥ .  

(b) max Triangle Rectangle
1Area under -  graph (1 3 ms)(133 cm/s) (2 5 ms 1 3 ms)(133 cm/s)
2

h v t A A= ≈ + ≈ . + . − .  ≈  

0 25 cm.  

(c) slopea =  of v-t graph. 5 2133 cm/s(0 5 ms) (1 0 ms) 1 0 10 cm/s .
1 3 ms

a a. ≈ . ≈ = . ×
.

 

(1 5 ms) 0  because the slope is zeroa .  = .  

(d) areah =  under v-t graph. 3
Triangle

1(0 5 ms) (0 5 ms)(33 cm/s) 8 3 10  cm.
2

h A −. ≈ = . = . ×  

2
Triangle

1(1 0 ms) (1 0 ms)(100 cm/s) 5 0 10  cm.
2

h A −. ≈ = .  = . ×  

Triangle Rectangle
1(1 5 ms) (1 3 ms)(133 cm/s) (0 2 ms)(133 cm/s) 0 11 cm.
2

h A A. ≈ + = . + .  = .  
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EVALUATE:   The acceleration is constant until 1 3 ms,t = .  and then it is zero. 2980 cm/s .g =  The 
acceleration during the first 1.3 ms is much larger than this and gravity can be neglected for the portion of 
the jump that we are considering. 

 

 

Figure 2.54 
 

 2.55. IDENTIFY:   The sprinter’s acceleration is constant for the first 2.0 s but zero after that, so it is not constant 
over the entire race. We need to break up the race into segments. 

SET UP:   When the acceleration is constant, the formula 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 applies. The average 

velocity is av- .x
xv
t

∆=
∆

 

EXECUTE:   (a) 0
0

0 10 0 m/s (2 0 s) 10 0 m.
2 2

x xv vx x t+ + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) (i) 40.0 m at 10.0 m/s so time at constant speed is 4.0 s. The total time is 6.0 s, so 

av-
50 0 m 8 33 m/s.
6 0 sx

xv
t

∆ .= = = .
∆ .

 

(ii) He runs 90.0 m at 10.0 m/s so the time at constant speed is 9.0 s. The total time is 11.0 s, so 

av-
100 m 9 09 m/s.
11 0 sxv = = .

.
 

(iii) He runs 190 m at 10.0 m/s so time at constant speed is 19.0 s.  His total time is 21.0 s, so 

av-
200 m 9 52 m/s.
21 0 sxv = = .

.
 

EVALUATE:   His average velocity keeps increasing because he is running more and more of the race at his 
top speed. 

  

 2.56. IDENTIFY:   We know the vertical position of the lander as a function of time and want to use this to find 
its velocity initially and just before it hits the lunar surface. 

SET UP:   By definition, ( ) ,y
dyv t
dt

=  so we can find vy as a function of time and then evaluate it for the 

desired cases. 

EXECUTE:   (a) ( ) 2 .y
dyv t c dt
dt

= = − +  At 0,t = ( ) 60 0 m/s.yv t c= − = − .  The initial velocity is 60.0 m/s 

downward. 
(b) ( ) 0y t =  says 2 0.b ct dt− + =  The quadratic formula says 28 57 s 7 38 s.t = . ± .  It reaches the surface  

at 21 19 s.t = .  At this time, 260 0 m/s 2(1 05 m/s )(21 19 s) 15 5 m/s.yv = − . + . . = − .  

EVALUATE:   The given formula for y(t) is of the form y = y0 + v0yt + 
1
2  at2. For part (a), v0y = −c = −60 m/s. 

 2.57. IDENTIFY:   In time St  the S-waves travel a distance S Sd v t=  and in time Pt  the P-waves travel a distance 

P P.d v t=  
SET UP:   S P 33 st t= +  

EXECUTE:   
S P

1 133 s. 33 s and = 250 km.
3.5 km/s 6.5 km/s

d d d d
v v

⎛ ⎞
= + − =⎜ ⎟

⎝ ⎠
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EVALUATE:   The times of travel for each wave are S 71st =  and P 38 s.t =  
 2.58. IDENTIFY:   The brick has a constant downward acceleration, so we can use the usual kinematics formulas. 

We know that it falls 40.0 m in 1.00 s, but we do not know which second that is. We want to find out how 
far it falls in the next 1.00-s interval. 
SET UP:   Let the +y direction be downward. The final velocity at the end of the first 1.00-s interval will be 
the initial velocity for the second 1.00-s interval. ay = 9.80 m/s2 and the formula 21

0 0 2y yy y v t a t=− +  applies. 
EXECUTE:   (a) First find the initial speed at the beginning of the first 1.00-s interval. Applying the above 
formula with ay = 9.80 m/s2, t = 1.00 s, and y – y0 = 40.0 m, we get v0y = 35.1 m/s. At the end of this 1.00-s 
interval, the velocity is vy = 35.1 m/s + (9.80 m/s2)(1.00 s) = 44.9 m/s. This is v0y for the next 1.00-s 
interval. Using 21

0 0 2y yy y v t a t=− +  with this initial velocity gives y – y0 = 49.8 m. 
EVALUATE:   The distance the brick falls during the second 1.00-s interval is greater than during the first 
1.00-s interval, which it must be since the brick is accelerating downward. 

 2.59. IDENTIFY:   The average velocity is av- .x
xv
t

∆=
∆

 

SET UP:   Let x+  be upward. 

EXECUTE:   (a) av-
1000 m 63 m 197 m/s

4.75 sxv −= =  

(b) av-
1000 m 0 169 m/s

5.90 sxv −= =  

EVALUATE:   For the first 1.15 s of the flight, av-
63 m 0 54.8 m/s.
1.15 sxv −= =  When the velocity isn’t 

constant the average velocity depends on the time interval chosen. In this motion the velocity is increasing. 
 2.60. IDENTIFY:   Use constant acceleration equations to find 0x x−  for each segment of the motion. 

SET UP:   Let x+  be the direction the train is traveling. 
EXECUTE:   0t =  to 14.0 s: 2 2 21 1

0 0 2 2 (1.60 m/s )(14.0 s) 157 m.x xx x v t a t− = + = =  

At 14.0 s,t =  the speed is 2
0 (1.60 m/s )(14.0 s) 22.4 m/s.x x xv v a t= + = =  In the next 70.0 s, 0xa =  and 

0 0 (22.4 m/s)(70.0 s) 1568 m.xx x v t− = = =  

For the interval during which the train is slowing down, 0 22.4 m/s,xv = 23.50 m/sxa = −  and 0.xv =  

2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
0

0 2

0 (22.4 m/s) 72 m.
2 2( 3.50 m/s )

x x

x

v vx x
a
− −− = = =

−
 

The total distance traveled is 157 m 1568 m 72 m 1800 m.+ + =  
EVALUATE:   The acceleration is not constant for the entire motion, but it does consist of constant 
acceleration segments, and we can use constant acceleration equations for each segment. 

 2.61. IDENTIFY:   When the graph of xv  versus t is a straight line the acceleration is constant, so this motion 
consists of two constant acceleration segments and the constant acceleration equations can be used for each 
segment. Since xv  is always positive the motion is always in the x+  direction and the total distance moved 
equals the magnitude of the displacement. The acceleration xa  is the slope of the xv  versus t graph. 
SET UP:   For the 0t =  to 10 0 st = .  segment, 0 4 00 m/sxv = .  and 12 0 m/s.xv = .  For the 10 0 st = .  to 
12 0 s.  segment, 0 12 0 m/sxv = .  and 0.xv =  

EXECUTE:   (a) For 0t =  to 10 0 s,t = . 0
0

4 00 m/s 12 0 m/s (10 0 s) 80 0 m.
2 2

x xv vx x t+ . + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

For 10 0 st = .  to 12 0 s,t = . 0
12 0 m/s 0 (2 00 s) 12 0 m.

2
x x . +⎛ ⎞− = . = .⎜ ⎟

⎝ ⎠
 The total distance traveled is 92.0 m. 

(b) 0 80 0 m 12 0 m 92 0 mx x− = . + . = .  
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(c) For 0t =  to 10.0 s, 212 0 m/s 4 00 m/s 0 800 m/s .
10 0 sxa . − .= = .

.
 For 10 0 st = .  to 12.0 s, 

20 12 0 m/s 6 00 m/s .
2 00 sxa − .= = − .

.
 The graph of xa versus t is given in Figure 2.61. 

EVALUATE:   When xv  and xa  are both positive, the speed increases. When xv  is positive and xa  is 
negative, the speed decreases. 

 

Figure 2.61 
 

 2.62. IDENTIFY:   Apply 21
0 0 2x xx x v t a t− = +  to the motion of each train. A collision means the front of the 

passenger train is at the same location as the caboose of the freight train at some common time. 
SET UP:   Let P be the passenger train and F be the freight train. For the front of the passenger train 0 0x =  
and for the caboose of the freight train 0 200 m.x =  For the freight train F 15 0 m/sv = .  and F 0.a =  For the 

passenger train P 25 0 m/sv = .  and 2
P 0 100 m/s .a = − .  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  for each object gives 21

P P P2x v t a t= +  and F F200 m .x v t= +  Setting 

P Fx x=  gives 21
P P F2 200 m .v t a t v t+ = +  2 2(0 0500 m/s ) (10 0 m/s) 200 m 0.t t. − . + =  The quadratic 

formula gives ( )21 10 0 (10 0) 4(0 0500)(200)  s (100 77 5) s.
0 100

t = + . ± . − . = ± .
.

 The collision occurs  

at 100 s 77 5 s 22 5 s.t = − . = .  The equations that specify a collision have a physical solution (real, 
positive t), so a collision does occur. 
(b) 2 21

P 2(25 0 m/s)(22 5 s) ( 0 100 m/s )(22 5 s) 537 m.x = . . + − . . =  The passenger train moves 537 m before 
the collision. The freight train moves (15 0 m/s)(22 5 s) 337 m.. . =  
(c) The graphs of Fx and Px versus t are sketched in Figure 2.62. 
EVALUATE:   The second root for the equation for t, 177 5 st = . is the time the trains would meet again if 
they were on parallel tracks and continued their motion after the first meeting. 

 

 

Figure 2.62 
 

 2.63. IDENTIFY and SET UP:   Apply constant acceleration kinematics equations. 
Find the velocity at the start of the second 5.0 s; this is the velocity at the end of the first 5.0 s. Then find 

0x x−  for the first 5.0 s. 
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EXECUTE:   For the first 5.0 s of the motion, 0 0,xv = 5 0 st = . .  

0x x xv v a t= +  gives (5 0 s)x xv a= . .  
This is the initial speed for the second 5.0 s of the motion. For the second 5.0 s: 

0 (5 0 s),x xv a= . 5 0 s,t = . 0 200 mx x− = .  
21

0 0 2x xx x v t a t− = +  gives 2 2200 m (25 s ) (12 5 s )x xa a= + .  so 25.333 m/sxa = . 
Use this xa  and consider the first 5.0 s of the motion: 

2 2 21 1
0 0 2 20 (5.333 m/s )(5 0 s) 67 mx xx x v t a t− = + = + . = .  

EVALUATE:   The ball is speeding up so it travels farther in the second 5.0 s interval than in the first.   
 2.64. IDENTIFY:   The insect has constant speed 15 m/s during the time it takes the cars to come together. 

SET UP:   Each car has moved 100 m when they hit. 

EXECUTE:   The time until the cars hit is 100 m 10 s.
10 m/s

=  During this time the grasshopper travels a 

distance of (15 m/s)(10 s) 150 m.=  
EVALUATE:   The grasshopper ends up 100 m from where it started, so the magnitude of his final 
displacement is 100 m. This is less than the total distance he travels since he spends part of the time 
moving in the opposite direction. 

 2.65. IDENTIFY:   Apply constant acceleration equations to each object. 
Take the origin of coordinates to be at the initial position of the truck, as shown in Figure 2.65a. 
Let d be the distance that the car initially is behind the truck, so 0(car)x d= −  and 0(truck) 0x = .  Let  
T be the time it takes the car to catch the truck. Thus at time T the truck has undergone a displacement 

0 60 0 m,x x− = .  so is at 0 60 0 m 60 0 mx x= + . = . .  The car has caught the truck so at time T is also at 
60 0 mx = . .  

 

 

Figure 2.65a 
 

(a) SET UP:   Use the motion of the truck to calculate T: 
0 60 0 m,x x− = . 0 0xv =  (starts from rest), 22 10 m/s ,xa = . t T=  

21
0 0 2x xx x v t a t− = +  

Since 0 0,xv =  this gives 02( )

x

x xt
a
−=  

EXECUTE:   2

2(60 0 m) 7.56 s
2 10 m/s

T .= =
.

 

(b) SET UP:   Use the motion of the car to calculate d: 
0 60 0 m ,x x d− = . + 0 0,xv = 23 40 m/s ,xa = . 7.56 st =  

21
0 0 2x xx x v t a t− = +  

EXECUTE:   2 21
260 0 m (3 40 m/s )(7.56 s)d + . = .  

97.16 m 60 0 m 37.2 md = − . = . 
(c) car: 2

0 0 (3 40 m/s )(7.56 s) 25.7 m/sx x xv v a t= + = + . =  

truck: 2
0 0 (2 10 m/s )(7.56 s) 15.9 m/sx x xv v a t= + = + . =  
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(d) The graph is sketched in Figure 2.65b. 
 

 

Figure 2.65b 
 

EVALUATE:   In part (c) we found that the auto was traveling faster than the truck when they came abreast. 
The graph in part (d) agrees with this: at the intersection of the two curves the slope of the x-t curve for the 
auto is greater than that of the truck. The auto must have an average velocity greater than that of the truck 
since it must travel farther in the same time interval. 

 2.66. IDENTIFY:   The bus has a constant velocity but you have a constant acceleration, starting from rest.  
SET UP:   When you catch the bus, you and the bus have been traveling for the same time, but you have 
traveled an extra 12.0 m during that time interval. The constant-acceleration kinematics formula 

21
0 0 2x xx x v t a t− = +  applies. 

EXECUTE:    Call d the distance the bus travels after you start running and t the time until you catch the 
bus. For the bus we have d = (5.00 m/s)t, and for you we have d + 12.0 m = (1/2)(0.960 m/s2)t2. Solving 
these two equations simultaneously, and using the positive root, gives t = 12.43 s and d = 62.14 m. The 
distance you must run is 12.0 m + 62.14 m = 74.1 m. Your final speed just as you reach the bus is  
vx = (0.960 m/s2)(12.43s) = 11.9 m/s. This might be possible for a college runner for a brief time, but it 
would be highly demanding! 
EVALUATE:   Note that when you catch the bus, you are moving much faster than it is. 

 2.67. IDENTIFY:   Apply constant acceleration equations to each vehicle. 
SET UP:   (a) It is very convenient to work in coordinates attached to the truck. 
Note that these coordinates move at constant velocity relative to the earth. In these coordinates the truck is 
at rest, and the initial velocity of the car is 0 0xv = .  Also, the car’s acceleration in these coordinates is the 
same as in coordinates fixed to the earth. 
EXECUTE:   First, let’s calculate how far the car must travel relative to the truck: The situation is sketched 
in Figure 2.67. 

 

 

Figure 2.67 
The car goes from 0 24 0 mx = − .  to 51 5 mx = . .  So 0 75 5 mx x− = .  for the car. 
Calculate the time it takes the car to travel this distance: 

20 600 m/s ,xa = . 0 0,xv = 0 75 5 m,x x− = . ?t =  
21

0 0 2x xx x v t a t− = +  

0
2

2( ) 2(75 5 m) 15 86 s
0 600 m/sx

x xt
a
− .= = = .

.
 

It takes the car 15.9 s to pass the truck. 
(b) Need how far the car travels relative to the earth, so go now to coordinates fixed to the earth. In these 
coordinates 0 20 0 m/sxv = .  for the car. Take the origin to be at the initial position of the car. 
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0 20 0 m/s,xv = . 20 600 m/s ,xa = . 15 86 s,t = . 0 ?x x− =  
2 2 21 1

0 0 2 2(20 0 m/s)(15 86 s) (0 600 m/s )(15 86 s)x xx x v t a t− = + = . . + . .  

0 317 2 m 75 5 m 393 mx x− = . + . = .  
(c) In coordinates fixed to the earth: 

2
0 20 0 m/s (0 600 m/s )(15 86 s) 29 5 m/sx x xv v a t= + = . + . . = .  

EVALUATE:   In 15.86 s the truck travels 0 (20 0 m/s)(15 86 s) 317 2 mx x− = . . = . .  The car travels 
392 7 m 317 2 m 75 m. − . =  farther than the truck, which checks with part (a). In coordinates attached to 

the truck, for the car 0 0,xv = 9 5 m/sxv = .  and in 15.86 s the car travels 0
0 75 m,

2
x xv vx x t+⎛ ⎞− = =⎜ ⎟

⎝ ⎠
 which 

checks with part (a). 
 
 

 2.68. IDENTIFY:   The acceleration is not constant so the constant acceleration equations cannot be used. Instead, 

use ( ) x
x

dva t
dt

=  and 0 0
( ) .

t

xx x v t dt= + ∫  

SET UP:   11
1

n nt dt t
n

+=
+∫  for 0.n ≥  

EXECUTE:   (a) 2 31
0 0 30

( ) [ ] .
t

x t x t dt x t tα β α β= + − = + −∫ 0x =  at 0t =  gives 0 0x =  and 

3 3 31
3( ) (4 00 m/s) (0 667 m/s ) .x t t t t tα β= − = . − . 3( ) 2 (4 00 m/s ) .x

x
dva t t t
dt

β= = − = − .  

(b) The maximum positive x is when 0xv =  and 0.xa < 0xv =  gives 2 0tα β− =  and 

3

4 00 m/s 1 41 s.
2 00 m/s

t α
β

.= = = .
.

 At this t, xa  is negative. For 1 41 s,t = .  

3 3(4 00 m/s)(1 41 s) (0 667 m/s )(1 41 s) 3 77 m.x = . . − . . = .  
EVALUATE:   After 1 41 st = .  the object starts to move in the x−  direction and goes to x = −∞  as .t → ∞  

 2.69. (a) IDENTIFY and SET UP:   Integrate ( )xa t  to find ( )xv t  and then integrate ( )xv t  to find ( )x t .  We know 

( ) ,xa t tα β= +  with 22 00 m/sα = − .  and 33 00 m/sβ = . . 

EXECUTE:   21
0 0 0 20 0

( )
t t

x x x x xv v a dt v t dt v t tα β α β= +  = + +  = + +∫ ∫  

2 2 31 1 1
0 0 0 0 02 2 60 0

( )
t t

x x xx x v dt x v t t dt x v t t tα β α β= +  = + + +  = + + +∫ ∫  

At 0,t = 0x x= .  

To have 0x x=  at 1 4 00 st = .  requires that 2 31 1
0 1 1 12 6 0xv t t tα β+ + = .  

Thus 2 3 2 21 1 1 1
0 1 16 2 6 2(3 00 m/s )(4 00 s) ( 2 00 m/s )(4 00 s) 4 00 m/sxv t tβ α= − − = − . . − − . . = − . .  

(b) With 0xv  as calculated in part (a) and 4 00 s,t = .  
2 2 3 21 1

0 2 24 00 m/s ( 2 00 m/s )(4 00 s) (3 00 m/s )(4 00 s) 12 0 m/sx xv v t tα β= + + = − . + − . . + . . = + . .  
EVALUATE:   0xa =  at 0 67 st = . .  For 0 67 s,t > . 0xa > .  At 0,t =  the particle is moving in the 

-directionx−  and is speeding up. After 0 67 s,t = . when the acceleration is positive, the object slows 
down and then starts to move in the -directionx+  with increasing speed. 

 2.70. IDENTIFY:   Find the distance the professor walks during the time t it takes the egg to fall to the height of his head. 
SET UP:   Let y+  be downward. The egg has 0 0yv =  and 29 80 m/s .ya = .  At the height of the professor’s 

head, the egg has 0 44 2 m.y y− = .  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 0

2

2( ) 2(44 2 m) 3 00 s.
9 80 m/sy

y yt
a
− .= = = .

.
 The professor walks a 

distance 0 0 (1 20 m/s)(3 00 s) 3 60 m.xx x v t− = = . . = .  Release the egg when your professor is 3.60 m from 
the point directly below you. 
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EVALUATE:   Just before the egg lands its speed is 2(9 80 m/s )(3 00 s) 29 4 m/s.. . = .  It is traveling much 
faster than the professor. 

 2.71. IDENTIFY:   Use the constant acceleration equations to establish a relationship between maximum height 
and acceleration due to gravity and between time in the air and acceleration due to gravity. 
SET UP:   Let y+  be upward. At the maximum height, 0.yv =  When the rock returns to the surface, 

0 0.y y− =  

EXECUTE:   (a) 2 2
0 02 ( )y y yv v a y y= + −  gives 21

02 ,y ya H v= −  which is constant, so E E M M.a H a H=  
2

E
M E 2

M

9 80 m/s 2 64 .
3 71 m/s

aH H H H
a

⎛ ⎞ ⎛ ⎞.= = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

(b) 21
0 0 2y yy y v t a t− = +  with 0 0y y− =  gives 02 ,y ya t v= −  which is constant, so E E M M.a T a T=  

E
M E

M

2 64 .aT T T
a
⎡ ⎤

= = .⎢ ⎥
⎣ ⎦

 

EVALUATE:   On Mars, where the acceleration due to gravity is smaller, the rocks reach a greater height 
and are in the air for a longer time. 

 2.72. IDENTIFY:   Calculate the time it takes her to run to the table and return. This is the time in the air for the 
thrown ball. The thrown ball is in free-fall after it is thrown. Assume air resistance can be neglected. 
SET UP:   For the thrown ball, let y+  be upward. 29 80 m/s .ya = − . 0 0y y− =  when the ball returns to its 
original position. The constant-acceleration kinematics formulas apply. 

EXECUTE:   (a) It takes her 5 50 m 1.833 s
3.00 m/s

. =  to reach the table and an equal time to return, so the total 

time ball is in the air is 3.667 s. For the ball, 0 0,y y− = 3.667 st =  and 29 80 m/s .ya = − .  
21

0 0 2y yy y v t a t− = +  gives 21 1
0 2 2 ( 9 80 m/s )(3.667 s) 18.0 m/s.y yv a t= − = − − . =  

(b) Find 0y y−  when 1.833 s.t =  
2 2 21 1

0 0 2 2(18.0 m/s)(1.833 s) ( 9 80 m/s )(1.833 s) 16.5 m.y yy y v t a t− = + = + − . =  
EVALUATE:   It takes the ball the same amount of time to reach its maximum height as to return from its 
maximum height, so when she is at the table the ball is at its maximum height. Note that this large 
maximum height requires that the act either be done outdoors, or in a building with a very high ceiling. 

 2.73. (a) IDENTIFY:   Consider the motion from when he applies the acceleration to when the shot leaves  
his hand. 
SET UP:   Take positive y to be upward. 0 0,yv = ?,yv = 235 0 m/s ,ya = . 0 0 640 m,y y− = .  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
02 ( ) 2(35 0 m/s )(0 640 m) 6 69 m/sy yv a y y= − = . . = .  

(b) IDENTIFY:   Consider the motion of the shot from the point where he releases it to its maximum height, 
where 0.v =  Take 0y =  at the ground. 

SET UP:   0 2 20 m,y = . ?,y = 29 80 m/sya = − .  (free fall), 0 6 69 m/syv = .  (from part (a), 0yv =  at 

maximum height), 2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   
2 2 2

0
0 2

0 (6 69 m/s) 2 29 m,
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .− = = = .

− .
2 20 m 2 29 m 4 49 my = . + . = . .  

(c) IDENTIFY:   Consider the motion of the shot from the point where he releases it to when it returns to the 
height of his head. Take 0y =  at the ground. 

SET UP:   0 2 20 m,y = . 1 83 m,y = . 29 80 m/sya = − . , 0 6 69 m/s,yv = + . ?t = 21
0 0 2y yy y v t a t− = +  

EXECUTE:   2 21
21 83 m 2 20 m (6 69 m/s) ( 9 80 m/s )t t. − . = . + − . 2 2(6 69 m/s) (4 90 m/s ) ,t t= . − .  

24 90 6 69 0 37 0,t t. − . − . =  with t in seconds. Use the quadratic formula to solve for t: 
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( )21 6 69 (6 69) 4(4 90)( 0 37) 0 6830 0 7362.
9 80

t = . ± . − . − . = . ± .
.

 Since t must be positive, 

0 6830 s 0 7362 s 1 42 s.t = . + . = .  
EVALUATE:   Calculate the time to the maximum height: 0y y yv v a t,= +  so 0( )/y y yt v v a= − =  

2(6 69 m/s)/( 9 80 m/s ) 0 68 s− . − . = . .  It also takes 0.68 s to return to 2.2 m above the ground, for a total 
time of 1.36 s. His head is a little lower than 2.20 m, so it is reasonable for the shot to reach the level of his 
head a little later than 1.36 s after being thrown; the answer of 1.42 s in part (c) makes sense. 

 2.74. IDENTIFY:   The flowerpot is in free-fall. Apply the constant acceleration equations. Use the motion past 
the window to find the speed of the flowerpot as it reaches the top of the window. Then consider the 
motion from the windowsill to the top of the window. 
SET UP:   Let y+  be downward. Throughout the motion 29 80 m/s .ya = + .  The constant-acceleration 
kinematics formulas all apply. 
EXECUTE:   Motion past the window: 0 1 90 m,y y− = . 0 380 s,t = . 29 80 m/s .ya = + . 21

0 0 2y yy y v t a t− = +  

gives 20 1 1
0 2 2

1 90 m (9 80 m/s )(0 380 s) 3.138 m/s.
0 380 sy y

y yv a t
t

− .= − = − . . =
.

 This is the velocity of the 

flowerpot when it is at the top of the window. 
Motion from the windowsill to the top of the window: 0 0,yv = 2 466 m/s,yv = . 29 80 m/s .ya = + .  

2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

(3.138 m/s) 0 0 502 m.
2 2(9 80 m/s )

y y

y

v v
y y

a
− −− = = = .

.
 The top of the window is 

0.502 m below the windowsill. 

EVALUATE:   It takes the flowerpot 0
2

3.138 m/s 0 320 s
9 80 m/s

y y

y

v v
t

a
−

= = = .
.

 to fall from the sill to the top of the 

window. Our result says that from the windowsill the pot falls 0 502 m 1 90 m 2.4 m. + . =  in 
0 320 s 0 380 s 0 700 s.. + . = . 2 2 21 1

0 0 2 2 (9 80 m/s )(0 700 s) 2 4 m,y yy y v t a t− = + = . . = .  which checks. 
 2.75. IDENTIFY:   Two stones are thrown up with different speeds. (a) Knowing how soon the faster one returns 

to the ground, how long it will take the slow one to return? (b) Knowing how high the slower stone went, 
how high did the faster stone go? 
SET UP:   Use subscripts f and s to refer to the faster and slower stones, respectively. Take y+  to be 
upward and 0 0y =  for both stones. 0f 0s3v v= .  When a stone reaches the ground, 0y = .  The constant-

acceleration formulas 21
0 0 2y yy y v t a t= + +  and 2 2

0 02 ( )y y yv v a y y= + −  both apply. 

EXECUTE:   (a) 21
0 0 2y yy y v t a t= + +  gives 02 y

y

v
a

t
= − .  Since both stones have the same ,ya 0f 0s

f s

v v
t t

=  and 

( )0s 1
s f 3

0f

(10 s) 3 3 svt t
v

⎛ ⎞
= = = . .⎜ ⎟

⎝ ⎠
 

(b) Since 0yv =  at the maximum height, then 2 2
0 02 ( )y y yv v a y y= + −  gives 

2
0

2
y

y

v
a

y
= − .  Since both have 

the same ,ya
2 2
0f 0s

f s

v v
y y

=  and 
2

0f
f s

0s

9vy y H
v

⎛ ⎞
= = .⎜ ⎟

⎝ ⎠
 

EVALUATE:   The faster stone reaches a greater height so it travels a greater distance than the slower stone 
and takes more time to return to the ground. 

 2.76. IDENTIFY:   The motion of the rocket can be broken into 3 stages, each of which has constant acceleration, 
so in each stage we can use the standard kinematics formulas for constant acceleration. But the acceleration 
is not the same throughout all 3 stages. 

SET UP:   The formulas 0
0 ,

2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

2
0 0

1 ,
2y yy y v t a t− = +  and 0y y yv v a t= +  apply. 
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EXECUTE:   (a) Let +y be upward. At 25 0 s,t = . 0 1094 my y− =  and 87 5 m/s.yv = .  During the next 10.0 s 

the rocket travels upward an additional distance 
0

0
87 5 m/s 132 5 m/s (10 0 s)

2 2
y yv v

y y t
+⎛ ⎞ . + .⎛ ⎞− = = . =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

1100 m.  The height above the launch pad when the second stage quits therefore is 1094 m 1100 m+ =  

2194 m.  For the free-fall motion after the second stage quits: 
2 2 2

0
0 2

0 (132 5 m/s) 896 m.
2 2( 9 8 m/s )

y y

y

v v
y y

a
− − .− = = =

− .
 

The maximum height above the launch pad that the rocket reaches is 2194 m 896 m 3090 m.+ =  

(b) 2
0 0

1
2y yy y v t a t− = +  gives 2 22194 m (132 5 m/s) (4 9 m/s ) .t t− = . − .  From the quadratic formula the 

positive root is 38 6 s.t = .  
(c) 2

0 132 5 m/s ( 9 8 m/s )(38 6 s) 246 m/s.y y yv v a t= + = . + − . . = −  The rocket’s speed will be 246 m/s just 
before it hits the ground. 
EVALUATE:   We cannot solve this problem in a single step because the acceleration, while constant in 
each stage, is not constant over the entire motion. The standard kinematics equations apply to each stage 
but not to the motion as a whole. 

 2.77. IDENTIFY: The rocket accelerates uniformly upward at 16.0 m/s2 with the engines on. After the engines are 
off, it moves upward but accelerates downward at 9.80 m/s2.  

  SET UP:   The formulas 21
0 0 2y yy y v t a t− = =  and 2 2

0 02 ( )y y yv v a y y= + − both  apply to both parts of the 

motion since the accelerations are both constant, but the accelerations are different in both cases.  Let y+  
be upward.  
EXECUTE:   With the engines on, voy = 0, ay = 16.0 m/s2 upward, and t = T at the instant the engines just 
shut off. Using these quantities, we get  

21
0 0 2y yy y v t a t− = +  = (8.00 m/s2)T2  and vy = v0y + ay t =  (16.0 m/s2)T.  

With the engines off (free fall), the formula 2 2
0 02 ( )y y yv v a y y= + −  for the highest point gives   

y – y0 = (13.06 m/s2)T2, using v0y = (16.0 m/s2)T, vy = 0, and ay = –9.80 m/s2.  
The total height reached is 960 m, so (distance in free-fall) + (distance with engines on) = 960 m. 
Therefore (13.06 m/s2) T2 + (8.00 m/s2) T2 = 960 m, which gives T = 6.75 s. 
EVALUATE:   It we put in 6.75 s for T, we see that the rocket travels considerably farther during free fall 
than with the engines on. 

 2.78. IDENTIFY:   The teacher is in free-fall and falls with constant acceleration 29 80 m/s ,.  downward. The 
sound from her shout travels at constant speed. The sound travels from the top of the cliff, reflects from the 
ground and then travels upward to her present location. If the height of the cliff is h and she falls a distance 
y in 3.0 s, the sound must travel a distance ( )h h y+ −  in 3.0 s. 

SET UP:   Let y+  be downward, so for the teacher 29 80 m/sya = .  and 0 0.yv =  Let 0y =  at the top of  
the cliff. 
EXECUTE:   (a) For the teacher, 2 21

2 (9 80 m/s )(3 0 s) 44 1 m.y = . . = .  For the sound, s( ) .h h y v t+ − =  

( )1 1
s2 2( ) 340 m/s 3 0 s 44 1 m 532 m,h v t y= + = [ ][ . ] + . =  which rounds to 530 m. 

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 2

02 ( ) 2(9 80 m/s )(532 m) 102 m/s.y yv a y y= − = . =  

EVALUATE:   She is in the air for 0
2

102 m/s 10 4 s
9 80 m/s

y y

y

v v
t

a
−

= = = .
.

 and strikes the ground at high speed. 

 2.79. IDENTIFY:   The helicopter has two segments of motion with constant acceleration: upward acceleration for 
10.0 s and then free-fall until it returns to the ground. Powers has three segments of motion with constant 
acceleration: upward acceleration for 10.0 s, free-fall for 7.0 s and then downward acceleration of 22 0 m/s ..  
SET UP:   Let y+  be upward. Let 0y =  at the ground. 
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EXECUTE:   (a) When the engine shuts off both objects have upward velocity 0y y yv v a t= + =  
2(5 0 m/s )(10 0 s) 50 0 m/s. . = .  and are at 

2 2 21 1
0 2 2 (5 0 m/s )(10 0 s) 250 m.y yy v t a t= + = . . =   

For the helicopter, 0yv =  (at the maximum height), 0 50 0 m/s,yv = + . 0 250 m,y =  and 29 80 m/s .ya = − .  

2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (50 0 m/s) 250 m 378 m,
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .= + = + =

− .
 which rounds to 380 m. 

(b) The time for the helicopter to crash from the height of 250 m where the engines shut off can be found 
using 0 50 0 m/s,yv = + .  29 80 m/s ,ya = − .  and 0 250 m.y y− = − 21

0 0 2y yy y v t a t− = +  gives 
2 2250 m (50 0 m/s) (4 90 m/s ) .t t− = . − . 2 2(4 90 m/s ) (50 0 m/s) 250 m 0.t t. − . − = The quadratic formula 

gives ( )21 50 0 (50 0) 4(4 90)(250)  s.
9 80

t = . ± . + .
.

 Only the positive solution is physical, so 13 9 s.t = .  

Powers therefore has free-fall for 7.0 s and then downward acceleration of 22 0 m/s.  for 
13 9 s 7 0 s 6 9 s.. − . = .  After 7.0 s of free-fall he is at 21

0 0 2 250 m (50 0 m/s)(7 0 s)y yy y v t a t− = + = + . . +  
2 21

2 ( 9 80 m/s )(7 0 s) 360 m− . . =  and has velocity 2
0 50 0 m/s ( 9 80 m/s )(7 0 s)x x xv v a t= + = . + − . . =  

18 6 m/s.− .  After the next 6.9 s he is at 21
0 0 2 360 m ( 18 6 m/s)(6 9 s)y yy y v t a t− = + = + − . . +  

2 21
2 ( 2 00 m/s )(6 9 s) 184 m.− . . =  Powers is 184 m above the ground when the helicopter crashes. 

EVALUATE:   When Powers steps out of the helicopter he retains the initial velocity he had in the helicopter 
but his acceleration changes abruptly from 25 0 m/s.  upward to 29 80 m/s.  downward. Without the jet 
pack he would have crashed into the ground at the same time as the helicopter. The jet pack slows his 
descent so he is above the ground when the helicopter crashes. 

 2.80. IDENTIFY:   Apply constant acceleration equations to the motion of the rock. Sound travels at constant speed. 
SET UP:   Let ft  be the time for the rock to fall to the ground and let st  be the time it takes the sound to 
travel from the impact point back to you. f s 8.00 s.t t+ =  Both the rock and sound travel a distance h that 
is equal to the height of the cliff. Take y+  downward for the motion of the rock. The rock has 0 0yv =  and 

29 80 m/s .ya g= = .  

EXECUTE:   (a) For the falling rock, 21
0 0 2y yy y v t a t− = +  gives 21

f2 .h gt=  For the sound, h = vsts. Equating 

these two equations for h and using the fact that f s 8.00 s,t t+ =  we get 21
f2 gt  = vsts = vs(8.00 s – tf). Using  

vs = 330 m/s and g = 9.80 m/s2, we get a quadratic equation. Solving it using the quadratic formula and using 
the positive square root, we get tf = 7.225 s. Therefore 21

f2h gt=  = (1/2)(9.80 m/s2)(7.225 s)2 = 256 m. 

(b) Ignoring sound you would calculate 2 21
2 (9 80 m/s )(8 00 s) 314 m,d = . . =  which is greater than the 

actual distance. So you would have overestimated the height of the cliff. It actually takes the rock less time 
than 8.00 s to fall to the ground. 
EVALUATE:   Once we know h we can calculate that f 7.225 st =  and s 0.775 s.t =  The time for the sound 
of impact to travel back to you is 6% of the total time and should not be neglected for best precision.  

 2.81. (a) IDENTIFY:   We have nonconstant acceleration, so we must use calculus instead of the standard 
kinematics formulas. 
SET UP:    We know the acceleration as a function of time is ax(t) = –Ct , so we can integrate to find the velocity 

and then the x-coordinate of the object. We know that 0 0
( )

t

x x xv t v a dt= + ∫  and 0 0
( ) ( ) .

t

xx t x v t dt= + ∫  

EXECUTE:    (a) We have information about the velocity, so we need to find that by integrating the 
acceleration. 0 0

( ) t
x x xdtv t v a= + ∫  = 21

0 0 20
.t

x xv Ctdt v Ct+ − = −∫  Using the facts that the initial velocity is 

20.0 m/s and  vx = 0 when t = 8.00 s,  we have 0 = 20.0 m/s – C(8.00 s)2/2, which gives C = 0.625 m/s3. 
(b) We need the change in position during the first 8.00 s. Using 0 0

( ) ( )t
xx t x v t dt= + ∫  gives 

( )21
0 20

(20.0 m/s)
t

x x Ct dt=− − +∫  = –Ct3/6 + (20.0 m/s)t 
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Putting in C = 0.625 m/s3 and t = 8.00 s gives an answer of 107 m. 
EVALUATE:   The standard kinematics formulas are of no use in this problem since the acceleration varies 
with time. 

 2.82. IDENTIFY:   Both objects are in free-fall and move with constant acceleration 29 80 m/s ,.  downward. The 
two balls collide when they are at the same height at the same time. 
SET UP:   Let y+  be upward, so 29 80 m/sya = − .  for each ball. Let 0y =  at the ground. Let ball A be the 

one thrown straight up and ball B be the one dropped from rest at height H. 0 0,Ay =  0 .By H=  

EXECUTE:   (a) 21
0 0 2y yy y v t a t− = +  applied to each ball gives 21

0 2Ay v t gt= −  and 21
2 .By H gt= −  

A By y=  gives 2 21 1
0 2 2v t gt H gt− = −  and 

0

.Ht
v

=  

(b) For ball A at its highest point, 0yAv =  and 0y y yv v a t= +  gives 0 .vt
g

=  Setting this equal to the time in 

part (a) gives 0

0

H v
v g

=  and 
2
0 .vH
g

=  

EVALUATE:   In part (a), using 
0

Ht
v

=  in the expressions for Ay  and By  gives 2
0

1 .
2A B
gHy y H
v

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
  

H must be less than 
2
02v

g
 in order for the balls to collide before ball A returns to the ground. This is 

because it takes ball A time 02vt
g

=  to return to the ground and ball B falls a distance 
2

2 01
2

2vgt
g

=  during 

this time. When 
2
02vH

g
=  the two balls collide just as ball A reaches the ground and for H greater than this 

ball A reaches the ground before they collide. 
 2.83. IDENTIFY and SET UP:   Use /xv dx dt=  and /x xa dv dt=  to calculate ( )xv t  and ( )xa t  for each car. Use 

these equations to answer the questions about the motion. 

EXECUTE:   2 ,Ax t tα β= + 2 ,A
Ax

dxv t
dt

α β= = + 2Ax
Ax

dva
dt

β= =  

2 3,Bx t tγ δ= − 22 3 ,B
Bx

dxv t t
dt

γ δ= = − 2 6Bx
Bx

dva t
dt

γ δ= = −  

(a) IDENTIFY and SET UP:   The car that initially moves ahead is the one that has the larger 0xv .  
EXECUTE:   At 0,t = Axv α=  and 0Bxv = .  So initially car A moves ahead. 
(b) IDENTIFY and SET UP:   Cars at the same point implies A Bx x= .  

2 2 3t t t tα β γ δ+ = −  
EXECUTE:   One solution is 0,t =  which says that they start from the same point. To find the other 
solutions, divide by t: 2t t tα β γ δ+ = −  

2 ( ) 0t tδ β γ α+ − + =  

( ) ( )2 21 1( ) ( ) 4 1 60 (1 60) 4(0 20)(2 60) 4 00 s 1 73 s
2 0 40

t β γ β γ δα
δ

= − − ± − − = + . ± . − . . = . ± .
.

 

So A Bx x=  for 0,t = 2 27 st = .  and 5 73 st = . .  
EVALUATE:   Car A has constant, positive xa .  Its xv  is positive and increasing. Car B has 0 0xv =  and xa  
that is initially positive but then becomes negative. Car B initially moves in the -directionx+ but then 
slows down and finally reverses direction. At 2 27 st = .  car B has overtaken car A and then passes it. At 

5 73 s,t = .  car B is moving in the -directionx−  as it passes car A again. 



Motion Along a Straight Line    2-31 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

(c) IDENTIFY:   The distance from A to B is B Ax x− .  The rate of change of this distance is ( )B Ad x x
dt
− .  If 

this distance is not changing, ( ) 0B Ad x x
dt
− = .  But this says 0Bx Axv v− = .  (The distance between A and B is 

neither decreasing nor increasing at the instant when they have the same velocity.) 
SET UP:   Ax Bxv v=  requires 22 2 3t t tα β γ δ+ = −  

EXECUTE:   23 2( ) 0t tδ β γ α+ − + =  

( ) ( )2 21 12( ) 4( ) 12 3 20 4( 1 60) 12(0 20)(2 60)
6 1 20

t β γ β γ δα
δ

= − − ± − − = . ± − . − . .
.

 

2 667 s 1 667 ,t s= . ± .  so Ax Bxv v=  for 1 00 st = .  and 4 33 st = . .  
EVALUATE:   At 1 00 s,t = . 5 00 m/sAx Bxv v= = . .  At 4 33 s,t = . 13 0 m/sAx Bxv v= = . .  Now car B is 
slowing down while A continues to speed up, so their velocities aren’t ever equal again. 
(d) IDENTIFY and SET UP:   Ax Bxa a=  requires 2 2 6 tβ γ δ= −  

EXECUTE:   
2 2

3

2 80 m/s 1 20 m/s 2 67 s
3 3(0 20 m/s ) 

t γ β
δ
− . − .= = = . .

.
 

EVALUATE:   At 0,t = ,Bx Axa a>  but Bxa  is decreasing while Axa  is constant. They are equal at 
2 67 st = .  but for all times after that Bx Axa a< .  

 2.84. IDENTIFY:   Interpret the data on a graph to draw conclusions about the motion of a glider having constant 
acceleration down a frictionless air track, starting from rest at the top. 
SET UP:  The constant-acceleration kinematics formulas apply. Take the +x-axis along the surface of the 
track pointing downward. 

EXECUTE:   (a) For constant acceleration starting from rest, we have 21 .
2 xx a t=  Therefore a plot of x 

versus t2 should be a straight line, and the slope of that line should be ax/2. 
(b) To construct the graph of x versus t2, we can use readings from the graph given in the text to construct a 
table of  values for x and t2, or we could use graphing software if available. The result is a graph similar to 
the one shown in Figure 2.84, which was obtained using software. A graph done by hand could vary 
slightly from this one, depending on how one reads the values on the graph in the text. The graph shown is 
clearly a straight line having slope 3.77 m/s2 and x-intercept 0.0092 m. Using the slope y-intercept form of 
the equation of a straight line, the equation of this line is  x = 3.77t2 + 0.0092, where x is in meters and t in 
seconds. 

 

 

Figure 2.84 
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(c) The slope of the straight line in the graph is ax/2, so ax = 2(3.77 m/s2) = 7.55 m/s2. 
(d) We know the distance traveled is 1.35 m, the acceleration is 7.55 m/s2, and the initial velocity is zero, 
so we use the equation 2 2

0 02 ( )x x xv v a x x= + −  and solve for vx, giving vx = 4.51 m/s.  
EVALUATE:   For constant acceleration in part (d), the average velocity is (4.51 m/s)/2 = 2.25 m/s. With 
this average velocity, the time for the glider to travel 1.35 m is x/vav = (1.35 m)/(2.25 m) = 0.6 s, which is 
approximately the value of t read from the graph in the text for x = 1.35 m. 

 2.85. IDENTIFY:   A ball is dropped from rest and falls from various heights with constant acceleration. Interpret 
a graph of the square of its velocity just as it reaches the floor as a function of its release height. 
SET UP:   Let y+  be downward since all motion is downward. The constant-acceleration kinematics 
formulas apply for the ball. 
EXECUTE:   (a) The equation 2 2

0 02 ( )yy yv v a y y= + −  applies to the falling ball. Solving for y – y0 and using 

v0y = 0 and ay = g, we get 
2

0 .
2

yv
y y

g
− =  A graph of y – y0 versus 2

yv  will be a straight line with slope 1/2g = 

1/(19.6 m/s2) = 0.0510 s2/m. 
(b) With air resistance the acceleration is less than 9.80 m/s2, so the final speed will be smaller. 
(c) The graph will not be a straight line because the acceleration will vary with the speed of the ball. For a 
given release height, vy with air resistance is less than without it. Alternatively, with air resistance the ball 
will have to fall a greater distance to achieve a given velocity than without air resistance. The graph is 
sketched in Figure 2.85. 

 

 

Figure 2.85 
 
EVALUATE:   Graphing y – y0 versus 2

yv  for a set of data will tell us if the acceleration is constant. If the 
graph is a straight line, the acceleration is constant; if not, the acceleration is not constant. 

 2.86. IDENTIFY:   Use data of acceleration and time for a model car to find information about its velocity and 
position.  
SET UP:   From the table of data in the text, we can see that the acceleration is not constant, so the 
constant-acceleration kinematics formlas do not apply. Therefore we must use calculus. The equations 

0 0
( ) t

x x xv t v a dt= + ∫  and 0 0( ) t
xx t x v dt= + ∫  apply. 

EXECUTE:   (a) Figure 2.86a shows the graph of ax versus t. From the graph, we find that the slope of the 
line is –0.5131 m/s3 and the a-intercept is 6.026 m/s2. Using the slope y-intercept equation of a straight 
line, the equation is a(t) = –0.513 m/s3 t + 6.026 m/s2, where t is in seconds and a is in m/s2. 
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Figure 2.86a 
 

(b) Integrate the acceleration to find the velocity, with the initial velocity equal to zero. 

( )2 3
0 00 0

 ( ) 6.026 m/s 0.513 m/st t
x x x xv t v a dt v t dt= + = + −∫ ∫  = 6.026 m/s2 t – 0.2565 m/s3 t2.  

Figure 2.86b shows a sketch of the graph of vx versus t. 
 

 

Figure 2.86b 
 

(c) Putting t = 5.00 s into the equation we found in (b) gives vx = 23.7 m/s. 
(d) Integrate the velocity to find the change in position of the car. 

( ) ( )[ ]2 3 2
0 0 0

6.026 m/s 0.2565 m/stt
xx x v dt t t dt− = = −∫ ∫  = 3.013 m/s2 t2 – 0.0855 m/s3 t3 

At t = 5.00 s, this gives x – x0 = 64.6 m.  
EVALUATE:   Since the acceleration is not constant, the standard kinematics formulas do not apply, so we 
must go back to basic definitions involving calculus. 

 2.87. IDENTIFY:   Apply 21
0 0 2y yy y v t a t− = +  to the motion from the maximum height, where 0 0.yv =  The time 

spent above max/2y  on the way down equals the time spent above max/2y  on the way up. 

SET UP:   Let y+  be downward. .ya g= 0 max/2y y y− =  when he is a distance max/2y  above the floor. 

EXECUTE:   The time from the maximum height to max/2y above the floor is given by 21
max 12/2 .y gt=  The 

time from the maximum height to the floor is given by 21
max tot2y gt=  and the time from a height of max/2y  

to the floor is 2 tot 1.t t t= −  

max1

2 max max

2 /22 2 4.8.
/2 2 1

yt
t y y

= = =
− −

 

EVALUATE:   The person spends over twice as long above max/2y  as below max/2.y  His average speed is 
less above max/2y  than it is when he is below this height. 
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 2.88. IDENTIFY:   Apply constant acceleration equations to the motion of the two objects, the student and the bus. 
SET UP:   For convenience, let the student’s (constant) speed be 0v  and the bus’s initial position be 0x .  
Note that these quantities are for separate objects, the student and the bus. The initial position of the 
student is taken to be zero, and the initial velocity of the bus is taken to be zero. The positions of the 
student 1x  and the bus 2x  as functions of time are then 1 0x v t=  and 2

2 0 (1/2)x x at= + .  

EXECUTE:   (a) Setting 1 2x x= and solving for the times t gives ( )2
0 0 0

1 2 .t v v ax
a

= ± −  

( )2 2
2

1 5 0 m/s (5 0 m/s) 2(0 170 m/s )(40 0 m) 9 55 s and 49 3 s.
0 170 m/s

t = .  ± .  − .  . = . .
.  

 

The student will be likely to hop on the bus the first time she passes it (see part (d) for a discussion of the 
later time). During this time, the student has run a distance 0 (5 m/s)(9 55 s) 47 8 mv t =  . = . .  

(b) The speed of the bus is 2(0 170 m/s )(9 55 s) 1 62 m/s.. . = .  

(c) The results can be verified by noting that the x lines for the student and the bus intersect at two points, 
as shown in Figure 2.88a. 
(d) At the later time, the student has passed the bus, maintaining her constant speed, but the accelerating 
bus then catches up to her. At this later time the bus’s velocity is 2(0 170 m/s )(49 3 s) 8 38 m/s.  . = .  .  

(e) No; 2
0 02 ,v ax<  and the roots of the quadratic are imaginary. When the student runs at 3 5 m/s,.    

Figure 2.88b shows that the two lines do not intersect. 
(f) For the student to catch the bus, 2

0 02v ax> .  And so the minimum speed is 22(0 170 m/s )(40 m/s).   =  

3 688 m/s.  .  She would be running for a time 2

3 69 m/s 21 7 s,
0 170 m/s

.  = .
.

 and covers a distance (3 688 m/s)(21 7 s).  . =  

80 0 m. .  However, when the student runs at 3 688 m/s,.   the lines intersect at one point, at 80 m,x =  as 
shown in Figure 2.88c. 
EVALUATE:   The graph in part (c) shows that the student is traveling faster than the bus the first time they 
meet but at the second time they meet the bus is traveling faster. 

2 tot 1t t t= −  
 

 

Figure 2.88 
 
 

 2.89. IDENTIFY:   Apply constant acceleration equations to both objects. 
SET UP:   Let y+  be upward, so each ball has .ya g= −  For the purpose of doing all four parts with the 

least repetition of algebra, quantities will be denoted symbolically. That is, let 2
1 0

1 ,
2

y h v t gt= + −  

2
2 0

1 ( ) .
2

y h g t t= − −  In this case, 0 1 00 s.t = .  
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EXECUTE:   (a) Setting 1 2 0,y y= =  expanding the binomial 2
0( )t t−  and eliminating the common term 

2 21 1
0 0 02 2 yields .gt v t gt t gt= −  Solving for t: 

21
0 02

0 0 0 0

1 .
2 1 /( )

gt tt
gt v v gt

⎛ ⎞
= = ⎜ ⎟− −⎝ ⎠

 

Substitution of this into the expression for 1y  and setting 1 0y =  and solving for h as a function of 0v  

yields, after some algebra, 
( )21

0 0221
02 2

0 0( )
gt v

h gt
gt v

−
= .

−
 Using the given value 2

0 1 00 s and 9 80 m/s ,t g= . = .   

2

0

0

4 9 m/s20 0 m (4 9 m)
9 8 m/s

vh
v

⎛ ⎞.  −= . = . .⎜ ⎟.  −⎝ ⎠
 

This has two solutions, one of which is unphysical (the first ball is still going up when the second is 
released; see part (c)). The physical solution involves taking the negative square root before solving for 0,v  
and yields 8 2 m/s.  .  The graph of y versus t for each ball is given in Figure 2.89. 
(b) The above expression gives for (i) 0.411 m and for (ii) 1.15 km. 
(c) As 0v  approaches 9 8 m/s,.   the height h becomes infinite, corresponding to a relative velocity at the 
time the second ball is thrown that approaches zero. If 0 9 8 m/s,v > .   the first ball can never catch the 
second ball. 
(d) As 0v  approaches 4.9 m/s, the height approaches zero. This corresponds to the first ball being closer 
and closer (on its way down) to the top of the roof when the second ball is released. If 0 4 9 m/s,v < .   the 
first ball will already have passed the roof on the way down before the second ball is released, and the 
second ball can never catch up. 
EVALUATE:   Note that the values of 0v in parts (a) and (b) are all greater than minv  and less than max.v  

 

 

Figure 2.89 
 

 2.90. IDENTIFY:   We know the change in velocity and the time for that change. We can use these quantities to 
find the average acceleration. 
SET UP:  The average acceleration is the change in velocity divided by the time for that change. 
EXECUTE:   3 2

av 0( )/ (0.80 m/s 0)/(250 10 s) 32 m/s ,a v v t −= − = − × =  which is choice (c). 
EVALUATE:   This is about 1/3 the acceleration due to gravity, which is a reasonable acceleration for an 
organ. 

 2.91. IDENTIFY:   The original area is divided into two equal areas. We want the diameter of these two areas, 
assuming the original and final areas are circular. 
SET UP:   The area A of a circle or radius r is A = πr2 and the diameter d is d = 2r. Ai = 2Af, and r = d/2, 
where Af is the area of each of the two arteries. 
EXECUTE:   Call d the diameter of each artery. Ai = π(da/2)2 = 2[π(d/2)2], which gives a/ 2,d d=  which is 
choice (b). 
EVALUATE:   The area of each artery is half the area of the aorta, but the diameters of the arteries are not 
half the diameter of the aorta. 

 2.92. IDENTIFY:   We must interpret a graph of blood velocity during a heartbeat as a function of time. 
SET UP:   The instantaneous acceleration of a blood molecule is the slope of the velocity-versus-time 
graph. 
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EXECUTE:   The magnitude of the acceleration is greatest when the slope of the v-t graph is steepest. That 
occurs at the upward sloping part of the graph, around t = 0.10 s, which makes choice (d) the correct one. 
EVALUATE:   The slope of the given graph is positive during the first 0.25 s and negative after that. Yet the 
velocity is positive throughout. Therefore the blood is always flowing forward, but it is increasing in speed 
during the first 0.25 s and slowing down after that. 
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 3.1. IDENTIFY and SET UP:   Use =
−

G
G G
2 1

av

2 1
t t

v
r – r

 in component form. 

EXECUTE:   (a) 2 1
av-

2 1

5.3 m 1.1 m 1.4 m/s
3.0 s 0x

x x x
v

t t t
∆ − −= = = =
∆ − −

 

2 1
av-

2 1

0.5 m 3.4 m 1.3 m/s
3.0 s 0y

y y y
v

t t t
∆ − − −= = = = −
∆ − −

 

(b)  
av

av

( ) 1 3 m/stan 0 9286
( ) 1 4 m/s

y

x

v

v
α − .= = = − .

.
 

360 42 9 317α = ° − . ° = °  
2 2

av av av( ) ( )x yv v v= +  
2 2

av (1 4 m/s) ( 1 3 m/s) 1 9 m/sv = . + − . = .  

Figure 3.1   
 
 

EVALUATE:   Our calculation gives that av
Gv  is in the 4th quadrant. This corresponds to increasing x and 

decreasing y. 

 3.2. IDENTIFY:   Use =
−

G
G G
2 1

av

2 1
t t

v
r – r

 in component form. The distance from the origin is the magnitude of .Gr  

SET UP:   At time 1,t 1 1 0.x y= =  
EXECUTE:   (a) av-( ) ( 3.8 m/s)(12.0 s) 45.6 mxx v t= ∆ = −  = −   and av-( ) (4.9 m/s)(12.0 s) 58.8 m.yy v t= ∆ =  =  

(b) 2 2 2 2( 45 6 m) (58 8 m) 74 4 m.r x y= + = − . + . = .  
EVALUATE:   ∆Gr  is in the direction of av.Gv  Therefore, x∆  is negative since av-xv  is negative and y∆  is 
positive since av-yv  is positive. 

 3.3. (a) IDENTIFY and SET UP:   From Gr  we can calculate x and y for any t. 

Then use =
−

G
G G
2 1

av

2 1
t t

v
r – r

 in component form. 

EXECUTE:   2 2 ˆ ˆ[4.0 cm (2.5 cm/s ) ] (5.0 cm/s)t t= + +Gr i j  

At 0,t =  ˆ(4 0 cm)= . .Gr i  

At 2 0 s,t = .  ˆ ˆ(14 0 cm) (10 0 cm) .= . + .Gr i j  

MOTION IN TWO OR THREE DIMENSIONS 

3
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av-
10.0 cm 5.0 cm/s.

2.0 sx
x

v
t

∆= = =
∆

 

av-
10.0 cm 5.0 cm/s.

2.0 sy
y

v
t

∆= = =
∆

 
 

 2 2
av av av( ) ( ) 7 1 cm/sx yv v v= + = .  

av

av

( )
tan 1 00

( )
y

x

v

v
α = = .  

45 .θ = °  

Figure 3.3a   
 

EVALUATE:   Both x and y increase, so av
Gv  is in the 1st quadrant. 

(b) IDENTIFY and SET UP:   Calculate Gr  by taking the time derivative of ( ).t
Gr  

EXECUTE:   2 ˆ ˆ([5.0 cm/s ] ) (5.0 cm/s)d
t

dt
= = +
GG rv i j  

0:t =  0,xv =  5 0 cm/s;yv = .  5 0 cm/sv = .  and 90θ = °  

1 0 s:t = .  5 0 cm/s,xv = .  5 0 cm/s;yv = .  7 1 cm/sv = .  and 45θ = °  

2 0 s:t = .  10 0 cm/s,xv = .  5 0 cm/s;yv = .  11 cm/sv =  and 27θ = °  
(c) The trajectory is a graph of y versus x. 

2 24 0 cm (2 5 cm/s ) ,x t= . + .  (5.0 cm/s)y t=  
For values of t between 0 and 2.0 s, calculate x and y and plot y versus x. 

 

 

Figure 3.3b 
 

EVALUATE:   The sketch shows that the instantaneous velocity at any t is tangent to the trajectory. 
 3.4. IDENTIFY:   Given the position vector of a squirrel, find its velocity components in general, and at a 

specific time find its velocity components and the magnitude and direction of its position vector and 
velocity. 
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SET UP:   vx = dx/dt and vy = dy/dt; the magnitude of a vector is 2 2( ).x yA A A= +  

EXECUTE:   (a) Taking the derivatives gives 2( ) 0 280 m/s (0 0720 m/s )xv t t= . + .  and 
3 2( ) (0.0570 m/s ) .yv t t=  

(b) Evaluating the position vector at 5 00 st = .  gives 2 30 mx = .  and 2 375 m,y = .  which gives 
3 31 m.r = .  

(c) At 5 00 s,t = .  0 64 m/s,xv = + .  1 425 m/s,yv = .  which gives 1 56 m/sv = .  and 1 425tan
0 64

θ .=
.

 so the 

direction is o65 8θ = .  (counterclockwise from +x-axis) 
EVALUATE:   The acceleration is not constant, so we cannot use the standard kinematics formulas. 

 3.5. IDENTIFY and SET UP:   Use Eq. =
−

G G
G 2 1

av

2 1
t t

v – v
a  in component form to calculate av-xa  and av- .ya  

EXECUTE:   (a) The velocity vectors at 1 0t =  and 2 30 0 st = .  are shown in Figure 3.5a. 
 

 

Figure 3.5a 
 

(b) 22 1
av-

2 1

170 m/s 90 m/s 8 67 m/s
30 0 s

x x x
x

v v v
a

t t t
∆ − − −= = = = − .
∆ − .

 

2 1 2
av-

2 1

40 m/s 110 m/s 2.33 m/s
30.0 s

y y y
y

v v v
a

t t t

∆ − −= = = = −
∆ −

 

 

(c) 2 2 2
av- av-( ) ( ) 8 98 m/sx ya a a= + = .  

2
av-

2
av-

2.33 m/stan 0.269
8.67 m/s

y

x

a

a
α −= = =

−
 

15 180 195α = ° + ° = °  

Figure 3.5b  
 

EVALUATE:   The changes in xv  and yv  are both in the negative x or y direction, so both components of 

av
Ga  are in the 3rd quadrant. 

 3.6. IDENTIFY:   Use =
−

G G
G 2 1

av

2 1
t t

v – v
a  in component form. 

SET UP:   2 2 2 2(0.45 m/s )cos31.0 0.39 m/s , (0.45 m/s )sin31.0 0.23 m/sx ya a=  ° =  =  ° =   

EXECUTE:   (a) av-
x

x
v

a
t

∆=
∆

 and 22.6 m/s (0.39 m/s )(10.0 s) 6.5 m/s.xv =  +  =   av-
y

y
v

a
t

∆
=

∆
 and 

21.8 m/s (0.23 m/s )(10.0 s) 0.52 m/s.yv = −  +  =   
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(b) 2 2(6 5 m/s) (0 52 m/s) 6 52 m/s,v = .  + .  = .   at an angle of 0.52arctan 4.6
6.5

⎛ ⎞ = °⎜ ⎟
⎝ ⎠

 counterclockwise from 

the +x-axis. 
(c) The velocity vectors 1

Gv  and 2
Gv  are sketched in Figure 3.6. The two velocity vectors differ in 

magnitude and direction. 
EVALUATE:   1

Gv  is at an angle of 35°  below the +x-axis and has magnitude 1 3 2 m/s,v = .  so 2 1v v>  and 
the direction of 2

Gv  is rotated counterclockwise from the direction of 1.Gv  
 

 

Figure 3.6 
 

 3.7. IDENTIFY and SET UP:   Use d
dt

=
GG rv  and =

G
G

d

dt
a

v
 to find ,xv  ,yv  ,xa  and ya  as functions of time. The 

magnitude and direction of Gr  and Ga  can be found once we know their components. 
EXECUTE:   (a) Calculate x and y for t values in the range 0 to 2.0 s and plot y versus x. The results are 
given in Figure 3.7a. 

 

 

Figure 3.7a 
 

(b) x
dx

v
dt

α= =  2y
dy

v t
dt

β= = −  

0x
x

dv
a

dt
= =  2y

y
dv

a
dt

β= = −  

Thus ˆ ˆ2 tα β= −Gv i j ,  ˆ2β= −Ga j  

(c) velocity: At 2 0 s,t = .  2 4 m/s,xv = .  22(1.2 m/s )(2.0 s) 4.8 m/syv = − = −  
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2 2 5 4 m/sx yv v v= + = .  

4 8 m/stan 2 00
2 4 m/s

y

x

v

v
α − .= = = − .

.
 

63 4 360 297α = − . ° + ° = ° 

Figure 3.7b  
 

acceleration:   At 2 0 s,t = .  0,xa =  2 22 (1 2 m/s ) 2 4 m/sya = − . = − .  

 

 
2 2 22 4 m/sx ya a a= + = .  

22.4 m/stan
0

y

x

a

a
β −= = = −∞  

270β = °  

Figure 3.7c  
 
 

EVALUATE:   (d) Ga  has a component a&  in the same 
direction as ,Gv  so we know that v is increasing (the bird 
is speeding up). Ga  also has a component a⊥  
perpendicular to ,Gv  so that the direction of Gv  is 
changing; the bird is turning toward the -directiony−  
(toward the right) 

Figure 3.7d  

 

Gv  is always tangent to the path; Gv  at 2 0 st = .  shown in part (c) is tangent to the path at this t, conforming 
to this general rule. Ga  is constant and in the -direction;y−  the direction of Gv  is turning toward the 

-directiony− .  
 3.8. IDENTIFY:   Use the velocity components of a car (given as a function of time) to find the acceleration of 

the car as a function of time and to find the magnitude and direction of the car’s velocity and acceleration 
at a specific time. 

SET UP:   /x xa dv dt=  and / ;y ya dv dt=  the magnitude of a vector is 2 2( ).x yA A A= +  

EXECUTE:   (a) Taking the derivatives gives 3( ) ( 0.0360 m/s )xa t t= −  and 2( ) 0 550 m/s .ya t = .  

(b) Evaluating the velocity components at 8 00 st = .  gives 3 848 m/sxv = .  and 6 40 m/s,yv = .  which gives 

7 47 m/s.v = .  The direction is 6 40tan
3 848

θ .=
.

 so o59 0θ = . (counterclockwise from +x-axis). 
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(c) Evaluating the acceleration components at 8 00 st = .  gives 20 288 m/sxa = .2  and 20 550 m/s ,ya = .  

which gives 20 621 m/s .a = .  The angle with the +y axis is given by 0 288tan ,
0 550

θ .=
.

 so o27 6 .θ = .  The 

direction is therefore o118  counterclockwise from +x-axis. 
EVALUATE:   The acceleration is not constant, so we cannot use the standard kinematics formulas. 

 3.9. IDENTIFY:   The book moves in projectile motion once it leaves the tabletop. Its initial velocity is 
horizontal. 
SET UP:   Take the positive y-direction to be upward. Take the origin of coordinates at the initial position 
of the book, at the point where it leaves the table top. 

 

 
x-component: 

0,xa =  0 1.10 m/s,xv =  
0.480 st =  

y-component: 
29.80 m/s ,ya = −  

0 0,yv =  
0.480 st =  

Figure 3.9a  
 
 

Use constant acceleration equations for the x and y components of the motion, with 0xa =  and .ya g= −  

EXECUTE:   (a) 0 ?y y− =  
2 2 21 1

0 0 2 20 ( 9.80 m/s )(0.480 s) 1.129 m.y yy y v t a t− = + = + − = −  The tabletop is therefore 1.13 m above 

the floor. 
(b) 0 ?x x− =  

21
0 0 2 (1.10 m/s)(0.480 s) 0 0.528 m.x xx x v t a t− = + = + =  

(c) 0 1 10 m/sx x xv v a t= + = .  (The x-component of the velocity is constant, since 0.)xa =  
2

0 0 ( 9.80 m/s )(0.480 s) 4.704 m/sy y yv v a t= + = + − = −  
 

2 2 4.83 m/sx yv v v= + =  

4.704 m/stan 4.2764
1 10 m/s

y

x

v

v
α −= = = −

.
 

76.8α = − °  
Direction of Gv  is 76.8°  below the horizontal 

Figure 3.9b  
 

(d) The graphs are given in Figure 3.9c. 
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Figure 3.9c 
 

EVALUATE:   In the x-direction, 0xa =  and xv  is constant. In the y-direction, 29 80 m/sya = − .  and yv  is 

downward and increasing in magnitude since ya  and yv  are in the same directions. The x and y motions 
occur independently, connected only by the time. The time it takes the book to fall 1.13 m is the time it 
travels horizontally. 

 3.10. IDENTIFY:   The person moves in projectile motion. She must travel 1.75 m horizontally during the time 
she falls 9.00 m vertically. 
SET UP:   Take y+  downward. 0,xa = 29.80 m/s .ya = + 0 0,xv v= 0 0.yv =  

EXECUTE:   Time to fall 9.00 m: 21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(9 00 m) 1 36 s.

9 80 m/sy

y y
t

a
− .= = = .

.
 

Speed needed to travel 1.75 m horizontally during this time: 21
0 0 2x xx x v t a t− = +  gives 

0
0 0

1 75 m 1 29 m/s.
1 36 sx

x x
v v

t
− .= = = = .

.
 

EVALUATE:   If she increases her initial speed she still takes 1.36 s to reach the level of the ledge, but has 
traveled horizontally farther than 1.75 m. 

 3.11. IDENTIFY:   Each object moves in projectile motion. 
SET UP:   Take y+  to be downward. For each cricket, 0xa =  and 29 80 m/s .ya = + .  For Chirpy, 

0 0 0.x yv v= =  For Milada, 0 0 950 m/s,xv = .  0 0.yv =  
EXECUTE:   Milada’s horizontal component of velocity has no effect on her vertical motion. She also 
reaches the ground in 2.70 s. 21

0 0 2 (0 950 m/s)(2.70 s) 2.57 m.x xx x v t a t− = + = . =  

EVALUATE:   The x and y components of motion are totally separate and are connected only by the fact that 
the time is the same for both. 

 3.12. IDENTIFY:   The football moves in projectile motion. 
SET UP:   Let y+  be upward. 0,xa =  .ya g= −  At the highest point in the trajectory, 0.yv =  

EXECUTE:   (a) 0 .y y yv v a t= +  The time t is 0
2

12 0 m s 1 224 s,
9 80 m/s

yv /
g

.  = = .
.  

 which we round to 1.22 s. 

(b) Different constant acceleration equations give different expressions but the same numerical result: 
2
021 1

02 2 7 35 m.
2

y
y

v
gt v t

g
= = = .  

(c) Regardless of how the algebra is done, the time will be twice that found in part (a), which is  
2(1.224 s) = 2.45 s. 
(d) 0,xa =  so 0 0 (20 0 m/s)(2 45 s) 49 0 m.xx x v t− = = . . = .  
(e) The graphs are sketched in Figure 3.12 (next page).  
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EVALUATE:   When the football returns to its original level, 20 0 m/sxv = .  and 12 0 m/s.yv = − .  

 

Figure 3.12 
 

 3.13. IDENTIFY:   The car moves in projectile motion. The car travels 21 3 m 1 80 m 19 5 m. − . = . downward 
during the time it travels 48.0 m horizontally. 
SET UP:   Take y+  to be downward. 0,xa =  29 80 m/s .ya = + .  0 0,xv v=  0 0.yv =  
EXECUTE:   (a) Use the vertical motion to find the time in the air: 

21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(19 5 m) 1 995 s

9 80 m/sy

y y
t

a
− .= = = .

.
 

Then 21
0 0 2x xx x v t a t− = +  gives 0

0 0
48 0 m 24.1 m/s.
1 995 sx

x x
v v

t
− .= = = =

.
 

(b) 24.06 m/sxv =  since 0.xa =  0 19 55 m/s.y y yv v a t= + = − .  2 2 31.0 m/s.x yv v v= + =  

EVALUATE:   Note that the speed is considerably less than the algebraic sum of the x- and y-components of 
the velocity. 

 3.14. IDENTIFY:   Knowing the maximum reached by the froghopper and its angle of takeoff, we want to find its 
takeoff speed and the horizontal distance it travels while in the air. 
SET UP:   Use coordinates with the origin at the ground and y+  upward. 0,xa =  29 80 m/sya = − . .  At the 

maximum height 0yv = .  The constant-acceleration formulas 2 2
0 02 ( )y y yv v a y y= + −  and 

21
0 0 2y yy y v t a t− = +  apply. 

EXECUTE:   (a) 2 2
0 02 ( )y y yv v a y y= + −  gives 

2
0 02 ( ) 2( 9.80 m/s )(0.587 m) 3.39 m/s.y yv a y y= − − = − − = 0 0 0sinyv v θ=  so 

0
0

0

3 39 m/s 4 00 m/s.
sin sin58 0

yv
v

θ
.= = = .

. °
 

(b) Use the vertical motion to find the time in the air. When the froghopper has returned to the ground, 

0 0y y− = .  21
0 0 2y yy y v t a t− = +  gives 0

2
2 2(3.39 m/s) 0.692 s.

9.80 m/s
y

y

v
t

a
= − = − =

−
 

Then 21
0 0 0 02 ( cos ) (4.00 m/s)(cos 58.0 )(0.692 s) 1.47 m.x xx x v t a t v tθ− = + = = ° =  

EVALUATE:   0yv =  when 0
2

3 39 m/s 0 346 s
9 80 m/s

y

y

v
t

a
.= − = − = . .

− .
 The total time in the air is twice this. 

 3.15. IDENTIFY:   The ball moves with projectile motion with an initial velocity that is horizontal and has 
magnitude 0.v  The height h of the table and 0v  are the same; the acceleration due to gravity changes from 

2
E 9 80 m/sg = .  on earth to Xg  on planet X. 

SET UP:   Let x+  be horizontal and in the direction of the initial velocity of the marble and let y+  be 
upward. 0 0,xv v=  0 0,yv =  0,xa =  ,ya g= −  where g is either Eg  or X.g  

EXECUTE:   Use the vertical motion to find the time in the air: 0 .y y h− = −  21
0 0 2y yy y v t a t− = +  gives 

2 .h
t

g
=  Then 21

0 0 2x xx x v t a t− = +  gives 0 0 0
2 .x

h
x x v t v

g
− = =  0x x D− =  on earth and 2.76D on 
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Planet X. 0 0( ) 2 ,x x g v h− =  which is constant, so E X2 76 .D g D g= .  

2E
X E2 0 131 1 28 m/s .

(2 76)
g

g g= = . = .
.

 

EVALUATE:   On Planet X the acceleration due to gravity is less, it takes the ball longer to reach the floor 
and it travels farther horizontally. 

 3.16. IDENTIFY:   The shell moves in projectile motion. 
SET UP:   Let x+  be horizontal, along the direction of the shell’s motion, and let y+  be upward. 0,xa =  

29.80 m/s .ya = −  

EXECUTE:   (a) 0 0 0cos (40.0 m/s)cos 60.0 20.0 m/s,xv v α= = =°  

0 0 0sin (40.0 m/s)sin 60.0 34.6 m/s.yv v α= = =°  

(b) At the maximum height 0.yv =  0y y yv v a t= + gives 0
2

0 34.6 m/s 3.53 s.
9.80 m/s

y y

y

v v
t

a
− −= = =

−
 

(c) 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (34.6 m/s) 61.2 m.
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −− = = =

−
 

(d) The total time in the air is twice the time to the maximum height, so 
21

0 0 2 (20.0 m/s)(2)(3.53 s) 141 m.x xx x v t a t− = + = =  
(e) At the maximum height, 0 20.0 m/sx xv v= = and 0.yv =  At all points in the motion, 0xa = and 

29.80 m/s .ya = −  

EVALUATE:   The equation for the horizontal range R derived in the text is 
2
0 0sin 2 .v

R
g

α=  This gives 

2

2

(40.0 m/s) sin(120.0 ) 141 m,
9.80 m/s

R = =°  which agrees with our result in part (d). 

 3.17. IDENTIFY:   The baseball moves in projectile motion. In part (c) first calculate the components of the 
velocity at this point and then get the resultant velocity from its components. 
SET UP:   First find the x- and y-components of the initial velocity. Use coordinates where the 

-directiony+  is upward, the -directionx+  is to the right and the origin is at the point where the baseball 
leaves the bat. 

 

0 0 0cos (30 0 m/s) cos36 9 24 0 m/sxv v α= = . . ° = .  

0 0 0sin (30 0 m/s) sin36 9 18 0 m/syv v α= = . . ° = .  

Figure 3.17a  
 

Use constant acceleration equations for the x and y motions, with 0xa =  and ya g= − .  
EXECUTE:   (a) y-component (vertical motion): 

0 10 0 m,y y− = + .  0 18 0 m/s,yv = .  29 80 m/s ,ya = − .  ?t =  
21

0 0 2y yy y v a t− = +  
2 210.0 m (18.0 m/s) (4.90 m/s )t t= −  

2 2(4.90 m/s ) (18.0 m/s) 10.0 m 0t t− + =  
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Apply the quadratic formula: 21
9.80 18 0 ( 18 0) 4 (4 90)(10 0)  s (1 837 1 154) st ⎡ ⎤= . ± − . − . . = . ± .⎢ ⎥⎣ ⎦

 

The ball is at a height of 10.0 above the point where it left the bat at 1 0 683 st = .  and at 2 2 99 st = . .  At the 
earlier time the ball passes through a height of 10.0 m as its way up and at the later time it passes through 
10.0 m on its way down. 
(b) 0 24 0 m/s,x xv v= = + .  at all times since 0xa = .  

0y y yv v a t= +  

1 0 683 s:t = .  218.0 m/s ( 9.80 m/s )(0.683 s) 11.3 m/s.yv = + + − = +  ( yv  is positive means that the ball is 

traveling upward at this point.) 

2 2 99 s:t = .  218.0 m/s ( 9.80 m/s )(2.99 s) 11.3 m/s.yv = + + − = −  ( yv  is negative means that the ball is 

traveling downward at this point.) 
 (c) 0 24 0 m/sx xv v= = .  
Solve for :yv  

?,yv =  0 0y y− =  (when ball returns to height where motion started), 
29 80 m/s ,ya = − .  0 18 0 m/syv = + .  

2 2
0 02 ( )y y yv v a y y= + −  

0 18 0 m/sy yv v= − = − .  (negative, since the baseball must be traveling downward at this point) 
Now solve for the magnitude and direction of .Gv  

 

2 2
x yv v v= +  

2 2(24 0 m/s) ( 18 0 m/s) 30 0 m/sv = . + − . = .
18 0 m/stan

24 0 m/s
y

x

v

v
α − .= =

.
 

36.9 ,α = − °  36 9. °  below the horizontal 

Figure 3.17b  
 

The velocity of the ball when it returns to the level where it left the bat has magnitude 30.0 m/s and is 
directed at an angle of 36 9. °  below the horizontal. 
EVALUATE:   The discussion in parts (a) and (b) explains the significance of two values of t for which 

0 10 0 my y− = + . .  When the ball returns to its initial height, our results give that its speed is the same as its 
initial speed and the angle of its velocity below the horizontal is equal to the angle of its initial velocity 
above the horizontal; both of these are general results. 

 3.18. IDENTIFY:   The shot moves in projectile motion. 
SET UP:   Let y+  be upward. 
EXECUTE:   (a) If air resistance is to be ignored, the components of acceleration are 0 horizontally and 

29 80 m/sg− = − .  vertically downward. 
(b) The x-component of velocity is constant at (12 0 m/s)cos51 0 7 55 m/s.xv = . . ° = .  The y-component is 

0 (12 0 m/s) sin51 0 9 32 m/syv = . . ° = .  at release and 

0 (9.32 m/s) (9.80 m/s)(2.08 s) 11.06 m/sy yv v gt= − = − = −  when the shot hits. 

(c) 0 0 (7.55 m/s)(2.08 s) 15.7 m.xx x v t− = = =  
(d) The initial and final heights are not the same. 
(e) With 0y =  and 0 yv  as found above, the equation for y – y0 as a function of time gives 0 1 81m.y = .  
(f) The graphs are sketched in Figure 3.18. 
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EVALUATE:   When the shot returns to its initial height, 9 32 m/s.yv = − .  The shot continues to accelerate 

downward as it travels downward 1.81 m to the ground and the magnitude of yv  at the ground is larger 
than 9.32 m/s. 

 

 

Figure 3.18 
 

 3.19. IDENTIFY:   Take the origin of coordinates at the point where the quarter leaves your hand and take 
positive y to be upward. The quarter moves in projectile motion, with 0,xa =  and ya g= − .  It travels 
vertically for the time it takes it to travel horizontally 2.1 m. 

 

0 0 0cos (6.4 m/s) cos60xv v α= = °  

0 3.20 m/sxv =  

0 0 0sin (6.4 m/s) sin 60yv v α= = °  

0 5.54 m/syv =  

Figure 3.19  
 

(a) SET UP:   Use the horizontal (x-component) of motion to solve for t, the time the quarter travels 
through the air: 

?,t =  0 2 1 m,x x− = .  0 3 2 m/s,xv = .  0xa =  
21

0 0 02 ,x x xx x v t a t v t− = + =  since 0xa =  

EXECUTE:   0

0

2 1 m 0 656 s
3 2 m/sx

x x
t

v
− .= = = .

.
 

SET UP:   Now find the vertical displacement of the quarter after this time: 

0 ?,y y− =  29 80 m/s ,ya = − .  0 5 54 m/s,yv = + .  0 656 st = .  
21

0 0 2y yy y v t a t− + +  

EXECUTE:   2 21
0 2(5.54 m/s)(0.656 s) ( 9.80 m/s )(0.656 s) 3.63 m 2.11 m 1.5 m.y y− = + − = − =  

(b) SET UP:   ?,yv =  0 656 s,t = .  29 80 m/s ,ya = − .  0 5 54 m/syv = + .  0y y yv v a t= +  

EXECUTE:   25.54 m/s ( 9.80 m/s )(0.656 s) 0.89 m/s.yv = + − = −  

EVALUATE:   The minus sign for yv  indicates that the y-component of Gv  is downward. At this point the 
quarter has passed through the highest point in its path and is on its way down. The horizontal range if it 
returned to its original height (it doesn’t!) would be 3.6 m. It reaches its maximum height after traveling 
horizontally 1.8 m, so at 0 2 1 mx x− = .  it is on its way down. 

 3.20. IDENTIFY:   Consider the horizontal and vertical components of the projectile motion. The water travels 
45.0 m horizontally in 3.00 s. 
SET UP:   Let y+  be upward. 0,xa =  29 80 m/s .ya = − .  0 0 0cos ,xv v θ=  0 0 0sin .yv v θ=  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives 0 0 0(cos )x x v tθ− =  and 0

45.0 mcos 0.600;
(25.0 m/s)(3.00 s)

θ  = =
  

 

0 53.1θ = °  



3-12   Chapter 3 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

(b) At the highest point 0 (25.0 m/s)cos 53.1 15.0 m/s,x xv v= =  ° =  0yv =  and 2 2 15 0 m/s.x yv v v= + = .   At 

all points in the motion, 29 80 m/sa = . downward. 
(c) Find 0y y−  when 3 00s:t = .  

2 2 21 1
0 0 2 2(25.0 m/s)(sin53.1 )(3.00 s) ( 9.80 m/s )(3.00 s) 15.9 my yy y v t a t− = + =  ° + −  =  

0 15 0 m/s,x xv v= = .  2
0 (25 0 m/s)(sin53 1 ) (9 80m/s )(3 00 s) 9 41 m/s,y y yv v a t= + = .  . ° − . .  = − .  and 

2 2 2 2(15 0 m/s) ( 9 41 m/s) 17 7 m/sx yv v v= + = . + − . = .  

EVALUATE:   The acceleration is the same at all points of the motion. It takes the water 
0

2
20 0 m/s 2 04 s
9 80 m/s

y

y

v
t

a
.= − = − = .

− .
 to reach its maximum height. When the water reaches the building it has 

passed its maximum height and its vertical component of velocity is downward. 
 3.21. IDENTIFY:   Take the origin of coordinates at the roof and let the -directiony+  be upward. The rock moves 

in projectile motion, with 0xa =  and ya g= − .  Apply constant acceleration equations for the x and y 
components of the motion. 
SET UP:    

 

0 0 0cos 25 2 m/sxv v α= = .  

0 0 0sin 16 3 m/syv v α= = .  

Figure 3.21a  
 

(a) At the maximum height 0yv = .  
29 80 m/s ,ya = − .  0,yv =  0 16 3 m/s,yv = + .  0 ?y y− =  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   
2 2 2

0
0 2

0 (16.3 m/s) 13.6 m
2 2( 9.80 m/s )

y y

y

v v
y y

a

− −− = = = +
−

 

(b) SET UP:   Find the velocity by solving for its x and y components. 
0 25 2 m/sx xv v= = .  (since 0)xa =  

?,yv =  29 80 m/s ,ya = − .  0 15 0 my y− = − .  (negative because at the ground the rock is below its initial 

position), 0 16 3 m/syv = .  
2 2

0 02 ( )y y yv v a y y= + −  

2
0 02 ( )y y yv v a y y= − + −  ( yv  is negative because at the ground the rock is traveling downward.) 

EXECUTE:   2 2(16.3 m/s) 2( 9.80 m/s )( 15.0 m) 23.7 m/syv = − + − − = −  

Then 2 2 2 2(25 2 m/s) ( 23 7 m/s) 34 6 m/sx yv v v= + = . + − . = . .  
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(c) SET UP:   Use the vertical motion (y-component) to find the time the rock is in the air: 
?,t =  23 7 m/syv = − .  (from part (b)), 29 80 m/s ,ya = − .  0 16 3 m/syv = + .  

EXECUTE:   0
2

23 7 m/s 16 3 m/s 4 08 s
9 80 m/s

y y

y

v v
t

a

− − . − .= = = + .
− .

 

SET UP:   Can use this t to calculate the horizontal range: 
4 08 s,t = .  0 25 2 m/s,xv = .  0,xa =  0 ?x x− =  

EXECUTE:   21
0 0 2 (25 2 m/s)(4 08 s) 0 103 mx xx x v t a t− = + = . . + =  

(d) Graphs of x versus t, y versus t, xv versus t and yv versus t: 
 

 

Figure 3.21b 
 

EVALUATE:   The time it takes the rock to travel vertically to the ground is the time it has to travel 
horizontally. With 0 16 3 m/syv = + .  the time it takes the rock to return to the level of the roof ( 0)y =  is 

02 / 3.33 s.yt v g= =  The time in the air is greater than this because the rock travels an additional 15.0 m to 
the ground. 

 3.22. IDENTIFY and SET UP:   The stone moves in projectile motion. Its initial velocity is the same as that of the 
balloon. Use constant acceleration equations for the x and y components of its motion. Take y+  to be 
downward. 
EXECUTE:   (a) Use the vertical motion of the rock to find the initial height. 

5 00 s,t = .  0 20 0 m/s,yv = + .  29 80 m/s ,ya = + .  0 ?y y− =  
21

0 0 2y yy y v t a t− = +  gives 0 223 my y− = . 

(b) In 5.00 s the balloon travels downward a distance 0 (20.0 m/s)(5.00 s) 100 m.y y− = =  So, its height 
above ground when the rock hits is 223 m 100 m 123 m− = .  
(c) The horizontal distance the rock travels in 5.00 s is (15.0 m/s)(5.00 s) = 75.0 m. The vertical component 

of the distance between the rock and the basket is 123 m, so the rock is 2 2(75 m) (123 m) 144 m+ =  
from the basket when it hits the ground. 
(d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 m/s relative to the  
basket. Just before the rock hits the ground, its vertical component of velocity is 

2
0 20.0 m/s (9.80 m/s )(5.00 s) 69.0 m/s,y y yv v a t= + = + =  downward, relative to the ground. The basket is 

moving downward at 20.0 m/s, so relative to the basket the rock has a downward component of velocity 49.0 m/s. 
(ii) horizontal: 15.0 m/s; vertical: 69.0 m/s 
EVALUATE:   The rock has a constant horizontal velocity and accelerates downward. 

 3.23. IDENTIFY:   Circular motion.  
SET UP:   Apply the equation arad = 4π2R/T2, where T = 24 h. 

EXECUTE:   (a) 
[ ]

2 6
2 3

rad 2
4 (6.38 10  m) 0.034 m/s 3.4 10 .
(24 h)(3600 s/h)

a g
π −×= = = ×  

(b) Solving the equation arad = 4π2R/T2 for the period T with rad ,a g=  
2 6

2
4 (6.38 10 m) 5070 s 1.4 h.

9.80 m/s
T

π ×= = =  
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EVALUATE:   rada  is proportional to 21 ,/T  so to increase rada  by a factor of 3
1 294

3 4 10− =
. ×

 requires 

that T be multiplied by a factor of 1 .
294

24 h 1 4 h.
294

= .  

 3.24. IDENTIFY:   We want to find the acceleration of the inner ear of a dancer, knowing the rate at which she spins. 

SET UP:   0.070 m.R =  For 3.0 rev/s, the period T (time for one revolution) is 1.0 s 0.333 s.
3.0 rev

T = =  The 

speed is v = d/T = (2πR)/T, and 2
rad / .a v R=  

EXECUTE:   
2 2 2 2

2
rad 2 2

(2 / ) 4 4 (0.070 m) 25 m/s 2.5 .
(0.333 s)

v R T R
a g

R R T
π π π= = = = = =  

EVALUATE:   The acceleration is large and the force on the fluid must be 2.5 times its weight. 
 3.25. IDENTIFY:   For the curved lowest part of the dive, the pilot’s motion is approximately circular. We know 

the pilot’s acceleration and the radius of curvature, and from this we want to find the pilot’s speed. 

SET UP:   2
rad 5.5 53.9 m/s .a g= = 1 mph 0.4470 m/s.=

2

rad .v
a

R
=  

EXECUTE:   
2

rad ,v
a

R
=  so 2

rad (280 m)(53.9 m/s ) 122.8 m/s 274.8 mph.v Ra= = = =  Rounding these 

answers to 2 significant figures (because of 5.5g), gives v = 120 m/s = 270 mph. 
EVALUATE:   This speed is reasonable for the type of plane flown by a test pilot. 

 3.26. IDENTIFY:   Each blade tip moves in a circle of radius 3 40 mR = .  and therefore has radial acceleration 
2

rad / .a v R=  

SET UP:   550 rev/min  9 17 rev/s,= .  corresponding to a period of 1 0 109 s.
9 17 rev/s

T = = .
.

 

EXECUTE:   (a) 2 196 m/s.R
v

T
π= =  

(b) 
2

4 2 3
rad 1 13 10  m/s 1 15 10 .v

a g
R

= = . × = . ×  

EVALUATE:   
2

rad 2
4 R

a
T
π=  gives the same results for rada  as in part (b). 

 3.27. IDENTIFY:   Uniform circular motion. 

SET UP:   Since the magnitude of Gv  is constant, tan 0
d

v
dt

= =
Gv

 and the resultant acceleration is equal to 

the radial component. At each point in the motion the radial component of the acceleration is directed in 
toward the center of the circular path and its magnitude is given by 2/ .v R  

EXECUTE:   (a) 
2 2

2
rad

(6 00 m/s) 2.57 m/s ,
14 0 m

v
a

R
.= = =

.
 upward. 

(b) The radial acceleration has the same magnitude as in part (a), but now the direction toward the center of 
the circle is downward. The acceleration at this point in the motion is 22.57 m/s ,  downward. 
(c) SET UP:   The time to make one rotation is the period T, and the speed v is the distance for one 
revolution divided by T. 

EXECUTE:   2 R
v

T
π=  so 2 2 (14 0 m) 14.7 s.

6 00 m/s
R

T
v
π π .= = =

.
 

EVALUATE:   The radial acceleration is constant in magnitude since v is constant and is at every point in 
the motion directed toward the center of the circular path. The acceleration is perpendicular to Gv  and is 
nonzero because the direction of Gv  changes. 

 3.28. IDENTIFY:   Each planet moves in a circular orbit and therefore has acceleration 2
rad .a v /R=  
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SET UP:   The radius of the earth’s orbit is 111 50 10  mr = . ×  and its orbital period is 
7365 days 3 16 10  s.T = = . ×  For Mercury, 105 79 10  mr = . ×  and 688 0 days 7 60 10  s.T = . = . ×  

EXECUTE:   (a) 42 2 98 10  m/sr
v

T
π= = . ×  

(b) 
2

3 2
rad 5 91 10  m/s .v

a
r

−= = . ×  

(c) 44 79 10  m/s,v = . ×  and 2 2
rad 3 96 10  m/s .a −= . ×  

EVALUATE:   Mercury has a larger orbital velocity and a larger radial acceleration than earth. 

 3.29. IDENTIFY:   Each part of his body moves in uniform circular motion, with 
2

rad .v
a

R
=  The speed in rev/s is 

1/ ,T  where T is the period in seconds (time for 1 revolution). The speed v increases with R along the 
length of his body but all of him rotates with the same period T. 
SET UP:   For his head 8 84 mR = .  and for his feet 6 84 m.R = .  

EXECUTE:   (a) 2
rad (8.84 m)(12.5)(9.80 m/s ) 32.9 m/sv Ra= = =  

(b) Use 
2

rad 2
4 .R

a
T
π=  Since his head has rad 12 5a g= .  and 8 84 m,R = .  

2
rad

8.84m2 2 1.688s.
12.5(9.80m/s )

R
T

a
π π= = = Then his feet have  

2
2

rad 2 2
4 (6.84m) 94.8m/s

(1.688s)
R

a
T

π= = =  = 9.67 g. 

The difference between the acceleration of his head and his feet is 212 5 9 67 2 83 27 7 m/s .g g g. − . = . = .  

(c) 1 1 0 592 rev/s 35 5 rpm
1 69 sT

= = . = .
.

 

EVALUATE:   His feet have speed 2
rad (6 84 m)(94 8 m/s ) 25 5 m/s.v Ra= = . . = .  

 3.30. IDENTIFY:   The relative velocities are S/F,Gv  the velocity of the scooter relative to the flatcar, S/G ,Gv  the 
scooter relative to the ground and F/G ,Gv  the flatcar relative to the ground. S/G S/F F/G.= +G G Gv v v  Carry out the 
vector addition by drawing a vector addition diagram. 
SET UP:   S/F S/G F/G.= −G G Gv v v  F/G

Gv  is to the right, so F/G−Gv  is to the left. 
EXECUTE:   In each case the vector addition diagram gives 
(a) 5 0 m/s.  to the right 
(b) 16.0 m/s to the left 
(c) 13 0 m/s.  to the left. 
EVALUATE:   The scooter has the largest speed relative to the ground when it is moving to the right relative 
to the flatcar, since in that case the two velocities S/F

Gv  and F/G
Gv  are in the same direction and their 

magnitudes add. 
 3.31. IDENTIFY:   Relative velocity problem. The time to walk the length of the moving sidewalk is the length 

divided by the velocity of the woman relative to the ground. 
SET UP:   Let W stand for the woman, G for the ground and S for the sidewalk. Take the positive direction 
to be the direction in which the sidewalk is moving. 
The velocities are W/Gv  (woman relative to the ground), W/Sv  (woman relative to the sidewalk), and S/Gv  
(sidewalk relative to the ground). 
The equation for relative velocity becomes W/G W/S S/Gv v v= + .  

The time to reach the other end is given by 
W/G

distance traveled relative to ground
t

v
=  

EXECUTE:   (a) S/G 1 0 m/sv = .  

W/S 1 5 m/sv = + .  

W/G W/S S/G 1 5 m/s 1 0 m/s 2 5 m/sv v v= + = . + . = . .  
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W/G

35 0 m 35 0 m 14 s
2 5 m/s

t
v

. .= = = .
.

 

 (b) S/G 1 0 m/sv = .  

W/S 1 5 m/sv = − .  

W/G W/S S/G 1 5 m/s 1 0 m/s 0 5 m/sv v v= + = − . + . = − . .  (Since W/Gv  now is negative, she must get on the 
moving sidewalk at the opposite end from in part (a).) 

W/G

35 0 m 35 0 m 70 s
0 5 m/s

t
v

− . − .= = = .
− .

 

EVALUATE:   Her speed relative to the ground is much greater in part (a) when she walks with the motion 
of the sidewalk. 

 3.32. IDENTIFY:   Calculate the rower’s speed relative to the shore for each segment of the round trip. 
SET UP:   The boat’s speed relative to the shore is 6.8 km/h downstream and 1.2 km/h upstream. 
EXECUTE:   The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a time of three 
fourths of an hour (45.0 min). 

The total time the rower takes is 1 5 km 1 5 km 1 47 h 88 2 min
6 8 km/h 1 2 km/h

. .+ = . = . .
. .

 

EVALUATE:   It takes the rower longer, even though for half the distance his speed is greater than 4.0 km/h. 
The rower spends more time at the slower speed. 

 3.33. IDENTIFY:   Apply the relative velocity relation. 
SET UP:   The relative velocities are C/E ,Gv  the canoe relative to the earth, R/E ,Gv  the velocity of the river 
relative to the earth and C/R ,Gv  the velocity of the canoe relative to the river. 
EXECUTE:   C/E C/R R/E= +G G Gv v v  and therefore C/R C/E R/E.= −G G Gv v v  The velocity components of C/R

Gv  are 

0.50 m/s (0.40 m/s)/ 2, east and (0.40 m/s)/ 2, south,− +  for a velocity relative to the river of 0.36 m/s, 
at 52 5. °  south of west. 
EVALUATE:   The velocity of the canoe relative to the river has a smaller magnitude than the velocity of 
the canoe relative to the earth. 

 3.34. IDENTIFY:   Relative velocity problem in two dimensions. 
(a) SET UP:   P/A

Gv  is the velocity of the plane relative to the air. The problem states that P A
Gv  has 

magnitude 35 m/s and direction south. 
A/E
Gv  is the velocity of the air relative to the earth. The problem states that A/E

Gv  is to the southwest  
( 45  S°  of W) and has magnitude 10 m/s. 
The relative velocity equation is P/E P/A A/E= + .G G Gv v v  

 

 

Figure 3.34a 
 

EXECUTE:   (b) P/A( ) 0,xv =  P/A( ) 35 m/syv = −  
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A/E( ) (10 m/s)cos 45 7.07 m/s,xv = − ° = −  

A/E( ) (10 m/s)sin 45 7.07 m/syv = − ° = −  

P/E P/A A/E( ) ( ) ( ) 0 7 07 m/s 7 1 m/sx x xv v v= + = − . = − .  

P/E P/A A/E( ) ( ) ( ) 35 m/s 7 07 m/s 42 m/sy y yv v v= + = − − . = −  
 

(c) 

 

2 2
P/E P/E P/E( ) ( )x yv v v= +  

2 2
P/E ( 7 1 m/s) ( 42 m/s) 43 m/sv = − . + − =

P/E

P/E

( ) 7 1tan 0 169
( ) 42

x

y

v
v

φ − .= = = .
−

 

9 6 ;φ = . °  ( 9 6. °  west of south) 

Figure 3.34b  
 
 
 

EVALUATE:   The relative velocity addition diagram does not form a right triangle so the vector addition 
must be done using components. The wind adds both southward and westward components to the velocity 
of the plane relative to the ground. 

 3.35. IDENTIFY:   Relative velocity problem in two dimensions. His motion relative to the earth (time 
displacement) depends on his velocity relative to the earth so we must solve for this velocity. 
(a) SET UP:   View the motion from above. 

 

 The velocity vectors in the problem are: 
M/E ,Gv  the velocity of the man relative to the earth 

W/E,Gv  the velocity of the water relative to the earth 

M/W,Gv  the velocity of the man relative to the water 
The rule for adding these velocities is 

M/E M/W W/E= +G G Gv v v  

Figure 3.35a   
The problem tells us that W/E

Gv  has magnitude 2.0 m/s and direction due south. It also tells us that M/W
Gv  

has magnitude 4.2 m/s and direction due east. The vector addition diagram is then as shown in Figure 3.35b. 
 

  
This diagram shows the vector addition 

M/E M/W W/E= +G G Gv v v   
and also has M/W

Gv  and W/E
Gv  in their 

specified directions. Note that the vector 
diagram forms a right triangle. 

Figure 3.35b  
 

The Pythagorean theorem applied to the vector addition diagram gives 2 2 2
M/E M/W W/Ev v v= + .  
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EXECUTE:   2 2 2 2
M/E M/W W/E (4 2 m/s) (2 0 m/s) 4 7 m/s;v v v= + = . + . = .  M/W

W/E

4 2 m/stan 2 10;
2 0 m/s

v
v

θ .= = = .
.

 

65 ;θ = °  or 90 25φ θ= ° − = °.  The velocity of the man relative to the earth has magnitude 4.7 m/s and 
direction 25  S°  of E. 
(b) This requires careful thought. To cross the river the man must travel 500 m due east relative to the 
earth. The man’s velocity relative to the earth is M/E .Gv  But, from the vector addition diagram the eastward 
component of M/Ev  equals M/W 4 2 m/sv = . .  

Thus 0 500 m 119 s,
4 2 m/sx

x x
t

v
−= = =

.
which we round to 120 s. 

(c) The southward component of M/E
Gv  equals W/E 2 0 m/sv = . .  Therefore, in the 120 s it takes him to cross 

the river, the distance south the man travels relative to the earth is 
0 (2 0 m/s)(119 s) 240 myy y v t− = = . = .  

EVALUATE:   If there were no current he would cross in the same time, (500 m)/(4 2 m/s) 120 s. = .  The 
current carries him downstream but doesn’t affect his motion in the perpendicular direction, from bank to bank. 

 3.36. IDENTIFY:   Use the relation that relates the relative velocities. 
SET UP:   The relative velocities are the water relative to the earth, W/E,Gv  the boat relative to the water, 

B/W,Gv  and the boat relative to the earth, B/E.Gv  B/E
Gv  is due east, W/E

Gv  is due south and has magnitude  
2.0 m/s. B/W 4 2 m/s.v = .  B/E B/W W/E.= +G G Gv v v  The velocity addition diagram is given in Figure 3.36. 

EXECUTE:   (a) Find the direction of B/W.Gv  W/E

B/W

2 0 m/ssin .
4 2 m/s

v
v

θ .= =
.

 28 4 ,θ = . °  north of east. 

(b) 2 2 2 2
B/E B/W W/E (4 2 m/s) (2 0 m/s) 3 7 m/sv v v= − = . − . = .  

(c) 
B/E

800 m 800 m 216 s.
3 7 m/s

t
v

= = =
.

 

EVALUATE:   It takes longer to cross the river in this problem than it did in Problem 3.35. In the direction 
straight across the river (east) the component of his velocity relative to the earth is lass than 4.2 m/s. 

 

 

Figure 3.36 
 3.37. IDENTIFY:   The resultant velocity, relative to the ground, is directly southward. This velocity is the sum of 

the velocity of the bird relative to the air and the velocity of the air relative to the ground. 
SET UP:   B/A 100 km/h.=v  A/G 40 km/h, east.=Gv  B/G B/A A/G.= +G G Gv v v  
EXECUTE:   We want B/G

Gv  to be due south. The relative velocity addition diagram is shown in  
Figure 3.37. 
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Figure 3.37 
 

(a) A/G

B/A

40 km/hsin ,
100 km/h

v
v

φ = =  24 ,φ = °  west of south. 

(b) 2 2
B/G B/A A/G 91 7 km/hv v v= − = . .  

B/G

500 km 5 5 h.
91 7 km/h

d
t

v
= = = .

.
 

EVALUATE:   The speed of the bird relative to the ground is less than its speed relative to the air. Part of its 
velocity relative to the air is directed to oppose the effect of the wind. 

 3.38. IDENTIFY:   Use the relation that relates the relative velocities. 
SET UP:   The relative velocities are the velocity of the plane relative to the ground, P/G ,Gv  the velocity of 
the plane relative to the air, P/A,Gv  and the velocity of the air relative to the ground, A/G.Gv  P/G

Gv  must be 
due west and A/G

Gv  must be south. A/G 80 km/hv =  and P/A 320 km/h.v =  P/G P/A A/G.= +G G Gv v v  The relative 
velocity addition diagram is given in Figure 3.38. 

EXECUTE:   (a) A/G

P/A

80 km/hsin
320 km/h

v
v

θ = =  and 14 ,θ = °  north of west. 

(b) 2 2 2 2
P/G P/A A/G (320 km/h) (80 0 km/h) 310 km/h.v v v= − = − . =  

EVALUATE:   To travel due west the velocity of the plane relative to the air must have a westward 
component and also a component that is northward, opposite to the wind direction. 

 

 

Figure 3.38 
 

 3.39. IDENTIFY:   d
dt

=
GG rv  and d

dt
=
GG va  

SET UP:   1( ) .n nd
t nt

dt
−=  At 1 00 s,t = .  24 00 m/sxa = .  and 23 00 m/s .ya = .  At 0,t =  0x =  and 

50 0 m.y = .  
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EXECUTE:   (a) 2 .x
dx

v Bt
dt

= =  2 ,x
x

dv
a B

dt
= =  which is independent of t. 24 00 m/sxa = .  gives 

22 00 m/s .B = .  23 .y
dy

v Dt
dt

= =  6 .y
y

dv
a Dt

dt
= =  23 00 m/sya = .  gives 30 500 m/s .D = .  0x =  at 0t =  

gives 0.A =  50 0 my = .  at 0t =  gives 50 0 m.C = .  

(b) At 0,t =  0xv =  and 0,yv =  so 0.=Gv  At 0,t =  22 4 00 m/sxa B= = .  and 0,ya =  so 
2 ˆ(4 00 m/s ) .= .Ga i  

(c) At 10 0 s,t = .  22 (2 00 m/s )(10 0 s) 40 0 m/sxv = . . = .  and 3 23(0.500 m/s )(10.0 s) 150 m/s.yv = =  

2 2 155 m/s.x yv v v= + =  

(d) 2 2(2 00 m/s )(10 0 s) 200 m,x = . . =  3 350 0 m (0 500 m/s )(10 0 s) 550 m.y = . + . . =  
ˆ ˆ(200 m) (550 m) .= +Gr i j  

EVALUATE:   The velocity and acceleration vectors as functions of time are 
2ˆ ˆ( ) (2 ) (3 )t Bt Dt= +Gv i j  and ˆ ˆ( ) (2 ) (6 ) .t B Dt= +Ga i j  The acceleration is not constant. 

   
 3.40. IDENTIFY:   The acceleration is not constant but is known as a function of time.  

SET UP:   Integrate the acceleration to get the velocity and the velocity to get the position. At the maximum 
height 0.yv =  

EXECUTE:   (a) 3 2
0 0, ,

3 2x x y yv v t v v t t
α γβ= + = + −  and 4 2 3

0 0, .
12 2 6x yx v t t y v t t t
α β γ= + = + −  

(b) Setting 0yv =  yields a quadratic in 2
0,  0 .

2yt v t t
γβ= + −  Using the numerical values given in the 

problem, this equation has as the positive solution 2
0

1 2 13 59 s.yt vβ β γ
γ
⎡ ⎤= + + = .⎢ ⎥⎣ ⎦

 Using this time in 

the expression for y(t) gives a maximum height of 341 m. 

(c) 0y =  gives 2 3
00

2 6yv t t t
β γ= + −  and 2

0 0.
6 2 yt t v
γ β− − = Using the numbers given in the problem, the 

positive solution is t = 20.73 s. For this t, 43 85 10  m.x = . ×  
EVALUATE:  We cannot use the constant-acceleration kinematics formulas, but calculus provides the 
solution. 

 3.41. IDENTIFY:   .d dt
G Gv = r/  This vector will make a 45° angle with both axes when its x- and y-components  

are equal. 

  SET UP:   1( ) .
n

nd t
nt

dt
−=  

  EXECUTE:   2ˆ ˆ2 3 .bt ct
Gv = i + j  x yv v=  gives 2 3 .t b c=  

  EVALUATE:   Both components of Gv change with t. 
 3.42. IDENTIFY:   Use the position vector of a dragonfly to determine information about its velocity vector and 

acceleration vector. 
SET UP:   Use the definitions / ,xv dx dt=  / ,yv dy dt=  / ,x xa dv dt=  and / .y ya dv dt=  
EXECUTE:   (a) Taking derivatives of the position vector gives the components of the velocity vector: 

2( ) (0.180 m/s ) ,xv t t=  3 2( ) ( 0.0450 m/s ) .yv t t= −  Use these components and the given direction: 
3 2

o
2

(0.0450 m/s )tan30.0 ,
(0.180 m/s )

t
t

=  which gives 2 31 s.t = .  
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  (b) Taking derivatives of the velocity components gives the acceleration components: 
20 180 m/s ,xa = . 3( ) 0.0900 m/s ) .ya t t= −(  At 2 31 s,t = .  20 180 m/sxa = .  and 20 208 m/s ,ya = − .  giving 

20 275 m/s .a = .  The direction is 0 208tan ,
0 180

θ .=
.

 so o49 1θ = .  clockwise from +x-axis. 

  EVALUATE:   The acceleration is not constant, so we cannot use the standard kinematics formulas. 
 3.43. IDENTIFY:   Once the rocket leaves the incline it moves in projectile motion. The acceleration along the 

incline determines the initial velocity and initial position for the projectile motion. 
SET UP:   For motion along the incline let x+  be directed up the incline. 2 2

0 02 ( )x x xv v a x x= + −  gives 
22(1.90 m/s )(200 m) 27.57 m/s.xv = =  When the projectile motion begins the rocket has 0 27.57 m/sv =  

at 35 0. °  above the horizontal and is at a vertical height of (200 0 m) sin35 0 114 7 m.. . ° = .  For the 
projectile motion let x+  be horizontal to the right and let y+  be upward. Let 0y =  at the ground. Then 

0 114 7 m,y = .  0 0 cos35 0 22.57 m/s,xv v= . ° =  0 0 sin35 0 15.81 m/s,yv v= . ° =  0,xa =  29 80 m/s .ya = − .  Let 

0x =  at point A, so 0 (200 0 m)cos35 0 163 8 m.x = . . ° = .  

EXECUTE:   (a) At the maximum height 0.yv =  2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (15 81 m/s) 12.77 m

2 2( 9 80 m/s )
y y

y

v v
y y

a

− − .− = = =
− .

 and 114 7 m 12.77 m 128 m.y = . + =  The maximum height 

above ground is 128 m. 
(b) The time in the air can be calculated from the vertical component of the projectile motion: 

0 114.7 m,y y− =−  0 15.81 m/s,yv =  29 80 m/s .ya = − .  21
0 0 2y yy y v t a t− = +  gives 

2 2(4.90 m/s ) (15.81 m/s) 114.7 m.t t− −  The quadratic formula gives 6 713 st = .  for the positive root. Then 
21

0 0 2 (22.57 m/s)(6.713 s) 151.6 mx xx x v t a t− = + = =  and 163 8 m 151.6 m 315 m.x = . + =  The horizontal 

range of the rocket is 315 m. 
  EVALUATE:   The expressions for h and R derived in the range formula do not apply here. They are only 

for a projectile fired on level ground. 

 3.44. IDENTIFY:   0 0
( )

t
t dt= + ∫

G G Gr r v  and .d
dt

=
Gva  

SET UP:   At 0,t =  0 0x =  and 0 0.y =  

EXECUTE:   (a) Integrating, 3 2ˆ ˆ.
3 2

t t t
β γα⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Gr i j  Differentiating, ˆ ˆ( 2 ) .tβ γ= − +Ga i j  

(b) The positive time at which 0x =  is given by 2 3 .t α β=  At this time, the y-coordinate is 
2

2
3

3 3(2.4 m/s)(4.0 m/s ) 9.0 m.
2 2 2(1.6 m/s )

y t
γ αγ

β
= = = =  

EVALUATE:   The acceleration is not constant. 
 3.45. IDENTIFY:   Take y+  to be downward. Both objects have the same vertical motion, with 0 yv  and 

ya g= + .  Use constant acceleration equations for the x and y components of the motion. 
SET UP:   Use the vertical motion to find the time in the air: 

0 0,yv =  29 80 m/s ,ya = .  0 25 m,y y− =  ?t =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 2 259 s.t = .  

During this time the dart must travel 90 m, so the horizontal component of its velocity must be 
0

0
70 m 31 m/s.

2 259 sx
x x

v
t

−= = =
.

 

EVALUATE:   Both objects hit the ground at the same time. The dart hits the monkey for any muzzle 
velocity greater than 31 m/s. 
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 3.46. IDENTIFY:   The velocity has a horizontal tangential component and a vertical component. The vertical 

component of acceleration is zero and the horizontal component is 
2

rad .xv
a

R
=  

SET UP:   Let y+  be upward and x+  be in the direction of the tangential velocity at the instant we are 
considering. 
EXECUTE:   (a) The bird’s tangential velocity can be found from 

circumference 2 (6 00 m) 7.54 m/s.
time of rotation 5 00 sxv

π .= = =
.

 

Thus its velocity consists of the components 7 54 m/sxv = .  and 3 00 m/s.yv = .  The speed relative to the 

ground is then 2 2 8 11 m/s.x yv v v= + = .  

(b) The bird’s speed is constant, so its acceleration is strictly centripetal—entirely in the horizontal 

direction, toward the center of its spiral path—and has magnitude 
2 2

2
rad

(7 54 m/s) 9.48 m/s .
6 00 m

xv
a

r
.= = =

.
 

(c) Using the vertical and horizontal velocity components 1 3 00 m/stan 21 7 .
7 54 m/s

θ − .= = . °
.

 

EVALUATE:   The angle between the bird’s velocity and the horizontal remains constant as the bird rises. 
 3.47. IDENTIFY:   The cannister moves in projectile motion. Its initial velocity is horizontal. Apply constant 

acceleration equations for the x and y components of motion. 
SET UP:    

 

 

 

Take the origin of coordinates at the point 
where the cannister is released. Take +y to be 
upward. The initial velocity of the cannister is 
the velocity of the plane, 64.0 m/s in the  
+x-direction. 

Figure 3.47  
 

Use the vertical motion to find the time of fall: 
?,t =  0 0,yv =  29 80 m/s ,ya = − .  0 90 0 my y− = − .  (When the cannister reaches the ground it is 90.0 m 

below the origin.) 
21

0 0 2y yy y v t a t− = +  

EXECUTE:   Since 0 0,yv =  0
2

2( ) 2( 90.0 m) 4.286 s.
9.80 m/sy

y y
t

a
− −= = =

−
 

SET UP:   Then use the horizontal component of the motion to calculate how far the cannister falls in this 
time: 

0 ?,x x− =  0,xa −  0 64 0 m/sxv = .  

EXECUTE:   21
0 0 2 (64.0 m/s)(4.286 s) 0 274 m.x x v t at− = + = + =  

EVALUATE:   The time it takes the cannister to fall 90.0 m, starting from rest, is the time it travels 
horizontally at constant speed. 

 3.48. IDENTIFY:   The person moves in projectile motion. Her vertical motion determines her time in the air. 
SET UP:   Take y+  upward. 0 15 0 m/s,xv = .  0 10 0 m/s,yv = + .  0,xa =  29 80 m/s .ya = − .  

EXECUTE:   (a) Use the vertical motion to find the time in the air: 21
0 0 2y yy y v t a t− = +  with 

0 30 0 my y− = − .  gives 2 230 0 m (10 0 m/s) (4 90 m/s ) .t t− . = . − .  The quadratic formula gives 
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( )21 10.0 ( 10.0) 4(4.9)( 30)  s.
2(4.9)

t = + ± − − −  The positive solution is 3 70 s.t = .  During this time she 

travels a horizontal distance 21
0 0 2 (15.0 m/s)(3.70 s) 55.5 m.x xx x v t a t− = + = =  She will land 55.5 m south 

of the point where she drops from the helicopter and this is where the mats should have been placed. 
(b) The x-t, y-t, xv -t and yv -t graphs are sketched in Figure 3.48. 
EVALUATE:   If she had dropped from rest at a height of 30.0 m it would have taken her 

2
2(30 0 m) 2 47 s.
9 80 m/s

t
.= = .

.
 She is in the air longer than this because she has an initial vertical component of 

velocity that is upward. 
 

 

Figure 3.48 
 

 3.49. IDENTIFY:   The suitcase moves in projectile motion. The initial velocity of the suitcase equals the velocity 
of the airplane. 
SET UP:   Take y+  to be upward. 0,xa =  .ya g= −  
EXECUTE:   Use the vertical motion to find the time it takes the suitcase to reach the ground: 

2
0 0 0 sin 23 ,  9.80 m/s , 114 m, ?y yv v a y y t= ° = − − = − =  21

0 0 2  gives  9.60 s.y yy y v t a t t− = + =  

The distance the suitcase travels horizontally is 0 0 0(  cos23.0 ) 795 m.xx x v v t− = = ° =  
EVALUATE:   An object released from rest at a height of 114 m strikes the ground at 

02( ) 4.82 s.y y
t

g
−= =

−
 The suitcase is in the air much longer than this since it initially has an upward 

component of velocity. 
 3.50. IDENTIFY:   The shell moves as a projectile. To just clear the top of the cliff, the shell must have 

0 25.0 my y− = when it has 0 60.0 m.x x− =  
SET UP:   Let y+  be upward. 0,xa =  .ya g= −  0 0 cos43 ,xv v= °  0 0 sin 43 .yv v= °  

EXECUTE:   (a) horizontal motion: 0 0
0

60.0 m so  .
( cos43 )xx x v t t
v

− = =
°

 

vertical motion: 2 2 21 1
0 0 02 2 gives  25.0 m (  sin 43.0 ) ( 9.80 m/s ) .y yy y v t a t v t t− = +  = ° + −   

Solving these two simultaneous equations for 0v  and t gives 0 32.6 m/sv =  and 2.51 s.t =  
(b) yv  when shell reaches cliff: 

2
0 (32.6 m/s) sin 43.0 (9.80 m/s )(2.51 s) 2.4 m/sy y yv v a t= + = ° − = −  

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of the cliff. 

EVALUATE:   The shell reaches its maximum height at 0 2.27 s,y

y

v
t

a
= − =  which confirms that at 

2.51 st =  it has passed its maximum height and is on its way down when it strikes the edge of the cliff. 
3.51. IDENTIFY:   Find the horizontal distance a rocket moves if it has a non-constant horizontal acceleration but 

a constant vertical acceleration of g downward. 
SET UP:   The vertical motion is g downward, so we can use the constant acceleration formulas for that 
component of the motion. We must use integration for the horizontal motion because the acceleration is not 
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constant. Solving for t in the kinematics formula for y gives 02( ) .
y

y y
t

a
−=  In the horizontal direction we 

must use 0 0
( ) ( )

t
x x xv t v a t dt= + ′ ′∫  and 0 0

( ) .
t

xx x v t dt− = ′ ′∫  

EXECUTE:   Use vertical motion to find t. 0
2

2( ) 2(30.0 m) 2.474 s.
9.80 m/sy

y y
t

a
−= = =  

In the horizontal direction we have 
3 2 3 2

0 00
( ) ( ) (0.800 m/s ) 12.0 m/s (0.800 m/s ) .

t
x x x xv t v a t dt v t t= + ′ ′ = + = +∫  Integrating ( )xv t  gives 

3 3
0 (12.0 m/s) (0.2667 m/s ) .x x t t− = +  At 2 474 s,t = .  0 29 69 m 4 04 m 33 7 m.x x− = . + . = .  

EVALUATE:   The vertical part of the motion is familiar projectile motion, but the horizontal part is not. 
 3.52. IDENTIFY:   The equipment moves in projectile motion. The distance D is the horizontal range of the 

equipment plus the distance the ship moves while the equipment is in the air. 
SET UP:   For the motion of the equipment take x+  to be to the right and y+  to be upward. Then 0,xa =  

29 80 m/s ,ya = − .  0 0 0cos 7 50 m/sxv v α= = .  and 0 0 0sin 13 0 m/s.yv v α= = .  When the equipment lands in 

the front of the ship, 0 8 75 m.y y− = − .  

EXECUTE:   Use the vertical motion of the equipment to find its time in the air: 21
0 0 2y yy y v t a t− = +  gives 

( )21 13.0 ( 13.0) 4(4.90)(8.75)  s.
9.80

t = ± − +  The positive root is 3 21 s.t = .  The horizontal range of the 

equipment is 21
0 0 2 (7.50 m/s)(3.21 s) 24.1 m.x xx x v t a t− = + = =  In 3.21 s the ship moves a horizontal 

distance (0.450 m/s)(3.21 s) 1.44 m,=  so 24 1 m 1 44 m 25 5 m.D = . + . = .  

EVALUATE:   The range equation 
2
0 0sin 2v

R
g

α=  cannot be used here because the starting and ending 

points of the projectile motion are at different heights. 
 3.53. IDENTIFY:   Projectile motion problem. 
 

 Take the origin of coordinates at the point  
where the ball leaves the bat, and take +y to be 
upward. 

0 0 0cosxv v α=  

0 0 0sin ,yv v α=  

but we don’t know 0v .  

Figure 3.53   
 

Write down the equation for the horizontal displacement when the ball hits the ground and the 
corresponding equation for the vertical displacement. The time t is the same for both components, so this 
will give us two equations in two unknowns 0(v  and t). 
(a) SET UP:   y-component: 

29 80 m/s ,ya = − .  0 0 9 m,y y− = − .  0 0 sin 45yv v= °  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   2 21
0 20.9 m ( sin 45 ) ( 9.80 m/s )v t t− = ° + −  

SET UP:   x-component: 
0,xa =  0 188 m,x x− =  0 0 cos45xv v= °  

21
0 0 2x xx x v t a t− = +  



Motion in Two or Three Dimensions   3-25 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

EXECUTE:   0

0 0

188 m
cos45x

x x
t

v v
−= =

°
 

Put the expression for t from the x-component motion into the y-component equation and solve for 0v .  
(Note that sin 45 cos45° = °. ) 

2
2

0
0 0

188 m 188 m0 9 m ( sin 45 ) (4 90 m/s )
cos45 cos45

v
v v

⎛ ⎞ ⎛ ⎞
− . = ° − .⎜ ⎟ ⎜ ⎟° °⎝ ⎠ ⎝ ⎠

 

2
2

0

188 m4 90 m/s 188 m 0 9 m 188 9 m
cos45v

⎛ ⎞
. = + . = .⎜ ⎟°⎝ ⎠

 

2 2
0 cos45 4 90 m/s ,
188 m 188 9 m

v ° .⎛ ⎞ =⎜ ⎟ .⎝ ⎠
 

2

0
188 m 4 90 m/s 42 8 m/s
cos45 188 9 m

v
.⎛ ⎞= = .⎜ ⎟° .⎝ ⎠

 

(b) Use the horizontal motion to find the time it takes the ball to reach the fence: 
SET UP:   x-component: 

0 116 m,x x− =  0xa ,=  0 0 cos45 (42 8 m/s) cos45 30 3 m/s,xv v= ° = . ° = .  ?t =  
21

0 0 2x xx x v t a t− = +  

EXECUTE:   0

0

116 m 3 83 s
30 3 m/sx

x x
t

v
−= = = .

.
 

SET UP:   Find the vertical displacement of the ball at this t: 
y-component: 

0 ?,y y− =  29 80 m/s ,ya = − .  0 0 sin 45 30 3 m/s,yv v= ° = .  3 83 st = .  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   2 21
0 2(30 3 s)(3 83 s) ( 9 80 m/s )(3 83 s)y y− = . . + − . .  

0 116 0 m 71 9 m 44 1 m,y y− = . − . = + .  above the point where the ball was hit. The height of the ball above 
the ground is 44 1 m 0 90 m 45 0 m. + . = . .  Its height then above the top of the fence is 
45 0 m 3 0 m 42 0 m. − . = . .  
EVALUATE:   With 0 42 8 m/s,v = .  0 30 3 m/syv = .  and it takes the ball 6.18 s to return to the height where 

it was hit and only slightly longer to reach a point 0.9 m below this height. 0(188 m)/( cos45 )t v= °  gives 
6 21 s,t = .  which agrees with this estimate. The ball reaches its maximum height approximately 

(188 m)/2 94 m=  from home plate, so at the fence the ball is not far past its maximum height of 47.6 m, 
so a height of 45.0 m at the fence is reasonable. 

 3.54. IDENTIFY:   While the hay falls 150 m with an initial upward velocity and with a downward acceleration  
of g, it must travel a horizontal distance (the target variable) with constant horizontal velocity. 
SET UP:   Use coordinates with y+  upward and x+  horizontal. The bale has initial velocity components 

0 0 0cos (75 m/s)cos55 43.0 m/sxv v α= = ° =  and 0 0 0sin (75 m/s)sin55 61.4 m/s.yv v α= = ° =  0 150 my =  

and 0.y =  The equation 21
0 0 2y yy y v t a t− = +  applies to the vertical motion and a similar equation to the 

horizontal motion. 
EXECUTE:   Use the vertical motion to find t: 21

0 0 2y yy y v t a t− = +  gives 
2 2150 m (61.4 m/s) (4.90 m/s ) .t t− = −  The quadratic formula gives 6 27 8 36 s.t = . ± .  The physical value 

is the positive one, and 14 6 s.t = .  Then 21
0 0 2 (43.0 m/s)(14.6 s) 630 m.x xx x v t a t− = + = =  

EVALUATE:   If the airplane maintains constant velocity after it releases the bales, it will also travel 
horizontally 630 m during the time it takes the bales to fall to the ground, so the airplane will be directly 
over the impact spot when the bales land. 

 3.55. IDENTIFY:   Two-dimensional projectile motion. 
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SET UP:   Let +y be upward. 0,xa =  29 80 m/sya = − . .  With 0 0 0,x y= =  algebraic manipulation of the 
equations for the horizontal and vertical motion shows that x and y are related by 

 2
0 2 2

0 0
(tan )

2 cos
g

y x xθ
υ θ

= − .   

0 60 0θ = . °.  8 00 my = .  when 18 0 mx = . .  

EXECUTE:   (a) Solving for v0 gives 
2

0 2
0 0

16 6 m/s.
2(cos )( tan )

gx
x y

υ
θ θ

= = .
−

 

(b) We find the horizontal and vertical velocity components: 
0 0 0cos 8 3 m/sx xυ υ υ θ= = = . .  

2 2
0 02 ( )y y ya y yυ υ= + −  gives 

2 2 2
0 0 0( sin ) 2 ( ) (14 4 m/s) 2( 9 80 m/s )(8 00 m) 7 1 m/sy ya y yυ υ θ= − + − = − . + − . . = − .  

2 2 10 9 m/sx yυ υ υ= + = . .  7 1tan
8 3

y

x

υ
θ

υ
.= =
.

| |
| |

 and 40 5 ,θ = . °  below the horizontal. 

EVALUATE:   We can check our calculated 0v .  

0

0

18 0 m 2 17 s
8 3 m/sx

x x
t

υ
− .= = = . .

.
 

Then 2 2 21
0 0 2 (14 4 m/s)(2 17 s) (4 9 m/s )(2 17 s) 8 m,y yy y t a tυ− = + = . . − . . =  which checks. 

 3.56. IDENTIFY:   The water moves in projectile motion. 
SET UP:   Let 0 0 0x y= =  and take y+  to be positive. 0,xa =  .ya g= −  

EXECUTE:   The equations of motions are 21
0 2(  sin )y v t gtα= −  and 0(  cos ) .x v tα=  When the water 

goes in the tank for the minimum velocity, 2y D=  and 6 .x D=  When the water goes in the tank for the 

maximum velocity, 2y D=  and 7 .x D=  In both cases, sin  cos 2 2/α α= = .  

To reach the minimum distance: 0
26 ,

2
D v t=  and 21

0 2
22 .

2
D v t gt= −  Solving the first equation for t 

gives 
0

6 2 .D
t

v
=  Substituting this into the second equation gives 

2
1
2

0

6 22 6 .D
D D g

v

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 Solving this 

for 0v  gives 0 3 .v gD=  

To reach the maximum distance: 0
27 ,

2
D v t=  and 21

0 2
22 .

2
D v t gt= −  Solving the first equation for t 

gives 
0

7 2 .D
t

v
=  Substituting this into the second equation gives

2
1
2

0

7 22 7 .D
D D g

v

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 Solving this 

for 0v  gives 0 49 5 3 13 ,v gD/ gD= = .  which, as expected, is larger than the previous result. 

EVALUATE:   A launch speed of 0 6 2 45v gD gD= = .  is required for a horizontal range of 6D. The 
minimum speed required is greater than this, because the water must be at a height of at least 2D when it 
reaches the front of the tank. 

 3.57. IDENTIFY:   From the figure in the text, we can read off the maximum height and maximum horizontal 
distance reached by the grasshopper. Knowing its acceleration is g downward, we can find its initial speed 
and the height of the cliff (the target variables). 
SET UP:   Use coordinates with the origin at the ground and y+  upward. 0,xa =  29 80 m/sya = − . .  The 

constant-acceleration kinematics formulas 2 2
0 02 ( )y y yv v a y y= + −  and 21

0 0 2x xx x v t a t− = +  apply. 
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EXECUTE:   (a) 0yv =  when 0 0 0674 m.y y− = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2
0 02 ( ) 2 ( 9 80 m/s )(0 0674 m) 1 15 m/s.y yv a y y= − − = − − . . = .  0 0 0sinyv v α=  so 

0
0

0

1 15 m/s 1 50 m/s.
sin sin50 0

yv
v

α
.= = = .

. °
 

(b) Use the horizontal motion to find the time in the air. The grasshopper travels horizontally 

0 1 06 mx x− = . .  21
0 0 2x xx x v t a t− = +  gives 0 0

0 0
1.10 s.

cos50.0x

x x x x
t

v v
− −= = =

°
 Find the vertical 

displacement of the grasshopper at 1.10 s:t =  
2 2 21 1

0 0 2 2(1 15 m/s)(1 10 s) ( 9 80 m/s )(1 10 s) 4 66 m.y yy y v t a t− = + = . . + − . . = − .  The height of the cliff is 

4.66 m. 
EVALUATE:   The grasshopper’s maximum height (6.74 cm) is physically reasonable, so its takeoff speed 

of 1.50 m/s must also be reasonable. Note that the equation 
2
0 0sin 2v

R
g

α=  does not apply here since the 

launch point is not at the same level as the landing point. 
 3.58. IDENTIFY:   To clear the bar the ball must have a height of 10.0 ft when it has a horizontal displacement of 

36.0 ft. The ball moves as a projectile. When 0v is very large, the ball reaches the goal posts in a very short 
time and the acceleration due to gravity causes negligible downward displacement. 
SET UP:   36 0 ft 10.97 m;. =  10 0 ft 3 048 m.. = .  Let x+  be to the right and y+  be upward, so 0,xa =  

,ya g= −  0 0 0cosxv v α=  and 0 0 0sin .yv v α=  

EXECUTE:   (a) The ball cannot be aimed lower than directly at the bar. 0
10 0 fttan
36 0 ft

α .=
.

 and 0 15.5 .α = °  

(b) 21
0 0 2x xx x v t a t− = +  gives 0 0

0 0 0
.

cosx

x x x x
t

v v α
− −= =  Then 21

0 0 2y yy y v t a t− = +  gives 

2 2
0 0 0

0 0 0 0 02 2 2 2
0 0 0 0 0 0

1 ( ) 1 ( )( sin ) ( ) tan .
cos 2 2cos cos

x x x x x x
y y v g x x g

v v v
α α

α α α
⎛ ⎞− − −− = − = − −⎜ ⎟
⎝ ⎠

 

2
0

0
0 0 0 0

( ) 10.97 m 9 80 m/s 12.2 m/s
cos 2[( ) tan ( )] cos45 0 2[10.97 m 3 048 m]
x x g

v
x x y yα α

− .= = =
− − − . ° − .

= 43.9 km/h. 

EVALUATE:   With the 0v  and 45° launch angle in part (b), the horizontal range of the ball is 
2
0 0sin 2v

R
g

α=  = 15.2 m = 49.9 ft. The ball reaches the highest point in its trajectory when 

0 /2,x x R− = which is 25 ft, so when it reaches the goal posts it is on its way down.  
 3.59. IDENTIFY:   The snowball moves in projectile motion. In part (a) the vertical motion determines the time in 

the air. In part (c), find the height of the snowball above the ground after it has traveled horizontally 4.0 m. 
SET UP:   Let +y be downward. 0,xa =  29 80 m/s .ya = + .  0 0 0cos 5 36 m/s,xv v θ= = .  

0 0 0sin 4 50 m/s.yv v θ= = .  

EXECUTE:   (a) Use the vertical motion to find the time in the air: 21
0 0 2y yy y v t a t− = +  with 

0 14 0 my y− = .  gives 2 214 0 m (4 50 m/s) (4 9 m/s ) .t t. = . + .  The quadratic formula gives 

( )21 4 50 (4 50) 4 (4 9)( 14 0)  s.
2(4 9)

t = − . ± . − . − .
.

 The positive root is 1 29 s.t = .  Then 

21
0 0 2 (5 36 m/s)(1 29 s) 6 91 m.x xx x v t a t− = + = . . = .  
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(b) The x-t, y-t, -xv t  and -yv t  graphs are sketched in Figure 3.59. 

(c) 21
0 0 2x xx x v t a t− = +  gives 0

0

4 0 m 0 746 s.
5 36 m/sx

x x
t

v
− .= = = .

.
 In this time the snowball travels downward 

a distance 21
0 0 2 6 08 my yy y v t a t− = + = .  and is therefore 14 0 m 6 08 m 7 9 m. − . = .  above the ground. The 

snowball passes well above the man and doesn’t hit him. 
EVALUATE:   If the snowball had been released from rest at a height of 14.0 m it would have reached the 

ground in 2
2(14 0 m) 1 69 s.
9 80 m/s

t
.= = .

.
 The snowball reaches the ground in a shorter time than this because of 

its initial downward component of velocity. 
 
 

 

Figure 3.59 
 
 

 3.60. IDENTIFY:   The dog runs horizontally at constant velocity, and the ball is in two-dimensional projectile 
motion. The ball starts out traveling only horizontally. 
SET UP:   Use coordinates with the origin at the boy and with +y downward. For the ball 

2
0 00, 8 50 m/s, 0 and 9 80 m/s .y x x ya aυ υ= = . = = .  

EXECUTE:   (a) The dog must travel horizontally the same distance the ball travels horizontally, so the dog 
must have speed 8 50 m/s. .  
(b) Use the vertical motion of the ball to find its time in the air. 21

0 0 2y yy y t a tυ− = +  gives  

0
2

2( ) 2(12 0 m) 1 56 s
9 80 m/sy

y y
t

a
− .= = = .

.
. Then 21

0 0 2 (8 50 m/s)(1 56 s) 13 3 mx xx x t a tυ− = + = . . = .  

EVALUATE: The dog is about 40 ft from the tree, which is not unreasonable since the tree is nearly 40 ft 
high. 

 3.61. IDENTIFY:   The dog runs horizontally at constant velocity, and the ball is in two-dimensional projectile 
motion. But this time the ball has an upward component to its initial velocity. 
SET UP:    Use coordinates with the origin at the boy and with +y upward. The ball has 0 0 0cosxυ υ θ= =  

(8 50 m/s)cos60 0 4 25 m/s,. . = .D
0 0 0sin (8 50 m/s)sin 60 0 7 36 m/s,yυ υ θ= = . . = .D  0xa =  and 

29 80 m/sya = − . .  
EXECUTE:   (a) The dog must travel horizontally the same distance the ball travels horizontally, so the dog 
must have speed 4 25 m/s. .  
(b) Use the vertical motion of the ball to find its time in the air. 21

0 0 2y yy y t a tυ− = +  gives 
2 212 0 m (7 36 m/s) (4 90 m/s )t t− . = . − . .  The quadratic formula gives 0 751 1 74 st = . ± . .  The negative 

value is not physical, so 2 49 st = . .  Then 0x x− =  21
0 2 (4 25 m/s)(2 49 s) 10 6 m.x xt a tυ + = . . = .  

EVALUATE: The ball is in the air longer than when it is thrown horizontally (as we saw in the previous 
problem), but it doesn’t travel as far horizontally. The dog doesn’t have to run as far or as fast as when the 
ball is thrown horizontally. 

 3.62. IDENTIFY:   The rock moves in projectile motion. 
SET UP:   Let y+  be upward. 0,xa =  .ya g= −  Eqs. (3.21) and (3.22) give xv  and .yv  
EXECUTE:   Combining Eqs. 3.24, 3.21 and 3.22 gives 

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0cos ( sin ) (sin cos ) 2 sin ( ) .v v v gt v v gt gtα α α α α= + − = + − +  



Motion in Two or Three Dimensions   3-29 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

2 2 2 2
0 0 0 0

12 sin 2 ,
2

v v g v t gt v gyα⎛ ⎞= − − = −⎜ ⎟
⎝ ⎠

 where Eq. (3.20) has been used to eliminate t in favor of y. For 

the case of a rock thrown from the roof of a building of height h, the speed at the ground is found by 

substituting y h= −  into the above expression, yielding 2
0 2 ,v v gh= +  which is independent of 0.α  

EVALUATE:   This result, as will be seen in the chapter dealing with conservation of energy (Chapter 7), is 
valid for any y, positive, negative or zero, as long as 2

0 2 0.v gy− >  
 3.63. (a) IDENTIFY:   Projectile motion. 
 

 Take the origin of coordinates at the top of 
the ramp and take y+  to be upward. 
The problem specifies that the object is 
displaced 40.0 m to the right when it is 
15.0 m below the origin. 
 

Figure 3.63   
 

We don’t know t, the time in the air, and we don’t know 0v .  Write down the equations for the horizontal 
and vertical displacements. Combine these two equations to eliminate one unknown. 
SET UP:   y-component: 

0 15 0 m,y y− = − .  29 80 m/s ,ya = − .  0 0 sin53 0yv v= . °  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   2 2
015 0 m ( sin53 0 ) (4 90 m/s )v t t− . = . ° − .  

SET UP:   x-component: 
0 40 0 m,x x− = .  0,xa =  0 0 cos53 0xv v= . °  

21
0 0 2x xx x v t a t− = +  

EXECUTE:   040 0 m ( )cos53 0v t. = . °  

The second equation says 0
40 0 m 66 47 m

cos53 0
v t

.= = . .
. °

 

Use this to replace 0v t  in the first equation: 
2 215 0 m (66 47 m) sin53 (4 90 m/s ) t− . = . ° − .  

2 2
(66 47 m)sin53 15 0 m 68 08 m 3 727 s

4 90 m/s 4 90 m/s
t

. ° + . .= = = . .
. .

 

Now that we have t we can use the x-component equation to solve for 0:v  

0
40 0 m 40 0 m 17 8 m/s
cos53 0 (3 727 s) cos53 0

v
t

. .= = = . .
. ° . . °

 

EVALUATE:   Using these values of 0v  and t in the 21
0 0 2y yy y v a t= = +  equation verifies that 

0 15 0 my y− = − . .  
(b) IDENTIFY:   0 (17 8 m/s)/2 8 9 m/sv = . = .  
This is less than the speed required to make it to the other side, so he lands in the river. 
Use the vertical motion to find the time it takes him to reach the water: 
SET UP:   0 100 m;y y− = −  0 0 sin53.0 7.11 m/s;yv v= + ° =  29 80 m/sya = − .  

21
0 0 2y yy y v t a t− = +  gives 2100 7 11 4 90t t− = . − .  
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EXECUTE:   24 90 7 11 100 0t t. − . − =  and ( )21
9 80 7 11 (7 11) 4 (4 90)( 100)t .= . ± . − . −  

0 726 s 4 57 st = . ± .  so 5 30 st = . .  
The horizontal distance he travels in this time is 

0 0 0( cos53 0 ) (5 36 m/s)(5 30 s) 28 4 mxx x v t v t− = = . ° = . . = . .  
He lands in the river a horizontal distance of 28.4 m from his launch point. 
EVALUATE:   He has half the minimum speed and makes it only about halfway across. 

 3.64. IDENTIFY:   The ball moves in projectile motion. 
SET UP:   The woman and ball travel for the same time and must travel the same horizontal distance, so for 
the ball 0 6 00 m/s.xv = .  

EXECUTE:   (a) 0 0 0cos .xv v θ=  0
0

0

6.00 m/scos
20.0 m/s

xv
v

θ = =  and 0 72 5 .θ = . °  The ball is in the air for 5.55s and 

she runs a distance of (6.00 m/s)(5.55 s) = 33.3 m.  
(b) Relative to the ground the ball moves in a parabola. The ball and the runner have the same horizontal 
component of velocity, so relative to the runner the ball has only vertical motion. The trajectories as seen 
by each observer are sketched in Figure 3.64. 
EVALUATE:   The ball could be thrown with a different speed, so long as the angle at which it was thrown 
was adjusted to keep 0 6 00 m/s.xv = .  

 

 

Figure 3.64 
 

 3.65. IDENTIFY:   The boulder moves in projectile motion. 
SET UP:   Take y+  downward. 0 0,xv v=  0,xa =  0,xa =  29 80 m/s .ya = + .  
EXECUTE:   (a) Use the vertical motion to find the time for the boulder to reach the level of the lake: 

21
0 0 2y yy y v t a t− = +  with 0 20 my y− = +  gives 0

2
2( ) 2(20 m) 2 02 s.

9 80 m/sy

y y
t

a
−= = = .

.
 The rock must 

travel horizontally 100 m during this time. 21
0 0 2x xx x v t a t− = +  gives 

0
0 0

100 m 49 5 m/s
2 02 sx

x x
v v

t
−= = = = .

.
 

(b) In going from the edge of the cliff to the plain, the boulder travels downward a distance of 

0 45 m.y y− =  0
2

2( ) 2(45 m) 3 03 s
9 80 m/sy

y y
t

a
−= = = .

.
 and 0 0 (49 5 m/s)(3 03 s) 150 m.xx x v t− = = . . =   

The rock lands 150 m 100 m 50 m− =  beyond the foot of the dam. 
EVALUATE:   The boulder passes over the dam 2.02 s after it leaves the cliff and then travels an additional 1.01 s 
before landing on the plain. If the boulder has an initial speed that is less than 49 m/s, then it lands in the lake. 

 3.66. IDENTIFY:   The bagels move in projectile motion. Find Henrietta’s location when the bagels reach the 
ground, and require the bagels to have this horizontal range. 
SET UP:   Let y+  be downward and let 0 0 0.x y= =  0,xa =  .ya g= +  When the bagels reach the ground, 

38 0 m.y = .  
EXECUTE:   (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time for the 

bagels to fall 38.0 m from rest. Get the time to fall: 21 ,
2

y gt=  2 2138 0 m (9 80 m/s )
2

t. = .   and 2 78 s.t = .   

So, she has been jogging for 9 00 s 2 78 s 11 78 s..  + .  = .   During this time she has gone 
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(3 05 m/s)(11 78 s) 35 9 m.x vt= = . . = .  Bruce must throw the bagels so they travel 35.9 m horizontally in 
2.78 s. This gives .x vt=  35 9 m (2 78 s)v.  = .  and 12 9 m/s.v = .  
(b) 35.9 m from the building. 
EVALUATE:   If 12 9 m/sv > .  the bagels land in front of her and if 12 9 m/sv < .  they land behind her. 
There is a range of velocities greater than 12.9 m/s for which she would catch the bagels in the air, at some 
height above the sidewalk. 

 3.67. IDENTIFY:   The cart has a constant horizontal velocity, but the missile has horizontal and vertical motion 
once it has left the cart and is in free fall. 
SET UP:   Let +y be upward and +x be to the right. The missile has 0 30 0 m/s,xυ = . 0 40 0 m/s,yυ = . 0xa =  

and 29 80 m/sya = − . .  The cart has 0xa =  and 0 30 0 m/sxυ = . .  

EXECUTE:   (a) At the missile’s maximum height, 0yυ = .  

2 2
0 02 ( )y y ya y yυ υ= + −  gives 

2 2 2
0

0 2
0 (40 0 m/s) 81 6 m

2 2( 9 80 m/s )
y y

y
y y

a

υ υ− − .− = = = .
− .

 

(b) Find t for 0 0y y− =  (missile returns to initial level). 

21
0 0 2y yy y t a tυ− = +  gives 0

2

2 2(40 0 m/s) 8 16 s
9 80 m/s

y

y
t

a

υ .= − = − = .
− .

 

Then 21
0 0 2 (30 0 m/s)(8 16 s) 245 m.x xx x t a tυ− = + = . . =  

(c) The missile also travels horizontally 245 m so the missile lands in the cart.  
EVALUATE:   The vertical motion of the missile does not affect its horizontal motion, which is the same as 
that of the cart, so the missile is always directly above the cart throughout its motion. 

 3.68. IDENTIFY:   The water follows a parabolic trajectory since it is affected only by gravity, so we apply the 
principles of projectile motion to it. 
SET UP:   Use coordinates with +y upward. Once the water leaves the cannon it is in free-fall and has 

0xa =  and 29 80 m/sya = − . .  The water has 0 0 0cos 15 0 m/sxυ υ θ= = .  and 0 0 0sin 20 0 m/syυ υ θ= = . .   

EXECUTE:    Use the vertical motion to find t that gives 0 10 0 m:y y− = .  21
0 0 2y yy y t a tυ− = +  gives  

2 210 0 m (20 0 m/s) (4 90 m/s )t t. = . − . .  
The quadratic formula gives 2 04 1 45 s,t = . ± .  and 0 59 st = .  or 3 49 st = . .  Both answers are physical. 

For 0 59 s,t = .  0 0 (15 0 m/s)(0 59 s) 8 8 mxx x tυ− = = . . = . .  
For 3 49 s,t = .  0 0 (15 0 m/s)(3 49 s) 52 4 mxx x tυ− = = . . = . .  

When the cannon is 8.8 m from the building, the water hits this spot on the wall on its way up to its 
maximum height. When is it 52.4 m from the building it hits this spot after it has passed through its 
maximum height. 
EVALUATE:   The fact that we have two possible answers means that the firefighters have some choice on 
where to stand. If the fire is extremely fierce, they would no doubt prefer to stand at the more distant 
location. 

 3.69. IDENTIFY:   The rock is in free fall once it is in the air, so it has only a downward acceleration of 9.80 m/s2, 
and we apply the principles of two-dimensional projectile motion to it. The constant-acceleration 
kinematics formulas apply. 
SET UP:   The vertical displacement must be ∆ = − 0y y y  = 5.00 m  – 1.60 m = 3.40 m at the instant that 

the horizontal displacement ∆ = − 0x x x  = 14.0 m, and ay = –9.80 m/s2 with +y upward. 
EXECUTE:   (a) There is no horizontal acceleration, so 14.0 m = v0 cos(56.0°)t, which gives 

=
°0

14.0 m
.

cos 56.0
t

v
 Putting this quantity, along with the numerical quantities, into the equation 

21
0 0 2y yy y v t a t− = +  and solving for v0 we get v0 = 13.3 m/s.  
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(b) The initial horizontal velocity of the rock is (13.3 m/s)(cos 56.0°), and when it lands on the ground, 
− 0y y  = –1.60 m. Putting these quantities into the equation 21

0 0 2y yy y v t a t− = +  leads to a quadratic 

equation in t. Using the positive square root, we get t = 2.388 s when the rock lands. The horizontal 
position at that instant is − 0x x  = (13.3 m/s)(cos 56.0°)(2.388 s) = 17.8 m from the launch point. So the 
distance beyond the fence is 17.8 m – 14.0 m = 3.8 m. 
EVALUATE:   We cannot use the range formula to find the distance in (b) because the rock’s motion does 
not start and end at the same height.  

 3.70. IDENTIFY:   The object moves with constant acceleration in both the horizontal and vertical directions. 
SET UP:   Let y+  be downward and let x+  be the direction in which the firecracker is thrown. 

EXECUTE:   The firecracker’s falling time can be found from the vertical motion: 2 .h
t

g
=  

The firecracker’s horizontal position at any time t (taking the student’s position as 0x = ) is 21
2 .x vt at= −  

0x =  when cracker hits the ground, so 2 .t v/a=  Combining this with the expression for the falling time 

gives 2 2v h
a g

=  and 
2

2
2 .v g

h
a

=  

EVALUATE:   When h is smaller, the time in the air is smaller and either v must be smaller or a must be 
larger. 

 3.71. IDENTIFY:   Relative velocity problem. The plane’s motion relative to the earth is determined by its 
velocity relative to the earth. 
SET UP:   Select a coordinate system where y+  is north and x+  is east. 
The velocity vectors in the problem are: 

P/E ,Gv  the velocity of the plane relative to the earth. 

P/A,Gv  the velocity of the plane relative to the air (the magnitude P/Av  is the airspeed of the plane and the 
direction of P/A

Gv  is the compass course set by the pilot). 

A/E ,Gv  the velocity of the air relative to the earth (the wind velocity). 
The rule for combining relative velocities gives P/E P/A A/E= + .G G Gv v v  
 (a) We are given the following information about the relative velocities: 

P/A
Gv  has magnitude 220 km/h and its direction is west. In our coordinates it has components 

P/A( ) 220 km/hxv = −  and P/A( ) 0yv = .  

From the displacement of the plane relative to the earth after 0.500 h, we find that P/E
Gv  has components in 

our coordinate system of 

P/E
120 km( ) 240 km/h
0 500 hxv = − = −

.
 (west) 

P/E
20 km( ) 40 km/h

0 500 hyv = − = −
.

 (south) 

With this information the diagram corresponding to the velocity addition equation is shown in  
Figure 3.71a. 

 

 

Figure 3.71a 
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We are asked to find A/E,Gv  so solve for this vector: 

P/E P/A A/E= +G G Gv v v  gives A/E P/E P/A= − .G G Gv v v  
EXECUTE:   The x-component of this equation gives 

A/E P/E P/A( ) ( ) ( ) 240 km/h ( 220 km/h) 20 km/hx x xv v v= − = − − − = − .  
The y-component of this equation gives 

A/E P/E P/A( ) ( ) ( ) 40 km/hy y yv v v= − = − .  

Now that we have the components of A/E
Gv  we can find its magnitude and direction. 

 

 2 2
A/E A/E A/E( ) ( )x yv v v= +  

2 2
A/E ( 20 km/h) ( 40 km/h) 44 7 km/hv = − + − = .  

40 km/htan 2 00;
20 km/h

φ = = .  63 4φ = . °  

The direction of the wind velocity is 63 4  S. °  of W, 
or 26 6  W. °  of S. 

Figure 3.71b   
 

EVALUATE:   The plane heads west. It goes farther west than it would without wind and also travels south, 
so the wind velocity has components west and south. 
(b) SET UP:   The rule for combining the relative velocities is still P/E P/A A/E ,= +G G Gv v v  but some of these 
velocities have different values than in part (a). 

P/A
Gv  has magnitude 220 km/h but its direction is to be found. 

A/E
Gv  has magnitude 40 km/h and its direction is due south. 

The direction of P/E
Gv  is west; its magnitude is not given. 

The vector diagram for P/E P/A A/E= +G G Gv v v  and the specified directions for the vectors is shown in  
Figure 3.71c. 

 

 

Figure 3.71c 
 

The vector addition diagram forms a right triangle. 

EXECUTE:   A/E

P/A

40 km/hsin 0 1818;
220 km/h

v
v

φ = = = .  10 5φ = . °.  

The pilot should set her course 10 5. °  north of west. 
EVALUATE:   The velocity of the plane relative to the air must have a northward component to counteract 
the wind and a westward component in order to travel west. 
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 3.72. IDENTIFY:   Use the relation that relates the relative velocities. 
SET UP:   The relative velocities are the raindrop relative to the earth, R/E ,Gv  the raindrop relative to the 
train, R/T ,Gv  and the train relative to the earth, T/E.Gv  R/E R/T T/E.= +G G Gv v v  T/E

Gv  is due east and has 
magnitude 12.0 m/s. R/T

Gv  is 30 0. °  west of vertical. R/E
Gv  is vertical. The relative velocity addition 

diagram is given in Figure 3.72. 
EXECUTE:   (a) R/E

Gv  is vertical and has zero horizontal component. The horizontal component of R/T
Gv  is 

T/E ,−Gv  so is 12.0 m/s westward. 

(b) T/E
R/E

12 0 m/s 20 8 m/s.
tan30 0 tan30 0

v
v

.= = = .
. ° . °

 T/E
R/T

12 0 m/s 24 0 m/s.
sin30 0 sin30 0

v
v

.= = = .
. ° . °

 

EVALUATE:   The speed of the raindrop relative to the train is greater than its speed relative to the earth, 
because of the motion of the train. 

 

 

Figure 3.72 
 

 3.73. IDENTIFY:   Relative velocity problem. 
SET UP:   The three relative velocities are: 

J/G ,Gv  Juan relative to the ground. This velocity is due north and has magnitude J/G 8.00 m/s.v =  

B/G ,Gv  the ball relative to the ground. This vector is 37 0. °  east of north and has magnitude 

B/G 12 00 m/sv = . .  

B/J ,Gv  the ball relative to Juan. We are asked to find the magnitude and direction of this vector. 
The relative velocity addition equation is B/G B/J J/G ,= +G G Gv v v  so B/J B/G J/G= − .G G Gv v v  
The relative velocity addition diagram does not form a right triangle so we must do the vector addition 
using components. 
Take y+  to be north and x+  to be east. 
EXECUTE:   B/J B/G sin37 0 7 222 m/sxv v= + . ° = .  

B/J B/G J/Gcos37 0 1 584 m/syv v v= + . ° − = .  

These two components give B/J 7 39 m/sv = .  at 12 4. °  north of east. 
EVALUATE:   Since Juan is running due north, the ball’s eastward component of velocity relative to him is 
the same as its eastward component relative to the earth. The northward component of velocity for Juan 
and the ball are in the same direction, so the component for the ball relative to Juan is the difference in 
their components of velocity relative to the ground. 

 3.74. IDENTIFY:   Both the bolt and the elevator move vertically with constant acceleration. 
SET UP:   Let y+  be upward and let 0y =  at the initial position of the floor of the elevator, so 0y  for the 
bolt is 3.00 m. 
EXECUTE:   (a) The position of the bolt is 2 23 00 m (2 50 m/s) (1/ 2)(9 80 m/s )t t. + .  − .  and the position of 

the floor is (2.50 m/s)t. Equating the two, 2 23 00 m (4 90 m/s ) .t.  = .   Therefore, 0 782 s.t = .   

(b) The velocity of the bolt is 22 50 m/s (9 80 m/s )(0 782 s) 5 17 m/s.  − . .  = − .  relative to earth, therefore, 
relative to an observer in the elevator 5 17 m/s 2 50 m/s 7 67 m/sv = − . − .  = − .  .  
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(c) As calculated in part (b), the speed relative to earth is 5.17 m/s. 
(d) Relative to earth, the distance the bolt traveled is 

2 2 2 2(2 50 m/s) (1/ 2)(9 80 m/s ) (2 50 m/s)(0 782 s) (4 90 m/s )(0 782 s) 1 04 m.t t.  − .  = .  .  − .  . = − .  

EVALUATE:   As viewed by an observer in the elevator, the bolt has 0 0yv =  and 29 80 m/s ,ya = − .  so in 

0.782 s it falls 2 21
2 (9 80 m/s )(0 782 s) 3 00 m.− . . = − .  

3.75. IDENTIFY:   We need to use relative velocities. 
SET UP:   If B is moving relative to M and M is moving relative to E, the velocity of B relative to E is 

B/E B/M M/E.= +G G Gv v v  
EXECUTE:   Let +x be east and +y be north. We have B/M, 2 50 m/s,xv = .  B/M,y 4 33 m/s,v = − .  M/E, 0,xv =  

and M/E,y 6 00 m/s.v = .  Therefore B/E, B/M, M/E, 2 50 m/sx x xv v v= + = .  and 

B/E,y B/M,y M/E,y 4 33 m/s 6 00 m/s 1 67 m/s.v v v= + = − . + . = + .  The magnitude is 

2 2
B/E (2 50 m/s) (1 67 m/s) 3 01 m/s,v = . + . = .  and the direction is 1 67tan ,

2 50
θ .=

.
 which gives 

o33 7θ = . north of east. 
EVALUATE:   Since Mia is moving, the velocity of the ball relative to her is different from its velocity 
relative to the ground or relative to Alice. 

 3.76. IDENTIFY:   You have a graph showing the horizontal range of the rock as a function of the angle at which 
it was launched and want to find its initial velocity. Because air resistance is negligible, the rock is in free 
fall. The range formula applies since the rock rock was launced from the ground and lands at the ground.  

SET UP:   (a) The range formula is 
θ

=
2

0 sin(2 )v
R

g
, so a plot of R versus θ0sin(2 )  will give a straight line 

having slope equal to 2
0
/ .v g  We can use that data in the graph in the problem to construct our graph by 

hand, or we can use graphing software. The resulting graph is shown in Figure 3.76. 
 

 

Figure 3.76 
 

(b) The slope of the graph is 10.95 m, so 10.95 m = 2
0 / .v g  Solving for v0 we get v0 = 10.4 m/s. 

(c) Solving the formula = + −2 2
0 02 ( )y y yv v a y y  for − 0y y  with vy = 0 at the highest point, we get  

y – y0 = 1.99 m. 
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EVALUATE:   This approach to finding the launch speed v0 requires only simple measurements: the range 
and the launch angle. It would be difficult and would require special equipment to measure v0 directly. 

 3.77. IDENTIFY:   The table gives data showing the horizontal range of the potato for various launch heights. 
You want to use this information to determine the launch speed of the potato, assuming negligible air 
resistance. 
SET UP:   The potatoes are launched horizontally, so v0y = 0, and they are in free fall, so ay = 9.80 m/s2 
downward and ax = 0. The time a potato is in the air is just the time it takes for it to fall vertically from the 
launch point to the ground, a distance h.  
EXECUTE:   (a) For the vertical motion of a potato, we have h = ½ gt2, so t = 2 / .h g  The horizontal range 

R is given by 0 0 2 / .R v t v h g= =  Squaring gives =
⎛ ⎞
⎜ ⎟
⎝ ⎠

2
2 02

.
v

R h
g

 Graphing R2 versus h will give a straight 

line with slope 2
02 / .v g  We can graph the data from the table in the text by hand, or we could use graphing 

software. The result is shown in Figure 3.77. 
 

 

Figure 3.77 
 

(b) The slope of the graph is 55.2 m, so =
2

0
(9.80 m/s )(55.2 m)

2
v  = 16.4 m/s. 

(c) In this case, the potatoes are launched and land at ground level, so we can use the range formula with θ  

= 30.0° and v0 = 16.4 m/s. The result is 
2
0 sin(2 )v

R
g

θ=  = 23.8 m.  

EVALUATE:   This approach to finding the launch speed v0 requires only simple measurements: the range 
and the launch height. It would be difficult and would require special equipment to measure v0 directly.  

 3.78. IDENTIFY:   This is a vector addition problem. The boat moves relative to the water and the water moves 
relative to the earth. We know the speed of the boat relative to the water and the times for the boat to go 
directly across the river, and from these things we want to find out how fast the water is moving and the 
width of the river. 
SET UP:   For both trips of the boat, = +G G G

B/E B/W W/Ev v v , where the subscripts refer to the boat, earth, and 
water. The speed of the boat relative to the earth is vB/E = d/t, where d is the width of the river and t is the 
time to cross the river, which is different in the two crossings.  
EXECUTE:   Figure 3.78 shows a vector sum for the first trip and for the return trip. 
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Figure 3.78a-b 
 

(a)  For both trips, the vectors in Figures 3.78 a & b form right triangles, so we can apply the Pythagorean 
theorem. = −2 2 2

B/E B/W W/Ev v v and vB/E = d/t. For the first trip, vB/W = 6.00 m/s and t = 20.1 s, giving  
2 2 2 2

W/E/(20.1s) (60.00 m/s ) ( ) .d v= −  For the return trip, vB/W = 9.0 m/s and t = 11.2 s, which gives 
2 2 2 2

W/E/(11.2 s) (9.00 m/s ) ( ) .d v= −  Solving these two equations together gives d = 90.48 m, which 
rounds to 90.5 m (the width of the river) and vW/E = 3.967 m/s which rounds to 3.97 m/s (the speed of the 
current). 
(b) The shortest time is when the boat heads perpendicular to the current, which is due north. Figure 3.78c 
illustrates this situation. The time to cross is t = d/vB/W = (90.48 m)/(6.00 m/s) = 15.1 s. The distance x east 
(down river) that you travel is x = vW/Et = (3.967 m/s)(15.1 s) = 59.9 m east of your starting point. 

 

 

Figure 3.78c 
 

EVALUATE:   In part (a), the boat must have a velocity component up river to cancel out the current 
velocity. In part (b), velocity of the current has no effect on the crossing time, but it does affect the landing 
position of the boat. 

 3.79. IDENTIFY:   Write an expression for the square of the distance 2( )D  from the origin to the particle, 

expressed as a function of time. Then take the derivative of 2D  with respect to t, and solve for the value  
of t when this derivative is zero. If the discriminant is zero or negative, the distance D will never decrease. 
SET UP:   2 2 2,D x y= +  with ( )x t  and ( )y t  given by Eqs. (3.19) and (3.20). 

EXECUTE:   Following this process, 1sin 8/9 70 5− = . °.  
EVALUATE:   We know that if the object is thrown straight up it moves away from P and then returns, so 
we are not surprised that the projectile angle must be less than some maximum value for the distance to 
always increase with time. 

 3.80. IDENTIFY:   Apply the relative velocity relation. 
SET UP:   Let C/Wv  be the speed of the canoe relative to water and W/Gv  be the speed of the water relative 
to the ground. 
EXECUTE:   (a) Taking all units to be in km and h, we have three equations. We know that heading 
upstream C/W W/G 2.v v− =  We know that heading downstream for a time C/W W/G,  ( ) 5.t v v t+ =  We also 
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know that for the bottle W/G ( 1) 3.v t + =  Solving these three equations for W/G C/W,  2 ,v x v x= = +  

therefore (2 ) 5x x t+ + =  or (2 2 ) 5.x t+ =  Also 3/ 1,t x= −  so 3(2 2 ) 1 5x
x

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 or 22 6 0.x x+ − =  

The positive solution is W/G 1.5 km/h.x v= =  
(b) C/W W/G2 km/h 3.5 km/h.v v= + =  
EVALUATE:   When they head upstream, their speed relative to the ground is 
3.5 km/h 1.5 km/h 2.0 km/h.− =  When they head downstream, their speed relative to the ground is 
3.5 km/h 1.5 km/h 5.0 km/h.+ =  The bottle is moving downstream at 1.5 km/s relative to the earth, so they 
are able to overtake it. 

 3.81. IDENTIFY:   The rocket has two periods of constant acceleration motion. 
SET UP:   Let y+  be upward. During the free-fall phase, 0xa =  and .ya g= −  After the engines turn on, 

(3 00 )cos30 0xa g= . . °  and (3 00 )sin30 0 .ya g= . . °  Let t be the total time since the rocket was dropped and 
let T be the time the rocket falls before the engine starts. 
EXECUTE:   (i) The diagram is given in Figure 3.81 a. 
(ii) The x-position of the plane is (236 m/s)t  and the x-position of the rocket is 

2 2(236 m/s) (1 2)(3.00)(9.80 m/s )cos30 ( ) .t / t T+ ° −  The graphs of these two equations are sketched in 
Figure 3.81 b. 
(iii) If we take 0y =  to be the altitude of the airliner, then 

2 2 2( ) 1 2 ( ) 1 2(3.00)(9.80 m/s )(sin30 )( )y t / gT gT t T / t T= − − − + ° −  for the rocket. The airliner has constant y. 
The graphs are sketched in Figure 3.81b. 
In each of the Figures 3.81a–c, the rocket is dropped at 0t =  and the time T when the motor is turned on is 
indicated. 
By setting 0y =  for the rocket, we can solve for t in terms of T: 

2 2 2 2 20 4.90 m/s ) (9.80 m/s ) ( ) (7.35 m/s )( ) .T T t T t T= −  −  − +  −(  Using the quadratic formula for the 

variable x t T= −  we find 
2 2 2 2 2

2
(9.80 m/s ) (9.80 m/s ) (4)(7.35 m/s )(4.9)

,
2(7.35 m/s )

T T T
x t T

+ += − =  or 

2 72 .t T= .   Now, using the condition that rocket plane 1000 m,x x− =  we find 
2 2(236 m/s) (12.7 m/s )( ) (236 m/s) 1000 m,t t T t +  − −  =  or 2 2(1 72 ) 78 6 s .T. = .   Therefore 5 15 s.T = .  

EVALUATE:   During the free-fall phase the rocket and airliner have the same x coordinate but the rocket 
moves downward from the airliner. After the engines fire, the rocket starts to move upward and its 
horizontal component of velocity starts to exceed that of the airliner. 

 

Figure 3. 81 
 
 

 3.82. IDENTIFY:   We know the speed of the seeds and the distance they travel. 
SET UP:   We can treat the speed as constant over a very short distance, so v = d/t.  The minimum frame 
rate is determined by the maximum speed of the seeds, so we use v = 4.6 m/s.  
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EXECUTE:   Solving for t gives t =d/v = (0.20 × 10–3 s)/(4.6 m/s) = 4.3 × 10–5 s per frame.  
The frame rate is 1/(4.3 × 10–5 s per frame) = 23,000 frames/seconde. Choice (c) 25,000 frames per second 
is closest to this result, so choice (c) is the best one. 
EVALUATE:   This experiment would clearly require high-speed photography.  

 3.83. IDENTIFY:   A seed launched at 90° goes straight up. Since we are ignoring air resistance, its acceleration is 
9.80 m/s2 downward. 
SET UP:   For the highest possible speed v0y = 4.6 m/s, and vy = 0 at the highest point. 
EXECUTE:   vy = v0y – gt gives t = v0y/g = (4.6 m/s)/(9.80 m/s2) = 0.47 s, which is choice (b). 
EVALUATE:   Seeds are rather light and 4.6 m/s is fairly fast, so it might not be such a good idea to ignore 
air resistance. But doing so is acceptable to get a first approximation to the time.  

 3.84. IDENTIFY:   A seed launched at 0° starts out traveling horizontally from a height of 20 cm above the 
ground. Since we are ignoring air resistance, its acceleration is 9.80 m/s2 downward. 
SET UP:   Its horizontal distance is determined by the time it takes the seed to fall 20 cm, starting from rest 
vertically. 
EXECUTE:   The time to fall 20 cm is 21

20.20 m ,gt=  which gives t = 0.202 s. The horizontal distance 

traveled during this time is x = (4.6 m/s)(0.202 s) = 0.93 m = 93 cm, which is choice (b).  
EVALUATE:   In reality the seed would travel a bit less distance due to air resistance.  

 3.85. IDENTIFY:   About 2/3 of the seeds are launched between 6° and 56° above the horizontal, and the average 
for all the seeds is 31°. So clearly most of the seeds are launched above the horizontal. 
SET UP and EXECUTE: For choice (a) to be correct, the seeds would need to cluster around 90°, which they 
do not. For choice (b), most seeds would need to launch below the horizontal, which is not the case. For 
choice (c), the launch angle should be around +45°. Since 31° is not far from 45°, this is the best choice. 
For choice (d), the seeds should go straight downward. This would require a launch angle of –90°, which is 
not the case.  
EVALUATE:   Evolutionarily it would be an advantage for the seeds to get as far from the parent plant as 
possible so the young plants would not compete with the parent for water and soil nutrients, so 45° is a 
biologically plausible result. Natural selection would tend to favor plants that launched their seeds at this 
angle over those that did not. 
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 4.1. IDENTIFY:   Vector addition. 
SET UP:   Use a coordinate system where the -axisx+  is in the direction of ,A

G
F  the force applied by  

dog A. The forces are sketched in Figure 4.1. 
EXECUTE:    

 

 

 270 N,AxF = +  0AyF =  

cos60 0 (300 N)cos60 0 150 NBx BF F= . ° = . ° = +  
sin 60 0 (300 N)sin60 0 260 NBy BF F= . ° = . ° = +  

Figure 4.1a   
 

= +
G G G

A BR F F  
270 N 150 N 420 Nx Ax BxR F F= + = + + = +  

0 260 N 260 Ny Ay ByR F F= + = + = +  
 

 

 2 2
x yR R R= +  

2 2(420 N) (260 N) 494 NR = + =  

tan 0 619y

x

R
R

θ = = .  

31 8θ = . °  

Figure 4.1b   
 

EVALUATE:   The forces must be added as vectors. The magnitude of the resultant force is less than the 
sum of the magnitudes of the two forces and depends on the angle between the two forces. 

 4.2. IDENTIFY:   We know the magnitudes and directions of three vectors and want to use them to find their 
components, and then to use the components to find the magnitude and direction of the resultant vector. 
SET UP:   Let 1 985 N,F =  2 788 N,F =  and 3 411 NF = .  The angles θ  that each force makes with the  

x+  axis are 1 31 ,θ = °  2 122 ,θ = °  and 3 233θ = °.  The components of a force vector are cosxF F θ=  and 

sin ,yF F θ=  and 2 2
x yR R R= +  and tan y

x

R
R

θ = .  

NEWTON’S LAWS OF MOTION 

4
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EXECUTE:   (a) 1 1 1cos 844 N,xF F θ= =  1 1 1sin 507 N,yF F θ= =  2 2 2cos 418 N,xF F θ= = −  

2 2 2sin 668 N,yF F θ= =  3 3 3cos 247 N,xF F θ= = −  and 3 3 3sin 328 NyF F θ= = − .  

(b) 1 2 3 179 N;x x x xR F F F= + + =  1 2 3 847 N.y y y yR F F F= + + =  2 2 886 N;x yR R R= + =  tan y

x

R
R

θ =  so 

78 1θ = . °.  
G
R  and its components are shown in Figure 4.2. 

 

 

Figure 4.2 
 

EVALUATE:   A graphical sketch of the vector sum should agree with the results found in (b). Adding the 
forces as vectors gives a very different result from adding their magnitudes. 

 4.3. IDENTIFY:   We know the resultant of two vectors of equal magnitude and want to find their magnitudes. 
They make the same angle with the vertical. 

 

 

Figure 4.3 
 

SET UP:   Take y+  to be upward, so 5.00 N.yF∑ =  The strap on each side of the jaw exerts a force F 
directed at an angle of 52.5° above the horizontal, as shown in Figure 4.3. 
EXECUTE:   2 sin52 5 5 00 N,yF F∑ = . ° = .  so 3 15 NF = . .  
EVALUATE:   The resultant force has magnitude 5.00 N which is not the same as the sum of the magnitudes 
of the two vectors, which would be 6.30 N. 

 4.4. IDENTIFY:   cos ,xF F θ=  sin .yF F θ=  
SET UP:   Let x+  be parallel to the ramp and directed up the ramp. Let y+  be perpendicular to the ramp 
and directed away from it. Then 30 0 .θ = . °  

EXECUTE:   (a) 90 0 N 104 N.
cos cos30

xF
F

θ
.= = =

°
 

(b) sin tan (90 N)(tan30 ) 52.0 N.y xF F Fθ θ= = = ° =  

EVALUATE:   We can verify that 2 2 2.x yF F F+ =  The signs of xF  and yF  show their direction. 
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 4.5. IDENTIFY:   Add the two forces using components. 
SET UP:   cos ,xF F θ=  sin ,yF F θ=  where θ  is the angle 

G
F  makes with the x+  axis. 

EXECUTE:   (a) 1 2 (9 00 N)cos120 (6 00 N)cos(233 1 ) 8 10 Nx xF F+ = .  ° + . . ° = − .  

1 2 (9 00 N)sin120 (6 00 N)sin(233 1 ) 3 00 N.y yF F+ = . ° + . . ° = + .  

(b) 2 2 2 2(8 10 N) (3 00 N) 8 64 N.x yR R R= + = . + . = .  

EVALUATE:   Since 0xF <  and 0,yF >  
G
F  is in the second quadrant. 

 4.6. IDENTIFY:   Use constant acceleration equations to calculate xa  and t. Then use m∑ =
G G
F a  to calculate the 

net force. 
SET UP:   Let x+  be in the direction of motion of the electron. 
EXECUTE:   (a) 0 0,xv =  2

0( ) 1 80 10  m,x x −− = . ×  63 00 10  m/s.xv = . ×  2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 6 2
14 20

2
0

(3 00 10  m/s) 0 2 50 10  m/s
2( ) 2(1 80 10  m)

x x
x

v v
a

x x −
− . × −= = = . ×
− . ×

 

(b) 0x x xv v a t= +  gives 
6

80
14 2

3 00 10  m/s 0 1 2 10  s
2 50 10  m/s

x x

x

v v
t

a
−− . × −= = = . ×

. ×
 

(c) 31 14 2 16(9 11 10  kg)(2 50 10  m/s ) 2 28 10  N.x xF ma − −∑ = = . × . × = . ×  
EVALUATE:   The acceleration is in the direction of motion since the speed is increasing, and the net force 
is in the direction of the acceleration. 

 4.7. IDENTIFY:   Friction is the only horizontal force acting on the skater, so it must be the one causing the 
acceleration. Newton’s second law applies. 
SET UP:   Take x+  to be the direction in which the skater is moving initially. The final velocity is 0,xv =  
since the skater comes to rest. First use the kinematics formula 0x x xv v a t= +  to find the acceleration, then 

apply m∑ =
G G
F a  to the skater. 

EXECUTE:   0x x xv v a t= +  so 20 0 2 40 m/s 0 682 m/s .
3 52 s

x x
x

v v
a

t
− − .= = = − .

.
 The only horizontal force on 

the skater is the friction force, so 2(68 5 kg)( 0 682 m/s ) 46 7 N.x xf ma= = . − . = − .  The force is 46.7 N, 
directed opposite to the motion of the skater. 
EVALUATE:   Although other forces are acting on the skater (gravity and the upward force of the ice), they 
are vertical and therefore do not affect the horizontal motion. 

 4.8.  IDENTIFY:   The elevator and everything in it are accelerating upward, so we apply Newton’s second law 
in the vertical direction. 
SET UP:   Your mass is 63 8 kgm w/g= = . .  Both you and the package have the same acceleration as the 
elevator. Take y+  to be upward, in the direction of the acceleration of the elevator, and apply .y yF ma∑ =  

EXECUTE:   (a) Your free-body diagram is shown in Figure 4.8a, where n is the scale reading. y yF ma∑ =  

gives .n w ma− =  Solving for n gives 2625 N (63 8 kg)(2 50 m/s ) 784 N.n w ma= + = + . . =  
(b) The free-body diagram for the package is given in Figure 4.8b. y yF ma∑ =  gives ,T w ma− =  so 

2 2(3 85 kg)(9 80 m/s 2 50 m/s ) 47 4 N.T w ma= + = . . + . = .  

 

Figure 4.8 



4-4   Chapter 4 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EVALUATE:   The objects accelerate upward so for each of them the upward force is greater than the 
downward force. 

 4.9. IDENTIFY:   Apply m∑ =
G G
F a  to the box. 

SET UP:   Let x+  be the direction of the force and acceleration. 48 0 N.xF∑ = .  

EXECUTE:   x xF ma∑ =  gives 2

48 0 N 21.8 kg.
2.20 m/s

x

x

F
m

a
Σ .= = =  

EVALUATE:   The vertical forces sum to zero and there is no motion in that direction. 
 4.10. IDENTIFY:   Use the information about the motion to find the acceleration and then use x xF ma∑ =  to 

calculate m. 
SET UP:   Let x+  be the direction of the force. 80 0 N.xF∑ = .  

EXECUTE:   (a) 0 11 0 m,x x− = .  5 00 s,t = .  0 0.xv =  21
0 0 2x xx x v t a t− = +  gives 

20
2 2

2( ) 2(11 0 m) 0 880 m/s .
(5 00 s)x

x x
a

t
− .= = = .

.
 2

80.0 N 90.9 kg.
0.880 m/s

x

x

F
m

a
Σ= = =  

(b) 0xa =  and xv  is constant. After the first 5.0 s, 2
0 (0 880 m/s ) (5 00 s) 4 40 m/s.x x xv v a t= + = . . = .  

21
0 0 2 (4 40 m/s)(5 00 s) 22 0 m.x xx x v t a t− = + = . . = .  

EVALUATE:   The mass determines the amount of acceleration produced by a given force. The block moves 
farther in the second 5.00 s than in the first 5.00 s. 

 4.11. IDENTIFY and SET UP:   Use Newton’s second law in component form to calculate the acceleration 
produced by the force. Use constant acceleration equations to calculate the effect of the acceleration on the 
motion. 
EXECUTE:   (a) During this time interval the acceleration is constant and equal to 

20 250 N 1 562 m/s
0 160 kg

x
x

F
a

m
.= = = .
.

 

We can use the constant acceleration kinematic equations from Chapter 2. 
2 2 21 1

0 0 2 20 (1 562 m/s )(2 00 s) 3.12 m,x xx x v t a t− = + = + . . =  so the puck is at 3 12 m.x = .  
2

0 0 (1 562 m/s )(2 00 s) 3 12 m/s.x x xv v a t= + = + . . = .  
(b) In the time interval from 2 00 st = .  to 5.00 s the force has been removed so the acceleration is zero. 
The speed stays constant at 3 12 m/s.xv = .  The distance the puck travels is 

0 0 (3.12 m/s)(5 00 s 2 00 s) 9 36 m.xx x v t− = = . − . = .  At the end of the interval it is at 

0 9 36 m 12 5 m.x x= + . = .  

In the time interval from 5 00 st = .  to 7.00 s the acceleration is again 21 562 m/s .xa = .  At the start of this 
interval 0 3 12 m/sxv = .  and 0 12 5 m.x = .  

2 2 21 1
0 0 2 2(3 12 m/s)(2 00 s) (1 562 m/s )(2 00 s) .x xx x v t a t− = + = . . + . .  

0 6 24 m 3 12 m 9 36 m.x x− = . + . = .  
Therefore, at 7 00 st = .  the puck is at 0 9 36 m 12 5 m + 9 36 m 21 9 m.x x= + . = . . = .  

2
0 3 12 m/s (1 562 m/s )(2 00 s) 6 24 m/s.x x xv v a t= + = . + . . = .  

EVALUATE:   The acceleration says the puck gains 1.56 m/s of velocity for every second the force acts. The 
force acts a total of 4.00 s so the final velocity is (1 56 m/s)(4 0 s) 6 24 m/s.. . = .  

 4.12. IDENTIFY:   Apply .m∑ =
G G
F a  Then use a constant acceleration equation to relate the kinematic quantities. 

SET UP:   Let x+  be in the direction of the force. 
EXECUTE:   (a) /x xa F m=  = (14.0 N)/(32.5 kg) = 0.4308 m/s2, which rounds to 0.431 m/s2 for the final 
answer. 
(b) 21

0 0 2 .x xx x v t a t− = +  With 2 2 21 1
0 2 20, (0.4308 m/s )(10.0 s) 21.5 m.x xv x a t=  = = =  

(c) 0 .x x xv v a t= +  With 0 0,  x x xv v a t= =  = (0.4308 m/s2)(10.0 s) = 4.31 m/s. 
EVALUATE:   The acceleration connects the motion to the forces. 
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 4.13. IDENTIFY:   The force and acceleration are related by Newton’s second law. 
SET UP:   ,x xF ma∑ =  where xF∑  is the net force. 4 50 kg.m = .  
EXECUTE:   (a) The maximum net force occurs when the acceleration has its maximum value. 

2(4 50 kg)(10 0 m/s ) 45 0 N.x xF ma∑ = = . . = .  This maximum force occurs between 2.0 s and 4.0 s. 
(b) The net force is constant when the acceleration is constant. This is between 2.0 s and 4.0 s. 
(c) The net force is zero when the acceleration is zero. This is the case at 0t =  and 6.0 s.t =  
EVALUATE:   A graph of xF∑  versus t would have the same shape as the graph of xa  versus t. 

 4.14. IDENTIFY:   The force and acceleration are related by Newton’s second law. ,x
x

dv
a

dt
=  so xa  is the slope 

of the graph of xv  versus t. 
SET UP:   The graph of xv  versus t consists of straight-line segments. For 0t =  to 2 00 s,t = .  

24 00 m/s .xa = .  For 2 00 st = .  to 6.00 s, 0.xa =  For 6 00 st = .  to 10.0 s, 21 00 m/s .xa = .  
,x xF ma∑ =  with 2 75 kg.m = .  xF∑  is the net force. 

EXECUTE:   (a) The maximum net force occurs when the acceleration has its maximum value. 
2(2 75 kg)(4 00 m/s ) 11 0 N.x xF ma∑ = = . . = .  This maximum occurs in the interval 0t =  to 2 00 s.t = .  

(b) The net force is zero when the acceleration is zero. This is between 2.00 s and 6.00 s. 
(c) Between 6.00 s and 10.0 s, 21 00 m/s ,xa = .  so 2(2 75 kg)(1 00 m/s ) 2 75 N.xF∑ = . . = .  
EVALUATE:   The net force is largest when the velocity is changing most rapidly. 

 4.15. IDENTIFY:   The net force and the acceleration are related by Newton’s second law. When the rocket is 
near the surface of the earth the forces on it are the upward force 

G
F  exerted on it because of the burning 

fuel and the downward force grav

G
F  of gravity. grav .F mg=  

SET UP:   Let y+  be upward. The weight of the rocket is 2
grav (8 00 kg)(9 80 m/s ) 78 4 N.F = . . = .  

EXECUTE:   (a) At 0,t =  100 0 N.F A= = .  At 2 00 s,t = .  2(4 00 s ) 150 0 NF A B= + . = .  and 

2
2

150 0 N 100 0 N 12 5 N/s .
4 00 s

B
. − .= = .

.
 

(b) (i) At 0,t =  100 0 N.F A= = .  The net force is grav 100 0 N 78 4 N 21 6 N.yF F F∑ = − = . − . = .  

221 6 N 2 70 m/s .
8 00 kg

y
y

F
a

m
∑ .= = = .

.
 (ii) At 3 00 s,t = .  2(3 00 s) 212 5 N.F A B= + . = .  

212 5 N 78 4 N 134 1 N.yF∑ = . − . = .  2134 1 N 16 8 m/s .
8 00 kg

y
y

F
a

m
∑ .= = = .

.
 

(c) Now grav 0F =  and 212.5 N.yF F∑ = =  2212 5 N 26 6 m/s .
8 00 kgya

.= = .
.

 

EVALUATE:   The acceleration increases as F increases. 
 4.16. IDENTIFY:   Weight and mass are related by .w mg=  The mass is constant but g and w depend on location. 

SET UP:   On Earth, 29 80 m/s .g = .  

EXECUTE:   (a) ,w
m

g
=  which is constant, so E A

E A

.w w
g g

=  E 17 5 N,w = .  2
E 9 80 m/s ,g = .  and 

M 3 24 N.w = .  2 2A
M E

E

3 24 N (9 80 m/s ) 1 81 m/s .
17 5 N

w
g g

w
⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

(b) E
2

E

17 5 N 1 79 kg.
9 80 m/s

w
m

g
.= = = .

.
 

EVALUATE:   The weight at a location and the acceleration due to gravity at that location are directly 
proportional. 
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 4.17. IDENTIFY and SET UP:   .F ma=  We must use w mg=  to find the mass of the boulder. 

EXECUTE:   2

2400 N 244 9 kg
9 80 m/s

w
m

g
= = = .

.
 

Then 2(244 9 kg)(12 0 m/s ) 2940 N.F ma= = . . =  
EVALUATE:   We must use mass in Newton’s second law. Mass and weight are proportional. 

 4.18. IDENTIFY:   Find weight from mass and vice versa. 
SET UP:   Equivalencies we’ll need are: 6 91 g 10 g 10 kg,µ − − = =  3 61 mg 10 g 10 kg,− −= =  

1 N 0 2248 lb,= .  and 2 29 80 m/s 32 2 ft/s .g = . = .  

EXECUTE:   (a) 7210 g 2 10 10 kg.m µ −=  = . ×  7 2 6(2 10 10 kg)(9 80 m/s ) 2 06 10 N.w mg − −= = . × . = . ×  

(b) 512 3 mg 1 23 10 kg.m −= . = . ×  5 2 4(1 23 10 kg)(9 80 m/s ) 1 21 10 N.w mg − −= = . × . = . ×  

(c) 0 2248 lb(45 N) 10 1 lb.
1 N

.⎛ ⎞ = .⎜ ⎟
⎝ ⎠

 2

45 N 4 6 kg.
9 80 m/s

w
m

g
= = = .

.
 

EVALUATE:   We are not converting mass to weight (or vice versa) since they are different types of 
quantities. We are finding what a given mass will weigh and how much mass a given weight contains. 

 4.19. IDENTIFY and SET UP:   w = mg. The mass of the watermelon is constant, independent of its location. Its 
weight differs on earth and Jupiter’s moon. Use the information about the watermelon’s weight on earth to 
calculate its mass: 

EXECUTE:   (a) w mg=  gives that 2

44 0 N 4 49 kg.
9 80 m/s

w
m

g
.= = = .

.
 

(b) On Jupiter’s moon, 4 49 kg,m = .  the same as on earth. Thus the weight on Jupiter’s moon is 
2(4 49 kg)(1 81 m/s ) 8 13 N.w mg= = . . = .  

EVALUATE:   The weight of the watermelon is less on Io, since g is smaller there. 
 4.20. IDENTIFY:   Newton’s third law applies. 

SET UP:   The car exerts a force on the truck and the truck exerts a force on the car. 
EXECUTE:   The force and the reaction force are always exactly the same in magnitude, so the force that 
the truck exerts on the car is 1600 N, by Newton’s third law. 
EVALUATE:   Even though the truck is much larger and more massive than the car, it cannot exert a larger 
force on the car than the car exerts on it. 

 4.21. IDENTIFY:   Apply x xF ma∑ =  to find the resultant horizontal force. 
SET UP:   Let the acceleration be in the x+  direction. 
EXECUTE:   2(55 kg)(15 m/s ) 825 N.x xF ma∑ = = =  The force is exerted by the blocks. The blocks push 
on the sprinter because the sprinter pushes on the blocks. 
EVALUATE:   The force the blocks exert on the sprinter has the same magnitude as the force the sprinter 
exerts on the blocks. The harder the sprinter pushes, the greater the force on her. 

 4.22. IDENTIFY:   The reaction forces in Newton’s third law are always between a pair of objects. In Newton’s 
second law all the forces act on a single object. 
SET UP:   Let y+  be downward. .m w/g=  
EXECUTE:   The reaction to the upward normal force on the passenger is the downward normal force, also 
of magnitude 620 N, that the passenger exerts on the floor. The reaction to the passenger’s weight is the  

gravitational force that the passenger exerts on the earth, upward and also of magnitude 650 N. y
y

F
a

m
∑

=  

gives 2
2

650 N 620 N 0 452 m/s .
(650 N)/(9 80 m/s )ya

−= = .
.

 The passenger’s acceleration is 20 452 m/s ,.  downward. 

EVALUATE:   There is a net downward force on the passenger, and the passenger has a downward 
acceleration. 

 4.23. IDENTIFY:   The system is accelerating so we use Newton’s second law. 
SET UP:   The acceleration of the entire system is due to the 250-N force, but the acceleration of box B is 
due to the force that box A exerts on it. F ma∑ =  applies to the two-box system and to each box 
individually. 
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EXECUTE:   For the two-box system: 2250 N 10 0 m/s .
25.0 kgxa = = .  Then for box B, where AF  is the force 

exerted on B by A, 2(5 0 kg)(10 0 m/s ) 50 N.A BF m a= = . . =  
EVALUATE:   The force on B is less than the force on A. 
 

 4.24. IDENTIFY:   Apply Newton’s second law to the earth. 
SET UP:   The force of gravity that the earth exerts on her is her weight, 

2(45 kg)(9 8 m/s ) 441 N.w mg= = . =  By Newton’s third law, she exerts an equal and opposite force on 
the earth. 
Apply m∑ =

G G
F a  to the earth, with 441 N,w∑ = =

G
F  but must use the mass of the earth for m. 

EXECUTE:   23 2
24

441 N 7 4 10  m/s .
6 0 10  kg

w
a

m
−= = = . ×

. ×
 

EVALUATE:   This is much smaller than her acceleration of 29 8 m/s ..  The force she exerts on the earth 
equals in magnitude the force the earth exerts on her, but the acceleration the force produces depends on 
the mass of the object and her mass is much less than the mass of the earth. 

 4.25. IDENTIFY:   Identify the forces on each object. 
SET UP:   In each case the forces are the noncontact force of gravity (the weight) and the forces applied by 
objects that are in contact with each crate. Each crate touches the floor and the other crate, and some object 
applies 

G
F  to crate A. 

EXECUTE:   (a) The free-body diagrams for each crate are given in Figure 4.25. 
ABF  (the force on Am  due to Bm ) and BAF  (the force on Bm  due to Am ) form an action-reaction pair. 

(b) Since there is no horizontal force opposing F, any value of F, no matter how small, will cause the 
crates to accelerate to the right. The weight of the two crates acts at a right angle to the horizontal, and is in 
any case balanced by the upward force of the surface on them. 
EVALUATE:   Crate B is accelerated by BAF  and crate A is accelerated by the net force .ABF F−  The 
greater the total weight of the two crates, the greater their total mass and the smaller will be their 
acceleration. 

 

 

Figure 4.25 
 

 4.26. IDENTIFY:    The surface of block B can exert both a friction force and a normal force on block A. The 
friction force is directed so as to oppose relative motion between blocks B and A. Gravity exerts a 
downward force w on block A. 
SET UP:   The pull is a force on B not on A. 
EXECUTE:   (a) If the table is frictionless there is a net horizontal force on the combined object of the two 
blocks, and block B accelerates in the direction of the pull. The friction force that B exerts on A is to the 
right, to try to prevent A from slipping relative to B as B accelerates to the right. The free-body diagram  
is sketched in Figure 4.26a (next page). f is the friction force that B exerts on A and n is the normal force 
that B exerts on A. 
(b) The pull and the friction force exerted on B by the table cancel and the net force on the system of two 
blocks is zero. The blocks move with the same constant speed and B exerts no friction force on A. The free-
body diagram is sketched in Figure 4.26b (next page). 
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EVALUATE:   If in part (b) the pull force is decreased, block B will slow down, with an acceleration 
directed to the left. In this case the friction force on A would be to the left, to prevent relative motion 
between the two blocks by giving A an acceleration equal to that of B. 

 

 

Figure 4.26 
 

 4.27. IDENTIFY:   Since the observer in the train sees the ball hang motionless, the ball must have the same 
acceleration as the train car. By Newton’s second law, there must be a net force on the ball in the same 
direction as its acceleration. 
SET UP:   The forces on the ball are gravity, which is w, downward, and the tension 

G
T  in the string, which 

is directed along the string. 
EXECUTE:   (a) The acceleration of the train is zero, so the acceleration of the ball is zero. There is no net 
horizontal force on the ball and the string must hang vertically. The free-body diagram is sketched in Figure 4.27a. 
(b) The train has a constant acceleration directed east so the ball must have a constant eastward 
acceleration. There must be a net horizontal force on the ball, directed to the east. This net force must come 
from an eastward component of 

G
T  and the ball hangs with the string displaced west of vertical. The free-

body diagram is sketched in Figure 4.27b. 
EVALUATE:   When the motion of an object is described in an inertial frame, there must be a net force in 
the direction of the acceleration. 

 

 

Figure 4.27 
 
 

 4.28. IDENTIFY:   Use a constant acceleration equation to find the stopping time and acceleration. Then use 
m∑ =

G G
F a  to calculate the force. 

SET UP:   Let x+  be in the direction the bullet is traveling. 
G
F  is the force the wood exerts on the bullet. 

EXECUTE:   (a) 0 350 m/s,xv =  0xv =  and 0( ) 0 130 m.x x− = .  0
0( )

2
x xv v

x x t
+⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 gives 

40

0

2( ) 2(0 130 m) 7 43 10  s.
350 m/sx x

x x
t

v v
−− .= = = . ×

+
 

(b) 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
5 20

0

0 (350 m/s) 4 71 10  m/s
2( ) 2(0 130 m)

x x
x

v v
a

x x
− −= = = − . ×
− .

 

x xF ma∑ =  gives xF ma− =  and 3 5 2(1 80 10  kg)( 4 71 10  m/s ) 848 N.xF ma −= − = − . × − . × =  
EVALUATE:   The acceleration and net force are opposite to the direction of motion of the bullet. 

 4.29. IDENTIFY:   Identify the forces on the chair. The floor exerts a normal force and a friction force. 
SET UP:   Let y+  be upward and let x+  be in the direction of the motion of the chair. 
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EXECUTE:   (a) The free-body diagram for the chair is given in Figure 4.29. 
(b) For the chair, 0ya =  so y yF ma∑ =  gives sin37 0n mg F− − ° =  and 142 N.n =  

EVALUATE:   n is larger than the weight because 
G
F  has a downward component. 

 

 

Figure 4.29 
 
  

 4.30. IDENTIFY:   Identify the forces for each object. Action-reaction pairs of forces act between two objects. 
SET UP:   Friction is parallel to the surfaces and is directly opposite to the relative motion between the 
surfaces. 
EXECUTE:   The free-body diagram for the box is given in Figure 4.30a. The free-body diagram for the 
truck is given in Figure 4.30b. The box’s friction force on the truck bed and the truck bed’s friction force 
on the box form an action-reaction pair. There would also be some small air-resistance force action to the 
left, presumably negligible at this speed. 
EVALUATE:   The friction force on the box, exerted by the bed of the truck, is in the direction of the truck’s 
acceleration. This friction force can’t be large enough to give the box the same acceleration that the truck 
has and the truck acquires a greater speed than the box. 

 

 

Figure 4.30 
 
 
 

 4.31. IDENTIFY:   Apply Newton’s second law to the bucket and constant-acceleration kinematics. 
SET UP:   The minimum time to raise the bucket will be when the tension in the cord is a maximum since 
this will produce the greatest acceleration of the bucket. 
EXECUTE:   Apply Newton’s second law to the bucket: .T mg ma− =  For the maximum acceleration, the 

tension is greatest, so 
2

275 0 N (5.60 kg)(9 8 m/s ) 3.593 m/s .
5.60 kg

T mg
a

m
− . − .= = =  

The kinematics equation for y(t) gives 0
2

2( ) 2(12 0 m) 2 58 s.
3.593 m/sy

y y
t

a
− .= = = .  

  EVALUATE:   A shorter time would require a greater acceleration and hence a stronger pull, which would 
break the cord.  
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 4.32. IDENTIFY:   Use the motion of the ball to calculate g, the acceleration of gravity on the planet. Then 
.w mg=  

SET UP:   Let y+  be downward and take 0 0.y =  0 0yv =  since the ball is released from rest. 

EXECUTE:   Get g on X: 21
2

y gt=  gives 2110 0 m (3.40 s) .
2

g. =  21.73 m/sg =  and then 

2
X X (0 100 kg)(1.73 m/s ) 0 173 N.w mg= = . = .  

EVALUATE:   g on Planet X is smaller than on earth and the object weighs less than it would on earth. 
 4.33. IDENTIFY:   If the box moves in the -directionx+  it must have 0,ya =  so 0.yF∑ =  
 

 The smallest force the child can exert and still 
produce such motion is a force that makes the 
y-components of all three forces sum to zero, 
but that doesn’t have any x-component. 

Figure 4.33   
 

SET UP:   1

G
F  and 2

G
F  are sketched in Figure 4.33. Let 3

G
F  be the force exerted by the child. 

y yF ma∑ =  implies 1 2 3 0,y y yF F F+ + =  so 3 1 2( ).y y yF F F= − +  

EXECUTE:   1 1 sin60 (100 N)sin 60 86 6 NyF F= + ° = ° = .  

2 2 2sin( 30 ) sin30 (140 N)sin30 70 0 NyF F F= + − ° = − ° = − ° = − .  

Then 3 1 2( ) (86 6 N 70 0 N) 16 6 N;y y yF F F= − + = − . − . = − .  3 0xF =  
The smallest force the child can exert has magnitude 17 N and is directed at 90°  clockwise from the 

-axisx+  shown in the figure. 
(b) IDENTIFY and SET UP:   Apply .x xF ma∑ =  We know the forces and xa  so can solve for m. The force 
exerted by the child is in the -directiony−  and has no x-component. 
EXECUTE:   1 1 cos60 50 NxF F= ° =  

2 2 cos30 121 2 NxF F= ° = .  

1 2 50 N 121 2 N 171 2 Nx x xF F F∑ = + = + . = .  

2

171 2 N 85 6 kg
2 00 m/s

x

x

F
m

a
∑ .= = = .

.
 

Then 840 N.w mg= =  
EVALUATE:   In part (b) we don’t need to consider the y-component of Newton’s second law. 0ya =  so 

the mass doesn’t appear in the y yF ma∑ =  equation. 

 4.34. IDENTIFY:   Use m∑ =
G G
F a  to calculate the acceleration of the tanker and then use constant acceleration 

kinematic equations. 
SET UP:   Let x+  be the direction the tanker is moving initially. Then .xa F/m= −  

EXECUTE:   2 2
0 02 ( )x x xv v a x x= + −  says that if the reef weren’t there the ship would stop in a distance of 

2 2 2 7 2
0 0 0

0 4

(3 6 10  kg)(1 5 m/s) 506 m,
2 2( ) 2 2(8 0 10  N)

x

x

v v mv
x x

a F/m F
. × .− = − = = = =

. ×
 

so the ship would hit the reef. The speed when the tanker hits the reef is found from 2 2
0 02 ( ),x x xv v a x x= + −   
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so it is 
4

2 2
0 7

2(8 0 10  N)(500 m)(2 ) (1 5 m/s) 0 17 m/s,
(3 6 10  kg)

v v Fx/m
. ×= − = . − = .

. ×
 

and the oil should be safe. 
EVALUATE:   The force and acceleration are directed opposite to the initial motion of the tanker and the 
speed decreases. 

 4.35. IDENTIFY:   We can apply constant acceleration equations to relate the kinematic variables and we can use 
Newton’s second law to relate the forces and acceleration. 
(a) SET UP:    First use the information given about the height of the jump to calculate the speed he has at 
the instant his feet leave the ground. Use a coordinate system with the -axisy+  upward and the origin at 
the position when his feet leave the ground. 

0yv =  (at the maximum height), 0 ?,yv =  29 80 m/s ,ya = − .  0 1 2 my y− = + .  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
0 02 ( ) 2( 9 80 m/s )(1 2 m) 4 85 m/sy yv a y y= − − = − − . . = .  

(b) SET UP:   Now consider the acceleration phase, from when he starts to jump until when his feet leave 
the ground. Use a coordinate system where the -axisy+  is upward and the origin is at his position when he 
starts his jump. 
EXECUTE:   Calculate the average acceleration: 

0 2
av

4 85 m/s 0( ) 16 2 m/s
0 300 s

y y
y

v v
a

t
− . −= = = .

.
 

(c) SET UP:   Finally, find the average upward force that the ground must exert on him to produce this 
average upward acceleration. (Don’t forget about the downward force of gravity.) The forces are sketched 
in Figure 4.35. 

 

 EXECUTE: 

2

890 N 90 8 kg
9 80 m/s

m w/g= = = .
.

 

y yF ma∑ =  

av av( ) yF mg m a− =  

av av( ( ) )yF m g a= +  
2 2

av 90 8 kg(9 80 m/s 16 2 m/s )F = . . + .  

av 2360 NF =  

Figure 4.35   
 

This is the average force exerted on him by the ground. But by Newton’s third law, the average force he 
exerts on the ground is equal and opposite, so is 2360 N, downward. The net force on him is equal to ma, 
so 2

net (90.8 kg)(16.2 m/s ) 1470 N upward.F ma= = =  
EVALUATE:   In order for him to accelerate upward, the ground must exert an upward force greater than his 
weight. 

 4.36. IDENTIFY:   Use constant acceleration equations to calculate the acceleration xa  that would be required. 
Then use x xF ma∑ =  to find the necessary force. 
SET UP:   Let x+  be the direction of the initial motion of the auto. 

EXECUTE:   2 2
0 02 ( )x x xv v a x x= + −  with 0xv =  gives 

2
0

0

.
2( )

x
x

v
a

x x
= −

−
 The force F is directed opposite to  
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the motion and .x
F

a
m

= −  Equating these two expressions for xa  gives 

2 2
60

2
0

(12 5 m/s)(850 kg) 3 7 10  N.
2( ) 2(1 8 10  m)

xv
F m

x x −
.= = = . ×

− . ×
 

EVALUATE:   A very large force is required to stop such a massive object in such a short distance. 
 4.37. IDENTIFY:   Using constant-acceleration kinematics, we can find the acceleration of the ball. Then we can 

apply Newton’s second law to find the force causing that acceleration. 
SET UP:   Use coordinates where x+  is in the direction the ball is thrown. 2 2

0 02 ( )x x xv v a x x= + −  and 
.x xF ma∑ =  

EXECUTE:   (a) Solve for 0: 1.0 m,xa x x− = 0 0,xv = 46 m/s.xv = 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
20 (46 m/s) 0 1058 m/s .

2( ) 2(1.0 m)
x x

x
v v

a
x x
− −= = =
−

 

The free-body diagram for the ball during the pitch is shown in Figure 4.37a. The force 
G
F  is applied to the 

ball by the pitcher’s hand. x xF ma∑ =  gives 2(0.145 kg)(1058 m/s ) 153 N.F = =  
(b) The free-body diagram after the ball leaves the hand is given in Figure 4.37b. The only force on the ball 
is the downward force of gravity. 

 

Figure 4.37 
 

EVALUATE:   The force is much greater than the weight of the ball because it gives it an acceleration much 
greater than g. 

 4.38. IDENTIFY:   Kinematics will give us the ball’s acceleration, and Newton’s second law will give us the 
horizontal force acting on it. 
SET UP:   Use coordinates with x+  horizontal and in the direction of the motion of the ball and with y+  
upward. x xF ma∑ =  and for constant acceleration, 0 .x x xv v a t= +  

SOLVE:   (a) 0 0,xv =  73 14 m/s,xv = .  23 00 10 s.t −= . ×  0x x xv v a t= +  gives 

3 20
2

73 14 m/s 0 2 44 10 m/s .
3 00 10 s

x x
x

v v
a

t −
− . −= = = . ×

. ×
 x xF ma∑ =  gives 

3 3 2(57 10 kg)(2 44 10 m/s ) 140 N.xF ma −= = × . × =  

(b) The free-body diagram while the ball is in contact with the racket is given in Figure 4.38a. 
G
F  is the force 

exerted on the ball by the racket. After the ball leaves the racket, 
G
F ceases to act, as shown in Figure 4.38b. 

 

Figure 4.38 
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EVALUATE:    The force is around 30 lb, which is quite large for a light-weight object like a tennis ball,  
but is reasonable because it acts for only 30 ms yet during that time gives the ball an acceleration of  
about 250g. 

 4.39. IDENTIFY:   Use Newton’s second law to relate the acceleration and forces for each crate. 
(a) SET UP:   Since the crates are connected by a rope, they both have the same acceleration, 22 50 m/s ..  
(b) The forces on the 4.00 kg crate are shown in Figure 4.39a. 

 

 EXECUTE: 
x xF ma∑ =  

2
1 (4 00 kg)(2 50 m/s ) 10 0 N.T m a= = . . = .

Figure 4.39a   
 

(c) SET UP:   Forces on the 6.00 kg crate are shown in Figure 4.39b. 
 

 The crate accelerates to the right, 
so the net force is to the right. 
F must be larger than T. 

Figure 4.39b   
 

(d) EXECUTE:   x xF ma∑ =  gives 2F T m a− =  
2

2 10 0 N (6 00 kg)(2 50 m/s ) 10 0 N 15 0 N 25 0 NF T m a= + = . + . .  = . + . = .  
EVALUATE:   We can also consider the two crates and the rope connecting them as a single object of mass 

1 2 10 0 kg.m m m= + = .  The free-body diagram is sketched in Figure 4.39c. 
 

 x xF ma∑ =  
2(10 0 kg)(2 50 m/s ) 25 0 NF ma= = . . = .  

This agrees with our answer in part (d). 

Figure 4.39c   
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 4.40. IDENTIFY:   Use kinematics to find the acceleration and then apply Newton’s second law. 
SET UP:   The 60.0-N force accelerates both blocks, but only the tension in the rope accelerates block B. 
The force F is constant, so the acceleration is constant, which means that the standard kinematics formulas 
apply. There is no friction. 
EXECUTE:   (a) First use kinematics to find the acceleration of the system. Using 21

0 0 2x xx x t a tv +− =  with 
x – x0 = 18.0 m, v0x = 0, and t = 5.00 s, we get ax = 1.44 m/s2. Now apply Newton’s second law to the 
horizontal motion of block A, which gives F – T = mAa. T = 60.0 N – (15.0 kg)(1.44 m/s2) = 38.4 N. 
(b) Apply Newton’s second law to block B, giving T = mBa. mB = T/a = (38.4 N)/(1.44 m/s2) = 26.7 kg. 
EVALUATE:   As an alternative approach, consider the two blocks as a single system, which makes the 
tension an internal force. Newton’s second law gives F = (mA + mB)a. Putting in numbers gives 60.0 N = 
(15.0 kg + mB)(1.44 m/s2), and solving for mB gives 26.7 kg. Now apply Newton’s second law to either 
block A or block B and find the tension. 

 4.41. IDENTIFY and SET UP:   Take derivatives of ( )x t  to find xv  and .xa  Use Newton’s second law to relate 
the acceleration to the net force on the object. 
EXECUTE:    
(a) 3 2 2 4 3 3(9 0 10  m/s ) (8 0 10 m/s )x t t= . × − . ×  

0x =  at 0t =  
When 0 025 s,t = .  3 2 2 4 3 3(9 0 10  m/s )(0 025 s) (8 0 10  m/s )(0 025 s) 4 4 m.x = . × . − . × . = .  
The length of the barrel must be 4.4 m. 

(b) 3 2 4 3 2(18 0 10  m/s ) (24 0 10  m/s )x
dx

v t t
dt

= = . × − . ×  

At 0,t =  0xv =  (object starts from rest). 
At 0 025 s,t = .  when the object reaches the end of the barrel, 

3 2 4 3 2(18 0 10  m/s )(0 025 s) (24 0 10  m/s )(0 025 s) 300 m/sxv = . × . − . × . =  
(c) ,x xF ma∑ =  so must find .xa  

3 2 4 318 0 10  m/s (48 0 10  m/s )x
x

dv
a t

dt
= = . × − . ×  

(i) At 0,t =  3 218 0 10  m/sxa = . ×  and 3 2 4(1 50 kg)(18 0 10  m/s ) 2 7 10  N.xF∑ = . . × = . ×  

(ii) At 0 025 s,t = .  3 2 4 3 3 218 10  m/s (48 0 10  m/s )(0 025 s) 6 0 10  m/sxa = × − . × . = . ×  and 
3 2 3(1 50 kg)(6 0 10  m/s ) 9 0 10  N.xF∑ = . . × = . ×  

EVALUATE:   The acceleration and net force decrease as the object moves along the barrel. 
 4.42. IDENTIFY:   The ship and instrument have the same acceleration. The forces and acceleration are related by 

Newton’s second law. We can use a constant acceleration equation to calculate the acceleration from the 
information given about the motion. 
SET UP:   Let +y be upward. The forces on the instrument are the upward tension 

G
T  exerted by the wire 

and the downward force 
G
w of gravity. 2(6 50 kg)(9 80 m/s ) 63 7 Nw mg= = . . = .  

EXECUTE:   (a) The free-body diagram is sketched in Figure 4.42. The acceleration is upward, so .T w>  

(b) 0 276 m,y y− = 15 0 s,t = . 0 0.yv = 21
0 0 2y yy y v t a t− = +  gives 0

2 2

2( ) 2(276 m)
(15 0 s)y

y y
a

t
−= = =

.
 

22 45 m/s ..  y yF ma∑ =  gives T w ma− =  and 263.7 N (6.50 kg)(2.45 m/s ) 79.6 N.T w ma= + = + =  
EVALUATE:   There must be a net force in the direction of the acceleration. 
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Figure 4.42 
 

 4.43. IDENTIFY:    Using kinematics we can find the acceleration of the froghopper and then apply Newton’s 
second law to find the force on it from the ground. 
SET UP:   Take y+  to be upward. y yF ma∑ =  and for constant acceleration, 0 .y y yv v a t= +  
EXECUTE:   (a) The free-body diagram for the froghopper while it is still pushing against the ground is 
given in Figure 4.43. 

 

 

Figure 4.43 
 

(b) 0 0,yv =  4 0 m/s,yv = .  31 0 10 s.t −= . ×  0y y yv v a t= +  gives 

0 3 2
3

4 0 m/s 0 4 0 10 m/s .
1 0 10 s

y y
y

v v
a

t −

− . −= = = . ×
. ×

 y yF ma∑ =  gives ,n w ma− =  so 

6 2 3 2( ) (12 3 10 kg)(9 8 m/s 4 0 10 m/s ) 0 049 N.n w ma m g a −= + = + = . × . + . × = .  

(c) 6 2

0 049 N 410;
(12 3 10 kg)(9 8 m/s )

F
w −

.= =
. × .

 410 .F w=  

EVALUATE:   Because the force from the ground is huge compared to the weight of the froghopper, it 
produces an acceleration of around 400g! 

 4.44. IDENTIFY:   Apply m∑ =
G GF a  to the elevator to relate the forces on it to the acceleration. 

(a) SET UP:   The free-body diagram for the elevator is sketched in Figure 4.44. 
 

 The net force is T mg−  (upward). 

Figure 4.44   
 

Take the +y-direction to be upward since that is the direction of the acceleration. The maximum upward 
acceleration is obtained from the maximum possible tension in the cables. 
EXECUTE:   y yF ma∑ =  gives T mg ma− =  
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2
228,000 N (2200 kg)(9 80 m/s ) 2 93 m/s .

2200 kg
T mg

a
m

− − .= = = .  

(b) What changes is the weight mg of the elevator. 
2

228 000 N (2200 kg)(1 62 m/s ) 11 1 m/s .
2200 kg

T mg ,
a

m
− − .= = = .  

EVALUATE:   The cables can give the elevator a greater acceleration on the moon since the downward 
force of gravity is less there and the same T then gives a greater net force. 

 4.45. IDENTIFY:   You observe that your weight is different from your normal in an elevator, so you must have 
acceleration. Apply m∑ =

G G
F a  to your body inside the elevator. 

SET UP:   The quantity 683 Nw =  is the force of gravity exerted on you, independent of your motion. 
Your mass is / 69 7 kgm w g= = . .  Use coordinates with y+ upward. Your free-body diagram is shown in 
Figure 4.45, where n is the scale reading, which is the force the scale exerts on you. You and the elevator 
have the same acceleration. 

 

 

Figure 4.45 
 

EXECUTE:   y yF ma∑ =  gives yn w ma− =  so y
n w

a
m
−= .   

(a) 725 N,n =  so 2725 N 683 N 0 603 m/s
69 7 kgya

−= = . .
. ya  is positive so the acceleration is upward. 

(b) 595 N,n =  so 2595 N 683 N 1 26 m/s
69 7 kgya

−= = − . .
. ya  is negative so the acceleration is downward. 

EVALUATE:   If you appear to weigh less than your normal weight, you must be accelerating downward, 
but not necessarily moving downward. Likewise if you appear to weigh more than your normal weight, you 
must be acceleration upward, but you could be moving downward. 

 4.46. IDENTIFY:   Apply m∑ =
G G
F a  to the hammer head. Use a constant acceleration equation to relate the 

motion to the acceleration. 
SET UP:   Let y+  be upward. 
EXECUTE:   (a) The free-body diagram for the hammer head is sketched in Figure 4.46. 
(b) The acceleration of the hammer head is given by 2 2

0 02 ( )y y yv v a y y= + −  with 0,yv =  0 3 2 m/syv = − .  

and 0 0 0045 m.y y− = − .  2 2 3 2
0 0/2( ) (3.2 m/s) /2(0.0045 m) 1.138 10  m/s .y ya v y y= − = = ×  The mass of 

the hammer head is its weight divided by 2(4.9 N)/(9.80 m/s ) 0.50 kg,g,  =  and so the net force on the 

hammer head is 3 2(0 50 kg)(1 138 10  m/s ) 570 N.. . × =  This is the sum of the forces on the hammer head: 
the upward force that the nail exerts, the downward weight and the downward 15-N force. The force  
that the nail exerts is then 590 N, and this must be the magnitude of the force that the hammer head exerts 
on the nail. 
(c) The distance the nail moves is 0.12 cm, so the acceleration will be 24267 m/s ,  and the net force on the 
hammer head will be 2133 N. The magnitude of the force that the nail exerts on the hammer head, and 
hence the magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 N. 
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EVALUATE:   For the shorter stopping distance the acceleration has a larger magnitude and the force 
between the nail and hammer head is larger. 

 

 

Figure 4.46 
 

 4.47. IDENTIFY:   He is in free-fall until he contacts the ground. Use the constant acceleration equations and 
apply .m∑ =

G G
F a  

SET UP:   Take y+  downward. While he is in the air, before he touches the ground, his acceleration 

is 29 80 m/s .ya = .  

EXECUTE:   (a) 0 0,yv = 0 3 10 m,y y− = .  and 29 80 m/s .ya = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2
02 ( ) 2(9 80 m/s )(3 10 m) 7 79 m/sy yv a y y= − = . . = .  

(b) 0 7 79 m/s,yv = .  0,yv =  0 0 60 m.y y− = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

0 (7 79 m/s) 50 6 m/s .
2( ) 2(0 60 m)

y y
y

v v
a

y y
− − .= = = − .
− .

 The acceleration is upward. 

(c) The free-body diagram is given in Fig. 4.47. 
G
F  is the force the ground exerts on him. 

y yF ma∑ =  gives .mg F ma− = −  2 2 3( ) (75 0 kg)(9 80 m/s 50 6 m/s ) 4 53 10  N,F m g a= + = . . + . = . ×  
upward.  

3

2

4 53 10  N
(75 0 kg)(9 80 m/s )

F
w

. ×=
. .

 so, 6 16 6.16 .F w mg= . =  

By Newton’s third law, the force his feet exert on the ground is .
G
F−  

EVALUATE:   The force the ground exerts on him is about six times his weight. 
 

 

Figure 4.47 
 

 4.48. IDENTIFY:   Note that in this problem the mass of the rope is given, and that it is not negligible compared 
to the other masses. Apply m∑ =

G GF a  to each object to relate the forces to the acceleration. 
(a) SET UP:   The free-body diagrams for each block and for the rope are given in Figure 4.48a. 
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Figure 4.48a 
 

tT  is the tension at the top of the rope and bT  is the tension at the bottom of the rope. 
EXECUTE:   (b) Treat the rope and the two blocks together as a single object, with mass 

6 00 kg 4 00 kg 5 00 kg 15 0 kg.m = . + . + . = .  Take y+  upward, since the acceleration is upward. The free-
body diagram is given in Figure 4.48b. 

 

 y yF ma∑ =  
F mg ma− =  

F mg
a

m
−=  

2
2200 N (15 0 kg)(9 80 m/s ) 3 53 m/s

15 0 kg
a

− . .= = .
.

 

Figure 4.48b   
 

(c) Consider the forces on the top block ( 6 00 kg),m = .  since the tension at the top of the rope t( )T  will be 
one of these forces. 

 

 y yF ma∑ =  

tF mg T ma− − =  

t ( )T F m g a= − +  
2 2

t 200 N (6 00 kg)(9 80 m/s 3 53 m/s ) 120 N.T = − . . + . =  

Figure 4.48c   
 

Alternatively, can consider the forces on the combined object rope plus bottom block ( 9 00 kg):m = .  
 

 y yF ma∑ =  

tT mg ma− =  
2 2

t ( ) 9 00 kg(9 80 m/s 3 53 m/s ) 120 N,T m g a= + = . . + . =  
which checks  

Figure 4.48d   
 

(d) One way to do this is to consider the forces on the top half of the rope ( 2.00 kg).m =  Let mT  be the 
tension at the midpoint of the rope. 
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 y yF ma∑ =  

t mT T mg ma− − =  
2 2

m t ( ) 120 N 2 00 kg(9 80 m/s 3 53 m/s ) 93 3 NT T m g a= − + = − . . + . = .  

Figure 4.48e   
 

To check this answer we can alternatively consider the forces on the bottom half of the rope plus the lower 
block taken together as a combined object ( 2 00 kg 5 00 kg 7 00 kg):m = . + . = .  

 

 y yF ma∑ =  

mT mg ma− =  
2 2

m ( ) 7 00 kg(9 80 m/s 3 53 m/s ) 93 3 N,T m g a= + = . . + . = .  
which checks 

Figure 4.48f   
 

EVALUATE:   The tension in the rope is not constant but increases from the bottom of the rope to the top. 
The tension at the top of the rope must accelerate the rope as well the 5.00-kg block. The tension at the top 
of the rope is less than F; there must be a net upward force on the 6.00-kg block. 

 4.49. IDENTIFY:   The system is accelerating, so we apply Newton’s second law to each box and can use the 
constant acceleration kinematics for formulas to find the acceleration. 
SET UP:   First use the constant acceleration kinematics for formulas to find the acceleration of the system. 
Then apply F ma∑ =  to each box. 
EXECUTE:   (a) The kinematics formula 21

0 0 2y yy y v t a t− = +  gives  

20
2 2

2( ) 2(12 0 m) 1 5 m/s .
(4 0 s)y

y y
a

t
− .= = = .

.
 For box B, mg T ma− =  and 

2 2

36 0 N 4 34 kg.
9 8 m/s 1 5 m/s

T
m

g a
.= = = .

− . − .  
 

(b) For box A, T mg F ma+ − =  and 2 2

80 0 N 36 0 N 5 30 kg.
9 8 m/s 1 5 m/s

F T
m

g a
− . − .= = = .
− . − .  

 

EVALUATE:   The boxes have the same acceleration but experience different forces because they have 
different masses. 

 4.50. IDENTIFY:   On the planet Newtonia, you make measurements on a tool by pushing on it and by dropping 
it. You want to use those results to find the weight of the object on that planet and on Earth.  
SET UP:   Using w = mg, you could find the weight if you could calculate the mass of the tool and the 
acceleration due to gravity on Newtonia. Newton’s laws of motion are applicable on Newtonia, as is your 
knowledge of falling objects. Let m be the mass of the tool. There is no appreciable friction. Use 
coordinates where x+  is horizontal, in the direction of the 12.0 N force, and let y+  be downward. 

EXECUTE:   First find the mass m: 0 16 0 m,x x− = .  2 00 s,t = .  0 0xv = .  21
0 0 2x xx x v t a t− = +  gives 

20
2 2

2( ) 2(16 0 m) 8 00 m/s
(2 00 s)x

x x
a

t
− .= = = . .

.
 Now apply Newton’s second law to the tool. x xF ma∑ =  gives 

xF ma=  and 2

12 0 N 1 50 kg.
8 00 m/sx

F
m

a
.= = = .

.
 Find N ,g  the acceleration due to gravity on Newtonia. 

0 10 0 m,y y− = .  0 0,yv =  2 58 st = . .  21
0 0 2y yy y t a tυ− = +  gives 
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20
2 2

2( ) 2(10 0 m) 3 00 m/s ;
(2 58 s)y

y y
a

t
− .= = = .

.
 2

N 3 00 m/sg = . .  The weight on Newtonia is 

2
N N (1 50 kg)(3 00 m/s ) 4 50 Nw mg= = . . = . .  The weight on Earth is 

2
E E (1 50 kg)(9 80 m/s ) 14 7 Nw mg= = . . = . .  

EVALUATE:   The tool weighs about 1/3 on Newtonia of what it weighs on Earth since the acceleration due 
to gravity on Newtonia is about 1/3 what it is on Earth. 

 4.51. IDENTIFY:   The rocket accelerates due to a variable force, so we apply Newton’s second law. But the 
acceleration will not be constant because the force is not constant. 
SET UP:   We can use /x xa F m=  to find the acceleration, but must integrate to find the velocity and then 
the distance the rocket travels. 

EXECUTE:   Using /x xa F m=  gives 3(16 8 N/s)( ) (0 3733 m/s ) .
45 0 kgx

t
a t t

.= = .
.

 Now integrate the acceleration 

to get the velocity, and then integrate the velocity to get the distance moved. 
3 2

0 0
( ) ( ) (0 1867 m/s )

t

x x xv t v a t dt t= + ′ ′ = .∫  and ( ) 3 3
0 0

(0 06222 m/s ) .
t

xx x v t dt t− = ′ ′ = .∫  At 5 00 s,t = .  

0 7 78 m.x x− = .  
EVALUATE:   The distance moved during the next 5.0 s would be considerably greater because the 
acceleration is increasing with time. 

 4.52. IDENTIFY:   Calculate 
G
a  from 2 2.d /dt=G Ga r  Then net .m=

G G
F a  

SET UP:   w mg=  
EXECUTE:   Differentiating twice, the acceleration of the helicopter as a function of time is 

3 2ˆ ˆ(0 120 m/s ) (0 12 m/s )t= . − .G
a i k  and at 5 0 s,t = .  the acceleration is 2 2ˆ ˆ(0.60 m/s ) (0.12 m/s ) .= −G

a i k  
The force is then 

5
2 2 4 3

2

(2 75 10  N) ˆ ˆ ˆ ˆ(0 60 m/s ) (0 12 m/s ) (1 7 10  N) (3 4 10  N)
(9 80 m/s )

w
m

g
. × ⎡ ⎤= = = . − . = . × − . ×⎣ ⎦.

G G G
F a a i k i k  

EVALUATE:   The force and acceleration are in the same direction. They are both time dependent. 
 4.53. IDENTIFY:   Kinematics will give us the average acceleration of each car, and Newton’s second law will 

give us the average force that is accelerating each car. 
SET UP:    The cars start from rest and all reach a final velocity of 60 mph (26.8 m/s). We first use 
kinematics to find the average acceleration of each car, and then use Newton’s second law to find the 
average force on each car. 
EXECUTE:   (a) We know the initial and final velocities of each car and the time during which this change 

in velocity occurs. The definition of average acceleration gives av .v
a

t
∆=
∆

 Then F = ma gives the force on 

each car. For the Alpha Romeo, the calculations are aav = (26.8 m/s)/(4.4 s) = 6.09 m/s2. The force is F = 
ma = (895 kg)(6.09 m/s2) = 5.451 × 103 N = 5.451 kN, which we should round to 5.5 kN for 2 significant 
figures. Repeating this calculation for the other cars and rounding the force to 2 significant figures gives: 

Alpha Romeo: a = 6.09 m/s2, F = 5.5 kN 
Honda Civic: a = 4.19 m/s2, F = 5.5 kN 
Ferrari: a = 6.88 m/s2, F = 9.9 kN 
Ford Focus: a = 4.97 m/s2, F = 7.3 kN 
Volvo: a = 3.72 m/s2, F = 6.1 kN 

The smallest net force is on the Alpha Romeo and Honda Civic, to two-figure accuracy. The largest net 
force is on the Ferrari. 
(b) The largest force would occur for the largest acceleration, which would be in the Ferrari. The smallest 
force would occur for the smallest acceleration, which would be in the Volvo. 
(c) We use the same approach as in part (a), but now the final velocity is 100 mph (44.7 m/s).  
aav = (44.7 m/s)/(8.6 s) = 5.20 m/s2, and F = ma = (1435 kg)(5.20 m/s2) = 7.5 kN. The average force is 
considerably smaller in this case. This is because air resistance increases with speed. 
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(d) As the speed increases, so does the air resistance. Eventually the air resistance will be equal to the force 
from the roadway, so the new force will be zero and the acceleration will also be zero, so the speed will 
remain constant. 
EVALUATE:   The actual forces and accelerations involved with auto dynamics can be quite complicated 
because the forces (and hence the accelerations) are not constant but depend on the speed of the car. 

 4.54. IDENTIFY:   The box comes to a stop, so it must have acceleration, so Newton’s second law applies. For 
constant acceleration, the standard kinematics formulas apply. 
SET UP:   For constant acceleration, 21

0 20 x xx x v t a t− = +  and 0x x xv v a t= +  apply. For any motion, 

net .m=
G G
F a  
EXECUTE:   (a) If the box comes to rest with constant acceleration, its final velocity is zero so v0x = –axt. 
And if during this time it travels a distance x – x0 = d, the distance formula above can be put into the form 
d = (–axt) + ½ axt

2 = – ½ axt
2. This gives ax = –2d/t2. For the first push on the box, this gives 

ax = –2(8.22 m)/(2.8 s)2 = –2.1 m/s2. If the acceleration is constant, the distance the box should travel after 
the second push is d = – ½ axt

2 = –( ½ )(–2.1 m/s2)(2.0 s)2 = 4.2 m, which is in fact the distance the box did 
travel. Therefore the acceleration was constant. 
(b) The total mass mT of the box is the initial mass (8.00 kg) plus the added mass. Since vx = 0 and ax = 
2d/t2 as shown in part (a), the magnitude of the initial speed v0x is v0x = axt = (2d/t2)t = 2d/t. For no added 
mass, this calculation gives v0x = 2(8.22 m)/(2.8 s) = 5.87 m/s. Similar calculations with added mass give 

mT = 8.00 kg, v0x = 5.87 m/s ≈ 5.9 m/s 
mT = 11.00 kg, v0x = 6.72 m/s ≈ 6.7 m/s 
mT = 15.00 kg, v0x = 6.30 m/s ≈ 6.3 m/s 
mT = 20.00 kg, v0x = 5.46 m/s ≈ 5.5 m/s 

where all answers have been rounded to 2 significant figures. It is obvious that the initial speed was not the 
same in each case. The ratio of maximum speed to minimum speed is  
v0,max/v0,min = (6.72 m/s)/(5.46 m/s) = 1.2 
(c) We calculate the magnitude of the force f using f = ma, getting a using a = –2d/t2, as we showed in part 
(a). In each case the acceleration is 2.1 m/s2. So for example, when m = 11.00 kg, the force is f = (11.00 
kg)(2.1 m/s2) = 23 N. Similar calculations produce a set of values for f and m. These can be graphed by 
hand or using graphing software. The resulting graph is shown in Figure 4.54. The slope of this straight-
line graph is 2.1 m/s2 and it passes through the origin, so the slope-y intercept equation of the line is  
f = (2.1 m/s2)m. 

 

Figure 4.54 
EVALUATE:   The results of the graph certainly agree with Newton’s second law. A graph of F versus m 
should have slope equal to the acceleration a. This is in fact just what we get, since the acceleration is  
2.1 m/s2 which is the same as the slope of the graph. 

 4.55. IDENTIFY:   A block is accelerated upward by a force of magnitude F. For various forces, we know the 
time for the block to move upward a distance of 8.00 m starting from rest. Since the upward force is 
constant, so is the acceleration. Newton’s second law applies to the accelerating block. 
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SET UP:   The acceleration is constant, so 21
0 0 2y yy y v t a t− = +  applies, and y yF ma=∑  also applies to the 

block. 
EXECUTE:   (a) Using the above formula with v0y = 0 and y – y0 = 8.00 m, we get ay = (16.0 m)/t2. We use 
this formula to calculate the acceleration for each value of the force F. For example, when F= 250 N, we 
have a = (16.0 m)/(3.3 s)2 = 1.47 m/s2. We make similar calculations for all six values of F and then graph 
F versus a. We can do this graph by hand or using graphing software. The result is shown in Figure 4.55. 

 

 

Figure 4.55 
 

(b) Applying Newton’s second law to the block gives F – mg = ma, so F = mg + ma. The equation of our 
best-fit graph in part (a) is F = (25.58 kg)a + 213.0 N. The slope of the graph is the mass m, so the mass of the 
block is m = 26 kg. The y intercept is mg, so mg = 213 N, which gives g = (213 N)/(25.58 kg) = 8.3 m/s2 on 
the distant planet. 
EVALUATE:   The acceleration due to gravity on this planet is not too different from what it is on Earth. 

 4.56. IDENTIFY:   
0

t

xx v dt= ∫  and 
0

,
t

x xv a dt= ∫  and similar equations apply to the y-component. 

SET UP:   In this situation, the x-component of force depends explicitly on the y-component of position. As 
the y-component of force is given as an explicit function of time, yv  and y can be found as functions of 

time and used in the expression for ( ).xa t  

EXECUTE:   3( / ) ,ya k m t=  so 2
3( /2 )yv k m t=  and 3

3( /6 ) ,y k m t=  where the initial conditions 0 00, 0yv y= =  

have been used. Then, the expressions for , ,x xa v  and x are obtained as functions of time: 31 2 3
2 ,

6x
k k k

a t
m m

= +  

41 2 3
224x

k k k
v t t

m m
= +  and 2 51 2 3

2 .
2 120
k k k

x t t
m m

= +  

In vector form, 2 5 31 2 3 3
2

ˆ ˆ
2 120 6
k k k k

t t t
m m m

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G
r i j  and 4 21 2 3 3

2
ˆ ˆ.

24 2
k k k k

t t t
m m m

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G
v i j  

EVALUATE:   xa depends on time because it depends on y, and y is a function of time. 
 4.57. IDENTIFY:   Newton’s second law applies to the dancer’s head.  

SET UP:   We use av
v

t
a

∆
=

∆
 and net .m=

G G
F a  

EXECUTE:   First find the average acceleration: aav = (4.0 m/s)/(0.20 s) = 20 m/s2. Now apply Newton’s 
second law to the dancer’s head. Two vertical force act on the head: Fneck – mg = ma, so Fneck = m(g + a), 
which gives Fneck = (0.094)(65 kg)(9.80 m/s2 + 20 m/s2) = 180 N, which is choice (d). 
EVALUATE:   The neck force is not simply ma because the neck must balance her head against gravity, 
even if the head were not accelerating. That error would lead one to incorrectly select choice (c). 
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 4.58. IDENTIFY:   Newton’s third law of motion applies. 
SET UP:   The force the neck exerts on her head is the same as the force the head exerts on the neck. 
EXECUTE:   Choice (a) is correct. 
EVALUATE:   These two forces form an action-reaction pair. 

 4.59. IDENTIFY:   The dancer is in the air and holding a pose, so she is in free fall. 
SET UP:    The dancer, including all parts of her body, are in free fall, so they all have the same downward 
acceleration of 9.80 m/s2.  
EXECUTE:   Since her head and her neck have the same downward acceleration, and that is produced by 
gravity, her neck does not exert any force on her head, so choice (a) 0 N is correct. 
EVALUATE:   During falling motion such as this, a person (including her head) is often described as being 
“weightless.”  

 4.60. IDENTIFY:   The graph shows the vertical force that a force plate exerts on her body. 
SET UP and EXECUTE:   When the dancer is not moving, the force that the force plate exerts on her will be 
her weight, which appears to be about 650 N. Between 0.0 s and 0.4 s, the force on her is less than her 
weight and is decreasing, so she must be accelerating downward. At 0.4 s, the graph reaches a relative 
minimum of around 300 N and then begins to increase after that. Only choice (a) is consistent with this 
part of the graph. 
EVALUATE:   At the high points in the graph, the force on her is over twice her weight. 
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 5.1. IDENTIFY:   0a =  for each object. Apply y yF maΣ = to each weight and to the pulley. 

SET UP:   Take y+  upward. The pulley has negligible mass. Let rT  be the tension in the rope and let cT  
be the tension in the chain. 
EXECUTE:   (a) The free-body diagram for each weight is the same and is given in Figure 5.1a. 

y yF maΣ =  gives r 25 0 N.T w= = .  

(b) The free-body diagram for the pulley is given in Figure 5.1b. c r2 50 0 N.T T= = .  
EVALUATE:   The tension is the same at all points along the rope. 

 

 

Figure 5.1 
 

 5.2. IDENTIFY:   Apply Σ =
G G

mF a  to each weight. 
SET UP:   Two forces act on each mass: w down and ( )=T w  up. 
EXECUTE:   In all cases, each string is supporting a weight w against gravity, and the tension in each string is w. 
EVALUATE:   The tension is the same in all three cases. 

 5.3. IDENTIFY:   Both objects are at rest and a = 0. Apply Newton’s first law to the appropriate object. The 
maximum tension maxT  is at the top of the chain and the minimum tension is at the bottom of the chain. 
SET UP:   Let y+  be upward. For the maximum tension take the object to be the chain plus the ball. For the 
minimum tension take the object to be the ball. For the tension T three-fourths of the way up from the bottom 
of the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of 
these three cases are sketched in Figure 5.3. b c 75 0 kg 26 0 kg 101 0 kg.m + = . + . = .  b 75 0 kg.= .m  m is the 

mass of three-fourths of the chain: 3
4 (26 0 kg) 19 5 kg.m = . = .  

EXECUTE:   (a) From Figure 5.3a, 0Σ =yF  gives max b c 0T m g+− =  and 

2
max (101 0 kg)(9 80 m/s ) 990 N.T = . . =  From Figure 5.3b, 0Σ =yF  gives min b 0T m g− =  and 

2
min (75 0 kg)(9 80 m/s ) 735 N.T = . . =  

(b) From Figure 5.3c, 0Σ =yF  gives b( ) 0− + =T m m g  and 2(19 5 kg 75 0 kg)(9 80 m/s ) 926 N.T = . + . . =  

APPLYING NEWTON’S LAWS 

5
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EVALUATE:   The tension in the chain increases linearly from the bottom to the top of the chain. 
 

 
Figure 5.3 

 

 5.4. IDENTIFY:   For the maximum tension, the patient is just ready to slide so static friction is at its maximum 
and the forces on him add to zero. 
SET UP:   (a) The free-body diagram for the person is given in Figure 5.4a. F is magnitude of the traction 
force along the spinal column and w mg=  is the person’s weight. At maximum static friction, s s .=f µ n  
(b) The free-body diagram for the collar where the cables are attached is given in Figure 5.4b. The tension 
in each cable has been resolved into its x- and y-components. 

 

 
Figure 5.4 

 

EXECUTE:   (a) n w=  and 2
s s 0 75 0 75(9 80 m/s )(78 5 kg) 577 N.F f n wµ= = = . = . . . =  

(b) 2 sin65 0T F° − =  so 20 75 0 41 (0 41)(9 80 m/s )(78 5 kg) 315 N.
2 sin65 2 sin65

F w
T w

.= = = . = . . . =
° °

 

EVALUATE:   The two tensions add up to 630 N, which is more than the traction force, because the cables 
do not pull directly along the spinal column. 

 5.5. IDENTIFY:   Apply Σ =
G G

mF a  to the frame. 
SET UP:   Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the 
tension is the same in each wire. 0 75 .T w= .  
EXECUTE:   The vertical component of the force due to the tension in each wire must be half of the weight, 
and this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical. 

3 cos
2 4
w w θ=  and 2

3arc cos 48 .θ = = °  

EVALUATE:   If 0 ,θ = °  /2=T w  and T → ∞  as 90 .θ → °  Therefore, there must be an angle where  3 /4.T w=  
 5.6. IDENTIFY:   Apply Newton’s first law to the wrecking ball. Each cable exerts a force on the ball, directed 

along the cable. 
SET UP:   The force diagram for the wrecking ball is sketched in Figure 5.6. 
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Figure 5.6 

 

 
EXECUTE:   (a) Σ =y yF ma  

cos40 0BT mg° − =  
2

4(3620 kg)(9 80 m/s ) 4.63 10  N
cos40 cos40

46.3 kNB
mg

T
.= = = ×

° °
=   

(b) Σ =x xF ma  
sin 40 0B AT T° − =  

4sin 40 2.98 10  N 29.8 kNA BT T == ° = ×   
EVALUATE:   If the angle 40° is replaced by 0° (cable B is vertical), then BT mg=  and 0.AT =  

 5.7. IDENTIFY:   Apply Σ =
G G

mF a  to the object and to the knot where the cords are joined. 
SET UP:   Let y+  be upward and x+  be to the right. 
EXECUTE:   (a) , sin30 sin 45 , and cos30 cos45 0.C A B C A BT w T T T w T T=  ° + ° = = ° − ° =  Since 
sin 45 cos45 ,° = °  adding the last two equations gives (cos30 sin30 ) ,AT w° + ° =  and so 

0 732 .
1 366A

w
T w= = .

.
 Then, cos30 0 897

cos45
.B AT T w

°= = .
°

 

(b) Similar to part (a), ,  cos60 sin 45 ,C A BT w T T w=  − ° + ° =  and sin 60 cos45 0.A BT T° − ° =  

Adding these two equations, 2 73 ,
(sin 60 cos60 )A

w
T w= = .

° − °
 and sin 60 3 35 .

cos45B AT T w
°= = .
°

 

EVALUATE:   In part (a), A BT T w+ >  since only the vertical components of AT  and BT  hold the object 
against gravity. In part (b), since AT  has a downward component BT  is greater than w. 

 5.8. IDENTIFY:   Apply Newton’s first law to the car. 
SET UP:   Use x- and y-coordinates that are parallel and perpendicular to the ramp. 
EXECUTE:   (a) The free-body diagram for the car is given in Figure 5.8 (next page). The vertical weight w 
and the tension T in the cable have each been replaced by their x- and y-components. 
(b) 0xFΣ =  gives cos31 0 sin 25 0 0T w. ° − . ° =  and  

2sin 25 0 sin 25 0(1130 kg)(9 80 m/s ) 5460 N.
cos31 0 cos31 0

T w
. ° . °= = . =
. ° . °

 

(c) 0yFΣ =  gives sin31 0 cos25 0 0n T w+ . ° − . ° =  and  
2cos25 0 sin31 0 (1130 kg)(9 80 m/s )cos25 0 (5460 N)sin31 0 7220 Nn w T= . ° − . ° = . . ° − . ° =  

EVALUATE:   We could also use coordinates that are horizontal and vertical and would obtain the same 
values of n and T. 
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Figure 5.8 

 

 
 5.9. IDENTIFY:   Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the 

man must oppose the component of gravity down the incline. 
SET UP:   The free-body diagrams for the two cases are shown in Figure 5.9. 

G
F  is the force applied by the 

man. Use the coordinates shown in the figure. 
EXECUTE:   (a) 0Σ =xF  gives sin19 0 0F w− . ° =  and 2(180 kg)(9 80 m/s ) sin 19 0 574 N.F = . . ° =  

(b) 0Σ =yF  gives cos19 0 0n w. ° − =  and .
cos19 0

w
n =

. °
 0Σ =xF  gives  sin19 0 0F n− . ° =  and 

sin19 0 tan19 0 607 N.
cos19 0

w
F w⎛ ⎞= . ° = . ° =⎜ ⎟. °⎝ ⎠

 
 

 
Figure 5.9 

 

  EVALUATE:   When pushing parallel to the floor only part of the push is up the ramp to balance the weight 
of the piano, so you need a larger push in this case than if you push parallel to the ramp. 



Applying Newton’s Laws   5-5 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

 5.10. IDENTIFY:   Apply Newton’s first law to the hanging weight and to each knot. The tension force at each 
end of a string is the same. 
(a) Let the tensions in the three strings be T, ,T ′  and ,T ′′  as shown in Figure 5.10a. 

 

 
Figure 5.10a 

 

SET UP:   The free-body diagram for the block is given in Figure 5.10b. 
 

 EXECUTE:    
0Σ =yF  

0T w′ − =  
60 0 NT w′ = = .  

Figure 5.10b   
 

SET UP:   The free-body diagram for the lower knot is given in Figure 5.10c. 
 

 EXECUTE:    
0yFΣ =  

sin 45 0T T° − ′ =  
60 0 N 84 9 N

sin 45 sin 45
T

T
′ .= = = .

° °
 

Figure 5.10c   
 

(b) Apply 0Σ =xF  to the force diagram for the lower knot: 
0xFΣ =  

2 cos45 (84 9 N)cos45 60 0 NF T= ° = . ° = .  
SET UP:   The free-body diagram for the upper knot is given in Figure 5.10d. 

 

 EXECUTE:    
0xFΣ =  

1cos45 0T F° − =  

1 (84 9 N)cos45F = . °  

1 60 0 NF = .  

Figure 5.10d   
 

Note that 1 2.F F=  
EVALUATE:   Applying 0Σ =yF  to the upper knot gives sin 45 60 0 NT T w′′ = ° = . = .  If we treat the whole 
system as a single object, the force diagram is given in Figure 5.10e (next page). 
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 0xFΣ =  gives 2 1,F F=  which checks 
0yFΣ =  gives ,T w′′ =  which checks 

Figure 5.10e   
 

 5.11. IDENTIFY:   We apply Newton’s second law to the rocket and the astronaut in the rocket. A constant force 
means we have constant acceleration, so we can use the standard kinematics equations. 
SET UP:   The free-body diagrams for the rocket (weight rw ) and astronaut (weight w) are given in  
Figure 5.11. TF  is the thrust and n is the normal force the rocket exerts on the astronaut. The speed of 
sound is 331 m/s.  We use y yF maΣ =  and 0v v at= + .  

 

 

Figure 5.11 
 

EXECUTE:    (a) Apply Σ =y yF ma  to the rocket: T r .F w ma− =  4a g=  and r ,w mg=  so 

6 2 8(5 ) (2 25 10 kg) (5) (9 80 m/s ) 1 10 10 N.F m g= = . × . = . ×  

(b) Apply Σ =y yF ma  to the astronaut: .n w ma− =  4a g=  and ,w
m

g
=  so (4 ) 5 .w

n w g w
g

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

(c) 0 0,v =  331 m/sv =  and  
24 39 2 m/s .a g= = .  0v v at= +  gives 

0
2

331 m/s 8 4 s.
39 2 m/s

v v
t

a
−= = = .

.
 

EVALUATE:   The 8.4 s is probably an unrealistically short time to reach the speed of sound because you 
would not want your astronauts at the brink of blackout during a launch. 

 5.12. IDENTIFY:   Apply Newton’s second law to the rocket plus its contents and to the power supply. Both the 
rocket and the power supply have the same acceleration. 
SET UP:   The free-body diagrams for the rocket and for the power supply are given in Figure 5.12. Since 
the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a downward 
gravity force on each object. Let y+  be upward, since that is the direction of the acceleration. The power 

supply has mass 
2

ps (15 5 N)/(9 80 m/s ) 1 58 kg.m = . . = .  

EXECUTE:   (a) Σ =y yF ma  applied to the rocket gives  r r .F m g m a− =   

2
2r

r

1720 N (125 kg)(9 80 m/s ) 3 96 m/s .
125 kg

F m g
a

m
− − .= = = .  

(b) Σ =y yF ma  applied to the power supply gives ps ps .n m g m a− =  
2 2

ps ( ) (1 58 kg)(9 80 m/s 3 96 m/s ) 21 7 N.n m g a= + = . . + . = .  
EVALUATE:   The acceleration is constant while the thrust is constant, and the normal force is constant 
while the acceleration is constant. The altitude of 120 m is not used in the calculation. 
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Figure 5.12 
 

 5.13. IDENTIFY:   Use the kinematic information to find the acceleration of the capsule and the stopping time. 
Use Newton’s second law to find the force F that the ground exerted on the capsule during the crash. 
SET UP:   Let y+  be upward. 311 km/h 86 4 m/s.= .  The free-body diagram for the capsule is given in 
Figure 5.13. 
EXECUTE:   0 0 810 m,y y− = − .  0 86 4 m/s,yv = − .  0.yv =  2 2

0 02 ( )y y yv v a y y= + −  gives 
2 2 2

0 2

0

0 ( 86 4 m/s) 4610 m/s 470 .
2( ) 2( 0 810) m

y y
y

v v
a g

y y

− − − .= = = =
− − .

 

(b) Σ =y yF ma  applied to the capsule gives F mg ma− =  and 
2 2 5( ) (210 kg)(9 80 m/s 4610 m/s ) 9 70 10  N 471 .F m g a w= + = . + = . × =  

(c) 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 gives 0

0

2( ) 2( 0 810 m) 0 0187 s
86 4 m/s 0y y

y y
t

v v
− − .= = = .
+ − . +

 

EVALUATE:   The upward force exerted by the ground is much larger than the weight of the capsule and 
stops the capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a 
force mg on the capsule, but the large 59 70 10  N. ×  force is exerted only for 0.0187 s. 

 

 

Figure 5.13 
 

 5.14. IDENTIFY:   Apply Newton’s second law to the three sleds taken together as a composite object and to each 
individual sled. All three sleds have the same horizontal acceleration a. 
SET UP:   The free-body diagram for the three sleds taken as a composite object is given in Figure 5.14a 
and for each individual sled in Figures 5.14b–d. Let x+  be to the right, in the direction of the acceleration. 

tot 60 0 kg.m = .  
EXECUTE:   (a) Σ =x xF ma  for the three sleds as a composite object gives totP m a=  and 

  
a = P

mtot
= 190 N

60.0 kg
= 3.17 m/s2.  
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(b) Σ =x xF ma  applied to the 10.0 kg sled gives 10AP T m a− =  and 

  TA = P − m10a = 190 N − (10.0 kg)(3.17 m/s2 ) = 158 N.  x xF maΣ =  applied to the 30.0 kg sled gives 

TB = m30a = (30.0 kg)(3.17 m/s2 ) = 95.1 N.  

EVALUATE:   If we apply Σ =x xF ma  to the 20.0 kg sled and calculate a from AT  and BT  found in part (b), 

we get 20 .A BT T m a− =  

  
a =

TA − TB
m20

= 158 N − 95.1 N
20.0 kg

= 3.15 m/s2 ,  which agrees closely with the value 

we calculated in part (a), the difference being due to rounding. 
 

 
Figure 5.14 

 

 5.15. IDENTIFY:   Apply Σ =
G G

mF a  to the load of bricks and to the counterweight. The tension is the same at 
each end of the rope. The rope pulls up with the same force ( )T  on the bricks and on the counterweight. 
The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the 
same magnitude. 
(a) SET UP:   The free-body diagrams for the bricks and counterweight are given in Figure 5.15. 

 

 
Figure 5.15 

 

(b) EXECUTE:   Apply y yF maΣ =  to each object. The acceleration magnitude is the same for the two 
objects. For the bricks take y+  to be upward since Ga  for the bricks is upward. For the counterweight  
take y+  to be downward since Ga  is downward. 
bricks: Σ =y yF ma  

1 1T m g m a− =  
counterweight: Σ =y yF ma  

2 2m g T m a− =  
Add these two equations to eliminate T: 

2 1 1 2( ) ( )− = +m m g m m a  
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2 22 1

1 2

28 0 kg 15 0 kg (9 80 m/s ) 2 96 m/s
15 0 kg 28 0 kg

⎛ ⎞ ⎛ ⎞− . − .= = . = .⎜ ⎟ ⎜ ⎟+ . + .⎝ ⎠⎝ ⎠

m m
a g

m m
 

(c) 1 1T m g m a− =  gives 2 2
1( ) (15 0 kg)(2 96 m/s 9 80 m/s ) 191 N= + = . . + . =T m a g  

As a check, calculate T using the other equation. 

2 2m g T m a− =  gives 2 2
2( ) 28.0 kg(9.80 m/s 2.96 m/s ) 191 N,= − = − =T m g a  which checks. 

EVALUATE:   The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate 
upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to 
accelerate downward. If 1 2,m m=  0a =  and 1 2 .T m g m g= =  In this special case the objects don’t move. If 

1 0,m =  a g=  and 0;T =  in this special case the counterweight is in free fall. Our general result is correct 
in these two special cases. 

 5.16. IDENTIFY:   In part (a) use the kinematic information and the constant acceleration equations to calculate 
the acceleration of the ice. Then apply .mΣ =F a

G G
 In part (b) use mΣ =F a

G G
 to find the acceleration and use 

this in the constant acceleration equations to find the final speed. 
SET UP:   Figure 5.16 gives the free-body diagrams for the ice both with and without friction.  
Let x+  be directed down the ramp, so y+  is perpendicular to the ramp surface. Let φ  be the angle 
between the ramp and the horizontal. The gravity force has been replaced by its x- and y-components. 
EXECUTE:   (a) 0 1 50 m,x x− = .  0 0.xv =  2 50 m/s.xv = .  

2 2
0 02 ( )= + −x x xv v a x x  gives 

2 2 2
20

0

(2 50 m/s) 0 2 08 m/s .
2( ) 2(1 50 m)

x x
x

v v
a

x x
− . −= = = .
− .

 x xF maΣ =  gives sinmg maφ =  and 

2

2
2 08 m/ssin .
9 80 m/s

a
g

φ .= =
.

 

12 3 .φ = . °  
(b) x xF maΣ =  gives sinmg f maφ − =  and 

2
2sin (8 00 kg)(9 80 m/s )sin12 3 10 0 N 0 838 m/s .

8 00 kg
mg f

a
m

φ − . . . ° − .= = = .
.

 

Then 0 1 50 m,x x− = .  0 0.xv =  20 838 m/sxa = .  and 2 2
0 02 ( )= + −x x xv v a x x  gives  

2
02 ( ) 2(0 838 m/s )(1 50 m) 1 59 m/sx xv a x x= − = . . = .  

EVALUATE:   With friction present the speed at the bottom of the ramp is less. 
 

 

Figure 5.16 
 

 5.17. IDENTIFY:   Apply Σ =
G G

mF a  to each block. Each block has the same magnitude of acceleration a. 
SET UP:   Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg 
block; the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and 



5-10   Chapter 5 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

the suspended block accelerates downward. Let x+  be to the right for the 4.00 kg block, so for it ,xa a=  
and let y+  be downward for the suspended block, so for it .ya a=  
EXECUTE:   (a) The free-body diagrams for each block are given in Figures 5.17a and b. 

(b) Σ =x xF ma  applied to the 4.00 kg block gives (4 00 kg)= .T a  and a = T
4.00 kg

= 15.0 N
4.00 kg

= 3.75 m/s2.  

(c) Σ =y yF ma  applied to the suspended block gives mg T ma− =  and 

  
m = T

g − a
= 15.0 N

9.80 m/s2 − 3.75 m/s2
= 2.48 kg.  

(d) The weight of the hanging block is mg = (2.48 kg)(9.80 m/s2 ) = 24.3 N.  This is greater than the tension 
in the rope; T = 0.617mg.  
EVALUATE:   Since the hanging block accelerates downward, the net force on this block must be 
downward and the weight of the hanging block must be greater than the tension in the rope. Note that the 
blocks accelerate no matter how small m is. It is not necessary to have 4 00 kg,m > .  and in fact in this 
problem m is less than 4.00 kg. 

 

 

Figure 5.17 
 

 5.18. IDENTIFY:   (a) Consider both gliders together as a single object, apply ,mΣ =F a
G G

 and solve for a. Use a in 
a constant acceleration equation to find the required runway length. 
(b) Apply mΣ =F a

G G
 to the second glider and solve for the tension gT  in the towrope that connects the two 

gliders. 
SET UP:   In part (a), set the tension tT  in the towrope between the plane and the first glider equal to its 
maximum value, t 12 000 N.T ,=  
EXECUTE:   (a) The free-body diagram for both gliders as a single object of mass 2 1400 kgm =  is given in 

Figure 5.18a. x xF maΣ =  gives t 2 (2 )T f m a− =  and 
2t 2 12,000 N 5000 N 5 00 m/s .

2 1400 kg
− −= = = .T f

a
m

 Then 

25 00 m/s ,xa = .  0 0xv =  and 40 m/sxv =  in 
2 2

0 02 ( )= + −x x xv v a x x  gives 

2 2
0

0( ) 160 m.
2

x x

x

v v
x x

a
−− = =  

(b) The free-body diagram for the second glider is given in Figure 5.18b. 

x xF maΣ =  gives gT f ma− =  and 

  
Tg = f + ma = 2500 N + (700 kg)(5.00 m/s2 ) = 6000 N.  

EVALUATE:   We can verify that x xF maΣ =  is also satisfied for the first glider. 
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Figure 5.18 
 

 5.19. IDENTIFY:   The maximum tension in the chain is at the top of the chain. Apply mΣ =F a
G G

 to the composite 
object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to 
the time. 
SET UP:   Let y+  be upward. The free-body diagram for the composite object is given in Figure 5.19. 

chain2 50 .T w= .  tot chain boulder 1325 kg.m m m= + =  
EXECUTE:   (a) y yF maΣ =  gives tot tot .T m g m a− =  

tot chain tot chain

tot tot tot

2 2

2 50 2 50 1

2.50(575 kg) 1 (9.80 m/s ) 0.832 m/s
1325 kg

T m g m g m g m
a g

m m m

a

⎛ ⎞− . − .= = = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

(b) Assume the acceleration has its maximum value: 
20 832 m/s ,ya = .  0 125 my y− =  and 0 0.yv =  

2
0 0

1
2y yy y v t a t− = +  gives 

0
2

2( ) 2(125 m) 17 3 s
0 832 m/sy

y y
t

a
−= = = .

.
 

EVALUATE:   The tension in the chain is 
41 41 10  NT = . ×  and the total weight is 

41 30 10  N.. ×  The upward 
force exceeds the downward force and the acceleration is upward. 

 

 

Figure 5.19 
 

 5.20. IDENTIFY:   Apply mΣ =F a
G G  to the composite object of elevator plus student tot( 850 kg)=m  and also to 

the student ( 550 N).w =  The elevator and the student have the same acceleration. 
SET UP:   Let y+  be upward. The free-body diagrams for the composite object and for the student are 
given in Figure 5.20. T is the tension in the cable and n is the scale reading, the normal force the scale 
exerts on the student. The mass of the student is 56 1 kg.m w/g= = .  
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EXECUTE:   (a) y yF maΣ =  applied to the student gives .yn mg ma− =  

2450 N 550 N 1 78 m/s .
56 1 kgy

n mg
a

m
− −= = = − .

.
 The elevator has a downward acceleration of 21 78 m/s ..  

(b) 2670 N 550 N 2 14 m/s .
56 1 kgya

−= = .
.

 

(c) 0n =  means .ya g= −  The student should worry; the elevator is in free fall. 

(d) y yF maΣ =  applied to the composite object gives T − mtot g = mtotay .  tot ( ).yT m a g= +  In part (a), 
2 2(850 kg)( 1 78 m/s 9 80 m/s ) 6820 N.= − . + . =T  In part (c), = −ya g  and 0.T =  

EVALUATE:   In part (b), 2 2(850 kg)(2 14 m/s 9 80 m/s ) 10 150 N.= . + . =T ,  The weight of the composite 
object is 8330 N. When the acceleration is upward the tension is greater than the weight and when the 
acceleration is downward the tension is less than the weight. 

 

 
Figure 5.20 

 

 5.21. IDENTIFY:   While the person is in contact with the ground, he is accelerating upward and experiences two 
forces: gravity downward and the upward force of the ground. Once he is in the air, only gravity acts on 
him so he accelerates downward. Newton’s second law applies during the jump (and at all other times).  
SET UP:   Take y+  to be upward. After he leaves the ground the person travels upward 60 cm and his 

acceleration is 29 80 m/s ,g = .  downward. His weight is w so his mass is / .w g  Σ =y yF ma  and 
2 2

0 02 ( )y y yv v a y y= + −  apply to the jumper. 

EXECUTE:   (a) 0yv =  (at the maximum height), 0 0 60 m,y y− = .  29 80 m/s .ya = − .  

2 2
0 02 ( )y y yv v a y y= + −  gives 2

0 02 ( ) 2( 9 80 m/s )(0 60 m) 3 4 m/s.y yv a y y= − − = − − . . = .  

(b) The free-body diagram for the person while he is pushing up against the ground is given in Figure 5.21 
(next page). 
(c) For the jump, 0 0,yv =  3 4 m/syv = .  (from part (a)), and 0 0 50 m.y y− = .  

2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

(3 4 m/s) 0
11 6 m/s .

2( ) 2(0 50 m)
y y

y
v v

a
y y

− . −= = = .
− .

 y yF maΣ =  gives .n w ma− =  

1 2 2 .a
n w ma w w

g
⎛ ⎞= + = + = .⎜ ⎟
⎝ ⎠
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Figure 5.21 
 

EVALUATE:   To accelerate the person upward during the jump, the upward force from the ground must 
exceed the downward pull of gravity. The ground pushes up on him because he pushes down on the 
ground. 

 5.22. IDENTIFY:   Acceleration and velocity are related by .y
y

dv
a

dt
=  Apply mΣ =F a

G G  to the rocket. 

SET UP:   Let y+  be upward. The free-body diagram for the rocket is sketched in Figure 5.22. 
G
F  is the 

thrust force. 
EXECUTE:   (a) 2.yv At Bt= +  2 .ya A Bt= +  At 0,t =  21 50 m/sya = . so 21 50 m/s .A = .  Then 

2 00 m/syv = .  at 1 00 st = .  gives 2 22 00 m/s (1 50 m/s )(1 00 s) (1 00 s)B. = . . + .  and 30 50 m/s .B = .  

(b) At 4 00 s,t = .  2 3 21 50 m/s 2(0 50 m/s )(4 00 s) 5 50 m/s .= . + . . = .ya  

(c) y yF maΣ =  applied to the rocket gives T mg ma− =  and 
2 2 4( ) (2540 kg)(9 80 m/s 5 50 m/s ) 3 89 10  N.T m a g= + = . + . = . ×  1 56 .T w= .  

(d) When 21 50 m/s ,a = .  2 2 4(2540 kg)(9 80 m/s 1 50 m/s ) 2 87 10  N.T = . + . = . ×  

EVALUATE:   During the time interval when 2( ) = +v t At Bt  applies the magnitude of the acceleration is 
increasing, and the thrust is increasing. 

 

 

Figure 5.22 
 

 5.23. IDENTIFY:   We know the external forces on the box and want to find the distance it moves and its speed. 
The force is not constant, so the acceleration will not be constant, so we cannot use the standard constant-
acceleration kinematics formulas. But Newton’s second law will apply. 

SET UP:   First use Newton’s second law to find the acceleration as a function of time: ( ) .x
x

F
a t

m
=  Then 

integrate the acceleration to find the velocity as a function of time, and next integrate the velocity to find 
the position as a function of time. 
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EXECUTE:   Let +x be to the right. 
2 2

4 2( 6 00 N/s )( ) (3 00 m/s ) .
2 00 kg

x
x

F t
a t t

m
− .= = = − .

.
 Integrate the acceleration 

to find the velocity as a function of time: 
4 3( ) (1 00 m/s ) 9 00 m/s.xv t t= − . + .  Next integrate the velocity to find 

the position as a function of time: 4 4( ) (0 250 m/s ) (9 00 m/s) .x t t t= − . + .  Now use the given values of time. 

(a) 0xv =  when 4 3(1 00 m/s ) 9 00 m/s.t. = .  This gives 2 08 s.t = .  At 2 08 s,t = .  
4 4(9 00 m/s)(2 08 s) (0 250 m/s )(2 08 s) 18 72 m 4 68 m 14 0 m.= . . − . . = . − . = .x  

(b) At 3 00 s,t = .  4 3( ) (1 00 m/s )(3 00 s) 9 00 m/s 18 0 m/s,= − . . + . = − .xv t  so the speed is 18.0 m/s.  
EVALUATE:   The box starts out moving to the right. But because the acceleration is to the left, it reverses 
direction and vx is negative in part (b).  

 5.24. IDENTIFY:   We know the position of the crate as a function of time, so we can differentiate to find its 
acceleration. Then we can apply Newton’s second law to find the upward force. 
SET UP:   ( ) / , ( ) / , and .= = Σ =y y y y yv t dy dt a t dv dt F ma  

EXECUTE:   Let y+  be upward. 3 2/ ( ) 2 80 m/s (1 83 m/s )ydy dt v t t= = . + .  and 
3/ ( ) (3 66 m/s ) .y ydv dt a t t= = .  At 4 00 s,t = .  214 64 m/s .ya = .  Newton’s second law in the y direction 

gives .F mg ma− =  Solving for F gives 249 N (5 00 kg)(14 64 m/s ) 122 N.F = + . . =  
EVALUATE:   The force is greater than the weight since it is accelerating the crate upwards. 

 5.25. IDENTIFY:   At the maximum tilt angle, the patient is just ready to slide down, so static friction is at its 
maximum and the forces on the patient balance. 
SET UP:   Take x+  to be down the incline. At the maximum angle s sf µ n=  and 0.x xF maΣ = =  
EXECUTE:   The free-body diagram for the patient is given in Figure 5.25. y yF maΣ =  gives cos .n mg θ=  

0xFΣ =  gives ssin 0.mg nθ µ− =  ssin cos 0.mg mgθ µ θ− =  stanθ µ=  so 50 .θ = °  
 

 

Figure 5.25 
 

EVALUATE:   A larger angle of tilt would cause more blood to flow to the brain, but it would also cause the 
patient to slide down the bed. 

 5.26. IDENTIFY:   s sf nµ≤  and k k .f nµ=  The normal force n is determined by applying mΣ =F a
G G  to the block. 

Normally, k s.µ µ≤  sf  is only as large as it needs to be to prevent relative motion between the two 
surfaces. 
SET UP:   Since the table is horizontal, with only the block present 135 N.n =  With the brick on the block, 

270 N.n =  
EXECUTE:   (a) The friction is static for 0P =  to 75.0 N.P =  The friction is kinetic for 75.0 N.P >  
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(b) The maximum value of sf  is s .nµ  From the graph the maximum sf  is s 75.0 N,f =  so 

s
s

max 75.0 N 0.556.
135 N

f
n

µ = = =  k k .f nµ=  From the graph, k 50.0 Nf =  and k
k

50.0 N 0.370.
135 N

f
n

µ = = =  

(c) When the block is moving the friction is kinetic and has the constant value k k ,f nµ=  independent of P. 
This is why the graph is horizontal for 75.0 N.P >  When the block is at rest, sf P=  since this prevents 
relative motion. This is why the graph for 75.0 NP <  has slope 1.+  
(d) smax  f  and kf  would double. The values of f on the vertical axis would double but the shape of the 
graph would be unchanged. 
EVALUATE:   The coefficients of friction are independent of the normal force. 

 5.27. (a) IDENTIFY:   Constant speed implies 0.a =  Apply Newton’s first law to the box. The friction force is 
directed opposite to the motion of the box. 
SET UP:   Consider the free-body diagram for the box, given in Figure 5.27a. Let 

G
F  be the horizontal 

force applied by the worker. The friction is kinetic friction since the box is sliding along the surface. 
 

 EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  
so k k kf n mgµ µ= =  

Figure 5.27a   
 

x xF maΣ =  

k 0F f− =  

  F = fk = µkmg = (0.20)(16.8 kg)(9.80 m/s2 ) = 33 N  
(b) IDENTIFY:   Now the only horizontal force on the box is the kinetic friction force. Apply Newton’s 
second law to the box to calculate its acceleration. Once we have the acceleration, we can find the  
distance using a constant acceleration equation. The friction force is k k ,f mgµ=  just as in part (a). 
SET UP:   The free-body diagram is sketched in Figure 5.27b. 

 

 EXECUTE:    
x xF maΣ =  

k xf ma− =  

k xmg maµ− =  
2 2

k (0 20)(9 80 m/s ) 1 96 m/sxa gµ= − = − . . = − .  

Figure 5.27b   
 

Use the constant acceleration equations to find the distance the box travels: 
0,xv =  0 3 50 m/s,xv = .  21 96 m/s ,xa = − .  0 ?x x− =  

2 2
0 02 ( )x x xv v a x x= + −  

2 2 2
0

0 2
0 (3 50 m/s) 3 1 m

2 2( 1 96 m/s )
x x

x

v v
x x

a
− − .− = = = .

− .
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EVALUATE:   The normal force is the component of force exerted by a surface perpendicular to the surface. 
Its magnitude is determined by .mΣ =F a

G G  In this case n and mg are the only vertical forces and 0,ya =  so 

.n mg=  Also note that kf  and n are proportional in magnitude but perpendicular in direction. 

 5.28. IDENTIFY:   Apply mΣ =F a
G G

 to the box. 
SET UP:   Since the only vertical forces are n and w, the normal force on the box equals its weight. Static 
friction is as large as it needs to be to prevent relative motion between the box and the surface, up to its 
maximum possible value of max

s s .f nµ=  If the box is sliding then the friction force is k k .f nµ=  

EXECUTE:   (a) If there is no applied force, no friction force is needed to keep the box at rest. 

(b) max
s s (0 40)(40 0 N) 16 0 N.µ= = . . = .f n  If a horizontal force of 6.0 N is applied to the box, then 

s 6 0 Nf = .  in the opposite direction. 

(c) The monkey must apply a force equal to max
s ,f  16.0 N. 

(d) Once the box has started moving, a force equal to k k 8 0 Nµ= = .f n  is required to keep it moving at 
constant velocity. 
(e) k 8.0 N.f =  2 2= (18.0 N 8.0 N)/(40.0 N/9.80 m/s ) = 2.45 m/sa −  

EVALUATE:   k sµ µ<  and less force must be applied to the box to maintain its motion than to start it 
moving. 

 5.29. IDENTIFY:   Apply mΣ =F a
G G  to the crate. s sf nµ≤  and k k .f nµ=  

SET UP:   Let y+  be upward and let x+  be in the direction of the push. Since the floor is horizontal and 
the push is horizontal, the normal force equals the weight of the crate: 441 N.n mg= =  The force it takes 
to start the crate moving equals max sf  and the force required to keep it moving equals k .f  

EXECUTE:   (a) smax 313 N,f =  so s
313 N 0 710.
441 N

µ = = .  k 208 N,f =  so k
208 N 0 472.
441 N

µ = = .  

(b) The friction is kinetic. x xF maΣ =  gives kF f ma− =  and 
2

k 208 N (45 0 kg)(1 10 m/s ) 258 N.F f ma= + = + . . =  

(c) (i) The normal force now is 72 9 N.mg = .  To cause it to move, 

s smax (0 710)(72 9 N) 51 8 N.F f nµ= = = . . = .   

(ii) k= +F f ma  and 2k 258 N (0 472)(72 9 N) 4 97 m/s
45 0 kg

F f
a

m
− − . .= = = .

.
 

EVALUATE:   The kinetic friction force is independent of the speed of the object. On the moon, the mass of 
the crate is the same as on earth, but the weight and normal force are less. 

 5.30. IDENTIFY:   Newton’s second law applies to the rocks on the hill. When they are moving, kinetic friction 
acts on them, but when they are at rest, static friction acts. 
SET UP:   Use coordinates with axes parallel and perpendicular to the incline, with x+  in the direction of 
the acceleration. x xF maΣ =  and 0.y yF maΣ = =  

EXECUTE:   With the rock sliding up the hill, the friction force is down the hill. The free-body diagram is 
given in Figure 5.30a. 
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Figure 5.30 
 

0y yF maΣ = =  gives cosφ=n mg  and k k k cos .f n mgµ µ φ= =  x xF maΣ =  gives 

ksin cos .mg mg maφ µ φ+ =  
2

k(sin cos ) (9.80 m/s )[sin36 (0.45)cos36 ].a g φ µ φ= + = ° + °  29 33 m/s ,a = .  down the incline. 

(b) The component of gravity down the incline is sin 0 588 .mg mgφ = .  The maximum possible static 
friction force is s s s cos 0.526 .f n mg mgµ µ φ= = =  sf  can’t be as large as sinφmg  and the rock slides 
back down. As the rock slides down, kf  is up the incline. The free-body diagram is given in Figure 5.30b. 

0y yF maΣ = =  gives cosφ=n mg  and k k k cos .f n mgµ µ φ= =  x xF maΣ =  gives 

ksin cos ,mg mg maφ µ φ− =  so 2
k(sin cos ) 2.19 m/s ,φ µ φ= − =a g  down the incline. 

EVALUATE:   The acceleration down the incline in (a) is greater than that in (b) because in (a) the static 
friction and gravity are both acting down the incline, whereas in (b) friction is up the incline, opposing 
gravity which still acts down the incline. 

 5.31. IDENTIFY:   A 10.0-kg box is pushed on a ramp, causing it to accelerate. Newton’s second law applies. 
  SET UP:  Choose the x-axis along the surface of the ramp and the y-axis perpendicular to the surface. The 

only acceleration of the box is in the x-direction, so x xF maΣ =  and 0yFΣ = . The external forces acting 
on the box are the push P along the surface of the ramp, friction fk, gravity mg, and the normal force n. The 
ramp rises at 55.0° above the horizontal, and fk = µkn. The friction force opposes the sliding, so it is 
directed up the ramp in part (a) and down the ramp in part (b). 

  EXECUTE:   (a) Applying 0yFΣ =  gives n = mg cos(55.0°), so the force of kinetic friction is fk = µkn = 
(0.300)(10.0 kg)(9.80 m/s2)(cos 55.0°) = 16.86 N. Call the +x-direction down the ramp since that is the 
direction of the acceleration of the box. Applying x xF maΣ =  gives P + mg sin(55.0°) – fk = ma. Putting in 
the numbers gives (10.0 kg)a = 120 N + (98.0 N)(sin 55.0°) – 16.86 N; a = 18.3 m/s2. 

  (b) Now P is up the up the ramp and fk is down the ramp, but the other force components are unchanged, so 
fk = 16.86 N as before. We now choose +x to be up the ramp, so x xF maΣ =  gives  

  P – mg sin(55.0°) – fk = ma. Putting in the same numbers as before gives a = 2.29 m/s2. 
  EVALUATE:   Pushing up the ramp produces a much smaller acceleration than pushing down the ramp 

because gravity helps the downward push but opposes the upward push. 
 5.32. IDENTIFY:   For the shortest time, the acceleration is a maximum, so the toolbox is just ready to slide 

relative to the bed of the truck. The box is at rest relative to the truck, but it is accelerating relative to the 
ground because the truck is accelerating. Therefore Newton’s second law will be useful. 
SET UP:   If the truck accelerates to the right the static friction force on the box is to the right, to try to 
prevent the box from sliding relative to the truck. The free-body diagram for the box is given in  
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Figure 5.32. The maximum acceleration of the box occurs when sf  has its maximum value, so s s .f nµ=  
If the box doesn’t slide, its acceleration equals the acceleration of the truck. The constant-acceleration 
equation 0x x xv v a t= +  applies. 

 

 

Figure 5.32 
 
 

EXECUTE:   .n mg=  x xF maΣ =  gives sf ma=  so smg maµ =  and 2
s 6.37 m/s .a gµ= =  0 0,xv =  

30 0 m/s.xv = .  0x x xv v a t= +  gives 0
2

30 0 m/s 0 4 71 s.
6 37 m/s

x x

x

v v
t

a
− . −= = = .

.
 

  EVALUATE:   If the truck has a smaller acceleration it is still true that s ,f ma=  but now s s .f nµ<  

 5.33.  IDENTIFY:   Apply mΣ =F a
G G

 to the composite object consisting of the two boxes and to the top box. The 
friction the ramp exerts on the lower box is kinetic friction. The upper box doesn’t slip relative to the lower 
box, so the friction between the two boxes is static. Since the speed is constant the acceleration is zero. 
SET UP:   Let x+  be up the incline. The free-body diagrams for the composite object and for the upper box 

are given in Figure 5.33. The slope angle φ of the ramp is given by 2.50 mtan ,
4.75 m

φ =  so   φ = 27.76°.  Since 

the boxes move down the ramp, the kinetic friction force exerted on the lower box by the ramp is directed 
up the incline. To prevent slipping relative to the lower box the static friction force on the upper box is 
directed up the incline. tot 32.0 kg 48.0 kg 80.0 kg.m = + =  

EXECUTE:   (a) y yF maΣ = applied to the composite object gives tot tot cosn m g φ=  and 

k k tot cos .f m gµ φ=  x xF maΣ =  gives k tot sin 0f T m g φ+ − =  and 
2

k tot(sin cos ) (sin 27.76 [0.444]cos27.76 )(80.0 kg)(9.80 m/s ) 57.1 N.T m gφ µ φ= − = − =° °  
The person must apply a force of 57.1 N, directed up the ramp. 

(b) x xF maΣ =  applied to the upper box gives fs = mg sinφ = (32.0 kg)(9.80 m/s2 )sin27.76° = 146 N,  
directed up the ramp. 
EVALUATE:   For each object the net force is zero. 
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Figure 5.33 
 

 5.34. IDENTIFY:   Constant speed means zero acceleration for each block. If the block is moving, the friction 
force the tabletop exerts on it is kinetic friction. Apply mΣ =F a

G G
 to each block. 

SET UP:   The free-body diagrams and choice of coordinates for each block are given by Figure 5.34. 
4.59 kgAm =  and 2.55 kg.Bm =  

EXECUTE:   (a) y yF maΣ =  with 0ya =  applied to block B gives 0Bm g T− =  and 25.0 N.T =  

x xF maΣ =  with 0xa =  applied to block A gives k 0T f− =  and k 25.0 N.f =  45.0 NA An m g= =  and 

k
k

25.0 N 0.556.
45.0 NA

f
n

µ = = =  

(b) Now let A be block A plus the cat, so 9.18 kg.Am = 90.0 NAn =  and 

k k (0.556)(90.0 N) 50.0 N.f nµ= = = x xF ma∑ = for A gives k .A xT f m a− =
 
∑Fy = may for block B 

gives .B B ym g T m a− =  xa for A equals ya for B, so adding the two equations gives 

k ( )B A B ym g f m m a− = +  and 2k 25.0 N 50.0 N 2.13 m/s .
9.18 kg 2.55 kg

B
y

A B

m g f
a

m m
− −= = = −

+ +
 The acceleration is 

upward and block B slows down. 
EVALUATE:   The equation k ( )B A B ym g f m m a− = +  has a simple interpretation. If both blocks are 

considered together then there are two external forces: Bm g  that acts to move the system one way and kf  
that acts oppositely. The net force of kBm g f−  must accelerate a total mass of .A Bm m+  

 

 
Figure 5.34 

 

 
 5.35. IDENTIFY:   Use mΣ =F a

G G  to find the acceleration that can be given to the car by the kinetic friction force. 
Then use a constant acceleration equation. 
SET UP:   Take x+  in the direction the car is moving. 
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EXECUTE:   (a) The free-body diagram for the car is shown in Figure 5.35. y yF maΣ =  gives .n mg=  

x xF maΣ =  gives k .xn maµ− =  k xmg maµ− =  and k .xa gµ= −  Then 0xv =  and 2 2
0 02 ( )x x xv v a x x= + −  

gives 
2 2 2
0 0

0 2
k

(28 7 m/s)
( ) 52 5 m.

2 2 2(0 80)(9 80 m/s )
x x

x

v v
x x

a gµ
.− = − = + = = .

. .
 

(b) 2
0 k 02 ( ) 2(0 25)(9 80 m/s )52 5 m 16 0 m/sxv g x xµ= − = . . . = .  

EVALUATE:   For constant stopping distance 
2
0

k

xv
µ

 is constant and 0xv  is proportional to k .µ  The answer 

to part (b) can be calculated as (28 7 m/s) 0 25/0 80 16 0 m/s.. . . = .  
 

 
Figure 5.35 

 5.36. IDENTIFY:   Apply mΣ =F a
G G

 to the box. When the box is ready to slip the static friction force has its 
maximum possible value, s s .f nµ=  
SET UP:   Use coordinates parallel and perpendicular to the ramp. 
EXECUTE:   (a) The normal force will be cosw α  and the component of the gravitational force along the 
ramp is sin .w α  The box begins to slip when ssin cos ,w wα µ α>  or stan 0 35,α µ> = . so slipping occurs 
at arctan(0.35) 19.3 .α = = °  
(b) When moving, the friction force along the ramp is k cos ,wµ α  the component of the gravitational force 
along the ramp is sin ,w α  so the acceleration is 

2
k k( sin cos )/ (sin cos ) 0 92 m/s .w w m gα µ α α µ α− = − = .   

(c) Since 0 0,xv =  22 ,ax v=  so 1/2(2 ) ,=v ax  or 2 1/2[(2)(0 92 m/s )(5 m)] 3 m/s.v = . =  
  EVALUATE:   When the box starts to move, friction changes from static to kinetic and the friction force 

becomes smaller. 
 5.37. IDENTIFY:   Apply mΣ =F a

G G  to each crate. The rope exerts force T to the right on crate A and force T to 
the left on crate B. The target variables are the forces T and F. Constant v implies 0.a =  
SET UP:   The free-body diagram for A is sketched in Figure 5.37a. 

 EXECUTE:    
y yF maΣ =  

0A An m g− =  

A An m g=  

k k kA A Af n m gµ µ= =  

Figure 5.37a   
 

x xF maΣ =  

k 0AT f− =  

k AT m gµ=  
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SET UP:   The free-body diagram for B is sketched in Figure 5.37b. 
 

 EXECUTE:    
y yF maΣ =  

0B Bn m g− =  

B Bn m g=  

k k kB B Bf n m gµ µ= =  

Figure 5.37b   
 

x xF maΣ =  

k 0BF T f− − =  

kµ= + BF T m g  
Use the first equation to replace T in the second: 

k k .A BF m g m gµ µ= +  
(a) k ( )µ= +A BF m m g  
(b) kµ= AT m g  
EVALUATE:   We can also consider both crates together as a single object of mass ( ).A Bm m+  x xF maΣ =  
for this combined object gives k k ( ) ,A BF f m m gµ= = +  in agreement with our answer in part (a). 

 5.38. IDENTIFY:   Apply mΣ =F a
G G  to the box. 

SET UP:   Let y+  be upward and x+  be horizontal, in the direction of the acceleration. Constant speed 
means 0.a =  
EXECUTE:   (a) There is no net force in the vertical direction, so sin 0,n F wθ+ − =  or 

sin sin .n w F mg Fθ θ= − = −  The friction force is k k k ( sin ).f n mg Fµ µ θ= = −  The net horizontal force 
is k kcos cos ( sin ),F f F mg Fθ θ µ θ− = − −  and so at constant speed, 

k

kcos sin
mg

F
µ

θ µ θ
=

+
 

(b) Using the given values, 
2(0 35)(90 kg)(9 80 m/s ) 290 N.

(cos25 (0 35) sin 25 )
F

. .= =
° + . °

 

EVALUATE:   If 0 ,θ = °  k .F mgµ=  

 5.39. IDENTIFY:   Apply mΣ =F a
G G

 to each block. The target variables are the tension T in the cord and the 
acceleration a of the blocks. Then a can be used in a constant acceleration equation to find the speed of 
each block. The magnitude of the acceleration is the same for both blocks. 
SET UP:   The system is sketched in Figure 5.39a. 

 

 For each block take a positive  
coordinate direction to be the direction  
of the block’s acceleration. 

Figure 5.39a   
 

block on the table: The free-body is sketched in Figure 5.39b (next page). 
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 EXECUTE:    
y yF maΣ =  

0An m g− =  

An m g=  

k k k Af n m gµ µ= =  

Figure 5.39b   
 

x xF maΣ =  

k AT f m a− =  

k A AT m g m aµ− =  
SET UP:   hanging block: The free-body is sketched in Figure 5.39c. 

 

 EXECUTE:    
y yF maΣ =  

B Bm g T m a− =  

B BT m g m a= −  

Figure 5.39c   
 

(a) Use the second equation in the first 

kB B A Am g m a m g m aµ− − =  

k( ) ( )A B B Am m a m m gµ+ = −  

2
2k( ) (1.30 kg (0.45)(2.25 kg))(9.80 m/s ) 0.7937 m/s

2.25 kg 1.30 kg
B A

A B

m m g
a

m m
µ− −= = =
+ +

 

SET UP:   Now use the constant acceleration equations to find the final speed. Note that the blocks have the 
same speeds. 0 0.0300 m,x x− =  20.7937 m/s ,xa =  0 0,xv =  ?xv =  

2 2
0 02 ( )x x xv v a x x= + −  

EXECUTE:   2
02 ( ) 2(0.7937 m/s )(0.0300 m) 0.218 m/s 21.8 cm/s.x xv a x x= − = = =  

(b) 2 2( ) 1.30 kg(9.80 m/s 0.7937 m/s ) 11.7 NB B BT m g m a m g a= − = − = − =  
Or, to check, k .A AT m g m aµ− =  

2 2
k( ) 2.25 kg(0.7937 m/s (0.45)(9.80 m/s )) 11.7 N,AT m a gµ= + = + =  which checks. 

EVALUATE:   The force T exerted by the cord has the same value for each block. BT m g<  since the 
hanging block accelerates downward. Also, k k 9.92 N.Af m gµ= =  kT f>  and the block on the table 
accelerates in the direction of T. 

 5.40. IDENTIFY:   Apply mΣ =F a
G G  to the ball. At the terminal speed, .f mg=  

SET UP:   The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed, 
the magnitude of the frictional force is one-fourth the weight. 
EXECUTE:   (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is 
(5/4)w  and the acceleration is (5/4) ,g  down. 
(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w  and the 
acceleration is (3/4) ,g down. 
EVALUATE:   The frictional force is less than mg in each case and in each case the net force is downward 
and the acceleration is downward. 
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 5.41. (a) IDENTIFY:   Apply mΣ =F a
G G

 to the crate. Constant v implies 0.a =  Crate moving says that the friction 
is kinetic friction. The target variable is the magnitude of the force applied by the woman. 
SET UP:   The free-body diagram for the crate is sketched in Figure 5.41. 

 

 EXECUTE:    
y yF maΣ =  

sin 0n mg F θ− − =  
sinn mg F θ= +  

k k k k sinf n mg Fµ µ µ θ= = +  

Figure 5.41   
 

x xF maΣ =  

kcos 0F fθ − =  

k kcos sin 0F mg Fθ µ µ θ− − =  

k k(cos sin )F mgθ µ θ µ− =  

k

kcos sin
mg

F
µ

θ µ θ
=

−
 

(b) IDENTIFY and SET UP:   “Start the crate moving” means the same force diagram as in part (a), except 

that kµ  is replaced by s.µ  Thus s

s
.

cos sin
mg

F
µ

θ µ θ
=

−
 

EXECUTE:   F → ∞  if scos sin 0.θ µ θ− =  This gives s
cos 1 .
sin tan

θµ
θ θ

= =  

EVALUATE:   F
G

 has a downward component so .n mg>  If 0θ =  (woman pushes horizontally), n mg=  
and k k .F f mgµ= =  

 5.42. IDENTIFY and SET UP:   Apply vt = mg
D

.  

EXECUTE:   (a) Solving for D in terms of t ,v  
2

2 2
t

(80 kg)(9.80 m/s ) 0.44 kg/m.
(42 m/s)

= = =mg
D

v
 

(b) 
2

t
(45 kg)(9.80 m/s ) 42 m/s.

(0.25 kg/m)
= = =mg

v
D

 

EVALUATE:   “Terminal speed depends on the mass of the falling object.” 

 5.43. IDENTIFY: Since the stone travels in a circular path, its acceleration is arad = v2 /R,  directed toward the 
center of the circle. The only horizontal force on the stone is the tension of the string. Set the tension in the 
string equal to its maximum value.  

  SET UP:   ∑ =x xF ma  gives T = m
v2

R
.  

EXECUTE:   (a) The free-body diagram for the stone is given in Figure 5.43 (next page). In the diagram the 
stone is at a point to the right of the center of the path. 
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Figure 5.43 

 

(b) Solving for v gives (60 0 N)(0 90 m) 8 2 m/s
0 80 kg

TR
v

m
. .= = = . .

.
 

 EVALUATE:   The tension is directed toward the center of the circular path of the stone. Gravity plays no 
role in this case because it is a vertical force and the acceleration is horizontal. 

 5.44. IDENTIFY:   The wrist exerts a force on the hand causing the hand to move in a horizontal circle. Newton’s 
second law applies to the hand.  

  SET UP:   Each hand travels in a circle of radius 0.750 m and has mass (0.0125)(52 kg) = 0.65 kg and 
weight 6.4 N. The period for each hand is (1 0 s)/(2 0) 0 50 s= . . = . .T  Let +x  be toward the center of the 

circular path. The speed of the hand is v = 2πR/T, the radial acceleration is arad = v2

R
= 4π 2R

T 2
,  and 

x xF ma∑ =  = marad. 

EXECUTE:   (a) The free-body diagram for one hand is given in Figure 5.44. 
G
F  is the force exerted on the 

hand by the wrist. This force has both horizontal and vertical components. 

 
Figure 5.44 

 

(b) 
2 2

2
rad 2 2

4 4 (0 750 m)
118 m/s

(0 50 s)
π π .= = =

.
R

a
T

, so 2
rad (0 65 kg)(118 m/s ) 77 N.xF ma= = . =  

(c) 
  

F
w

= 77 N
6.4 N

= 12,  so the horizontal force from the wrist is 12 times the weight of the hand. 

 EVALUATE:   The wrist must also exert a vertical force on the hand equal to the weight of the hand. 
 5.45. IDENTIFY:   Apply mΣ =F a

G G  to the car. It has acceleration rad ,aG  directed toward the center of the circular 
path. 
SET UP:   The analysis is the same as in Example 5.23. 

EXECUTE:   (a) 
2 2

2 (12 0 m/s)(1 60 kg) 9 80 m/s 61 8 N.
5 00 mA

v
F m g

R

⎛ ⎞ ⎛ ⎞.= + = . . + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
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(b) 
2 2

2 (12 0 m/s)(1 60 kg) 9 80 m/s 30 4 N,
5 00 mB

v
F m g

R

⎛ ⎞ ⎛ ⎞.= − = . . − = − .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 where the minus sign indicates that 

the track pushes down on the car. The magnitude of this force is 30.4 N. 
EVALUATE:   .>A BF F  2 .A BF mg F− =  

 5.46. IDENTIFY:   The acceleration of the car at the top and bottom is toward the center of the circle, and 
Newton’s second law applies to it. 
SET UP:   Two forces are acting on the car, gravity and the normal force. At point B (the top), both forces 
are toward the center of the circle, so Newton’s second law gives .Bmg n ma+ =  At point A (the bottom), 
gravity is downward but the normal force is upward, so .An mg ma− =  

EXECUTE:   Solving the equation at B for the acceleration gives 
2

2(0 800 kg)(9 8 m/s ) 6 00 N 17 3 m/s .
0 800 kg

Bmg n
a

m
+ . . + .= = = .

.
 Solving the equation at A for the normal force 

gives 2 2( ) (0 800 kg)(9 8 m/s 17 3 m/s ) 21 7 N.An m g a= + = . . + . = .  

EVALUATE:   The normal force at the bottom is greater than at the top because it must balance the weight 
in addition to accelerate the car toward the center of its track. 

 5.47.  IDENTIFY:   A model car travels in a circle so it has radial acceleration, and Newton’s second law applies 
to it. 

  SET UP:   We use mΣ =F a
G G , where the acceleration is arad = v2

R
 and the time T for one revolution is  

T = 2πR/v. 

EXECUTE:   At the bottom of the track, taking +y upward, mΣ =F a
G G gives n – mg = ma, where n is the 

normal force. This gives 2.50mg – mg = ma, so a = 1.50g. The acceleration is 
  
arad = v2

R
, so 

2(1.50)(9.80 m/s )(5.00 m)v aR= =  = 8.573 m/s, so T = 2πR/v = 2π(5.00 m)/(8.573 m) = 3.66 s. 

EVALUATE:   We never need the mass of the car because we know the acceleration as a fraction of g and 
the force as a fraction of mg. 

 5.48. IDENTIFY:   Since the car travels in an arc of a circle, it has acceleration 2
rad / ,=a v R  directed toward the 

center of the arc. The only horizontal force on the car is the static friction force exerted by the roadway.  
To calculate the minimum coefficient of friction that is required, set the static friction force equal to its 
maximum value, s s .f nµ=  Friction is static friction because the car is not sliding in the radial direction. 
SET UP:   The free-body diagram for the car is given in Figure 5.48 (next page). The diagram assumes the 
center of the curve is to the left of the car. 

EXECUTE:   (a) y yF maΣ =  gives .n mg=  x xF maΣ =  gives 
2

s .v
n m

R
µ =  

2

s
v

mg m
R

µ =  and 

  
µs = v2

gR
= (25.0 m/s)2

(9.80 m/s2 )(170 m)
= 0.375  

(b) 
2

s
constant,v

Rg
µ

= =  so 
2 2
1 2

s1 s2
.v v

µ µ
=  s2 s1

2 1
s1 s1

/3(25 0 m/s) 14 4 m/s.µ µ
µ µ

= = . = .v v  

EVALUATE:   A smaller coefficient of friction means a smaller maximum friction force, a smaller possible 
acceleration and therefore a smaller speed. 
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Figure 5.48 
 

  
 5.49. IDENTIFY:   Apply Newton’s second law to the car in circular motion, assume friction is negligible. 

SET UP:   The acceleration of the car is arad = v2 /R.  As shown in the text, the banking angle β  is given 

by 
2

tan .v
gR

β =  Also, / cos .β=n mg  65 0 mi/h 29 1m/s.. = .   

EXECUTE:   (a) 
2

2
(29 1 m/s)tan

(9 80 m/s )(225 m)
β .=

.
 and 21 0 .β = . °  The expression for tan β  does not involve 

the mass of the vehicle, so the truck and car should travel at the same speed. 

(b) For the car, 
2

4
car

(1125 kg)(9 80 m/s ) 1 18 10  N
cos21 0

n
.= = . ×
. °

 and 4
truck car2 2 36 10  N,n n= = . ×  since 

truck car2 .m m=  
EVALUATE:   The vertical component of the normal force must equal the weight of the vehicle, so the 
normal force is proportional to m. 

 5.50. IDENTIFY:   The acceleration of the person is 2
rad / ,=a v R  directed horizontally to the left in the figure in 

the problem. The time for one revolution is the period 2 .R
T

v
π=  Apply mΣ =F a

G G  to the person. 

SET UP:   The person moves in a circle of radius 3 00 m (5 00 m)sin30 0 5 50 m.R = . + . . ° = .  The free-body 

diagram is given in Figure 5.50. F
G

 is the force applied to the seat by the rod. 

EXECUTE:   (a) y yF maΣ =  gives cos30 0F mg. ° =  and .
cos30 0

mg
F =

. °
 x xF maΣ =  gives 

2
sin30 0 .v

F m
R

. ° =  Combining these two equations gives  

2tan (5 50 m)(9 80 m/s ) tan30 0 5 58 m/s.v Rg θ= = . . . ° = .  Then the period is 
2 2 (5 50 m) 6 19 s.

5 58 m/s
R

T
v
π π .= = = .

.
 

(b) The net force is proportional to m so in mΣ =F a
G G  the mass divides out and the angle for a given rate of 

rotation is independent of the mass of the passengers. 
EVALUATE:   The person moves in a horizontal circle so the acceleration is horizontal. The net inward 
force required for circular motion is produced by a component of the force exerted on the seat by the rod. 
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Figure 5.50 
 

  
 5.51. IDENTIFY:   Apply mΣ =F a

G G
 to the composite object of the person plus seat. This object moves in a 

horizontal circle and has acceleration rad ,a  directed toward the center of the circle. 
SET UP:   The free-body diagram for the composite object is given in Figure 5.51. Let x+  be to the right, 
in the direction of rad.aG  Let y+  be upward. The radius of the circular path is 7 50 m.R = .  The total mass 

is 2(255 N 825 N)/(9 80 m/s ) 110 2 kg.+ . = .  Since the rotation rate is 28.0 rev/min = 0.4667 rev/s,  the 

period T is 
 

1
0.4667 rev/s

= 2.143 s.  

EXECUTE:   y yF maΣ =  gives cos40 0 0AT mg. ° − =  and 255 N 825 N 1410 N.
cos40 0 cos40 0A

mg
T

+= = =
. ° . °

 

x xF maΣ =  gives radsin 40 0A BT T ma. ° + =  and 

  
TB = m

4π 2 R

T 2
− TA sin40.0° = (110.2 kg) 4π 2 (7.50 m)

(2.143 s)2
− (1410 N)sin40.0° = 6200 N  

The tension in the horizontal cable is 6200 N and the tension in the other cable is 1410 N. 
EVALUATE:   The weight of the composite object is 1080 N. The tension in cable A is larger than this since 
its vertical component must equal the weight. The tension in cable B is less than marad because part of the 
required inward force comes from a component of the tension in cable A. 

 

 
Figure 5.51 

 

  
 5.52. IDENTIFY:   Apply mΣF = a

G G  to the button. The button moves in a circle, so it has acceleration rad.a  
SET UP:   We apply Newton’s second law to the horizontal and vertical motion. Vertically we get n = w, 

and horizontally we get µsmg = mv2/R. Combining these equations gives 
2

s .v
Rg

µ =  Also, v = 2πR/T. 
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EXECUTE:   (a) 
2

s .v
Rg

µ =  Expressing v in terms of the period T, 2 R
v

T
π=  so 

2
s 2

4 .R
T g
πµ =  A platform 

speed of 40.0 rev/min corresponds to a period of 1.50 s, so µs = 4π 2 (0.220 m)
(1.50 s)2 (9.80 m/s2 )

= 0.394.  

(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the 
period (longer periods mean slower speeds, so the button may be moved farther out) and so is inversely 
proportional to the square of the speed. Thus, at the higher speed, the maximum radius is 

240.0
(0.220 m) 0 0978 m

60.0
.⎛ ⎞ = .⎜ ⎟⎝ ⎠
 

EVALUATE:   
2

rad 2
4 .R

a
T
π=  The maximum radial acceleration that friction can give is s .mgµ  At the faster 

rotation rate T is smaller so R must be smaller to keep rada  the same. 

 5.53. IDENTIFY:   The acceleration due to circular motion is 
2

rad 2
4 .R

a
T
π=  

SET UP:   400 m.R =  1/T  is the number of revolutions per second. 
EXECUTE:   (a) Setting rada g=  and solving for the period T gives 

  
T = 2¹

R
g

= 2¹
400 m

9.80 m/s2
= 40.1 s,  

so the number of revolutions per minute is (60 s/min)/(40.1 s) 1.5 rev/min.=  
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of 
the square root of the ratio of the accelerations, (1.5 rev/min) 3.70/9.8 0.92 rev/min.′ = × =T  

EVALUATE:   In part (a) the tangential speed of a point at the rim is given by 
2

rad ,v
a

R
=  so 

rad 62.6 m/s;v Ra Rg= = =  the space station is rotating rapidly. 

 5.54. IDENTIFY:   2 .R
T

v
π=  The apparent weight of a person is the normal force exerted on him by the seat he 

is sitting on. His acceleration is 2
rad / ,=a v R  directed toward the center of the circle. 

SET UP:    The period is 60.0 s.T =  The passenger has mass / 90.0 kg.= =m w g  

EXECUTE:   (a) 2 2 (50.0 m) 5.24 m/s.
60.0 s

R
v

T
π π= = =  Note that 

2 2
2

rad
(5.24 m/s) 0.549 m/s .

50.0 m
v

a
R

= = =  

(b) The free-body diagram for the person at the top of his path is given in Figure 5.54a. The acceleration is 
downward, so take y+  downward. y yF maΣ =  gives rad.mg n ma− =  

2 2
rad( ) (90.0 kg)(9.80 m/s 0.549 m/s ) 833 N.n m g a= − = − =  

The free-body diagram for the person at the bottom of his path is given in Figure 5.54b. The acceleration is 
upward, so take y+  upward. y yF maΣ =  gives radn mg ma− =  and rad( ) 931 N.n m g a= + =  

(c) Apparent weight 0=  means 0n =  and rad.mg ma=  
2v

g
R

=  and 22.1 m/s.v gR= =  The time for one 

revolution would be 2 2 (50.0 m) 14.2 s.
22.1 m/s

R
T

v
π π= = =  Note that rad .a g=  

(d) rad( ) 2 2(882 N) 1760 N,n m g a mg= + = = =  twice his true weight. 

EVALUATE:   At the top of his path his apparent weight is less than his true weight and at the bottom of his 
path his apparent weight is greater than his true weight. 
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Figure 5.54 

 

 5.55. IDENTIFY:   Apply mΣ =F a
G G

 to the motion of the pilot. The pilot moves in a vertical circle. The apparent 
weight is the normal force exerted on him. At each point radaG  is directed toward the center of the circular 
path. 
(a) SET UP:   “the pilot feels weightless” means that the vertical normal force n exerted on the pilot by  
the chair on which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in 
Figure 5.55a. 

 

 EXECUTE:    
y yF maΣ =  

radmg ma=  
2v

g
R

=  

Figure 5.55a   
 

Thus 2(9.80 m/s )(150 m) 38.34 m/sv gR= = =  

3
1 km 3600 s(38.34 m/s) 138 km/h

1 h10  m
v ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) SET UP:   The force diagram for the pilot at the bottom of the path is given in Figure 5.55b. Note that 
the vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward. 

 

 EXECUTE:    
y yF maΣ =  

2v
n mg m

R
− =  

2v
n mg m

R
= +  

This normal force is the pilot’s  
apparent weight. 

Figure 5.55b   
 

700 N,w =  so 71.43 kgw
m

g
= =  

31 h 10  m(280 km/h) 77.78 m/s
3600 s 1 km

v
⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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Thus 
2(77.78 m/s)700 N 71.43 kg 3580 N.

150 m
n = + =  

EVALUATE:   In part (b), n mg>  since the acceleration is upward. The pilot feels he is much heavier than 

when at rest. The speed is not constant, but it is still true that 2
rad /=a v R  at each point of the motion. 

 5.56. IDENTIFY:   2
rad / ,=a v R  directed toward the center of the circular path. At the bottom of the dive, radaG  is 

upward. The apparent weight of the pilot is the normal force exerted on her by the seat on which she is 
sitting. 
SET UP:   The free-body diagram for the pilot is given in Figure 5.56. 

EXECUTE:   (a) 
2

rad
v

a
R

=  gives 
2 2

2
rad

(95.0 m/s) 230 m.
4.00(9.80 m/s )

v
R

a
= = =  

(b) y yF maΣ =  gives rad.n mg ma− =  

2
rad( ) ( 4.00 ) 5.00 (5.00)(50.0 kg)(9.80 m/s ) 2450 Nn m g a m g g mg= + = + = = =  

EVALUATE:   Her apparent weight is five times her true weight, the force of gravity the earth exerts on her. 
 

 

Figure 5.56 
 

 5.57. IDENTIFY:   Apply mΣ =F a
G G  to the water. The water moves in a vertical circle. The target variable is the 

speed v; we will calculate rada  and then get v from 2
rad / .=a v R  

SET UP:   Consider the free-body diagram for the water when the pail is at the top of its circular path, as 
shown in Figures 5.57a and b. 

 

 
The radial acceleration is in toward the center  
of the circle so at this point is downward. n is the  
downward normal force exerted on the water by  
the bottom of the pail. 

Figure 5.57a   
 
 

 EXECUTE:    
y yF maΣ =  

2v
n mg m

R
+ =  

Figure 5.57b   
 

At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed, 
0.n →  (Note that the force n cannot be upward.) 
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With 0n →  the equation becomes 
2

.v
mg m

R
=  2(9.80 m/s )(0.600 m) 2.42 m/s.v gR= = =  

EVALUATE:   At the minimum speed rad .a g=  If v is less than this minimum speed, gravity pulls the water 
(and bucket) out of the circular path. 

 5.58. IDENTIFY:   The ball has acceleration 2
rad / ,=a v R  directed toward the center of the circular path. When 

the ball is at the bottom of the swing, its acceleration is upward. 
SET UP:   Take y+  upward, in the direction of the acceleration. The bowling ball has mass 

/ 7 27 kg.= = .m w g  

EXECUTE:   (a) 
2 2

rad
(4 20 m/s) 4 64 m/s,

3 80 m
v

a
R

.= = = .
.

 upward. 

(b) The free-body diagram is given in Figure 5.58. y yF maΣ =  gives rad.T mg ma− =  
2 2

rad( ) (7 27 kg)(9 80 m/s 4 64 m/s ) 105 NT m g a= + = . . + . =  
EVALUATE:   The acceleration is upward, so the net force is upward and the tension is greater than the weight. 

 

 

Figure 5.58 
 

 5.59. IDENTIFY:   Since the arm is swinging in a circle, objects in it are accelerated toward the center of the 
circle, and Newton’s second law applies to them.  
SET UP:   0 700 m.R = .  A 45° angle is 1

8  of a full rotation, so in 1
2 s  a hand travels through a distance of 

1
8 (2 ).Rπ  In (c) use coordinates where y+  is upward, in the direction of radaG  at the bottom of the swing. 

The acceleration is 
2

rad .v
a

R
=  

EXECUTE:   (a) 1 2 1 10 m/s
8 0 50 s

R
v

π⎛ ⎞= = .⎜ ⎟.⎝ ⎠
 and 

2 2
2

rad
(1 10 m/s) 1 73 m/s .

0 700 m
v

a
R

.= = = .
.

 

(b) The free-body diagram is shown in Figure 5.59. F is the force exerted by the blood vessel. 
 

 

Figure 5.59 
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(c) y yF maΣ =  gives radF w ma− =  and  
3 2 2 2

rad( ) (1 00 10 kg)(9 80 m/s 1 73 m/s ) 1 15 10 N,F m g a − −= + = . × . + . = . ×  upward. 

(d) When the arm hangs vertically and is at rest, rad 0a =  so 39 8 10 N.F w mg −= = = . ×  
EVALUATE:   The acceleration of the hand is only about 20% of g, so the increase in the force on the blood 
drop when the arm swings is about 20%. 

 5.60. IDENTIFY:   Apply Newton’s first law to the person. Each half of the rope exerts a force on him, directed 
along the rope and equal to the tension T in the rope. 
SET UP:   (a) The force diagram for the person is given in Figure 5.60. 

 

 1T  and 2T  are the  
tensions in each half of  
the rope. 

Figure 5.60   
 

EXECUTE:   0xFΣ =  

2 1cos cos 0T Tθ θ− =  
This says that 1 2T T T= =  (The tension is the same on both sides of the person.) 

0yFΣ =  

1 2sin sin 0T T mgθ θ+ − =  
But 1 2 ,T T T= =  so 2 sinT mgθ =  

2(90.0 kg)(9.80 m/s ) 2540 N
2sin 2sin10.0

mg
T

θ
= = =

°
 

(b) The relation 2 sinT mgθ =  still applies but now we are given that 42.50 10  NT = ×  (the breaking 
strength) and are asked to find .θ  

2

4
(90.0 kg)(9.80 m/s )sin 0.01764,

2 2(2.50 10  N)
mg

T
θ = = =

×
 1.01 .θ = °  

EVALUATE:   /(2sin )θ=T mg  says that /2=T mg  when 90θ = °  (rope is vertical). 
T → ∞  when 0θ →  since the upward component of the tension becomes a smaller fraction of the tension. 

 5.61. IDENTIFY:   Apply mΣ =F a
G G to the knot. 

SET UP:   0.a =  Use coordinates with axes that are horizontal and vertical. 
EXECUTE:   (a) The free-body diagram for the knot is sketched in Figure 5.61. 

1T  is more vertical so supports more of the weight and is larger. You can also see this from :x xF maΣ =  

2 1cos40 cos60 0.T T° − ° =  2 1cos40 cos60 0.T T° − ° =  
(b) 1T  is larger so set 1 5000 N.T =  Then 2 1/1 532 3263 5 N.T T= . = .  y yF maΣ =  gives 

1 2sin 60 sin 40T T w° + ° =  and 6400 N.w =  
EVALUATE:   The sum of the vertical components of the two tensions equals the weight of the suspended 
object. The sum of the tensions is greater than the weight. 
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Figure 5.61 
 

 5.62. IDENTIFY:   Apply mΣ =F a
G G

 to each object. Constant speed means 0.a =  
SET UP:   The free-body diagrams are sketched in Figure 5.62. 1T  is the tension in the lower chain, 2T  is 
the tension in the upper chain and T F=  is the tension in the rope. 
EXECUTE:   The tension in the lower chain balances the weight and so is equal to w. The lower pulley must 
have no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope, 
which equals F, is /2.w  Then, the downward force on the upper pulley due to the rope is also w, and so the 
upper chain exerts a force w on the upper pulley, and the tension in the upper chain is also w. 
EVALUATE:   The pulley combination allows the worker to lift a weight w by applying a force of only /2.w  

 

 

Figure 5.62 
 

  
 5.63.  IDENTIFY:   The engine is hanging at rest, so its acceleration is zero which means that the forces on it must 

balance. We balance horizontal components and vertical components. 
SET UP:   In addition to the tensions in the four cables shown in the text, gravity also acts on the engine. Call  
+x horizontally to the right and +y vertically upward, and call θ  the angle that cable C makes with cable D. The 
mass of the engine is 409 kg and the tension TA in cable A is 722 N. 

  EXECUTE:   The tension in cable D is the only force balancing gravity on the engine, so TD = mg. In the  
x-direction, we have TA = TC sinθ , which gives TC = TA/sinθ  = (722 N)/(sin 37.1°) = 1197 N. In the  
y-direction, we have TB – TD – TC cosθ  = 0, which gives TB = (409 kg)(9.80 m/s2) + (1197 N)cos(37.1°)  

  = 4963 N. Rounding to 3 significant figures gives TB = 4960 N and TC = 1200 N. 
  EVALUATE:   The tension in cable B is greater than the weight of the engine because cable C has a 

downward component that B must also balance. 
 5.64.  IDENTIFY:   Apply Newton’s first law to the ball. Treat the ball as a particle. 

SET UP:   The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface. 
The normal force is perpendicular to the surface of the ramp. Use x- and y-axes that are horizontal and vertical. 
EXECUTE:   (a) The free-body diagram for the ball is given in Figure 5.64 (next page). The normal force 
has been replaced by its x and y components. 

(b) 0yFΣ =  gives cos35.0 0n w° − =  and n = mg
cos35.0°

= 1.22mg.  

(c) 0xFΣ =  gives sin35.0 0T n− ° =  and (1.22 )sin35.0 0.700 .T mg mg= ° =  
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EVALUATE:   Note that the normal force is greater than the weight, and increases without limit as the angle 
of the ramp increases toward 90 .°  The tension in the wire is tan ,w φ  where φ  is the angle of the ramp 
and T also increases without limit as 90 .φ → °  

 

 

Figure 5.64 
 
 5.65. IDENTIFY:   Apply Newton’s first law to the ball. The force of the wall on the ball and the force of the ball 

on the wall are related by Newton’s third law. 
SET UP:   The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall. 

To calculate the angle φ  that the wire makes with the wall, use Figure 5.65a: 

16.0 cmsin
46.0 cm

φ =  and   φ = 20.35°  

EXECUTE:   (a) The free-body diagram is shown in Figure 5.65b. Use the x and y coordinates shown in the 

figure. 0yFΣ =  gives cos 0T wφ − =  and T = w
cosφ

= (45.0 kg)(9.80 m/s2 )
cos20.35°

= 470 N  

(b) 0xFΣ =  gives sin 0.T nφ − =     n = (470 N)sin20.35° = 163 N.  By Newton’s third law, the force the 
ball exerts on the wall is 163 N, directed to the right. 

EVALUATE:   sin tan .
cos

w
n wφ φ

φ
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 As the angle φ  decreases (by increasing the length of the wire), 

T decreases and n decreases. 
 

 

Figure 5.65 
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 5.66. IDENTIFY:   In each rough patch, the kinetic friction (and hence the acceleration) is constant, but the 
constants are different in the two patches. Newton’s second law applies, as well as the constant-
acceleration kinematics formulas in each patch. 

  SET UP:   Choose the +y-axis upward and the +x-axis in the direction of the velocity. 
  EXECUTE:   (a) Find the velocity and time when the box is at x = 2.00 m. Newton’s second law tells us that 

n = mg and –fk = max which gives –µkmg = max; ax = –µkg = –(0.200)(9.80 m/s2) = –1.96 m/s2. Now use 
the kinematics equations involving vx. Using 2 2

0 02 ( )x x xv v a x x= + −  we get 

  2 2(4.00 m/s) 2( 1.96 m/s )(2.00 m)xv = + −  = 2.857 m/s. Now solve the equation vx = v0x + axt for t to get  
t = (2.857 m/s – 4.00 m/s)/(–1.96 m/s2) = 0.5834 s. 

  Now look at the motion in the section for which µk = 0.400: ax = –(0.400)(9.80 m/s2) = –3.92 m/s2, vx = 0,  
v0x = 2.857 m/s. Solving 2 2

0 02 ( )x x xv v a x x= + −  for x – x0 gives x – x0 = –(2.857 m/s)2/[2(–3.92 m/s2)] = 1.041 m.  
  The box is at the point x = 2.00 m + 1.041 m = 3.04 m. 
  Solving vx = v0x + axt for t gives t = (–2.857 m/s)/(–3.92 m/s2) = 0.7288 s. The total time is  
  0.5834 s + 0.7288 s = 1.31 s. 
  EVALUATE:   We cannot do this problem in a single process because the acceleration, although constant in 

each patch, is different in the two patches.  
 5.67. IDENTIFY:   Kinematics will give us the acceleration of the person, and Newton’s second law will give us 

the force (the target variable) that his arms exert on the rest of his body. 
SET UP:   Let the person’s weight be W, so 680 N.W =  Assume constant acceleration during the speeding 
up motion and assume that the body moves upward 15 cm in 0.50 s while speeding up. The constant-
acceleration kinematics formula 21

0 0 2y yy y v t a t− = +  and y yF maΣ =  apply. The free-body diagram for 

the person is given in Figure 5.67. F is the force exerted on him by his arms. 
 

 

Figure 5.67 
 

EXECUTE:   0 0,yv =  0 0 15 m,y y− = .  0 50 s.t = .  21
0 0 2y yy y v t a t− = +  gives 

20
2 2

2( ) 2(0 15 m) 1 2 m/s .
(0 50 s)y

y y
a

t
− .= = = .

.
 y yF maΣ =  gives .F W ma− =  ,W

m
g

=  so 

1 1 12 762 N.a
F W W

g
⎛ ⎞= + = . =⎜ ⎟
⎝ ⎠

 

EVALUATE:   The force is greater than his weight, which it must be if he is to accelerate upward. 
 5.68. IDENTIFY:   The force is time-dependent, so the acceleration is not constant. Therefore we must use 

calculus instead of the standard kinematics formulas. Newton’s second law applies.  
SET UP:   The acceleration is the time derivative of the velocity and .y yF maΣ =  

EXECUTE:  Differentiating the velocity gives ay = dvy /dt = 2.00 m/s2 + (1.20 m/s3)t. Find the time when  
vy = 9.00 m/s: 9.00 m/s = (2.00 m/s2)t + (0.600 m/s3)t2. Solving this quadratic for t and taking the positive 
value gives t = 2.549 s. At this time the acceleration is a = 2.00 m/s2 + (1.20 m/s3)(2.549 s) = 5.059 m/s2. 
Now apply Newton’s second law to the box, calling T the tension in the rope: T – mg = ma, which gives 
T = m(g + a) = (2.00 kg)(9.80 m/s2 + 5.059 m/s2) = 29.7 N. 
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EVALUATE:   The tension is greater than the weight of the box, which it must be to accelerate the box 
upward. As time goes on, the acceleration, and hence the tension, would increase. 

 5.69. IDENTIFY:   We know the forces on the box and want to find information about its position and velocity. 
Newton’s second law will give us the box’s acceleration. 

SET UP:   ( ) .y
y

F
a t

m

Σ
=  We can integrate the acceleration to find the velocity and the velocity to find the 

position. At an altitude of several hundred meters, the acceleration due to gravity is essentially the same as 
it is at the earth’s surface. 
EXECUTE:   Let +y be upward. Newton’s second law gives ,yT mg ma− =  so 

3 2( ) (12 0 m/s ) 9 8 m/s .ya t t= . − .  Integrating the acceleration gives 3 2 2( ) (6 00 m/s ) (9 8 m/s ) .yv t t t= . − .  

(a) (i) At 1 00 s,t = .  3 80 m/s.yv = − .  (ii) At 3 00 s,t = .  24 6 m/s.yv = .  

(b) Integrating the velocity gives 3 3 2 2
0 (2 00 m/s ) (4 9 m/s ) .y y t t− = . − .  0yv =  at 1 63 s.t = .  At 1 63 s,t = .  

0 8 71 m 13 07 m 4 36 m.y y− = . − . = − .  

(c) Setting 0 0y y− =  and solving for t gives 2 45 s.t = .  

EVALUATE:   The box accelerates and initially moves downward until the tension exceeds the weight of the 
box. Once the tension exceeds the weight, the box will begin to accelerate upward and will eventually 
move upward, as we saw in part (b). 

 5.70. IDENTIFY:   We can use the standard kinematics formulas because the force (and hence the acceleration) is 
constant, and we can use Newton’s second law to find the force needed to cause that acceleration. Kinetic 
friction, not static friction, is acting. 

SET UP:   From kinematics, we have 2
0 0

1
2x xx x v t a t− = +  and x xF maΣ =  applies. Forces perpendicular 

to the ramp balance. The force of kinetic friction is k k cos .f mgµ θ=  

EXECUTE:   Call +x upward along the surface of the ramp. Kinematics gives 

  
ax =

2(x − x0 )

t2
= 2(8.00 m)

(6.00 s)2
= 0.4444 m/s2.  x xF maΣ =  gives ksin cos .xF mg mg maθ µ θ− − =  Solving 

for F and putting in the numbers for this problem gives 

  F = m(ax + g sinθ + µk mg cosθ) = (5.00 kg)(0.4444 m/s2 + 4.9 m/s2 + 3.395 m/s2 ) = 43.7 N.  

EVALUTE:   As long as the box is moving, only kinetic friction, not static friction, acts on it. The force is 
less than the weight of the box because only part of the box’s weight acts down the ramp. We should also 
investigate if the force is great enough to start the box moving in the first place. In that case, static friction 
would have it maximum value, so fs = µsn. The force F in this would be F = µsmgcos(30°) + mgsin(30°) = 
mg(µscos30° + sin30°) = (5.00 kg)(9.80 m/s2)[(0.43)(cos30°) + sin30°] = 42.7 N. Since the force we found 
is 43.7 N, it is great enough to overcome static friction and cause the box to move.  

 5.71. IDENTIFY:   The system of boxes is accelerating, so we apply Newton’s second law to each box. The friction is 
kinetic friction. We can use the known acceleration to find the tension and the mass of the second box. 
SET UP:   The force of friction is k k ,  x xf µ n F ma= Σ =  applies to each box, and the forces perpendicular 
to the surface balance. 
EXECUTE:   (a) Call the is-axx+  along the surface. For the 5 kg block, the vertical forces balance, so 

sin53 1 0,n F mg+ . ° − =  which gives 49 0 N 31 99 N 17 01 N.n = . − . = .  The force of kinetic friction is 

k k 5 104 N.f nµ= = .  Applying Newton’s second law along the surface gives kcos53 1 .F T f ma. ° − − =  

Solving for T gives kcos53 1 24 02 N 5 10 N 7 50 N 11 4 N.T F f ma= . ° − − = . − . − . = .  

(b) For the second box, .kT f ma− =  k .T mg maµ− =  Solving for m gives 

2 2
k

11 42 N 2 57 kg.
(0 3)(9 8 m/s ) 1 5 m/s

T
m

g aµ
.= = = .

+ . . + .
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EVALUATE:   The normal force for box B is less than its weight due to the upward pull, but the normal 
force for box A is equal to its weight because the rope pulls horizontally on A. 

 5.72. IDENTIFY:   The horizontal force has a component up the ramp and a component perpendicular to the surface 
of the ramp. The upward component causes the upward acceleration and the perpendicular component affects 
the normal force on the box. Newton’s second law applies. The forces perpendicular to the surface balance. 
SET UP:   Balance forces perpendicular to the ramp: cos sin 0.n mg Fθ θ− − =  Applying Newton’s second 
law parallel to the ramp surface gives kcos sin .F f mg maθ θ− − =  

EXECUTE:   Using the above equations gives cos sin .n mg Fθ θ= +  The force of friction is k k ,f µ n=  so 

k k ( cos sin ).f mg Fµ θ θ= +  k kcos cos sin sin .F mg F mg maθ µ θ µ θ θ− − − =  Solving for F gives 

k

k

( cos sin )
.

cos sin
m a g g

F
µ θ θ

θ µ θ
+ +

=
−

 Putting in the numbers, we get 

F = (6.00 kg)[3.60 m/s2 + (0.30)(9.80 m/s2 )cos37.0° + (9.80 m/s2 )sin37.0°]
cos37.0° − (0.30)sin37.0°

= 115 N  

EVALUATE:   Even though the push is horizontal, it can cause a vertical acceleration because it causes the 
normal force to have a vertical component greater than the vertical component of the box’s weight. 

 5.73. IDENTIFY:   Newton’s second law applies to the box.  
SET UP:     fk =  µkn,  ΣFx = max , and ΣFy = may  apply to the box. Take the +x-axis down the surface of 

the ramp and the +y-axis perpendicular to the surface upward. 
EXECUTE:   ΣFy = may  gives n + Fsin(33.0°) – mgcos(33.0°) = 0, which gives n = 51.59 N. The friction 

force is   fk =  µkn  = (0.300)(51.59 N) = 15.48 N. Parallel to the surface we have 
 
ΣFx = max  which gives 

Fcos(33.0°) + mgsin(33.0°) – fk = ma, which gives a = 6.129 m/s2. Finally the velocity formula gives us  
vx = v0x + axt = 0 + (6.129 m/s2)(2.00 s) = 12.3 m/s. 
EVALUATE:   Even though F is horizontal and mg is vertical, it is best to choose the axes as we have done, 
rather than horizontal-vertical, because the acceleration is then in the x-direction. Taking x and y to be 
horizontal-vertical would give the acceleration x- and y-components, which would complicate the solution. 

 5.74. IDENTIFY:   This is a system having constant acceleration, so we can use the standard kinematics formulas 
as well as Newton’s second law to find the unknown mass 2.m  
SET UP:   Newton’s second law applies to each block. The standard kinematics formulas can be used to 
find the acceleration because the acceleration is constant. The normal force on 1m  is 1 cos ,m g α  so the 
force of friction on it is k k 1 cos .f m gµ α=  
EXECUTE:   Standard kinematics gives the acceleration of the system to be 

20
2 2

2( ) 2(12 0 m)
2 667 m/s . For

(3 00 s)y
y y

a
t
− .= = = .

. 1 1, cos 117 7 N,m n m g α= = .  so the friction force on 1m  is 

k (0 40)(117 7 N) 47 08 N.f = . . = .  Applying Newton’s second law to 1m  gives k 1 1sin ,T f m g m aα− − =  
where T is the tension in the cord. Solving for T gives 

k 1 1sin 47 08 N 156 7 N 53 34 N 257 1 N.T f m g m aα= + + = . + . + . = .  Newton’s second law for 2m  gives 

2 2 ,m g T m a− =  so 2 2 2
257 1 N 36 0 kg.

9 8 m/s 2 667 m/s
T

m
g a

.= = = .
− . − .

 

EVALUATE:   We could treat these blocks as a two-block system. Newton’s second law would then give 
2 1 k 1 1 2sin cos ( ) ,m g m g m g m m aα µ α− − = +  which gives the same result as above. 

 5.75. IDENTIFY:   Newton’s second law applies, as do the constant-acceleration kinematics equations. 
SET UP:   Call the +x-axis horizontal and to the right and the +y-axis vertically upward. y yF maΣ =  and 

x xF maΣ =  both apply to the book. 
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EXECUTE:   The book has no horizontal motion, so x xF maΣ =  = 0, which gives us the normal force n: 
n = Fcos(60.0°). The kinetic friction force is fk = µkn = (0.300)(96.0 N)(cos 60.0°) = 14.4 N. In the vertical 
direction, we have ,y yF maΣ =  which gives Fsin(60.0°) – mg – fk = ma. Solving for a gives us 
a = [(96.0 N)(sin 60.0°) – 49.0 N – 14.4 N]/(5.00 kg) = 3.948 m/s2 upward. Now the velocity formula 

2 2
0 02 ( )y y yv v a y y= + −  gives 22(3.948 m/s )(0.400 m)yv =  = 1.78 m/s. 

EVALUATE:   Only the upward component of the force F makes the book accelerate upward, while the 
horizontal component of T is the magnitude of the normal force. 

 5.76. IDENTIFY:   The system is in equilibrium. Apply Newton’s first law to block A, to the hanging weight and 
to the knot where the cords meet. Target variables are the two forces. 
(a) SET UP:   The free-body diagram for the hanging block is given in Figure 5.76a. 

 

 EXECUTE:    
y yF maΣ =  

3 0T w− =  

3 12 0 NT = .  

Figure 5.76a   
 

SET UP:   The free-body diagram for the knot is given in Figure 5.76b. 
 

 EXECUTE:    
y yF maΣ =  

2 3sin 45 0 0T T. ° − =  

3
2

12 0 N
sin 45 0 sin 45 0

T
T

.= =
. ° . °

 

2 17 0 NT = .  

Figure 5.76b   
 

x xF maΣ =  

2 1cos45 0 0T T. ° − =  

1 2 cos45 0 12 0 NT T= . ° = .  
SET UP:   The free-body diagram for block A is given in Figure 5.76c. 

 

 EXECUTE:    
x xF maΣ =  

1 s 0T f− =  

s 1 12 0 Nf T= = .  

Figure 5.76c   
 

EVALUATE:   Also can apply y yF maΣ =  to this block: 

0An w− =  
60 0 NAn w= = .  

Then s (0 25)(60 0 N) 15 0 N;nµ = . . = .  this is the maximum possible value for the static friction force.  
We see that s s ;f nµ<  for this value of w the static friction force can hold the blocks in place. 
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(b) SET UP:   We have all the same free-body diagrams and force equations as in part (a) but now the static 
friction force has its largest possible value, s s 15 0 N.f nµ= = .  Then 1 s 15 0 N.T f= = .  

EXECUTE:   From the equations for the forces on the knot 

2 1cos45 0 0T T. ° − =  implies 2 1
15 0 N/ cos45 0 21 2 N

cos45 0
.= . ° = = .

. °
T T  

2 3sin 45 0 0T T. ° − =  implies 3 2 sin 45 0 (21 2 N)sin 45 0 15 0 NT T= . ° = . . ° = .  

And finally 3 0T w− =  implies 3 15 0 N.w T= = .  

EVALUATE:   Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0)  and w  is 
larger by this same ratio. 

 5.77. IDENTIFY:   Apply mΣ =F a
G G

 to each block. 
SET UP:   Constant speed means 0.a =  When the blocks are moving, the friction force is kf  and when 
they are at rest, the friction force is s.f  
EXECUTE:   (a) The tension in the cord must be 2m g  in order that the hanging block move at constant 
speed. This tension must overcome friction and the component of the gravitational force along the incline, 
so 2 1 k 1( sin cos )m g m g m gα µ α= +  and 2 1 k(sin cos ).m m α µ α= +  
(b) In this case, the friction force acts in the same direction as the tension on the block of mass 1,m  so 

2 1 k 1( sin cos ),α µ α= −m g m g m g  or 2 1 k(sin cos ).α µ α= −m m  
(c) Similar to the analysis of parts (a) and (b), the largest 2m  could be is 1 s(sin cos )α µ α+m  and the 
smallest 2m  could be is 1 s(sin cos ).α µ α−m  
EVALUATE:   In parts (a) and (b) the friction force changes direction when the direction of the motion of 

1m  changes. In part (c), for the largest 2m  the static friction force on 1m is directed down the incline and 
for the smallest 2m the static friction force on 1m  is directed up the incline. 

 5.78. IDENTIFY:   The net force at any time is net .F ma=  
SET UP:   At 0,t =  62 .a g=  The maximum acceleration is 140g at 1 2 ms.t = .  

EXECUTE:   (a) 9 2 4
net 62 62(210 10  kg)(9 80 m/s ) 1 3 10  N.F ma mg − −= = = × . = . ×  This force is 62 times the 

flea’s weight. 
(b) 4

net 140 2 9 10  N,F mg −= = . ×  at 1.2 ms.t =  
(c) Since the initial speed is zero, the maximum speed is the area under the xa t−  graph. This gives 1.2 m/s. 
EVALUATE:   a is much larger than g and the net external force is much larger than the flea’s weight. 

 5.79. IDENTIFY:   Apply mΣ =F a
G G  to each block. Use Newton’s third law to relate forces on A and on B. 

SET UP:   Constant speed means 0.a =  
EXECUTE:   (a) Treat A and B as a single object of weight w = wA + wB = 1.20 N + 3.60 N = 4.80 N. 
 The free-body diagram for this combined object is given in Figure 5.79a. y yF maΣ =  gives 

  n = w = 4.80 N.    fk = µkn = (0.300)(4.80 N) = 1.44 N.  x xF maΣ =  gives F = fk = 1.44 N.  

(b) The free-body force diagrams for blocks A and B are given in Figure 5.79b. n and kf  are the normal and 
friction forces applied to block B by the tabletop and are the same as in part (a). kBf  is the friction force that 
A applies to B. It is to the right because the force from A opposes the motion of B. Bn  is the downward force 
that A exerts on B. kAf  is the friction force that B applies to A. It is to the left because block B wants A to 
move with it. An  is the normal force that block B exerts on A. By Newton’s third law, k kB Af f=  and these 
forces are in opposite directions. Also, A Bn n=  and these forces are in opposite directions. 

y yF maΣ =  for block A gives nA = wA = 1.20 N,  so nB = 1.20 N.  

  fkA = µknA = (0.300)(1.20 N) = 0.360 N,  and fkB = 0.360 N.  
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x xF maΣ =  for block A gives   T = fkA = 0.360 N.  

x xF maΣ =  for block B gives   F = fkB + fk = 0.360 N + 1.44 N = 1.80 N.  

EVALUATE:   In part (a) block A is at rest with respect to B and it has zero acceleration. There is no 
horizontal force on A besides friction, and the friction force on A is zero. A larger force F is needed in part 
(b), because of the friction force between the two blocks. 

 

 

Figure 5.79 
 

   
 5.80. IDENTIFY:   Apply mΣ =F a

G G
 to the passenger to find the maximum allowed acceleration. Then use a 

constant acceleration equation to find the maximum speed. 
SET UP:   The free-body diagram for the passenger is given in Figure 5.80. 
EXECUTE:   y yF ma  Σ =  gives .n mg ma− =  1 6 ,n mg= .  so 20 60 5 88 m/s .a g= . = .   

2
0 03 0 m, 5 88 m/s , 0− = . = .   =y yy y a v  so 2 2

0 02 ( )y y yv v a y y= + −  gives 5 9 m/s.= .  yv  

EVALUATE:    A larger final speed would require a larger value of ,ya  which would mean a larger normal 
force on the person. 

 

 

Figure 5.80 
 
 

 5.81. IDENTIFY:   / .=a dv dt  Apply mΣ =F a
G G

 to yourself. 
SET UP:   The reading of the scale is equal to the normal force the scale applies to you. 

EXECUTE:   The elevator’s acceleration is 2 3 2 3( ) 3 0 m/s 2(0 20 m/s ) 3 0 m/s (0 40 m/s ) .= = .  + .  = .  + .  dv t
a t t

dt
 

At 2 3 24 0 s, 3 0 m/s (0 40 m/s )(4 0 s) 4 6 m/s .= . = . + .  . = .t a  From Newton’s second law, the net force on you 

is net scaleF F w ma= − =  and 2 2
scale (64 kg)(9 8 m/s ) (64 kg)(4 6 m/s ) 920 N.= + = .  + . =F w ma  

  EVALUATE:   a increases with time, so the scale reading is increasing.  
 5.82. IDENTIFY:   Apply mΣ =F a

G G
 to the hammer. Since the hammer is at rest relative to the bus, its acceleration 

equals that of the bus. 
SET UP:   The free-body diagram for the hammer is given in Figure 5.82. 



Applying Newton’s Laws   5-41 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EXECUTE:   
  
ΣFy = may  gives T sin56.0° − mg = 0 so T sin56.0° = mg.  ΣFx = max  gives T cos56.0° = ma.  

Divide the second equation by the first: a
g

= 1
tan56.0°

 and a = 6.61 m/s2. 

EVALUATE:   When the acceleration increases, the angle between the rope and the ceiling of the bus 
decreases, and the angle the rope makes with the vertical increases. 

 

 

Figure 5.82 
 

 5.83. IDENTIFY:   First calculate the maximum acceleration that the static friction force can give to the case. 
Apply mΣ =F a

G G
 to the case. 

(a) SET UP:   The static friction force is to the right in Figure 5.83a (northward) since it tries to make the 
case move with the truck. The maximum value it can have is s s .f Nµ=  

 

EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  

s s sf n mgµ µ= =  

Figure 5.83a   
  

.x xF maΣ =  s .f ma=  s .mg maµ =  2 2
s (0 30)(9 80 m/s ) 2 94 m/s .a gµ= = . . = .  The truck’s acceleration is 

less than this so the case doesn’t slip relative to the truck; the case’s acceleration is 22 20 m/sa = .  
(northward). Then 2

s (40 0 kg)(2 20 m/s ) 88 0 N,f ma= = . . = .  northward. 
(b) IDENTIFY:   Now the acceleration of the truck is greater than the acceleration that static friction can 
give the case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction 
force still tries to keep the case moving with the truck, so the acceleration of the case and the friction force 
are both southward. The free-body diagram is sketched in Figure 5.83b. 
SET UP:    

 

EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  

2
k k (0 20)(40 0 kg)(9 80 m/s )f mgµ= = . . .  

k 78 N,f =  southward 

Figure 5.83b   
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EVALUATE:   kf ma=  implies 2k 78 N 2 0 m/s .
40 0 kg

= = = .
.

f
a

m
 The magnitude of the acceleration of the 

case is less than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b) 
the friction is in the direction of the motion and accelerates the case. Friction opposes relative motion 
between two surfaces in contact. 

 5.84. IDENTIFY:   Apply Newton’s first law to the rope. Let 1m  be the mass of that part of the rope that is on the 
table, and let 2m  be the mass of that part of the rope that is hanging over the edge. 1 2( ,m m m+ =  the total 
mass of the rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the 
length of the rope. Let T be the tension in the rope at that point that is at the edge of the table. 
SET UP:   The free-body diagram for the hanging section of the rope is given in Figure 5.84a. 

 

EXECUTE:    
y yF maΣ =  

2 0T m g− =  

2T m g=  

Figure 5.84a   
 
 

SET UP:   The free-body diagram for that part of the rope that is on the table is given in Figure 5.84b. 
 

EXECUTE:    
y yF maΣ =  

1 0n m g− =  

1n m g=  

Figure 5.84b   
 

When the maximum amount of rope hangs over the edge the static friction has its maximum value: 
s s s 1f n m gµ µ= =  

x xF maΣ =  

s 0T f− =  

s 1T m gµ=  
Use the first equation to replace T: 

2 s 1m g m gµ=  

2 s 1m mµ=  

The fraction that hangs over is 2 s 1 s

1 s 1 s
.

1
m m
m m m

µ µ
µ µ

= =
+ +

 

EVALUATE:   As s 0,µ →  the fraction goes to zero and as s ,µ → ∞  the fraction goes to unity. 

 5.85. IDENTIFY:   Apply mΣ =F a
G G  to the point where the three wires join and also to one of the balls. By 

symmetry the tension in each of the 35.0 cm wires is the same. 
SET UP:   The geometry of the situation is sketched in Figure 5.85a. The angle φ  that each wire makes 

with the vertical is given by 12 5 cmsin
47 5 cm

φ .=
.

 and 15 26 .φ = . °  Let AT  be the tension in the vertical wire 

and let BT  be the tension in each of the other two wires. Neglect the weight of the wires. The free-body 
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diagram for the left-hand ball is given in Figure 5.85b and for the point where the wires join in Figure 5.85c. 
n is the force one ball exerts on the other. 
EXECUTE:   (a) y yF maΣ =  applied to the ball gives cos 0.BT mgφ − =  

2(15 0 kg)(9 80 m/s ) 152 N.
cos cos15 26B
mg

T
φ

. .= = =
. °

 Then y yF maΣ =  applied in Figure 5.85c gives 

2 cos 0A BT T φ− =  and 2(152 N)cos 294 N.AT φ= =  
(b) x xF maΣ =  applied to the ball gives sin 0Bn T φ− =  and (152 N)sin15 26 40 0 N.n = . ° = .  
EVALUATE:   AT  equals the total weight of the two balls. 

 

 
Figure 5.85 

 
 

 5.86. IDENTIFY:   Apply mΣ =F a
G G  to the car to calculate its acceleration. Then use a constant acceleration 

equation to find the initial speed. 
SET UP:   Let x+  be in the direction of the car’s initial velocity. The friction force kf is then in the 

-direction.x−  192 ft 58 52 m.= .  
EXECUTE:   n mg=  and k k .f mgµ=  x xF maΣ =  gives k xmg maµ− =  and 

2 2
k (0 750)(9 80 m/s ) 7 35 m/s .xa gµ= − = − . . = − .  0xv =  (stops), 0 58 52 m.x x− = .  2 2

0 02 ( )x x xv v a x x= + −  

gives 2
0 02 ( ) 2( 7 35 m/s )(58 52 m) 29 3 m/s 65 5 mi/h.= − − = − − . . = . = .x xv a x x  He was guilty. 

  EVALUATE:   
2 2 2

0 0
0 .

2 2
x x x

x x

v v v
x x

a a
−− = = −  If his initial speed had been 45 mi/h he would have stopped in 

245 mi/h (192 ft) 91 ft.
65 5 mi/h

⎛ ⎞ =⎜ ⎟.⎝ ⎠
  

 5.87. IDENTIFY:   Apply mΣ =F a
G G  to each block. Forces between the blocks are related by Newton’s third law. 

The target variable is the force F. Block B is pulled to the left at constant speed, so block A moves to the 
right at constant speed and 0a =  for each block. 

SET UP:   The free-body diagram for block A is given in Figure 5.87a. BAn  is the normal force that B 
exerts on A. kBA BAf nµ=  is the kinetic friction force that B exerts on A. Block A moves to the right 
relative to B, and BAf  opposes this motion, so BAf  is to the left. Note also that F acts just on B, not on A. 
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EXECUTE:    
y yF maΣ =  

0BA An w− =  
1 90 NBAn = .  

k (0 30)(1 90 N) 0 57 NBA BAf nµ= = . . = .  

Figure 5.87a   
 

.x xF maΣ =  0.BAT f− =  0 57 N.BAT f= = .  
SET UP:   The free-body diagram for block B is given in Figure 5.87b. 

 

 

Figure 5.87b 
 

EXECUTE:   ABn  is the normal force that block A exerts on block B. By Newton’s third law ABn  and BAn  
are equal in magnitude and opposite in direction, so 1 90 N.ABn = .  ABf  is the kinetic friction force that A 
exerts on B. Block B moves to the left relative to A and ABf  opposes this motion, so ABf  is to the right. 

  f AB = µknAB = (0.30)(1.90 N) = 0.57 N.  n and kf  are the normal and friction force exerted by the floor 

on block B; k k .f nµ=  Note that block B moves to the left relative to the floor and kf  opposes this motion, 
so kf  is to the right. 

:y yF maΣ =  0.B ABn w n− − =  4 20 N 1 90 N 6 10 N.B ABn w n= + = . + . = .  Then 

k k (0 30)(6 10 N) 1 83 N.f nµ= = . . = .  :x xF maΣ =  k 0.ABf T f F+ + − =  

k 0 57 N 0 57 N 1 83 N 3 0 N.ABF T f f= + + = . + . + . = .  

EVALUATE:   Note that ABf  and BAf  are a third law action-reaction pair, so they must be equal in 
magnitude and opposite in direction and this is indeed what our calculation gives. 

 5.88. IDENTIFY:   Apply mΣ =F a
G G  to the box. Compare the acceleration of the box to the acceleration of the 

truck and use constant acceleration equations to describe the motion. 
SET UP:   Both objects have acceleration in the same direction; take this to be the -direction.+x  
EXECUTE:   If the box were to remain at rest relative to the truck, the friction force would need to cause an 
acceleration of 22 20 m/s ;.   however, the maximum acceleration possible due to static friction is 

2 2(0 19)(9 80 m/s ) 1 86 m/s ,. .  = .   and so the box will move relative to the truck; the acceleration of the box 

would be 2 2
k (0 15)(9 80 m/s ) 1 47 m/s .µ = . .  = .  g  The difference between the distance the truck moves and 

the distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time 

2 2
truck box

2 2(1 80 m) 2 221 s.
(2 20 m/s 1 47 m/s )

∆ .= = = .
− . − .  
x

t
a a

 

In this time, the truck moves 2 2 21 1
truck2 2 (2 20 m/s )(2 221 s) 5 43 m.a t = . . = .  
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EVALUATE:   To prevent the box from sliding off the truck the coefficient of static friction would have to 
be 2

s (2 20 m/s )/ 0 224.gµ = . = .  
 5.89. IDENTIFY:   Apply mΣ =F a

G G  to each block. Parts (a) and (b) will be done together. 
 

 

Figure 5.89a 
 

Note that each block has the same magnitude of acceleration, but in different directions. For each block let 
the direction of Ga  be a positive coordinate direction. 
SET UP:   The free-body diagram for block A is given in Figure 5.89b. 

 

EXECUTE:    
y yF maΣ =  

AB A AT m g m a− =  
( )AB AT m a g= +  

2 24 00 kg(2 00 m/s 9 80 m/s ) 47 2 NABT = . . + . = .  

Figure 5.89b   
 

SET UP:   The free-body diagram for block B is given in Figure 5.89c. 
 

EXECUTE:    
y yF maΣ =  

0Bn m g− =  

Bn m g=  

Figure 5.89c   
 

2
k k k (0 25)(12 0 kg)(9 80 m/s ) 29 4 NBf n m gµ µ= = = . . . = .  

x xF maΣ =  

kBC AB BT T f m a− − =  
2

k 47 2 N 29 4 N (12 0 kg)(2 00 m/s )BC AB BT T f m a= + + = . + . + . .  

100 6 NBCT = .  

SET UP:   The free-body diagram for block C is sketched in Figure 5.89d (next page). 
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EXECUTE:    
y yF maΣ =  

C BC Cm g T m a− =  
( )C BCm g a T− =  

2 2
100 6 N 12 9 kg

9 80 m 2 00 m/s
BC

C
T

m
g a /s

.= = = .
− . − .

 

Figure 5.89d   
 

EVALUATE:   If all three blocks are considered together as a single object and mΣ =F a
G G  is applied to this 

combined object, k ( ) .C A B A B Cm g m g m g m m m aµ− − = + +  Using the values for k ,µ Am  and Bm  given 

in the problem and the mass Cm  we calculated, this equation gives 22 00 m/s ,= .a  which checks. 

 5.90. IDENTIFY:   Apply mΣ =F a
G G  to each block. They have the same magnitude of acceleration, a. 

SET UP:   Consider positive accelerations to be to the right (up and to the right for the left-hand block, 
down and to the right for the right-hand block). 
EXECUTE:   (a) The forces along the inclines and the accelerations are related by 

(100 kg) sin30.0 (100 kg)  and (50 kg) sin53.1 (50 kg) ,T g a g T a− ° = ° − =  where T is the tension in the 
cord and a the mutual magnitude of acceleration. Adding these relations, 
(50 kg sin53.1 100 kg sin30.0 ) (50 kg 100 kg) ,  or 0 067 .g a a g° − ° = + = − .  Since a comes out negative, the 
blocks will slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so 
that positive accelerations were to the left, a would be 0 067 .g+ .  

(b) 2 20 067(9 80 m/s ) 0 658 m/s .= . .  = .  a  
(c) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of 
the above relations involving T yields 424 N. 
EVALUATE:   For part (a) we could have compared sinθmg for each block to determine which direction 
the system would move. 

 5.91. IDENTIFY:   Let the tensions in the ropes be 1T  and 2.T  
 

 
Figure 5.91a 

 

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the 
acceleration of that block. 
SET UP:   The free-body diagram for 1m  is given in Figure 5.91b. 
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EXECUTE:    
x xF maΣ =  

1 1 1T m a=  

Figure 5.91b   
 

SET UP:   The free-body diagram for 2m  is given in Figure 5.91c. 
 

EXECUTE:    
y yF maΣ =  

2 2 2 2m g T m a− =  

Figure 5.91c   
 

This gives us two equations, but there are four unknowns ( 1 2 1, ,T T a and 2a ) so two more equations are required. 
SET UP:   The free-body diagram for the moveable pulley (mass m) is given in Figure 5.91d. 

 

EXECUTE:    
y yF maΣ =  

2 12mg T T ma+ − =  

Figure 5.91d   
 

But our pulleys have negligible mass, so 0mg ma= =  and 2 12 .T T=  Combine these three equations to 
eliminate 1T  and 2:T  2 2 2 2m g T m a− =  gives 2 1 2 22 .m g T m a− =  And then with 1 1 1T m a=  we have 

2 1 1 2 22 .m g m a m a− =  
SET UP:   There are still two unknowns, 1a  and 2a .  But the accelerations 1a  and 2a  are related. In any 
time interval, if 1m  moves to the right a distance d, then in the same time 2m  moves downward a distance 

/2.d  One of the constant acceleration kinematic equations says 21
0 0 2 ,x xx x v t a t− = +  so if 2m  moves half 

the distance it must have half the acceleration of 1:m  2 1/2,=a a  or 1 22 .a a=  
EXECUTE:   This is the additional equation we need. Use it in the previous equation and get 

2 1 2 2 22 (2 ) .m g m a m a− =  

2 1 2 2(4 )a m m m g+ =  

2
2

1 24
m g

a
m m

=
+

 and 2
1 2

1 2

22 .
4

m g
a a

m m
= =

+
 

EVALUATE:   If 2 0m →  or 1 ,m → ∞  1 2 0.a a= =  If 2 1,m m�  2a g=  and 1 2 .a g=  

 5.92. IDENTIFY:   Apply mΣ =F a
G G

 to block B, to block A and B as a composite object, and to block C. If A and 
B slide together all three blocks have the same magnitude of acceleration. 
SET UP:   If A and B don’t slip, the friction between them is static. The free-body diagrams for block B, for 
blocks A and B, and for C are given in Figure 5.92. Block C accelerates downward and A and B accelerate 
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to the right. In each case take a positive coordinate direction to be in the direction of the acceleration. Since 
block A moves to the right, the friction force sf  on block B is to the right, to prevent relative motion 
between the two blocks. When C has its largest mass, sf  has its largest value: s s .f nµ=  
EXECUTE:   x xF maΣ =  applied to the block B gives s .Bf m a=  Bn m g=  and s s .Bf m gµ=  s B Bm g m aµ =  and 

s .a gµ=  x xF maΣ =  applied to blocks A B+  gives s .AB ABT m a m gµ= =  y yF maΣ =  applied to block C gives 

.C Cm g T m a− =  s s .C AB Cm g m g m gµ µ− =  
s

s

0 750(5 00 kg 8 00 kg) 39 0 kg.
1 1 0 750

AB
C

m
m

µ
µ

.⎛ ⎞= = . + . = .⎜ ⎟− − .⎝ ⎠
 

EVALUATE:   With no friction from the tabletop, the system accelerates no matter how small the mass of C is. 
If Cm  is less than 39.0 kg, the friction force that A exerts on B is less than s .nµ  If Cm  is greater than 39.0 kg, 
blocks C and A have a larger acceleration than friction can give to block B, and A accelerates out from under B. 

 

 
Figure 5.92 

 

 5.93. IDENTIFY:   Apply the method of Exercise 5.15 to calculate the acceleration of each object. Then apply 
constant acceleration equations to the motion of the 2.00 kg object. 
SET UP:   After the 5.00 kg object reaches the floor, the 2.00 kg object is in free fall, with downward 
acceleration g. 

EXECUTE:   The 2.00-kg object will accelerate upward at 5.00 kg 2.00 kg 3 /7,
5.00 kg 2.00 kg

− =
+

g g  and the 5.00-kg 

object will accelerate downward at 3 /7.g  Let the initial height above the ground be 0.h  When the large 
object hits the ground, the small object will be at a height 02 ,h  and moving upward with a speed given by 

2
0 0 02 6 /7.= =v ah gh  The small object will continue to rise a distance 2

0 0/2 3 /7,=v g h  and so the maximum 
height reached will be 0 0 02 3 /7 17 /7 1 46 m+ = = .h h h above the floor , which is 0.860 m above its initial 
height. 
EVALUATE:   The small object is 1.20 m above the floor when the large object strikes the floor, and it rises 
an additional 0.26 m after that. 

 5.94. IDENTIFY:   Apply mΣ =F a
G G  to the box. 

SET UP:   The box has an upward acceleration of 21 90 m/s .a = .  
EXECUTE:   The floor exerts an upward force n on the box, obtained from ,n mg ma− =  or ( ).n m a g= +  
The friction force that needs to be balanced is 

2 2
k k ( ) (0 32)(36 0 kg)(1 90 m/s 9 80 m/s ) 135 N.n m a gµ µ= +  = . . . + . =  

EVALUATE:   If the elevator were not accelerating the normal force would be n mg= and the friction force 
that would have to be overcome would be 113 N. The upward acceleration increases the normal force and 
that increases the friction force. 

 5.95. IDENTIFY:   Apply mΣ =F a
G G  to the block. The cart and the block have the same acceleration. The normal 

force exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the 
right. The friction force on the block is directed so as to hold the block up against the downward pull of 
gravity. We want to calculate the minimum a required, so take static friction to have its maximum value, 

s s .f nµ=  
SET UP:   The free-body diagram for the block is given in Figure 5.95. 
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EXECUTE:    
x xF maΣ =  

n ma=  

s s sf n maµ µ= =  

Figure 5.95   
 

:y yF maΣ =  s 0f mg− =  

s ,ma mgµ =  so s/ .a g µ=  
EVALUATE:   An observer on the cart sees the block pinned there, with no reason for a horizontal force on 
it because the block is at rest relative to the cart. Therefore, such an observer concludes that 0n =  and thus 

s 0,f =  and he doesn’t understand what holds the block up against the downward force of gravity. The 

reason for this difficulty is that mΣ =F a
G G  does not apply in a coordinate frame attached to the cart. This 

reference frame is accelerated, and hence not inertial. The smaller sµ  is, the larger a must be to keep the 
block pinned against the front of the cart. 

 5.96. IDENTIFY:   Apply mΣ =F a
G G to each block. 

SET UP:   Use coordinates where x+  is directed down the incline. 
EXECUTE:   (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be 
pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have 
the same acceleration. For the smaller block, (4 00 kg) (sin30 (0 25)cos30 ) (4 00 kg) ,g T a. ° − . ° − = .  or 
11 11 N (4 00 kg) ,T a. − = .  and similarly for the larger, 15 44 N (8 00 kg) .T a. + = .  Adding these two 

relations, 26 55 N (12 00 kg) ,. = . a 22 21m/s .a = .   
(b) Substitution into either of the above relations gives 2 27 N.T = .  

(c) The string will be slack. The 4.00-kg block will have 22 78 m/sa = .   and the 8.00-kg block will have 
21 93 m/s ,a = .   until the 4.00-kg block overtakes the 8.00-kg block and collides with it. 

EVALUATE:   If the string is cut the acceleration of each block will be independent of the mass of that 
block and will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block 
would have a smaller acceleration even though it has a larger mass, since it has a larger k.µ  

 5.97. IDENTIFY:   Apply mΣ =F a
G G  to the block and to the plank. 

SET UP:   Both objects have 0.a =  
EXECUTE:   Let Bn  be the normal force between the plank and the block and An  be the normal force 
between the block and the incline. Then, cosBn w θ=  and 3 cos 4 cosA Bn n w wθ θ= + = .  The net 
frictional force on the block is k k( ) 5 cos .A Bn n wµ µ θ+ =  To move at constant speed, this must balance the 
component of the block’s weight along the incline, so k3 sin 5 cos ,w wθ µ θ=  and 

3 3
k 5 5tan tan37 0 452.µ θ= = ° = .  

EVALUATE:   In the absence of the plank the block slides down at constant speed when the slope angle and 
coefficient of friction are related by ktan .θ µ=  For 36 9 ,θ = . °  k 0 75.µ = .  A smaller kµ  is needed when 
the plank is present because the plank provides an additional friction force. 

 5.98. IDENTIFY:   Apply Newton’s second law to Jack in the Ferris wheel.  
SET UP:   mΣ =F a

G G  and Jack’s acceleration is arad = v2/R, and v = 2πR/T. At the highest point, the normal 
force that the chair exerts on Jack is ¼ of his weight, or 0.25mg. Take +y downward. 
EXECUTE:   y yF maΣ =  gives mg – n = mv2/R. mg – 0.25mg = mv2/R, so v2/R = 0.75g. Using T = 2πR/T, 
we get v2/R = 4π2R/T2. Therefore 4π2R/T2 = 0.750g. T = 1/(0.100 rev/s) = 10.0 s/rev, so 
R = (0.750g)T2/(4π2) = (0.750)(9.80 m/s2)[(10.0 s)/(2π)]2 = 18.6 m. 
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EVALUATE:   This Ferris wheel would be about 120 ft in diameter, which is certainly large but not 
impossible. 

 5.99. IDENTIFY:   Apply mΣ =F a
G G  to the automobile. 

SET UP:   The “correct” banking angle is for zero friction and is given by 
2
0tan ,v

gR
β =  as derived in the 

text. Use coordinates that are vertical and horizontal, since the acceleration is horizontal. 
EXECUTE:   For speeds larger than 0,v  a frictional force is needed to keep the car from skidding. In this 
case, the inward force will consist of a part due to the normal force n and the friction force 

rad;   sin cos .f n f maβ β+ =  The normal and friction forces both have vertical components; since there is 

no vertical acceleration,  cos  sinn f mgβ β− = .  Using sµ=f n  and 
22 0

rad
(1 5 ) 2 25 tan ,vva gR R

.= = = .  β  

these two relations become ssin cos 2 25 tann n mgβ µ β β+ = .   and scos sin .n n mgβ µ β− =  Dividing to 

cancel n gives s

s

sin cos 2 25 tan .
cos sin

β µ β β
β µ β

+ = .
−

 Solving for sµ  and simplifying yields s 2
1 25 sin  cos .
1 1 25sin

β βµ
β

.=
+ .

 

Using 
2

2
(20 )m/sarctan 18.79

(9.80 m/s )(120 m)
β

⎛ ⎞
= = °⎜ ⎟⎜ ⎟

⎝ ⎠
 gives s 0 34.µ = .  

EVALUATE:   If sµ is insufficient, the car skids away from the center of curvature of the roadway, so the 
friction is inward. 

 5.100. IDENTIFY:   Apply mΣ =F a
G G  to the car. The car moves in the arc of a horizontal circle, so rad,=G Ga a  

directed toward the center of curvature of the roadway. The target variable is the speed of the car. rada  will 

be calculated from the forces and then v will be calculated from 2
rad / .a v R=  

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At 
maximum speed the static friction force has its maximum value s sf nµ= .  

SET UP:   The free-body diagram for the car is sketched in Figure 5.100a. 
 

EXECUTE:    
y yF maΣ =  

scos sin 0β β− − =n f mg  
But s sµ=f n,  so 

scos sin 0β µ β− − =n n mg  

scos sinβ µ β
=

−
mg

n  

Figure 5.100a   
 

x xF maΣ =  

s radsin cosβ µ β+ =n n ma  

s rad(sin cos )β µ β+ =n ma  
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Use the yFΣ  equation to replace n: 

s rad
s

(sin cos )
cos sin

β µ β
β µ β

⎛ ⎞
+ =⎜ ⎟−⎝ ⎠

mg
ma  

( )
2 2s

rad
s

sin cos sin 25 (0 30)cos25 (9 80 m/s ) 8 73 m/s
cos sin cos25 0 30 sin 25

β µ β
β µ β

⎛ ⎞⎛ ⎞+ ° + . °= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟− ° − . °⎝ ⎠ ⎝ ⎠
a g  

2
rad /=a v R  implies 2

rad (8 73 m/s )(50 m) 21 m/s= = . = .v a R  

(b) IDENTIFY:   To keep the car from sliding down the banking the static friction force is directed up the 
incline. At the minimum speed the static friction force has its maximum value s s .µ=f n  

SET UP:   The free-body diagram for the car is sketched in Figure 5.100b. 
 

 The free-body diagram is identical to that in  
part (a) except that now the components of sf   
have opposite directions. The force equations  
are all the same except for the opposite sign for  
terms containing sµ .  

Figure 5.100b   
 

EXECUTE:   2 2s
rad

s

sin cos sin 25 (0 30)cos25 (9 80 m/s ) 1 43 m/s
cos sin cos25 (0 30)sin 25

β µ β
β µ β

⎛ ⎞ ⎛ ⎞− ° − . °= = . = .⎜ ⎟ ⎜ ⎟+ ° + . °⎝ ⎠⎝ ⎠
a g  

2
rad (1 43 m/s )(50 m) 8 5 m/sv a R= = . = . .  

EVALUATE:   For v between these maximum and minimum values, the car is held on the road at a constant 
height by a static friction force that is less than snµ .  When s 0,µ →  rad tan .a g β=  Our analysis agrees 
with the result of the banking derived in the text for this special case. 

 5.101. IDENTIFY:   Apply mΣ =F a
G G  to each block. 

SET UP:   For block B use coordinates parallel and perpendicular to the incline. Since they are connected 
by ropes, blocks A and B also move with constant speed. 
EXECUTE:   (a) The free-body diagrams are sketched in Figure 5.101 (next page). 
(b) The blocks move with constant speed, so there is no net force on block A; the tension in the rope 
connecting A and B must be equal to the frictional force on block A, 1 (0 35)(25 0 N) 8.8 N= . . = .T  

(c) The weight of block C will be the tension in the rope connecting B and C; this is found by considering 
the forces on block B. The components of force along the ramp are the tension in the first rope (8.8 N, from 
part (b)), the component of the weight along the ramp, the friction on block B and the tension in the second 
rope. Thus, the weight of block C is 

k8.8 N (sin36 9 cos36 9 ) 8.8 N (25 0 N)(sin36 9 (0 35)cos36 9 ) 30 8 NC Bw w µ= + . ° + . ° = + . . ° + . . ° = .  
The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the 
common weight w of blocks A and B, k k( (sin cos )),Cw w µ θ µ θ= + + giving the same result. 

(d) Applying Newton’s second law to the remaining masses (B and C) gives: 
2

k( cos sin )/( ) 1 54 m/s .µ θ θ= − − + = .C B B B Ca g w w w w w  
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EVALUATE:   Before the rope between A and B is cut the net external force on the system is zero. When the 
rope is cut the friction force on A is removed from the system and there is a net force on the system of 
blocks B and C. 

 

 

Figure 5.101 
 

 5.102. IDENTIFY:   The analysis of this problem is similar to that of the conical pendulum in the text. 

SET UP:   As shown in the text for a conical pendulum, 
2

radtan .a v
g Rg

β = =  

EXECUTE:   Solving for v in terms of β and R, 
2 tan (9 80 m/s )(50 0 m) tan30 0 16 8 m/s,v gR β= = .  . . ° = .   about 60 6 km/h.  .  

EVALUATE:   The greater the speed of the bus the larger will be the angle ,β so T will have a larger 
horizontal, inward component. 

 5.103. IDENTIFY:   Apply ,mΣ =F a
G G  with .=f kv  

SET UP:   Follow the analysis that leads to the equation ( / )
t[1 ]k m t

yv v e−= − , except now the initial speed 

is 0 t3 / 3yv mg k v= = rather than zero. 

EXECUTE:   The separated equation of motion has a lower limit of t3v  instead of zero; specifically, 

( )t
t

t t t3 t

1 1ln ln ,  or  2
2 2 2 2

v
k / m t

v

dv v v v k
t v v e

v v v v m
−⎛ ⎞− ⎡ ⎤= = − = −  = +⎜ ⎟ ⎢ ⎥− − ⎣ ⎦⎝ ⎠

∫  

where vt = mg/k. 
EVALUATE:   As t → ∞  the speed approaches t .v  The speed is always greater than tv and this limit is 
approached from above. 

 5.104. IDENTIFY:   The block has acceleration 2
rad / ,a v r=  directed to the left in the figure in the problem. Apply 

mΣ =F a
G G  to the block. 

SET UP:   The block moves in a horizontal circle of radius 2 2(1 25 m) (1 00 m) 0 75 m.r = . − . = .  Each 

string makes an angle θ  with the vertical. 1 00 mcos ,
1 25 m

θ .=
.

 so 36 9 .θ = . °  The free-body diagram for the 

block is given in Figure 5.104. Let x+  be to the left and let y+  be upward. 
EXECUTE:   (a) y yF maΣ =  gives u lcos cos 0.T T mgθ θ− − =  

2

l u
(4 00 kg)(9 80 m/s )80 0 N 31 0 N.

cos cos36 9
mg

T T
θ

. .= − = . − = .
. °

 

(b) x xF maΣ =  gives 
2

u l( )sin .v
T T m

r
θ+ =  

u l( )sin (0 75 m)(80 0 N 31 0 N)sin36 9 3 53 m/s.
4 00 kg

r T T
v

m
θ+ . . + . . °= = = .

.
 The number of revolutions per 

second is 
3 53 m/s 0 749 rev/s 44 9 rev/min.

2 2 (0 75 m)
v

r
.= = . = .

.π π
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(c) If l 0 ,T →  u cosθ =T mg  and 
2

u
(4 00 kg)(9 80 m/s ) 49 0 N.

cos cos36 9θ
. .= = = .

. °
mg

T  
2

u sin .θ = v
T m

r
 

u sin (0 75 m)(49 0 N)sin36 9 2 35 m/s.
4 00 kg

rT
v

m
θ . . . °= = = .

.
 The number of revolutions per minute is 

2 35 m/s(44 9 rev/min) 29 9 rev/min.
3 53 m/s

.⎛ ⎞. = .⎜ ⎟⎝ ⎠.
 

EVALUATE:   The tension in the upper string must be greater than the tension in the lower string so that 
together they produce an upward component of force that balances the weight of the block. 

 

 

Figure 5.104 
 

 5.105. IDENTIFY:   Apply mΣ =F a
G G  to the person. The person moves in a horizontal circle so his acceleration is 

2
rad / ,=a v R  directed toward the center of the circle. The target variable is the coefficient of static friction 

between the person and the surface of the cylinder. 
2 2 (2 5 m)(0 60 rev/s) (0 60 rev/s) 9 425 m/s
1 rev 1 rev

π π .⎛ ⎞ ⎛ ⎞= . = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R
v  

(a) SET UP:   The problem situation is sketched in Figure 5.105a. 
 

 

Figure 5.105a 
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 The free-body diagram for the person is sketched  
in Figure 5.105b. 
The person is held up against gravity by the static  
friction force exerted on him by the wall.  
The acceleration of the person is rad ,a  directed in  
toward the axis of rotation. 

Figure 5.105b   
 

(b) EXECUTE:   To calculate the minimum sµ  required, take sf  to have its maximum value, s sµ= .f n  
:y yF maΣ =  s 0f mg− =  

sn mgµ =  

:x xF maΣ =  2/=n mv R  

Combine these two equations to eliminate n: 2
s /µ =mv R mg  

2

s 2 2
(2 5 m)(9 80 m/s ) 0 28

(9 425 m/s)
µ . .= = = .

.
Rg
v

 

(c) EVALUATE:   No, the mass of the person divided out of the equation for s.µ  Also, the smaller sµ  is, 
the larger v must be to keep the person from sliding down. For smaller sµ  the cylinder must rotate faster to 
make n large enough. 

5.106.  IDENTIFY:   Apply mΣ =F a
G G to the person and to the cart. 

SET UP:   The apparent weight, appw  is the same as the upward force on the person exerted by the car seat. 

EXECUTE:   (a) The apparent weight is the actual weight of the person minus the centripetal force needed 
to keep him moving in his circular path: 

2 2
2

app
(12 m/s)(70 kg) (9 8 m/s ) 434 N.

40 m
mv

w mg
R

⎡ ⎤ = − = . − =⎢ ⎥
⎢ ⎥⎣ ⎦

 

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no 

longer has to exert any upward force on it: 
2

0 .− =mv
mg

R
 2(40 m)(9 8 m/s ) 19 8 m/s.v Rg= = . = .   The 

answer doesn’t depend on the cart’s mass, because the centripetal force needed to hold it on the road is 
proportional to its mass and so to its weight, which provides the centripetal force in this situation. 
EVALUATE:   At the speed calculated in part (b), the downward force needed for circular motion is 
provided by gravity. For speeds greater than this, more downward force is needed and there is no source 
for it and the cart leaves the circular path. For speeds less than this, less downward force than gravity is 
needed, so the roadway must exert an upward vertical force. 

5.107. IDENTIFY:   Apply mΣ =F a
G G  to the circular motion of the bead. Also use arad = 4π2R/T2 to relate rada  to 

the period of rotation T. 
SET UP:   The bead and hoop are sketched in Figure 5.107a. 
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 The bead moves in a circle of radius sin β= .R r   
The normal force exerted on the bead by the hoop  
is radially inward. 

Figure 5.107a   
 

The free-body diagram for the bead is sketched in Figure 5.107b. 
 

 EXECUTE:    
y yF maΣ =  

cos 0β − =n mg  
/ cosβ=n mg  

x xF maΣ =  

radsin β =n ma  

Figure 5.107b   
 

Combine these two equations to eliminate n: 

radsin
cos

β
β

⎛ ⎞ =⎜ ⎟
⎝ ⎠

mg
ma  

radsin
cos

β
β

= a
g

 

2
rad /=a v R  and 2 / ,π=v R T  so 2 2

rad 4 / ,π=a R T  where T is the time for one revolution. 

sin ,R r β=  so 
2

rad 2
4 sinπ β= r

a
T

 

Use this in the above equation: 
2

2
sin 4 sin
cos

β π β
β

= r
T g

 

This equation is satisfied by sin 0,β =  so 0,β =  or by 
2

2
1 4 ,

cos
π

β
= r

T g
 which gives 

2

2cos .
4
T g

r
β

π
=  

(a) 4.00 rev/s implies (1/4 00) s 0 250 s= . = .T  

Then 
2 2

2
(0 250 s) (9 80 m/s )cos

4 (0 100 m)
β

π
. .=

.
 and 81 1 .β = . °  

(b) This would mean 90 .β = °  But cos90 0,° =  so this requires 0.T →  So β  approaches 90°  as the 
hoop rotates very fast, but 90β = °  is not possible. 
(c) 1.00 rev/s implies 1 00 sT = .  
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The 
2

2cos
4

β
π

= T g
r

 equation then says 
2 2

2
(1 00 s) (9 80 m/s )cos 2 48,

4 (0 100 m)
β

π
. .= = .

.
 which is not possible. The only 

way to have the mΣ =F a
G G  equations satisfied is for sin 0β = .  This means 0;β =  the bead sits at the 

bottom of the hoop. 
EVALUATE:   90β → °  as 0T →  (hoop moves faster). The largest value T can have is given by 

2 2/(4 ) 1π =T g r  so 2 / 0 635 s.π= = .T r g  This corresponds to a rotation rate of 
(1/0 635) rev/s 1 58 rev/s.. = .  For a rotation rate less than 1.58 rev/s, 0β =  is the only solution and the bead 
sits at the bottom of the hoop. Part (c) is an example of this. 

5.108.  IDENTIFY:   Apply mΣ =F a
G G  to the combined object of motorcycle plus rider. 

SET UP:   The object has acceleration 2
rad / ,=a v r  directed toward the center of the circular path. 

EXECUTE:   (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the 

(downward) acceleration at the top of the sphere must exceed mg, so 
2

,v
m mg

R
>  and 

2(9 80 m/s )(13 0 m) 11 3 m/sv gR> = .  . = .  .  
(b) The (upward) acceleration will then be 4g, so the upward normal force must be 

25 5(110 kg)(9 80 m/s ) 5390 N.= . =mg  
EVALUATE:   At any nonzero speed the normal force at the bottom of the path exceeds the weight of the 
object. 

 5.109. IDENTIFY:   The block begins to move when static friction has reached its maximum value. After that, 
kinetic friction acts and the block accelerates, obeying Newton’s second law.  
SET UP:   x xF maΣ =  and fs,max = µsn, where n is the normal force (the weight of the block in this case).  
EXECUTE:   (a) & (b) x xF maΣ = gives T – µkmg = ma. The graph with the problem shows the acceleration 
a of the block versus the tension T in the cord. So we solve the equation from Newton’s second law for a 
versus T, giving a = (1/m)T – µkg. Therefore the slope of the graph will be 1/m and the intercept with the 
vertical axis will be –µkg. Using the information given in the problem for the best-fit equation, we have 
1/m = 0.182 kg –1, so m = 5.4945 kg and 22.842m/s ,k gµ− = −  so µk = 0.290.  
When the block is just ready to slip, we have fs,max = µsn, which gives  
µs

 = (20.0 N)/[(5.4945 kg)(9.80 m/s2)] = 0.371. 
(c) On the Moon, g is less than on earth, but the mass m of the block would be the same as would µk. 
Therefore the slope (1/m) would be the same, but the intercept (–µkg) would be less negative. 
EVALUATE:   Both coefficients of friction are reasonable or ordinary materials, so our results are 
believable. 

5.110.  IDENTIFY:   Near the top of the hill the car is traveling in a circular arc, so it has radial acceleration and 
Newton’s second law applies. We have measurements for the force the car exerts on the road at various 
speeds.  
SET UP:   The acceleration of the car is arad = v2/R and y yF maΣ =  applies to the car. Let the +y-axis be 
downward, since that is the direction of the acceleration of the car.  
EXECUTE:   (a) Apply y yF maΣ =  to the car at the top of the hill: mg – n = mv2/R, where n is the force the 
road exerts on the car (which is the same as the force the car exerts on the road). Solving for n gives 
n = mg – (m/R)v2. So if we plot n versus v2, we should get a straight line having slope equal to –m/R and 
intercept with the vertical axis at mg. We could make a table of v2 and n using the given numbers given 
with the problem, or we could use graphing software. The resulting graph is shown in Figure 5.110. 
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Figure 5.110 
 
(b) The best-fit equation for the graph in Figure 5.110 is n = [–18.12 N/(m/s)2]v2 + 8794 N. Therefore  
mg = 8794 N, which gives m = (8794 N)/(9.80 m/s2) = 897 kg.  
The slope is equal to –m/R, so R = –m/slope = –(897 kg)/[–18.12 N/(m/s)2] = 49.5 m. 

(c) At the maximum speed, n = 0. Using mg – n = mv2/R, this gives 2(9.80 m/s )(49.5 m)v gR= =  = 
22.0 m/s.  
EVALUATE:   We can double check (c) using our graph. Putting n = 0 into the best-fit equation, we get 

2 2(8794 N)(18.14 N s /m )v = ⋅  = 22.0 m/s, which checks. Also 22 m/s is about 49 mph, which is not an 
unreasonabled speed on a hill. 

5.111.  IDENTIFY:   A cable pulling parallel to the surface of a ramp accelerates 2170-kg metal blocks up a ramp 
that rises at 40.0° above the horizontal. Newton’s second law applies to the blocks, and the constant-
acceleration kinematics formulas can be used. 
SET UP:   Call the +x-axis parallel to the ramp surface pointing upward because that is the direction of the 
acceleration of the blocks, and let the y-axis be perpendicular to the surface. There is no acceleration in the 

y-direction. ΣFx = max , fk = µkn, and 2
0 0

1 .
2x xx x v t a t− = +  

EXECUTE:   (a) First use 2
0 0

1
2x xx x v t a t− = +  to find the acceleration of a block. Since v0x = 0, we  

have ax = 2(x – x0)/t2 = 2(8.00 m)/(4.20 s)2 = 0.9070 m/s2. The forces in the y-direction balance, so 
n = mgcos(40.0°), so fk = (0.350)(2170 kg)(9.80 m/s2)cos(40.0°) = 5207 N. Using ,x xF maΣ =   
we have T – mgsin(40.0°) – fk = ma. Solving for T gives  
T = (2170 kg)(9.80 m/s2)sin(40.0°) + 5207 N + (2170 kg)(0.9070 m/s2) = 2.13 × 104 N = 21.3 kN. 
From the table shown with the problem, this tension is greater than the safe load of a ½ inch diameter cable 
(which is 19.0 kN), so we need to use a 5/8-inch cable. 
(b) We assume that the safe load (SL) is proportional to the cross-sectional area of the cable, which means 
that SL ∝ π(D/2)2 ∝  (π/4)D2, where D is the diameter of the cable. Therefore a graph of SL versus D2 
should give a straight line. We could use the data given in the table with the problem to make the graph by 
hand, or we could use graphing software. The resulting graph is shown in Figure 5.111 (next page). The 
best-fit line has a slope of 74.09 kN/in.2 and a y-intercept of 0.499 kN. For a cable of diameter D = 9/16 in., 
this equation gives SL = (74.09 kN/in.2)(9/16 in.)2 + 0.499 kN = 23.9 kN. 
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Figure 5.111 
 
(c) The acceleration is now zero, so the forces along the surface balance, giving 
T + fs = mg sin(40.0°). Using the numbers we get T = 3.57 kN. 
(d) The tension at the top of the cable must accelerate the block and the cable below it, so the tension at the 
top would be larger. For a 5/8-inch cable, the mass per meter is 0.98 kg/m, so the 9.00-m long cable would 
have a mass of (0.98 kg/m)(9.00 m) = 8.8 kg. This is only 0.4% of the mass of the block, so neglecting the 
cable weight has little effect on accuracy. 
EVALUATE:   It is reasonable that the safe load of a cable is proportional to its cross-sectional area. If we 
think of the cable as consisting of many tiny strings each pulling, doubling the area would double the 
number of strings. 

5.112.  IDENTIFY:   Apply mΣ =F a
G G  to the block and to the wedge. 

SET UP:   For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction 
to be vertical and positive upward. The normal force between the block and the wedge is n; the normal 
force between the wedge and the horizontal surface will not enter, as the wedge is presumed to have zero 
vertical acceleration. The horizontal acceleration of the wedge is A, and the components of acceleration of 
the block are xa  and . ya  

EXECUTE:   (a) The equations of motion are then sin ,MA n α= −  sinα=xma n  and cos .yma n mgα= −  
Note that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the 
left. These are three equations in four unknowns, A, ,x ya a  and n. Solution is possible with the imposition 

of the relation between A, xa and .ya  An observer on the wedge is not in an inertial frame, and should not 
apply Newton’s laws, but the kinematic relation between the components of acceleration are not so 
restricted. To such an observer, the vertical acceleration of the block is ,ya  but the horizontal acceleration 

of the block is .xa A−  To this observer, the block descends at an angle ,α  so the relation needed is 

tany

x

a

a A
α= −  .

−
 At this point, algebra is unavoidable. A possible approach is to eliminate xa by noting 

that ,= −x
M

a A
m

 using this in the kinematic constraint to eliminate ya  and then eliminating n. The results are: 

( ) tan ( / tan )
gm

A
M m Mα α

−=
+ +

 

( ) tan ( / tan )x
gM

a
M m Mα α

=
+ +
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( ) tan
( ) tan ( / tan )y

g M m
a

M m M
α

α α
− +=

+ +
 

(b) When , 0,M m A →�  as expected (the large block won’t move). Also, 

2
tan sin cos

tan (1/ tan ) tan 1
α α α

α α α
 → = =

 + +x
g

a g g  which is the acceleration of the block ( sing α  in this 

case), with the factor of cosα giving the horizontal component. Similarly, 2sin .ya g α→ −  

(c) The trajectory is a straight line with slope tan .M m
M

α+⎛ ⎞−⎜ ⎟⎝ ⎠
 

EVALUATE:   If ,m M�  our general results give 0xa =  and .ya g= −  The massive block accelerates 
straight downward, as if it were in free fall. 

 5.113. IDENTIFY:   Apply mΣ =F a
G G to the block and to the wedge. 

SET UP:   From Problem 5.112, sinxma n α=  and cosyma n mgα= − for the block. 0ya = gives 

tan .xa g α=  
EXECUTE:   If the block is not to move vertically, both the block and the wedge have this horizontal 
acceleration and the applied force must be ( ) ( ) tan .F M m a M m g α= + = +  
EVALUATE:   0F →  as 0α →  and F → ∞  as 90 .α → °  

5.114.  IDENTIFY:   Apply mΣ =F a
G G  to each of the three masses and to the pulley B. 

SET UP:   Take all accelerations to be positive downward. The equations of motion are straightforward, but 
the kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If 
the acceleration of pulley B is ,Ba  then 3,Ba a= −  and Ba  is the average of the accelerations of masses 1 
and 2, or 1 2 32 2 .Ba a a a+ = = −  
EXECUTE:   (a) There can be no net force on the massless pulley B, so 2 .C AT T=  The five equations to be 
solved are then 1 1 1,Am g T m a− =  2 2 2,Am g T m a− =  3 3 3,Cm g T m a− =  1 2 32 0a a a+ + =  and 
2 0 .− =A CT T  These are five equations in five unknowns, and may be solved by standard means. 
The accelerations 1a  and 2a  may be eliminated using 3 1 2 1 22 ( ) [2 ((1/ ) (1/ ))].Aa a a g T m m= − + = − − +  
The tension AT  may be eliminated by using 3 3(1/2) (1/2) ( ).= = −A CT T m g a  

Combining and solving for 3a  gives 1 2 2 3 1 3
3

1 2 2 3 1 3

4 .
4

m m m m m m
a g

m m m m m m
− + +=

+ +
 

(b) The acceleration of the pulley B has the same magnitude as 3a  and is in the opposite direction. 

(c) 3
1 3

1 1 1
( ).

2 2
A CT T m

a g g g g a
m m m

= − = − = − −  Substituting the above expression for 3a  gives 

1 2 2 3 1 3
1

1 2 2 3 1 3

4 3 .
4
m m m m m m

a g
m m m m m m

− +=
+ +

 

(d) A similar analysis (or, interchanging the labels 1 and 2) gives 1 2 1 3 2 3
2

1 2 2 3 1 3

4 3
4
m m m m m m

a g
m m m m m m

− += .
+ +

 

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate 

equation of motion, giving 1 2 3 1 2 3

1 2 2 3 1 3 1 2 2 3 1 3

4 8, .
4 4A C

m m m m m m
T g T g

m m m m m m m m m m m m
=  =

+ + + +
 

(g) If 1 2m m m= = and 3 2 ,m m=  all of the accelerations are zero, 2CT mg=  and .AT mg=  All masses 
and pulleys are in equilibrium, and the tensions are equal to the weights they support, which is what is 
expected. 
EVALUATE:   It is useful to consider special cases. For example, when 1 2 3m m m= �  our general result 
gives 1 2= = +a a g and 3 .=a g  
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 5.115. IDENTIFY:   Apply mΣ =F a
G G  to the ball at each position. 

SET UP:   When the ball is at rest, 0.a =  When the ball is swinging in an arc it has acceleration component 
2

rad ,v
a

R
=  directed inward. 

EXECUTE:   Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the 
tension force must balance the weight, so cosAT wβ =  or / cos .β=AT w  At point B, the ball is not in 
equilibrium; its speed is instantaneously 0, so there is no radial acceleration, and the tension force must 
balance the radial component of the weight, so cosBT w β=  and the ratio 2( / ) cos .B AT T β=  
EVALUATE:   At point B the net force on the ball is not zero; the ball has a tangential acceleration. 

5.116.  IDENTIFY:   The forces must balance for the person not to slip.  
SET UP and EXECUTE:    As was done in earlier problems, balancing forces parallel to and perpendicular to 
the surface of the rock leads to the equation µs = tanθ  = 1.2, so θ  = 50°, which is choice (b). 
EVALUATE:   The condition µs = tanθ  applies only when the person is just ready to slip, which would be 
the case at the maximum angle. 

5.117.  IDENTIFY:   Friction changes from static friction to kinetic friction.  
SET UP and EXECUTE:  When she slipped, static friction must have been at its maximum value, and that 
was enough to support her weight just before she slipped. But the kinetic friction will be less than the 
maximum static friction, so the kinetic friction force will not be enough to balance her weight down the 
incline. Therefore she will slide down the surface and continue to accelerate downward, making (b) the 
correct choice. 
EVALUATE:   Shoes with a greater coefficient of static friction would enable her to walk more safely. 

5.118.  IDENTIFY:   The person pushes off horizontally and acclerates herself, so Newton’s second law applies.  
SET UP and EXECUTE:  She runs horizontally, so her vertical acceleration is zero, which makes the normal 
force n due to the ground equal to her weight mg. In the horizontal direction, static friction accelerates her 
forward, and it must be its maximum value to achieve her maximum acceleration. Therefore fs = ma = µsn 
= µsmg, which gives a = µsg = 1.2g, making (d) the correct choice. 
EVALUATE:   Shoes with more friction would allow her to accelerate even faster. 
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 6.1. IDENTIFY and SET UP:   For parts (a) through (d), identify the appropriate value of φ  and use the relation 

P ( cos ) .W F s F s= = φ  In part (e), apply the relation net student grav .n fW W W W W= + + +  
EXECUTE:   (a) Since you are applying a horizontal force, 0 .= °φ  Thus, 

student (2.40 N)(cos0 )(1 50 m) 3 60 J.W = ° . = .  
(b) The friction force acts in the horizontal direction, opposite to the motion, so 180= °.φ  

( cos ) (0.600 N)(cos180 )(1.50 m) 0.900 J.f fW F s= = ° = −φ  
(c) Since the normal force acts upward and perpendicular to the tabletop, 90 .= °φ  

( cos ) ( )(cos90 ) 0 0 J.nW n s ns= = ° = .φ  
(d) Since gravity acts downward and perpendicular to the tabletop, 270= °.φ  

grav ( cos ( )(cos270 ) 0 0 J.W mg s mgs= = ° = .φ)  

(e) net student grav 3.60 J 0.0 J 0.0 J 0.900 J 2.70 J.n fW W W W W= + + + = + + − =  
EVALUATE:   Whenever a force acts perpendicular to the direction of motion, its contribution to the net 
work is zero. 

 6.2. IDENTIFY:   In each case the forces are constant and the displacement is along a straight line, so 
cos .W F s= φ  

SET UP:   In part (a), when the cable pulls horizontally 0= °φ  and when it pulls at 35 0. °  above the 
horizontal 35 0 .= . °φ  In part (b), if the cable pulls horizontally 180 .= °φ  If the cable pulls on the car at 
35 0. °  above the horizontal it pulls on the truck at 35 0. °  below the horizontal and  145 0 .. °φ  For the 
gravity force 90 ,= °φ  since the force is vertical and the displacement is horizontal. 

EXECUTE:   (a) When the cable is horizontal, 3 6(1350 N)(5.00 10  m)cos0 6.75 10  J.W = × ° = ×  When the 

cable is 35 0. °  above the horizontal, 3 6(1350 N)(5.00 10  m)cos35.0 5.53 10  J.W = × ° = ×  

(b) cos180 cos0° = − °  and cos145 0 cos35 0 ,. ° = − . °  so the answers are 66.75 10  J− ×  and 65.53 10  J.− ×  
(c) Since cos cos90 0,= ° =φ  0W =  in both cases. 
EVALUATE:   If the car and truck are taken together as the system, the tension in the cable does no net work. 

 6.3. IDENTIFY:   Each force can be used in the relation || ( cos )W F s F s= = φ  for parts (b) through (d). For part 

(e), apply the net work relation as net worker grav n fW W W W W= + + + .  
SET UP:   In order to move the crate at constant velocity, the worker must apply a force that equals the 
force of friction, worker k k .F f n= = µ  
EXECUTE:   (a) The magnitude of the force the worker must apply is: 

2
worker k k k (0 25)(30 0 kg)(9 80 m/s ) 74 NF f n mg= = = = . . . =µ µ  

(b) Since the force applied by the worker is horizontal and in the direction of the displacement, 0= °φ  and 
the work is: 

worker worker( cos ) [(74 N)(cos0 )](4.5 m) 333 JW F s= = ° = +φ  

WORK AND KINETIC ENERGY 

6
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(c) Friction acts in the direction opposite of motion, thus 180= °φ  and the work of friction is: 

k( cos ) [(74 N)(cos180 )](4 5 m) 333 JfW f s= = ° . = −φ  
(d) Both gravity and the normal force act perpendicular to the direction of displacement. Thus, neither 
force does any work on the crate and grav 0 0 J.nW W= = .  
(e) Substituting into the net work relation, the net work done on the crate is: 

net worker grav 333 J 0 0 J 0 0 J 333 J 0 0 Jn fW W W W W= + + + = + + . + . − = .  

EVALUATE:   The net work done on the crate is zero because the two contributing forces, workerF  and ,fF  
are equal in magnitude and opposite in direction. 

 6.4. IDENTIFY:   The forces are constant so Eq. (6.2) can be used to calculate the work. Constant speed implies 
0.a =  We must use mΣ =

G GF a  applied to the crate to find the forces acting on it. 
(a) SET UP:   The free-body diagram for the crate is given in Figure 6.4. 

 

 

EXECUTE:   y yF maΣ =  
sin30 0n mg F− − ° =  
sin30n mg F= + °  

k k k k sin30f n mg F= = + °µ µ µ  
 

Figure 6.4   
 

x xF maΣ =  

kcos30 0F f° − =  

k kcos30 sin30 0F mg F° − − ° =µ µ   
2

k

k

0 25(30 0 kg)(9 80 m/s ) 99 2 N
cos30 sin30 cos30 (0 25)sin30

mg
F

. . .= = = .
° − ° ° − . °
µ

µ
 

(b) ( cos ) (99 2 N)(cos30 )(4 5 m) 387 JFW F s= = . ° . =φ  

( cos30F °  is the horizontal component of ;
G
F  the work done by 

G
F  is the displacement times the 

component of 
G
F  in the direction of the displacement.) 

(c) We have an expression for kf  from part (a): 
2

k k ( sin30 ) (0 250)[(30 0 kg)(9 80 m/s ) (99 2 N)(sin30 )] 85 9 Nf mg F= + ° = . . . + . ° = .µ  
180= °φ since kf  is opposite to the displacement. Thus k( cos ) (85 9 N)(cos180 )(4 5 m) 387 J.fW f s= = . ° . = −φ  

(d) The normal force is perpendicular to the displacement so 90= °φ  and 0nW = .  The gravity force  
(the weight) is perpendicular to the displacement so 90= °φ  and 0.wW =  
(e) tot 387 J ( 387 J) 0F f n wW W W W W= + + + = + + − =  
EVALUATE:   Forces with a component in the direction of the displacement do positive work, forces 
opposite to the displacement do negative work, and forces perpendicular to the displacement do zero work. 
The total work, obtained as the sum of the work done by each force, equals the work done by the net force. 
In this problem, net 0F =  since 0a =  and tot 0,W =  which agrees with the sum calculated in part (e). 

 6.5. IDENTIFY:   The gravity force is constant and the displacement is along a straight line, so cos .W Fs= φ  
SET UP:   The displacement is upward along the ladder and the gravity force is downward, so 

180 0 30 0 150 0 .= . ° − . ° = . °φ  735 N.w mg= =  
EXECUTE:   (a) (735 N)(2 75 m)cos150 0 1750 J.W = . . ° =-  
(b) No, the gravity force is independent of the motion of the painter. 
EVALUATE:   Gravity is downward and the vertical component of the displacement is upward, so the 
gravity force does negative work. 
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 6.6. IDENTIFY and SET UP:   ( cos ) ,FW F s= φ  since the forces are constant. We can calculate the total work by  
summing the work done by each force. The forces are sketched in Figure 6.6. 

 

 

EXECUTE:   1 1 1cosW F s= φ  
6 3

1 (1 80 10  N)(0 75 10  m)cos14W = . × . × °  
9

1 1 31 10  JW = . ×  

2 2 2 1cosW F s W= =φ  

Figure 6.6   

 9 9
tot 1 2 2(1 31 10  J) 2 62 10  JW W W= + = . × = . ×  

EVALUATE:   Only the component cosF φ  of force in the direction of the displacement does work. These 
components are in the direction of Gs  so the forces do positive work. 

 6.7. IDENTIFY:   All forces are constant and each block moves in a straight line, so cos .W Fs= φ  The only 
direction the system can move at constant speed is for the 12.0 N block to descend and the 20.0 N block to 
move to the right. 
SET UP:   Since the 12.0 N block moves at constant speed, 0a =  for it and the tension T in the string is 

12 0 N.T = .  Since the 20.0 N block moves to the right at constant speed, the friction force kf  on it is to 
the left and k 12 0 N.f T= = .  
EXECUTE:   (a) (i) 0= °φ  and (12 0 N)(0 750 m)cos0 9 00 J.W = . . ° = .  (ii) 180= °φ  and 

(12 0 N)(0 750 m)cos180 9 00 J.W = . . ° = − .  
(b) (i) 90= °φ  and 0.W =  (ii) 0= °φ  and (12 0 N)(0 750 m)cos0 9 00 J.W = . . ° = .  (iii) 180= °φ  and 

(12 0 N)(0 750 m)cos180 9 00 J.W = . . ° = − .  (iv) 90= °φ  and 0.W =  
(c) tot 0W =  for each block. 
EVALUATE:   For each block there are two forces that do work, and for each block the two forces do work 
of equal magnitude and opposite sign. When the force and displacement are in opposite directions, the 
work done is negative. 

 6.8. IDENTIFY:   Apply Eq. (6.5). 
SET UP:   ˆ ˆ ˆ ˆ 1⋅ = ⋅ =i i j j  and ˆ ˆ ˆ ˆ 0⋅ = ⋅ =i j j i  

EXECUTE:   The work you do is ˆ ˆ ˆ ˆ(30 N) (40 N) ( 9 0 m) (3 0 m)⎡ ⎤ ⎡ ⎤⋅ = − ⋅ − . − .⎣ ⎦ ⎣ ⎦
G GF s i j i j  

(30 N)( 9 0 m) ( 40 N)( 3 0 m) 270 N m 120 N m 150 J.⋅ =  − . + −  − .  = − ⋅ +  ⋅ = −
G GF s  

EVALUATE:   The x-component of 
G
F does negative work and the y-component of 

G
F  does positive work. 

The total work done by 
G
F  is the sum of the work done by each of its components. 

 6.9. IDENTIFY:   Apply Eq. (6.2) or (6.3). 
SET UP:   The gravity force is in the -direction,y−  so 2 1( )mg mg y y⋅ = − −

G GF s  
EXECUTE:   (a) (i) Tension force is always perpendicular to the displacement and does no work. 
(ii) Work done by gravity is 2 1( ).mg y y− −  When 1 2,y y=  0.mgW =  

(b) (i) Tension does no work. (ii) Let l be the length of the string. 2 1( ) (2 ) 25 1JmgW mg y y mg l= − − = − = − .   
EVALUATE:   In part (b) the displacement is upward and the gravity force is downward, so the gravity force 
does negative work. 
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 6.10. IDENTIFY and SET UP:   Use p ( cos )W F s F s= = φ  to calculate the work done in each of parts (a) through (c). 

In part (d), the net work consists of the contributions due to all three forces, or net grav n f .w w w w= + +  
 

 
Figure 6.10 

 

EXECUTE:   (a) As the package slides, work is done by the frictional force which acts at 180= °φ  to the 
displacement. The normal force is cos53 0 .mg . °  Thus for k 0 40,= .µ  

p k k k( cos ) ( cos ) [ ( cos53 0 )](cos180 ) .fW F s f s n s mg s= = = = . ° °φ µ φ µ
2(0 40)[(12.0 kg)(9 80 m/s )(cos53 0 )](cos180 )(2 00 m) 57 J.fW = . . . ° ° . = −   

(b) Work is done by the component of the gravitational force parallel to the displacement. 
90 53 37= ° − ° = °φ  and the work of gravity is 

2
grav ( cos ) [(12.0 kg)(9 80 m/s )(cos37 0 )](2 00 m) 188 J.W mg s= = . . ° . = +φ  

(c) 0nW =  since the normal force is perpendicular to the displacement. 
(d) The net work done on the package is net grav 188 J 0 0 J 57 J 131 J.n fW W W W= + + = + . − =  
EVALUATE:   The net work is positive because gravity does more positive work than the magnitude of the 
negative work done by friction. 

 6.11. IDENTIFY: As the carton is pulled up the ramp, the forces acting on it are gravity, the tension in the rope, 
and the normal force. Each of these forces may do work on the carton. 
SET UP:  Use ( cos )W F s F s= = .φ||  Calculate the work done by each force. In each case, identify the angle .φ  
In part (d), the net work is the algebraic sum of the work done by each force. 
EXECUTE:  (a) Since the force exerted by the rope and the displacement are in the same direction, 0= Dφ  
and rope (72 0 N)(cos0 )(5 20 m) 374 J.W = . ° . = +  
(b) Gravity is downward and the displacement is at 30 0. °  above the horizontal, so 

90 0 30 0 120 0= . ° + . ° = . °.φ  grav (128 0 N)(cos120 )(5 20 m) 333 J.W = . ° . = −  
(c) The normal force n is perpendicular to the surface of the ramp while the displacement is parallel to the 
surface of the ramp, so 90= °φ  and 0nW = .  
(d) net rope grav 374 J 333 J 0 41 JnW W W W= + + = + − + = +  

(e) Now 50 0 30 0 20 0= . ° − . ° = . °φ  and rope (72 0 N)(cos20 0 )(5 20 m) 352 JW = . . ° . = +  
EVALUATE:  In part (b), gravity does negative work since the gravity force acts downward and the carton 
moves upward. Less work is done by the rope in part (e), but the net work is still positive. 

 6.12. IDENTIFY:   Since the speed is constant, the acceleration and the net force on the monitor are zero.  
SET UP:   Use the fact that the net force on the monitor is zero to develop expressions for the friction force, 

k ,f  and the normal force, n. Then use P ( cos )W F s F s= = φ  to calculate W. 
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Figure 6.12 

 

EXECUTE:   (a) Summing forces along the incline, k0 sin ,F ma f mgΣ = = = − θ  giving k sin ,f mg= θ  
directed up the incline. Substituting gives ( cos ) [( sin )cos ] .f kW f s mg s= =φ θ φ  

2[(10 0 kg)(9 80 m/s )(sin36 9 )](cos0 )(5 50 m) 324 J.fW = . . . ° ° . = +  
(b) The gravity force is downward and the displacement is directed up the incline so 126 9°.= .φ  

2
grav (10 0 kg)(9 80 m/s )(cos 126 9 )(5 50 m) 324 J.W = . . . ° . = −  

(c) The normal force, n, is perpendicular to the displacement and thus does zero work. 
EVALUATE:   Friction does positive work and gravity does negative work. The net work done is zero. 

 6.13. IDENTIFY:   We want the work done by a known force acting through a known displacement. 
 SET UP:  W = Fs cosφ  
 EXECUTE: W = (48.0 N)(12.0 m)cos(173°) = –572 J. 
 EVALUATE: The force has a component opposite to the displacement, so it does negative work. 

 6.14. IDENTIFY:   We want to find the work done by a known force acting through a known displacement. 
SET UP:   .x x y yW F s F s= ⋅ = +

G GF s  We know the components of 
G
F  but need to find the components of the 

displacement .Gs  
EXECUTE:   Using the magnitude and direction of ,Gs  its components are o(48 0 m)cos240 0 24 0 mx = . . = .-  

and o(48 0 m)sin 240 0 41 57 m.y = . . = − .  Therefore, ˆ ˆ( 24 0 m) ( 41 57 m) .= − . + − .Gs i j  The definition of work 

gives ( 68 0 N)( 24 0 m) (36 0 N)( 41 57 m) 1632 J 1497 JW = ⋅ = − . − . + . − . = + − =
G GF s 135 J.+  

EVALUATE:   The mass of the car is not needed since it is the given force that is doing the work. 
 6.15. IDENTIFY:   We want the work done by the force, and we know the force and the displacement in terms of 

their components. 
 SET UP:    We can use either x x y yW F s F s= ⋅ = +

G GF s   or W = Fs cos ,φ  depending on what we know. 
EXECUTE:    (a) We know the magnitudes of the two given vectors and the angle between them, so 

 W = Fs cosφ  = (30.0 N)(5.00 m)(cos37°) = 120 J. 
 (b) As in (a), we have W = Fs cosφ  = (30.0 N)(6.00 m)(cos127°) = –108 J. 
 (c) We know the components of both vectors, so we use .x x y yW F s F s= ⋅ = +

G GF s  

 x x y yW F s F s= ⋅ = +
G GF s  = (30.0 N)(cos37°)(–2.00 m) + (30.00 N)(sin37°)(4.00 m) = 24.3 J. 

 EVALUATE: We could check parts (a) and (b) using the method from part (c). 
 6.16. IDENTIFY:   The book changes its speed and hence its kinetic energy, so work must have been done on it. 

SET UP:   Use the work-kinetic energy theorem net f i ,W K K= −  with 21
2 .K mv=  In part (a) use iK  and 

fK  to calculate W. In parts (b) and (c) use iK  and W to calculate f .K  
EXECUTE:   (a) Substituting the notation i A=  and f ,B=  

2 21
net 2 (1 50 kg)[(1 25 m/s) (3 21 m/s) ] 6 56 J.B AW K K= − = . . − . = − .  
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(b) Noting i B=  and f ,C=  
21

net 2 (1 50 kg)(1 25 m/s) 0 750 J 0 422 J.C BK K W= + = . . − . = + . 21
2C CK mv=  

so 2 0.750 m/s.C Cv K /m= =  

(c) Similarly, 21
2 (1 50 kg)(1 25 m/s) 0 750 J 1 922 JCK = . . + . = .  and 1 60 m/s.Cv = .  

EVALUATE:   Negative netW  corresponds to a decrease in kinetic energy (slowing down) and positive 

netW  corresponds to an increase in kinetic energy (speeding up). 
 6.17. IDENTIFY:   Find the kinetic energy of the cheetah knowing its mass and speed. 

SET UP:   Use 21
2K mv=  to relate v and K. 

EXECUTE:   (a) 2 2 41 1 (70 kg)(32 m/s) 3 6 10 J.
2 2

K mv= = = . ×  

(b) K is proportional to 2,v  so K increases by a factor of 4 when v doubles. 
EVALUATE:   A running person, even with a mass of 70 kg, would have only 1/100 of the cheetah’s kinetic 
energy since a person’s top speed is only about 1/10 that of the cheetah. 

 6.18. IDENTIFY:   Use the equations for free-fall to find the speed of the weight when it reaches the ground and 
use the formula for kinetic energy. 
SET UP:   Kinetic energy is 21

2 .K mv=  The mass of an electron is 319 11 10  kg.. × -  In part (b) take y+  

downward, so 29 80 m/sya = .+  and 2 2
0 02 ( ).y y yv v a y y= + −  

EXECUTE:   (a) 31 6 2 181
2 (9 11 10  kg)(2 19 10  m/s) 2 18 10  J.K −= . × . × = . × -  

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 22(9 80 m/s )(1.0 m) 4 43 m/s.yv = . = .  21

2 (1 0 kg)(4 43 m/s) 9 8 J.K = . . = .  

(c) Solving 21
2K mv=  for v gives 2 2(100 J) 2 6 m/s.

30 kg
K

v
m

= = = .  Yes, this is reasonable. 

  EVALUATE:   A running speed of 6 m/s corresponds to running a 100-m dash in about 17 s, so 2.6 m/s is 
reasonable for a running child. 

 6.19. IDENTIFY:   21
2 .K mv=  Since the meteor comes to rest the energy it delivers to the ground equals its 

original kinetic energy. 
SET UP:   412 km/s 1 2 10  m/s.v = = . ×  A 1.0 megaton bomb releases 154 184 10  J. ×  of energy. 
EXECUTE:   (a) 8 4 2 161

2 (1 4 10  kg)(1 2 10  m/s) 1 0 10 J.K = . × . × = . ×  

(b) 
16

15
1 0 10  J 2 4.

4 184 10  J
. × = .

. ×
 The energy is equivalent to 2.4 one-megaton bombs. 

EVALUATE:   Part of the energy transferred to the ground lifts soil and rocks into the air and creates a large 
crater. 

 6.20. IDENTIFY:   Only gravity does work on the watermelon, so tot grav.W W=  totW K= ∆  and 21
2 .K mv=  

SET UP:   Since the watermelon is dropped from rest, 1 0.K =  

EXECUTE:   (a) 2
grav (4 80 kg)(9 80 m/s )(18 0 m) 847 J.W mgs= = . . . =  

(b) (i) tot 2 1W K K= −  so 2 847 J.K =  (ii) 22 2(847 J) 18.8 m/s.
4 80 kg

K
v

m
= = =

.
 

(c) The work done by gravity would be the same. Air resistance would do negative work and totW would 
be less than grav.W  The answer in (a) would be unchanged and both answers in (b) would decrease. 
EVALUATE:   The gravity force is downward and the displacement is downward, so gravity does positive work. 

 6.21. IDENTIFY:   tot 2 1.W K K= −  In each case calculate totW  from what we know about the force and the 
displacement. 
SET UP:   The gravity force is mg, downward. The mass of the object isn’t given, so we expect that it will 
divide out in the calculation. 
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EXECUTE:   (a) 1 0.K =  tot grav .W W mgs= =  
21
22mgs mv=  and 

2
2 2 2(9 80 m/s )(95 0 m) 43 2 m/s.v gs= = . . = .  

(b) 2 0K = (at the maximum height). tot grav .W W mgs= = −  21
12mgs mv− = −  and 

2
1 2 2(9 80 m/s )(525 m) 101 m/s.v gs= = . =  

EVALUATE:   In part (a), gravity does positive work and the speed increases. In part (b), gravity does 
negative work and the speed decreases. 

 6.22. IDENTIFY:   tot 2 1.W K K= −  In each case calculate totW  from what we know about the force and the 
displacement. 
SET UP:   The gravity force is mg, downward. The friction force is k k kf n mg= =µ µ  and is directed 
opposite to the displacement. The mass of the object isn’t given, so we expect that it will divide out in the 
calculation. 
EXECUTE:    (a) 21

1 12 .K mv=  2 0.K =  tot k .fW W mgs= = −µ  
21

k 12 .mgs mv− = −µ  

2 2
1

2
k

(5 00 m/s) 5 80 m.
2 2(0 220)(9 80 m/s )

v
s

g
.= = = .

. .µ
 

 (b) 21
1 12 .K mv=  21

2 22 .K mv=  tot k .fW W mgs= = −µ  2 tot 1.K W K= +  2 21 1
2 k 12 2 .mv mgs mv= − +µ  

2 2 2
2 1 k2 (5 00 m/s) 2(0 220)(9 80 m/s )(2 90 m) 3 53 m/s.v v gs= − = . − . . . = .µ  

(c) 21
1 12 .K mv=  2 0.K =  grav 2,W mgy= −  where 2y  is the vertical height. 21

2 12mgy mv− = −  and 
2 2
1

2 2
(12 0 m/s) 7 35 m.

2 2(9 80 m/s )
v

y
g

.= = = .
.

 

EVALUATE:   In parts (a) and (b), friction does negative work and the kinetic energy is reduced. In part (c), 
gravity does negative work and the speed decreases. The vertical height in part (c) is independent of the 
slope angle of the hill. 

 6.23. IDENTIFY and SET UP:   Apply Eq. (6.6) to the box. Let point 1 be at the bottom of the incline and let point 2 
be at the skier. Work is done by gravity and by friction. Solve for 1K  and from that obtain the required 
initial speed. 
EXECUTE:   tot 2 1W K K= −  

21
1 02 ,K mv=  2 0K =  

Work is done by gravity and friction, so tot .mg fW W W= +  

2 1( )mgW mg y y mgh= − =- -  

.fW fs= -  The normal force is cosn mg= α  and /sin ,s h= α  where s is the distance the box travels along 
the incline. 

k k( cos )( /sin ) /tanfW mg h mgh= =µ α α µ α- -  

Substituting these expressions into the work-energy theorem gives 21
k 02/tan .mgh mgh mv− − = −µ α  

Solving for 0v  then gives 0 k2 (1 / tan ).v gh= + µ α  

  EVALUATE:   The result is independent of the mass of the box. As 90 ,→ °α  h s=  and 0 2 ,v gh=  the 
same as throwing the box straight up into the air. For 90= °α  the normal force is zero so there is no 
friction. 

 6.24. IDENTIFY:   From the work-energy relation, grav rock.W W K= = ∆  
SET UP:   As the rock rises, the gravitational force, ,F mg=  does work on the rock. Since this force acts in 
the direction opposite to the motion and displacement, s, the work is negative. Let h be the vertical distance 
the rock travels. 
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EXECUTE:   (a) Applying grav 2 1W K K= −  we obtain 2 21 1
2 12 2 .mgh mv mv− = −  Dividing by m and solving 

for 1,v 2
1 2 2 .v v gh= +  Substituting 215 0 m and 25 0 m/s,h v= . = .  

2 2
1 (25 0 m/s) 2(9 80 m/s )(15 0 m) 30 3 m/sv = . + . . = .  

(b) Solve the same work-energy relation for h. At the maximum height 2 0.v =  

2 21 1
2 12 2mgh mv mv− = −  and 

2 2 2 2
1 2

2
(30 3 m/s) (0 0 m/s) 46 8 m.

2 2(9 80 m/s )
v v

h
g

− . − .= = = .
.

 

EVALUATE:   Note that the weight of the rock was never used in the calculations because both gravitational 
potential and kinetic energy are proportional to mass, m. Thus any object, that attains 25.0 m/s at a height 
of 15.0 m, must have an initial velocity of 30.3 m/s. As the rock moves upward gravity does negative work 
and this reduces the kinetic energy of the rock.  

 6.25. IDENTIFY:   Apply cosW Fs= φ  and tot .W K= ∆  
SET UP:   0= °φ  
EXECUTE:   From Eqs. (6.1), (6.5) and (6.6), and solving for F, 

2 212 21
22 12

(12.0 kg) (6 00 m/s) (4 00 m s)( )
48 0 N

(2 50 m)

/m v vK
F

s s

⎡ ⎤ .  − .  −∆ ⎣ ⎦= = = = .
.  

 

  EVALUATE:   The force is in the direction of the displacement, so the force does positive work and the 
kinetic energy of the object increases.  

 6.26. IDENTIFY:   Apply cosW Fs= φ  and tot .W K= ∆  
SET UP:   Parallel to incline: force component || sin ,W mg= α  down incline; displacement /sin ,s h= α  
down incline. Perpendicular to the incline: 0.s =  
EXECUTE:   (a) || ( sin )( /sin ) .W mg h mgh= =α α  0,W⊥ =  since there is no displacement in this direction. 

|| ,mgW W W mgh⊥= + =  same as falling height h. 

(b) tot 2 1W K K= −  gives 21
2mgh mv=  and 2 ,v gh=  same as if had been dropped from height h. The 

work done by gravity depends only on the vertical displacement of the object. When the slope angle is 
small, there is a small force component in the direction of the displacement but a large displacement in this 
direction. When the slope angle is large, the force component in the direction of the displacement along the 
incline is larger but the displacement in this direction is smaller. 
(c) 15 0 m,h = .   so 2 17 1s.v gh= = .   
EVALUATE:   The acceleration and time of travel are different for an object sliding down an incline and an 
object in free-fall, but the final velocity is the same in these two cases. 

 6.27. IDENTIFY:   Apply tot .W K= ∆  
SET UP:   1 0,v =  2 .v v=  k kf mg= µ  and kf  does negative work. The force 36 0 NF = .  is in the 
direction of the motion and does positive work. 
EXECUTE:   (a) If there is no work done by friction, the final kinetic energy is the work done by the applied 
force, and solving for the speed, 

2 2 2(36 0 N)(1 20 m) 4 48 m/s.
(4 30 kg)

W Fs
v

m m
. .  = = = = .

.  
 

(b) The net work is k k( ) ,Fs f s F mg s− = − µ  so 
22( ) 2(36 0 N (0.30)(4.30 kg)(9.80 m/s )(1 20 m) 3 61 m/s

(4 30 kg)
kF mg s

v
m

− . − .  = = = .
.  

µ  

EVALUATE:   The total work done is larger in the absence of friction and the final speed is larger in that case. 
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 6.28. IDENTIFY and SET UP:   Use Eq. (6.6) to calculate the work done by the foot on the ball. Then use Eq. (6.2) 
to find the distance over which this force acts. 
EXECUTE:   tot 2 1W K K= −  

2 21 1
1 12 2 (0 420 kg)(2 00 m/s) 0 84 JK mv= = . . = .  

2 21 1
2 22 2 (0 420 kg)(6 00 m/s) 7 56 JK mv= = . . = .  

tot 2 1 7 56 J 0 84 J 6 72 JW K K= − = . − . = .  
The 40.0 N force is the only force doing work on the ball, so it must do 6.72 J of work. ( cos )FW F s= φ  

gives that  6 72 J 0 168 m.
cos (40 0 N)(cos0)
W

s
F

.= = = .
.φ

 

EVALUATE:   The force is in the direction of the motion so positive work is done and this is consistent with 
an increase in kinetic energy. 

 6.29. (a) IDENTIFY and SET UP:   Use ( cos )FW F s= φ  to find the work done by the force. Then use 

tot 2 1W K K= −  to find the final kinetic energy, and then 21
2 22K mv=  gives the final speed. 

EXECUTE:   tot 2 1,W K K= −  so 2 tot 1K W K= +  
2 21 1

1 12 2 (7 00 kg)(4 00 m/s) 56 0 JK mv= = . . = .  

The only force that does work on the wagon is the 10.0 N force. This force is in the direction of the 
displacement so 0= °φ  and the force does positive work: 

( cos ) (10 0 N)(cos0)(3 0 m) 30 0 JFW F s= = . . = .φ  
Then 2 tot 1 30 0 J 56 0 J 86 0 J.K W K= + = . + . = .  

21
2 22 ;K mv=  2

2
2 2(86 0 J) 4 96 m/s

7 00 kg
K

v
m

.= = = .
.

 

(b) IDENTIFY:   Apply mΣ =
G GF a  to the wagon to calculate a. Then use a constant acceleration equation to 

calculate the final speed. The free-body diagram is given in Figure 6.29. 
SET UP:    
 

 

 

EXECUTE:   x xF maΣ =  

xF ma=  

210 0 N 1 43 m/s
7 00 kgx

F
a

m
.= = = .

.
 

Figure 6.29   
 

 2 2
2 1 2 02 ( )x xv v a x x= + −  

 2 2 2
2 1 02 ( ) (4 00 m/s) 2(1 43 m/s )(3 0 m) 4 96 m/sx x xv v a x x= + − = . + . . = .  

EVALUATE:   This agrees with the result calculated in part (a). The force in the direction of the motion 
does positive work and the kinetic energy and speed increase. In part (b), the equivalent statement is that 
the force produces an acceleration in the direction of the velocity and this causes the magnitude of the 
velocity to increase. 

 6.30. IDENTIFY: Apply tot 2 1.W K K= −  
SET UP: 1 0.K =  The normal force does no work. The work W done by gravity is ,W mgh=  where 

sinh L= θ  is the vertical distance the block has dropped when it has traveled a distance L down the incline 
and θ  is the angle the plane makes with the horizontal. 
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EXECUTE: The work-energy theorem gives 2 2 2 2 sin .K W
v gh gL

m m
= = = = θ  Using the given 

numbers, 22(9.80 m/s )(1.35 m)sin36.9 3.99 m/s.v = ° =  

EVALUATE: The final speed of the block is the same as if it had been dropped from a height h. 
 6.31. IDENTIFY:   tot 2 1.W K K= −  Only friction does work. 

SET UP:   tot kk .fW W mgs= = −µ  2 0K =  (car stops). 21
1 02 .K mv=  

EXECUTE:   (a) tot 2 1W K K= −  gives 21
k 02 .mgs mv− = −µ  

2
0

k
.

2
v

s
g

=
µ

 

(b) (i) k k2 .b a=µ µ  
2
0

k constant
2
v

s
g

= =µ so k k .a a b bs s=µ µ  k

k

/2.a
b a a

b

s s s
µ
µ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

 The minimum stopping 

distance would be halved. (ii) 0 02 .b av v=  2
k0

1 constant,
2

s
gv

= =
µ

 so 2 2
0 0

.a b

a b

s s
v v

=  
2

0

0

4 .b
b a a

a

v
s s s

v
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 The 

stopping distance would become 4 times as great. (iii) 0 02 ,b av v=  k k2 .b a=µ µ  k
2
0

1 constant,
2

s
gv

= =µ  so 

k k
2 2
0 0

.a a b b

a b

s s
v v

=µ µ  
2

2k 0

k 0

1 (2) 2 .
2

a b
b a a a

b a

v
s s s s

v
µ
µ

⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 The stopping distance would double. 

EVALUATE:   The stopping distance is directly proportional to the square of the initial speed and indirectly 
proportional to the coefficient of kinetic friction. 

 6.32. IDENTIFY:   We know (or can calculate) the change in the kinetic energy of the crate and want to find the 
work needed to cause this change, so the work-energy theorem applies. 
SET UP:   2 21 1

tot f i f i2 2 .W K K K mv mv= ∆ = − = −  

EXECUTE:   2 21 1
tot f i 2 2(30.0 kg)(5.62 m/s) (30.0 kg)(3.90 m/s) .W K K= − = −  

tot 473 8 J 228 2 J 246 J.W = . − . =  
EVALUATE:   Kinetic energy is a scalar and does not depend on direction, so only the initial and final 
speeds are relevant.  

 6.33. IDENTIFY:   The elastic aortal material behaves like a spring, so we can apply Hooke’s law to it. 
SET UP:   spr ,F F=  where F is the pull on the strip or the force the strip exerts, and .F kx=  

EXECUTE:   (a) Solving F kx=  for k gives 1 50 N 40 0 N/m.
0 0375 m

F
k

x
.= = = .

.
 

(b) (40 0 N/m)(0 0114 m) 0 456 N.F kx= = . . = .  
EVALUATE:   It takes 0.40 N to stretch this material by 1.0 cm, so it is not as stiff as many laboratory 
springs. 

 6.34. IDENTIFY:   The work that must be done to move the end of a spring from 1x  to 2x is 2 21 1
2 12 2 .W kx kx= −  

The force required to hold the end of the spring at displacement x is .xF kx=  
SET UP:   When the spring is at its unstretched length, 0.x =  When the spring is stretched, 0,x >  and 
when the spring is compressed, 0.x <  

EXECUTE:   (a) 1 0x =  and 21
22 .W kx=  4

2 2
2

2 2(12 0 J) 2 67 10  N/m.
(0 0300 m)

W
k

x
.= = = . ×

.
 

(b) 4(2 67 10  N/m)(0 0300 m) 801 N.xF kx= = . × . =  

(c) 1 0,x =  2 0 0400 m.x = .-  4 21
2 (2 67 10  N/m)( 0 0400 m) 21 4 J.W = . × − . = .  

4(2 67 10  N/m)(0 0400 m) 1070 N.xF kx= = . × . =  
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EVALUATE:   When a spring, initially unstretched, is either compressed or stretched, positive work is done 
by the force that moves the end of the spring. 

 6.35. IDENTIFY:   The springs obey Hooke’s law and balance the downward force of gravity. 
SET UP:   Use coordinates with y+  upward. Label the masses 1, 2, and 3, with 1 the top mass and 3 the 
bottom mass, and call the amounts the springs are stretched 1,x 2,x  and 3.x  Each spring force is kx. 
EXECUTE:   (a) The three free-body diagrams are shown in Figure 6.35. 

 

 

Figure 6.35 
 

(b) Balancing forces on each of the masses and using F kx=  gives 3kx mg=  so 
2

3 3
(8.50 kg)(9 80 m/s ) 1.068 cm.

7 80 10 N/m
mg

x
k

.= = =
. ×

 2 3 2kx mg kx mg= + =  so 2 2 2.136 cm.mg
x

k
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

1 2 3kx mg kx mg= + =  so 3 3 3.204 cm.mg
x

k
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 Adding the original lengths to the distance stretched, 

the lengths of the springs, starting from the bottom one, are 13.1 cm, 14.1 cm, and 15.2 cm. 
EVALUATE:   The top spring stretches most because it supports the most weight, while the bottom spring 
stretches least because it supports the least weight. 

 6.36. IDENTIFY:   The magnitude of the work can be found by finding the area under the graph. 
SET UP:   The area under each triangle is 1/2 base height.× 0,xF >  so the work done is positive when  
x increases during the displacement. 
EXECUTE:   (a) 1/2 (8 m)(10 N) 40 J. =   
(b) 1/2 (4 m)(10 N) 20 J. =  
(c) 1/2 (12 m)(10 N) 60 J. =   
EVALUATE:   The sum of the answers to parts (a) and (b) equals the answer to part (c). 

 6.37. IDENTIFY:   Use the work-energy theorem and the results of Problem 6.36. 
SET UP:   For 0x =  to 8 0 m,x = .  tot 40 J.W =  For 0x =  to 12 0 m,x = .  tot 60 J.W =  

EXECUTE:   (a) (2)(40 J) 2 83 m/s
10 kg

v
 = = .   

(b) (2)(60 J) 3 46 m/s.
10 kg

v = = .  
 

 

EVALUATE:   
G
F is always in the -direction.x+  For this motion 

G
F  does positive work and the speed 

continually increases during the motion. 
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 6.38. IDENTIFY:   The spring obeys Hooke’s law. 
  SET UP:  Solve F kx=  for x to determine the length of stretch and use 21

2W kx= +  to assess the 

corresponding work. 

EXECUTE:  15 0 N 0 0500 m.
300 0 N/m

F
x

k
.= = = .
.

 The new length will be 0 240 m 0 0500 m 0 290 m. + . = . .  

The corresponding work done is 21 (300 0 N/m)(0 0500 m) 0 375 J.
2

W = . . = .  

EVALUATE:   In F = kx, F is always the force applied to one end of the spring, thus we did not need to 
double the 15.0 N force. Consider a free-body diagram of a spring at rest; forces of equal magnitude and 
opposite direction are always applied to both ends of every section of the spring examined. 

 6.39. IDENTIFY:   Apply Eq. (6.6) to the box. 
SET UP:   Let point 1 be just before the box reaches the end of the spring and let point 2 be where the 
spring has maximum compression and the box has momentarily come to rest. 
EXECUTE:   tot 2 1W K K= −  

21
1 02 ,K mv=  2 0K =  

Work is done by the spring force. 21
tot 22 ,W kx= −  where 2x  is the amount the spring is compressed. 

2 21 1
2 02 2kx mv− =-  and 2 0 (3 0 m/s) (6.0 kg)/(7500 N/m) 8 5 cmx v m/k= = . = .  

EVALUATE:   The compression of the spring increases when either 0v  or m increases and decreases when k 
increases (stiffer spring). 

 6.40. IDENTIFY:   The force applied to the springs is .xF kx=  The work done on a spring to move its end 

from 1x to 2x  is 2 21 1
2 12 2 .W kx kx= −  Use the information that is given to calculate k. 

SET UP:   When the springs are compressed 0.200 m from their uncompressed length, 1 0x =  and 

2 0 200 m.x = − .  When the platform is moved 0.200 m farther, 2x  becomes 0 400 m.− .  

EXECUTE:   (a) 2 2 2
2 1

2 2(80 0 J) 4000 N/m.
(0 200 m) 0

W
k

x x
.= = =

− . −
 (4000 N/m)( 0 200 m) 800 N.xF kx= = − . = −  

The magnitude of force that is required is 800 N. 
(b) To compress the springs from 1 0x =  to 2 0 400 m,x = − .  the work required is 

2 2 21 1 1
2 12 2 2 (4000 N/m)( 0 400 m) 320 J.W kx kx= − = − . =  The additional work required is 

320 J 80 J 240 J.− =  For 0 400 m,x = − . 1600 N.xF kx= = −  The magnitude of force required is 1600 N. 
EVALUATE:   More work is required to move the end of the spring from 0 200 mx = − .  to 0 400 mx = − .  
than to move it from 0x =  to 0 200 m,x = − .  even though the displacement of the platform is the same in 
each case. The magnitude of the force increases as the compression of the spring increases. 

 6.41. IDENTIFY:   Apply mΣ =
G GF a  to calculate the sµ  required for the static friction force to equal the spring 

force. 
SET UP:   (a) The free-body diagram for the glider is given in Figure 6.41. 

 

 EXECUTE:   y yF maΣ =  
0n mg− =  

n mg=  

s sf mg= µ  

Figure 6.41   
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x xF maΣ =  

s spring 0f F− =  

s 0mg kd− =µ  

s 2
(20 0 N/m)(0 086 m) 1 76
(0 100 kg)(9 80 m/s )

kd
mg

. .= = = .
. .

µ  

(b) IDENTIFY and SET UP:   Apply mΣ =
G GF a  to find the maximum amount the spring can be compressed 

and still have the spring force balanced by friction. Then use tot 2 1W K K= −  to find the initial speed that 
results in this compression of the spring when the glider stops. 
EXECUTE:   smg kd=µ  

2
s (0 60)(0 100 kg)(9 80 m/s ) 0 0294 m

20 0 N/m
mg

d
k

. . .= = = .
.

µ  

Now apply the work-energy theorem to the motion of the glider: 
tot 2 1W K K= −  

21
1 12 ,K mv=  2 0K =  (instantaneously stops) 

21
tot spring fric k2W W W kd mgd= + = − µ-  (as in Example 6.7) 

2 21
tot 2 (20 0 N/m)(0 0294 m) 0 47(0 100 kg)(9 80 m/s )(0 0294 m) 0 02218 JW = − . . − . . . . = − .  

Then tot 2 1W K K= −  gives 21
120 02218 J .mv− . = −  

1
2(0 02218 J) 0 67 m/s.

0 100 kg
v

.= = .
.

 

EVALUATE:   In Example 6.7 an initial speed of 1.50 m/s compresses the spring 0.086 m and in part (a) of 
this problem we found that the glider doesn’t stay at rest. In part (b) we found that a smaller displacement 
of 0.0294 m when the glider stops is required if it is to stay at rest. And we calculate a smaller initial speed 
(0.67 m/s) to produce this smaller displacement. 

 6.42. IDENTIFY:   For the spring, 2 21 1
1 22 2 .W kx kx= −  Apply tot 2 1.W K K= −  

SET UP:    x1 = –0.025 m and 2 0.x =  

EXECUTE:   (a) 2 21 1
12 2 (200 N/m)( 0 025 m) 0 0625 J,W kx= =  − .  = .   which rounds to 0.063 J. 

(b) The work-energy theorem gives 2
2 2(0 0625 J) 0 18 m/s.

(4 0 kg)
W

v
m

.  = = = .
.  

 

EVALUATE:   The block moves in the direction of the spring force, the spring does positive work and the 
kinetic energy of the block increases. 

 6.43. IDENTIFY and SET UP:   The magnitude of the work done by xF  equals the area under the xF  versus  
x curve. The work is positive when xF  and the displacement are in the same direction; it is negative when 
they are in opposite directions. 
EXECUTE:   (a) xF  is positive and the displacement x∆  is positive, so 0.W >  

1
2 (2 0 N)(2 0 m) (2 0 N)(1 0 m) 4 0 JW = . . + . . = .+  

(b) During this displacement 0,xF =  so 0.W =  

(c) xF  is negative, x∆  is positive, so 0.W <  1
2 (1 0 N)(2 0 m) 1 0 JW = − . . = − .  

(d) The work is the sum of the answers to parts (a), (b), and (c), so 4 0 J 0 1 0 J 3 0 J.W = . + − . = + .  
(e) The work done for 7 0 mx = .  to 3 0 mx = .  is 1.0 J.+  This work is positive since the displacement and 
the force are both in the -direction.x−  The magnitude of the work done for 3 0 mx = .  to 2 0 mx = .  is 2.0 J, 
the area under xF  versus x. This work is negative since the displacement is in the -directionx−  and the 
force is in the -direction.x+  Thus 1 0 J 2 0 J 1 0 J.W = . − . = − .+  
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EVALUATE:   The work done when the car moves from 2 0 mx = .  to 0x =  is 1
2 (2 0 N)(2 0 m) 2 0 J.− . . = − .  

Adding this to the work for 7 0 mx = .  to 2 0 mx = .  gives a total of 3 0 JW = − .  for 7 0 mx = .  to 0x = .  
The work for 7 0 mx = .  to 0x =  is the negative of the work for 0x =  to 7 0 m.x = .  

 6.44. IDENTIFY:   Apply tot 2 1.W K K= −  
SET UP:   1 0.K =  From Exercise 6.43, the work for 0x =  to 3 0 mx = .  is 4.0 J. W for 0x =  to 4 0 mx = .  
is also 4.0 J. For 0x =  to 7 0 m,x = .  3 0 J.W = .  

EXECUTE:   (a) 4 0 J,K = .  so 2 / 2(4 0 J)/(2 0 kg) 2 00 m/s.v K m= = . .  = .  
(b) No work is done between 3 0 mx = .   and 4 0 m,x = .  so the speed is the same, 2.00 m/s. 

(c) 3 0 J,K = .   so 2 / 2(3.0 J)/(2.0 kg) 1.73 m/s.v K m= =  =   
EVALUATE:   In each case the work done by F is positive and the car gains kinetic energy. 

 6.45. IDENTIFY and SET UP:   Apply Eq. (6.6). Let point 1 be where the sled is released and point 2 be at 0x =  
for part (a) and at 0 200 mx = − .  for part (b). Use Eq. (6.10) for the work done by the spring and calculate 2K .  

Then 21
2 22K mv=  gives 2v .  

EXECUTE:   (a) tot 2 1W K K= −  so 2 1 totK K W= +  

1 0K =  (released with no initial velocity), 21
2 22K mv=  

The only force doing work is the spring force. Eq. (6.10) gives the work done on the spring to move its end 
from 1x  to 2x .  The force the spring exerts on an object attached to it is ,F kx= -  so the work the spring 
does is 

( )2 2 2 21 1 1 1
spr 2 1 1 22 2 2 2 .W kx kx kx kx= − = −-  Here 1 0 375 mx = .-  and 2 0.x =  Thus 

21
spr 2 (4000 N/m)( 0 375 m) 0 281 J.W = − . − =  

2 1 tot 0 281 J 281 J.K K W= + = + =  

Then 21
2 22K mv=  implies 2

2
2 2(281 J) 2 83 m/s.

70 0 kg
K

v
m

= = = .
.

 

(b) 2 1 totK K W= +  

1 0K =  
2 21 1

tot spr 1 22 2 .W W kx kx= = −  Now 2 0 200 m,x = − .  so 
2 21 1

spr 2 2(4000 N/m)( 0 375 m) (4000 N/m)( 0 200 m) 281 J 80 J 201 JW = − . − − . = − =  

Thus 2 0 201 J 201 JK = + =  and 21
2 22K mv=  gives 2

2
2 2(201 J) 2 40 m/s

70 0 kg
K

v
m

= = = . .
.

 

EVALUATE:   The spring does positive work and the sled gains speed as it returns to 0x = .  More work is 
done during the larger displacement in part (a), so the speed there is larger than in part (b). 

 6.46. IDENTIFY:   xF kx=  
SET UP:   When the spring is in equilibrium, the same force is applied to both ends of any segment of the 
spring. 
EXECUTE:   (a) When a force F is applied to each end of the original spring, the end of the spring is 
displaced a distance x. Each half of the spring elongates a distance h ,x  where h /2.x x=  Since F is also the 

force applied to each half of the spring, F kx= and h h.F k x=  h hkx k x=  and h
h

2 .x
k k k

x
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

(b) The same reasoning as in part (a) gives seg 3 ,k k=  where segk  is the force constant of each segment. 
EVALUATE:   For half of the spring the same force produces less displacement than for the original spring. 
Since ,k F/x=  smaller x for the same F means larger k. 
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 6.47. IDENTIFY and SET UP:   Apply Eq. (6.6) to the glider. Work is done by the spring and by gravity. Take 
point 1 to be where the glider is released. In part (a) point 2 is where the glider has traveled 1.80 m and 

2 0K = .  There are two points shown in Figure 6.47a. In part (b) point 2 is where the glider has traveled 
0.80 m. 
EXECUTE:   (a) tot 2 1 0.W K K= − =  Solve for 1,x  the amount the spring is initially compressed. 

 

 tot spr 0wW W W= + =  

So spr wW W= −  
(The spring does positive work on the glider since 
the spring force is directed up the incline, the same 
as the direction of the displacement.) 

Figure 6.47a   
 

The directions of the displacement and of the gravity force are shown in Figure 6.47b. 
 

 ( cos ) ( cos130 0 )wW w s mg s= = . °φ  
2(0 0900 kg)(9 80 m/s )(cos130 0 )(1 80 m) 1 020 JwW = . . . ° . = − .  

(The component of w parallel to the incline is  
directed down the incline, opposite to the  
displacement, so gravity does negative work.) 

Figure 6.47b   
 

spr 1 020 JwW W= − = .+  

21
spr 12W kx=  so spr

1
2 2(1 020 J) 0 0565 m

640 N/m
W

x
k

.= = = .  

(b) The spring was compressed only 0.0565 m so at this point in the motion the glider is no longer in 
contact with the spring. Points 1 and 2 are shown in Figure 6.47c. 

 

 

tot 2 1W K K= −  

2 1 totK K W= +  

1 0K =  

Figure 6.47c   
 

tot spr wW W W= +  

From part (a), spr 1 020 JW = .  and 
2( cos130 0 ) (0 0900 kg)(9 80 m/s )(cos130 0 )(0 80 m) 0 454 JwW mg s= . ° = . . . ° . = − .  

Then 2 spr 1 020 J 0 454 J 0 57 JwK W W= + = . − . = . .+ +  

EVALUATE:   The kinetic energy in part (b) is positive, as it must be. In part (a), 2 0x =  since the spring 
force is no longer applied past this point. In computing the work done by gravity we use the full 0.80 m the 
glider moves. 
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 6.48. IDENTIFY:   Apply tot 2 1W K K= −  to the brick. Work is done by the spring force and by gravity. 
SET UP:   At the maximum height, 0.v =  Gravity does negative work, grav .W mgh= −  The work done by 

the spring is 21
2 ,kd  where d is the distance the spring is compressed initially. 

EXECUTE:   The initial and final kinetic energies of the brick are both zero, so the net work done  
on the brick by the spring and gravity is zero, so 2(1/2) 0,kd mgh− =  or 2d mgh / k= =  

22(1 80 kg)(9 80 m s )(3 6 m)/(450 N m) 0 53 m/ /.  . .  = .  .  The spring will provide an upward force while the 
spring and the brick are in contact. When this force goes to zero, the spring is at its uncompressed length. But 
when the spring reaches its uncompressed length the brick has an upward velocity and leaves the spring. 
EVALUATE:   Gravity does negative work because the gravity force is downward and the brick moves 
upward. The spring force does positive work on the brick because the spring force is upward and the brick 
moves upward. 

 6.49. IDENTIFY:   The force does work on the box, which gives it kinetic energy, so the work-energy theorem 
applies. The force is variable so we must integrate to calculate the work it does on the box. 

SET UP:   2 21 1
tot f i f i2 2W K K K mv mv= ∆ = − = −  and 2

tot
1

( ) .
x

x
W F x dx= ∫  

EXECUTE:   2

1

14 0m
tot 0

( ) [18 0 N (0 530 N/m) ]  
x

x
W F x dx x dx

.
= = . − .∫ ∫  

2
tot (18 0 N)(14 0 m) (0 265 N/m)(14 0 m) 252 0 J 51 94 J 200 1 J.W = . . − . . = . − . = .  The initial kinetic energy is 

zero, so 21
tot f i f2 .W K K K mv= ∆ = − =  Solving for vf  gives tot

f
2 2(200 1 J) 8 17 m/s.

6 00 kg
W

v
m

.= = = .
.

 

EVALUATE:   We could not readily do this problem by integrating the acceleration over time because we 
know the force as a function of x, not of t. The work-energy theorem provides a much simpler method. 

 6.50. IDENTIFY:   The force acts through a distance over time, so it does work on the crate and hence supplies 
power to it. The force exerted by the worker is variable but the acceleration of the cart is constant. 
SET UP:   Use P Fv=  to find the power, and we can use 0v v at= +  to find the instantaneous velocity. 
EXECUTE:   First find the instantaneous force and velocity: (5 40 N/s)(5 00 s) 27 0 NF = . . = .  and 

2
0 (2 80 m/s )(5 00 s) 14 0 m/s.v v at= + = . . = .  Now find the power: (27 0 N)(14 0 m/s) 378 W.P = . . =  

EVALUATE:   The instantaneous power will increase as the worker pushes harder and harder. 
 6.51. IDENTIFY:   Apply the relation between energy and power. 

SET UP:   Use W
P

t
=

∆
 to solve for W, the energy the bulb uses. Then set this value equal to 21

2 mv  and 

solve for the speed. 
EXECUTE:   5(100 W)(3600 s) 3.6 10 JW P t= ∆ = = ×  

53.6 10 JK = ×  so 
52 2(3.6 10 J) 100 m/s

70 kg
K

v
m

×= = =  

EVALUATE:   Olympic runners achieve speeds up to approximately 10 m/s, or roughly one-tenth the result 
calculated. 

 6.52. IDENTIFY:   Knowing the rate at which energy is consumed, we want to find out the total energy used. 
SET UP:   Find the elapsed time t∆  in each case by dividing the distance by the speed, .t d/v∆ =  Then 
calculate the energy as W P t= ∆ .  

EXECUTE:   Running: 3(5 0 km)/(10 km/h) 0 50 h 1 8 10 st∆ = . = . = . × .  The energy used is 
3 6(700 W)(1 8 10 s) 1 3 10 JW = . × = . × .  

Walking: 35 0 km 3600 s 6 0 10 s
3 0 km/h h

t
. ⎛ ⎞∆ = = . × .⎜ ⎟. ⎝ ⎠

 The energy used is 

3 6(290 W)(6 0 10 s) 1 7 10 JW = . × = . × .  
EVALUATE:   The less intense exercise lasts longer and therefore burns up more energy than the intense exercise. 
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 6.53. IDENTIFY:   av .W
P

t
∆=
∆

 W∆ is the energy released. 

SET UP:   W∆  is to be the same. 71 y 3 156 10  s.= . ×  
EXECUTE:   av constant,P t W∆ = ∆ =  so av-sun sun av-m m.P t P t∆ = ∆  

5 7
13sun

av-m av-sun
m

(2 5 10  y)(3 156 10  s/y) 3 9 10 .
0 20 s

t
P P P P

t

⎛ ⎞⎛ ⎞∆ . × . ×= = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟∆ .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Since the power output of the magnetar is so much larger than that of our sun, the 
mechanism by which it radiates energy must be quite different. 

 6.54. IDENTIFY:   The thermal energy is produced as a result of the force of friction, k .F mg= µ  The average 
thermal power is thus the average rate of work done by friction or || av.P F v=  

SET UP:   2 1
av

8 00 m/s 0 4 00 m/s
2 2

v v
v

+ . +⎛ ⎞= = = .⎜ ⎟
⎝ ⎠

 

EXECUTE:   2
av [(0 200)(20 0 kg)(9 80 m/s )](4 00 m/s) 157 WP Fv= = . . . . =  

EVALUATE:   The power could also be determined as the rate of change of kinetic energy, ,K/t∆  where the 
time is calculated from f iv v at= +  and a is calculated from a force balance, k .F ma mgΣ = = µ  

 6.55. IDENTIFY:   Use the relation ||P F v=  to relate the given force and velocity to the total power developed. 
SET UP:   1 hp 746 W=  

EXECUTE:   The total power is 3
|| (165 N)(9 00 m/s) 1 49 10  W.P F v= = . = . ×  Each rider therefore 

contributes 3
each rider (1 49 10  W)/2 745 W 1 hp.P = . × = ≈  

EVALUATE:   The result of one horsepower is very large; a rider could not sustain this output for long 
periods of time. 

 6.56. IDENTIFY and SET UP:   Calculate the power used to make the plane climb against gravity. Consider the 
vertical motion since gravity is vertical. 
EXECUTE:   The rate at which work is being done against gravity is 

2(700 kg)(9 80 m/s )(2 5 m/s) 17 15 kW.P Fv mgv= = = . . = .  
This is the part of the engine power that is being used to make the airplane climb. The fraction this is of the 
total is 17 15 kW/75 kW 0 23. = . .  
EVALUATE:   The power we calculate for making the airplane climb is considerably less than the power 
output of the engine. 

 6.57. IDENTIFY:   av .W
P

t
∆=
∆

 The work you do in lifting mass m a height h is mgh. 

SET UP:   1 hp 746 W=  
EXECUTE:   (a) The number per minute would be the average power divided by the work (mgh) required to 

lift one box, 2
(0 50 hp)(746 W/hp) 1 41/s,

(30 kg)(9 80 m/s )(0 90 m)
. = .

. .
 or 84 6/min..  

(b) Similarly, 2
(100 W) 0 378 s,

(30 kg)(9 80 m/s )(0 90 m)
/= .

. .
 or 22 7 min./.  

EVALUATE:   A 30-kg crate weighs about 66 lbs. It is not possible for a person to perform work at this rate. 
 6.58. IDENTIFY and SET UP:   Use Eq. (6.15) to relate the power provided and the amount of work done against 

gravity in 16.0 s. The work done against gravity depends on the total weight which depends on the number 
of passengers. 
EXECUTE:   Find the total mass that can be lifted: 

av ,W mgh
P

t t
∆= =
∆

 so avP t
m

gh
=  

4
av

746 W(40 hp) 2 984 10  W
1 hp

P
⎛ ⎞

= = . ×⎜ ⎟
⎝ ⎠

 



6-18   Chapter 6 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

4
3av

2
(2 984 10  W)(16 0 s) 2 436 10  kg

(9 80 m/s )(20 0 m)
P t

m
gh

. × .= = = . ×
. .

 

This is the total mass of elevator plus passengers. The mass of the passengers is 

3 32 436 10  kg 600 kg 1 836 10  kg.. × − = . ×  The number of passengers is 
31 836 10  kg 28 2.

65 0 kg
. × = .

.
  

28 passengers can ride. 
EVALUATE:   Typical elevator capacities are about half this, in order to have a margin of safety. 

 6.59. IDENTIFY:   To lift the skiers, the rope must do positive work to counteract the negative work developed by 
the component of the gravitational force acting on the total number of skiers, rope sin .F Nmg= α  

SET UP:   ropeP F v F v= =||  

EXECUTE:   rope rope [ (cos )] .P F v Nmg v= = + φ  

2
rope

1 m/s[(50 riders)(70 0 kg)(9 80 m/s )(cos75 0)] (12 0 km/h) .
3 60 km/h

P
⎡ ⎤⎛ ⎞= . . . .⎢ ⎥⎜ ⎟.⎝ ⎠⎣ ⎦

4
rope 2 96 10  W 29 6 kW.P = . × = .  

EVALUATE:   Some additional power would be needed to give the riders kinetic energy as they are 
accelerated from rest. 

 6.60. IDENTIFY:   We want to find the power supplied by a known force acting on a crate at a known velocity.  
SET UP:    We know the vector components, so we use P = ⋅

G GF v  = Fxvx + Fyvy  
EXECUTE:    P = Fxvx + Fyvy = (–8.00 N)(3.20 m/s) + (3.00 N)(2.20 m/s) = –19.0 W. 
EVALUATE:   The power is negative because the x-component of the force is opposite to the x-component 
of the velocity and hence opposes the motion of the crate. 

 6.61. IDENTIFY:   Relate power, work, and time. 
SET UP:   Work done in each stroke is W Fs=  and av / .P W t=  
EXECUTE:   100 strokes per second means av 100 /P Fs t=  with 1 00 s, 2t F mg= . =  and 0 010 ms = . .  

av 0 20 WP = . .  
EVALUATE:   For a 70-kg person to apply a force of twice his weight through a distance of 0.50 m for  
100 times per second, the average power output would be 47 0 10  W.. ×  This power output is very far 
beyond the capability of a person. 

 6.62. IDENTIFY:   The force has only an x-component and the motion is along the x-direction, so 2

1

.
x

xx
W F dx= ∫  

SET UP:   1 0x =  and 2 6 9 m.x = .  
EXECUTE:   The work you do with your changing force is 

2 2 2 2 2

1 11 1 1

2( ) ( 20 0 N) (3 0 N/m) ( 20 0 N) | (3 0 N/m)( /2) |
x x x x x

x xx x x
W F x dx dx xdx x x= = − . − . = − . − .∫ ∫ ∫

138 N m 71 4 N m 209 J.W =  ⋅ − . ⋅ =  - -  
EVALUATE:   The work is negative because the cow continues to move forward (in the -direction)x+  as 
you vainly attempt to push her backward.  

 6.63. IDENTIFY and SET UP:   Since the forces are constant, Eq. (6.2) can be used to calculate the work done by 
each force. The forces on the suitcase are shown in Figure 6.63a. 

 

 
Figure 6.63a 
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In part (f), Eq. (6.6) is used to relate the total work to the initial and final kinetic energy. 
EXECUTE:   (a) ( cos )FW F s= φ  

Both 
G
F  and Gs  are parallel to the incline and in the same direction, so 90= °φ  and 

(160 N)(3 80 m) 608 J.FW Fs= = . =  
(b) The directions of the displacement and of the gravity force are shown in Figure 6.63b. 

 

 

 ( cos )wW w s= φ  
122 ,= °φ  so 

(196 N)(cos122 )(3 80 m)wW = ° .  
395 JwW = −  

Figure 6.63b   
 

Alternatively, the component of w parallel to the incline is sin32w °.  This component is down the incline 
so its angle with Gs  is 180= °.φ  sin32 (196 Nsin32 )(cos180 )(3 80 m) 395 JwW ° = ° ° . = − .  The other 
component of w, cos32 ,w °  is perpendicular to Gs  and hence does no work. Thus sin 25 315 J,w wW W °= = −  
which agrees with the above. 
(c) The normal force is perpendicular to the displacement ( 90 ),= °φ  so 0.nW =  
(d) cos32n w= °  so k k k cos32 (0 30)(196 N)cos32 49.87 Nf n w= = ° = . ° =µ µ  

k( cos ) (49.87 N)(cos180 )(3 80 m) 189 J.fW f x= = ° . = −φ  

(e) tot 608 J 395 J 0 189 J 24 J.F w n fW W W W W= + + + = + − + − =  

(f) tot 2 1,W K K= −  1 0,K =  so 2 totK W=  

21
2 tot2 mv W=  so tot

2
2 2(24 J) 1 5 m/s.

20 0 kg
W

v
m

= = = .
.

 

EVALUATE:   The total work done is positive and the kinetic energy of the suitcase increases as it moves up 
the incline. 

 6.64. IDENTIFY:   The work he does to lift his body a distance h is .W mgh=  The work per unit mass is 
( ) .W/m gh=  
SET UP:   The quantity gh has units of N/kg. 
EXECUTE:   (a) The man does work, (9 8 N/kg)(0 4 m) 3 92 J/kg..  . = .  
(b) (3 92 J/kg)/(70 J/kg) 100 5 6%..   × = .  
(c) The child does work (9 8 N/kg)(0 2 m) 1 96 J/kg..  . = .  (1 96 J/kg)/(70 J/kg) 100 2 8%..   × = .  
(d) If both the man and the child can do work at the rate of 70 J/kg,  and if the child only needs to use 
1 96 J/kg.   instead of 3 92 J/kg,.   the child should be able to do more chin-ups. 
EVALUATE:   Since the child has arms half the length of his father’s arms, the child must lift his body only 
0.20 m to do a chin-up. 

 6.65. IDENTIFY:   Apply mΣ =
G GF a  to each block to find the tension in the string. Each force is constant and 

cos .W Fs= φ  
SET UP:   The free-body diagram for each block is given in Figure 6.65 (next page). 

20 0 N 2 04 kgAm
g
.= = .  and 12 0 N 1 22 kg.Bm

g
.= = .  

EXECUTE:   k .AT f m a− = .B Bw T m a− =  k ( ) .B A Bw f m m a− = +  

(a) k 0.f =  B

A B

w
a

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 and 7 50 N.A A

B B
A B A B

m w
T w w

m m w w
⎛ ⎞ ⎛ ⎞

= = = .⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

20.0 N block: tot (7 50 N)(0 750 m) 5 62 J.W Ts= = . . = .  
12.0 N block: tot ( ) (12 0 N 7 50 N)(0 750 m) 3 38 J.BW w T s= − = . − . . = .  
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(b) k k 6 50 N.Af w= = .µ  
k .B A

A B

w w
a

m m
−=

+
µ

 

k k k k( ) ( ) .A A
B A A B A

A B A B

m w
T f w w w w w

m m w w
µ µ µ

⎛ ⎞ ⎛ ⎞
= + − = + −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

6 50 N (5 50 N)(0 625) 9 94 N.T = . + . . = .  

20.0 N block: tot k( ) (9 94 N 6 50 N)(0 750 m) 2 58 J.W T f s= − = . − . . = .  
12.0 N block: tot ( ) (12 0 N 9 94 N)(0 750 m) 1 54 J.BW w T s= − = . − . . = .  
EVALUATE:   Since the two blocks move with equal speeds, for each block tot 2 1W K K= −  is proportional 
to the mass (or weight) of that block. With friction the gain in kinetic energy is less, so the total work on 
each block is less. 

 

      

Figure 6.65 
 

 6.66. IDENTIFY:   cosW Fs= φ  and tot 2 1.W K K= −  
SET UP:   k k .f n= µ  The normal force is cos ,n mg= θ  with 24 0 .= . °θ  The component of the weight 
parallel to the incline is sin .mg θ  
EXECUTE:   (a) 180= °φ  and 

2
k k( cos ) (0 31)(5 00 kg)(9 80 m/s )(cos 24 0 )(2.80 m) 38.9 J.fW f s mg s= − = − = − . . . . ° = −µ θ  

(b) 2(5 00 kg)(9 80 m/s )(sin24 0 )(2.80 m) 55.8 J. . . ° = .  
(c) The normal force does no work. 
(d) tot 55.8 J 38.9 J 16.9 JW = − = + .  

(e) 2
2 1 tot (1/2)(5 00 kg)(2 20 m/s) 16.9 J 29.0 J,K K W= + = . . + =  and so 

2 2(29.0 J)/(5 00 kg) 3.41 m/s.v = . =   
EVALUATE:   Friction does negative work and gravity does positive work. The net work is positive and the 
kinetic energy of the object increases. 

 6.67. IDENTIFY:   The initial kinetic energy of the head is absorbed by the neck bones during a sudden stop. 
Newton’s second law applies to the passengers as well as to their heads. 
SET UP:   In part (a), the initial kinetic energy of the head is absorbed by the neck bones, so 

21
max2 8 0 Jmv = . .  For 

part (b), assume constant acceleration and use f iv v at= +  with i 0,v =  to calculate a; then apply 

netF ma=  to find the net accelerating force. 

Solve: (a) max
2(8 0 J) 1 8 m/s 4 0 mph.
5 0 kg

v
.= = . = .

.
 

(b) 2f i
3

1 8 m/s 0 180 m/s 18 ,
10 0 10 s

v v
a g

t −
− . −= = = ≈

. ×
 and 2

net (5 0 kg)(180 m/s ) 900 N.F ma= = . =  

EVALUATE:   The acceleration is very large, but if it lasts for only 10 ms it does not do much damage. 
 6.68. IDENTIFY:   The force does work on the object, which changes its kinetic energy, so the work-energy 

theorem applies. The force is variable so we must integrate to calculate the work it does on the object. 

SET UP:   2 21 1
tot f i f i2 2W K K K mv mv= ∆ = − = −  and 2

tot
1

( ) .
x

x
W F x dx= ∫  
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EXECUTE:   2

1

5.00 m 2 2
tot 0

( ) [ 12 0 N (0 300 N/m ) ] .
x

x
W F x dx x dx= = − . + .∫ ∫  

2 3
tot (12 0 N)(5 00 m) (0 100 N/m )(5 00 m) 60 0 J 12 5 J 47 5 J.W = − . . + . . = − . + . = − .  

2 21 1
tot f i2 2 47 5 J,W mv mv= − = − .  so the final velocity is  

2 2
f i

2(47 5 J) 2(47 5 J)(6 00 m/s) 4 12 m/s.
5 00 kg

v v
m
. .= − = . − = .

.
 

EVALUATE:   We could not readily do this problem by integrating the acceleration over time because we 
know the force as a function of x, not of t. The work-energy theorem provides a much simpler method. 

 6.69. IDENTIFY: Calculate the work done by friction and apply tot 2 1.W K K= −  Since the friction force is not 
constant, use Eq. (6.7) to calculate the work. 
SET UP: Let x be the distance past P. Since kµ increases linearly with x, k 0.100 .Ax= +µ  When 

12.5 m,x =  k 0.600,=µ  so 0.500/(12.5 m) 0 0400/m.A .= =  

EXECUTE: (a) tot 2 1W K K K= ∆ = −  gives 2
k 1

10 .
2

μ mgdx mv− = −∫  Using the above expression for k ,µ  

2 2
10

1(0 100 )
2

x
g . Ax dx v+ =∫ and 

2
22

2 1
1(0.100) .

2 2
x

g x A v
⎡ ⎤

+ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

2
2 22

2
1(9.80 m/s ) (0.100) (0.0400/m) (4.50 m/s) .

2 2
x

x
⎡ ⎤

+ =⎢ ⎥
⎢ ⎥⎣ ⎦

 Solving for 2x  gives 2 5.11 m.x =  

(b) k 0.100 (0.0400/m)(5 11 m) 0.304.= + =µ  

(c) tot 2 1W K K= −  gives 2
k 2 1

10 .
2

μ mgx mv− = −  
2 2
1

2 2
k

(4.50 m/s) 10.3 m.
2 2(0.100)(9.80 m/s )

v
x

μ g
= = =  

EVALUATE: The box goes farther when the friction coefficient doesn’t increase. 
 6.70. IDENTIFY:   Use Eq. (6.7) to calculate W. 

SET UP:   1 0.x =  In part (a), 2 0 050 m.x = .  In part (b), 2 0 050 m.x = − .  

EXECUTE:   (a) 2 2 2 3 2 3 4
2 2 20 0

( ) .
2 3 4

x x k b c
W Fdx kx bx cx dx x x x= = − + = − +∫ ∫  

2 2 3 3 4
2 2 2(50 0 N m) (233 N m ) (3000 N m ) .W / x / x / x= . − +  When 2 0 050 m,x = .   0 12 J.W = .   

(b) When 2 0 050 m,x = − .  0 17 J.W = .   

(c) It’s easier to stretch the spring; the quadratic 2bx−  term is always in the –x-direction, and so the needed 
force, and hence the needed work, will be less when 2 0.x >  
EVALUATE:   When 0 050 m,x = . 4 75 N.xF = .  When 0 050 m,x = − . 8 25 N.xF = − .  

 6.71. IDENTIFY and SET UP:   Use mΣ =
G GF a  to find the tension force T. The block moves in uniform circular 

motion and rad= .G Ga a  
(a) The free-body diagram for the block is given in Figure 6.71. 

 

 EXECUTE:   x xF maΣ =  
2v

T m
R

=  

2(0 70 m/s)(0 0600 kg) 0 074 N.
0 40 m

T
.= . = .

.
 

Figure 6.71   
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(b) 
2 2(2 80 m/s)(0 0600 kg) 4.7 N.

0 10 m
v

T m
R

.= = . =
.

 

(c) SET UP:   The tension changes as the distance of the block from the hole changes. We could use 
2

1

x
xx

W F dx=  ∫  to calculate the work. But a much simpler approach is to use tot 2 1W K K= − .  

EXECUTE:   The only force doing work on the block is the tension in the cord, so tot TW W= .  
2 21 1

1 12 2 (0 0600 kg)(0 70 m/s) 0 01470 J,K mv= = . . = .  2 21 1
2 22 2 (0 0600 kg)(2 80 m/s) 0 2352 J,K mv= = . . = .  so 

tot 2 1 0 2352 J 0 01470 J 0 22 J.W K K= − = . − . = .  This is the amount of work done by the person who pulled 
the cord. 
EVALUATE:   The block moves inward, in the direction of the tension, so T does positive work and the 
kinetic energy increases. 

 6.72. IDENTIFY:   Use Eq. (6.7) to find the work done by F. Then apply tot 2 1.W K K= −  

SET UP:   2
1 .dx
xx

= −∫  

EXECUTE:   2

1
2

1 2

1 1 .
x

x
W dx

x x x
α α

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∫  

26 2 1 9 1 17(2 12 10  N m ) (0 200 m ) (1 25 10  m ) 2 65 10  J.W − − − −⎡ ⎤= . × ⋅ . − . × = − . ×⎣ ⎦  

Note that 1x  is so large compared to 2x that the term 11/x  is negligible. Then, using Eq. (6.13) and solving 
for 2,v  

17
2 5 2 5

2 1 27
2 2( 2 65 10  J)(3 00 10  m/s) 2 41 10  m/s

(1 67 10  kg)
W

v v
m

−

−
− . ×= + = . × + = . × .
. ×

 

(b) With 2 10, .K W K= = −  Using 
2

,W
x

= − α  

26 2
10

2 2 27 5 2
1 1

2 2(2 12 10  N m ) 2 82 10  m.
(1 67 10  kg)(3 00 10  m/s)

x
K mv

−
−

−
. × ⋅= = = = . ×

. × . ×
α α  

(c) The repulsive force has done no net work, so the kinetic energy and hence the speed of the proton have 
their original values, and the speed is 53 00 10  m/s.. ×  
EVALUATE:   As the proton moves toward the uranium nucleus the repulsive force does negative work and 
the kinetic energy of the proton decreases. As the proton moves away from the uranium nucleus the 
repulsive force does positive work and the kinetic energy of the proton increases.  

 6.73. IDENTIFY:   The negative work done by the spring equals the change in kinetic energy of the car. 

SET UP:   The work done by a spring when it is compressed a distance x from equilibrium is 21 .
2

kx−  

2 0.K =  

EXECUTE:   21
2 12 kx K K− = −  gives 2 21 1

12 2kx mv=  and 
2 2 2 2 4
1( )/ [(1200 kg)(0 65 m/s) ]/(0 090 m) 6 3 10  N/m.k mv x= = . . = . ×  

  EVALUATE:   When the spring is compressed, the spring force is directed opposite to the displacement of 
the object and the work done by the spring is negative.  

 6.74. IDENTIFY and SET UP:   Use Eq. (6.6). You do positive work and gravity does negative work. Let point 1 
be at the base of the bridge and point 2 be at the top of the bridge. 
EXECUTE:   (a) tot 2 1W K K= −  

2 21 1
1 12 2 (80 0 kg)(5 00 m/s) 1000 JK mv= = . . =  

2 21 1
2 22 2 (80 0 kg)(1 50 m/s) 90 JK mv= = . . =  

tot 90 J 1000 J 910 JW = − = −  
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(b) Neglecting friction, work is done by you (with the force you apply to the pedals) and by gravity: 

tot you gravityW W W= + .  The gravity force is 2(80 0 kg)(9 80 m/s ) 784 N,w mg= = . . =  downward. The 
displacement is 5.20 m, upward. Thus 180= °φ  and 

gravity ( cos ) (784 N)(5 20 m)cos180 4077 JW F s= = . ° = −φ  

Then tot you gravityW W W= +  gives 

you tot gravity 910 J ( 4077 J) 3170 JW W W= − = − − − = +  
EVALUATE:   The total work done is negative and you lose kinetic energy. 
  

 6.75. IDENTIFY and SET UP:   Use Eq. (6.6). Work is done by the spring and by gravity. Let point 1 be where the 
textbook is released and point 2 be where it stops sliding. 2 0x =  since at point 2 the spring is neither 
stretched nor compressed. The situation is sketched in Figure 6.75. 
EXECUTE:    

tot 2 1W K K= −  

1 0K ,=  2 0K =  

tot fric sprW W W= +  

Figure 6.75   
 

21
spr 12 ,W kx=  where 1 0 250 mx = .  (Spring force is in direction of motion of block so it does positive work.) 

fric kW mgd= −µ  

Then tot 2 1W K K= −  gives 21
1 k2 0kx mgd− =µ  

2 2
1

2
k

(250 N/m) (0 250 m) 1 1 m,
2 2(0 30) (2 50 kg) (9 80 m/s )

kx
d

mg
.= = = .

. . .µ
 measured from the point where the block was released. 

EVALUATE:   The positive work done by the spring equals the magnitude of the negative work done by 
friction. The total work done during the motion between points 1 and 2 is zero, and the textbook starts and 
ends with zero kinetic energy. 

 6.76. IDENTIFY:   Apply tot 2 1.W K K= −  
SET UP:   Let 0x be the initial distance the spring is compressed. The work done by the spring is 

2 21 1
02 2 ,kx kx− where x is the final distance the spring is compressed. 

EXECUTE:   (a) Equating the work done by the spring to the gain in kinetic energy, 2 21 1
02 2 ,kx mv=  so 

0
400 N/m (0 060 m) 6 93 m/s

0 0300 kg
k

v x
m

= = . = . .
.

 

(b) totW  must now include friction, so 2 21 1
tot 0 02 2 ,mv W kx fx= = −  where f is the magnitude of the friction 

force. Then, 

2 2
0 0

2 400 N/m 2(6 00 N)(0 060 m) (0 060 m) 4.90 m/s.
0 0300 kg (0 0300 kg)

k f
v x x

m m
.= − = . − . =

. .
 

(c) The greatest speed occurs when the acceleration (and the net force) are zero. Let x be the amount the 

spring is still compressed, so the distance the ball has moved is 0 .x x−   

6 00 N,
400 N/m

f
kx f x

k
.=  = = =  

0 0150 m..  
The ball is 0.0150 m from the end of the barrel, or 0.0450 m from its initial position. 
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To find the speed, the net work is 2 21
tot 0 02 ( ) ( ),W k x x f x x= − − −  so the maximum speed is  

2 2
max 0 0

2( ) ( ).k f
v x x x x

m m
= − − −

2 2
max

400 N/m 2(6 00 N)(0 060 m) (0 0150 m) (0 060 m 0 0150 m) 5 20 m/s
(0 0300 kg) (0 0300 kg)

v
.⎡ ⎤= . − .  − .  − .  = .⎣ ⎦. .

 

  EVALUATE:   The maximum speed with friction present (part (c)) is larger than the result of part (b) but 
smaller than the result of part (a). 

 6.77. IDENTIFY:   A constant horizontal force pushes a block against a spring on a rough floor. The work-energy 
theorem and Newton’s second law both apply. 
SET UP:   In part (a), we apply the work-energy theorem tot 2 1W K K= −  to the block. fk = µkn and Wspring = 
–½ kx2. In part (b), we apply Newton’s second law to the block. 
EXECUTE:   (a) WF + Wspring + Wf = K2 – K1. Fx – ½ kx2 – µkmgx = ½ mv2 – 0. Putting in the numbers from 
the problem gives (82.0 N)(0.800 m) – (130.0 N/m)(0.800 m)2/2 – (0.400)(4.00 kg)(9.80 m/s2)(0.800 m) = 
(4.00 kg)v2/2, v = 2.39 m/s. 
(b) Looking at quantities parallel to the floor, with the positive direction toward the wall, Newton’s second 
law gives F – fk – Fspring = ma. 
F – µkmg – kx = ma:  82.0 N – (0.400)(4.00 kg)(9.80 m/s2) – (130.0 N/m)(0.800 m) = (4.00 kg)a 
a = –9.42 m/s2. The minus sign means that the acceleration is away from the wall.   
EVALUATE:   The force you apply is toward the wall but the block is accelerating away from the wall. 

 6.78. IDENTIFY:   A constant horizontal force pushes a frictionless block of ice against a spring on the floor. The 
work-energy theorem and Newton’s second law both apply. 
SET UP:   In part (a), we apply the work-energy theorem tot 2 1W K K= −  to the ice. Wspring = –½ kx2. In part (b), 
we apply Newton’s second law to the ice.  
EXECUTE:   (a) WF + Wspring = K2 – K1. Fx – ½ kx2 = ½ mv2 – 0. Putting in the numbers from the problem 
gives  (54.0 N)(0.400 m) – (76.0 N/m)(0.400 m)2/2 = (2.00 kg)v2/2, v = 3.94 m/s. 
(b) Looking at quantities parallel to the floor, with the positive direction away from the post, Newton’s 
second law gives  F – Fspring = ma, so F – kx = ma.  
54.0 N – (76.0 N/m)(0.400 m) = (2.00 kg)a, which gives a = 11.8 m/s2. The acceleration is positive, so the 
block is accelerating away from the post. 
EVALUATE:   The given force must be greater than the spring force since the ice is accelerating away from 
the post.  

 6.79. IDENTIFY:   Apply tot 2 1W K K= −  to the blocks. 

SET UP:   If X is the distance the spring is compressed, the work done by the spring is 21
2 .kX−  At 

maximum compression, the spring (and hence the block) is not moving, so the block has no kinetic energy. 
EXECUTE:   (a) The work done by the block is equal to its initial kinetic energy, and the maximum 

compression is found from 2 21 1
02 2kX mv=  and 0

5 00 kg (6 00 m/s) 0 600 m
500 N/m

m
X v

k
.= = . = . .  

(b) Solving for 0v  in terms of a known X, 0
500 N/m (0 150 m) 1 50 m/s
5 00 kg

k
v X

m
= = . = . .

.
 

  EVALUATE:   The negative work done by the spring removes the kinetic energy of the block. 
 6.80. IDENTIFY:   Apply tot 2 1.W K K= −  cos .W Fs= φ  

SET UP:   The students do positive work, and the force that they exert makes an angle of 30 0. °  with the 
direction of motion. Gravity does negative work, and is at an angle of 120 0. °  with the chair’s motion. 
EXECUTE:   The total work done is 2

tot ((600 N) cos30 0 (85 0 kg)(9 80 m/s ) cos120 0 )(2 50 m)W = . ° + . . . ° . =  

257 8 J,.  and so the speed at the top of the ramp is 2 2tot
2 1

2 2(257 8 J)(2 00 m/s) 3 17 m/s
(85 0 kg)

W
v v

m
.= + = . + = . .

.
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EVALUATE:   The component of gravity down the incline is sin30 417 Nmg ° =  and the component of the 
push up the incline is (600 N)cos30 520 N.° =  The force component up the incline is greater than the 
force component down the incline; the net work done is positive and the speed increases. 

 6.81. IDENTIFY and SET UP:   Apply tot 2 1W K K= −  to the system consisting of both blocks. Since they are 
connected by the cord, both blocks have the same speed at every point in the motion. Also, when the 6.00-kg 
block has moved downward 1.50 m, the 8.00-kg block has moved 1.50 m to the right. The target variable, 

k ,µ  will be a factor in the work done by friction. The forces on each block are shown in Figure 6.81. 
 

EXECUTE:   
2 2 21 1 1

1 1 1 12 2 2 ( )A B A BK m v m v m m v= + = +  

2 0K =  

Figure 6.81   
 

The tension T in the rope does positive work on block B and the same magnitude of negative work on 
block A, so T does no net work on the system. Gravity does work mg AW m gd=  on block A, where 

2 00 md = . .  (Block B moves horizontally, so no work is done on it by gravity.) Friction does work 
fric k BW m gd= −µ  on block B. Thus tot fric kmg A BW W W m gd m gd= + = − .µ  Then tot 2 1W K K= −  gives 

21
k 12 ( )A B A Bm gd m gd m m v− = − +µ  and 

21 2
12

k 2
( ) 6 00 kg (6 00 kg 8 00 kg) (0 900 m/s) 0 786

8 00 kg 2(8 00 kg) (9 80 m/s ) (2 00 m)
A BA

B B

m m vm
m m gd

µ
+ . . + . .= + = + = .

. . . .
 

EVALUATE:   The weight of block A does positive work and the friction force on block B does negative 
work, so the net work is positive and the kinetic energy of the blocks increases as block A descends. Note 
that 1K  includes the kinetic energy of both blocks. We could have applied the work-energy theorem to 
block A alone, but then totW  includes the work done on block A by the tension force. 

 6.82. IDENTIFY:   Apply tot 2 1W K K= −  to the system of the two blocks. The total work done is the sum of that 
done by gravity (on the hanging block) and that done by friction (on the block on the table). 
SET UP:   Let h be the distance the 6.00 kg block descends. The work done by gravity is (6.00 kg)gh and 
the work done by friction is k (8 00 kg) .gh− .µ  

EXECUTE:   2
tot (6 00 kg (0 25)(8 00 kg))(9 80 m/s )(1 50 m) 58 8 JW = . − . . . . = . .  This work increases the 

kinetic energy of both blocks: 21
tot 1 22 ( ) ,W m m v= +  so 2(58 8 J) 2 90 m/s

(14 00 kg)
v

.= = . .
.

 

  EVALUATE:   Since the two blocks are connected by the rope, they move the same distance h and have the 
same speed v. 

 6.83. IDENTIFY:   Apply Eq. (6.6) to the skater. 
SET UP:   Let point 1 be just before she reaches the rough patch and let point 2 be where she exits from the 
patch. Work is done by friction. We don’t know the skater’s mass so can’t calculate either friction or the 
initial kinetic energy. Leave her mass m as a variable and expect that it will divide out of the final equation. 
EXECUTE:   k 0 25f mg= .  so tot 0 25 ,fW W mg s= = − .( )  where s is the length of the rough patch. 

tot 2 1W K K= −  
21

1 02 ,K mv=  ( )2 2 21 1 1
2 2 0 02 2 2(0 55 ) 0 3025K mv m v mv= = . = .  

The work-energy relation gives 21
02(0 25 ) (0 3025 1) .mg s mv− . = . −  

The mass divides out, and solving gives 1 3 ms = . .  
EVALUATE:   Friction does negative work and this reduces her kinetic energy. 
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 6.84. IDENTIFY and SET UP:   W Pt=  
EXECUTE:   (a) The hummingbird produces energy at a rate of 0 7 J/s.  to 1 75 J/s. .  At 10 beats/s, the bird 
must expend between 0.07 J/beat and 0.175 J/beat. 
(b) The steady output of the athlete is (500 W)/(70 kg) 7 W/kg,= which is below the 10 W/kg necessary to 
stay aloft. Though the athlete can expend 1400 W/70 kg 20 W/kg=  for short periods of time, no human-
powered aircraft could stay aloft for very long. 

  EVALUATE:   Movies of early attempts at human-powered flight bear out our results.  
 6.85. IDENTIFY:   To lift a mass m a height h requires work .W mgh=  To accelerate mass m from rest to speed v 

requires 21
2 1 2 .W K K mv= − =  av .W

P
t

∆=
∆

 

SET UP:   60 st =  
EXECUTE:   (a) 2 5(800 kg)(9 80 m/s )(14 0 m) 1 10 10 J.. . = . ×  

(b) 2 5(1/2)(800 kg)(18 0 m/s ) 1 30 10 J. = . × .  

(c) 
5 51 10 10 J 1 30 10 J 3 99 kW

60 s
. × + . × = . .  

EVALUATE:   Approximately the same amount of work is required to lift the water against gravity as to 
accelerate it to its final speed. 

 6.86. IDENTIFY and SET UP:   Use Eq. (6.15). The work done on the water by gravity is mgh, where 170 mh = .  
Solve for the mass  m of water for 1.00 s and then calculate the volume of water that has this mass. 

EXECUTE:   The power output is 9
av 2000 MW 2 00 10  WP = = . × .  av

W
P

t
∆=
∆

 and 92% of the work done 

on the water by gravity is converted to electrical power output, so in 1.00 s the amount of work done on the 
water by gravity is 

9
9av (2 00 10  W)(1 00 s) 2 174 10  J.

0 92 0 92
P t

W
∆ . × .= = = . ×

. .
 

,W mgh=  so the mass of water flowing over the dam in 1.00 s must be  
9

6
2

2 174 10  J 1 30 10  kg.
(9 80 m/s )(170 m)

W
m

gh
. ×= = = . ×

.
 

density m
V

=  so 
6

3 3
3 3

1 30 10  kg 1 30 10  m
density 1 00 10  kg/m

m
V

. ×= = = . × .
. ×

 

EVALUATE:   The dam is 1270 m long, so this volume corresponds to about a 3m  flowing over each 1 m 
length of the dam, a reasonable amount. 

 6.87. IDENTIFY and SET UP:   Energy is avP t.  The total energy expended in one day is the sum of the energy 
expended in each type of activity. 
EXECUTE:   41 day 8 64 10  s= . ×  
Let walkt  be the time she spends walking and othert  be the time she spends in other activities; 

4
other walk8 64 10  st t= . × − .  

The energy expended in each activity is the power output times the time, so 
7

walk other(280 W) (100 W) 1 1 10  JE Pt t t= = + = . ×  
4 7

walk walk(280 W) (100 W)(8 64 10  s ) 1 1 10  Jt t+ . × − = . ×  
6

walk(180 W) 2 36 10  Jt = . ×  
4

walk 1 31 10  s 218 min 3 6 ht = . × = = . .  

EVALUATE:   Her average power for one day is 7(1 1 10 J)/ (24)(3600 s) 127 W. × [ ] = .  This is much closer to 
her 100 W rate than to her 280 W rate, so most of her day is spent at the 100 W rate. 
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 6.88. IDENTIFY:   2

1
,

x
xx

W F dx= ∫  and xF  depends on both x and y. 

SET UP:   In each case, use the value of y that applies to the specified path. 21
2 .xdx x=∫ 2 31

3 .x dx x=∫  

EXECUTE:   (a) Along this path, y is constant, with the value 3 00 m.y = .  
2

2 2

1

(2 00 m)(2 50 N/m )(3 00 m) 15 0 J,
2

x

x
W y xdx

.= = . . = .∫α  since 1 0x =  and 2 2 00 m.x = .  

(b) Since the force has no y-component, no work is done moving in the y-direction. 
(c) Along this path, y varies with position along the path, given by 1 5 ,y x= .  so 

2(1 5 ) 1 5 ,xF x x x= . = .α α  and  
3

2 2 2 2
1 1

(2 00 m)1 5 1 5(2 50 N/m ) 10 0 J.
3

x x

x x
W Fdx x dxα .= = . = . . = .∫ ∫  

  EVALUATE:   The force depends on the position of the object along its path.  
 6.89. IDENTIFY and SET UP:   For part (a) calculate m from the volume of blood pumped by the heart in one day. 

For part (b) use W calculated in part (a) in Eq. (6.15). 
EXECUTE:   (a) ,W mgh=  as in Example 6.10. We need the mass of blood lifted; we are given the volume 

3 3
31 10  m(7500 L) 7 50 m

1 L
V

−⎛ ⎞×= = . .⎜ ⎟
⎝ ⎠

 

3 3 3 3density volume (1 05 10  kg/m )(7 50 m ) 7 875 10  kgm = × = . × . = . ×  

Then 3 2 5(7 875 10  kg)(9 80 m/s )(1 63 m) 1 26 10  JW mgh= = . × . . = . × .  

(b) 
5

av
1 26 10  J 1 46 W

(24 h)(3600 s/h)
W

P
t

∆ . ×= = = . .
∆

 

EVALUATE:   Compared to light bulbs or common electrical devices, the power output of the heart is rather small. 
 6.90. IDENTIFY:   We know information about the force exerted by a stretched rubber band and want to know if 

it obeys Hooke’s law. 
SET UP:   Hooke’s law is F = kx. The graph fits the equation F = 33.55x0.4871, with F in newtons and x in 
meters.  
EXECUTE:   (a) For Hooke’s law, a graph of F versus x is a straight line through the origin. This graph is 
not a straight line, so the rubber band does not obey Hooke’s law.  

(b) 0.4871 –0.5129
eff (33.55 ) 16.34 .dF d

k x x
dx dx

= = =  Because of the negative exponent for x, as x increases, keff 

decreases.  

(c) The definition of work gives 
0.0400 m 0.4871
0

0.3355
b

x
a

W F dx x dx= =∫ ∫  = (33.55/1.4871) 0.04001.4871 

W = 0.188 J. From 0.0400 m to 0.0800 m, we follow the same procedure but with different limits of 
integration.  The result is W = (33.55/1.4871) (0.08001.4871 – 0.04001.4871) = 0.339 J. 
(d) W = K2 – K1 = ½ mv2 – 0, which gives 0.339 J = (0.300 kg)v2/2, v = 1.50 m/s. 
EVALUATE:   The rubber band does not obey Hooke’s law, but it does obey the work-energy theorem. 

 6.91. IDENTIFY: We know a spring obeys Hooke’s law, and we want to use observations of the motion of a 
block attached to this spring to determine its force constant and the coefficient of friction between the 
block and the surface on which it is sliding. The work-energy theorem applies. 

  SET UP:    Wtot = K2 – K1, Wspring = ½ kx2. 
EXECUTE:   (a) The spring force is initially greater than friction, so the block accelerates forward. But 
eventually the spring force decreases enough so that it is less than the force of friction, and the block then 
slows down (decelerates). 
(b) The spring is initially compressed a distance x0, and after the block has moved a distance d, the spring 
is compressed a distance x = x0 – d. Therefore the work done by the spring is 

2 2
spring 0 0

1 1 ( ) .
2 2

W kx k x d= − −  The work done by friction is Wf = –µkmgd.  
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The work-energy theorem gives Wspring + Wf = K2 – K1 = ½ mv2. Using our previous results, we get 
2 2
0 0

1 1 ( )
2 2

kx k x d− − 2
k

1 .
2

mgd mv− =µ  Solving for v2 gives 2 2
0 k2 ,k k

v d d x g
m m

µ⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 where  

x0 = 0.400 m. 
(c) Figure 6.91 shows the resulting graph of v2 versus d. Using a graphing program and a quadratic fit gives  
v2 = –39.96d2 + 16.31d. The maximum speed occurs when dv2/dd = 0, which gives (–39.96)(2d) + 16.31 = 0, 
so d = 0.204 m. For this value of d, we have v2 = (–39.96)(0.204 m)2 + (16.31)(0.204 m), giving v = 1.29 m/s. 

 
Figure 6.91 
 

(d) From our work in (b) and (c), we know that –k/m is the coefficient of d 

2, so –k/m = –39.96, which gives 
k = (39.96)(0.300 kg) = 12.0 N/m. We also know that 2(kx0/m – µkg) is the coefficient of d. Solving for µk 
and putting in the numbers gives µk = 0.800. 
EVALUATE:   The graphing program makes analysis of complicated behavior relatively easy. 

 6.92. IDENTIFY:   The power output of the runners is the work they do in running from the basement to the top 
floor divided by the time it takes to make this run. 
SET UP:   P = W/t and W = mgh. 
EXECUTE:   (a) For each runner, P = mgh/t. We must read the time of each runner from the figure shown 
with the problem. For example, for Tatiana we have P = (50.2 kg)(9.80 m/s2)(16.0 m)/32 s = 246.0 W, 
which we must round to 2 significant figures because we cannot read the times any more accurate than that 
using the figure in the text. Carrying out these calculations for all the runners, we get the following results. 
Tatiana: 250 W, Bill: 210 W, Ricardo: 290 W, Melanie: 170 W. Ricardo had the greatest power output, and 
Melanie had the least. 
(b) Solving P = mgh/t for t gives t = mgh/P = (62.3 kg)(9.80 m/s2)(16.0 m)/(746 W) = 13.1 s, where we 
have used the fact that 1 hp = 746 W. 
EVALUATE:   Even though Tatiana had the shortest time, her power output was less than Ricardo’s because 
she weighs less than he does. 

 

 6.93. IDENTIFY:   In part (a) follow the steps outlined in the problem. For parts (b), (c), and (d) apply the work-
energy theorem. 
SET UP:   2 31

3x dx x=∫  

EXECUTE:   (a) Denote the position of a piece of the spring by l; 0l =  is the fixed point and l L=  is the 
moving end of the spring. Then the velocity of the point corresponding to l, denoted u, is ( ) ( / )u l v l L=  (when 
the spring is moving, l will be a function of time, and so u is an implicit function of time). The mass of a piece 

of length dl is ( / ) ,dm M L dl=  and so 

2
2 2

3
1 1( ) ,
2 2

Mv
dK dm u l dl

L
= =  and 

2 2
2

3 0
.

62
LMv Mv

K dK l dl
L

= = =∫ ∫  

(b) 2 21 1
2 2 ,kx mv=  so 2( / ) (3200 N/m)/(0 053 kg) (2 50 10  m) 6 1 m/s.v k m x −= = . . × = .  
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(c) With the mass of the spring included, the work that the spring does goes into the kinetic energies of 
both the ball and the spring, so 2 2 21 1 1

2 2 6kx mv Mv= + .  Solving for v, 

2(3200 N/m) (2 50 10 m) 3 9 m/s.
/3 (0 053 kg) (0 243 kg)/3

k
v x

m M
−= = . × = .

+ . + .
 

(d) Algebraically, 
2

21 (1/2) 0 40 J
2 (1 /3 )

kx
mv

M m
= = .

+
 and 

2
21 (1/2) 0 60 J.

6 (1 3 / )
kx

Mv
m M

= = .
+

 

EVALUATE:   For this ball and spring, ball

spring

3 0 053 kg3 0 65.
0 243 kg

K m
K M

⎛ ⎞.= = = .⎜ ⎟.⎝ ⎠
 The percentage of the final 

kinetic energy that ends up with each object depends on the ratio of the masses of the two objects. As 
expected, when the mass of the spring is a small fraction of the mass of the ball, the fraction of the kinetic 
energy that ends up in the spring is small. 

 6.94. IDENTIFY:   In both cases, a given amount of fuel represents a given amount of work 0W  that the engine 
does in moving the plane forward against the resisting force. Write 0W  in terms of the range R and speed v 
and in terms of the time of flight T and v. 
SET UP:   In both cases assume v is constant, so 0W RF=  and .R vT=  

EXECUTE:   In terms of the range R and the constant speed v, 2
0 2W RF R v

v
βα⎛ ⎞= = + .⎜ ⎟

⎝ ⎠
 

In terms of the time of flight ,T,R vt=  so 3
0 .W vTF T v

v
βα⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 

(a) Rather than solve for R as a function of v, differentiate the first of these relations with respect to v, 

setting 0 0dW
dv

=  to obtain 0dR dF
F R

dv dv
+ = .  For the maximum range, 0,dR

dv
=  so 0dF

dv
= .  Performing 

the differentiation, 32 2 / 0,dF
v v

dv
= − =α β  which is solved for 

1/ 41/ 4 5 2 2

2 2

3 5 10  N m /s 32 9 m/s 118 km/h.
0 30 N s /m

v
β
α

⎛ ⎞. × ⋅⎛ ⎞= = = . =⎜ ⎟⎜ ⎟ . ⋅⎝ ⎠ ⎝ ⎠
 

(b) Similarly, the maximum time is found by setting ( ) 0;d
Fv

dv
=  performing the differentiation, 

2 23 / 0.v v− =α β  
1/ 41/ 4 5 2 2

2 2

3.5 10  N m /s 25 m/s 90 km/h.
3 3(0.30 N s /m )

v
β
α

⎛ ⎞× ⋅⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
 

EVALUATE:   When 1/4( / ) ,v = β α  airF has its minimum value air 2 .F = αβ  For this v, 

0
1 (0 50) W

R = .
αβ

and 1/4 3/4
1 (0 50) .T − −= . α β  When 1/4( /3 ) ,v = β α  air 2 3 .F = . αβ  For this v, 

0
2 (0 43) W

R = .
αβ

 and 1/4 3/4
2 (0 57) .T − −= . α β  1 2R R>  and 2 1,T T>  as they should be. 

 6.95. IDENTIFY:   Using 300 W of metabolic power, the person travels 3 times as fast when biking than when walking. 
SET UP:   P = W/t, so W = Pt. 
EXECUTE:   When biking, the person travels 3 times as fast as when walking, so the bike trip takes 1/3 the 
time. Since W = Pt and the power is the same, the energy when biking will be 1/3 of the energy when 
walking, which makes choice (a) the correct one. 
EVALUATE:   Walking is obviously a better way to burn calories than biking. 

 6.96. IDENTIFY:   When walking on a grade, metabolic power is required for walking horizontally as well as the 
vertical climb. 
SET UP:   P = W/t, W = mgh.  



6-30   Chapter 6 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EXECUTE:   Ptot = Phoriz + Pvert = Phoriz + mgh/t = Phoriz + mg(vvert). The slope is a 5% grade, so vvert = 
0.05vhoriz. Therefore Ptot = 300 W + (70 kg)(9.80 m/s2)(0.05)(1.4 m/s) = 348 W ≈ 350 W, which makes 
choice (c) correct. 
EVALUATE:   Even a small grade of only 5% makes a difference of about 17% in power output. 

 6.97. IDENTIFY:  Using 300 W of metabolic power, the person travels 3 times as fast when biking than when walking.  
SET UP:   K = ½ mv2.  
EXECUTE:   The speed when biking is 3 times the speed when walking. Since the kinetic energy is 
proportional to the square of the speed, the kinetic energy will be 32 = 9 times as great when biking, 
making choice (d) correct. 
EVALUATE:   Even a small increase in speed gives a considerable increase in kinetic energy due to the v2. 
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 7.1. IDENTIFY:   gravU mgy=  so grav 2 1( )U mg y y∆ = −  
SET UP:   + y  is upward. 

EXECUTE:   (a) 2 5(75 kg)(9 80 m/s )(2400 m 1500 m) 6 6 10  J∆ = . − = + . ×U  

(b) 2 5(75 kg)(9 80 m/s )(1350 m 2400 m) 7 7 10  JU∆ = . − = − . ×  
EVALUATE:   gravU  increases when the altitude of the object increases. 

 7.2. IDENTIFY:   The change in height of a jumper causes a change in their potential energy. 
SET UP:   Use 

  
∆Ugrav = mg( y2 − y1).  

EXECUTE:   2
grav (72 kg)(9 80 m/s )(0 60 m) 420 J.∆ = . . =U  

EVALUATE:   This gravitational potential energy comes from elastic potential energy stored in the jumper’s 
tensed muscles. 

 7.3. IDENTIFY:   Use the free-body diagram for the bag and Newton’s first law to find the force the worker 
applies. Since the bag starts and ends at rest, 2 1 0K K− =  and tot 0.W =  

SET UP:   A sketch showing the initial and final positions of the bag is given in Figure 7.3a. 2 0 msin
3 5 m

φ .=
.

 

and 34 85 .φ = . °  The free-body diagram is given in Figure 7.3b. F
G

is the horizontal force applied by the 
worker. In the calculation of gravU  take y+  upward and 0y =  at the initial position of the bag. 

EXECUTE:   (a) 0Σ =yF  gives cosT mgφ =  and 0Σ =xF  gives sin .F T φ=  Combining these equations to 

eliminate T gives   F = mg tanφ = (90.0 kg)(9.80 m/s2 ) tan34.85° = 610 N.  
(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of T in 
the direction of the displacement during the motion and the tension in the rope does no work. 
(ii) tot 0W =  so 

  
Wworker = −Wgrav = Ugrav,2 − Ugrav,1 = mg( y2 − y1) = (90.0 kg)(9.80 m/s2 )(0.6277 m) = 550 J.  

EVALUATE:   The force applied by the worker varies during the motion of the bag and it would be difficult 
to calculate workerW  directly. 

     
Figure 7.3 
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 7.4. IDENTIFY:   The energy from the food goes into the increased gravitational potential energy of the hiker. 
We must convert food calories to joules. 
SET UP:   The change in gravitational potential energy is grav f i( ),U mg y y∆ = −  while the increase in 
kinetic energy is negligible. Set the food energy, expressed in joules, equal to the mechanical energy 
developed. 
EXECUTE:   (a) The food energy equals mg( y2 − y1),  so 

y2 − y1 = (140 food calories)(4186 J/1 food calorie)
(65 kg)(9.80 m/s2 )

= 920 m.  

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.y∆ = . =  
EVALUATE:   Since only 20% of the food calories go into mechanical energy, the hiker needs much less of 
climb to turn off the calories in the bar. 

 7.5. IDENTIFY and SET UP:   Use 1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 are shown in Figure 7.5. 

(a) 1 1 other 2 2.K U W K U+ + = +  Solve for 2K  and then use 21
2 22K mv=  to obtain 2.v  

 

 other 0W =  (The only force on the ball while 
 it is in the air is gravity.) 

21
1 12 ;K mv=  21

2 22K mv=  

1 1,U mgy=  1 22.0 my =  

2 2 0,U mgy= =  since 2 0y =  
for our choice of coordinates. 

Figure 7.5   
 

EXECUTE:   2 21 1
1 1 22 2mv mgy mv+ =  

2 2 2
2 1 12 (12 0 m/s) 2(9 80 m/s )(22 0 m) 24 0 m/sv v gy= + = . + . . = .  

EVALUATE:   The projection angle of 53 1. °  doesn’t enter into the calculation. The kinetic energy depends 
only on the magnitude of the velocity; it is independent of the direction of the velocity. 
(b) Nothing changes in the calculation. The expression derived in part (a) for 2v  is independent of the 
angle, so 2 24 0 m/s,v = .  the same as in part (a). 
(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect. 

 7.6. IDENTIFY:   The normal force does no work, so only gravity does work and 1 1 2 2K U K U+ = +  applies. 
SET UP:   1 0.K =  The crate’s initial point is at a vertical height of sind α above the bottom of the ramp. 

EXECUTE:   (a) 2 ,0y =  1 sin .y d α=  1 grav,1 2 grav,2K U K U+ = +  gives grav,1 2.U K=  21
22sinmgd mvα =  

and 2 2 sin .v gd α=  

(b) 1 0,y =  2 sin .y d α= −  1 grav,1 2 grav,2K U K U+ = +  gives 2 grav,20 .K U= +  21
220 ( sin )mv mgd α= + −  

and 2 2 sin ,v gd α=  the same as in part (a). 
(c) The normal force is perpendicular to the displacement and does no work. 
EVALUATE:   When we use gravU mgy=  we can take any point as 0y =  but we must take y+  to be 
upward. 

 7.7. IDENTIFY:   The take-off kinetic energy of the flea goes into gravitational potential energy.  
SET UP:   Use 1 1 2 2.K U K U+ = +  Let y1 = 0  and y2 = h  and note that U1 = 0  while   K2 = 0  at the 

maximum height. Consequently, conservation of energy becomes mgh = 1
2

mv1
2.  
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EXECUTE:   (a)   v1 = 2gh = 2(9.80 m/s2 )(0.20 m) = 2.0 m/s.  

(b)   K1 = mgh = (0.50 × 10−6 kg)(9.80 m/s2 )(0.20 m) = 9.8 × 10−7 J.  The kinetic energy per kilogram is 

  

K1
m

= 9.8 × 10−7 J
0.50 × 10−6 kg

= 2.0 J/kg.  

(c) The human can jump to a height of h
h f 3

f

2 0 m(0 20 m) 200 m.
2 0 10 m

l
h h

l −

⎛ ⎞ ⎛ ⎞.= = . =⎜ ⎟ ⎜ ⎟. ×⎝ ⎠⎝ ⎠
 To attain this 

height, he would require a takeoff speed of: v1 = 2gh = 2(9.80 m/s2 )(200 m) = 63 m/s.  

(d) The human’s kinetic energy per kilogram is 
K1
m

= gh = (9.80 m/s2 )(0.60 m) = 5.9 J/kg.  

(e) EVALUATE:   The flea stores the energy in its tensed legs. 
 7.8. IDENTIFY:   The potential energy is transformed into kinetic energy which is then imparted to the bone. 

SET UP:   The initial gravitational potential energy must be absorbed by the leg bones.   U1 = mgh.  

EXECUTE:   (a) 2(200 J),mgh =  so 2
400 J 0 68 m 68 cm.

(60 kg)(9 80 m/s )
h = = . =

.
 

(b) EVALUATE:   They flex when they land and their joints and muscles absorb most of the energy. 
(c) EVALUATE:   Their bones are more fragile so can absorb less energy without breaking and their 
muscles and joints are weaker and less flexible and therefore less able to absorb energy. 

 7.9. IDENTIFY:   tot .B AW K K= −  The forces on the rock are gravity, the normal force and friction. 
SET UP:   Let 0y =  at point B and let y+  be upward. 0 50 m.Ay R= = .  The work done by friction is 
negative; 0 22 J.fW = − .  0.AK =  The free-body diagram for the rock at point B is given in Figure 7.9. The 

acceleration of the rock at this point is 2
rad ,a v /R=  upward. 

EXECUTE:   (a) (i) The normal force is perpendicular to the displacement and does zero work.  
(ii) 2

grav grav grav (0 20 kg)(9 80 m/s )(0 50 m) 0 98 J.,A ,B AW U U mgy= − = = . . . = .  

(b) tot grav 0 ( 0 22 J) 0 98 J 0 76 J.n fW W W W= + + = + − . + . = .  tot B AW K K= −  gives 21
tot2 .Bmv W=  

tot2 2(0 76 J) 2 8 m/s.
0 20 kgB

W
v

m
.= = = .

.
 

(c) Gravity is constant and equal to mg. n is not constant; it is zero at A and not zero at B. Therefore, 
k kf nµ=  is also not constant. 

(d) Σ =y yF ma  applied to Figure 7.9 gives rad.n mg ma− =  
2 2

2 [2 8 m/s](0 20 kg) 9 80 m/s 5 1 N.
0 50 m

v
n m g

R

⎛ ⎞ ⎛ ⎞.= + = . . + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In the absence of friction, the speed of the rock at point B would be 2 3 1 m/s.gR = .  As the 
rock slides through point B, the normal force is greater than the weight 2 0 Nmg = .  of the rock. 

 

 

Figure 7.9 
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 7.10. IDENTIFY:   The child’s energy is transformed from gravitational potential energy to kinetic energy as she 
swings downward. 

 SET UP:   Let   y2 = 0.  For part (a),   U1 = mgy1.  For part (b) use K2 + U2 = K1 + U1  with   U2 = K1 = 0  

and 
  
K2 = 1

2
mυ 2

2;  the result is 
  
1
2

mυ2
2 = mgy1.  

EXECUTE:   (a) Figure 7.10 shows that the difference in potential energy at the top of the swing is 
proportional to the height difference,   y1 = (2.20 m)(1 − cos42°) = 0.56 m.  The difference in potential 

energy is thus   U1 = mgy1 = 2(25 kg)(9 80 m/s )(0 56 m) 140 J. . = .  

(b) υ2 = 2gy1 = 2(9.80 m/s2 )(0.56 m) = 3.3 m/s . 

  EVALUATE:   (c) The tension is radial while the displacement is tangent to the circular path; thus there is 
no component of the tension along the direction of the displacement and the tension in the ropes does no 
work on the child. 

 

 
 

Figure 7.10 
 

 7.11. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the car. 
SET UP:   Take 0y =  at point A. Let point 1 be A and point 2 be B. 
EXECUTE:   1 0,U =  2 (2 ) 28,224 J,= =U mg R  other fW W=  

21
1 12 37,500 J,= =K mv  21

2 22 3840 JK mv= =  

The work-energy relation then gives 2 2 1 5400 J.fW K U K= + − = −  

EVALUATE:   Friction does negative work. The final mechanical energy 2 2( 32 064 J)K U ,+ =  is less than 
the initial mechanical energy 1 1( 37,500 J)+ =K U  because of the energy removed by friction work. 

 7.12. IDENTIFY:   Only gravity does work, so apply 1 1 2 2.K U K U+ = +   

SET UP:   1 0,v =  so 21
2 1 22 ( ).mv mg y y= −  

EXECUTE:   Tarzan is lower than his original height by a distance 1 2 (cos30 cos45 )y y l− = ° − °  so his 

speed is 2 (cos30 cos45 ) 7 9 m/s,v gl= ° − ° = .  a bit quick for conversation. 
EVALUATE:   The result is independent of Tarzan’s mass. 

 7.13. (a) IDENTIFY and SET UP:   F
G

 is constant so Eq. (6.2) can be used. The situation is sketched in Figure 7.13a. 
 

1 0y =  

y2 = (6.00 m)sin36.9°  

y2 = 3.60 m  

Figure 7.13a   
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EXECUTE:     WF = (F cosφ)s = (110 N)(cos0°)(6.00 m) = 660 J.  

EVALUATE:   F
G

 is in the direction of the displacement and does positive work. 
(b) IDENTIFY and SET UP:   Calculate W using but first we must calculate the friction force. Use the free-body 
diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can be 
calculated from k kf nµ= .  For this calculation use coordinates parallel and perpendicular to the incline. 

 

EXECUTE:   Σ =y yF ma  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgµ µ= = °  
2

k (0.25)(10.0 kg)(9.80 m/s )cos36.9 19.6 Nf = ° =  

Figure 7.13b  

  
W f = ( fk cosφ)s = (19.6 N)(cos180°)(6.00 m) = −117.6 J , which rounds to –118 J. 

EVALUATE:   Friction does negative work. 
(c) IDENTIFY and SET UP:   ;U mgy=  take 0y =  at the bottom of the ramp. 

EXECUTE:     ∆U = U2 − U1 = mg( y2 − y1) = (10.0 kg)(9.80 m/s2 )(3.60 m − 0) = 352.8 J , which rounds to 
353 J. 
EVALUATE:   The object moves upward and U increases. 
(d) IDENTIFY and SET UP:   Use 1 1 other 2 2K U W K U+ + = +  and solve for K∆ .  
EXECUTE:    2 1 1 2 otherK K K U U W∆ = − = − +  

otherK W U∆ = − ∆  

  
Wother = WF + W f = 660 J − 117.6 J = 542.4 J  

  ∆U = 352.8 J  
Thus   ∆K = 542.4 J − 352.8 J = 189.6 J,  which rounds to 190 J. 
EVALUATE:   otherW  is positive. Some of otherW  goes to increasing U and the rest goes to increasing K. 

(e) IDENTIFY:   Apply Σ =
G G

mF a  to the oven. Solve for aG  and then use a constant acceleration equation to 
calculate 2.v  
SET UP:   We can use the free-body diagram that is in part (b): 
Σ =x xF ma  

k sin36 9F f mg ma− − . ° =  

EXECUTE:   
2

2k sin36 9 110 N 19 6 N (10 kg)(9 80 m/s )sin36 9 3 16 m/s
10 0 kg

F f mg
a

m
− − . ° − . − . . °= = = .

.
 

SET UP:   1 0,xv =  23 16 m/s ,xa = .  x − x0 = 6.00 m,  2 ?xv =  
2 2
2 1 02 ( )x x xv v a x x= + −  

EXECUTE:   
  
v2x = 2ax (x − x0 ) = 2(3.16 m/s2 )(6.00 m) = 6.158 m/s . Then 

  
∆K = K2 − K1 = 1

2
mv2

2 = 1
2

(10.0 kg)(6.158 m/s)2 = 189.6 J,  which rounds to 190 J. 

EVALUATE:   The result in (e) using Newton’s second law agrees with the result calculated in part (d) 
using energy methods. 
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 7.14. IDENTIFY:   Use the information given in the problem with F kx=  to find k. Then 21
el 2 .U kx=  

SET UP:   x is the amount the spring is stretched. When the weight is hung from the spring, .F mg=  

EXECUTE:   
2(3 15 kg)(9 80 m/s ) 2205 N/m.

0 1340 m 0 1200 m
F mg

k
x x

. .= = = =
. − .

 

el2 2(10 0 J) 0 0952 m 9 52 cm.
2205 N/m

U
x

k
.= ± = ± = ± . = ± .  The spring could be either stretched 9.52 cm or 

compressed 9.52 cm. If it were stretched, the total length of the spring would be 
12 00 cm 9 52 cm 21 52 cm.. + . = .  If it were compressed, the total length of the spring would be 
12 00 cm 9 52 cm 2 48 cm.. − . = .  
EVALUATE:   To stretch or compress the spring 9.52 cm requires a force 210 N.F kx= =  

 7.15. IDENTIFY:   Apply 21
el 2 .U kx=  

SET UP:   ,kx F=  so 
  
Uel = 1

2
Fx,  where F is the magnitude of force required to stretch or compress the 

spring a distance x. 
EXECUTE:   (a)  (1/2)(520 N)(0.200 m) = 52.0 J.  
(b) The potential energy is proportional to the square of the compression or extension; 

 (52.0 J) (0.050 m/0.200 m)2 = 3.25 J.  

EVALUATE:   We could have calculated k = F
x

= 520 N
0.200 m

= 2600 N/m  and then used 21
el 2U kx=  

directly. 
 7.16. IDENTIFY:   We treat the tendon like a spring and apply Hooke’s law to it. Knowing the force stretching 

the tendon and how much it stretched, we can find its force constant. 
SET UP:   Use on tendon .F kx=  In part (a), on tendonF  equals mg, the weight of the object suspended from it. 

In part (b), also apply 21
el 2U kx=  to calculate the stored energy. 

EXECUTE:   (a) 
2

on tendon (0 250 kg)(9 80 m/s ) 199 N/m.
0 0123 m

F
k

x
. .= = =

.
 

(b) on tendon 138 N 0.693m 69.3 cm;
199 N/m

= = = =F
x

k
 21

el 2 (199 N/m)(0.693 m) 47.8 J.= =U  

EVALUATE:   The 250 g object has a weight of 2.45 N. The 138 N force is much larger than this and 
stretches the tendon a much greater distance. 

 7.17. IDENTIFY:   Apply 21
el 2 .=U kx  

SET UP:   21
0 02 .U kx=  x is the distance the spring is stretched or compressed. 

EXECUTE:   (a) (i) 02x x=  gives 2 21 1
el 0 0 02 2(2 ) 4( ) 4 .U k x kx U= = =  (ii) 0/2=x x  gives 

2 21 1 1
el 0 0 02 4 2( /2) ( ) /4.= = =U k x kx U  

(b) (i) 02U U=  gives 2 21 1
02 22( )kx kx=  and 0 2.x x=  (ii) 0/2=U U  gives 2 21 1 1

02 2 2( )kx kx= and 0/ 2.=x x  

EVALUATE:   U is proportional to 2x  and x is proportional to .U  
 7.18. IDENTIFY:   Apply energy conservation, 1 1 2 2K U K U+ = + . 

SET UP:   Initially and at the highest point, 0,v =  so 1 2 0.K K= =  other 0.W =  
EXECUTE:   (a) In going from rest in the slingshot’s pocket to rest at the maximum height, the potential 
energy stored in the rubber band is converted to gravitational potential energy. 

3 2(10 10  kg)(9 80 m/s ) (22 0 m) 2 16 J.U mgy −= = × . . = .  
(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m. 
(c) The lack of air resistance and no deformation of the rubber band are two possible assumptions. 
EVALUATE:   The potential energy stored in the rubber band depends on k for the rubber band and the 
maximum distance it is stretched. 
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 7.19. IDENTIFY and SET UP:   Use energy methods. There are changes in both elastic and gravitational potential 
energy; elastic; 21

2 ,U kx=  gravitational: .U mgy=  

EXECUTE:   (a) 
  
Uel = 1

2
kx2  so x =

2Uel
k

= 2(1.20 J)
800 N/m

= 0.0548 m = 5.48 cm.  

(b) The work done by gravity is equal to the gain in elastic potential energy: Wgrav = Uel. 
mgx = ½ kx2, so x = 2mg/k = 2(1.60 kg)(9.80 m/s2)/(800 N/m) = 0.0392 m = 3.92 cm. 
EVALUATE:   When the spring is compressed 3.92 cm, it exerts an upward force of 31.4 N on the book, 
which is greater than the weight of the book (15.6 N). The book will be accelerated upward from this 
position. 

 7.20. IDENTIFY:   Use energy methods. There are changes in both elastic and gravitational potential  energy. 
SET UP:   1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.20. 

 

The spring force and gravity are  
the only forces doing work on the cheese,  
so other 0W =  and grav el.= +U U U  

Figure 7.20  
 

EXECUTE:   Cheese released from rest implies 1 0.K =  
At the maximum height 2 0v =  so 2 0.K =  1 1,el 1,grav= +U U U  

1 0y =  implies 1,grav 0=U  
2 21 1

1,el 12 2 (1800 N/m)(0.15 m) 20.25 J= = =U kx  

(Here 1x  refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is 
not the x-coordinate of the cheese in the coordinate system shown in the sketch.) 

2 2,el 2,grav= +U U U  2,grav 2,=U mgy  where 2y  is the height we are solving for. 2,el 0=U  since now the 

spring is no longer compressed. Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 1,el 2,grav=U U  

2 2
20 25 J 20 25 J 1 72 m

(1 20 kg)(9 80 m/s )
y

mg
. .= = = .

. .
 

EVALUATE:   The description in terms of energy is very simple; the elastic potential energy originally 
stored in the spring is converted into gravitational potential energy of the system. 

 7.21. IDENTIFY:   The energy of the book-spring system is conserved. There are changes in both elastic and 
gravitational potential energy. 
SET UP:   

  
Uel = 1

2
kx2 ,

  
Ugrav = mgy , other 0.W =   

 EXECUTE:   (a) 21
2U kx=  so 2 2(3 20 J) 0 0632 m 6 32 cm

1600 N/m
U

x
k

.= = = . = .  

 (b) Points 1 and 2 in the motion are sketched in Figure 7.21. We have 1 1 other 2 2,K U W K U+ + = + where 

other 0W = (only work is that done by gravity and spring force), 1 0,K =  2 0,K =  and 0y =  at final position 

of book. Using 1 ( )U mg h d= +  and 21
2 2U kd=  we obtain 21

20 ( ) 0 .mg h d kd+ + + =  The original 

gravitational potential energy of the system is converted into potential energy of the compressed spring.  
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Finally, we use the quadratic formula to solve for d: 21
2 0,kd mgd mgh− − =  which gives 

21 1( ) 4 ( )
2

d mg mg k mgh
k

⎛ ⎞⎛ ⎞= ± +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. In our analysis we have assumed that d is positive, so we get 

 
  
d =

(1.20 kg)(9.80 m/s2 ) + (1.20 kg)(9.80 m/s2 )⎡
⎣

⎤
⎦

2
+ 2(1600 N/m)(1.20 kg)(9.80 m/s2 )(0.80 m)

1600 N/m
, 

which gives d = 0.12 m = 12 cm.  
EVALUATE:  It was important to recognize that the total displacement was h + d; gravity continues to do 
work as the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an 
upward force (192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward 
from this position. 

 
 

Figure 7.21 
 

 7.22. (a) IDENTIFY and SET UP:   Use energy methods. Both elastic and gravitational potential energy changes. 
Work is done by friction. 
Choose point 1 and let that be the origin, so 1 0.y =  Let point 2 be 1.00 m below point 1, so 2 1 00 m.y = − .  
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

  
K1 = 1

2
mv1

2 = 1
2

(2000 kg)(4.0 m/s)2 = 16,000 J,  1 0U =  

other 2 (17 000 N)(1 00 m) 17 000 JW f y , ,= − = − . = −  

  
K2 = 1

2
mv2

2  

21
2 2,grav 2,el 2 22= + = +U U U mgy ky  

  
U2 = (2000 kg)(9.80 m/s2 )(−1.00 m) + 1

2
(1.06 × 104  N/m)(1.00 m)2  

  U2 = −19,600 J + 5300 J = −14,300 J  

Thus 
  
16,000 J − 17,000 J = 1

2
mv2

2 − 14,300 J  

  
1
2

mv2
2 = 13,300 J  

  
v2 = 2(13,300 J)

2000 kg
= 3.65 m/s  

EVALUATE:   The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but 
has slowed down. 
(b) IDENTIFY:   Apply Σ =

G G
mF a  to the elevator. We know the forces and can solve for .aG  

SET UP:   The free-body diagram for the elevator is given in Figure 7.22. 
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 EXECUTE:   spr ,=F kd  where d is the distance  
the spring is compressed 
Σ =y yF ma  

k sprf F mg ma+ − =  

k + − =f kd mg ma  

Figure 7.22   
 

  
a =

fk + kd − mg
m

= 17,000 N + (1.06 × 104  N/m)(1.00 m) − (2000 kg)(9.80 m/s2 )
2000 kg

= 4.00 m/s2  

We calculate that a is positive, so the acceleration is upward. 
EVALUATE:   The velocity is downward and the acceleration is upward, so the elevator is slowing down at 
this point. 

 7.23. IDENTIFY:   Only the spring does work and 1 1 2 2K U K U+ = +  applies. ,F kx
a

m m
−= =  where F is the force 

the spring exerts on the mass. 
SET UP:   Let point 1 be the initial position of the mass against the compressed spring, so 1 0K =  and 

1 11 5 J.U = .  Let point 2 be where the mass leaves the spring, so el,2 0.U =  

EXECUTE:   (a) 1 el,1 2 el,2K U K U+ = +  gives el,1 2.U K=  21
2 el,12 mv U= and 

el,1
2

2 2(11 5 J) 3 03 m/s.
2 50 kg

U
v

m
.= = = .

.
 

K is largest when elU  is least and this is when the mass leaves the spring. The mass achieves its maximum 
speed of 3.03 m/s as it leaves the spring and then slides along the surface with constant speed. 
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has 

its maximum compression. 21
el 2U kx=  so x = −

2Uel
k

= − 2(11.5 J)
2500 N/m

= −0.0959 m.  The minus sign 

indicates compression. xF kx ma= − =  and 2(2500 N/m)( 0 0959 m) 95 9 m/s .
2 50 kgx

kx
a

m
− .= − = − = .

.
 

  EVALUATE:   If the end of the spring is displaced to the left when the spring is compressed, then xa  in part 
(b) is to the right, and vice versa. 

 7.24. IDENTIFY:   The spring force is conservative but the force of friction is nonconservative. Energy is 
conserved during the process. Initially all the energy is stored in the spring, but part of this goes to kinetic 
energy, part remains as elastic potential energy, and the rest does work against friction. 
SET UP:   Energy conservation: 1 1 other 2 2,K U W K U+ + = +  the elastic energy in the spring is 21

2 ,=U kx  

and the work done by friction is W f = − fks = −µkmgs.  

EXECUTE:   The initial and final elastic potential energies are 
2 21 1

1 12 2 (840 N/m)(0 0300 m) 0 378 JU kx= = . = .  and 2 21 1
2 22 2 (840 N/m)(0 0100 m) 0 0420 J.U kx= = . = .   

The initial and final kinetic energies are 1 0K =  and 21
2 22 .K mv=  The work done by friction is 

2
other k kk (0 40)(2 50 kg)(9 8 m/s )(0 0200 m) 0 196 J.fW W f s mgsµ= = − = − = − . . . . = − .  Energy conservation 

gives 21
2 2 1 1 other 22 0 378 J ( 0 196 J) 0 0420 J 0 140 J.K mv K U W U= = + + − = . + − . − . = .  Solving for 2v  gives 

2
2

2 2(0 140 J) 0 335 m/s.
2 50 kg

K
v

m
.= = = .

.
 

EVALUATE:   Mechanical energy is not conserved due to friction. 
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 7.25. IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2  and .F ma=  

SET UP:   other 0.W =  There is no change in grav.U 1 0,K =  2 0.U =  

EXECUTE:   2 21 1
2 2 .xkx mv=  The relations for m, ,xv  k and x are 2 2 and 5 .= =xkx mv kx mg  

Dividing the first equation by the second gives 
2

,
5

xv
x

g
=  and substituting this into the second gives 

2

225 .
x

mg
k

v
=  

(a) 
2 2

5
2

(1160 kg)(9 80 m/s )25 4 46 10  N/m
(2 50 m/s)

k
.= = . ×

.
 

(b) 
2

2
(2.50 m/s) 0.128 m
5(9.80 m/s )

= =x  

EVALUATE:   Our results for k and x do give the required values for xa and :xv  
5

2(4 46 10  N/m)(0 128 m) 49 2 m/s 5 0
1160 kgx

kx
a g

m
. × .= = = . = .  and 2 5 m/s.x

k
v x

m
= = .  

 7.26. IDENTIFY:   grav cos .W mg φ=  
SET UP:   When he moves upward, 180φ = °  and when he moves downward, 0 .φ = °  When he moves 
parallel to the ground, 90 .φ = °  

EXECUTE:   (a) 2
grav (75 kg)(9 80 m/s )(7 0 m)cos180 5100 J.W = . . ° = −  

(b) 2
grav (75 kg)(9 80 m/s )(7 0 m)cos0 5100 J.W = . . ° = +  

(c) 90φ = °  in each case and grav 0W =  in each case. 
(d) The total work done on him by gravity during the round trip is 5100 J 5100 J 0.− + =  
(e) Gravity is a conservative force since the total work done for a round trip is zero. 
EVALUATE:   The gravity force is independent of the position and motion of the object. When the object 
moves upward gravity does negative work and when the object moves downward gravity does positive 
work. 

 7.27. IDENTIFY:   Since the force is constant, use cos .W Fs φ=  
SET UP:   For both displacements, the direction of the friction force is opposite to the displacement and 

180 .φ = °  
EXECUTE:   (a) When the book moves to the left, the friction force is to the right, and the work is 

(1 8 N)(3 0 m) 5.4 J.− . .  = −  
(b) The friction force is now to the left, and the work is again −5.4 J.  
(c) The total work is sum of the work in both directions, which is –10.8 J.  
(d) The net work done by friction for the round trip is not zero, so friction is not a conservative force. 
EVALUATE:   The direction of the friction force depends on the motion of the object. For the gravity force, 
which is conservative, the force does not depend on the motion of the object. 

 7.28. IDENTIFY and SET UP:   The force is not constant so we must integrate to calculate the work. 
2

1
,W d= ⋅∫ F l
GG

 2 ˆxα= −F i
G

. 

EXECUTE:   (a) ˆd dy=l j
G

 (x is constant; the displacement is in the -direction)y+  

0d⋅ =F l
GG

 (since ˆ ˆ 0)⋅ =i j  and thus 0.W =  

(b) ˆd dx=l i
G

 
2 2ˆ ˆ( ) ( )d x dx x dxα α⋅ = − ⋅ = −  F l i i

GG
 

  
W = (−α x2 )

x
1

x
2∫  dx = − 1

3
ax3 |x

1

x
2 = − 1

3
α  (x2

3 − x1
3) = − 12 N/m2

3
 (0.300 m)3 − (0.10 m)3⎡
⎣

⎤
⎦ = −0.10 J  
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(c) ˆd dx=l i
G

 as in part (b), but now 1 0 30 mx = .  and 2 0 10 mx = . , so 3 31
2 13 ( ) 0 10 J.W x x= − − = + .α  

(d) EVALUATE:   The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then 
back to 0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the 
starting and ending points are the same, so the force is conservative. 
EXECUTE:   3 3 3 31 1 1

2 1 1 23 3 31 2 ( )x xW x x x xα α α→ = − − = −  

The definition of the potential energy function is 1 21 2 .x xW U U→ = −  Comparison of the two expressions 

for W gives 31
3 .α=U x  This does correspond to 0U =  when 0.x =  

EVALUATE:   In part (a) the work done is zero because the force and displacement are perpendicular. In 
part (b) the force is directed opposite to the displacement and the work done is negative. In part (c) the 
force and displacement are in the same direction and the work done is positive. 

 7.29. IDENTIFY:   Some of the mechanical energy of the skier is converted to internal energy by the 
nonconservative force of friction on the rough patch. Use 1 1 other 2 2.K U W K U+ + = +  

SET UP:   For part (a) use 
  
Emech, 2 = Emech, 1 − fks  where k k .f mgµ=  Let   y2 = 0  at the bottom of the 

hill; then   y1 = 2.50 m  along the rough patch. The energy equation is 1
2

mv2
2 = 1

2
mv1

2 + mgy1 − µkmgs.  

Solving for her final speed gives v2 = v1
2 + 2gy1 − 2µkgs.  For part (b), the internal energy is calculated 

as the negative of the work done by friction: −W f = + fks = + µkmgs.  

EXECUTE:   (a)   v2 = (6.50 m/s)2 + 2(9.80 m/s2 )(2.50 m) − 2(0.300)(9.80 m/s2 )(4.20 m) = 8.16 m/s.  

(b) Internal energy = µkmgs = (0.300)(62.0 kg)(9.80 m/s2 )(4.20 m) = 766 J.  
EVALUATE: Without friction the skier would be moving faster at the bottom of the hill than at the top, but 
in this case she is moving slower because friction converted some of her initial kinetic energy into internal 
energy. 

 7.30. IDENTIFY:   Some of the initial gravitational potential energy is converted to kinetic energy, but some of it 
is lost due to work by the nonconservative friction force. 
SET UP:   The energy of the box at the edge of the roof is given by: mech, f mech, i k .= −E E f s  Setting 

f 0=y  at this point, i (4 25 m) sin36 2 50 m= . ° = . .y  Furthermore, by substituting i 0K =  and 21
f f2K mv=  

into the conservation equation, 21
f i k2 mv mgy f s= −  or f i k i k2 2 / 2 ( / ).v gy f sg w g y f s w= − = −  

EXECUTE:   [ ]2
f 2(9 80 m/s ) (2 50 m) (22 0 N)(4 25 m)/(85 0 N) 5 24 m/s.v = . . − . . . = .  

EVALUATE:   Friction does negative work and removes mechanical energy from the system. In the absence 
of friction the final speed of the toolbox would be 7 00 m/s. .  

 7.31. IDENTIFY:   We know the potential energy function and want to find the force causing this energy. 

SET UP:   .x
dU

F
dx

= −  The sign of xF  indicates its direction. 

EXECUTE:   3 4 34 4(0.630 J/m ) .x
dU

F x x
dx

= − = − = −α 4 3( 0.800 m) 4(0.630 J/m )( 0.80 m) 1.29 N.xF −  = −  −  =  

The force is in the -direction.x+  
EVALUATE:   0xF >  when 0x <  and 0xF <  when 0,x >  so the force is always directed towards the 
origin. 

 7.32. IDENTIFY and SET UP:   Use x
dU

F
dx

= −  to calculate the force from ( ).U x  Use coordinates where the 

origin is at one atom. The other atom then has coordinate x. 
EXECUTE:    

6 6
66 6 7

1 6
x

dU d C d C
F C

dx dx dxx x x
⎛ ⎞ ⎛ ⎞= − = − − = + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The minus sign mean that xF  is directed in the -direction,x−  toward the origin. The force has magnitude 
7

66 /C x  and is attractive. 

EVALUATE:   U depends only on x so F
G

 is along the x-axis; it has no y- or z-components. 
 7.33. IDENTIFY:   From the potential energy function of the block, we can find the force on it, and from the force 

we can use Newton’s second law to find its acceleration. 

SET UP:   The force components are x
U

F
x

∂= −
∂

 and .y
U

F
y

∂= −
∂

 The acceleration components are 

/  and / .= =x x y ya F m a F m  The magnitude of the acceleration is 2 2
x ya a a= +  and we can find its angle 

with the +x axis using tan / .θ = y xa a  

EXECUTE:   2(11 6 J/m )x
U

F x
x

∂= − = − .
∂

 and 3 2(10 8 J/m ) .y
U

F y
y

∂= − = .
∂

 At the point 

( 0 300 m,x = . 0 600 my = . ), 2(11 6 J/m )(0 300 m) 3 48 NxF = − . . = − .  and 

3 2(10 8 J/m )(0 600 m) 3 89 N.yF = . . = .  Therefore 287 0 m/sx
x

F
a

m
= = − .  and 297 2 m/s ,y

y
F

a
m

= = .  giving 

2 2 2130 m/sx ya a a= + =  and 97 2tan ,
87 0

θ .=
.

 so 48 2θ = . °.  The direction is o132  counterclockwise from 

the -axis.x+  
EVALUATE:   The force is not constant, so the acceleration will not be the same at other points. 

 7.34. IDENTIFY:   Apply ˆ ˆU U
x y

∂ ∂= − −
∂ ∂

F i j
G

. 

SET UP:   2 3
1 2d

dx x x
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 and 2 3
1 2 .d

dy y y

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EXECUTE:   ˆ ˆU U
x y

∂ ∂= − −
∂ ∂

F i j
G

 since U has no z-dependence. 3 3
2 2

and ,  so
U U
x yx y

∂ − ∂ −= =
∂ ∂

α α  

3 3 3 3
2 2ˆ ˆ 2 .

x y x y
α α
⎛ ⎞ ⎛ ⎞− −= − +  = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jF i j
G GG

 

EVALUATE:   xF  and x have the same sign and yF  and y have the same sign. When 0,x >  xF  is in the 
-direction,x+  and so forth. 

 7.35. IDENTIFY and SET UP:   Use F = –dU/dr to calculate the force from U. At equilibrium 0.F =  
(a) EXECUTE:   The graphs are sketched in Figure 7.35. 

 

 
12 6
a b

U
r r

= −  

13 7
12 6dU a b

F
dr r r

= − = + −  

Figure 7.35   
 

(b) At equilibrium 0,=F  so 0dU
dr

=  

0F =  implies 13 7
12 6 0a b
r r

+ − =  

66 12 ;br a=  solution is the equilibrium distance 1 6
0 (2 ) /r a/b=  

U is a minimum at this r; the equilibrium is stable. 
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(c) At 1/6(2 / ) ,=r a b  12 6 2 2/ / ( /2 ) ( /2 ) /4 .= − = − = −U a r b r a b a b b a b a  

At ,r → ∞  0U = .  The energy that must be added is 2/4 .−∆ =U b a  

(d) 1/6 10
0 (2 / ) 1 13 10  m−= = . ×r a b  gives that 

60 62 / 2 082 10  m−= . ×a b  and 59 6/4 2 402 10  m−= . ×b a  
2 18/4 ( /4 ) 1 54 10  J−= = . ×b a b b a  

59 6 18(2 402 10  m ) 1 54 10  Jb − −. × = . ×  and 78 66 41 10  J m .b −= . × ⋅  

Then 60 62 / 2 082 10  m−= . ×a b  gives 60 6( /2)(2 082 10  m )−= . × =a b  
78 6 60 6 138 121

2 (6 41 10  J m ) (2 082 10  m ) 6 67 10  J m− − −. × ⋅ . × = . × ⋅  

EVALUATE:   As the graphs in part (a) show, ( )F r  is the slope of ( )U r  at each r. ( )U r  has a minimum 
where 0.F =  

 7.36. IDENTIFY:   Apply x
dU

F
dx

= − . 

SET UP:   dU
dx

 is the slope of the U versus x graph. 

EXECUTE:   (a) Considering only forces in the x-direction, x
dU

F
dx

= −  and so the force is zero when the 

slope of the U vs x graph is zero, at points b and d. 
(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this 
point is stable. 
(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy, 
and the marble tends to move further away, and so d is an unstable point. 
EVALUATE:   At point b, xF  is negative when the marble is displaced slightly to the right and xF  is 
positive when the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium 
is stable. At point d, a small displacement in either direction produces a force directed away from d and the 
equilibrium is unstable. 

 7.37. IDENTIFY:   Apply Σ =
G G

mF a to the bag and to the box. Apply K1 + U1 + Wother = K2 + U2  to the motion 
of the system of the box and bucket after the bag is removed. 
SET UP:   Let 0y =  at the final height of the bucket, so 1 2 00 my = .  and 2 0y = . 1 0.K =  The box and the 

bucket move with the same speed v, so 21
2 box bucket2 ( ) .K m m v= +  other k ,W f d= −  with 2 00 md = .  and 

k k box .f m gµ=  Before the bag is removed, the maximum possible friction force the roof can exert on the 

box is 2(0 700)(80 0 kg 50 0 kg)(9 80 m/s ) 892 N.. . + . . =  This is larger than the weight of the bucket (637 N), 
so before the bag is removed the system is at rest. 
EXECUTE:   (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on 
the bag for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N. 
(b) Applying   K1 + U1 + Wother = K2 + U2  gives 21

bucket 1 k tot2 ,m gy f d m v− =  with tot 145 0 kg.m = .  

bucket 1 k box
tot

2 ( ).µ= −v m gy m gd
m

 

  
v = 2

145.0 kg
(65.0 kg)(9.80 m/s2 )(2.00 m) − (0.400)(80.0 kg)(9.80 m/s2 )(2.00 m)⎡
⎣

⎤
⎦  = 2.99 m/s. 

EVALUATE:   If we apply Σ =
G G

mF a  to the box and to the bucket we can calculate their common 
acceleration a. Then a constant acceleration equation applied to either object gives 2 99 m/s,v = .  in 
agreement with our result obtained using energy methods. 
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 7.38. IDENTIFY:   For the system of two blocks, only gravity does work. Apply 1 1 2 2.K U K U+ = +  
SET UP:   Call the blocks A and B, where A is the more massive one. 1 1 0.A Bv v= =  Let 0y =  for each 
block to be at the initial height of that block, so 1 1 0.A By y= =  2 1 20 mAy = − .  and 2 1 20 m.By = + .  

2 2 2 3 00 m/s.A Bv v v= = = .  

EXECUTE:   1 1 2 2K U K U+ = +  gives 
  
0 = 1

2
(mA + mB )v2

2 + g(1.20 m)(mB − mA ),  with mA + mB = 22.0 kg. 

Therefore 
  
1
2

(22.0 kg)(3.00 m/s)2 + (9.80 m/s2 )(1.20 m)(22.0 kg − 2mA ).  Solving for Am  gives 

  mA = 15.2 kg.  And then   mB = 6.79 kg.  
EVALUATE:   The final kinetic energy of the two blocks is 99 J. The potential energy of block A decreases 
by 179 J. The potential energy of block B increases by 80 J. The total decrease in potential energy is 
179 J − 80 J = 99 J,  which equals the increase in kinetic energy of the system. 

 7.39. IDENTIFY:   Use 1 1 other 2 2K U W K U+ + = + . The target variable kµ will be a factor in the work done by 
friction. 
SET UP:   Let point 1 be where the block is released and let point 2 be where the block stops, as shown in 
Figure 7.39. 

1 1 other 2 2K U W K U+ + = +  
 

 Work is done on the block by  
the spring and by friction,  
so other fW W=  and el.U U=  

Figure 7.39   
 

EXECUTE:   1 2 0K K= =  
2 21 1

1 1 el 12 2 (100 N/m)(0 200 m) 2 00 J,U U kx= = = . = .  

2 2 el 0,,U U= =  since after the block leaves the spring has given up all its stored energy 

( )other k k k( cos ) cos ,fW W f s mg s mgsφ µ φ µ= = = = −  since 180φ = °  (The friction force is directed 
opposite to the displacement and does negative work.) 
Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 el 0, fU W+ =  

k 1 el,mgs Uµ =  

1 el
k 2

2.00 J 0 41.
(0 50 kg)(9 80 m/s )(1 00 m)

,U

mgs
µ = = = .

. . .
 

EVALUATE:   1 el 0, fU W+ =  says that the potential energy originally stored in the spring is taken out of the 

system by the negative work done by friction. 
 7.40. IDENTIFY:   Apply 1 1 other 2 2.K U W K U+ + = +  

SET UP:   Only the spring force and gravity do work, so other 0.W =  Let 0y =  at the horizontal surface. 
EXECUTE:   (a) Equating the potential energy stored in the spring to the block's kinetic energy, 

2 21 1
2 2 ,kx mv=  or 400 N/m (0 220 m) 3 11 m/s.

2 00 kg
k

v x
m

= = .  = .
.  

 

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational 

potential energy, 21
2 sin ,kx mgL θ=  or 

2 21 1
2 2

2

(400 N/m)(0 220 m)
0 821 m.

sin (2 00 kg)(9 80 m/s )sin37 0

kx
L

mg θ
.

= = = .
. . . °
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EVALUATE:   The total energy of the system is constant. Initially it is all elastic potential energy stored in 
the spring, then it is all kinetic energy and finally it is all gravitational potential energy. 

 7.41. IDENTIFY:   The mechanical energy of the roller coaster is conserved since there is no friction with the 
track. We must also apply Newton’s second law for the circular motion. 
SET UP:   For part (a), apply conservation of energy to the motion from point A to point B: 

grav gravB , B A ,AK U K U + = +  with 0.AK =  Defining 0By =  and 13 0 m,= .Ay  conservation of energy 

becomes 21
2 B Amv mgy=  or 2 .B Av gy=  In part (b), the free-body diagram for the roller coaster car at 

point B is shown in Figure 7.41. y yF maΣ =  gives rad ,mg n ma+ =  where 2
rad / .a v r=  Solving for the 

normal force gives 
2

.v
n m g

r

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

 
Figure 7.41 

 

EXECUTE:   (a) 22(9 80 m/s )(13 0 m) 16 0 m/s.Bv = . . = .  

(b) 
2

2 4(16 0 m/s)(350 kg) 9 80 m/s 1 15 10 N.
6 0 m

n
⎡ ⎤.= − . = . ×⎢ ⎥.⎢ ⎥⎣ ⎦

 

EVALUATE:   The normal force n is the force that the tracks exert on the roller coaster car. The car exerts a 
force of equal magnitude and opposite direction on the tracks. 

 7.42. IDENTIFY:   Mechanical energy is conserved since no nonconservative forces do work on the system. 
Newton’s second law also applies.  
SET UP:   Relate h and .Bv  Apply Σ =

G G
mF a  at point B to find the minimum speed required at B for the car 

not to fall off the track. At B, 2 ,Ba v /R=  downward. The minimum speed is when 0n → and 2 .Bmg mv /R=  

The minimum speed required is .Bv gR=  1 0K = and other 0.W =  

EXECUTE:   (a) Conservation of mechanical energy applied to points A and B gives 21
2 .A B BU U mv− =  The 

speed at the top must be at least .gR  Thus, 1 5( 2 ) ,  or   .
2 2

mg h R mgR h R− > >  

(b) Conservation of mechanical energy applied to points A and C gives (2 50) ,A C CU U Rmg K− = . =  so 

  vC = (5.00)gR = (5.00)(9.80 m/s2 )(14.0 m) = 26.2 m/s.  The radial acceleration is 
2

2
rad 49 0 m/s .Cv

a
R

= = .  The tangential direction is down, the normal force at point C is horizontal, there is 

no friction, so the only downward force is gravity, and 2
tan 9 80 m/s .a g= = .   

EVALUATE:   If 5
2 ,h R>  then the downward acceleration at B due to the circular motion is greater than g 

and the track must exert a downward normal force n. n increases as h increases and hence 
Bv  increases. 

 7.43. (a) IDENTIFY:   Use 1 1 other 2 2K U W K U+ + = +  to find the kinetic energy of the wood as it enters the 
rough bottom. 
SET UP:   Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough 
bottom. Let 0y =  be at point 2. 
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EXECUTE:   1 2U K=  gives 2 1 78 4 J.K mgy= = .  
IDENTIFY:   Now apply 1 1 other 2 2K U W K U+ + = +  to the motion along the rough bottom. 
SET UP:   Let point 1 be where it enters the rough bottom and point 2 be where it stops. 

1 1 other 2 2.K U W K U+ + = +  
EXECUTE:   other k ,fW W mgsµ= = −  2 1 2 0;K U U= = =  1 78 4 JK = .  

k78 4 J 0;mgsµ. − =  solving for s gives 20 0 m.s = .  
The wood stops after traveling 20.0 m along the rough bottom. 
(b) Friction does 78 4 J− .  of work. 
EVALUATE:   The piece of wood stops before it makes one trip across the rough bottom. The final mechanical 
energy is zero. The negative friction work takes away all the mechanical energy initially in the system. 

 7.44. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the rock. other k
.fW W=  

SET UP:   Let 0y =  at the foot of the hill, so 1 0=U  and 2 ,=U mgh  where h is the vertical height of the 
rock above the foot of the hill when it stops. 
EXECUTE:   (a) At the maximum height, 2 0.=K  1 1 other 2 2K U W K U+ + = +  gives 

Bottom Topk
.fK W U+ =  2

0 k
1 cos .
2

mv mg d mghµ θ− =  / sin ,d h θ=  so 2
0 k

1 cos .
2 sin

h
v g ghµ θ

θ
− =  

2 2 21 cos40(15 m/s) (0 20)(9 8 m/s ) (9 8 m/s )
2 sin 40

h h
°− . . = .
°

 which gives 9 3 m.h = .  

(b) Compare maximum static friction force to the weight component down the plane. 
2

s s cos (0 75)(28 kg)(9 8 m/s )cos40 158 N.f mgµ θ= = . . ° =
2

ssin (28 kg)(9 8 m/s )(sin 40 ) 176 N ,mg fθ = . ° = >  so the rock will slide down. 
(c) Use same procedure as in part (a), with 9 3 mh = .   and Bv  being the speed at the bottom of the hill. 

Top Bk
.fU W K+ =  2

k B
1cos

sin 2
h

mgh mg mvµ θ
θ

− =  and kB 2 2 cos sin 11 8 m/s./v gh ghµ θ θ= −  = .  

EVALUATE:   For the round trip up the hill and back down, there is negative work done by friction and the 
speed of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill. 

 7.45. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the stone. 
SET UP:   1 1 other 2 2K U W K U+ + = + . Let point 1 be point A and point 2 be point B. Take 0y =  at B. 

EXECUTE:   2 21 1
1 22 21 ,mgy mv mv+ =  with 20 0 mh = .  and 1 10 0 m/sv = . , so 2

2 1 2 22 2 m/s.v v gh= + = .  

EVALUATE:   The loss of gravitational potential energy equals the gain of kinetic energy. 
(b) IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the stone from point B to where it 
comes to rest against the spring. 
SET UP:   Use 1 1 other 2 2,K U W K U+ + = +  with point 1 at B and point 2 where the spring has its maximum 
compression x. 
EXECUTE:   1 2 2 0;= = =U U K  21

1 12K mv=  with 1 22 2 m/s.v = .  Wother = W f + Wel = −µ
k

mgs − 1
2

kx2 ,  

with 100 m .s x= +  The work-energy relation gives 1 other 0.+ =K W  2 21 1
12 2k 0.mv mgs kx− − =µ  

Putting in the numerical values gives 
2 29 4 750 0.x x+ . − =  The positive root to this equation is 

16 4 m.x = .  
EVALUATE:   Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes 
into the potential energy stored in the spring. 
(c) IDENTIFY and SET UP:   Consider the forces. 
EXECUTE:   When the spring is compressed 16 4 mx = .  the force it exerts on the stone is 

el 32 8 N.= = .F kx  The maximum possible static friction force is 
2

s smax (0 80)(15 0 kg)(9 80 m/s ) 118 N.f mgµ= = . . . =  
EVALUATE:   The spring force is less than the maximum possible static friction force so the stone remains at rest. 
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 7.46. IDENTIFY:   Once the block leaves the top of the hill it moves in projectile motion. Use 1 1 2 2K U K U+ = +  
to relate the speed Bv  at the bottom of the hill to the speed Topv  at the top and the 70 m height of the hill. 

SET UP:   For the projectile motion, take y+  to be downward. 0,=xa  .ya g=  0 Top,xv v=  0 0.yv =  For 
the motion up the hill only gravity does work. Take 0y =  at the base of the hill. 

EXECUTE:   First get speed at the top of the hill for the block to clear the pit. 21 .
2

y gt=  

2 2120 m (9 8 m/s ) .
2

t= .  2 0 s.t = .  Then Top 40 mv t =  gives Top
40 m 20 m/s.
2 0 s

v = =
.

 

Energy conservation applied to the motion up the hill: Bottom Top TopK U K= +  gives 

2 2
B Top

1 1 .
2 2

mv mgh mv= +  2 2 2
B Top 2 (20 m/s) 2(9 8 m/s )(70 m) 42 m/s.v v gh= + = + . =  

EVALUATE:   The result does not depend on the mass of the block. 
 7.47. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the person. 

SET UP:   Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let 
0=y  at point 2. 1 41 0 m.= .y  21

other 2 ,=W kx-  where 11 0 mx = .  is the amount the cord is stretched at 

point 2. The cord does negative work. 
EXECUTE:   1 2 2 0,K K U= = =  so 21

1 2 0− =mgy kx  and 631 N/m.=k  

Now apply F kx=  to the test pulls: 
F kx=  so / 0 602 m.x F k= = .  
EVALUATE:   All his initial gravitational potential energy is taken away by the negative work done by the 
force exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord. 

 7.48. IDENTIFY:   To be at equilibrium at the bottom, with the spring compressed a distance 0,x  the spring force 
must balance the component of the weight down the ramp plus the largest value of the static friction, or 

0 sin .kx w fθ= +  Apply energy conservation to the motion down the ramp. 

SET UP:   2 0,K =  21
1 2 ,K mv=  where v is the speed at the top of the ramp. Let 2 0,U =  so 1 sin ,U wL θ=  

where L is the total length traveled down the ramp. 

EXECUTE:   Energy conservation gives 2 2
0

1 1( sin ) .
2 2

kx w f L mvθ= − +  With the given parameters, 

  
1
2

kx0
2 = 421 J  and   kx0 = 1.066 × 103  N.  Solving for k gives k = 1350 N/m.  

EVALUATE:     x0 = 0.790 m.  sin 551 N.w θ =  The decrease in gravitational potential energy is larger than 

the amount of mechanical energy removed by the negative work done by friction. 21
2 243 J.=mv  The 

energy stored in the spring is larger than the initial kinetic energy of the crate at the top of the ramp.  
 7.49. IDENTIFY:   Use 1 1 other 2 2.K U W K U+ + = +  Solve for 2K  and then for 2.v  

SET UP:   Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of 
the barrel, as shown in Figure 7.49. Use =F kx  to find the amount the spring is initially compressed by 
the 4400 N force. 

1 1 other 2 2K U W K U+ + = +  
 

 Take 0y =  at his initial position. 

EXECUTE:   1 0,=K  21
2 22K mv=  

other fric= = −W W fs  

other (40 N)(4 0 m) 160 JW = − . = −  

Figure 7.49   
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1 grav 0,,U =  21
1 el 2 ,=,U kd  where d is the distance the spring is initially compressed. 

F kd=  so 4400 N 4 00 m
1100 N/m

F
d

k
= = = .  

and 21
1 el 2 (1100 N/m)(4 00 m) 8800 J,U = . =  

2
2 grav 2 (60 kg)(9 80 m/s )(2 5 m) 1470 J,,U mgy= = . . =  2 el 0,U =  

Then 1 1 other 2 2K U W K U+ + = +  gives 
21
228800 J 160 J 1470 Jmv− = +  

21
22 7170 Jmv =  and 2

2(7170 J) 15 5 m/s.
60 kg

v = = .  

EVALUATE:   Some of the potential energy stored in the compressed spring is taken away by the work done 
by friction. The rest goes partly into gravitational potential energy and partly into kinetic energy. 

 7.50. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the rocket from the starting point to the 
base of the ramp. otherW  is the work done by the thrust and by friction. 
SET UP:   Let point 1 be at the starting point and let point 2 be at the base of the ramp. 1 0,v =  

2 50 0 m/s.v = .  Let 0y =  at the base and take y+  upward. Then 2 0y =  and 1 sin53 ,y d= °  where d is the 
distance along the ramp from the base to the starting point. Friction does negative work. 
EXECUTE:   1 0,K =  2 0.U =  1 other 2.U W K+ =  other (2000 N) (500 N) (1500 N) .W d d d= − =  

21
22sin53 (1500 N) .mgd d mv° + =   

2 2
2

2
(1500 kg)(50 0 m/s) 142 m.

2[ sin53 1500 N] 2[(1500 kg)(9 80 m/s )sin53 1500 N]
.= = =

° + . ° +
mv

d
mg

 

EVALUATE:   The initial height is 1 (142 m)sin53 113 m.y = ° =  An object free-falling from this distance 

attains a speed 12 47 1 m/s.v gy= = .  The rocket attains a greater speed than this because the forward 
thrust is greater than the friction force. 

 7.51. IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2   to the system consisting of the two buckets. If we ignore 
the inertia of the pulley we ignore the kinetic energy it has. 
SET UP:   1 1 other 2 2K U W K U+ + = + .  Points 1 and 2 in the motion are sketched in Figure 7.51. 

 

 

Figure 7.51 
 

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the 
12.0 kg bucket, so the net work done by the tension is zero. 
Work is done on the system only by gravity, so other 0W =  and grav.U U=  

EXECUTE:   1 0K = , 2 21 1
2 ,2 ,22 2= +A A B BK m v m v . But since the two buckets are connected by a rope they 

move together and have the same speed: ,2 ,2 2.= =A Bv v v  Thus 2 21
2 2 22 ( ) (8 00 kg) .= + = .A BK m m v v  
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2
1 ,1 (12 0 kg)(9 80 m/s )(2 00 m) 235 2 J.= = . . . = .A AU m gy  

2
2 ,2 (4.0 kg)(9.80 m/s )(2.00 m) 78.4 J.= = =B BU m gy  

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 1 2 2.U K U= +  

2
2235 2 J (8 00 kg) 78 4 J.v. = . + .  2

235 2 J 78 4 J 4 4 m/s
8 00 kg

v
. − .= = .

.
 

EVALUATE:   The gravitational potential energy decreases and the kinetic energy increases by the same 
amount. We could apply   K1 + U1 + Wother = K2 + U2  to one bucket, but then we would have to include in 

otherW  the work done on the bucket by the tension T. 

 7.52. IDENTIFY:     K1 + U1 + Wother = K2 + U2  says other 2 2 1 1( ).W K U K U= + − +  otherW is the work done on the 
baseball by the force exerted by the air. 
SET UP:   .U mgy=  21

2 ,=K mv  where 2 2 2.x yv v v= +  

EXECUTE:   (a) The change in total energy is the work done by the air, 
2 2

other 2 2 1 1 2 1 2
1( ) ( ) ( ) .
2

⎛ ⎞= + − + = − +⎜ ⎟
⎝ ⎠

W K U K U m v v gy  

2 2 2 2
other (0 145 kg)((1/2[(18 6 m/s) (30 0 m/s) (40 0 m/s) ] (9 80 m/s ) 53 6 m)).W = . . − . − . + . .(  

other 80 0 J.W = .-  
(b) Similarly, other 3 3 2 2( ) ( ).W K U K U= + − +  

2 2 2 2
other (0 145 kg)((1/2)[(11 9 m/s) ( 28 7 m/s) (18 6 m/s) ] (9 80 m/s )(53 6 m)).W = . . + − . − . − . .  

other 31 3 JW = . .-  
(c) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work 
done by the air is smaller in magnitude. 
EVALUATE:   The initial kinetic energy of the baseball is 21

2 (0 145 kg)(50 0 m/s) 181 J.. . =  For the total 

motion from the ground, up to the maximum height, and back down the total work done by the air is 111 J. 
The ball returns to the ground with 181 J 111 J 70 J− =  of kinetic energy and a speed of 31 m/s, less than 
its initial speed of 50 m/s. 

 7.53. (a) IDENTIFY and SET UP:   Apply K1 + U1 + Wother = K2 + U2  to the motion of the potato. Let point 1 be 
where the potato is released and point 2 be at the lowest point in its motion, as shown in Figure 7.53a. 

 

 1 2.50 my =  

2 0y =  
The tension in the string is at all points in the  
motion perpendicular to the displacement, so 0rW =  
The only force that does work on the potato is gravity,  
so other 0W = .  

Figure 7.53a   
 

EXECUTE:   1 0,=K  21
2 22 ,K mv=  1 1,U mgy=  2 0.U =  Thus 1 2U K= . 21

1 22 ,mgy mv=  which gives 

2
2 12 2(9 80 m/s )(2 50 m) 7 00 m/s.v gy= = . . = .  

EVALUATE:   The speed 2v  is the same as if the potato fell through 2.50 m. 
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(b) IDENTIFY:   Apply mΣ =F a
G G

 to the potato. The potato moves in an arc of a circle so its acceleration is 

rad ,Ga  where 2
rad /a v R=  and is directed toward the center of the circle. Solve for one of the forces, the 

tension T in the string. 
SET UP:   The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.53b. 

 

 The acceleration radaG  is directed in toward  
the center of the circular path, so at this  
point it is upward. 

Figure 7.53b   

EXECUTE:   y yF maΣ =  gives rad.T mg ma− =  Solving for T gives 
2
2

rad( ) ,v
T m g a m g

R

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 where 

the radius R for the circular motion is the length L of the string. It is instructive to use the algebraic 
expression for 2v  from part (a) rather than just putting in the numerical value: 2 12 2 ,v gy gL= =  so 

2
2 2 .v gL=  Then 

2
2 2 3v gL

T m g m g mg
L L

⎛ ⎞ ⎛ ⎞= + = + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 The tension at this point is three times the weight 

of the potato, so 23 3(0 300 kg)(9 80 m/s ) 8 82 N.T mg= = . . = .  
EVALUATE:   The tension is greater than the weight; the acceleration is upward so the net force must be upward. 

 7.54. IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2  to each stage of the motion. 

SET UP:   Let 0y =  at the bottom of the slope. In part (a), otherW  is the work done by friction. In part (b), 

otherW  is the work done by friction and the air resistance force. In part (c), otherW  is the work done by the 
force exerted by the snowdrift. 
EXECUTE:   (a) The skier’s kinetic energy at the bottom can be found from the potential energy at the top 
minus the work done by friction, 1 (60 0 kg)(9 8 N/kg)(65 0 m) 10,500 J,= − = . . . −fK mgh W  or 

1 38,200 J 10,500 J 27,720 J.= − =K  Then 1
1

2 2(27 720 J) 30 4 m/s.
60 kg

K ,
v

m
= = = .  

(b) 2 1 air k air( ) 27,720 J ( )µ= − + = − + .fK K W W mgd f d  

2 27,720 J [(0 2)(588 N)(82 m) (160 N)(82 m)]= − . +K or 2 27,720 J 22,763 J 4957 J.= − =K  Then, 

2
2 2(4957 J) 12 9 m/s.

60 kg
K

v
m

= = = .  

(c) Use the work-energy theorem to find the force. ,W K= ∆  / (4957 J)/(2 5 m) 2000 N.F K d= = . =  
EVALUATE:   In each case, otherW  is negative and removes mechanical energy from the system. 

 7.55. IDENTIFY and SET UP:   First apply 
G G

mΣ =F a  to the skier. 
Find the angle α  where the normal force becomes zero, in terms of the speed 2v  at this point. Then apply 
the work-energy theorem to the motion of the skier to obtain another equation that relates 2v  and .α  Solve 
these two equations for .α  
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 Let point 2 be where the skier loses contact  
with the snowball, as sketched in Figure 7.55a 
Loses contact implies 0n → .  

1 ,y R=  2 cosy R α=  

Figure 7.55a   
 

First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.55b. 
For this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a 
circle, so her acceleration is 2

rad / ,a v R=  directed in towards the center of the snowball. 
 

 EXECUTE:   Σ =y yF ma  
2
2cosmg n mv /Rα − =  

But 0n =  so 2
2cosmg mv /Rα =  

2
2 cosv Rg α=  

Figure 7.55b   
Now use conservation of energy to get another equation relating 2v  to :α  

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the skier is gravity, so other 0.W =  

1 0,K =  21
2 22K mv=  

1 1 ,U mgy mgR= =  2 2 cosU mgy mgR α= =  

Then 21
22 cosmgR mv mgR α= +  

2
2 2 (1 cos )v gR α= −  

Combine this with the Σ =y yF ma  equation: 
cos 2 (1 cos )Rg gRα α= −  

cos 2 2cosα α= −  
3cos 2α =  so cos 2/3α =  and 48 2α = . °  
EVALUATE:   She speeds up and her rada  increases as she loses gravitational potential energy. She loses 
contact when she is going so fast that the radially inward component of her weight isn’t large enough to 
keep her in the circular path. Note that α  where she loses contact does not depend on her mass or on the 
radius of the snowball. 

 7.56. IDENTIFY:   Initially the ball has all kinetic energy, but at its highest point it has kinetic energy and 
potential energy. Since it is thrown upward at an angle, its kinetic energy is not zero at its highest point. 
SET UP:   Apply conservation of energy: f f i i.K U K U+ = +  Let i 0,y =  so f ,y h=  the maximum height. 
At this maximum height, f , 0 =yv  and f , i, , =x xv v  so f i, (15 m/s)(cos60.0 ) 7.5 m/s. = = ° =xv v  Substituting 

into conservation of energy equation gives 2 21 1
i2 2 (7 5 m/s) .= + .mv mgh m  

EXECUTE:   Solve for h: 
2 2 2 2

i
2

(7 5 m/s) (15 m/s) (7 5 m/s) 8 6 m
2 2(9 80 m/s )

− . − .= = = . .
.

v
h

g
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EVALUATE:   If the ball were thrown straight up, its maximum height would be 11.5 m, since all of its 
kinetic energy would be converted to potential energy. But in this case it reaches a lower height because it 
still retains some kinetic energy at its highest point. 

 7.57. IDENTIFY and SET UP:    
 

 Ay R=  
0B Cy y= =  

Figure 7.57   
 

(a) Apply conservation of energy to the motion from B to C: 
other .B B C CK U W K U+ + = +  The motion is described in Figure 7.57. 

EXECUTE:   The only force that does work on the package during this part of the motion is friction, so 
other k k k(cos ) (cos180 )fW W f s mg s mgsφ µ µ= = = ° =-  

21
2 ,B BK mv=  0CK =  

0,BU =  0CU =  
Thus 0B fK W+ =  

21
2 k 0µ− =Bmv mgs  

2 2

2k
(4 80 m/s) 0 392.

2 2(9 80 m/s )(3 00 m)
Bv

gs
.= = = .

. .
µ  

EVALUATE:   The negative friction work takes away all the kinetic energy. 
(b) IDENTIFY and SET UP:   Apply conservation of energy to the motion from A to B: 

otherA A B BK U W K U+ + = +  
EXECUTE:   Work is done by gravity and by friction, so other .fW W=  

0,AK =  2 21 1
2 2 (0 200 kg)(4 80 m/s) 2 304 J= = . . = .B BK mv  

2(0 200 kg)(9 80 m/s )(1 60 m) 3 136 J,A AU mgy mgR= = = . . . = .  0BU =  
Thus A f BU W K+ =  

2 304 J 3 136 J 0 83 Jf B AW K U= − = . − . = .-  

EVALUATE:   fW  is negative as expected; the friction force does negative work since it is directed 
opposite to the displacement. 

 7.58. IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2  to the initial and final positions of the truck. 

SET UP:   Let 0y =  at the lowest point of the path of the truck. otherW  is the work done by friction. 

r r r cos .f n mgµ µ β= =  

EXECUTE:   Denote the distance the truck moves up the ramp by x. 21
1 02 ,K mv=  1 sin ,U mgL α=  2 0,K =  

2 sinU mgx β=  and   Wother = −µrmgxcosβ.  From other 2 2 1 1( ) ( ),W K U K U= + − +  and solving for x, we 

get ( )
2

1 0

r r

sin ( /2 ) sin
sin cos sin cos

K mgL v g L
x

mg
α α

β µ β β µ β
+ += = .

+ +
 

EVALUATE:   x increases when 0v  increases and decreases when rµ  increases. 



Potential Energy and Energy Conservation   7-23 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

 7.59. (a) IDENTIFY:   We are given that Fx = −α x − βx2 ,  60 0 N/mα = .  and 218 0 N/mβ = . . Use 

  
WFx

= Fx (x) dx
x1

x2∫  to calculate W and then use W = −∆U  to identify the potential energy function 

( )U x .  

SET UP:   2
1 2

1
( )

x
F xx x

W U U F x dx= − =  ∫  

Let 1 0x =  and 1 0U = .  Let 2x  be some arbitrary point x, so 2 ( ).U U x=  

EXECUTE:   
  
U (x) = − Fx0

x
∫ (x) dx = − (−α x − βx2 )

0

x
∫  dx = (α x + βx2 )

0

x
∫  dx = 1

2
α x2 + 1

3
βx3.  

EVALUATE:   If 0,β =  the spring does obey Hooke’s law, with ,k α=  and our result reduces to 21
2 .kx  

(b) IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the object. 
SET UP:   The system at points 1 and 2 is sketched in Figure 7.59. 

 

 1 1 other 2 2K U W K U+ + = +  
The only force that does work on the object  
is the spring force, so other 0.W =  

Figure 7.59   
 

EXECUTE:   1 0,K =  21
2 22K mv=  

2 3 2 2 31 1 1 1
1 1 1 12 3 2 3( ) (60 0 N/m)(1 00 m) (18 0 N/m )(1 00 m) 36 0 JU U x x xα β= = + = . . + . . = .  

2 3 2 2 31 1 1 1
2 2 2 22 3 2 3( ) (60 0 N/m)(0 500 m) (18 0 N/m )(0 500 m) 8 25 JU U x x xα β= = + = . . + . . = .  

Thus 21
2236 0 J 8 25 J,mv. = + .  which gives 2

2(36 0 J 8 25 J) 7 85 m/s.
0 900 kg

v
. − .= = .
.

 

EVALUATE:   The elastic potential energy stored in the spring decreases and the kinetic energy of the 
object increases. 

 7.60. IDENTIFY:   Mechanical energy is conserved on the hill, which gives us the speed of the sled at the top. 
After it leaves the cliff, we must use projectile motion. 
SET UP:   Use conservation of energy to find the speed of the sled at the edge of the cliff. Let i 0y =  so 

f 11 0 my h= = . .  f f i i+ = +K U K U  gives 2 21 1
f i2 2mv mgh mv+ =  or 2

f i 2 .= −v v gh  Then analyze the 

projectile motion of the sled: use the vertical component of motion to find the time t that the sled is in the 
air; then use the horizontal component of the motion with 0=xa  to find the horizontal displacement. 

EXECUTE:   2 2
f (22 5 m/s) 2(9 80 m/s )(11 0 m) 17 1 m/s.= . − . . = .v  21

f i, 2y yy v t a t= +  gives 

f
2

2 2( 11 0 m) 1 50 s
9 80 m/s
− .= = = . .
.y

y
t

a -
 21

f i, 2x xx v t a t= +  gives f i, (17.1 m/s)(1.50 s) 25.6 m.xx v t= = =  

EVALUATE:   Conservation of energy can be used to find the speed of the sled at any point of the motion 
but does not specify how far the sled travels while it is in the air. 
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 7.61. IDENTIFY:   We have a conservative force, so we can relate the force and the potential energy function. 
Energy conservation applies. 

SET UP:   Fx = –dU/dx , U goes to 0 as x goes to infinity, and 2
0

( ) .
( )

F x
x x

=
+
α  

EXECUTE:   (a) Using dU = –Fxdx, we get  2
00

.
( )

x

xU U dx
x xx x∞

∞
− = − =

++∫
α α  

(b) Energy conservation tells us that U1 = K2 + U2. Therefore  2

1 0 2 0

1 .
2 xmv

x x x x
= +

+ +
α α  Putting in m = 

0.500 kg, α = 0.800 N ⋅ m , x0 = 0.200 m,  x1 = 0, and x2 = 0.400 m, solving for v gives v = 3.27 m/s. 
EVALUATE:   The potential energy is not infinite even though the integral in (a) is taken over an infinite 
distance because the force rapidly gets smaller with increasing distance x. 

 7.62. IDENTIFY:   Apply 1 1 other 2 2.K U W K U+ + = +  U is the total elastic potential energy of the two springs. 

SET UP:   Call the two points in the motion where K1 + U1 + Wother = K2 + U2  is applied A and B to avoid 

confusion with springs 1 and 2, that have force constants 1k and 2.k  At any point in the motion the 
distance one spring is stretched equals the distance the other spring is compressed. Let x+  be to the right. 
Let point A be the initial position of the block, where it is released from rest, so 1 0 150 mAx = + . and 

  x2 A = −0.150 m.  

EXECUTE:   (a) With no friction, other 0.W =  0AK =  and .A B BU K U= +  The maximum speed is when 
0BU = and this is at 1 2 0,B Bx x= =  when both springs are at their natural length. 

2 2 21 1 1
1 1 2 22 2 2 .A A Bk x k x mv+ =  2 2 2

1 2 (0 150 m) ,A Ax x= = .  so 

1 2 2500 N/m 2000 N/m(0 150 m) (0 150 m) 6.00 m/s.
3 00 kg

+ += . = . =
.B

k k
v

m
 

(b) At maximum compression of spring 1, spring 2 has its maximum extension and 0.Bv =  Therefore, at 
this point .A BU U=  The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice 

versa: 1 2A Ax x=-  and 1 2 .B Bx x=-  Then A BU U=  gives 2 21 1
1 2 1 1 2 12 2( ) ( )A Bk k x k k x+ = +  and 

1 1 0 150 m.B Ax x= = .- -  The maximum compression of spring 1 is 15.0 cm. 
EVALUATE:   When friction is not present mechanical energy is conserved and is continually transformed 
between kinetic energy of the block and potential energy in the springs. If friction is present, its work 
removes mechanical energy from the system. 

 7.63. IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2  to the motion of the block. 
SET UP:   Let 0y =  at the floor. Let point 1 be the initial position of the block against the compressed 
spring and let point 2 be just before the block strikes the floor. 
EXECUTE:   With 2 10, 0,U K= =  2 1.K U=  2 21 1

22 2 .mv kx mgh= +  Solving for 2,v  

2 2
2

2
(1900 N/m)(0 045 m)2 2(9 80 m/s )(1 20 m) 7 01 m/s.

(0 150 kg)
.= + = + . . = .

.
kx

v gh
m

 

EVALUATE:   The potential energy stored in the spring and the initial gravitational potential energy all go 
into the final kinetic energy of the block. 

 7.64. IDENTIFY:   At equilibrium the upward spring force equals the weight mg of the object. Apply 
conservation of energy to the motion of the fish. 
SET UP:   The distance that the mass descends equals the distance the spring is stretched. 1 2 0,K K= =  so 

1 2(gravitational) (spring)U U=  
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EXECUTE:   Following the hint, the force constant k is found from ,mg kd=  or / .=k mg d  When the fish 
falls from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the 
spring, which is 2 21 1

2 2 ( / ) .=ky mg d y  Equating these, 21
2 , or 2 .mg

d y mgy y d= =  

EVALUATE:   At its lowest point the fish is not in equilibrium. The upward spring force at this point is 
2 ,ky kd=  and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has 

an upward acceleration equal to g. 
 7.65. IDENTIFY:   The spring does positive work on the box but friction does negative work. 

SET UP:   Uel = 1
2 kx2

 and Wother = Wf = –µkmgx. 

EXECUTE:   (a) Uel + Wother = K gives  ½ kx2 + (–µkmgx) = ½ mv2. Using the numbers for the problem,  
k = 45.0 N/m, x = 0.280 m, µk = 0.300, and m = 1.60 kg, solving for v gives v = 0.747 m/s. 
(b) Call x the distance the spring is compressed when the speed of the box is a maximum and x0 the initial 
compression distance of the spring. Using an approach similar to that in part (a) gives 
½ kx0

2 – µkmg(x0 – x) = ½ mv2 + ½ kx2. Rearranging gives mv2 = kx0
2 – kx2 – 2µkmg(x0 – x). For the 

maximum speed, d(v2)/dx = 0, which gives –2kx + 2µkmg = 0. Solving for xmax, the compression distance at 
maximum speed, gives xmax = µkmg/k. Now substitute this result into the expression above for mv2, put in 
the numbers, and solve for v, giving v = 0.931 m/s. 
EVALUATE:   Another way to find the result in (b) is to realize that the spring force decreases as x 
decreases, but the friction force remains constant. Eventually these two forces will be equal in magnitude. 
After that the friction force will be greater than the spring force, and friction will begin to slow down the 
box. So the maximum box speed occurs when the spring force is equal to the friction force. At that instant, 
kx = fk, which gives x = 0.105 m. Then  energy conservation can be used to find v with this value of x. 

 7.66. IDENTIFY:   The spring obeys Hooke’s law. Gravity and the spring provide the vertical forces on the brick. 
The mechanical energy of the system is conserved. 
SET UP:   Use f f i i.K U K U+ = +  In part (a), setting f 0,y =  we have i ,y x=  the amount the spring will 

stretch. Also, since i f 0,K K= =  21
2 .kx mgx=  In part (b), i ,y h x= +  where 1 0 m.h = .  

EXECUTE:   (a) 
22 2(3 0 kg)(9 80 m/s ) 0 039 m 3 9 cm.

1500 N/m
mg

x
k

. .= = = . = .  

(b) 21
2 ( ),kx mg h x= +  2 2 2 0kx mgx mgh− − =  and 21 1mg hk

x
k mg

⎛ ⎞
= ± + .⎜ ⎟⎜ ⎟

⎝ ⎠
 Since x must be positive, we 

have 
2

2
2 (3 0 kg)(9 80 m/s ) 2(1 0 m)(1500 N/m)1 1 1 1 0 22 m 22 cm.

1500 N/m 3 0 kg(9 80 m/s )
mg hk

x
k mg

⎛ ⎞⎛ ⎞ . . .= + + = + + = . =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In part (b) there is additional initial energy (from gravity), so the spring is stretched more. 
 7.67. IDENTIFY:   Only conservative forces (gravity and the spring) act on the fish, so its mechanical energy is 

conserved. 
SET UP:   Energy conservation tells us 1 1 other 2 2,K U W K U+ + = +  where other 0.W = ,gU mgy=  

21
2 ,K mv=  and 21

2 .=springU ky  

EXECUTE:   (a) 1 1 other 2 2.K U W K U+ + = +  Let y be the distance the fish has descended, so 0 0500 m.y = .  

1 0,K =  other 0,W =  1 ,U mgy=  2
2 2

1 ,
2

=K mv  and 2
2

1 .
2

U ky=  Solving for K2 gives 

2 2 2
2 1 2

1 1(3 00 kg)(9 8 m/s )(0 0500 m) (900 N/m)(0 0500 m)
2 2

K U U mgy ky= − = − = . . . − .

2 1 47 J 1 125 J 0 345 J.K = . − . = .  Solving for v2 gives 2
2

2 2(0 345 J) 0 480 m/s.
3 00 kg

K
v

m
.= = = .

.
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(b) The maximum speed is when 2K  is maximum, which is when 2/  0.dK dy =  Using 2
2

1
2

K mgy ky= −  

gives 2 0.dK
mg ky

dy
= − =  Solving for y gives 

2(3 00 kg)(9 8 m/s ) 0 03267 m.
900 N/m

mg
y

k
. .= = = .  At this y, 

2 2
2

1(3 00 kg)(9 8 m/s )(0 03267 m) (900 N/m)(0 03267 m) .
2

K = . . . − .  2 0 9604 J 0 4803 J 0 4801 J,K = . − . = .  

so 2
2

2 0 566 m/s.K
v

m
= = .  

EVALUATE:   The speed in part (b) is greater than the speed in part (a), as it should be since it is the 
maximum speed. 

 7.68. IDENTIFY:   The mechanical energy is conserved and Newton’s second law applies. The kinetic energy of 
the cart (with riders) is transformed into elastic potential energy at maximum compression of the spring, 
and the acceleration is greatest at that instant. 
SET UP:   F = ma, K1 = Uel, amax = 3.00g. 

EXECUTE:   (a) and (b) amax = kxmax/m and 2 2
max

1 1 ,
2 2

mv kx=  where m = 300 kg, v = 6.00 m/s, and  

amax = 3.00g.  Solving these two equations simultaneously gives k = 7210 N/m and xmax = 1.22 m. 
EVALUATE:   The force constant is 72 N/cm, so this is a rather stiff spring, as it would have to be to stop a 
300-kg cart with an acceleration of 3g. 

 7.69. (a) IDENTIFY and SET UP:   Apply otherA A B BK U W K U+ + = +  to the motion from A to B. 

EXECUTE:   0,AK =  21
2 ,B BK mv=  0,AU =  21

el 2 ,B ,B BU U kx= =  where 0 25 m,Bx = .  and 

other .F BW W Fx= =  Thus 2 21 1
2 2 .B B BFx mv kx= +  (The work done by F goes partly to the potential energy of 

the stretched spring and partly to the kinetic energy of the block.) 
(20 0 N)(0 25 m) 5 0 JBFx = . . = .  and 2 21 1

2 2 (40 0 N/m)(0 25 m) 1 25 JBkx = . . = .  

Thus 21
25 0 J 1 25 JBmv. = + .  and 2(3 75 J) 3 87 m/s.

0 500 kgBv
.= = .

.
 

(b) IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2  to the motion of the block. Let point C be where the 

block is closest to the wall. When the block is at point C the spring is compressed an amount ,Cx  so the 

block is 0 60 m Cx. −  from the wall, and the distance between B and C is .B Cx x+  
SET UP:   The motion from A to B to C is described in Figure 7.69. 

 

 otherB B C CK U W K U+ + = +  
EXECUTE:   other 0W =  

21
2 5 0 J 1 25 J 3 75 JB BK mv= = . − . = .  

           (from part (a)) 
21

2 1 25 JB BU kx= = .  

0CK =  (instantaneously at rest at point 
               closest to wall) 

21
2C CU k x=  

Figure 7.69   
 

Thus 21
23 75 J 1 25 J Ck x. + . = , giving 2(5 0 J) 0 50 m.

40 0 N/mCx
.= = .

.
 The distance of the block from the 

wall is 0 60 m 0 50 m 0 10 m. − . = . .  
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EVALUATE:   The work (20 0 N)(0 25 m) 5 0 J. . = .  done by F puts 5.0 J of mechanical energy into the 
system. No mechanical energy is taken away by friction, so the total energy at points B and C is 5.0 J. 

 7.70. IDENTIFY:   Applying Newton’s second law, we can use the known normal forces to find the speeds of the 
block at the top and bottom of the circle. We can then use energy conservation to find the work done by 
friction, which is the target variable. 

SET UP:   For circular motion 
2

.Σ = v
F m

R
 Energy conservation tells us that other ,A A B BK U W K U+ + = +  

where otherW  is the work done by friction. gU mgy=  and 21
2 .=K mv  

EXECUTE:   Use the given values for the normal force to find the block’s speed at points A and B. At point A, 

Newton’s second law gives 
2

.A
A

v
n mg m

R
− =  So 

0 500 m( ) (3 95 N 0 392 N) 6 669 m/s.
0 0400 kgA A

R
v n mg

m
.= − = . − . = .

.
 Similarly at point B, 

2
.B

B
v

n mg m
R

+ =  

Solving for Bv  gives 0 500 m( ) (0 680 N 0 392 N) 3 660 m/s.
0 0400 kgB B

R
v n mg

m
.= + = . + . = .

.
 Now apply 

  K1 + U1 + Wother = K2 + U2  to find the work done by friction. other .A A B BK U W K U+ + = +  

other .B B AW K U K= + −  

  
Wother = 1

2
(0.040 kg)(3.66 m/s)2 + (0.04 kg)(9.8 m/s2 )(1.0 m) − 1

2
(0.04 kg)(6.669 m/s)2 .  

  Wother = 0.2679 J + 0.392 J − 0.8895 J = −0.230 J.  
EVALUATE:   The work done by friction is negative, as it should be. This work is equal to the loss of 
mechanical energy between the top and bottom of the circle. 

 7.71. IDENTIFY:   We can apply Newton’s second law to the block. The only forces acting on the block are 
gravity downward and the normal force from the track pointing toward the center of the circle. The 
mechanical energy of the block is conserved since only gravity does work on it. The normal force does no 
work since it is perpendicular to the displacement of the block. The target variable is the normal force at 
the top of the track. 

SET UP:   For circular motion 
2

.Σ = v
F m

R
 Energy conservation tells us that other ,+ + = +A A B BK U W K U  

where 21
g 2other = 0.  and .= =W U mgy K mv  

EXECUTE:   Let point A be at the bottom of the path and point B be at the top of the path. At the bottom of 

the path,
2

A
v

n mg m
R

− =  (from Newton’s second law). 

0 800 m( ) (3 40 N 0 49 N) 6 82 m/s.
0 0500 kgA A

R
v n mg

m
.= − = . − . = .

.
 Use energy conservation to find the  

speed at point B. other ,A A B BK U W K U+ + = +  giving 2 21 1
2 2 (2 ).= +A Bmv mv mg R  Solving for Bv   

gives 
  
vB = vA

2 − 4Rg = (6.82 m/s)2 − 4(0.800 m)(9.8 m/s2 ) = 3.89 m/s.  Then at point B,  

Newton’s second law gives 
2

.B
B

v
n mg m

R
+ =  Solving for Bn  gives 

2
B

B
v

n m mg
R

= − =  

2
2(3 89 m/s)(0 0500 kg) 9 8 m/s 0 456 N.

0 800 m
⎛ ⎞.. − . = .⎜ ⎟.⎝ ⎠

 

EVALUATE:   The normal force at the top is considerably less than it is at the bottom for two reasons: the 
block is moving slower at the top and the downward force of gravity at the top aids the normal force in 
keeping the block moving in a circle.  
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 7.72. IDENTIFY:   Only gravity does work, so apply 1 1 2 2.K U K U+ = +  Use mΣ =F a
G G

 to calculate the tension. 
SET UP:   Let 0y =  at the bottom of the arc. Let point 1 be when the string makes a 45°  angle with the 
vertical and point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial 
acceleration 2

rad / .a v r=  
EXECUTE:   (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect 
to the bottom of the circular arc) is (1 cos ),mgl θ−   where l is the length of the string and θ  is the angle the 
string makes with the vertical. At the bottom of the swing, this potential energy has become kinetic energy, 

so 21
2(1 cos ) ,θ− =mgl mv  which gives 22 (1 cos ) 2(9 80 m/s )(0 80 m)(1 cos45 ) 2 1 m/s.v gl θ= − = . .  − ° = .  

(b) At 45°  from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to 
the radial component of the weight, or 2cos (0 12 kg)(9 80 m/s ) cos 45 0 83 N.mg θ = . . ° = .  
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial 
acceleration, 2

2 / (1 2(1 cos45 )) 1 9 Nmg mv l mg+ = + − ° = . . 
EVALUATE:   When the string passes through the vertical, the tension is greater than the weight because the 
acceleration is upward. 

 7.73. IDENTIFY:   Apply   K1 + U1 + Wother = K2 + U2  to the motion of the block. 
SET UP:   The motion from A to B is described in Figure 7.73. 

 

 

Figure 7.73 
 
The normal force is cos ,n mg θ=  so k k k cos .µ µ θ= =f n mg  0;Ay =  (6.00 m)sin30 0 3 00 m.By = . ° = .  

otherA A B BK U W K U+ + = +  
EXECUTE:   Work is done by gravity, by the spring force, and by friction, so other fW W=  and 

el gravU U U= +  

0,AK =  2 21 1
2 2 (1 50 kg)(7 00 m/s) 36 75 JB BK mv= = . . = .  

el, grav, el, ,= + =A A A AU U U U  since grav, 0=AU  
2

el, grav, 0 (1.50 kg)(9.80 m/s )(3.00 m) 44.1 J= + = + = =B B B BU U U mgy  

  
Wother = W f = ( fk cosφ)s = µkmg cosθ(cos180°)s = −µkmg cosθs  

Wother = −(0.50)(1.50 kg)(9.80 m/s2 )(cos30.0°)(6.00 m) = −38.19 J  

Thus el, 38.19 J 36.75 J 44.10 J,AU − = +  giving el, 38.19 J 36.75 J 44.10 J 119 J.AU = + + =  

EVALUATE:   elU  must always be positive. Part of the energy initially stored in the spring was taken away 
by friction work; the rest went partly into kinetic energy and partly into an increase in gravitational 
potential energy. 

 7.74. IDENTIFY:  We know the potential energy function for a conservative force. Mechanical energy is 
conserved. 
SET UP:   Fx = –dU/dx and 2 3( ) .U x x x= − +α β  
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EXECUTE:   (a) U1 + K1 = U2 + K2 gives 0 + 0 = U2 + K2, so K2 = –U2 = – 2 3
2 2( )x x− +α β  = 1

2 mv2. Using  
m = 0.0900 kg, x = 4.00 m, α  = 2.00 J/m2, and β  = 0.300 J/m3 , solving for v gives v = 16.9 m/s. 

(b) Fx = –dU/dx = 2( 2 3 ).x x− − +α β  In addition, Fx = max, so ax = Fx/m.  Using the numbers from (a), 
gives a = 17.8 m/s2. 
(c) The maximum x will occur when U = 0 since the total energy is zero. Therefore 
−α x 2 + βx 3 = 0, so xmax = /α β  = (2.00 J/m2)/(0.300 J/m3) = 6.67 m. 
EVALUATE:   The object is released from rest but at a small (but not zero) x. Therefore Fx is small but not 
zero initially, so it will start the object moving. 

 7.75. IDENTIFY:   We are given that 2 ˆ,xy= −α
G
F j  32 50 N/mα = . . F

G
 is not constant so use 

2

1
W d= ⋅∫

GG
F l  to 

calculate the work. F
G

 must be evaluated along the path. 
(a) SET UP:   The path is sketched in Figure 7.75a. 

 

 ˆ ˆd dx dy= +l i j
G

 
2d xy dy⋅ = −  

GG
αF l  

On the path, x y=  so 3d y dy⋅ = −  
GG

αF l  

Figure 7.75a   
 

EXECUTE:   
2 3 4 42

2 11 1
( ) ( /4)( )

y

y
W d y dy y y= ⋅ = −  = − −∫ ∫

GG
α αF l  

1 0,y =  2 3 00 m,y = .  so 
  
W = − 1

4
(2.50 N/m3)(3.00 m)4 = −50.6 J  

(b) SET UP:   The path is sketched in Figure 7.75b. 
 

 
Figure 7.75b 

 

For the displacement from point 1 to point 2, ˆ,d dx=l i
G

 so 0d⋅ =F l
GG

 and 0.W =  (The force is 
perpendicular to the displacement at each point along the path, so 0.)=W  

For the displacement from point 2 to point 3, ˆ,d dy=l j
G

 so 2 .d xy dy⋅ = −  
GG

αF l  On this path, 3 00 m,x = .  so 

3 2 2 2(2 50 N/m )(3 00 m) (7 50 N/m ) .d y dy y dy⋅ = − . .  = − .  
GG

F l  

EXECUTE:   
3 2 2 2 3 313

3 232 2
(7.50 N/m ) (7.50 N/m ) ( )

y

y
W d y dy y y= ⋅ = −  = − −∫ ∫

GG
F l  

( )2 31
3(7 50 N/m ) (3 00 m) 67 5 J.W = − . . = − .  

(c) EVALUATE:   For these two paths between the same starting and ending points the work is different, so 
the force is nonconservative. 

  

 7.76. IDENTIFY:   Use x
dU

F
dx

= −  to relate xF  and ( ).U x  The equilibrium is stable where ( )U x  is a local 

minimum and the equilibrium is unstable where ( )U x  is a local maximum. 
SET UP:   /dU dx  is the slope of the graph of U versus x. ,K E U= −  so K is a maximum when U is a 
minimum. The maximum x is where .E U=  



7-30   Chapter 7 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EXECUTE:   (a) The slope of the U vs. x curve is negative at point A, so xF  is positive because 
/ .xF dU dx= −  

(b) The slope of the curve at point B is positive, so the force is negative. 
(c) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at 
around 0.75 m. 
(d) The curve at point C looks pretty close to flat, so the force is zero. 
(e) The object had zero kinetic energy at point A, and in order to reach a point with more potential energy 
than ( ),U A  the kinetic energy would need to be negative. Kinetic energy is never negative, so the object 
can never be at any point where the potential energy is larger than ( ).U A  On the graph, that looks to be at 
about 2.2 m. 
(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m. 
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C. 
EVALUATE:   If E is less than U at point C, the particle is trapped in one or the other of the potential 
“wells” and cannot move from one allowed region of x to the other. 

 7.77. IDENTIFY:   The mechanical energy of the system is conserved, and Newton’s second law applies. As the 
pendulum swings, gravitational potential energy gets transformed to kinetic energy. 
SET UP:   For circular motion, F = mv2/r. Ugrav = mgh.  
EXECUTE:   (a) Conservation of mechanical energy gives  mgh = ½ mv2 + mgh0, where h0 = 0.800 m. 
Applying Newton’s second law at the bottom of the swing gives T = mv2/L + mg. Combining these two 
equations and solving for T as a function of h gives T = (2mg/L)h + mg(1 – 2h0/L). In a graph of T versus 
h, the slope is 2mg/L. Graphing the data given in the problem, we get the graph shown in Figure 7.77. 
Using the best-fit equation, we get T = (9.293 N/m)h + 257.3 N. Therefore 2mg/L = 9.293 N/m. Using  
mg = 265 N and solving for L, we get  L = 2(265 N)/(9.293 N/m) = 57.0 m. 
 

 
 

Figure 7.77 
 

(b) Tmax = 822 N, so T = Tmax/2 = 411 N. We use the equation for the graph with T = 411 N and solve for h.  
411 N = (9.293 N/m)h + 257.3 N, which gives h = 16.5 m. 
(c) The pendulum is losing energy because negative work is being done on it by friction with the air and at 
the point of contact where it swings.  
EVALUATE:   The length of this pendulum may seem extremely large, but it is not unreasonable for a 
museum exhibit, which can cover a height of several floor levels. 
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 7.78. IDENTIFY:   Friction does negative work, and we can use 1 1 other 2 2.K U W K U+ + = +  
SET UP:   U1 + Wother = K2 

EXECUTE:   (a) Using K2 = U1 + Wother gives ( )2
k

1 cos
2

mv mgh mg s= − µ θ  and geometry gives  
sin

h
s =

θ
. 

Combining these equations and solving for h gives 
2

k2 1
tan

v
h

g µ
θ

=
⎛ ⎞−⎜ ⎟
⎝ ⎠

. For each material, θ  = 52.0° and  

v = 4.00 m/s. Using the coefficients of sliding friction from the table in the problem, this formula gives the 
following results for h. (i) 0.92 m  (ii) 1.1 m  (iii) 2.4 m. 
(b) The mass divides out, so h is unchanged and remains at 1.1 m. 

(c) In the formula for h in part (a), we solve for v2 giving 2 k2 1 .
tan

v gh
µ

θ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 As θ  increases (but  

h remains the same), tanθ  increases, so the quantity in parentheses increases since tanθ  is in the 
denominator. Therefore v increases. 
EVALUATE:   The answer in (c) makes physical sense because with h constant, a larger value for θ  means 
that the normal force decreases so the magnitude of the friction force also decreases, and therefore friction 
is less able to oppose the motion of the block as it slides down the slope. 

 7.79. IDENTIFY:   For a conservative force, mechanical energy is conserved and we can relate the force to its 
potential energy function. 
SET UP:   Fx = –dU/dx. 
EXECUTE:   (a) U + K = E = constant. If two points have the same kinetic energy, they must have the same 
potential energy since the sum of U and K is constant. Since the kinetic energy curve symmetric, the 
potential energy curve must also be symmetric. 
(b) At x = 0 we can see from the graph with the problem that E = K + 0 = 0.14 J. Since E is constant, if  
K = 0 at x = –1.5 m, then U must be equal to 0.14 J at that point. 
(c) U(x) = E – K(x) = 0.14 J – K(x), so the graph of U(x) is like the sketch in Figure 7.79. 
 

 
 

Figure 7.79 
 

(d) Since Fx = –dU/dx, F(x) = 0 at x = 0, +1.0 m, and –1.0 m. 
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(e) F(x) is positive when the slope of the U(x) curve is negative, and F(x) is negative when the slope of  the 
U(x) curve is positive. Therefore F(x) is positive between x = –1.5 m and x = –1.0 m and between x = 0 and 
x = 1.0 m. F(x) is negative between x = –1.0 m and 0 and between x = 1.0 m and x = 1.5 m. 
(f) When released from x = –1.30 m, the sphere will move to the right until it reaches x = –0.55 m, at 
which point it has 0.12 J of potential energy, the same as at is original point of release. 
EVALUATE:   Even though we do not have the equation of the kinetic energy function, we can still learn 
much about the behavior of the system by studying its graph. 

 7.80. IDENTIFY:   K E U= −  determines ( ).v x  
SET UP:   v is a maximum when U is a minimum and v is a minimum when U is a maximum. 

  Fx = −dU /dx.  The extreme values of x are where ( ).E U x=  

EXECUTE:   (a) Eliminating β  in favor of α  and 0 0( / ),β α=x x  

22
0 0 0

2 2 2 2
00 0

( ) .x x x
U x

x x x x xx x x x
α β α α α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

20
0

( ) (1 1) 0.U x
x
α⎛ ⎞

⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

 ( )U x  is positive for 0x x<  and negative for 0x x>  (α  and β  must be taken 

as positive). The graph of ( )U x  is sketched in Figure 7.80a. 

(b) 
2

0 0
2
0

2 2( ) .x x
v x U

m mx x x
α ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 The proton moves in the positive x-direction, speeding up 

until it reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus 
sign in the square root in the expression for ( )v x  indicates that the particle will be found only in the region 
where 0,U <  that is, 0.x x>  The graph of ( )v x  is sketched in Figure 7.80b. 
(c) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential 

energy. This minimum occurs when 0,=dU
dx

 or 
3 2

0 0

0

2 0,dU x x
dx x x x

α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

which has the solution 02 .x x=  0 2
0

(2 ) ,
4

U x
x
α= −  so 2

0

.
2

v
mx
α=  

(d) The maximum speed occurs at a point where = 0,dU
dx

 and since ,x
dU

F
dx

= −  the force at this point  

is zero. 

(e) 1 03 ,x x=  and 0 2
0

2(3 ) .
9

U x
x
α= −  

2 2
0 0 0 0

1 2 2 2
0 0 0

2 2 2 2 2( ) ( ( ) ( )) .
9 9

x x x x
v x U x U x

m m x x x x mx x x
α α α⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= − = − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

The particle is confined to the region where 1( ) ( ).U x U x<  The maximum speed still occurs at 02 ,x x=  

but now the particle will oscillate between 1x  and some minimum value (see part (f)). 

(f) Note that 1( ) ( )U x U x−  can be written as 

2
0 0 0 0

2 2
0 0

2 1 2 ,
9 3 3

x x x x
x x x x x x
α α⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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which is zero (and hence the kinetic energy is zero) at 0 13= =x x x  and 3
2 0 .x x=  Thus, when the particle 

is released from 0 ,x  it goes on to infinity, and doesn’t reach any maximum distance. When released from 

1 ,x  it oscillates between 3
2 0x  and 03 .x  

EVALUATE:   In each case the proton is released from rest and ( ),iE U x=  where ix  is the point where it 

is released. When 0ix x=  the total energy is zero. When 1ix x=  the total energy is negative. ( ) 0U x →  

as ,x → ∞  so for this case the proton can’t reach x → ∞  and the maximum x it can have is limited. 
 

 

 

Figure 7.80   
 

 7.81. IDENTIFY:   We model the DNA molecule as an ideal spring. 
SET UP:   Hooke’s law is F = kx. 
EXECUTE:   Since F is proportional to x, if a 3.0-pN force causes a 0.10-nm deflection, a 6.0-pN force, 
which is twice as great, should use twice as much deflection, or 0.2 nm. This makes choice (c) correct. 
EVALUATE:   A simple model can give rough but often meaningful insight into the behavior of a 
complicated system. 

 7.82. IDENTIFY and SET UP:   If a system obeys Hooke’s law, a graph of force versus displacement will be a 
straight line through the origin having positive slope equal to the force constant.  
EXECUTE:   The graph is a straight line. Reading its slope from the graph gives (2.0 pN)/(20 nm) = 0.1 
pN/nm, which makes choice (b) correct. 
EVALUATE:   The molecule would obey Hooke’s law only over a restricted range of displacements. 

 7.83. IDENTIFY and SET UP:   The energy is the area under the force-displacement curve.  
EXECUTE:   Using the area under the triangular section from 0 to 50 nm, we have 
A = 1

2 (5.0 pN)(50 nm) = 1.25 × 10–19 J  ≈ 1.2 × 10–19 J, which makes choice (b) correct. 
EVALUATE:   This amount of energy is quite small, but recall that this is the energy of a microscopic 
molecule. 

 7.84. IDENTIFY and SET UP:   P = Fv and at constant speed x = vt. The DNA follows Hooke’s law, so F = kx.  
EXECUTE:   P = Fv = kxv =k(vt)v = kv2t . Since k and v are constant, the power is proportional to the time, 
so the graph of power versus time should be a straight line through the origin, which fits choice (a). 
EVALUATE:   The power increases with time because the force increases with x and x increases with t. 
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 8.1. IDENTIFY and SET UP:   .p mv=  21
2 .K mv=  

EXECUTE:   (a) 5(10 000 kg)(12 0 m/s) 1 20 10  kg m/sp ,= . = . × ⋅  

(b) (i) 
51 20 10  kg m/s 60 0 m/s.

2000 kg
p

v
m

. × ⋅= = = .  (ii) 2 21 1
T T SUV SUV2 2 ,m v m v=  so  

T
SUV T

SUV

10,000 kg (12 0 m/s) 26 8 m/s
2000 kg

m
v v

m
= = . = .  

EVALUATE:   The SUV must have less speed to have the same kinetic energy as the truck than to have the 
same momentum as the truck. 

 8.2. IDENTIFY:   Each momentum component is the mass times the corresponding velocity component. 
SET UP:   Let x+  be along the horizontal motion of the shotput. Let y+  be vertically upward. 

cos ,xv v θ=  sin .yv v θ=  
EXECUTE:   The horizontal component of the initial momentum is  

cos (7 30 kg)(15 0 m/s)cos40 0 83 9 kg m/s.x xp mv mv θ= = = . . . ° = . ⋅  
The vertical component of the initial momentum is 

sin (7 30 kg)(15 0 m/s)sin40 0 70 4 kg m/s.y yp mv mv θ= = = . . . ° = . ⋅  
EVALUATE:   The initial momentum is directed at 40 0. °  above the horizontal. 

 8.3. IDENTIFY and SET UP:    We use p = mv and add the respective components. 
EXECUTE:   (a) 0 (10 0 kg)( 3 0 m/s) 30 kg m/sx Ax CxP p p= + = + . − . = − ⋅  

(5 0 kg)( 11 0 m/s) 0 55 kg m/sy Ay CyP p p= + = . − . + = − ⋅  

(b) (6 0 kg)(10 0 m/s cos60 ) (10 0 kg)( 3 0 m/s) 0x Bx CxP p p= + = . . ° + . − . =  
(6 0 kg)(10 0 m/s sin60 ) 0 52 kg m/sy By CyP p p= + = . . ° + = ⋅  

(c) 0 (6 0 kg)(10 0 m/s cos60 ) (10 0 kg)( 3 0 m/s) 0x Ax Bx CxP p p p= + + = + . . ° + . − . =  
(5 0 kg)( 11 0 m/s) (6 0 kg)(10 0 m/s sin 60 ) 0 3 0 kg m/sy Ay By CyP p p p= + + = . − . + . . ° + = − . ⋅  

EVALUATE:  A has no x-component of momentum so xP  is the same in (b) and (c). C has no y-component 
of momentum so yP  in (c) is the sum of yP  in (a) and (b). 

 8.4. IDENTIFY:   For each object m=p vG G  and the net momentum of the system is .A B= +P p p
G G G  The 

momentum vectors are added by adding components. The magnitude and direction of the net momentum is 
calculated from its x- and y-components. 
SET UP:   Let object A be the pickup and object B be the sedan. 14 0 m/s,Axv = − .  0.Ayv =  0,Bxv =  

23 0 m/s.Byv = + .  

MOMENTUM, IMPULSE, AND COLLISIONS 
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EXECUTE:   (a) 4(2500 kg)( 14 0 m/s) 0 3 50 10  kg m/sx Ax Bx A Ax B BxP p p m v m v= + = + = − . + = − . × ⋅  

4(1500 kg)( 23 0 m/s) 3 45 10  kg m/sy Ay By A Ay B ByP p p m v m v= + = + = + . = + . × ⋅  

(b) 2 2 44 91 10  kg m/s.x yP P P= + = . × ⋅  From Figure 8.4, 
4

4
3 50 10  kg m/stan
3 45 10  kg m/s

x

y

P
P

θ . × ⋅= =
. × ⋅

 and 45 4 .θ = . °  

The net momentum has magnitude 44 91 10  kg m/s. × ⋅  and is directed at 45 4. °  west of north. 
EVALUATE:   The momenta of the two objects must be added as vectors. The momentum of one object is 
west and the other is north. The momenta of the two objects are nearly equal in magnitude, so the net 
momentum is directed approximately midway between west and north. 

 

 

Figure 8.4 
 

 8.5. IDENTIFY:   For each object, m=p vG G  and 21
2 .K mv=  The total momentum is the vector sum of the 

momenta of each object. The total kinetic energy is the scalar sum of the kinetic energies of each object. 
SET UP:   Let object A be the 110 kg lineman and object B the 125 kg lineman. Let x+  be to the right,  
so +2 75 m/sAxv = .  and 2 60 m/s.Bxv = − .  
EXECUTE:   (a) (110 kg)(2 75 m/s) (125 kg)( 2 60 m/s) 22 5 kg m/s.x A Ax B BxP m v m v= + = . + − . = − . ⋅  The net 
momentum has magnitude 22 5 kg m/s. ⋅  and is directed to the left. 

(b) 2 2 2 21 1 1 1
2 2 2 2(110 kg)(2 75 m/s) (125 kg)(2 60 m/s) 838 JA A B BK m v m v= + = . + . =  

EVALUATE:   The kinetic energy of an object is a scalar and is never negative. It depends only on the 
magnitude of the velocity of the object, not on its direction. The momentum of an object is a vector and has 
both magnitude and direction. When two objects are in motion, their total kinetic energy is greater than the 
kinetic energy of either one. But if they are moving in opposite directions, the net momentum of the system 
has a smaller magnitude than the magnitude of the momentum of either object. 

 8.6. IDENTIFY:   We know the contact time of the ball with the racket, the change in velocity of the ball, and 
the mass of the ball. From this information we can use the fact that the impulse is equal to the change in 
momentum to find the force exerted on the ball by the racket. 
SET UP:   x xJ p= ∆  and .x xJ F t= ∆  In part (a), take the -directionx+  to be along the final direction of 
motion of the ball. The initial speed of the ball is zero. In part (b), take the -directionx+  to be in the 
direction the ball is traveling before it is hit by the opponent’s racket. 
EXECUTE:   (a) 3

2 1 (57 10  kg)(73 m/s 0) 4 16 kg m/s.x x xJ mv mv −= − = × − = . ⋅  Using x xJ F t= ∆  gives 

3
4 16 kg m/s 140 N.
30 0 10  s

x
x

J
F

t −
. ⋅= = =

∆ . ×
 

(b) 3
2 1 (57 10  kg)( 55 m/s 73 m/s) 7 30 kg m/s.x x xJ mv mv −= − = × − − = − . ⋅  

3
7 30 kg m/s 240 N.

30 0 10  s
x

x
J

F
t −

− . ⋅= = = −
∆ . ×

 

EVALUATE:   The signs of xJ  and xF  show their direction. 140 N 31 lb.=  This very attainable force has a 
large effect on the light ball. 140 N is 250 times the weight of the ball. 

 8.7. IDENTIFY:   The average force on an object and the object’s change in momentum are related by 

av( ) .x
x

J
F

t
=

∆
 The weight of the ball is .w mg=  
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SET UP:   Let x+  be in the direction of the final velocity of the ball, so 1 0xv =  and 2 25 0 m/s.xv = .  

EXECUTE:   av 2 1 2 1( ) ( )x x xF t t mv mv− = −  gives 2 1
av 3

2 1

(0 0450 kg)(25 0 m/s)( ) 562 N.
2 00 10  s

x x
x

mv mv
F

t t −
− . .= = =
− . ×

 

2(0 0450 kg)(9 80 m/s ) 0 441 N.w = . . = .  The force exerted by the club is much greater than the weight of 
the ball, so the effect of the weight of the ball during the time of contact is not significant. 
EVALUATE:   Forces exerted during collisions typically are very large but act for a short time. 

 8.8. IDENTIFY:   The change in momentum, the impulse, and the average force are related by x xJ p= ∆  and 

av( ) .x
x

J
F

t
=

∆
 

SET UP:   Let the direction in which the batted ball is traveling be the -direction,x+  so 1 45 0 m/sxv = − .  
and 2 55 0 m/s.xv = .  
EXECUTE:   (a) 2 1 2 1( ) (0 145 kg)[55 0 m/s ( 45 0 m/s)] 14 5 kg m/s.x x x x xp p p m v v∆ = − = − = . . − − . = . ⋅  

,x xJ p= ∆  so 14 5 kg m/s.xJ = . ⋅  Both the change in momentum and the impulse have magnitude 14 5 kg m/s.. ⋅  

(b) av 3
14 5 kg m/s( ) 7250 N.
2 00 10  s

x
x

J
F

t −
. ⋅= = =

∆ . ×
 

EVALUATE:   The force is in the direction of the momentum change. 
 8.9. IDENTIFY:   Use 2 1 .x x xJ p p= −  We know the initial momentum and the impulse so can solve for the final 

momentum and then the final velocity. 
SET UP:   Take the x-axis to be toward the right, so 1 3 00 m/sxv = + . .  Use x xJ F t= ∆  to calculate the 
impulse, since the force is constant. 
EXECUTE:   (a) 2 1x x xJ p p= −  

2 1( ) ( 25 0 N)(0 050 s) 1 25 kg m/sx xJ F t t= − = + . . = + . ⋅  
Thus 2 1 1 25 kg m/s (0 160 kg)( 3 00 m/s) 1 73 kg m/sx x xp J p= + = + . ⋅ + . + . = + . ⋅  

2
2

1 73 kg m/s 10 8 m/s (to the right)
0 160 kg

x
x

p
v

m
. ⋅= = = + .

.
 

(b) 2 1( ) ( 12 0 N)(0 050 s) 0 600 kg m/sx xJ F t t= − = − . . = − . ⋅  (negative since force is to left) 

2 1 0 600 kg m/s (0 160 kg)( 3 00 m/s) 0 120 kg m/sx x xp J p= + = − . ⋅ + . + . = − . ⋅  

2
2

0 120 kg m/s 0 75 m/s (to the left)
0 160 kg

x
x

p
v

m
− . ⋅= = = − .

.
 

EVALUATE:   In part (a) the impulse and initial momentum are in the same direction and xv  increases. In 
part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 

 8.10. IDENTIFY:   Apply 2 1x x x xJ p mv mv= ∆ = −  and 2 1y y y yJ p mv mv= ∆ = −   to relate the change in 
momentum to the components of the average force on it. 
SET UP:   Let x+  be to the right and y+  be upward. 
EXECUTE:   2 1 (0 145 kg)[ (52 0 m/s)cos30 40 0 m/s] 12.33 kg m/s.x x x xJ p mv mv= ∆ = − = . − . ° − . = − ⋅

2 1 (0 145 kg)[(52 0 m/s)sin30 0] 3.770 kg m/s.y y y yJ p mv mv= ∆ = − = . . ° − = ⋅  
The horizontal component is 12.33 kg m/s,⋅  to the left and the vertical component is 3.770 kg m/s,⋅  
upward. 

av- –3
12.33 kg m/s 7050 N.
1 75 10  s

x
x

J
F

t
− ⋅= = = −

∆ . ×
 av- –3

3.770 kg m/s 2150 N.
1 75 10  s

y
y

J
F

t
⋅= = =

∆ . ×
 

 The horizontal component is 7050 N, to the left, and the vertical component is 2150 N, upward. 
EVALUATE:   The ball gains momentum to the left and upward and the force components are in these 
directions. 
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 8.11. IDENTIFY:   The force is not constant so 2

1
.

t

t
dt= ∫J F

G G
 The impulse is related to the change in velocity by 

2 1( ).x x xJ m v v= −  

SET UP:   Only the x-component of the force is nonzero, so 

2

1

t
x xt

J F dt= ∫  is the only nonzero component  

of .J
G

 2 1( ).x x xJ m v v= −  1 2 00 s,t = .  2 3 50 s.t = .  

EXECUTE:   (a) 2
2 2

781 25 N 500 N/s .
(1 25 s)

xF
A

t
.= = =

.
 

(b) 2

1

2 3 3 2 3 3 31 1
2 13 3( ) (500 N/s )([3 50 s] [2 00 s] ) 5 81 10  N s.

t
x t

J At dt A t t= = − = . − . = . × ⋅∫  

(c) 
3

2 1
5 81 10  N s 2 70 m/s.

2150 kg
x

x x x
J

v v v
m

. × ⋅∆ = − = = = .  The x-component of the velocity of the rocket 

increases by 2.70 m/s. 
EVALUATE:   The change in velocity is in the same direction as the impulse, which in turn is in the 
direction of the net force. In this problem the net force equals the force applied by the engine, since that is 
the only force on the rocket. 

 8.12. IDENTIFY:   The force imparts an impulse to the forehead, which changes the momentum of the skater. 
SET UP:   x xJ p= ∆  and .x xJ F t= ∆  With 4 21 5 10 m ,A −= . ×  the maximum force without breaking the 

bone is 4 2 8 2 4(1 5 10 m )(1 03 10 N/m ) 1 5 10 N−. × . × = . × .  Set the magnitude of the average force avF  during 
the collision equal to this value. Use coordinates where x+  is in his initial direction of motion. xF  is 

opposite to this direction, so 41 5 10 N.xF = − . ×  

EXECUTE:   4 3( 1 5 10 N)(10 0 10 s) 150 0 N s.x xJ F t −=  ∆ = − . × . × = − . ⋅  2 1x x xJ mx mx= −  and 

2 0.xv = 1
150 N s 2 1 m/s.
70 kg

x
x

J
v

m
− ⋅= − = − = .  

EVALUATE:   This speed is about the same as a jog. However, in most cases the skater would not be 
completely stopped, so in that case a greater speed would not result in injury. 

 8.13. IDENTIFY:   The force is constant during the 1.0 ms interval that it acts, so .t= ∆J F
G G

 

2 1 2 1( ).m =  −  =    −  J p p v v
G G G G G  

SET UP:   Let x+  be to the right, so 1 5 00 m/s.xv = + .  Only the x-component of J
G

 is nonzero, and 

2 1( ).x x xJ m v v= −  

EXECUTE:   (a) The magnitude of the impulse is 3 3(2 50 10  N)(1 00 10  s) 2 50 N s.J F t −= ∆ = . × . × = . ⋅  The 
direction of the impulse is the direction of the force. 

(b) (i) 2 1 .x
x x

J
v v

m
= +  2 50 N s.xJ = + . ⋅  2

2 50 N s 5 00 m/s 6 25 m/s.
2 00 kgxv

+ . ⋅= + . = .
.

 The stone’s velocity has 

magnitude 6.25 m/s and is directed to the right. (ii) Now 2 50 N sxJ = − . ⋅  and 

2
2 50 N s 5 00 m/s 3 75 m/s.
2 00 kgxv

− . ⋅= + . = .
.

 The stone’s velocity has magnitude 3.75 m/s and is directed to the 

right. 
EVALUATE:   When the force and initial velocity are in the same direction the speed increases, and when 
they are in opposite directions the speed decreases. 

 8.14. IDENTIFY:   We know the force acting on a box as a function of time and its initial momentum and want to 
find its momentum at a later time. The target variable is the final momentum. 

SET UP:   Use 2

1
2 1( )

t

t
t dt = −∫ F p p

G G G  to find 2p
G  since we know 1p

G  and ( ).tF
G
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EXECUTE:   1
ˆ ˆ( 3 00 kg m/s) (4 00 kg m/s)= − . ⋅ + . ⋅p i jG  at 1 0,t =  and 2 2 00 s.t = .  Work with the components 

of the force and momentum. ( )
2 2

1 1

2
2( ) 0 280 N/s (0 140 N/s) 0 560 N s

t t

x
t t

F t dt tdt t= . = . = . ⋅∫ ∫  

2 1 0 560 N s 3 00 kg m/s 0 560 N s 2 44 kg m/s.x xp p= + . ⋅ = − . ⋅ + . ⋅ = − . ⋅  
2 2

1 1

2 2 2 3
2( ) ( 0 450 N/s ) ( 0 150 N/s ) 1 20 N s.

t t
yt t

F t dt t dt t= − . = − . = − . ⋅∫ ∫  

2 1 ( 1 20 N s) 4 00 kg m/s ( 1 20 N s) 2 80 kg m/s.y yp p= + − . ⋅ = . ⋅ + − . ⋅ = + . ⋅  So 

2
ˆ ˆ( 2 44 kg m/s) (2 80 kg m/s)= − . ⋅ + . ⋅p i jG  

EVALUATE:   Since the given force has x- and y-components, it changes both components of the box’s 
momentum. 

 8.15. IDENTIFY:   The player imparts an impulse to the ball which gives it momentum, causing it to go upward. 
SET UP:   Take y+  to be upward. Use the motion of the ball after it leaves the racket to find its speed just 
after it is hit. After it leaves the racket .ya g= −  At the maximum height 0.yv =  Use y yJ p= ∆  and the 

kinematics equation 2 2
0 02 ( )y y yv v a y y= + −  for constant acceleration. 

EXECUTE:   2 2
0 02 ( )y y yv v a y y= + −  gives 2

0 02 ( ) 2( 9 80 m/s )(5 50 m) 10 4 m/sy yv a y y= − − = − − . . = . .  

For the interaction with the racket 1 0yv =  and 2 10 4 m/s.yv = .  
3

2 1 (57 10 kg)(10 4 m/s 0) 0 593 kg m/s.y y yJ mv mv −= − = × . − = . ⋅  
EVALUATE:   We could have found the initial velocity using energy conservation instead of free-fall 
kinematics. 

 8.16. IDENTIFY:   Apply conservation of momentum to the system of the astronaut and tool. 
SET UP:   Let A be the astronaut and B be the tool. Let x+  be the direction in which she throws the tool, so 

2 3 20 m/s.B xv = + .  Assume she is initially at rest, so 1 1 0.A x B xv v= =  Solve for 2 .A xv  
EXECUTE:   1 2 .x xP P=  1 1 1 0.x A A x B B xP m v m v= + =  2 2 2 0x A A x B B xP m v m v= + =  and 

2
2

(2 25 kg)(3 20 m/s) 0 105 m/s.
68 5 kg

B A x
A x

A

m v
v

m
. .= − = − = − .

.
 Her speed is 0.105 m/s and she moves opposite to 

the direction in which she throws the tool. 
EVALUATE:   Her mass is much larger than that of the tool, so to have the same magnitude of momentum 
as the tool her speed is much less. 

 8.17. IDENTIFY:   Since the rifle is loosely held there is no net external force on the system consisting of the 
rifle, bullet, and propellant gases and the momentum of this system is conserved. Before the rifle is fired 
everything in the system is at rest and the initial momentum of the system is zero. 
SET UP:   Let x+  be in the direction of the bullet’s motion. The bullet has speed 
601 m/s 1 85 m/s 599 m/s− . =  relative to the earth. 2 r b g ,x x x xP p p p= + +  the momenta of the rifle, bullet, 

and gases. r 1 85 m/sxv = − .  and b 599 m/s.xv = +  
EXECUTE:   2 1 0.x xP P= =  r b g 0.x x xp p p+ + =  

g r b (2 80 kg)( 1 85 m/s) (0 00720 kg)(599 m/s)x x xp p p= − − = − . − . − .  and 

g 5 18 kg m/s 4 31 kg m/s 0 87 kg m/s.xp = + . ⋅ − . ⋅ = . ⋅  The propellant gases have momentum 0 87 kg m/s,. ⋅  in 
the same direction as the bullet is traveling. 
EVALUATE:   The magnitude of the momentum of the recoiling rifle equals the magnitude of the 
momentum of the bullet plus that of the gases as both exit the muzzle. 

 8.18. IDENTIFY:   The total momentum of the two skaters is conserved, but not their kinetic energy.  
SET UP:    There is no horizontal external force so, i, f, ,x xP P=  p = mv, K = ½ mv2. 
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 EXECUTE:    (a) i, f,x xP P= .  The skaters are initially at rest so i, 0xP = .  ,f ,f0 ( ) ( )A A x B B xm v m v= +  

 ,f
,f

( ) (74 0 kg)(1 50 m/s)( ) 1 74 m/s.
63 8 kg

B B x
A x

A

m v
v

m
. .= − = − = − .

.
 The lighter skater travels to the left  

at 1 74 m/s. .  
 (b) i 0K = .  2 2 2 21 1 1 1

f ,f ,f2 2 2 2(63 8 kg)(1 74 m/s) (74 0 kg)(1 50 m/s) 180 J.A A B BK m v m v= + = . . + . . =  

EVALUATE:   The kinetic energy of the system was produced by the work the two skaters do on each other. 
 8.19. IDENTIFY:   Since drag effects are neglected, there is no net external force on the system of squid plus 

expelled water, and the total momentum of the system is conserved. Since the squid is initially at rest, with 
the water in its cavity, the initial momentum of the system is zero. For each object, 21

2 .K mv=  

SET UP:   Let A be the squid and B be the water it expels, so 6 50 kg 1 75 kg 4 75 kg.Am = . − . = .  Let x+  be 
the direction in which the water is expelled. 2 2 50 m/s.A xv = − .  Solve for 2 .B xv  
EXECUTE:   (a) 1 0.xP =  2 1 ,x xP P=  so 2 20 .A A x B B xm v m v= +  

2
2

(4 75 kg)( 2 50 m/s) 6 79 m/s.
1 75 kg

A A x
B x

B

m v
v

m
. − .= − = − = + .

.
 

(b) 2 2 2 21 1 1 1
2 2 2 2 22 2 2 2(4 75 kg)(2 50 m/s) (1 75 kg)(6 79 m/s) 55 2 J.A B A A B BK K K m v m v= + = + = . . + . . = .  The 

initial kinetic energy is zero, so the kinetic energy produced is 2 55 2 J.K = .  
EVALUATE:   The two objects end up with momenta that are equal in magnitude and opposite in direction, 
so the total momentum of the system remains zero. The kinetic energy is created by the work done by the 
squid as it expels the water. 

 8.20. IDENTIFY:   Apply conservation of momentum to the system of you and the ball. In part (a) both objects 
have the same final velocity. 
SET UP:   Let x+  be in the direction the ball is traveling initially. 0 600 kgAm = .  (ball). 70 0 kgBm = .  (you). 
EXECUTE:   (a) 1 2x xP P=  gives 2(0 600 kg)(10 0 m/s) (0 600 kg 70 0 kg)v. . = . + .  so 2 0 0850 m/s.v = .  
(b) 1 2x xP P=  gives 2(0 600 kg)(10 0 m/s) (0 600 kg)( 8 00 m/s) (70 0 kg) Bv. . = . − . + .  so 2 0 154 m/s.Bv = .  
EVALUATE:   When the ball bounces off it has a greater change in momentum and you acquire a greater 
final speed. 

 8.21. IDENTIFY:   Apply conservation of momentum to the system of the two pucks. 
SET UP:   Let x+  be to the right. 
EXECUTE:   (a) 1 2x xP P=  says 1(0 250 kg) (0 250 kg)( 0 120 m/s) (0 350 kg)(0 650 m/s)Av. = . − . + . .  and 

1 0 790 m/s.Av = .  

(b) 21
1 2 (0 250 kg)(0 790 m/s) 0 0780 J.K = . . = .  

2 21 1
2 2 2(0 250 kg)(0 120 m/s) (0 350 kg)(0 650 m/s) 0 0757 JK = . . + . . = .  and 2 1 0 0023 J.K K K∆ = − = − .  

EVALUATE:   The total momentum of the system is conserved but the total kinetic energy decreases. 
 8.22. IDENTIFY:   Since road friction is neglected, there is no net external force on the system of the two cars and 

the total momentum of the system is conserved. For each object, 21
2 .K mv=  

SET UP:   Let A be the 1750 kg car and B be the 1450 kg car. Let x+  be to the right, so 1 1 50 m/s,A xv = + .  

1 1 10 m/s,B xv = − .  and 2 0 250 m/s.A xv = + .  Solve for 2 .B xv  

EXECUTE:   (a) 1 2 .x xP P=  1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  1 1 2
2 .A A x B B x A A x

B x
B

m v m v m v
v

m
+ −=  

2
(1750 kg)(1 50 m/s) (1450 kg)( 1 10 m/s) (1750 kg)(0 250 m/s) 0 409 m/s.

1450 kgB xv
. + − . − .= = .  

After the collision the lighter car is moving to the right with a speed of 0.409 m/s. 
(b) 2 2 2 21 1 1 1

1 1 12 2 2 2(1750 kg)(1 50 m/s) (1450 kg)(1 10 m/s) 2846 J.A A B BK m v m v= + = . + . =  
2 2 2 21 1 1 1

2 2 22 2 2 2(1750 kg)(0 250 m/s) (1450 kg)(0 409 m/s) 176 J.A A B BK m v m v= + = . + . =  
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The change in kinetic energy is 2 1 176 J 2846 J 2670 J.K K K∆ = − = − = −  
EVALUATE:   The total momentum of the system is constant because there is no net external force during 
the collision. The kinetic energy of the system decreases because of negative work done by the forces the 
cars exert on each other during the collision. 

 8.23. IDENTIFY:   The momentum and the mechanical energy of the system are both conserved. The mechanical 
energy consists of the kinetic energy of the masses and the elastic potential energy of the spring. The 
potential energy stored in the spring is transformed into the kinetic energy of the two masses. 
SET UP:   Let the system be the two masses and the spring. The system is sketched in Figure 8.23, in its 
initial and final situations. Use coordinates where x+  is to the right. Call the masses A and B. 

 

 
Figure 8.23 

 

EXECUTE:   1 2x xP P=  so 0 (0.900 kg)( ) (0.900 kg)( )A Bv v= − +  and, since the masses are equal, .A Bv v=  
Energy conservation says the potential energy originally stored in the spring is all converted into kinetic 
energy of the masses, so 2 2 21 1 1

12 2 2 .A Bkx mv mv= +  Since ,A Bv v=  this equation gives 

1
175 N/m(0 200 m) 1 97 m/s.

2 2(0.900 kg)A
k

v x
m

= = .  = .  

EVALUATE:   If the objects have different masses they will end up with different speeds. The lighter one 
will have the greater speed, since they end up with equal magnitudes of momentum. 

 8.24. IDENTIFY:   In part (a) no horizontal force implies xP  is constant. In part (b) use 

1 1 other 2 2K U W K U+ + = +  to find the potential energy initially in the spring. 
SET UP:   Initially both blocks are at rest. 

 

 

Figure 8.24 
 

EXECUTE:   (a) 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

2 20 A A x B B xm v m v= +  

2 2
3 00 kg ( 1 20 m/s) 3 60 m/s
1 00 kg

B
A x B x

A

m
v v

m
⎛ ⎞ ⎛ ⎞.= − = − + . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

Block A has a final speed of 3.60 m/s, and moves off in the opposite direction to B. 
(b) Use energy conservation: 1 1 other 2 2.K U W K U+ + = +  
Only the spring force does work so other el0 and .W U U= =  

1 0K =  (the blocks initially are at rest) 

2 0U =  (no potential energy is left in the spring) 
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2 2 2 21 1 1 1
2 2 22 2 2 2(1 00 kg)(3 60 m/s) (3 00 kg)(1 20 m/s) 8 64 JA A B BK m v m v= + = . . + . . = .  

1 1,elU U=  the potential energy stored in the compressed spring. 

Thus 1,el 2 8 64 J.U K= = .  
EVALUATE:   The blocks have equal and opposite momenta as they move apart, since the total momentum 
is zero. The kinetic energy of each block is positive and doesn’t depend on the direction of the block’s 
velocity, just on its magnitude. 

 8.25. IDENTIFY:   Since friction at the pond surface is neglected, there is no net external horizontal force, and the 
horizontal component of the momentum of the system of hunter plus bullet is conserved. Both objects are 
initially at rest, so the initial momentum of the system is zero. Gravity and the normal force exerted by the 
ice together produce a net vertical force while the rifle is firing, so the vertical component of momentum is 
not conserved. 
SET UP:   Let object A be the hunter and object B be the bullet. Let x+  be the direction of the horizontal 
component of velocity of the bullet. Solve for 2 .A xv  
EXECUTE:   (a) 2 965 m/s.B xv = +  1 2 0.x xP P= =  2 20 A A x B B xm v m v= +  and 

3

2 2
4 20 10  kg (965 m/s) 0 0559 m/s.

72 5 kg
B

A x B x
A

m
v v

m

−⎛ ⎞. ×= − = − = − .⎜ ⎟⎜ ⎟.⎝ ⎠
 

(b) 2 2 cos (965 m/s)cos56 0 540 m/s.B x Bv v θ= = . ° =  
3

2
4.20 10 kg (540 m/s) 0.0313 m/s.

72.5 kgA xv
−⎛ ⎞×= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   The mass of the bullet is much less than the mass of the hunter, so the final mass of the 
hunter plus gun is still 72.5 kg, to three significant figures. Since the hunter has much larger mass, his final 
speed is much less than the speed of the bullet. 

 8.26. IDENTIFY:   Assume the nucleus is initially at rest. 21
2 .K mv=  

SET UP:   Let x+  be to the right. 2A x Av v= −  and 2 .B x Bv v= +  

EXECUTE:   (a) 2 1 0x xP P= =  gives 2 2 0.A A x B B xm v m v+ =  .A
B A

B

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

(b) 
21 2

2
2 21

2

.
( / )

A AA A A B

B AB B B A A B

m vK m v m
K mm v m m v m

= = =  

EVALUATE:   The lighter fragment has the greater kinetic energy. 
 8.27. IDENTIFY:   Each horizontal component of momentum is conserved. 21

2 .K mv=  
SET UP:   Let x+  be the direction of Rebecca’s initial velocity and let the y+  axis make an angle of 
36 9. °  with respect to the direction of her final velocity. D1 D1 0.x yv v= =  R1 13 0 m/s;xv = .  R1 0.yv =  

R2 (8 00 m/s)cos53 1 4 80 m/s;xv = . . ° = .  R2 (8 00 m/s)sin53 1 6 40 m/s.yv = . . ° = .  Solve for D2xv  and D2 .yv  

EXECUTE:   (a) 1 2x xP P=  gives R R1 R R2 D D2 .x x xm v m v m v= +  

R R1 R2
D2

D

( ) (45 0 kg)(13 0 m/s 4 80 m/s) 5 68 m/s.
65 0 kg

x x
x

m v v
v

m
− . . − .= = = .

.
 

1 2y yP P=  gives R R2 D D20 .y ym v m v= +  R
D2 R2

D

45 0 kg (6 40 m/s) 4 43 m/s.
65 0 kgy y

m
v v

m
⎛ ⎞.= − = − . = − .⎜ ⎟⎝ . ⎠

  

The directions of R1,vG  R2vG  and D2vG  are sketched in Figure 8.27. D2

D2

4 43 m/stan
5 68 m/s

y

x

v
v

θ .= =
.

 and 

38 0 .θ = . °  2 2
D D2 D2 7 20 m/s.x yv v v= + = .  

(b) 2 2 31 1
1 R R12 2 (45 0 kg)(13 0 m/s) 3 80 10  J.K m v= = . . = . ×  

2 2 2 2 31 1 1 1
2 R R2 D D22 2 2 2(45 0 kg)(8 00 m/s) (65 0 kg)(7 20 m/s) 3 12 10  J.K m v m v= + = . . + . . = . ×  
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2 2y yP P=  gives 2 20 sin30 0 sin 45 0A Bmv mv= . ° − . °  and 2 20 500 0 707 .A Bv v. = .  

Combining these two equations gives 2 20 500 40 0 m/s 0 866A Av v. = . − .  and 2 29 3 m/s.Av = .  Then  

2
0 500 (29 3 m/s) 20 7 m/s.
0 707Bv

.⎛ ⎞= . = .⎜ ⎟⎝ ⎠.
 

(b) 21
1 12 .AK mv=  2 21 1

2 2 22 2 .A BK mv mv= +  
2 2 2 2

2 2 2
2 2

1 1

(29 3 m/s) (20 7 m/s) 0 804.
(40 0 m/s)

A B

A

K v v
K v

+ . + .= = = .
.

 

2 1 2

1 1 1
1 0 196.K K K K

K K K
∆ −= = − = − .   

19.6% of the original kinetic energy is dissipated during the collision. 
EVALUATE:   We could use any directions we wish for the x- and y-coordinate directions, but the particular 
choice we have made is especially convenient. 

 

 

Figure 8.31 
 

 8.32. IDENTIFY:   There is no net external force on the system of the two skaters and the momentum of the 
system is conserved. 
SET UP:   Let object A be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg.  
Let x+  be to the right, so 1 4 00 m/sA xv = + .  and 1 2 50 m/s.B xv = − .  After the collision, the two objects  
are combined and move with velocity 2.vG  Solve for 2 .xv  
EXECUTE:   1 2 .x xP P=  1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(70 0 kg)(4 00 m/s) (65 0 kg)( 2 50 m/s) 0 870 m/s.
70 0 kg 65 0 kg

A A x B B x
x

A B

m v m v
v

m m
+ . . + . − .= = = .
+ . + .

 The two skaters move 

to the right at 0.870 m/s. 
EVALUATE:   There is a large decrease in kinetic energy. 

 8.33. IDENTIFY:   Since drag effects are neglected there is no net external force on the system of two fish and the 
momentum of the system is conserved. The mechanical energy equals the kinetic energy, which is 

21
2K mv=  for each object. 

SET UP:   Let object A be the 15.0 kg fish and B be the 4.50 kg fish. Let x+  be the direction the large fish 
is moving initially, so 1 1 10 m/sA xv = .  and 1 0.B xv =  After the collision the two objects are combined and 
move with velocity 2.vG  Solve for 2 .xv  
EXECUTE:   (a) 1 2 .x xP P=  1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(15 0 kg)(1 10 m/s) 0 0 846 m/s.
15 0 kg 4 50 kg

A A x B B x
x

A B

m v m v
v

m m
+ . . += = = .
+ . + .
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(b) 2 2 21 1 1
1 1 12 2 2 (15 0 kg)(1 10 m/s) 9 08 J.A A B BK m v m v= + = . . = .  

2 21 1
2 22 2( ) (19 5 kg)(0 846 m/s) 6 98 J.A BK m m v= + = . . = .  

2 1 2 10 J.K K K∆ = − = .2  2.10 J of mechanical energy is dissipated. 
EVALUATE:   The total kinetic energy always decreases in a collision where the two objects become 
combined. 

 8.34. IDENTIFY:   There is no net external force on the system of the two otters and the momentum of the system 
is conserved. The mechanical energy equals the kinetic energy, which is 21

2K mv=  for each object. 
SET UP:   Let A be the 7.50 kg otter and B be the 5.75 kg otter. After the collision their combined velocity 
is 2.vG  Let x+  be to the right, so 1 5 00 m/sA xv = − .  and 1 6 00 m/s.B xv = + .  Solve for 2 .xv  
EXECUTE:   (a) 1 2 .x xP P=  1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(7 50 kg)( 5 00 m/s) (5 75 kg)( 6 00 m/s) 0 226 m/s.
7 50 kg 5 75 kg

A A x B B x
x

A B

m v m v
v

m m
+ . − . + . + .= = = − .
+ . + .

 

(b) 2 2 2 21 1 1 1
1 1 12 2 2 2(7 50 kg)(5 00 m/s) (5 75 kg)(6 00 m/s) 197 2 J.A A B BK m v m v= + = . . + . . = .  

2 21 1
2 22 2( ) (13 25 kg)(0 226 m/s) 0 338 J.A BK m m v= + = . . = .  

2 1 197 J.K K K∆ = − = −  197 J of mechanical energy is dissipated. 
EVALUATE:   The total kinetic energy always decreases in a collision where the two objects become 
combined. 

 8.35. IDENTIFY:   Treat the comet and probe as an isolated system for which momentum is conserved. 
SET UP:   In part (a) let object A be the probe and object B be the comet. Let x−  be the direction the probe 
is traveling just before the collision. After the collision the combined object moves with speed 2.v  The 
change in velocity is 2 1 .x B xv v v∆ = −  In part (a) the impact speed of 37,000 km/h is the speed of the probe 
relative to the comet just before impact: 1 1 37,000 km/h.A x B xv v− = −  In part (b) let object A be the comet 
and object B be the earth. Let x−  be the direction the comet is traveling just before the collision. The 
impact speed is 40,000 km/h, so 1 1 40 000 km/h.A x B xv v ,− = −  

EXECUTE:   (a) 1 2 .x xP P=  1 1
2 .A A x B B x

x
A B

m v m v
v

m m
+=
+

  

2 1 1 1 1 1( ).A B A B A
x B x A x B x A x B x

A B A B A B

m m m m m
v v v v v v v

m m m m m m
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −∆ = − = + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

6
14

372 kg ( 37,000 km/h) 1 4 10  km/h.
372 kg 0 10 10  kg

v
⎛ ⎞

∆ = − = − . ×⎜ ⎟⎜ ⎟+ . ×⎝ ⎠

-  

The speed of the comet decreased by 61 4 10  km/h.. × -  This change is not noticeable. 

(b) 
14

8
14 24
0 10 10  kg ( 40,000 km/h) 6 7 10  km/h.

0 10 10  kg 5 97 10  kg
v

⎛ ⎞. ×∆ = − = − . ×⎜ ⎟⎜ ⎟. × + . ×⎝ ⎠

-  The speed of the earth 

would change by 86 7 10  km/h.. × -  This change is not noticeable. 
EVALUATE:   1 1A x B xv v−  is the velocity of the projectile (probe or comet) relative to the target (comet or 
earth). The expression for v∆  can be derived directly by applying momentum conservation in coordinates 
in which the target is initially at rest. 

 8.36. IDENTIFY:   The forces the two vehicles exert on each other during the collision are much larger than the 
horizontal forces exerted by the road, and it is a good approximation to assume momentum conservation. 
SET UP:   Let x+  be eastward. After the collision two vehicles move with a common velocity 2.vG  
EXECUTE:   (a) 1 2x xP P=  gives SC SC T T SC T 2( ) .x x xm v m v m m v+ = +  

SC SC T T
2

SC T

(1050 kg)( 15 0 m/s) (6320 kg)( 10 0 m/s) 6 44 m/s.
1050 kg 6320 kg

x x
x

m v m v
v

m m
+ − . + + .= = = .
+ +
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The final velocity is 6.44 m/s, eastward. 

(b) 1 2 0x xP P= =  gives SC SC T T 0.x xm v m v+ =  SC
T SC

T

1050 kg ( 15 0 m/s) 2 50 m/s.
6320 kgx x

m
v v

m
⎛ ⎞ ⎛ ⎞= − = − − . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The truck would need to have initial speed 2.50 m/s. 
(c) part (a): 2 2 2 51 1 1

2 2 2(7370 kg)(6 44 m/s) (1050 kg)(15 0 m/s) (6320 kg)(10 0 m/s) 2 81 10  JK∆ = . − . − . = − . ×  

part (b): 2 2 51 1
2 20 (1050 kg)(15 0 m/s) (6320 kg)(2 50 m/s) 1 38 10  J.K∆ = − . − . = − . ×  The change in kinetic 

energy has the greater magnitude in part (a). 
EVALUATE:   In part (a) the eastward momentum of the truck has a greater magnitude than the westward 
momentum of the car and the wreckage moves eastward after the collision. In part (b) the two vehicles 
have equal magnitudes of momentum, the total momentum of the system is zero and the wreckage is at  
rest after the collision. 

 8.37. IDENTIFY:   The forces the two players exert on each other during the collision are much larger than the 
horizontal forces exerted by the slippery ground and it is a good approximation to assume momentum 
conservation. Each component of momentum is separately conserved. 
SET UP:   Let x+  be east and y+  be north. After the collision the two players have velocity 2.vG  Let the 
linebacker be object A and the halfback be object B, so 1 0,A xv =  1 8 8 m/s,A yv = .  1 7 2 m/sB xv = .  and 

1 0.B yv =  Solve for 2xv and 2 .yv  

EXECUTE:   1 2x xP P=  gives 1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(85 kg)(7 2 m/s) 3 14 m/s.
110 kg 85 kg

A A x B B x
x

A B

m v m v
v

m m
+ .= = = .
+ +

 

1 2y yP P=  gives 1 1 2( ) .A A y B B y A B ym v m v m m v+ = +  

1 1
2

(110 kg)(8 8 m/s) 4 96 m/s.
110 kg 85 kg

A A y B B y
y

A B

m v m v
v

m m
+ .= = = .
+ +

 

2 2
2 2 5 9 m/s.x yv v v= + = .  

2

2

4 96 m/stan
3 14 m/s

y

x

v

v
θ .= =

.
 and 58 .θ = °  

The players move with a speed of 5.9 m/s and in a direction 58°  north of east. 
EVALUATE:   Each component of momentum is separately conserved. 

 8.38. IDENTIFY:   The momentum is conserved during the collision. Since the motions involved are in two 
dimensions, we must consider the components separately. 
SET UP:   Use coordinates where +x is east and +y is south. The system of two cars before and after the 
collision is sketched in Figure 8.38. Neglect friction from the road during the collision. The enmeshed cars 
have a total mass of 2000 kg 1500 kg 3500 kg+ = . Momentum conservation tells us that 1 2x xP P=  and 

1 2 .y yP P=  

 

Figure 8.38 
 

EXECUTE:   There are no external horizontal forces during the collision, so 1 2x xP P=  and 1 2 .y yP P=  
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(a) 1 2x xP P=  gives 2(1500 kg)(15 m/s) (3500 kg) sin65v= °  and 2 7 1 m/s.v = .  
(b) 1 2y yP P=  gives 1 2(2000 kg) (3500 kg) cos65 .Av v= °  And then using 2 7 1 m/s,v = .  we have 

1 5.2 m/s.Av =  
EVALUATE:   Momentum is a vector so we must treat each component separately. 

 8.39. IDENTIFY:   The collision generates only internal forces to the Jack-Jill system, so momentum is 
conserved.  
SET UP:    Call the x-axis Jack’s initial direction (eastward), and the y-axis perpendicular to that 
(northward). The initial y-component of the momentum is zero. Call v Jill’s speed just after the collision 
and call θ  the angle her velocity makes with the +x-axis. 
EXECUTE:   In the x-direction: (55.0 kg)(8.00 m/s) = (55.0 kg)(5.00 m/s)(cos34.0°) + (48.0 kg)v cos .θ  
In the y-direction: (55.0 kg)(5.00 m/s)(sin34.0°) = (48.0 kg)v sin .θ  
Separating v sin θ  and v cosθ  and dividing gives  
tanθ  = (5.00 m/s)(sin34.0°)/[8.00 m/s – (5.00 m/s)(cos34.0°)] = 0.72532, so θ  = 36.0° south of east. 
Using the y-direction momentum equation gives  
v = (55.0 kg)(5.00 m/s)(sin34.0°)/[(48.0 kg)(sin36.0°) = 5.46 m/s. 
EVALUATE:   Jill has a bit less mass than Jack, so the angle her momentum makes with the +x-axis (36.0°) 
has to be a bit larger than Jack’s (34.0°) for their y-component momenta to be equal in magnitude.  

 8.40. IDENTIFY:   The collision forces are large so gravity can be neglected during the collision. Therefore, the 
horizontal and vertical components of the momentum of the system of the two birds are conserved. 
SET UP:   The system before and after the collision is sketched in Figure 8.40. Use the coordinates shown. 

 

 

Figure 8.40 
 

EXECUTE:   (a) There is no external force on the system so 1 2x xP P=  and 1 2 .y yP P=  

1 2x xP P=  gives raven-2(1 5 kg)(9 0 m/s) (1 5 kg) cosv φ. . = .  and raven-2 cos 9 0 m/s.v φ = .  

1 2y yP P=  gives raven-2(0 600 kg)(20 0 m/s) (0 600 kg)( 5 0 m/s) (1 5 kg) sinv φ. . = . − . + .  and 

raven-2 sin 10 0 m/s.v φ = .  

Combining these two equations gives 10 0 m/stan
9 0 m/s

φ .=
.

 and 48 .φ = °  

(b) vraven-2 = 13.5 m/s 
EVALUATE:   Due to its large initial speed the lighter falcon was able to produce a large change in the 
raven’s direction of motion. 

 8.41. IDENTIFY:   Since friction forces from the road are ignored, the x- and y-components of momentum are 
conserved. 
SET UP:   Let object A be the subcompact and object B be the truck. After the collision the two objects 
move together with velocity 2.vG  Use the x- and y-coordinates given in the problem. 1 1 0.A y B xv v= =  

2 (16 0 m/s)sin 24 0 6 5 m/s;xv = . . ° = .  2 (16 0 m/s)cos24 0 14 6 m/s.yv = . . ° = .  
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EXECUTE:   1 2x xP P=  gives 1 2( ) .A A x A B xm v m m v= +  

1 2
950 kg 1900 kg (6 5 m/s) 19 5 m/s.

950 kg
A B

A x x
A

m m
v v

m
⎛ ⎞ ⎛ ⎞+ += = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

1 2y yP P=  gives 1 2( ) .B B y A B ym v m m v= +  

1 2
950 kg 1900 kg (14 6 m/s) 21 9 m/s.

1900 kg
A B

B y y
B

m m
v v

m
⎛ ⎞ ⎛ ⎞+ += = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Before the collision the subcompact car has speed 19.5 m/s and the truck has speed 21.9 m/s. 
EVALUATE:   Each component of momentum is independently conserved. 

 8.42. IDENTIFY:   Apply conservation of momentum to the collision. Apply conservation of energy to the motion 
of the block after the collision. 
SET UP:   Conservation of momentum applied to the collision between the bullet and the block: Let object A 
be the bullet and object B be the block. Let Av be the speed of the bullet before the collision and let V be the 
speed of the block with the bullet inside just after the collision. 

 

 

Figure 8.42a 
 

xP  is constant gives ( ) .A A A Bm v m m V= +  
Conservation of energy applied to the motion of the block after the collision: 

 

 

Figure 8.42b 
 

1 1 other 2 2K U W K U+ + = +  
EXECUTE:   Work is done by friction so other k k k( cos )fW W f s f s mgsφ µ= = = − = −  

1 2 0U U= =  (no work done by gravity) 
21

1 2 ;K mV=  2 0K =  (block has come to rest) 

Thus 21
k2 0mV mgsµ− =  

2
k2 2(0 20)(9 80 m/s )(0 310 m) 1.1 m/sV gsµ= = . . . =  

Use this result in the conservation of momentum equation 

 
3

3
5 00 10  kg 1 20 kg (1.1 m/s) 266 m/s,

5 00 10  kg
A B

A
A

m m
v V

m

−

−
⎛ ⎞⎛ ⎞+ . × + .= = =⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

 which rounds to 270 m/s. 

EVALUATE:   When we apply conservation of momentum to the collision we are ignoring the impulse of 
the friction force exerted by the surface during the collision. This is reasonable since this force is much 
smaller than the forces the bullet and block exert on each other during the collision. This force does work 
as the block moves after the collision, and takes away all the kinetic energy. 

 8.43. IDENTIFY:   Apply conservation of momentum to the collision and conservation of energy to the motion 
after the collision. After the collision the kinetic energy of the combined object is converted to 
gravitational potential energy. 
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SET UP:   Immediately after the collision the combined object has speed V. Let h be the vertical height 
through which the pendulum rises. 
EXECUTE:   (a) Conservation of momentum applied to the collision gives 

3 3(12 0 10  kg)(380 m/s) (6 00 kg 12 0 10  kg)V. × = . + . ×- -  and 0 758 m/s.V = .  

Conservation of energy applied to the motion after the collision gives 21
tot tot2 m V m gh=  and  

2 2

2
(0 758 m/s) 0 0293 m  2 93 cm.

2 2(9 80 m/s )
V

h
g

.= = = . = .
.

 

(b) 2 3 21 1
b b2 2 (12 0 10  kg)(380 m/s) 866 J.K m v= = . × =-  

(c) 2 3 21 1
tot2 2 (6 00 kg 12 0 10  kg)(0 758 m/s) 1 73 J.K m V= = . + . × . = .-  

EVALUATE:   Most of the initial kinetic energy of the bullet is dissipated in the collision. 
 8.44. IDENTIFY:   During the collision, momentum is conserved. After the collision, mechanical energy is 

conserved. 
SET UP:   The collision occurs over a short time interval and the block moves very little during the 
collision, so the spring force during the collision can be neglected. Use coordinates where x+  is to the 
right. During the collision, momentum conservation gives 1 2 .x xP P=  After the collision, 21

2 mv  = 21
2 .kx  

EXECUTE:   Collision: There is no external horizontal force during the collision and 1 2 ,x xP P=  so 

block, 2(3 00 kg)(8 00 m/s) (15 0 kg) (3 00 kg)(2 00 m/s)v. . = . − . .  and block, 2 2 00 m/s.v = .  
Motion after the collision: When the spring has been compressed the maximum amount, all the initial 
kinetic energy of the block has been converted into potential energy 21

2 kx  that is stored in the compressed 

spring. Conservation of energy gives 2 21 1
2 2(15 0 kg)(2 00 m/s) (500 0 kg) ,x. . = .  so 0 346 m.x = .  

EVALUATE:   We cannot say that the momentum was converted to potential energy, because momentum 
and energy are different types of quantities. 

 8.45. IDENTIFY:   The missile gives momentum to the ornament causing it to swing in a circular arc and thereby 
be accelerated toward the center of the circle. 

SET UP:   After the collision the ornament moves in an arc of a circle and has acceleration 
2

rad .v
a

r
=  

During the collision, momentum is conserved, so 1 2 .x xP P=  The free-body diagram for the ornament plus 
missile is given in Figure 8.45. Take y+  to be upward, since that is the direction of the acceleration. Take 
the dire- ctionx+  to be the initial direction of motion of the missile. 

 

Figure 8.45 
 

EXECUTE:   Apply conservation of momentum to the collision. Using 1 2 ,x xP P=  we get 
(0.200 kg)(12 0 m/s) (1 00 kg) ,V. = .  which gives 2.40 m/s,V =  the speed of the ornament immediately 
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after the collision. Then y yF maΣ =  gives 
2

tot tot .v
T m g m

r
− =  Solving for T gives 

2 2
2

tot
(2.40 m/s)(1 00 kg) 9 80 m/s 13.6 N.

1 50 m
v

T m g
r

⎛ ⎞ ⎛ ⎞
= + = . . + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

 

EVALUATE:   We cannot use energy conservation during the collision because it is an inelastic collision 
(the objects stick together). 

 8.46. IDENTIFY:   No net external horizontal force so xP  is conserved. Elastic collision so 1 2K K=  and can use 

2 2 1 1( ).B x A x B x A xv v v v− = − −  
SET UP: 

 

 

Figure 8.46 
 

EXECUTE:   From conservation of x-component of momentum: 

1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

1 1 2 2A A B B A A x B B xm v m v m v m v− = +  

2 2(0 150 kg)(0 80 m/s) (0 300 kg)(2 20 m/s) (0 150 kg) (0 300 kg)A x B xv v. . − . . = . + .  

A2 23 60 m/s 2x B xv v− . = +  
From the relative velocity equation for an elastic collision Eq. 8.27: 

2 2 1 1( ) ( 2 20 m/s 0 80 m/s) 3 00 m/sB x A x B x A xv v v v− = − − = − − . − . = + .  

A2 23 00 m/s x B xv v. = − +  
Adding the two equations gives 20 60 m/s 3 B xv− . =  and 2 0 20 m/s.B xv = − .  Then 

2 2 3 00 m/s 3 20 m/sA x B xv v= − . = − . .  
The 0.150 kg glider (A) is moving to the left at 3.20 m/s and the 0.300 kg glider (B) is moving to the left at 
0.20 m/s. 
EVALUATE:   We can use our 2A xv  and 2B xv  to show that xP  is constant and 1 2.K K=  

 8.47. IDENTIFY:   When the spring is compressed the maximum amount the two blocks aren’t moving relative to 
each other and have the same velocity V

G
 relative to the surface. Apply conservation of momentum to find 

V and conservation of energy to find the energy stored in the spring. Since the collision is elastic, 

2 1
A B

A x A x
A B

m m
v v

m m
⎛ ⎞−= ⎜ ⎟+⎝ ⎠

 and 2 1
2 A

B x A x
A B

m
v v

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 give the final velocity of each block after the 

collision. 
SET UP:   Let x+  be the direction of the initial motion of A. 
EXECUTE:   (a) Momentum conservation gives (2 00 kg)(2 00 m/s) (8.00 kg)V. . =  so 0 500 m/s.V = .  Both 
blocks are moving at 0.500 m/s, in the direction of the initial motion of block A. Conservation of energy 
says the initial kinetic energy of A equals the total kinetic energy at maximum compression plus the 
potential energy bU stored in the bumpers: 2 21 1

b2 2(2 00 kg)(2 00 m/s) (8 00 kg)(0 500 m/s)U. . = + . .  so 

b 3.00 J.U =  

(b) 2 1
2 00 kg 6 0 kg (2 00 m/s) 1 00 m/s.

8 00 kg
A B

A x A x
A B

m m
v v

m m
⎛ ⎞ ⎛ ⎞− . − .= = . = − .⎜ ⎟ ⎜ ⎟+ .⎝ ⎠⎝ ⎠

 Block A is moving in the  

dire- ctionx−  at 1.00 m/s. 
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2 1
2 2(2 00 kg) (2 00 m/s) 1.00 m/s.

8 00 kg
A

B x A x
A B

m
v v

m m
⎛ ⎞ .= = . = +⎜ ⎟+ .⎝ ⎠

 Block B is moving in the dire- ctionx+  at 

1.00 m/s. 
EVALUATE:   When the spring is compressed the maximum amount, the system must still be moving in 
order to conserve momentum. 

 8.48. IDENTIFY:   Since the collision is elastic, both momentum conservation and equation 
2 2 1 1( )B x A x B x A xv v v v− = − −  apply. 

SET UP:   Let object A be the 30.0 g marble and let object B be the 10.0 g marble. Let x+  be to the right. 
EXECUTE:   (a) Conservation of momentum gives 

2 2(0 0300 kg)(0 200 m/s) (0 0100 kg)( 0 400 m/s) (0 0300 kg) (0 0100 kg) .A x B xv v. . + . − . = . + .  

2 23 0 200 m/s.A x B xv v+ = .  2 2 1 1( )B x A x B x A xv v v v− = − − says 

2 2 ( 0 400 m/s 0 200 m/s) 0 600 m/s.B x A xv v− = − − . − . = + .  Solving this pair of equations gives 

2 0 100 m/sA xv = − .  and 2 0 500 m/s.B xv = + .  The 30.0 g marble is moving to the left at 0.100 m/s and the 
10.0 g marble is moving to the right at 0.500 m/s. 
(b) For marble A, 2 1 (0 0300 kg)( 0 100 m/s 0 200 m/s) 0 00900 kg m/s.Ax A A x A A xP m v m v∆ = − = . − . − . = − . ⋅  
For marble B, 2 1 (0 0100 kg)(0 500 m/s [ 0 400 m/s]) 0 00900 kg m/s.Bx B B x B B xP m v m v∆ = − = . . − − . = + . ⋅  
The changes in momentum have the same magnitude and opposite sign. 
(c) For marble A, 2 2 2 2 41 1 1

2 12 2 2 (0 0300 kg)([0 100 m/s] [0 200 m/s] ) 4 5 10  J.A A A A AK m v m v −∆ = − = . . − . = − . ×  

For marble B, 2 2 2 2 41 1 1
2 12 2 2 (0 0100 kg)([0 500 m/s] [0 400 m/s] ) 4 5 10  J.B B B B BK m v m v −∆ = − = . . − . = . ×+  

The changes in kinetic energy have the same magnitude and opposite sign. 
EVALUATE:   The results of parts (b) and (c) show that momentum and kinetic energy are conserved in the 
collision. 

 8.49. IDENTIFY:   Equation 2 1
A B

A x A x
A B

m m
v v

m m
⎛ ⎞−= ⎜ ⎟+⎝ ⎠

 applyies, with object A being the neutron. 

SET UP:   Let x+  be the direction of the initial momentum of the neutron. The mass of a neutron is 
n 1 0 u.m = .  

EXECUTE:   (a) 2 1 1 1
1 0 u 2 0 u /3 0.
1 0 u 2 0 u

A B
A x A x A x A x

A B

m m
v v v v

m m
⎛ ⎞− . − .= = = − .⎜ ⎟+ . + .⎝ ⎠

 The speed of the neutron after the 

collision is one-third its initial speed. 

(b) 2 21 1
2 n n n 1 12 2

1( /3 0) .
9 0AK m v m v K= = . =
.

 

(c) After n collisions, 2 1
1 .

3 0

n

A Av v⎛ ⎞= ⎜ ⎟⎝ ⎠.
1 1 ,

3 0 59,000

n
⎛ ⎞ =⎜ ⎟⎝ ⎠.

 so 3 0 59,000.n. =  log3 0 log59,000n . =  and 

10.n =  
EVALUATE:   Since the collision is elastic, in each collision the kinetic energy lost by the neutron equals 
the kinetic energy gained by the deuteron. 

 8.50. IDENTIFY:   Elastic collision. Solve for mass and speed of target nucleus. 
SET UP:   (a) Let A be the proton and B be the target nucleus. The collision is elastic, all velocities lie 

along a line, and B is at rest before the collision. Hence the results of equations 2 1
A B

A x A x
A B

m m
v v

m m
⎛ ⎞−= ⎜ ⎟+⎝ ⎠

 

and 2 1
2 A

B x A x
A B

m
v v

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 apply. 

EXECUTE:   2 1 :A B
A x A x

A B

m m
v v

m m
⎛ ⎞−= ⎜ ⎟+⎝ ⎠

 ( ) ( ),B x Ax A x Axm v v m v v+ = −  where xv  is the velocity component of 

A before the collision and Axv  is the velocity component of A after the collision. Here, 71 50 10  m/sxv = . ×  
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(take direction of incident beam to be positive) and 71 20 10  m/sAxv = − . ×  (negative since traveling in 
direction opposite to incident beam). 

7 7

7 7
1 50 10  m/s 1 20 10  m/s 2 70 9 00 .

0 301 50 10  m/s 1 20 10  m/s
x Ax

B A
x Ax

v v
m m m m m

v v

⎛ ⎞⎛ ⎞− . × + . × .⎛ ⎞= = = = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ .. × − . × ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(b) 2 1
2 :A

B x A x
A B

m
v v

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 7 62 2 (1 50 10  m/s) 3 00 10  m/s.

9 00
A

Bx x
A B

m m
v v

m m m m
⎛ ⎞ ⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠⎝ ⎠

 

EVALUATE:   Can use our calculated Bxv  and Bm  to show that xP  is constant and that 1 2.K K=  

 8.51. IDENTIFY:   Apply 1 1 2 2 3 3
cm

1 2 3
.m x m x m x

x
m m m

++ +=
+ + +

"

"
 

SET UP:   0 300 kg,Am = .  0 400 kg,Bm = .  0 200 kg.Cm = .  

EXECUTE:   cm .A A B B C C

A B C

m x m x m x
x

m m m
+ +=

+ +
 

cm
(0 300 kg)(0 200 m) (0 400 kg)(0 100 m) (0 200 kg)( 0 300 m) 0 0444 m.

0 300 kg 0 400 kg 0 200 kg
x

. . + . . + . − .= = .
. + . + .

 

cm .A A B B C C

A B C

m y m y m y
y

m m m
+ +=

+ +
 

cm
(0 300 kg)(0 300 m) (0 400 kg)( 0 400 m) (0 200 kg)(0 600 m) 0 0556 m.

0 300 kg 0 400 kg 0 200 kg
y

. . + . − . + . .= = .
. + . + .

 

EVALUATE:   There is mass at both positive and negative x and at positive and negative y, and therefore the 
center of mass is close to the origin. 

 8.52. IDENTIFY:   Calculate cm.x  

SET UP:   Apply 1 1 2 2 3 3
cm

1 2 3

m x m x m x
x

m m m
++ +=

+ + +
"

"
 with the sun as mass 1 and Jupiter as mass 2. Take the 

origin at the sun and let Jupiter lie on the positive x-axis. 
 

 

Figure 8.52 
 

1 1 2 2
cm

1 2

m x m x
x

m m
+=
+

 

EXECUTE:   1 0x =  and 11
2 7.78 10 mx = ×  

27 11
8

cm 30 27
(1 90 10  kg)(7 78 10  m) 7 42 10  m
1 99 10  kg 1 90 10  kg

x
. × . ×= = . ×
. × + . ×

 

The center of mass is 87 42 10  m. ×  from the center of the sun and is on the line connecting the centers of 
the sun and Jupiter. The sun’s radius is 86 96 10  m. ×  so the center of mass lies just outside the sun. 
EVALUATE:   The mass of the sun is much greater than the mass of Jupiter, so the center of mass is much 
closer to the sun. For each object we have considered all the mass as being at the center of mass 
(geometrical center) of the object. 
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 8.53. IDENTIFY:   The location of the center of mass is given by 1 1 2 2 3 3
cm

1 2 3
.m x m x m x

x
m m m

++ +=
+ + +

"

"
 The mass can be 

expressed in terms of the diameter. Each object can be replaced by a point mass at its center. 
SET UP:   Use coordinates with the origin at the center of Pluto and the dire- ctionx+  toward Charon, so 

P 0,x =  C 19,700 km.x =  3 34 1
3 6 .m V r dρ ρ π ρπ= = =  

EXECUTE:   
31 3
CP P C C C 6 C

cm C C C3 3 3 31 1
P C P C P C P C6 6

.
dm x m x m d

x x x x
m m m m d d d d

ρπ
ρπ ρπ

⎛ ⎞ ⎛ ⎞⎛ ⎞+ ⎜ ⎟= = = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎝ ⎠
 

3
3

cm 3 3
[1250 km] (19,700 km) 2 52 10  km.

[2370 km] [1250 km]
x

⎛ ⎞
= = . ×⎜ ⎟⎜ ⎟+⎝ ⎠

 

The center of mass of the system is 32 52 10  km. ×  from the center of Pluto. 
EVALUATE:   The center of mass is closer to Pluto because Pluto has more mass than Charon. 

 8.54. IDENTIFY:   Apply 1 1 2 2 3 3
cm

1 2 3
,m x m x m x

x
m m m

++ +=
+ + +

"

"
 , ,

cm, ,A A x B B x
x

A B

m v m v
v

m m

+
=

+
 and cm .x xP Mv −=  There is 

only one component of position and velocity. 
SET UP:   1200 kg,Am =  1800 kg.Bm =  3000 kg.A BM m m= + =  Let x+  be to the right and let the 
origin be at the center of mass of the station wagon. 

EXECUTE:   (a) cm
0 (1800 kg)(40 0 m) 24 0 m.

1200 kg 1800 kg
A A B B

A B

m x m x
x

m m
+ + .= = = .
+ +

 

The center of mass is between the two cars, 24.0 m to the right of the station wagon and 16.0 m behind the 
lead car. 
(b) 4

, , (1200 kg)(12 0 m/s) (1800 kg)(20 0 m/s) 5 04 10  kg m/s.x A A x B B xP m v m v= + = . + . = . × ⋅  

(c) , ,
cm,

(1200 kg)(12.0 m/s) (1800 kg)(20.0 m/s) 16.8 m/s.
1200 kg 1800 kg

A A x B B x
x

A B

m v m v
v

m m

+ += = =
+ +

 

(d) 4
cm (3000 kg)(16 8 m/s) 5 04 10  kg m/s,x xP Mv −= = . = . × ⋅  the same as in part (b). 

EVALUATE:   The total momentum can be calculated either as the vector sum of the momenta of the 
individual objects in the system, or as the total mass of the system times the velocity of the center of mass. 

 8.55. IDENTIFY:   Use 1 1 2 2 3 3
cm

1 2 3

m x m x m x
x

m m m
++ +=

+ + +
"

"
 and 1 1 2 2 3 3

cm
1 2 3

m y m y m y
y

m m m
++ +=

+ + +
"

"
 to find the x- and  

y-coordinates of the center of mass of the machine part for each configuration of the part. In calculating the 
center of mass of the machine part, each uniform bar can be represented by a point mass at its geometrical 
center. 
SET UP:   Use coordinates with the axis at the hinge and the -x+  and es-axy+  along the horizontal and 
vertical bars in the figure in the problem. Let i i( , )x y  and f f( , )x y  be the coordinates of the bar before  
and after the vertical bar is pivoted. Let object 1 be the horizontal bar, object 2 be the vertical bar and 3 be 
the ball. 

EXECUTE:   1 1 2 2 3 3
i

1 2 3

(4 00 kg)(0 750 m) 0 0 0 333 m.
4 00 kg 3 00 kg 2 00 kg

m x m x m x
x

m m m
+ + . . + += = = .
+ + . + . + .

 

1 1 2 2 3 3
i

1 2 3

0 (3 00 kg)(0 900 m) (2 00 kg)(1 80 m) 0 700 m.
9 00 kg

m y m y m y
y

m m m
+ + + . . + . .= = = .

+ + .
 

f
(4 00 kg)(0 750 m) (3 00 kg)( 0 900 m) (2 00 kg)( 1 80 m) 0 366 m.

9 00 kg
x

. . + . − . + . − .= = − .
.

 

f 0.y =  f i 0 700 mx x− = − .  and f i 0 700 m.y y− = − .  The center of mass moves 0.700 m to the right and 
0.700 m upward. 
EVALUATE:   The vertical bar moves upward and to the right, so it is sensible for the center of mass of the 
machine part to move in these directions. 
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 8.56. IDENTIFY:   Use 1 1 2 2 3 3
cm

1 2 3
.m x m x m x

x
m m m

++ +=
+ + +

"

"
 

SET UP:   The target variable is 1m .  
EXECUTE:   cm 2 0 m,x = .  cm 0y =  

1 1 2 2 1
cm

1 2 1 1

(0) (0 10 kg)(8 0 m) 0 80 kg m .
(0 10 kg) 0 10 kg

m x m x m
x

m m m m
+ + . . . ⋅= = =
+ + . + .

 

cm 2 0 mx = .  gives 
1

0 80 kg m2 0 m .
0 10 kgm

. ⋅. =
+ .

 

1
0 80 kg m0 10 kg 0 40 kg.

2 0 m
m

. ⋅+ . = = .
.

 

1 0 30 kg.m = .  
EVALUATE:   The cm is closer to 1m  so its mass is larger then 2.m  

(b) IDENTIFY:   Use cmM  =  P v
G G  to calculate .P

G
 

SET UP:   cm
ˆ(5 0 m/s) .= .v iG  

cm
ˆ ˆ(0 10 kg 0 30 kg)(5 0 m/s) (2 0 kg m/s)M = = . + . .   = . ⋅ .P v i i

G G  

(c) IDENTIFY:   Use 1 1 2 2
cm

1 2
.m m

m m
+  =  
+

v vv
G GG  

SET UP:   1 1 2 2
cm

1 2
.m m

m m
+  =  
+

v vv
G GG  The target variable is 1.vG  Particle 2 at rest says 2 0.v =  

EXECUTE:   1 2
1 cm

1

0 30 kg 0 10 kg ˆ ˆ(5 00 m/s) (6 7 m/s)
0 30 kg

m m
m

⎛ ⎞ ⎛ ⎞+ . + . =   .  = . .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

G Gv v i i=  

EVALUATE:   Using the result of part (c) we can calculate 1p
G  and 2p

G  and show that P
G

 as calculated in 
part (b) does equal 1 2.  p pG G

+  
 8.57. IDENTIFY:   There is no net external force on the system of James, Ramon, and the rope; the momentum of 

the system is conserved, and the velocity of its center of mass is constant. Initially there is no motion, and 
the velocity of the center of mass remains zero after Ramon has started to move. 
SET UP:   Let x+  be in the direction of Ramon’s motion. Ramon has mass R 60 0 kgm = .  and James has 
mass J 90 0 kg.m = .  

EXECUTE:   R R J J
cm-

R J
0.x x

x
m v m v

v
m m

+= =
+

 

R
J R

J

60 0 kg (1.10 m/s) 0 733 m/s.
90 0 kgx x

m
v v

m
⎛ ⎞ ⎛ ⎞.= − = − = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 James’ speed is 0.733 m/s. 

EVALUATE:   As they move, the two men have momenta that are equal in magnitude and opposite in 
direction, and the total momentum of the system is zero. Also, Example 8.14 shows that Ramon moves 
farther than James in the same time interval. This is consistent with Ramon having a greater speed. 

 8.58. (a) IDENTIFY and SET UP:   Apply 1 1 2 2 3 3
cm

1 2 3

m y m y m y
y

m m m
++ +=

+ + +
"

"
 and solve for 1m  and 2.m  

EXECUTE:   1 1 2 2
cm

1 2

m y m y
y

m m
+=
+

 

1 1 2 2 1
1 2

cm

(0) (0 50 kg)(6 0 m) 1 25 kg
2 4 m

m y m y m
m m

y
+ + . .+ = = = .

.
 and 1 0 75 kg.m = .  

EVALUATE:   cmy  is closer to 1m  since 1 2.m m>  
(b) IDENTIFY and SET UP:   Apply d /dt    a vG G

=  for the cm motion. 
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EXECUTE:   3cm
cm

ˆ  (1 5 m/s ) .d
t

dt
     .va i

GG
= =  

(c) IDENTIFY and SET UP:   Apply ext cm.M∑ =F a
G G  

EXECUTE:   3
ext cm

ˆ(1 25 kg)(1 5 m/s )M t∑ = = . . .F a i
G G  

At 3 0 s,t = .  3
ext

ˆ ˆ(1 25 kg)(1 5 m/s )(3 0 s) (5 6 N)∑ = . . . = . .F i i
G

 

EVALUATE:   cm-xv  is positive and increasing so cm-xa  is positive and extF
G

 is in the -directionx+ .  There 
is no motion and no force component in the -directiony .  

 8.59. IDENTIFY:   Apply d
dt

∑ = PF
GG

 to the airplane. 

SET UP:   1( ) .n nd
t nt

dt
−=  21 N 1 kg m/s= ⋅  

EXECUTE:   3 2[ (1 50 kg m/s ) ] (0 25 kg m/s ) .d
t

dt
   − . ⋅   + . ⋅  P i j
G G G
=  (1 50 N/s) ,xF t= − .  0 25 N,yF = .  0.zF =  

EVALUATE:   There is no momentum or change in momentum in the z-direction and there is no force 
component in this direction. 

 8.60. IDENTIFY:   Raising your leg changes the location of its center of mass and hence the location of your 
body’s center of mass.  
SET UP:   The leg in each position is sketched in Figure 8.60. Use the coordinates shown. The mass of each 
part of the leg may be taken as concentrated at the center of that part. The location of the  

x-coordinate of the center of mass of two particles is 1 1 2 2
cm

1 2
.m x m x

x
m m

+=
+

 and likewise for the y-coordinate. 

 

 
Figure 8.60 

 

EXECUTE:   (a) cm 0,y = cm
(23 0 cm)(8 60 kg) (69 0 cm)(5 25 kg) 40 4 cm.

8 60 kg 5 25 kg
x

. . + . .= = .
. + .

 The center of mass of 

the leg is a horizontal distance of 40.4 cm from the hip. 

(b) cm
(23 0 cm)(8 60 kg) (46 0 cm)(5 25 kg) 31 7cm

8 60 kg 5 25 kg
x

. . + . .= = .
. + .

  and cm
0 (23 0 cm)(5 25 kg) 8 7 cm.

8 60 kg 5 25 kg
y

+ . .= = .
. + .

 

The center of mass is a vertical distance of 8.7 cm below the hip and a horizontal distance of 31.7 cm from the hip. 
EVALUATE:   Since the body is not a rigid object, the location of its center of mass is not fixed. 

 8.61. IDENTIFY:   ex .v dm
a

m dt
= −  Assume that /dm dt  is constant over the 5.0 s interval, since m doesn’t change 

much during that interval. The thrust is ex .dm
F v

dt
= −  
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SET UP:   Take m to have the constant value 110 kg 70 kg 180 kg.+ =  /dm dt  is negative since the mass of 
the MMU decreases as gas is ejected. 

EXECUTE:   (a) 2

ex

180 kg (0 029 m/s ) 0 0106 kg/s.
490 m/s

dm m
a

dt v
⎛ ⎞= − = − . = − .⎜ ⎟⎝ ⎠

 In 5.0 s the mass that is ejected 

is (0 0106 kg/s)(5 0 s) 0 053 kg.. . = .  

(b) ex (490 m/s)( 0 0106 kg/s) 5 19 N.dm
F v

dt
= − = − − . = .  

EVALUATE:   The mass change in the 5.0 s is a very small fraction of the total mass m, so it is accurate to 
take m to be constant. 

 8.62. IDENTIFY:   Use ex ,m
F v

t
∆= −
∆

 applied to a finite time interval. 

SET UP:   ex 1600 m/sv =  

EXECUTE:   (a) ex
0 0500 kg(1600 m/s) 80 0 N.
1 00 s

m
F v

t
∆ − .= − = − = + .
∆ .

 

(b) The absence of atmosphere would not prevent the rocket from operating. The rocket could be steered 
by ejecting the gas in a direction with a component perpendicular to the rocket’s velocity and braked by 
ejecting it in a direction parallel (as opposed to antiparallel) to the rocket’s velocity. 
EVALUATE:   The thrust depends on the speed of the ejected gas relative to the rocket and on the mass of 
gas ejected per second. 

 8.63. IDENTIFY and SET UP:   Use 0 ex 0ln( / ).v v v m m− =  

0 0v =  (“fired from rest”), so ex 0/ ln( / ).v v m m=  

Thus ex/
0 / ,v vm m e=  or ex/

0/ .v vm m e−=  
If v is the final speed then m is the mass left when all the fuel has been expended; 0m m/  is the fraction of 
the initial mass that is not fuel. 
(a) EXECUTE:   –3 51 00 10 3 00 10  m/sv c= . × = . ×  gives 

53 00 10 m/s)/(2000 m/s) –66
0/ 7 2 10 .m m e−( . ×= = . ×  

EVALUATE:   This is clearly not feasible, for so little of the initial mass to not be fuel. 
(b) EXECUTE:   3000 m/sv =  gives 3000 m/s)/(2000 m/s)

0/ 0 223.m m e−(= = .  
EVALUATE:   22.3% of the total initial mass not fuel, so 77.7% is fuel; this is possible. 

 8.64. IDENTIFY:   Use the heights to find 1yv  and 2 ,yv  the velocity of the ball just before and just after it strikes 

the slab. Then apply .y y yJ F t p= ∆ = ∆  
SET UP:   Let y+  be downward. 

EXECUTE:   (a) 21
2 mv mgh=  so 2 .v gh= ±  

2
1 2(9 80 m/s )(2 00 m) 6 26 m/s.yv = + . . = .  2

2 2(9 80 m/s )(1 60 m) 5 60 m/s.yv = − . . = − .  
3

2 1( ) (40 0 10  kg)( 5 60 m/s 6 26 m/s) 0 474 kg m/s.y y y yJ p m v v −= ∆ = − = . × − . − . = − . ⋅  
The impulse is 0 474 kg m/s,. ⋅  upward. 

(b) 3
0 474 kg m/s 237 N.
2 00 10  s

y
y

J
F

t −
. ⋅= = = −

∆ . ×
-  The average force on the ball is 237 N, upward. 

EVALUATE:   The upward force, on the ball changes the direction of its momentum. 
 8.65. IDENTIFY:   The impulse, force, and change in velocity are related by .xxJ F t= ∆  

SET UP:   0 0571 kg.m w/g= = .  Since the force is constant, av.=F F
G G

 

EXECUTE:   (a) 3( 380 N)(3 00 10  s) 1 14 N s.x xJ F t= ∆ = − . × = − . ⋅-  
3(110 N)(3 00 10  s) 0 330 N s.y yJ F t= ∆ = . × = . ⋅-  
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(b) 2 1
1 14 N s 20 0 m/s 0 04 m/s.

0 0571 kg
x

x x
J

v v
m

. ⋅= + = + . = .
.
–  

2 1
0 330 N s ( 4 0 m/s) 1 8 m/s.
0 0571 kg

y
y y

J
v v

m
. ⋅= + = + − . = .
.

+  

EVALUATE:   The change in velocity ∆vG  is in the same direction as the force, so ∆vG  has a negative  
x-component and a positive y-component. 

 8.66. IDENTIFY:   The total momentum of the system is conserved and is equal to zero, since the pucks are 
released from rest. 
SET UP:   Each puck has the same mass m. Let x+  be east and y+  be north. Let object A be the puck that 
moves west. All three pucks have the same speed v. 
EXECUTE:   1 2x xP P=  gives 0 Bx Cxmv mv mv= − + +  and .Bx Cxv v v= +  1 2y yP P=  gives 0 By Cymv mv= +  

and .By Cyv v= −  Since B Cv v=  and the y-components are equal in magnitude, the x-components must also 

be equal: Bx Cxv v=  and Bx Cxv v v= +  says /2.Bx Cxv v v= =  If Byv  is positive then Cyv  is negative. The 

angle θ  that puck B makes with the x-axis is given by /2cos v
v

θ =  and 60 .θ = °  One puck moves in a 

direction 60°  north of east and the other puck moves in a direction 60°  south of east. 
EVALUATE:   Each component of momentum is separately conserved. 

 8.67. IDENTIFY and SET UP:    When the spring is compressed the maximum amount the two blocks aren’t 
moving relative to each other and have the same velocity V relative to the surface. Apply conservation of 
momentum to find V and conservation of energy to find the energy stored in the spring. Let +x be the 
direction of the initial motion of A. The collision is elastic. 
SET UP:   p = mv, K = ½ mv2, 2 2 1 1( )B x A x B x A xv v v v− = − −  for an elastic collision. 
EXECUTE:    (a) The maximum energy stored in the spring is at maximum compression, at which time the 
blocks have the same velocity. Momentum conservation gives 1 1 ( ) .A A B B A Bm v m v m m V+ = +  Putting in 
the numbers we have (2.00 kg)(2.00 m/s) + (10.0 kg)(–0.500 m/s) = (12.0 kg)V, giving  
V = –0.08333 m/s. The energy Uspring stored in the spring is the loss of kinetic of the system. Therefore 

2 2 2
spring 1 2 1 1

1 1 1 ( ) .
2 2 2A A B V A BU K K m v m v m m V= − = + − +  Putting in the same set of numbers as above, and 

using V = –0.08333 m/s, we get Uspring = 5.21 J. At this time, the blocks are both moving to the left, so their 
velocities are each  –0.0833 m/s. 
(b) Momentum conservation gives  1 1 2 2.A A B B A A B Bm v m v m v m v+ = +  Putting in the numbers gives 
–1 m/s = 2vA2 + 10vB2. Using 2 2 1 1( )B x A x B x A xv v v v− = − −  we get  
vB2x – vA2x = –(–0.500 m/s – 2.00 m/s) = +2.50 m/s. Solving this equation and the momentum equation 
simultaneously gives vA2x = 2.17 m/s and vB2x = 0.333 m/s. 
EVALUATE:  The total kinetic energy before the collision is 5.25 J, and it is the same after, which is 
consistent with an elastic collision. 

 8.68. IDENTIFY:   Use a coordinate system attached to the ground. Take the x-axis to be east (along the tracks) and 
the y-axis to be north (parallel to the ground and perpendicular to the tracks). Then xP  is conserved and yP  is 
not conserved, due to the sideways force exerted by the tracks, the force that keeps the handcar on the tracks. 
(a) SET UP:   Let A be the 25.0 kg mass and B be the car (mass 175 kg). After the mass is thrown sideways 
relative to the car it still has the same eastward component of velocity, 5.00 m/s  as it had before it was thrown. 

 

 

Figure 8.68a 
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xP  is conserved so 1 2 2( )A B A A x B B xm m v m v m v+ = +  
EXECUTE:   2(200 kg)(5 00 m/s) (25 0 kg)(5 00 m/s) (175 kg) .B xv. = . . +  

2
1000 kg m/s 125 kg m/s 5 00 m/s.

175 kgB xv
⋅ − ⋅= = .  

The final velocity of the car is 5 00 m/s,.  east (unchanged). 
EVALUATE:   The thrower exerts a force on the mass in the y-direction and by Newton’s third law the mass 
exerts an equal and opposite force in the -directiony−  on the thrower and car. 
(b) SET UP:   We are applying constantxP =  in coordinates attached to the ground, so we need the final 
velocity of A relative to the ground. Use the relative velocity addition equation. Then use constantxP =  to 
find the final velocity of the car. 
EXECUTE:   / / /A E A B B E= +v v vG G G  

/ 5 00 m/sB Ev = + .  

/ 5 00 m/sA Bv = − .  (minus since the mass is moving west relative to the car). This gives / 0;A Ev =  the mass 
is at rest relative to the earth after it is thrown backwards from the car. 
As in part (a) 1 2 2( ) .A B A A x B B xm m v m v m v+ = +  
Now 2 0,A xv =  so 1 2( ) .A B B B xm m v m v+ =  

2 1
200 kg (5 00 m/s) 5 71 m/s.
175 kg

A B
B x

B

m m
v v

m
⎛ ⎞ ⎛ ⎞+= = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The final velocity of the car is 5 71 m/s,.  east. 
EVALUATE:   The thrower exerts a force in the -directionx−  so the mass exerts a force on him in the 

-direction,x+  and he and the car speed up. 
(c) SET UP:   Let A be the 25.0 kg mass and B be the car (mass 200 kg).Bm =  

 

 
Figure 8.68b 

xP  is conserved so 1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  
EXECUTE:   1 1 2( ) .A A B B A B xm v m v m m v− + = +  

1 1
2

(200 kg)(5 00 m/s) (25 0 kg)(6 00 m/s) 3 78 m/s.
200 kg 25 0 kg

B B A A
x

A B

m v m v
v

m m
− . − . .= = = .
+ + .

 

The final velocity of the car is 3 78 m/s,.  east. 
EVALUATE:   The mass has negative xp  so reduces the total xP  of the system and the car slows down. 

 8.69. IDENTIFY:   The x- and y-components of the momentum of the system are conserved. 
SET UP:   After the collision the combined object with mass tot 0.100 kgm =  moves with velocity 2.vG  
Solve for Cxv  and .Cyv  

EXECUTE:   (a) 1 2x xP P=  gives tot 2 .A Ax B Bx C Cx xm v m v m v m v+ + =  

tot 2A Ax B Bx x
Cx

C

m v m v m v
v

m
+ −= −  

(0.020 kg)( 1.50 m/s) (0.030 kg)( 0.50 m/s)cos60 (0.100 kg)(0.50 m/s) .
0.050 kgCxv

− + − ° −= −  

1.75 m/s.Cxv =  
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1 2y yP P=  gives tot 2 .A Ay B By C Cy ym v m v m v m v+ + =  

tot 2 (0.030 kg)( 0.50 m/s)sin 60 0.260 m/s.
0.050 kg

A Ay B By y
Cy

C

m v m v m v
v

m

+ − − °= − = − = +  

(b) 2 2 1.77 m/s.C Cx Cyv v v= + =  2 1.K K K∆ = −  
2 2 2 21 1 1 1

2 2 2 2(0.100 kg)(0.50 m/s) [ (0.020 kg)(1.50 m/s) (0.030 kg)(0.50 m/s) (0.050 kg)(1.77 m/s) ]K∆ = − + +
0.092 J.K∆ = −  

EVALUATE:   Since there is no horizontal external force the vector momentum of the system is conserved. 
The forces the spheres exert on each other do negative work during the collision and this reduces the 
kinetic energy of the system. 

 8.70. IDENTIFY:   Each component of horizontal momentum is conserved. 
SET UP:   Let x+  be east and y+  be north. S1 A1 0.y xv v= =  S2 (6 00 m/s)cos37 0 4 79 m/s,xv = . . ° = .  

S2 (6 00 m/s)sin37 0 3 61 m/s,yv = . . ° = .  A2 (9 00 m/s)cos23 0 8 28 m/sxv = . . ° = .  and 

A2 (9 00 m/s)sin 23 0 3 52 m/s.yv = − . . ° = − .  

EXECUTE:   1 2x xP P=  gives S S1 S S2 A A2 .x x xm v m v m v= +  

S S2 A A2
S1

S

(80 0 kg)(4 79 m/s) (50 0 kg)(8 28 m/s) 9 97 m/s.
80 0 kg

x x
x

m v m v
v

m
+ . . + . .= = = .

.
  

Sam’s speed before the collision was 9.97 m/s. 
1 2y yP P=  gives A A1 S S2 A A2 .y y ym v m v m v= +  

S S2 A A2
A1

S

(80 0 kg)(3 61 m/s) (50 0 kg)( 3 52 m/s) 2 26 m/s.
50 0 kg

y y
y

m v m v
v

m

+ . . + . − .= = = .
.

 

Abigail’s speed before the collision was 2.26 m/s. 
(b) 2 2 2 21 1 1 1

2 2 2 2(80 0 kg)(6 00 m/s) (50 0 kg)(9 00 m/s) (80 0 kg)(9 97 m/s) (50 0 kg)(2 26 m/s) .K∆ = . . + . . − . . − . .  

639 J.K∆ = −  
EVALUATE:   The total momentum is conserved because there is no net external horizontal force. The 
kinetic energy decreases because the forces between the objects do negative work during the collision. 

 8.71. IDENTIFY:   Momentum is conserved during the collision, and the wood (with the clay attached) is in free 
fall as it falls since only gravity acts on it. 
SET UP:   Apply conservation of momentum to the collision to find the velocity V of the combined object just 
after the collision. After the collision, the wood’s downward acceleration is g and it has no horizontal 

acceleration, so we can use the standard kinematics equations: 
2

0 0
1
2y yy y v t a t− = +  and 

2
0 0

1 .
2x xx x v t a t− = +  

EXECUTE: Momentum conservation gives (0 500 kg)(24 0 m/s) (8 50 kg) ,V. . = .  so 1 412 m/s.V = .  Consider 

the projectile motion after the collision: 29 8 m/s ,ya = + .  0 0,yv =  0 2 20 m,y y− = + .  and t is unknown. 

2
0 0

1
2y yy y v t a t− = +

 
gives 0

2
2( ) 2(2 20 m) 0 6701 s.

9 8 m/sy

y y
t

a
− .= = = .

.
 The horizontal acceleration is zero 

so 2
0 0

1 (1 412 m/s)(0 6701 s) 0 946 m.
2x xx x v t a t− = + = . . = .  

EVALUATE:   The momentum is not conserved after the collision because an external force (gravity) acts 
on the system. Mechanical energy is not conserved during the collision because the clay and block stick 
together, making it an inelastic collision. 

 8.72. IDENTIFY:   An inelastic collision (the objects stick together) occurs during which momentum is 
conserved, followed by a swing during which mechanical energy is conserved. The target variable is the 
initial speed of the bullet. 
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SET UP:   Newton’s second law, ,mΣ =F a
G G  will relate the tension in the cord to the speed of the block 

during the swing. Mechanical energy is conserved after the collision, and momentum is conserved during 
the collision. 
EXECUTE:   First find the speed v of the block, at a height of 0.800 m. The mass of the combined object is  

0.812 kg. 0 8 mcos 0 50
1 6 m

θ .= = .
.

 so o60 0θ = .  is the angle the cord makes with the vertical. At this position, 

Newton’s second law gives 
2

cos ,v
T mg m

R
θ− =  where we have taken force components toward the center 

of the circle. Solving for v gives 1 6 m( cos ) (4 80 N 3 979 N) 1 272 m/s.
0 812 kg

R
v T mg

m
θ .= − = . − . = .

.
 Now 

apply conservation of energy to find the velocity V of the combined object just after the collision: 
2 21 1 .

2 2
mV mgh mv= +  Solving for V gives 

2 2 22 2(9 8 m/s )(0 8 m) (1 272 m/s) 4 159 m/s.V gh v= + = . . + . = .  Now apply conservation of momentum 
to the collision: 0(0 012 kg) (0 812 kg)(4 159 m/s),v. = . .  which gives 0 281 m/s.v =  
EVALUATE:   We cannot solve this problem in a single step because different conservation laws apply to 
the collision and the swing. 

 8.73. IDENTIFY:   During the collision, momentum is conserved, but after the collision mechanical energy is 
conserved. We cannot solve this problem in a single step because the collision and the motion after the 
collision involve different conservation laws. 
SET UP:   Use coordinates where x+  is to the right and y+  is upward. Momentum is conserved during the 

collision, so 1 2 .x xP P=  Energy is conserved after the collision, so 1 2,K U=  where 21
2K mv=  and 

.U mgh=  
EXECUTE:   Collision: There is no external horizontal force during the collision so 1 2 .x xP P=  This gives 

2(5 00 kg)(12 0 m/s) (10 0 kg)v. . = .  and 2 6 0 m/s.v = .  
Motion after the collision: Only gravity does work and the initial kinetic energy of the combined chunks is 
converted entirely to gravitational potential energy when the chunk reaches its maximum height h above 

the valley floor. Conservation of energy gives 21
tot tot2 m v m gh=  and 

2 2

2
(6 0 m/s) 1 8 m.

2 2(9 8 m/s )
v

h
g

.= = = .
.

 

EVALUATE:   After the collision the energy of the system is 2 21 1
tot2 2 (10 0 kg)(6 0 m/s) 180 Jm v = . . =  when 

it is all kinetic energy and the energy is 2
tot (10 0 kg)(9 8 m/s )(1 8 m) 180 Jm gh = . . . =  when it is all 

gravitational potential energy. Mechanical energy is conserved during the motion after the collision. But 
before the collision the total energy of the system is 21

2 (5 0 kg)(12 0 m/s) 360 J;. . =  50% of the mechanical 
energy is dissipated during the inelastic collision of the two chunks. 

 8.74. IDENTIFY:   Momentum is conserved during the collision. After that we use energy conservation for B. 
 SET UP:    P1 = P2 during the collision. For B, 1 1 2 2K U K U+ = +  after the collision. 
 EXECUTE:   For the collision, P1 = P2: (2.00 kg)(8.00 m/s) = (2.00 kg)(–2.00 m/s) + (4.00 kg)vB, which 

gives vB = 5.00 m/s. Now look at B after the collision and apply 1 1 2 2.K U K U+ = +   
 K1 + U1 = K2 + 0: ½ mvB

2 + mgh = ½ mv2 
 v2 = (5.00 m/s)2 + 2(9.80 m/s2)(2.60 m), which gives v = 8.72 m/s. 
 EVALUATE: We cannot do this problem in a single step because we have two different conservation laws 

involved: momentum during the collision and energy after the collision. The energy is not conserved 
during the collision, and the momentum of B is not conserved after the collision. 

 8.75. IDENTIFY:   The system initially has elastic potential energy in the spring. This will eventually be 
converted to kinetic energy by the spring. The spring produces only internal forces on the two-block 
system, so momentum is conserved. The spring force is conservative, so mechanical energy is conserved. 
Newton’s second law applies. 
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 SET UP: 1 1 2 2,K U K U+ = +  1 2,P P=  p = mv, Uel = ½ kx2, F = kx, mΣ =F a.
G G  

 EXECUTE:   (a) The spring exerts the same magnitude force on each block, so F = kx = ma, which gives  
 a = kx/m. aA = (720 N/m)(0.225 m)/(1.00 kg) = 162 m/s2. aB = kx/m = (720 N/m)?(0.225 m)/(3.00 kg) = 

54.0 m/s2. 
 (b) The initial momentum and kinetic energy are zero. After the blocks have separated from the spring, 

momentum conservation tells us that 0 = pA – pB , which gives (1.00 kg)vA = (3.00 kg)vB, so vA = 3vB. 

 Energy conservation gives 1 1 2 2,K U K U+ = +  so 0  + ½ kx2 = KA + KB = 2 2 21 1 1 .
2 2 2A A B Bkx m v m v= +  

Substituting vA = 3vB into this last equation and solving for vB gives vB = 1.74 m/s and vA = 5.23 m/s. 
 EVALUATE:   The kinetic energy of A is 1

2  (1.00 kg)(5.23 m/s)2 = 13.7 J, and the kinetic energy of B is  
1
2  (3.00 kg)(1.74 m/s)2 = 4.56 J. The two blocks do not share the energy equally, but they do have the 

same magnitude momentum. 
 8.76. IDENTIFY:   During the inelastic collision, momentum is conserved but not mechanical energy. After the 

collision, momentum is not conserved and the kinetic energy of the cars is dissipated by nonconservative 
friction. 
SET UP:   Treat the collision and motion after the collision as separate events. Apply conservation of 
momentum to the collision and conservation of energy to the motion after the collision. The friction force 
on the combined cars is k ( ) .A Bm m gµ +  
EXECUTE:   Motion after the collision: The kinetic energy of the combined cars immediately after the 
collision is taken away by the negative work done by friction: 21

k2 ( ) ( ) ,A B A Bm m V m m gdµ+ = +  where 

7 15 m.d = .  This gives k2 9 54 m/s.V gdµ= = .  

Collision: Momentum conservation gives ( ) ,A A A Bm v m m V= +  which gives 

1500 kg 1900 kg (9 54 m/s) 21 6 m/s.
1500 kg

A B
A

A

m m
v V

m
⎛ ⎞ ⎛ ⎞+ += = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 21 6 m/s 48 mph,Av = . =  which is 13 mph greater than the speed limit. 
EVALUATE:   We cannot solve this problem in a single step because the collision and the motion after the 
collision involve different principles (momentum conservation and energy conservation). 

 8.77. IDENTIFY:   During the inelastic collision, momentum is conserved (in two dimensions), but after the 
collision we must use energy principles. 
SET UP:   The friction force is k tot .m gµ  Use energy considerations to find the velocity of the combined 
object immediately after the collision. Apply conservation of momentum to the collision. Use coordinates 
where x+  is west and y+  is south. For momentum conservation, we have 1 2x xP P=  and 1 2 .y yP P=  
EXECUTE:   Motion after collision: The negative work done by friction takes away all the kinetic energy 
that the combined object has just after the collision. Calling φ  the angle south of west at which the 

enmeshed cars slid, we have 6 43 mtan
5 39 m

φ .=
.

 and 50 0 .φ = . °  The wreckage slides 8.39 m in a direction 

50 0. °  south of west. Energy conservation gives 21
tot k tot2 ,m V m gdµ=  so 

2
k2 2(0 75)(9 80 m/s )(8 39 m) 11 1 m/s.V gdµ= = . . . = .  The velocity components are 

cos 7 13 m/s;xV V φ= = .  sin 8 50 m/s.yV V φ= = .  

Collision: 1 2x xP P=  gives SUV(2200 kg) (1500 kg 2200 kg) xv V= +  and SUV 12 m/sv = .  1 2y yP P=  gives 

sedan(1500 kg) (1500 kg 2200 kg) yv V= +  and sedan 21 m/s.v =  
EVALUATE:   We cannot solve this problem in a single step because the collision and the motion after the 
collision involve different principles (momentum conservation and energy conservation). 

 8.78. IDENTIFY:   Find k for the spring from the forces when the frame hangs at rest, use constant acceleration 
equations to find the speed of the putty just before it strikes the frame, apply conservation of momentum to 
the collision between the putty and the frame, and then apply conservation of energy to the motion of the 
frame after the collision. 
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SET UP:   Use the free-body diagram in Figure 8.78a for the frame when it hangs at rest on the end of the 
spring to find the force constant k of the spring. Let s be the amount the spring is stretched. 

 

 
Figure 8.78a 

 

EXECUTE:   y yF maΣ =  gives 0.mg ks− + =  
2(0 150 kg)(9 80 m/s ) 36.75 N/m.

0 0400 m
mg

k
s

. .= = =
.

 

SET UP:   Next find the speed of the putty when it reaches the frame. The putty falls with acceleration 
,a g=  downward (see Figure 8.78b). 

 
Figure 8.78b 

 

0 0,v =  0 0 300 m,y y− = .  29 80 m/s ,a = + .  and we want to find v. The constant-acceleration 
2 2

0 02 ( )v v a y y= + −  applies to this motion. 

EXECUTE:   2
02 ( ) 2(9 80 m/s )(0 300 m) 2 425 m/s.v a y y= − = . . = .  

SET UP:   Apply conservation of momentum to the collision between the putty (A) and the frame (B). See  
Figure 8.78c. 

 

 

Figure 8.78c 
 

yP  is conserved, so 1 2( ) .A A A Bm v m m v− = − +  

EXECUTE:   2 1
0 200 kg (2 425 m/s) 1 386 m/s.
0 350 kg

A
A

A B

m
v v

m m
⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟ ⎜ ⎟+ .⎝ ⎠⎝ ⎠

 

SET UP:   Apply conservation of energy to the motion of the frame on the end of the spring after the 
collision. Let point 1 be just after the putty strikes and point 2 be when the frame has its maximum 
downward displacement. Let d be the amount the frame moves downward (see Figure 8.78d). 

 

 

Figure 8.78d 
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When the frame is at position 1 the spring is stretched a distance 1 0 0400 m.x = .  When the frame is at 
position 2 the spring is stretched a distance 2 0 040 m .x d= . +  Use coordinates with the y-direction upward 
and 0y =  at the lowest point reached by the frame, so that 1y d=  and 2 0.y =  Work is done on the frame 
by gravity and by the spring force, so other 0,W =  and el gravity.U U U= +  

EXECUTE:   1 1 other 2 2.K U W K U+ + = +  other 0.W =  
2 21 1

1 12 2 (0 350 kg)(1 386 m/s) 0 3362 J.K mv= = . . = .
2 2 21 1

1 1,el 1,grav 1 12 2 (36.75 N/m)(0 0400 m) (0 350 kg)(9 80 m/s ) .U U U kx mgy d= + = + = . + . .

1 0 02940 J (3 43 N) .U d= . + .  2 21 1
2 2,el 2,grav 2 22 2 (36.75 N/m)(0 0400 m ) .U U U kx mgy d= + = + = . +  

2
2 0 02940 J (1 47 N) (18.375 N/m) .U d d= . + . +  Thus 

20 3362 J 0 02940 J (3 43 N) 0 02940 J (1 47 N) (18.375 N/m) .d d d. + . + . = . + . +
2(18 375 N/m) (1 96 N) 0 3362 J 0.d d. − . − . =  Using the quadratic formula, with the positive solution, we 

get  d = 0.199 m. 
EVALUATE:   The collision is inelastic and mechanical energy is lost. Thus the decrease in gravitational 
potential energy is not equal to the increase in potential energy stored in the spring. 

 8.79. IDENTIFY:   Apply conservation of momentum to the collision and conservation of energy to the motion 
after the collision. 
SET UP:   Let x+  be to the right. The total mass is bulle block 1.00 kg.tm m m= + =  The spring has force 

constant 2
| | 0.750 N 300 N/m.
| | 0.250 10 m
F

k
x −= = =

×
 Let V be the velocity of the block just after impact. 

EXECUTE:   (a) Conservation of energy for the motion after the collision gives 1 el2.K U=  
2 21 1

2 2mV kx=  and 

300 N/m(0 150 m) 2 60 m/s.
1 00 kg

k
V x

m
= = . = .

.
 

(b) Conservation of momentum applied to the collision gives bullet 1 .m v mV=  

1 3
bullet

(1.00 kg)(2.60 m/s) 325 m/s.
8.00 10 kg

mV
v

m −= = =
×

 

EVALUATE:   The initial kinetic energy of the bullet is 422 J. The energy stored in the spring at maximum 
compression is 3.38 J. Most of the initial mechanical energy of the bullet is dissipated in the collision. 

 8.80. IDENTIFY:   The horizontal components of momentum of the system of bullet plus stone are conserved. 
The collision is elastic if 1 2.K K=  
SET UP:   Let A be the bullet and B be the stone. 

 

(a) 

 

Figure 8.80 
 

EXECUTE:   xP  is conserved so 1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  

1 2 .A A B B xm v m v=  
3

2 1
6 00 10  kg (350 m/s) 21 0 m/s

0 100 kg
A

B x A
B

m
v v

m

−⎛ ⎞⎛ ⎞ . ×= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
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yP  is conserved so 1 1 2 2 .A A y B B y A A y B B ym v m v m v m v+ = +  

2 20 .A A B B ym v m v= − +  
3

2 2
6 00 10  kg (250 m/s) 15 0 m/s.

0 100 kg
A

B y A
B

m
v v

m

−⎛ ⎞⎛ ⎞ . ×= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

2 2 2 2
2 2 2 (21 0 m/s) (15 0 m/s) 25 8 m/s.B B x B yv v v= + = . + . = .  

2

2

15 0 m/stan 0 7143;
21 0 m/s

B y

B x

v

v
θ .= = = .

.
 35 5θ = . °  (defined in the sketch). 

(b) To answer this question compare 1K  and 2K  for the system: 

2 2 3 21 1 1
1 1 12 2 2 (6 00 10  kg)(350 m/s) 368 J.A A B BK m v m v −= + = . × =  

2 2 3 2 21 1 1 1
2 2 22 2 2 2(6 00 10  kg)(250 m/s) (0 100 kg)(25 8 m/s) 221 J.A A B BK m v m v −= + = . × + . . =  

2 1 221 J 368 J 147 J.K K K∆ = − = − = −  
EVALUATE:   The kinetic energy of the system decreases by 147 J as a result of the collision; the collision 
is not elastic. Momentum is conserved because ext, 0xΣ =F  and ext, 0.yΣ =F  But there are internal forces 

between the bullet and the stone. These forces do negative work that reduces K. 
 8.81. IDENTIFY:   Apply conservation of momentum to the collision between the two people. Apply conservation 

of energy to the motion of the stuntman before the collision and to the entwined people after the collision. 
SET UP:   For the motion of the stuntman, 1 2 5 0 m.y y− = .  Let Sv  be the magnitude of his horizontal 
velocity just before the collision. Let V be the speed of the entwined people just after the collision. Let d be 
the distance they slide along the floor. 
EXECUTE:   (a) Motion before the collision: 1 1 2 2.K U K U+ = +  1 0K =  and 21

S 1 22 ( ).mv mg y y= −  

2
S 1 22 ( ) 2(9 80 m/s )(5 0 m) 9 90 m/s.v g y y= − = . . = .  

Collision: S S tot .m v m V= S
S

tot

80 0 kg (9 90 m/s) 5 28 m/s.
150 0 kg

m
V v

m
⎛ ⎞.= = . = .⎜ ⎟.⎝ ⎠

 

(b) Motion after the collision: 1 1 other 2 2K U W K U+ + = +  gives 21
tot k tot2 0.m V m gdµ− =  

2 2

2
k

(5 28 m/s) 5 7 m.
2 2(0 250)(9 80 m/s )
V

d
gµ

.= = = .
. .

 

EVALUATE:   Mechanical energy is dissipated in the inelastic collision, so the kinetic energy just after the 
collision is less than the initial potential energy of the stuntman. 

 8.82. IDENTIFY:   Apply conservation of energy to the motion before and after the collision and apply 
conservation of momentum to the collision. 
SET UP:   Let v be the speed of the mass released at the rim just before it strikes the second mass. Let each 
object have mass m. 
EXECUTE:   Conservation of energy says 21

2 ;mv mgR=  2 .v gR=  

SET UP:   This is speed 1v  for the collision. Let 2v  be the speed of the combined object just after the collision. 

EXECUTE:   Conservation of momentum applied to the collision gives 1 22mv mv=  so 2 1/2 /2.v v gR= =  
SET UP:   Apply conservation of energy to the motion of the combined object after the collision. Let 3y  be 
the final height above the bottom of the bowl. 
EXECUTE:   21

2 32 (2 ) (2 ) .m v m gy=  
2
2

3
1 /4.

2 2 2
v gR

y R
g g

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EVALUATE:   Mechanical energy is lost in the collision, so the final gravitational potential energy is less 
than the initial gravitational potential energy. 
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 8.83. IDENTIFY:   Eqs. 2 1
A B

A x A x
A B

m m
v v

m m
⎛ ⎞−= ⎜ ⎟+⎝ ⎠

 and 2 1
2 A

B x A x
A B

m
v v

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 give the outcome of the elastic 

collision. Apply conservation of energy to the motion of the block after the collision. 
SET UP:   Object B is the block, initially at rest. If L is the length of the wire and θ  is the angle it makes 
with the vertical, the height of the block is (1 cos ).y L θ= −  Initially, 1 0.y =  

EXECUTE:   Eq. 2 1
2 A

B x A x
A B

m
v v

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 gives 2 2 (4 00 m/s) 2 00 m/s.

3
A

B A
A B

m M
v v

m m M M
⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

Conservation of energy gives 21
2 (1 cos ).B B Bm v m gL θ= −  

2 2

2
(2 00 m/s)cos 1 1 0 5918,

2 2(9 80 m/s )(0 500 m)
Bv
gL

θ .= − = − = .
. .

 which gives 53 7 .θ = . °  

EVALUATE:   Only a portion of the initial kinetic energy of the ball is transferred to the block in the collision. 
 8.84. IDENTIFY:   Apply conservation of energy to the motion before and after the collision. Apply conservation 

of momentum to the collision. 
SET UP:   First consider the motion after the collision. The combined object has mass tot 25 0 kg.m = .  

Apply mΣ =F a
G G  to the object at the top of the circular loop, where the object has speed 3v . The 

acceleration is 2
rad 3 / ,a v R=  downward. 

EXECUTE:   
2
3 .v

T mg m
R

+ =  

The minimum speed 3v  for the object not to fall out of the circle is given by setting 0.T =  This gives 

3 ,v Rg=  where 2.80 m.R =  
SET UP:   Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at the top of 
the loop. Take 0y =  at point 2. Only gravity does work, so 2 2 3 3K U K U+ = +  

EXECUTE:   2 21 1
tot 2 tot 3 tot2 2 (2 ).m v m v m g R= +  

Use 3v Rg=  and solve for 2:v  2 5 11 71 m/s.v gR= = .  
SET UP:   Now apply conservation of momentum to the collision between the dart and the sphere. Let 1v  
be the speed of the dart before the collision. 
EXECUTE:   1(5 00 kg) (25 0 kg)(11 71 m/s),v. = . .  which gives 1 58.6 m/s.v =  
EVALUATE:   The collision is inelastic and mechanical energy is removed from the system by the negative 
work done by the forces between the dart and the sphere. 

 8.85. IDENTIFY:   Apply conservation of momentum to the collision between the bullet and the block and apply 
conservation of energy to the motion of the block after the collision. 
(a) SET UP:    For the collision between the bullet and the block, let object A be the bullet and object B  
be the block. Apply momentum conservation to find the speed 2Bv  of the block just after the collision  
(see Figure 8.85a). 

 

 

Figure 8.85a 
 

EXECUTE:   xP  is conserved so 1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  1 2 2 .A A A A B B xm v m v m v= +  
3

1 2
2

( ) 4 00 10  kg(400 m/s 190 m/s) 1 05 m/s.
0 800 kg

A A A
B x

B

m v v
v

m

−− . × −= = = .
.
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SET UP:   For the motion of the block after the collision, let point 1 in the motion be just after the collision, 
where the block has the speed 1.05 m/s calculated above, and let point 2 be where the block has come to 
rest (see Figure 8.85b). 

1 1 other 2 2.K U W K U+ + = +  
 

 

Figure 8.85b 
 

EXECUTE:   Work is done on the block by friction, so other .fW W=  

other k k( cos ) ,f kW W f s f s mgsφ µ= = = − = −  where 0 720 m.s = .  1 20, 0,U U= =  
21

1 1 22 , 0K mv K= =  (the 

block has come to rest). Thus 21
1 k2 0.mv mgsµ− =  Therefore 

2 2
1

k 2
(1 05 m/s) 0 0781.

2 2(9 80 m/s )(0 720 m)
v
gs

µ .= = = .
. .

 

(b) For the bullet, 2 3 21 1
1 12 2 (4 00 10  kg)(400 m/s) 320 JK mv −= = . × =  and 

2 3 21 1
2 22 2 (4 00 10  kg)(190 m/s) 72 2 J.K mv −= = . × = .  2 1 72 2 J 320 J 248 J.K K K∆ = − = . − = −  The kinetic 

energy of the bullet decreases by 248 J. 
(c) Immediately after the collision the speed of the block is 1.05 m/s, so its kinetic energy is 

2 21 1
2 2 (0 800 kg)(1 05 m/s) 0 441 J.K mv= = . . = .  

EVALUATE:   The collision is highly inelastic. The bullet loses 248 J of kinetic energy but only 0.441 J is 
gained by the block. But momentum is conserved in the collision. All the momentum lost by the bullet is 
gained by the block. 

 8.86. IDENTIFY:   Apply conservation of momentum to the collision and conservation of energy to the motion of 
the block after the collision. 
SET UP:   Let x+  be to the right. Let the bullet be A and the block be B. Let V be the velocity of the block 
just after the collision. 
EXECUTE:   Motion of block after the collision: 1 grav2.K U=  21

2 .B Bm V m gh=  

2 22 2(9 80 m/s )(0 38 10  m) 0 273 m/s.V gh −= = . . × = .  
Collision: 2 0 273 m/s.Bv = .  1 2x xP P=  gives 1 2 2.A A A A B Bm v m v m v= +  

3
1 2

2 3
(5 00 10  kg)(450 m/s) (1 00 kg)(0 273 m/s) 395 m/s.

5 00 10  kg
A A B B

A
A

m v m v
v

m

−

−
− . × − . .= = =

. ×
 

EVALUATE:   We assume the block moves very little during the time it takes the bullet to pass through it. 
 8.87. IDENTIFY:   Apply conservation of energy to the motion of the package before the collision and apply 

conservation of the horizontal component of momentum to the collision. 
(a) SET UP:   Apply conservation of energy to the motion of the package from point 1 as it leaves the chute to 
point 2 just before it lands in the cart. Take 0y =  at point 2, so 1 4 00 m.y = .  Only gravity does work, so 

1 1 2 2.K U K U+ = +  

EXECUTE:   2 21 1
1 1 22 2 .mv mgy mv+ =  

2
2 1 12 9 35 m/s.v v gy= + = .  

(b) SET UP:   In the collision between the package and the cart, momentum is conserved in the horizontal 
direction. (But not in the vertical direction, due to the vertical force the floor exerts on the cart.) Take x+  
to be to the right. Let A be the package and B be the cart. 
EXECUTE:   xP  is constant gives 1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 5 00 m/s.B xv = − .  
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1 (3 00 m/s)cos37 0 .A xv = . . °  (The horizontal velocity of the package is constant during its free fall.) 
Solving for 2xv  gives 2 3 29 m/s.xv = − .  The cart is moving to the left at 3 29 m/s.  after the package lands in it. 
EVALUATE:   The cart is slowed by its collision with the package, whose horizontal component of 
momentum is in the opposite direction to the motion of the cart. 

 8.88. IDENTIFY:   Apply conservation of momentum to the system of the neutron and its decay products. 
SET UP:   Let the proton be moving in the dire- ctionx+  with speed pv  after the decay. The initial 
momentum of the neutron is zero, so to conserve momentum the electron must be moving in the  

dire- ctionx−  after the decay. Let the speed of the electron be e.v  

EXECUTE:   1 2x xP P=  gives p p e e0 m v m v= −  and p
e p

e
.

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 The total kinetic energy after the decay is 

2
p p2 2 2 2 21 1 1 1 1

tot e e p p e p p p p p2 2 2 2 2
e e

1 .
m m

K m v m v m v m v m v
m m

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Thus, p 4

tot p e

1 1 5 44 10 0 0544%.
1 / 1 1836

K

K m m
−= = = . × = .

+ +
 

EVALUATE:   Most of the released energy goes to the electron, since it is much lighter than the proton. 
 8.89. IDENTIFY:   The momentum of the system is conserved. 

SET UP:   Let x+  be to the right. 1 0.xP = e ,xp nxp and anxp  are the momenta of the electron, polonium 
nucleus, and antineutrino, respectively. 
EXECUTE:   1 2x xP P=  gives e n an 0.x x xp p p+ + = an e n( ).x x xp p p= − +  

22 25 3 22
an (5 60 10  kg m/s [3 50 10  kg][ 1 14 10  m/s]) 1 61 10  kg m/s.xp − − −= − . × ⋅ + . × − . × = − . × ⋅  

The antineutrino has momentum to the left with magnitude 221 61 10  kg m/s.−. × ⋅  
EVALUATE:   The antineutrino interacts very weakly with matter and most easily shows its presence by the 
momentum it carries away. 

 8.90. IDENTIFY:   Since there is no friction, the horizontal component of momentum of the system of Jonathan, 
Jane, and the sleigh is conserved. 
SET UP:   Let x+  be to the right. 800 N,Aw = 600 NBw =  and 1000 N.Cw =  
EXECUTE:   1 2x xP P=  gives 2 2 20 .A A x B B x C C xm v m v m v= + +  

2 2 2 2
2 .A A x B B x A A x B B x

C x
C C

m v m v w v w v
v

m w
+ += − = −  

2
(800 N)[ (5 00 m/s)cos30 0 ] (600 N)[ (7 00 m/s)cos36 9 ] 0 105 m/s.

1000 NC xv
− . . ° + + . . °= − = .  

The sleigh’s velocity is 0.105 m/s, to the right. 
EVALUATE:   The vertical component of the momentum of the system consisting of the two people and the 
sleigh is not conserved, because of the net force exerted on the sleigh by the ice while they jump. 

 8.91. IDENTIFY:   No net external force acts on the Burt-Ernie-log system, so the center of mass of the system 
does not move. 

SET UP:   1 1 2 2 3 3
cm

1 2 3
.m x m x m x

x
m m m

+ +=
+ +

 

EXECUTE:   Use coordinates where the origin is at Burt’s end of the log and where x+  is toward Ernie, 
which makes x1 = 0 for Burt initially. The initial coordinate of the center of mass is 

cm,1
(20 0 kg)(1 5 m) (40 0 kg)(3 0 m) .

90 0 kg
x

. . + . .=
.

 Let d be the distance the log moves toward Ernie’s original 

position. The final location of the center of mass is cm,2
(30 0 kg) (1 5 kg )(20 0 kg) (40 0 kg) .

90 0 kg
d d d

x
. + . + . + .=

.
 

The center of mass does not move, so cm,1 cm,2,x x=  which gives 
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(20 0 kg)(1 5 m) (40 0 kg)(3 0 m) (30 0 kg) (20 0 kg)(1 5 m ) (40 0 kg) .d d d. . + . . = . + . . + + .  Solving for d gives 
1 33 m.d = .  

EVALUATE:   Burt, Ernie, and the log all move, but the center of mass of the system does not move. 
 8.92. IDENTIFY:   There is no net horizontal external force so cmv  is constant. 

SET UP:   Let x+  be to the right, with the origin at the initial position of the left-hand end of the canoe. 
A 45 0 kg,m = .  60 0 kg.Bm = .  The center of mass of the canoe is at its center. 

EXECUTE:   Initially, cm 0,v =  so the center of mass doesn’t move. Initially, 1 1
cm1 .A A B B

A B

m x m x
x

m m
+=
+

 After 

she walks, 2 2
cm2 .A A B B

A B

m x m x
x

m m
+=
+ cm1 cm2x x=  gives 1 1 2 2.A A B B A A B Bm x m x m x m x+ = +  She walks to a 

point 1.00 m from the right-hand end of the canoe, so she is 1.50 m to the right of the center of mass of the 
canoe and 2 2 1 50 m.A Bx x= + .  

2 2(45 0 kg)(1 00 m) (60 0 kg)(2 50 m) (45 0 kg)( 1 50 m) (60 0 kg) .B Bx x. . + . . = . + . + .  

2(105 0 kg) 127 5 kg mBx. = . ⋅  and 2 1 21 m.Bx = . 2 1 1 21 m 2 50 m 1 29 m.B Bx x− = . − . = − .  The canoe moves 
1.29 m to the left. 
EVALUATE:   When the woman walks to the right, the canoe moves to the left. The woman walks 3.00 m to the 
right relative to the canoe and the canoe moves 1.29 m to the left, so she moves 3 00 m 1 29 m 1 71 m. − . = .  to 
the right relative to the water. Note that this distance is (60 0 kg 45 0 kg)(1 29 m)./. . .  

 8.93. IDENTIFY:   Take as the system you and the slab. There is no horizontal force, so horizontal momentum is 
conserved. Since cm ,M  =  P v

G G  if P
G

 is constant, cmv
G is constant (for a system of constant mass). Use 

coordinates fixed to the ice, with the direction you walk as the x-direction. cmv
G  is constant and initially 

cm 0= .vG  
 

 
Figure 8.93 

 

p p s s
cm

p s
0.

m m

m m

 + 
  =  =

+
v v

v
G G

G  

p p s s 0.m m + =v vG G  

p p s s 0.x xm v m v+ =  

s p s p p p/ ( /5 )2 00 m/s 0 400 m/s.x xv m m v m m= − = − . = − .( )  
The slab moves at 0 400 m/s,.  in the direction opposite to the direction you are walking. 
EVALUATE:   The initial momentum of the system is zero. You gain momentum in the -directionx+  so the 
slab gains momentum in the -direction.x−  The slab exerts a force on you in the -directionx+  so you exert 
a force on the slab in the -direction.x−  

 8.94. IDENTIFY:   The explosion produces only internal forces for the fragments, so the momentum of the two-
fragment system is conserved. Therefore the explosion does not affect the motion  of the center of mass of 
this system. 

  SET UP:   The center of mass follows a parabolic path just as a single particle would. Its horizontal range 

is
2
0 sin(2 ) .v

R
g

α=  The center of mass of a two-particle system is 1 1 2 2
cm

1 2
.m x m x

x
m m

+=
+

 

  EXECUTE: (a) The range formula gives R = (18.0 m/s)2(sin102°)/(9.80 m/s2) = 32.34 m, which rounds to 32.3 m. 
  (b) The center of mass is 32.3 m from the firing point and one fragment lands at x2 = 26.0 m. Using the center 

of mass formula, with the origin at the firing point and calling m the mass of each fragment, we have 
  32.34 m = [m(26.0 m) + mx2]/(2m), which gives x2 = 38.68 m, which rounds to 38.7 m. 
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  EVALUATE:    Since the fragments have equal masses, their center of mass should be midway between them. 
So it should be at (26.0 m + 38.68 m)/2 = 32.3 m, which it is. 

 8.95. IDENTIFY:   The explosion releases energy which goes into the kinetic energy of the two fragments. The 
explosive forces are internal to the two-fragment system, so momentum is conserved. 

  SET UP: Call the fragments A and B, with 2 0 kgAm = .  and 5 0 kgBm = . .  After the explosion fragment A 
moves in the dire- ctionx+  with speed Aυ  and fragment B moves in the dire- ctionx−  with speed Bυ .  

 EXECUTE: i, f,x xP P=  gives 0 ( )A A B Bm v m v= + −  and 5 0 kg 2 5
2 0 kg

B
A B B B

A

m
v v v v

m
⎛ ⎞ ⎛ ⎞.= = = . .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

 
2 21 1

2 2
2 21 1

2 2

(2 0 kg)(2 5 ) 12 5 2 5
5 0(5 0 kg)

A A BA

B B B B

m v vK
K m v v

. . .= = = = . .
..

100 JAK =  so 250 J.BK =  

 EVALUATE: In an explosion the lighter fragment receives the most of the liberated energy, which agrees 
with our results here. 

 8.96. IDENTIFY:   Conservation of x- and y-components of momentum applies to the collision. At the highest 
point of the trajectory the vertical component of the velocity of the projectile is zero. 
SET UP:   Let y+  be upward and x+  be horizontal and to the right. Let the two fragments be A and B, 
each with mass m. For the projectile before the explosion and the fragments after the explosion. 0,xa =  

29 80 m/s .ya = − .  

EXECUTE:   (a) 2 2
0 02 ( )y y yv v a y y= + −  with 0yv =  gives that the maximum height of the projectile is 

2 2
0

2
[(80 0 m/s)sin 60 0 ] 244 9 m.

2 2( 9 80 m/s )
y

y

v
h

a
. . °= − = − = .

− .
 Just before the explosion the projectile is moving to the right 

with horizontal velocity 0 0 cos60 0 40 0 m/s.x xv v v= = . ° = .  After the explosion 0Axv =  since fragment A falls 
vertically. Conservation of momentum applied to the explosion gives (2 )(40 0 m/s) Bxm mv. =  and 

80 0 m/s.Bxv = .  Fragment B has zero initial vertical velocity so 21
0 0 2y yy y v t a t− = +  gives a time of fall of 

2
2 2(244 9 m) 7 07 s.

9 80 m/sy

h
t

a
.= − = − = .

− .
 During this time the fragment travels horizontally a distance 

(80 0 m/s)(7 07 s) 566 m.. . =  It also took the projectile 7.07 s to travel from launch to maximum height and 
during this time it travels a horizontal distance of ([80 0 m/s]cos60 0 )(7 07 s) 283 m.. . ° . =  The second 
fragment lands 283 m 566 m 849 m+ =  from the firing point. 
(b) For the explosion, 

2 41
1 2 (20 0 kg)(40 0 m/s) 1 60 10  J.K = . . = . ×  

2 41
2 2 (10 0 kg)(80 0 m/s) 3 20 10  J.K = . . = . ×  The energy released in the explosion is 41 60 10  J.. ×  

EVALUATE:   The kinetic energy of the projectile just after it is launched is 46 40 10  J.. ×  We can calculate 
the speed of each fragment just before it strikes the ground and verify that the total kinetic energy of the 
fragments just before they strike the ground is 4 4 46 40 10  J 1 60 10  J 8 00 10  J.. × + . × = . ×  Fragment A has 
speed 69.3 m/s just before it strikes the ground, and hence has kinetic energy 42 40 10  J.. ×  Fragment B has 

speed 2 2(80 0 m/s) (69 3 m/s) 105 8 m/s. + . = .  just before it strikes the ground, and hence has kinetic 

energy 45 60 10  J.. ×  Also, the center of mass of the system has the same horizontal range 
2
0

0sin(2 ) 565 mv
R

g
α= =  that the projectile would have had if no explosion had occurred. One fragment 

lands at /2R  so the other, equal mass fragment lands at a distance 3 /2R  from the launch point. 
 8.97. IDENTIFY:   The rocket moves in projectile motion before the explosion and its fragments move in projectile 

motion after the explosion. Apply conservation of energy and conservation of momentum to the explosion. 
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(a) SET UP:   Apply conservation of energy to the explosion. Just before the explosion the rocket is at its 
maximum height and has zero kinetic energy. Let A be the piece with mass 1.40 kg and B be the piece with 
mass 0.28 kg. Let Av  and Bv  be the speeds of the two pieces immediately after the collision. 

EXECUTE:   2 21 1
2 2 860 JA A B Bm v m v+ =  

SET UP:   Since the two fragments reach the ground at the same time, their velocities just after the 
explosion must be horizontal. The initial momentum of the rocket before the explosion is zero, so after the 
explosion the pieces must be moving in opposite horizontal directions and have equal magnitude of 
momentum: .A A B Bm v m v=  
EXECUTE:   Use this to eliminate Av  in the first equation and solve for :Bv  

21
2 (1 ) 860 JB B B Am v m /m+ =  and 71 6 m/s.Bv = .  

Then ( / ) 14 3 m/s.A B A Bv m m v= = .  
(b) SET UP:   Use the vertical motion from the maximum height to the ground to find the time it takes the 
pieces to fall to the ground after the explosion. Take +y downward. 

0 0,yv =  29 80 m/s ,ya = + .  0 80 0 m,y y− = .  ?t =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 4 04 s.t = .  

During this time the horizontal distance each piece moves is 57 8 mA Ax v t= = .  and 289 1 m.B Bx v t= = .  
They move in opposite directions, so they are 347 mA Bx x+ =  apart when they land. 
EVALUATE:   Fragment A has more mass so it is moving slower right after the collision, and it travels 
horizontally a smaller distance as it falls to the ground. 

 8.98. IDENTIFY:   Apply conservation of momentum to the explosion. At the highest point of its trajectory the 
shell is moving horizontally. If one fragment received some upward momentum in the explosion, the other 
fragment would have had to receive a downward component. Since they each hit the ground at the same 
time, each must have zero vertical velocity immediately after the explosion. 
SET UP:   Let x+  be horizontal, along the initial direction of motion of the projectile and let y+  be 
upward. At its maximum height the projectile has 0 cos55 0 86 0 m/s.xv v= . ° = .  Let the heavier fragment be 
A and the lighter fragment be B. 9 00 kgAm = .  and 3 00 kg.Bm = .  
EXECUTE:   Since fragment A returns to the launch point, immediately after the explosion it has 

86 0 m/s.Axv = − .  Conservation of momentum applied to the explosion gives 
(12 0 kg)(86 0 m/s) (9 00 kg)( 86 0 m/s) (3 00 kg) Bxv. . = . − . + .  and 602 m/s.Bxv =  The horizontal range of the 

projectile, if no explosion occurred, would be 
2
0

0sin(2 ) 2157 m.v
R

g
α= =  The horizontal distance each 

fragment travels is proportional to its initial speed and the heavier fragment travels a horizontal distance 
/2 1078 mR =  after the explosion, so the lighter fragment travels a horizontal distance 
602 m (1078 m) 7546 m
86 m

⎛ ⎞ =⎜ ⎟⎝ ⎠
 from the point of explosion and 1078 m 7546 m 8624 m+ =  from the launch 

point. The energy released in the explosion is 
2 2 2 51 1 1

2 1 2 2 2(9 00 kg)(86 0 m/s) (3 00 kg)(602 m/s) (12 0 kg)(86 0 m/s) 5 33 10  J.K K− = . . + . − . . = . ×  
EVALUATE:   The center of mass of the system has the same horizontal range 2157 mR =  as if the 
explosion didn’t occur. This gives (12 0 kg)(2157 m) (9 00 kg)(0) (3 00 kg)d. = . + .  and 8630 m,d =  where d 
is the distance from the launch point to where the lighter fragment lands. This agrees with our calculation. 

 8.99. IDENTIFY:   Apply conservation of energy to the motion of the wagon before the collision. After the 
collision the combined object moves with constant speed on the level ground. In the collision the 
horizontal component of momentum is conserved. 
SET UP:   Let the wagon be object A and treat the two people together as object B. Let x+  be horizontal 
and to the right. Let V be the speed of the combined object after the collision. 
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EXECUTE:   (a) The speed 1Av  of the wagon just before the collision is given by conservation of energy 

applied to the motion of the wagon prior to the collision. 1 2U K=  says 21
12([50 m][sin 6 0 ]) .A A Am g m v. ° =  

1 10 12 m/s.Av = .  1 2x xP P=  for the collision says 1 ( )A A A Bm v m m V= +  and 

300 kg (10 12 m/s) 6 98 m/s.
300 kg 75 0 kg 60 0 kg

V
⎛ ⎞= . = .⎜ ⎟⎝ + . + . ⎠

 In 5.0 s the wagon travels 

(6 98 m/s)(5 0 s) 34 9 m,. . = .  and the people will have time to jump out of the wagon before it reaches the 
edge of the cliff. 
(b) For the wagon, 2 41

1 2 (300 kg)(10 12 m/s) 1 54 10  J.K = . = . ×  Assume that the two heroes drop from a 

small height, so their kinetic energy just before the wagon can be neglected compared to 1K  of the wagon. 
2 41

2 2 (435 kg)(6 98 m/s) 1 06 10  J.K = . = . ×  The kinetic energy of the system decreases by 
3

1 2 4 8 10  J.K K− = . ×  
EVALUATE:   The wagon slows down when the two heroes drop into it. The mass that is moving 
horizontally increases, so the speed decreases to maintain the same horizontal momentum. In the collision 
the vertical momentum is not conserved, because of the net external force due to the ground. 

8.100. IDENTIFY:   Impulse is equal to the area under the curve in a graph of force versus time. 
 SET UP:    J  = F .x x xp t∆ = ∆  

EXECUTE:   (a) Impulse is the area under F-t curve 
Jx = [7500 N + ½ (7500 N + 3500 N) + 3500 N](1.50 s) = 2.475 × 104  N s.⋅  
(b) The total mass of the car and driver is (3071 lb)(4.448 N/lb)/(9.80 m/s2) = 1394 kg. 
Jx = ∆ px = mvx – 0, so vx = Jx/m = (2.475 × 104 N s)⋅ /(1394 kg) = 17.8 m/s. 
(c) The braking force must produce an impulse opposite to the one that accelerated the car, so  
Jx = –2.475 ×104 N s.⋅   Therefore Jx = Fx ∆ t gives ∆ t = Jx/Fx = (–24,750 N s⋅ )/(–5200 N) = 4.76 s. 
(d) Wbrake = K∆  = –K = – ½ mv2 = – ½ (1394 kg)(17.76 m/s)2 = –2.20 × 105 J. 
(e) Wbrake = –Bxs, so s = –Wbrake/Bx = –(2.20 × 105 J)/(–5200 N) = 42.3 m. 
EVALUATE:   The result in (e) could be checked by using kinematics with an average velocity of  
(17.8 m/s)/2 for 4.76 s. 

 8.101. IDENTIFY: As the bullet strikes and embeds itself in the block, momentum is conserved. After that, we use 
1 1 other 2 2,K U W K U+ + = +  where otherW  is due to kinetic friction.   

  SET UP:   Momentum conservation during the collision gives mbvb = (mb + m)V , where m is the mass of 
the block and mb is the mass of the bullet. After the collision, 1 1 other 2 2K U W K U+ + = +  gives 

2 2
k

1 1 ,
2 2

MV Mgd kdµ− =  where M is the mass of the block plus the bullet. 

EXECUTE:    (a) From the energy equation above, we can see that the greatest compression of the spring 
will occur for the greatest V (since M >> mb), and the greatest V will occur for the bullet with the greatest 
initial momentum. Using the data in the table with the problem, we get the following momenta expressed 
in units of grain ft/s.⋅  
A:  1.334 × 105 grain ft/s⋅   B:  1.181 × 105 grain ft/s⋅   C:   2.042 × 105 grain ft/s⋅  
D:  1.638 × 105 grain ft/s⋅   E:  1.869 × 105 grain ft/s⋅  
From these results, it is clear that bullet C will produce the maximum compression of the spring and bullet 
B will produce the least compression. 
(b) For bullet C, we use pb = mbvb = (mb + m)V.  Converting mass (in grains) and speed to SI units gives mb 
= 0.01555 kg and vb = 259.38 m/s, we have  
(0.01555 kg)(259.38 m/s) = (0.01555 kg + 2.00 kg)V, so V = 2.001 m/s. 

Now use 2 2
k

1 1
2 2

MV Mgd kdµ− =  and solve for k, giving  

k = (2.016 kg)[(2.001 m/s)2 – 2(0.38)(9.80 m/s2)(0.25 m)]/(0.25 m)2 = 69.1 N/m, which rounds to 69 N/m. 
(c) For bullet B, mb =125 grains = 0.00810 kg and vb = 945 ft/s = 288.0 m/s. Momentum conservation gives 
V = (0.00810 kg)(288.0 m/s)/(2.00810 kg) = 1.162 m/s. 
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Using 2 2
k

1 1 ,
2 2

MV Mgd kdµ− =  the above numbers give 33.55d2 + 7.478d – 1.356 = 0. The quadratic 

formula, using the positive square root, gives d = 0.118 m, which rounds to 0.12 m. 
EVALUATE:   This method for measuring muzzle velocity involves a spring displacement of around 12 cm, 
which should be readily measurable. 

8.102.  IDENTIFY Momentum is conserved during the collision. After the collision, we can use energy methods.  
  SET UP:   p = mv, 1 1 other 2 2,K U W K U+ + = +  where otherW  is due to kinetic friction. We need to use 

components of momentum. Call +x eastward and +y northward. 
EXECUTE:    (a) Momentum conservation gives  
px = [6500 lb)/g]vD = [(9542 lb)/g]vwcos(39°)  
py = [(3042 lb)/g](50 mph) = [(9542 lb)/g]vwsin(39°) 
Solving for vD gives vD = 28.9 mph, which rounds to 29 mph. 
(b) The above equations also give that the velocity of the wreckage just after impact is 25.3 mph = 37.1 ft/s. 

Using 1 1 other 2 2,K U W K U+ + = +  we have 2 2
1 k 2

1 1 .
2 2

mv mgd mvµ− =  Solving for v2 gives 

2
2 1 k2 .v v gdµ= −  Using v1 = 37.1 ft/s, g = 32.2 ft/s2 and d = 35 ft, we get v2 = 19.1 ft/s = 13 mph. 

  EVALUATE:   We were able to minimize unit conversions by working in British units instead of SI units 
since the data was given in British units.  

8.103.  IDENTIFY:   From our analysis of motion with constant acceleration, if v at=  and a is constant, then 
21

0 0 2 .x x v t at− = +  

SET UP:   Take 0 0,v =  0 0x =  and let x+  downward. 

EXECUTE:   (a) ,dv
a

dt
=  v at=  and 21

2 .x at=  Substituting into 2dv
xg x v

dt
= +  gives 

2 2 2 2 2 231 1
2 2 2 .at g at a a t a t= + =  The nonzero solution is /3.a g=  

(b) 2 2 2 21 1 1
2 6 6 (9 80 m/s )(3 00 s) 14 7 m.x at gt= = = . . = .  

(c) (2 00 g/m)(14 7 m) 29 4 g.m kx= = . . = .  
EVALUATE:   The acceleration is less than g because the small water droplets are initially at rest, before 
they adhere to the falling drop. The small droplets are suspended by buoyant forces that we ignore for the 
raindrops. 

8.104.  IDENTIFY and SET UP:   .dm dVρ=  .dV Adx=  Since the thin rod lies along the x-axis, cm 0.y =  The 

mass of the rod is given by .M dm= ∫  

EXECUTE:   (a) 
2

cm 0 0

1 .
2

L L A L
x xdm A xdx

M M M
ρ ρ= = =∫ ∫  The volume of the rod is AL and .M ALρ=  

2

cm .
2 2

AL L
x

AL
ρ
ρ

= =  The center of mass of the uniform rod is at its geometrical center, midway between its ends. 

(b) 
3

2
cm 0 0 0

1 1 .
3

L L LA A L
x xdm x Adx x dx

M M M M
α αρ= = = =∫ ∫ ∫  

2

0 0
.

2
L L AL

M dm Adx A xdx
αρ α= = = =∫ ∫ ∫  

Therefore, 
3

cm 2
2 2 .

3 3
A L L

x
AL

α
α

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

EVALUATE:   When the density increases with x, the center of mass is to the right of the center of the rod. 

 8.105. IDENTIFY:   cm
1

x xdm
M

= ∫  and cm
1 .y ydm
M

= ∫  At the upper surface of the plate, 2 2 2.y x a+ =  

SET UP:   To find cm,x  divide the plate into thin strips parallel to the y-axis, as shown in Figure 8.105a. To 
find cm,y  divide the plate into thin strips parallel to the x-axis as shown in Figure 8.105b. The plate has 

volume one-half that of a circular disk, so 21
2V a tπ=  and 21

2 .M a tρπ=  
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 9.1. IDENTIFY:   ,s rθ=  with θ  in radians. 
SET UP:    rad 180 .π = °  

EXECUTE:   (a) 1 50 m 0 600 rad 34 4
2 50 m

s
r

θ .= = = . = . °
.

 

(b) 14 0 cm 6 27 cm
(128 )(  rad/180 )

s
r

θ π
.= = = .

° °
 

(c) (1 50 m)(0 700 rad) 1 05 ms rθ= = . . = .  
EVALUATE:   An angle is the ratio of two lengths and is dimensionless. But, when s rθ=  is used, θ  must 
be in radians. Or, if /s rθ =  is used to calculate ,θ  the calculation gives θ  in radians. 

 9.2. IDENTIFY:   0 ,tθ θ ω− =  since the angular velocity is constant. 
SET UP:   1 rpm (2 /60) rad/s.π=  
EXECUTE:   (a) (1900)(2  rad/60 s) 199 rad/sω π= =  

(b) 35 (35 )( /180 ) 0 611 rad.π° = ° ° = .  30 0 611 rad 3 1 10  s
199 rad/s

t
θ θ

ω
−− .= = = . ×  

EVALUATE:   In 0t
θ θ

ω
−=  we must use the same angular measure (radians, degrees or revolutions) for 

both 0θ θ−  and .ω  

 9.3. IDENTIFY:   ( ) .z
z

d
t

dt
ωα =  Using /z d dtω θ=  gives θ − θ0 = t1

t2∫ ω zdt.   

SET UP:   1n nd
t nt

dt
−=  and 11

1
n nt dt t

n
+=

+∫  

EXECUTE:   (a) A must have units of rad/s and B must have units of 3rad/s .  
(b) 3( ) 2 (3 00 rad/s ) .z t Bt tα = = .  (i) For 0,t =  0.zα =  (ii) For 5 00 s,t = .  215 0 rad/s .zα = .  

(c) 2
1

2 3 31
2 1 2 1 2 13( ) ( ) ( ).t

t A Bt dt A t t B t tθ θ− = + = − + −∫  For 1 0t =  and 2 2 00 s,t = .  

3 31
2 1 3(2 75 rad/s)(2 00 s) (1 50 rad/s )(2 00 s) 9 50 rad.θ θ− = . . + . . = .  

EVALUATE:   Both zα  and zω  are positive and the angular speed is increasing. 

 9.4. IDENTIFY:   / .z zd dtα ω= av- .z
z t

ωα ∆=
∆

 

SET UP:   2( ) 2d
t t

dt
=  

EXECUTE:   (a) 3( ) 2 ( 1 60 rad/s ) .z
z

d
t t t

dt
ωα β= = −  = − .   
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(b) 3 2(3 0 s)  ( 1 60 rad/s )(3 0 s) 4 80 rad/s .zα . = − .  . = − .  

2
av-

(3 0 s) (0) 2 20 rad/s 5 00 rad/s 2 40 rad/s ,
3 0 s 3 0 s

z z
z

ω ωα . − − .  − .  = = = − .  
. .

 

which is half as large (in magnitude) as the acceleration at 3 0 s.t = .  

EVALUATE:   ( )z tα  increases linearly with time, so av-
(0) (3 0 s) .

2
z z

z
α αα + .=  (0) 0.zα =  

 9.5. IDENTIFY and SET UP:   Use 
 
ω z = dθ

dt
 to calculate the angular velocity and 2 1

av-
2 1

z t t t
θ θ θω ∆ −= =

∆ −
 to 

calculate the average angular velocity for the specified time interval. 
EXECUTE:   3;t tθ γ β= +  0 400 rad/s,γ = .  30 0120 rad/sβ = .  

(a) 23z
d

t
dt
θω γ β= = +  

(b) At 0,t =  0 400 rad/sω γ= = .z  

(c) At 5 00 s,t = .  3 20 400 rad/s 3(0 0120 rad/s )(5 00 s) 1 30 rad/szω = . + . . = .  

2 1
av-

2 1
z t t t

θ θ θω ∆ −= =
∆ −

 

For 1 0,t =  1 0.θ =  

For 2 5 00 s,t = .  3 3
2 (0 400 rad/s)(5 00 s) (0 012 rad/s )(5 00 s) 3 50 radθ = . . + . . = .  

So av-
3 50 rad 0 0 700 rad/s.
5 00 s 0zω . −= = .
. −

 

EVALUATE:   The average of the instantaneous angular velocities at the beginning and end of the time 
interval is 1

2 (0 400 rad/s 1 30 rad/s) 0 850 rad/s.. + . = .  This is larger than av- ,zω  because ( )z tω  is increasing 

faster than linearly. 

 9.6. IDENTIFY:    ( ) .z
d

t
dt
θω =  ( ) .z

z
d

t
dt
ωα =  av .z t

θω −
∆=
∆

 

SET UP:   2 3 2(250 rad/s) (40 0 rad/s ) (4 50 rad/s ) .z t tω = − .  − .   2 3(40 0 rad/s ) (9 00 rad/s ) .z tα = − .  − .   
EXECUTE:    (a) Setting 0zω =  results in a quadratic in t. The only positive root is 4 23 s.t = .  

(b) At 4 23 s,t = .  278 1 rad/s .zα = − .  
(c) At 4 23 s,t = .  586 rad 93 3 rev.θ = = .  
(d) At 0,t =  250 rad/s.zω =  

(e) av-
586 rad 138 rad/s.
4.23 szω = =  

EVALUATE:   Between 0t =  and 4 23 s,t = .  zω  decreases from 250 rad/s to zero. zω  is not linear in t, so 

av-zω  is not midway between the values of zω  at the beginning and end of the interval. 

 9.7. IDENTIFY:    ( ) .z
d

t
dt
θω =  ( ) .z

z
d

t
dt
ωα =  Use the values of θ  and zω  at 0t =  and zα  at 1.50 s to calculate 

a, b, and c. 

SET UP:   1n nd
t nt

dt
−=  

EXECUTE:   (a) 2( ) 3 .z t b ctω = −  ( ) 6 .z t ctα = −  At 0,t =  /4 radθ π= =a  and 2 00 rad/s.z bω = = .  At 

1 50 s,t = .  26 (1 50 s) 1 25 rad/sz cα = − . = .  and 30 139 rad/s .c = − .  
(b) /4 radθ π=  and 0zα =  at 0.t =  

(c) 23 50 rad/szα = .  at 
2

3
3 50 rad/s 4 20 s.

6 6( 0 139 rad/s )
zt
c

α .= − = − = .
− .

 At 4 20 s,t = .   



 Rotation of Rigid Bodies   9-3 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

3 3 rad (2 00 rad/s)(4 20 s) ( 0 139 rad/s )(4 20 s) 19 5 rad.
4
πθ = + . . − − . . = .  

3 22 00 rad/s 3( 0 139 rad/s )(4 20 s) 9 36 rad/s.zω = . − − . . = .  
EVALUATE:   ,θ  ,zω  and zα  all increase as t increases. 

 9.8. IDENTIFY:   .z
z

d
dt
ωα =  0 av- .ztθ θ ω− =  When zω  is linear in t, av-zω  for the time interval 1t  to 2t  is 

1 2
av-

2 1
.z z

z t t
ω ωω +=

−
 

SET UP:   From the information given, 24.00 rad/s ( 6.00 rad/s) 1.429 rad/s .
7.00 sz t

ωα ∆ − −= = =
∆

 

  ω z (t) = −6.00 rad/s + (1.429 rad/s2 )t.  
EXECUTE:   (a) The angular acceleration is positive, since the angular velocity increases steadily from a 
negative value to a positive value. 

(b) It takes time 0z

z
t

ω
α

= −  = –(–6.00 rad/s)/(1.429 rad/s2) = 4.20 s for the wheel to stop ( 0).zω =  During 

this time its speed is decreasing. For the next 2.80 s its speed is increasing from 0 rad/s to 4 00 rad/s.+ .  

(c) The average angular velocity is 6 00 rad/s 4 00 rad/s 1 00 rad/s.
2

− .  + .  = − .   0 av-ztθ θ ω− =  then leads to 

displacement of –7.00 rad after 7.00 s. 
EVALUATE:   When zα  and zω  have the same sign, the angular speed is increasing; this is the case for 

  t = 4.20 s  to 7 00 s.t = .  When zα  and zω  have opposite signs, the angular speed is decreasing; this is the 
case between 0t =  and   t = 4.20 s.  

 9.9. IDENTIFY:    Apply the constant angular acceleration equations. 
SET UP:   Let the direction the wheel is rotating be positive. 
EXECUTE:   (a) 2

0 1 50 rad/s (0 200 rad/s )(2 50 s) 2 00 rad/s.z z ztω ω α= + = . + . . = .  

(b) 
  
θ − θ0 = ω0zt + 1

2
α zt2 = (1.50 rad/s)(2.50 s) + 1

2
(0.200 rad/s2 )(2.50 s)2 = 4.38 rad.  

EVALUATE:   0
0

1 50 rad/s 2 00 rad/s (2 50 s) 4 38 rad,
2 2

z z t
ω ωθ θ + . + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 the same as calculated 

with another equation in part (b). 
 9.10. IDENTIFY:    Apply the constant angular acceleration equations to the motion of the fan. 

(a) SET UP:   0 (500 rev/min)(1 min/60 s) 8 333 rev/s,zω = = .  (200 rev/min)(1 min/60 s) 3 333 rev/s,zω = = .  
4 00 s,t = .  ?zα =  

0z z ztω ω α= +  

EXECUTE:   20 3 333 rev/s 8 333 rev/s 1 25 rev/s
4 00 s

z z
z t

ω ωα − . − .= = = − .
.

 

0 ?θ θ− =  
2 2 21 1

0 0 2 2(8 333 rev/s)(4 00 s) ( 1 25 rev/s )(4 00 s) 23 3 revz zt tθ θ ω α− = + = . . + − . . = .  

(b) SET UP:   0zω =  (comes to rest); 0 3 333 rev/s;zω = .  21 25 rev/s ;zα = − . ?t =  

0z z ztω ω α= +  

EXECUTE:   0
2

0 3 333 rev/s 2 67 s
1 25 rev/s

z z

z
t

ω ω
α
− − .= = = .

− .
 

EVALUATE:   The angular acceleration is negative because the angular velocity is decreasing. The average 
angular velocity during the 4.00 s time interval is 350 rev/min and 0 av-ztθ θ ω− =  gives 

0 23 3 rev,θ θ− = .  which checks. 
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 9.11. IDENTIFY:    Apply the constant angular acceleration equations to the motion. The target variables  
are t and 0.θ θ−  

SET UP:   (a) 21 50 rad/s ;zα = .  0 0zω =  (starts from rest); 36 0 rad/s;zω = .  ?t =  

0z z ztω ω α= +  

EXECUTE:   0
2

36 0 rad/s 0 24 0 s
1 50 rad/s

z z

z
t

ω ω
α
− . −= = = .

.
 

(b) 0 ?θ θ− =  
2 2 21 1

0 0 2 20 (1 50 rad/s )(24 0 s) 432 radz zt tθ θ ω α− = + = + . . =  

0 432 rad(1 rev/2  rad) 68 8 revθ θ π− = = .  

EVALUATE:   We could use 1
0 02 ( )z z tθ θ ω ω− = +  to calculate 

1
0 2 (0 36 0 rad/s)(24 0 s) 432 rad,θ θ− = + . . =  

which checks. 
 9.12. IDENTIFY:    In part (b) apply the equation derived in part (a). 

SET UP:   Let the direction the propeller is rotating be positive. 

EXECUTE:   (a) Solving ω ω α= +0z z zt  for t gives 0 .z z

z
t

ω ω
α
−=  Rewriting 21

0 0 2z zt tθ θ ω α− = +  as 

1
0 0 2( )z zt tθ θ ω α− = +  and substituting for t gives 

2 20 01
0 0 0 0 02

1 1( ( )) ( ) ( ),
2 2

z z z z
z z z z z z z

z z z

ω ω ω ωθ θ ω ω ω ω ω ω ω
α α α

⎛ ⎞− +⎛ ⎞− = + − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

which when rearranged gives 2 2
0 02 ( ).z z zω ω α θ θ= + −  

(b) 2 2 2 2 21 1
02 2

0

1 1( ) ((16 0 rad/s) (12 0 rad/s) ) 8 00 rad/s
7 00 radz z zα ω ω

θ θ
⎛ ⎞ ⎛ ⎞= − = . − . = .⎜ ⎟ ⎜ ⎟− .⎝ ⎠⎝ ⎠

 

EVALUATE:   We could also use 0
0 2

z z t
ω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 to calculate 0 500 s.t = .  Then 0z z ztω ω α= +  

gives 28 00 rad/s ,zα = .  which agrees with our results in part (b). 
 9.13. IDENTIFY:    Use a constant angular acceleration equation and solve for 0 .zω  

SET UP:   Let the direction of rotation of the flywheel be positive. 
EXECUTE:  21

0 0 2z zt tθ θ ω α− = +  gives 

ω0z =
θ − θ0

t
− 1

2
α z t = 30.0 rad

4.00 s
− 1

2
(2.25 rad/s2 )(4.00 s) = 3.00 rad/s.  

EVALUATE:   At the end of the 4.00 s interval, ω z = ω0z + α zt = 12.0 rad/s.  

0
0

3.00 rad/s 12.0 rad/s (4 00 s) 30 0 rad,
2 2

z z t
ω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 which checks. 

 9.14. IDENTIFY:   Apply the constant angular acceleration equations. 
SET UP:   Let the direction of the rotation of the blade be positive. 0 0.zω =  

EXECUTE:   0z z ztω ω α= +  gives 20 140 rad/s 0 23 3 rad/s .
6 00 s

z z
z t

ω ωα − −= = = .
.

 

0
0

0 140 rad/s( ) (6 00 s) 420 rad
2 2

z z t
ω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = . =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   We could also use 21
0 0 2 .z zt tθ θ ω α− = +  This equation gives 

2 21
0 2 (23 3 rad/s )(6 00 s) 419 rad,θ θ− = . . = in agreement with the result obtained above. 
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 9.15. IDENTIFY:   Apply constant angular acceleration equations. 
SET UP:   Let the direction the flywheel is rotating be positive. 

0 0200 rev, 500 rev/min 8 333 rev/s, 30 0 s.z tθ θ ω− = =  = . = .  

EXECUTE:   (a) 0
0 gives 5 00 rev/s 300 rpm

2
z z

zt
ω ωθ θ ω+⎛ ⎞− = = . =⎜ ⎟
⎝ ⎠

 

(b) Use the information in part (a) to find :zα  0z z ztω ω α= +  gives 20 1111rev/s .zα = − .   Then 0,zω =  

2
00 1111rev/s , 8 333 rev/sz zα ω= − .   = .   in 0z z ztω ω α= +  gives 75 0 st = .  and 0

0 2
z z t

ω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

gives 0 312 rev.θ θ− =  
EVALUATE:   The mass and diameter of the flywheel are not used in the calculation. 

 9.16. IDENTIFY:   Apply the constant angular acceleration equations separately to the time intervals 0 to 2.00 s 
and 2.00 s until the wheel stops. 
(a) SET UP:   Consider the motion from 0t =  to 2 00 s:t = .  

0 ?;θ θ− =  0 24 0 rad/s;zω = .  230 0 rad/s ;zα = .  2 00 st = .  

EXECUTE:   2 2 21 1
0 0 2 2(24 0 rad/s)(2 00 s) (30 0 rad/s )(2 00 s)z zt tθ θ ω α− = + = . . + . .  

0 48 0 rad 60 0 rad 108 radθ θ− = . + . =  
Total angular displacement from 0t =  until stops: 108 rad 432 rad 540 rad+ =  

Note: At 2 00 s,t = .  2
0 24 0 rad/s (30 0 rad/s )(2 00 s) 84 0 rad/s;z z ztω ω α= + = . + . . = .  angular speed when 

breaker trips. 
(b) SET UP:   Consider the motion from when the circuit breaker trips until the wheel stops. For this 
calculation let 0t =  when the breaker trips. 

?;t =  0 432 rad;θ θ− =  0;zω =  0 84 0 rad/szω = .  (from part (a)) 

0
0 2

z z t
ω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

EXECUTE:   0

0

2( ) 2(432 rad) 10 3 s
84 0 rad/s 0z z

t
θ θ

ω ω
−= = = .
+ . +

 

The wheel stops 10.3 s after the breaker trips so 2 00 s 10 3 s 12 3 s. + . = .  from the beginning. 
(c) SET UP:   ?;zα =  consider the same motion as in part (b): 

0z z ztω ω α= +  

EXECUTE:   20 0 84 0 rad/s 8 16 rad/s
10 3 s

z z
z t

ω ωα − − .= = = − .
.

 

EVALUATE:   The angular acceleration is positive while the wheel is speeding up and negative while it is 
slowing down. We could also use 

2 2
0 02 ( )z z zω ω α θ θ= + −  to calculate  

2 2 2
20

0

0 (84 0 rad/s) 8 16 rad/s
2( ) 2(432 rad)

z z
z

ω ωα
θ θ

− − .= = = − .
−

 for the acceleration after the breaker trips. 

 9.17. IDENTIFY:   Apply Eq. (9.12) to relate zω  to 0.θ θ−  
SET UP:   Establish a proportionality. 
EXECUTE:   From 2 2

0 02 ( ),z z zω ω α θ θ= + −  with 0 0,zω =  the number of revolutions is proportional to the 
square of the initial angular velocity, so tripling the initial angular velocity increases the number of 
revolutions by 9, to 9.00 rev. 
EVALUATE:   We don’t have enough information to calculate ;zα  all we need to know is that it is constant. 

 9.18. IDENTIFY:   The linear distance the elevator travels, its speed and the magnitude of its acceleration are 
equal to the tangential displacement, speed and acceleration of a point on the rim of the disk. ,s rθ=  
v rω=  and .a rα=  In these equations the angular quantities must be in radians. 
SET UP:   1 rev 2  rad.π=  1 rpm 0 1047 rad/s.= .  rad 180 .π = °  For the disk, 1 25 m.r = .  
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EXECUTE:   (a) 0 250 m/sv = .  so 0 250 m/s 0 200 rad/s 1 91 rpm.
1 25 m

v
r

ω .= = = . = .
.

 

(b) 21
8 1 225 m/s .a g= = .  

2
21 225 m/s 0 980 rad/s .

1 25 m
a
r

α .= = = .
.

 

(c) 3 25 m.s = .  3 25 m 2 60 rad 149 .
1 25 m

s
r

θ .= = = . = °
.

 

EVALUATE:   When we use ,s rθ=  v rω=  and tana rα=  to solve for ,θ  ω  and ,α  the results are in rad, 

rad/s, and 2rad/s .  
 9.19. IDENTIFY:   When the angular speed is constant, / .tω θ=  tan ,v rω=  tana rα=  and 2

rad .a rω=  In these 
equations radians must be used for the angular quantities. 
SET UP:   The radius of the earth is   RE = 6.37 × 106  m  and the earth rotates once in 1 day 86,400 s.=  The 

orbit radius of the earth is 111 50 10 m. ×  and the earth completes one orbit in 71 y 3 156 10  s.= . ×  When ω  
is constant, / .tω θ=  

EXECUTE:   (a) 1 rev 2  radθ π= =  in 73 156 10  s.t = . ×  7
7

2  rad 1 99 10  rad/s.
3 156 10  s

πω −= = . ×
. ×

 

(b) 1 rev 2  radθ π= =  in 86 400 s.t ,=  52  rad 7 27 10  rad/s
86,400 s

πω −= = . ×  

(c) 11 7 4(1 50 10  m)(1 99 10  rad/s) 2 98 10  m/s.v rω −= = . × . × = . ×  

(d)   v = rω = (6.37 × 106  m)(7.27 × 10−5  rad/s) = 463 m/s.  

(e)   arad = rω 2 = (6.37 × 106  m)(7.27 × 10−5  rad/s)2 = 0.0337 m/s2.  tan 0.a rα= =  0α =  since the 
angular velocity is constant. 
EVALUATE:   The tangential speeds associated with these motions are large even though the angular speeds 
are very small, because the radius for the circular path in each case is quite large. 

 9.20. IDENTIFY:    Linear and angular velocities are related by .v rω=  Use 0z z ztω ω α= +  to calculate .zα  
SET UP:   /ω = v r  gives ω  in rad/s. 

EXECUTE:   (a) 3
1 25 m/s 50 0 rad/s,

25 0 10  m−
. = .

.  ×
 3

1 25 m/s 21 6 rad/s.
58 0 10  m−

. = .
. ×

 

(b) (1.25 m/s)(74.0 min)(60 s/min ) 5.55 km.=  

(c) 3 221 55 rad/s 50 0 rad/s 6 41 10  rad/s .(74 0 min)(60 s/min)zα −. − .= = − . ×.  

EVALUATE:   The width of the tracks is very small, so the total track length on the disc is huge. 
 9.21. IDENTIFY:   Use constant acceleration equations to calculate the angular velocity at the end of two 

revolutions. .v rω=  
SET UP:   2 rev 4  rad.π=  0 200 m.r = .  

EXECUTE:   (a) 2 2
0 02 ( ).z z zω ω α θ θ= + −  2

02 ( ) 2(3 00 rad/s )(4  rad) 8 68 rad/s.z zω α θ θ π= − = . = .  
2 2 2

rad (0 200 m)(8 68 rad/s) 15 1 m/s .a rω= = . . = .  

(b) (0 200 m)(8 68 rad/s) 1 74 m/s.v rω= = . . = .  
2 2

2
rad

(1 74 m/s) 15 1 m/s .
0 200 m

v
a

r
.= = = .
.

 

EVALUATE:   2rω  and 2/v r  are completely equivalent expressions for rad.a  
 9.22. IDENTIFY:   v rω=  and tan .a rα=  

SET UP:   The linear acceleration of the bucket equals tana  for a point on the rim of the axle. 

EXECUTE:   (a) .v Rω=  7 5 rev 1 min 2  rad2 00 cm/s 
min 60 s 1 rev

R
π.⎛ ⎞⎛ ⎞⎛ ⎞.  = ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 gives 2 55 cm.R = .  

2 5 09 cm.D R= = .  
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(b) tan .a Rα=  
2

2tan 0 400 m/s 15 7 rad/s .
0 0255 m

a
R

α .  = = = .  
.

 

EVALUATE:   In v Rω=  and tan ,a Rα=  ω  and α  must be in radians. 
 9.23. IDENTIFY and SET UP:   Use constant acceleration equations to find ω  and α  after each displacement. 

Use α=tan Ra  and   arad = rω 2  to find the components of the linear acceleration. 

EXECUTE:   (a) at the start 0t =  
flywheel starts from rest so 0 0zω ω= =  

2 2
tan (0 300 m)(0 600 rad/s ) 0 180 m/sa rα= = . . = .  

2
rad 0a rω= =  

2 2 2
rad tan 0 180 m/sa a a= + = .  

(b) 0 60θ θ− = °  
2

tan 0 180 m/sa rα= = .  
Calculate :ω  

0 60 (  rad/180 ) 1 047 rad;θ θ π− = ° ° = .  0 0;zω =  20 600 rad/s ;zα = .  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0 600 rad/s )(1 047 rad) 1 121 rad/sz zω α θ θ= − = . . = .  and .zω ω=  

Then 2 2 2
rad (0 300 m)(1 121 rad/s) 0 377 m/s .a rω= = . . = .  
2 2 2 2 2 2 2
rad tan (0 377 m/s ) (0 180 m/s ) 0 418 m/sa a a= + = . + . = .  

(c) 0 120θ θ− = °  
2

tan 0 180 m/sa rα= = .  
Calculate :ω  

0 120 (  rad/180 ) 2 094 rad;θ θ π− = ° ° = .  0 0;zω =  20 600 rad/s ;zα = .  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0 600 rad/s )(2 094 rad) 1 585 rad/sz zω α θ θ= − = . . = .  and .zω ω=  

Then 2 2 2
rad (0 300 m)(1 585 rad/s) 0 754 m/s .ω= = . . = .a r  
2 2 2 2 2 2 2
rad tan (0 754 m/s ) (0 180 m/s ) 0 775 m/s .= + = . + . = .a a a  

EVALUATE:   α  is constant so tanα  is constant. ω  increases so rada  increases. 
 9.24. IDENTIFY:   Apply constant angular acceleration equations. .v rω=  A point on the rim has both tangential 

and radial components of acceleration. 
SET UP:   tana rα=  and 2

rad .a rω=  

EXECUTE:   (a) 2
0  0 250 rev/s (0 900 rev/s )(0 200 s) 0 430 rev/sz z ztω ω α= + = . + . . = .  

(Note that since 0zω  and zα  are given in terms of revolutions, it’s not necessary to convert to radians). 
(b) av- (0 340 rev/s)(0 2 s) 0 068 rev.z tω ∆ = .  . = .  
(c) Here, the conversion to radians must be made to use ω= ,v r  and 

0 750 m (0 430 rev/s)(2  rad/rev) 1 01m/s.
2

v rω π.⎛ ⎞= = . = .  ⎜ ⎟
⎝ ⎠
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(d) Combining   arad = rω 2  and α=tan ,a R  

2 2 2 2 2
rad tan ( ) ( ) .a a a r rω α= + = +

2 22 2((0 430 rev/s)(2  rad/rev)) (0 375 m) (0 900 rev/s )(2  rad/rev)(0 375 m) .a π π⎡ ⎤ ⎡ ⎤= . . + . .⎣ ⎦ ⎣ ⎦  

23 46 m/s .a = .   
EVALUATE:   If the angular acceleration is constant, tana is constant but rada increases as ω increases. 

 9.25. IDENTIFY:   Use 2
rada rω=  and solve for r. 

SET UP:   2
rada rω=  so 2

rad / ,r a ω=  where ω  must be in rad/s 

EXECUTE:   2 2
rad 3000 3000(9 80 m/s ) 29 400 m/sa g ,= = . =  

1 min 2  rad(5000 rev/min) 523 6 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then 
2

rad
2 2

29 400 m/s 0 107 m.
(523 6 rad/s)

a ,
r

ω
= = = .

.
 

EVALUATE:   The diameter is then 0.214 m, which is larger than 0.127 m, so the claim is not realistic. 
 9.26. IDENTIFY:   tan ,a rα=  v rω=  and 2

rad / .a v r=  0 av- .ztθ θ ω− =  

SET UP:   When zα  is constant, 0
av- .

2
z z

z
ω ωω +=  Let the direction the wheel is rotating be positive. 

EXECUTE:   (a) 
2

2tan 10 0 m/s 50 0 rad/s
0 200 m

a
r

α − .  = = = − .  
.

 

(b) At 3 00 s,t = .  50 0 m/sv = .   and 50 0 m/s 250 rad/s0 200 m
v
r

ω .  = = =  .  and at 0,t =  

250 0 m/s ( 10 0 m/s )(0 3 00 s) 80 0 m/s,v = .  + − .  − . = .  400 rad/s.ω =   
(c) av- (325 rad/s)(3 00 s) 975 rad 155 rev.ztω =  . = =  

(d) 2
rad (9 80 m/s )(0 200 m) 1 40 m/s.v a r= = . . = .  This speed will be reached at time 

2
50 0 m/s 1 40 m/s 4 86 s

10 0 m/s
. − . = .

.
 after 3 00 s,t = .  or at 7 86 s.t = .  (There are many equivalent ways to do this 

calculation.) 
EVALUATE:   At 0,t =  2 4 2

rad 3 20 10  m/s .a rω= = . ×  At 3 00 s,t = .  4 2
rad 1 25 10  m/s .a = . ×  For rada g=  

the wheel must be rotating more slowly than at 3.00 s so it occurs some time after 3.00 s. 
 9.27. IDENTIFY:   v rω=  and 2 2

rad / .a r v rω= =  
SET UP:   2  rad 1 rev,π =  so  rad/s 30 rev/min.π =  

EXECUTE:   (a) ( ) 312 7 10 m rad/s(1250 rev/min) 0 831m/s.30 rev/min 2
r πω

−⎛ ⎞. ×=  = .  ⎜ ⎟⎜ ⎟
⎝ ⎠

 

(b) 
2 2

2
3

(0 831m/s) 109 m/s .
(12 7 10  m)/2

v
r −

.  = =  
. ×

 

EVALUATE:   In ,v rω=  ω  must be in rad/s. 

 9.28. IDENTIFY and SET UP:   Use 2.i iI m r= ∑  Treat the spheres as point masses and ignore I of the light rods. 
EXECUTE:   The object is shown in Figure 9.28a. 
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(a)  
 

 2 2(0 200 m) (0 200 m) 0 2828 mr = . + . = .
2 24(0 200 kg)(0 2828 m)i iI m r= ∑ = . .  

20 0640 kg mI = . ⋅  

Figure 9.28a   
 

(b) The object is shown in Figure 9.28b. 
 

 0 200 mr = .  
2 24(0 200 kg)(0 200 m)i iI m r= ∑ = . .  

20 0320 kg mI = . ⋅  

Figure 9.28b   
 

(c) The object is shown in Figure 9.28c. 
 

 0 2828 mr = .  
2 22(0 200 kg)(0 2828 m)i iI m r= ∑ = . .  

20 0320 kg mI = . ⋅  

Figure 9.28c   
 

EVALUATE:   In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). 
It just happens that I is the same in parts (b) and (c). 

 9.29. IDENTIFY:   Use Table 9.2. The correct expression to use in each case depends on the shape of the object 
and the location of the axis. 
SET UP:   In each case express the mass in kg and the length in m, so the moment of inertia will be in 

2kg m .⋅  

EXECUTE:   (a) (i) 2 2 21 1
3 3 (2 50 kg)(0 750 m) 0 469 kg m .I ML= = . . = . ⋅  

(ii) 2 2 21 1
12 4 (0 469 kg m ) 0 117 kg m .I ML= = . ⋅ = . ⋅  (iii) For a very thin rod, all of the mass is at the axis 

and 0.I =  
(b) (i) 2 2 22 2

5 5 (3 00 kg)(0 190 m) 0 0433 kg m .I MR= = . . = . ⋅  

(ii) 2 2 252
3 3 (0 0433 kg m ) 0 0722 kg m .I MR= = . ⋅ = . ⋅  

(c) (i) 2 2 2(8 00 kg)(0 0600 m) 0 0288 kg m .I MR= = . . = . ⋅  

(ii) 2 2 21 1
2 2 (8 00 kg)(0 0600 m) 0 0144 kg m .I MR= = . . = . ⋅  

EVALUATE:   I depends on how the mass of the object is distributed relative to the axis. 
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 9.30. IDENTIFY:   Treat each block as a point mass, so for each block 2,I mr=  where r is the distance of the 
block from the axis. The total I for the object is the sum of the I for each of its pieces. 
SET UP:   In part (a) two blocks are a distance /2L  from the axis and the third block is on the axis. In  
part (b) two blocks are a distance /4L  from the axis and one is a distance 3 /4L  from the axis. 
EXECUTE:   (a) 2 21

22 ( /2) .I m L mL= =  

(b) 2 2 2 21 112 ( /4 ) (3 /4) (2 9) .
16 16

= + = + =I m L m L mL mL  

EVALUATE:   For the same object I is in general different for different axes. 
 9.31. IDENTIFY:   I for the object is the sum of the values of I for each part. 

SET UP:   For the bar, for an axis perpendicular to the bar, use the appropriate expression from Table 9.2. 
For a point mass, 2,I mr=  where r is the distance of the mass from the axis. 

EXECUTE:   (a) 
2

2
bar balls bar balls

1 2 .
12 2

L
I I I M L m ⎛ ⎞= + = + ⎜ ⎟

⎝ ⎠
 

  
I = 1

12
(4.00 kg)(2.00 m)2 + 2(0.300 kg)(1.00 m)2 = 1.93 kg ⋅ m2  

(b) 
  
I = 1

3
mbar L2 + mballL

2 = 1
3

(4.00 kg)(2.00 m)2 + (0.300 kg)(2.00 m)2 = 6.53 kg ⋅ m2  

(c) 0I =  because all masses are on the axis. 
(d) All the mass is a distance 0 500 md = . from the axis and 

I = mbard
2 + 2mballd

2 = MTotald
2 = (4.60 kg)(0.500 m)2 = 1.15 kg ⋅ m2.  

EVALUATE:   I for an object depends on the location and direction of the axis. 
 9.32. IDENTIFY:   Moment of inertia of a bar. 

SET UP:   Iend = 21 ,
3

ML  Icenter = 21
12

ML  

EXECUTE:   (a) 21
12

ML  = (0.400 kg)(0.600 m)2/12 = 0.0120 2kg m .⋅  

(b) Now we want the moment of inertia of two bars about their ends. Each has mass M/2 and length L/2. 

21
3

ML  = 
2 2

21 1 1
3 2 2 3 2 2 12

M L M L
ML+⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 = 0.0120 2kg m .⋅  

EVALUATE:   Neither the bend nor the 60° angle affects the moment of inertia. In (a) and (b), we can think 
of the rod as two 0.200-kg rods, each 0.300 m long, with the moment of inertia calculated about one end. 

 9.33. IDENTIFY and SET UP:   2
i iI m r= ∑  implies rim spokesI I I= +  

EXECUTE:   2 2 2
rim (1 40 kg)(0 300 m) 0 126 kg mI MR= = . . = . ⋅  

Each spoke can be treated as a slender rod with the axis through one end, so 
2 2 281

spokes 3 38( ) (0 280 kg)(0 300 m) 0 0672 kg mI ML= = . . = . ⋅  
2 2 2

rim spokes 0 126 kg m 0 0672 kg m 0 193 kg mI I I= + = . ⋅ + . ⋅ = . ⋅  

EVALUATE:   Our result is smaller than 2 2 2
tot (3 64 kg)(0 300 m) 0 328 kg m ,m R = . . = . ⋅  since the mass of 

each spoke is distributed between 0r =  and .r R=  
 9.34. IDENTIFY:   21

2 .K Iω=  Use Table 9.2 to calculate I. 

SET UP:   21
12 .I ML=  1 rpm 0 1047 rad/s= .  

EXECUTE:   (a) 2 21
12 (117 kg)(2 08 m) 42 2 kg m .I = . = . ⋅  0 1047 rad/s(2400 rev/min) 251 rad/s.

1 rev/min
ω .⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

2 2 2 61 1
2 2 (42 2 kg m )(251 rad/s) 1 33 10  J.K Iω= = . ⋅ = . ×  
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(b) 2 21
1 1 1 112 ,K M L ω=  2 21

2 2 2 212 .K M L ω=  1 2L L=  and 1 2,K K=  so 2 2
1 1 2 2.M Mω ω=  

1 1
2 1

2 1
(2400 rpm) 2770 rpm

0 750
M M
M M

ω ω= = =
.

 

EVALUATE:   The rotational kinetic energy is proportional to the square of the angular speed and directly 
proportional to the mass of the object. 

 9.35. IDENTIFY:   I for the compound disk is the sum of I of the solid disk and of the ring. 
SET UP:   For the solid disk, 21

d d2 .I m r=  For the ring, 2 21
r r 1 22 ( ),I m r r= +  where 

1 250 0 cm, 70 0  cm.r r= . = .  The mass of the disk and ring is their area times their area density. 
EXECUTE:   d r.I I I= +  

Disk: 2 2
d d(3 00 g/cm ) 23 56 kg.m rπ= .  = .  2 2

d d d
1 2 945 kg m .
2

I m r= = . ⋅  

Ring: 2 2 2
r 2 1(2 00 g/cm ) ( ) 15 08 kg.m r rπ= .  − = .  2 2 2

r r 1 2
1 ( ) 5 580 kg m .
2

I m r r= + = . ⋅  

2
d r 8 52 kg m .I I I= + = . ⋅  

EVALUATE:   Even though r d ,m m< r dI I>  since the mass of the ring is farther from the axis. 
 9.36. IDENTIFY:    We can use angular kinematics (for constant angular acceleration) to find the angular velocity 

of the wheel. Then knowing its kinetic energy, we can find its moment of inertia, which is the target variable. 

SET UP:   0
0 2

z z t
ω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 and 21 .
2

K Iω=  

EXECUTE:   Converting the angle to radians gives 0 (8 20 rev)(2  rad/1 rev) 51 52 rad.θ θ π− = . = .  

0
0 2

z z t
ω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 gives 02( ) 2(51 52 rad) 8 587 rad/s.
12 0 sz t

θ θω − .= = = .
.

 Solving 21
2

K Iω=  for I gives 

2
2 2

2 2(36 0 J) 0 976 kg m .
(8 587 rad/s)

K
I

ω
.= = = . ⋅

.
 

EVALUATE:   The angular velocity must be in radians to use the formula 21 .
2

K Iω=  

 9.37. IDENTIFY:   Knowing the kinetic energy, mass and radius of the sphere, we can find its angular velocity. 
From this we can find the tangential velocity (the target variable) of a point on the rim. 
SET UP:   21

2 ω=K I  and 22
5I MR=  for a solid uniform sphere. The tagential velocity is .v rω=  

EXECUTE:   2 2 22 2
5 5 (28 0 kg)(0 380 m) 1 617 kg m .= = . . = . ⋅I MR  21

2K Iω=  so 

  
ω = 2K

I
= 2(236 J)

1.617 kg ⋅ m2
= 17.085 rad/s.  

  v = rω = (0.380 m)(17.085 rad/s) = 6.49 m/s.  
EVALUATE:   This is the speed of a point on the surface of the sphere that is farthest from the axis of 
rotation (the “equator” of the sphere). Points off the “equator” would have smaller tangential velocity but 
the same angular velocity. 

 9.38. IDENTIFY:   Knowing the angular acceleration of the sphere, we can use angular kinematics (with constant 
angular acceleration) to find its angular velocity. Then using its mass and radius, we can find its kinetic 
energy, the target variable. 
SET UP:   2 2

0 02 ( ),z z zω ω α θ θ= + −  21
2 ,K Iω=  and 22

3I MR=  for a uniform hollow spherical shell.  

EXECUTE:   2 2 22 2
3 3 (8 20 kg)(0 220 m) 0 2646 kg m .I MR= = . . = . ⋅  Converting the angle to radians gives 

0 (6 00 rev)(2  rad/1 rev) 37 70 rad.θ θ π− = . = .  The angular velocity is 2 2
0 02 ( ),z z zω ω α θ θ= + −  which gives 

2
02 ( ) 2(0 890 rad/s )(37 70 rad) 8 192 rad/s.z zω α θ θ= − = . . = .  
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2 21
2 (0 2646 kg m )(8 192 rad/s) 8 88 J.K = . ⋅ . = .  

EVALUATE:   The angular velocity must be in radians to use the formula 21
2 .K Iω=  

 9.39. IDENTIFY:   21
2 ,K Iω=  with ω  in rad/s. Solve for I. 

SET UP:   1 rev/min (2 /60) rad/s.π=  500 JK∆ = −  

EXECUTE:   i 650 rev/min 68 1 rad/s.ω = = .  f 520 rev/min 54 5 rad/s.ω = = .  2 21
f i f i2 ( )K K K I ω ω∆ = − = −  

and 2
2 2 2 2
f i

2( ) 2( 500 J) 0 600 kg m .
(54 5 rad/s) (68 1 rad/s)

K
I

ω ω
∆ −= = = . ⋅
− . − .

 

EVALUATE:   In 21
2 ,K Iω=  ω  must be in rad/s. 

 9.40. IDENTIFY:   21
2 .K Iω=  Use Table 9.2 to relate I to the mass M of the disk. 

SET UP:   45 0 rpm 4 71 rad/s.. = .  For a uniform solid disk, 21
2 .I MR=  

EXECUTE:   (a) 2
2 2

2 2(0 250 J) 0 0225 kg m .
(4 71 rad/s)

K
I

ω
.= = = . ⋅

.
 

(b) 21
2I MR=  and 

2

2 2
2 2(0 0225 kg m ) 0 500 kg.

(0 300 m)
I

M
R

. ⋅= = = .
.

 

EVALUATE:   No matter what the shape is, the rotational kinetic energy is proportional to the mass of the 
object. 

 9.41. IDENTIFY and SET UP:   Combine 21
2K Iω=  and arad = rω 2  to solve for K. Use Table 9.2 to get I. 

EXECUTE:   21
2K Iω=  

2
rad ,a Rω=  so 2

rad / (3500 m/s )/1 20 m 54 0 rad/sa Rω = = . = .  

For a disk, 2 2 21 1
2 2 (70 0 kg)(1 20 m) 50 4 kg mI MR= = . . = . ⋅  

Thus 2 2 2 41 1
2 2 (50 4 kg m )(54 0 rad/s) 7 35 10  JK Iω= = . ⋅ . = . ×  

EVALUATE:   The limit on rada  limits ω  which in turn limits K. 
 9.42. IDENTIFY:   The work done on the cylinder equals its gain in kinetic energy. 

SET UP:   The work done on the cylinder is PL, where L is the length of the rope. 1 0.K =  21
2 2 .K Iω=  

2 2.w
I mr r

g
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

EXECUTE:   
2 2

2
2

1 1 (40 0 N)(6 00 m/s),  or  14 7 N.
2 2 2(9 80 m/s )(5 00 m)

w w v
PL v P

g g L
. .  = = = = .

.  .
 

EVALUATE:   The linear speed v of the end of the rope equals the tangential speed of a point on the rim of 
the cylinder. When K is expressed in terms of v, the radius r of the cylinder doesn’t appear. 

 9.43. IDENTIFY:   Apply conservation of energy to the system of stone plus pulley. v rω=  relates the motion of 
the stone to the rotation of the pulley. 
SET UP:   For a uniform solid disk, 21

2 . I MR=  Let point 1 be when the stone is at its initial position and 

point 2 be when it has descended the desired distance. Let y+  be upward and take 0y =  at the initial 
position of the stone, so 1 0y =  and 2 ,y h= −  where h is the distance the stone descends. 

EXECUTE:   (a) 21
p p2 .K I ω=  2 2 21 1

p p2 2 (2 50 kg)(0 200 m) 0 0500 kg m .I M R= = . . = . ⋅  

p
2

p

2 2(4 50 J) 13 4 rad/s.
0 0500 kg m

K

I
ω .= = = .

. ⋅
 The stone has speed (0 200 m)(13 4 rad/s) 2 68 m/s.v Rω= = . . = .  
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The stone has kinetic energy 2 21 1
s 2 2 (1 50 kg)(2 68 m/s) 5 39 J.K mv= = . . = .  1 1 2 2K U K U+ = +  gives 

2 20 .K U= +  0 4 50 J 5 39 J ( ).mg h= . + . + −  2
9 89 J 0 673 m.

(1 50 kg)(9 80 m/s )
h

.= = .
. .

 

(b) tot p s 9 89 J.K K K= + = .  p

tot

4 50 J 45 5%.
9 89 J

K

K
.= = .
.

 

EVALUATE:   The gravitational potential energy of the pulley doesn’t change as it rotates. The tension in 
the wire does positive work on the pulley and negative work of the same magnitude on the stone, so no net 
work on the system. 

 9.44. IDENTIFY:   21
p 2K Iω=  for the pulley and 21

b 2K mv=  for the bucket. The speed of the bucket and the 

rotational speed of the pulley are related by .v Rω=  
SET UP:   1

p b2K K=  

EXECUTE:   2 2 2 21 1 1 1
2 2 2 4( ) .I mv mRω ω= =  21

2 .I mR=  

EVALUATE:   The result is independent of the rotational speed of the pulley and the linear speed of the mass. 
 9.45. IDENTIFY:   With constant acceleration, we can use kinematics to find the speed of the falling object. Then 

we can apply the work-energy expression to the entire system and find the moment of inertia of the wheel. 
Finally, using its radius we can find its mass, the target variable. 

SET UP:   With constant acceleration, 0
0 .

2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 The angular velocity of the wheel is related to 

the linear velocity of the falling mass by .y
z

v

R
ω =  The work-energy theorem is 1 1 other 2 2,K U W K U+ + = +  

and the moment of inertia of a uniform disk is 21
2 .I MR=  

EXECUTE:   Find ,yv  the velocity of the block after it has descended 3.00 m. 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 gives 

02( ) 2(3 00 m) 3 00 m/s.
2 00 sy

y y
v

t
− .= = = .

.
 For the wheel, 3 00 m/s 10 71 rad/s.

0 280 m
y

z
v

R
ω .= = = .

.
 Apply the work-

energy expression: 1 1 other 2 2,K U W K U+ + = +  giving 2 21 1(3 00 m) .
2 2

mg mv Iω. = +  Solving for I gives 

2
2

2 1(3 00 m) .
2

I mg mv
ω

⎡ ⎤= . −⎢ ⎥⎣ ⎦
 

2 2
2

2 1(4 20 kg)(9 8 m/s )(3 00 m) (4 20 kg)(3 00 m/s) .
2(10 71 rad/s)

I ⎡ ⎤= . . . − . .⎢ ⎥. ⎣ ⎦
21 824 kg m .I = . ⋅  For a solid 

disk, 21
2I MR=  gives 

2

2 2
2 2(1 824 kg m ) 46 5 kg.

(0 280 m)
I

M
R

. ⋅= = = .
.

 

EVALUATE:   The gravitational potential of the falling object is converted into the kinetic energy of that 
object and the rotational kinetic energy of the wheel. 

 9.46. IDENTIFY:   The work the person does is the negative of the work done by gravity. 
grav grav,1 grav,2.W U U= −  grav cm.U Mgy=  

SET UP:   The center of mass of the ladder is at its center, 1.00 m from each end. 
cm,1 (1 00 m)sin53 0 0 799 m.y = . . ° = .  cm,2 1 00 m.y = .  

EXECUTE:   2
grav (9 00 kg)(9 80 m/s )(0 799 m 1 00 m) 17 7 J.W = . . . − . = − .  The work done by the person is 

17.7 J. The increase in gravitational potential energy of the ladder is Ugrav,1 – Ugrav,2 = –Wgrav = +17.7 J. 
EVALUATE:   The gravity force is downward and the center of mass of the ladder moves upward, so gravity 
does negative work. The person pushes upward and does positive work. 
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 9.47. IDENTIFY:   The general expression for I is 2.i iI m r= ∑  21
2 .K Iω=  

SET UP:   R will be multiplied by .f  

EXECUTE:   (a) In the equation 2,i iI m r= ∑  each term will have the mass multiplied by 3f  and the 

distance multiplied by ,f  and so the moment of inertia is multiplied by 3 2 5( ) .f f f=  

(b) 5 8 (2 5 J)(48) 6 37 10  J.. = . ×  
EVALUATE:   Mass and volume are proportional to each other so both scale by the same factor. 

 9.48. IDENTIFY:   Apply the parallel-axis theorem. 
SET UP:   The center of mass of the hoop is at its geometrical center. 
EXECUTE:   In the parallel-axis theorem, 2 2 2

cm and , so 2 .PI MR d R I MR= = =  
EVALUATE:   I is larger for an axis at the edge than for an axis at the center. Some mass is closer than 
distance R from the axis but some is also farther away. Since I for each piece of the hoop is proportional to 
the square of the distance from the axis, the increase in distance has a larger effect. 

 9.49. IDENTIFY:   Use the parallel-axis theorem to relate I for the wood sphere about the desired axis to I for an 
axis along a diameter. 
SET UP:   For a thin-walled hollow sphere, axis along a diameter, 22

3 .I MR=  

For a solid sphere with mass M and radius R, 22
cm 5 ,I MR=  for an axis along a diameter. 

EXECUTE:   Find d such that 2
cmPI I Md= +  with 22

3 :PI MR=  
2 2 22 2

3 5MR MR Md= +  

The factors of M divide out and the equation becomes 2 22 2
3 5( )R d− =  

(10 6)/15 2 / 15 0 516 .d R R R= − = = .  
The axis is parallel to a diameter and is 0.516R from the center. 
EVALUATE:   cm cm(lead) (wood)I I>  even though M and R are the same since for a hollow sphere all the 
mass is a distance R from the axis. The parallel-axis theorem says cm,PI I>  so there must be a d where 

cm(wood) (lead).PI I=  
 9.50. IDENTIFY:   Consider the plate as made of slender rods placed side-by-side. 

SET UP:   The expression in Table 9.2 gives I for a rod and an axis through the center of the rod. 
EXECUTE:   (a) I is the same as for a rod with length a: 21

12 .I Ma=  

(b) I is the same as for a rod with length b: 21
12 .I Mb=  

EVALUATE:   I is smaller when the axis is through the center of the plate than when it is along one edge. 
 9.51. IDENTIFY and SET UP:   Use the parallel-axis theorem. The cm of the sheet is at its geometrical center. The 

object is sketched in Figure 9.51. 
EXECUTE:   2

cm .PI I Md= +  
 

 From Table 9.2, 
2 21

cm 12 ( ).I M a b= +  

The distance d of P from the cm is 
2 2( /2) ( /2) .d a b= +  

Figure 9.51   
 

Thus 2 2 2 2 2 2 2 2 21 1 1 1 1 1
cm 12 4 4 12 4 3( ) ( ) ( ) ( ) ( )PI I Md M a b M a b M a b M a b= + = + + + = + + = +  

EVALUATE:   cm4 .PI I=  For an axis through P mass is farther from the axis. 
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 9.52. IDENTIFY:   Use the equations in Table 9.2. I for the rod is the sum of I for each segment. The parallel-axis 
theorem says 2

p cm .I I Md= +  
SET UP:   The bent rod and axes a and b are shown in Figure 9.52. Each segment has length /2L  and  
mass /2.M  
EXECUTE:   (a) For each segment the moment of inertia is for a rod with mass /2,M  length /2L  and the 

axis through one end. For one segment, 
2

2
s

1 1 .
3 2 2 24

M L
I ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 For the rod, 2

a s
12 .

12
I I ML= =  

(b) The center of mass of each segment is at the center of the segment, a distance of /4L  from each end. 

For each segment, 
2

2
cm

1 1 .
12 2 2 96

M L
I ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 Axis b is a distance /4L  from the cm of each segment, 

so for each segment the parallel axis theorem gives I for axis b to be 
2

2 2
s

1 1
96 2 4 24

M L
I ML ML⎛ ⎞= + =⎜ ⎟

⎝ ⎠
 and 

2
b s

12 .
12

I I ML= =  

EVALUATE:   I for these two axes are the same. 
 

 

Figure 9.52 
 

 9.53. IDENTIFY:   Apply 2 .I r dm= ∫  

SET UP:   (2  ),dm dV rL drρ ρ π= =  where L is the thickness of the disk. 2.M L Rπ ρ=  
EXECUTE:   The analysis is identical to that of Example 9.10, with the lower limit in the integral being zero 
and the upper limit being R. The result is 21

2 .I MR=  

 9.54. IDENTIFY:    Use 2  .I r dm= ∫  

SET UP:    
 

 

Figure 9.54 
 

Take the x-axis to lie along the rod, with the origin at the left end. Consider a thin slice at coordinate x and 
width dx, as shown in Figure 9.54. The mass per unit length for this rod is / ,M L  so the mass of this slice is 

( / ) .dm M L dx=  

EXECUTE:   2 2 3 21
30 0

( / ) ( / )  ( / )( /3)
L L

I x M L dx M L x dx M L L ML= = = =∫ ∫  

EVALUATE:   This result agrees with the table in the text. 
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 9.55. IDENTIFY:   Apply 2  I r dm= ∫  and .M dm= ∫  

SET UP:   For this case,   dm = γ x dx.  

EXECUTE:   (a) 
2 2

0
02 2

L
L x L

M dm x dx
γγ γ= = = =∫ ∫  

(b) 
4 4

2 2

0
0

( ) .24 4

L
L x L MI x x dx L

γγ γ= = = =∫  This is larger than the moment of inertia of a uniform rod of the 

same mass and length, since the mass density is greater farther away from the axis than nearer the axis. 

(c) 
2 3 4 4

2 2 2 3 2 2

0 0
0

( ) ( 2 ) 2 .
2 3 4 12 6

L
L L x x x L M

I L x xdx L x Lx x dx L L Lγ γ γ γ⎛ ⎞= − = − + = − + = =⎜ ⎟
⎝ ⎠

∫ ∫  

This is a third of the result of part (b), reflecting the fact that more of the mass is concentrated at the  
right end. 
EVALUATE:   For a uniform rod with an axis at one end, 21

3 .I ML=  The result in (b) is larger than this and 
the result in (c) is smaller than this. 

 9.56. IDENTIFY:   Using the equation for the angle as a function of time, we can find the angular acceleration of 
the disk at a given time and use this to find the linear acceleration of a point on the rim (the target 
variable). 

SET UP:   We can use the definitions of the angular velocity and the angular acceleration: ( )z
d

t
dt
θω =  and 

( ) .z
z

d
t

dt
ωα =  The acceleration components are 2

rada Rω=  and tan ,a Rα=  and the magnitude of the 

acceleration is 2 2
rad tan .a a a= +  

EXECUTE:   
  
ω z (t) = dθ

dt
= 1.10 rad/s +  (12.6 rad/s2 )t. α z (t) =

dω z
dt

= 12.6 rad/s2  (constant). 

0 100 rev 0 6283 radθ = . = .  gives   6.30t2 + 1.10t − 0.6283 = 0,  so t = 0.2403 s,  using the positive root. At 

this t,   ω z (t) = 4.1278 rad/s and  α z (t) = 12.6 rad/s2.  For a point on the rim, arad = Rω 2 = 6.815 m/s2  and 

  atan = Rα = 5.04 m/s2 ,  so a = arad
2 + atan

2 = 8.48 m/s2.  

EVALUATE:   Since the angular acceleration is constant, we could use the constant acceleration formulas as 
a check. For example, the coefficient of t2 is 21

2 6.30 rad/szα =  gives α z = 12.6 rad/s2.  

 9.57. IDENTIFY:   The target variable is the horizontal distance the piece travels before hitting the floor. Using 
the angular acceleration of the blade, we can find its angular velocity when the piece breaks off. This will 
give us the linear horizontal speed of the piece. It is then in free fall, so we can use the linear kinematics 
equations. 
SET UP:   2 2

0 02 ( )z z zω ω α θ θ= + −  for the blade, and v rω=  is the horizontal velocity of the piece. 
21

0 0 2y yy y v t a t− = +  for the falling piece.  

EXECUTE:   Find the initial horizontal velocity of the piece just after it breaks off. 
0 (155 rev)(2  rad/1 rev) 973 9 rad.θ θ π− = = .  

α z = (2.00 rev/s2 )(2π  rad/1 rev) = 12.566 rad/s2.  2 2
0 02 ( ).z z zω ω α θ θ= + −  

2
02 ( ) 2(12.566 rad/s )(973 9 rad) 156.45 rad/s.z zω α θ θ= − = . =  The horizontal velocity of the piece is 

(0 120 m)(156.45 rad/s) 18.774 m/s.v rω= = . =  Now consider the projectile motion of the piece. Take  
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+y downward and use the vertical motion to find t. Solving 21
0 0 2y yy y v t a t− = +  for t gives 

0
2

2( ) 2(0 820 m) 0 4091 s.
9 8 m/sy

y y
t

a
− .= = = .

.
 Then 21

0 0 2 (18.774 m/s)(0 4091 s) 7.68 m.x xx x v t a t− = + = . =  

EVALUATE:   Once the piece is free of the blade, the only force acting on it is gravity so its acceleration  
is g downward. 

 9.58. IDENTIFY and SET UP:   Use ω z =
dθ
dt

 and 
ωα = .z

z

d

dt
 As long as 0,zα >  zω  increases. At the t when 

0,zα =  zω  is at its maximum positive value and then starts to decrease when zα  becomes negative. 
2 3( ) ;t t tθ γ β= −  23 20 rad/s ,γ = .  30 500 rad/sβ = .  

EXECUTE:    (a) 
2 3

2( )( ) 2 3z
d d t t

t t t
dt dt
θ γ βω γ β−= = = −  

(b) 
2(2 3 )( ) 2 6z

z
d d t t

t t
dt dt
ω γ βα γ β−= = = −  

(c) The maximum angular velocity occurs when 0.zα =  

2 6 0tγ β− =  implies 
2

3
2 3 20 rad/s 2 133 s
6 3 3(0 500 rad/s )

t
γ γ
β β

.= = = = .

.
 

At this t, 2 2 3 22 3 2(3 20 rad/s )(2 133 s) 3(0 500 rad/s )(2 133 s)z t tω γ β= − = . . − . . = 6.83 rad/s 
The maximum positive angular velocity is 6.83 rad/s and it occurs at 2.13 s. 
EVALUATE:   For large t both zω  and zα  are negative and zω  increases in magnitude. In fact, zω → −∞  
at .t → ∞  So the answer in (c) is not the largest angular speed, just the largest positive angular velocity. 

 9.59. IDENTIFY:   The angular acceleration α of the disk is related to the linear acceleration a of the ball by 

.a Rα=  Since the acceleration is not constant, use 0 0

t
z z zdtω ω α− = ∫ and 0 0

t
zdtθ θ ω− = ∫  to relate ,θ  

,zω  ,zα and t for the disk. 0 0.zω =  

SET UP:   11 .
1

n nt dt t
n

+=  
+∫  In ,a Rα=  α is in 2rad/s .  

EXECUTE:   (a) 
2

31 80 m/s 0 600 m/s
3 00 s

a
A

t
.= = = .

.
 

(b) 
3

3(0 600 m/s ) (2 40 rad/s )
0 250 m

a t
t

R
α .= = = .

.
 

(c) 3 3 2
0

(2 40 rad/s ) (1 20 rad/s ) .
t

z tdt tω = . = .∫  15 0 rad/szω = . for 3
15 0 rad/s 3 54 s.
1 20 rad/s

t
.= = .

.
 

(d) 3 2 3 3
0 0 0

(1 20 rad/s ) (0 400 rad/s ) .
t t

zdt t dt tθ θ ω− = = . = .∫ ∫  For 3 54 s,t = .  0 17 7 rad.θ θ− = .  

EVALUATE:   If the disk had turned at a constant angular velocity of 15.0 rad/s for 3.54 s it would have 
turned through an angle of 53.1 rad in 3.54 s. It actually turns through less than half this because the 
angular velocity is increasing in time and is less than 15.0 rad/s at all but the end of the interval. 

 9.60. IDENTIFY: The flywheel gains rotational kinetic energy as it spins. This kinetic energy depends on the 
flywheel’s rate of spin but also on its moment of inertia. The angular acceleration is constant. 

  SET UP:   21
2 ,K Iω=  I = 1

2
2,mR  0 ,tω ω α= +  2 .m V R hρ ρπ= =  

EXECUTE:    21
2K Iω=  = 2 21 1

02 2( )( )mR tω α+  = 2 2 21
4 ( ) (0 ) .R h R tρπ α⎡ ⎤ +⎣ ⎦  Solving for h gives 

4 2

4
( )

K
h

R tρπ α
=  = 4(800 J)/[π(8600 kg/m3)(0.250 m)4(3.00 rad/s2)2(8.00 s)2] = 0.0526 m = 5.26 cm. 
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EVALUATE:    If we could turn the disk into a thin-walled cylinder of the same mass and radius, the 
moment of inertia would be twice as great, so we could store twice as much energy as for the given disk. 

 9.61. IDENTIFY:   As it turns, the wheel gives kinetic energy to the marble, and this energy is converted into 
gravitational potential energy as the marble reaches its highest point in the air.  
SET UP:   The marble starts from rest at point A at the same level as the center of the wheel and after  
20.0 revolutions it leaves the rim of the wheel at point A. 1 1 2 2K U K U+ = +  applies once the marble has 

left the cup. While the marble is turning with the wheel, 2 2
0 02 ( )ω ω α θ θ= + −  applies. 

EXECUTE:   Applying 1 1 2 2K U K U+ = +  gives 2 .Av gh=  The marble is at the rim of the wheel, so 
.A Av Rω=  Using this formula in the angular velocity formula gives (vA/R)2 = 0 + 02 ( ).α θ θ−  The marble 

turns through 20.0 rev = 40.0π rad, R = 0.260 m, and h = 12.0 m. Solving the previous equation for α  
gives α  = gh/40πR2 = (9.80 m/s2)(12.0 m)/[40π(0.260 m)2] = 13.8 rad/s2. 
EVALUATE:    The marble has a tangential acceleration atang = Rα  = (0.260 m)(13.8 rad/s2) = 3.59 m/s2 
upward just before it leaves the cup. But this acceleration ends the instant the marble leaves the cup, and 
after that its acceleration is 9.80 m/s2 downward due to gravity. 

 9.62. IDENTIFY:   Apply conservation of energy to the system of drum plus falling mass, and compare the results 
for earth and for Mars. 
SET UP:   21

drum 2 .K Iω=  21
mass 2 .K mv=  v Rω= so if drumK is the same, ω is the same and v is the same 

on both planets. Therefore, massK is the same. Let 0y = at the initial height of the mass and take y+  
upward. Configuration 1 is when the mass is at its initial position and 2 is when the mass has descended 
5.00 m, so 1 0y = and 2 ,y h= -  where h is the height the mass descends. 
EXECUTE:   (a) 1 1 2 2K U K U+ = + gives drum mass0 .K K mgh= + −  drum massK K+ are the same on both 

planets, so E E M M.mg h mg h=  
2

E
M E 2

M

9 80 m/s(5 00 m) 13 2 m.
3 71 m/s

g
h h

g

⎛ ⎞⎛ ⎞ .= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) M M drum mass.mg h K K= +  21
M M drum2 mv mg h K= − and 

2drum
M M

2 2(250 0 J)2 2(3 71 m/s )(13 2 m) 8 04 m/s
15 0 kg

K
v g h

m
.= − = . . − = .

.
 

EVALUATE:   We did the calculations without knowing the moment of inertia I of the drum, or the mass 
and radius of the drum. 

 9.63. IDENTIFY and SET UP:   All points on the belt move with the same speed. Since the belt doesn’t slip, the 
speed of the belt is the same as the speed of a point on the rim of the shaft and on the rim of the wheel, and 
these speeds are related to the angular speed of each circular object by .v rω=  
EXECUTE:    

 

 

Figure 9.63 
 

(a) 1 1 1v rω=  

1 (60 0 rev/s)(2  rad/1 rev) 377 rad/sω π= . =  
2

1 1 1 (0 45 10  m)(377 rad/s) 1 70 m/sω= = . × = .v r -  
(b) 1 2v v=  

1 1 2 2r rω ω=  

2 1 2 1( / ) (0 45 cm/1 80 cm)(377 rad/s) 94 2 rad/sr rω ω= = . . = .  
EVALUATE:   The wheel has a larger radius than the shaft so turns slower to have the same tangential speed 
for points on the rim. 
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 9.64. IDENTIFY:   The speed of all points on the belt is the same, so 1 1 2 2r rω ω= applies to the two pulleys. 
SET UP:   The second pulley, with half the diameter of the first, must have twice the angular velocity, and 
this is the angular velocity of the saw blade. rad/s 30 rev/min.π =  

EXECUTE:   (a) 2
rad/s 0 208 m(2(3450 rev/min)) 75 1m/s.

30 rev/min 2
v

π .⎛ ⎞⎛ ⎞=  = .  ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 
2

2 4 2
rad

rad/s 0 208 m2(3450 rev/min) 5 43 10 m/s ,
30 rev/min 2

a r
πω ⎛ ⎞ .⎛ ⎞ ⎛ ⎞= =   = . ×  ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

so the force holding sawdust on the blade would have to be about 5500 times as strong as gravity. 
EVALUATE:   In v rω= and 2

rad ,a rω=  ω  must be in rad/s. 
 9.65. IDENTIFY:   Apply .v rω=  

SET UP:   Points on the chain all move at the same speed, so r r f f .r rω ω=  

EXECUTE:   The angular velocity of the rear wheel is r
r

r

5.00 m/s 15.15 rad/s.
0.330 m

v
r

ω = = =  

The angular velocity of the front wheel is f 0.600 rev/s = 3.77 rad/s.ω =  r f f r( / ) 2.99 cm.r r ω ω= =  
EVALUATE:   The rear sprocket and wheel have the same angular velocity and the front sprocket and wheel 
have the same angular velocity. rω  is the same for both, so the rear sprocket has a smaller radius since it 
has a larger angular velocity. The speed of a point on the chain is 2

r r (2.99 10  m)(15.15 rad/s)v r ω −= = × =  
0.453 m/s.  The linear speed of the bicycle is 5.00 m/s. 

 9.66. IDENTIFY:   Use the constant angular acceleration equations, applied to the first revolution and to the first 
two revolutions. 
SET UP:   Let the direction the disk is rotating be positive. 1 rev 2  rad.π=  Let t be the time for the first 
revolution. The time for the first two revolutions is t + 0.0865 s.  
EXECUTE:   (a) 21

0 0 2z zt tθ θ ω α− = + applied to the first revolution and then to the first two revolutions 

gives 21
22  rad ztπ α= and 

  
4π  rad = 1

2
α z (t + 0.0865 s)2.  Eliminating zα between these equations gives 

  
4π  rad = 2π  rad

t2 (t + 0.0865 s)2 .  2t2 = (t + 0.0865 s)2 .  2t = ± (t + 0.0865 s).  The positive root is 

  
t = 0.0865 s

2 − 1
= 0.209 s.  

(b) 21
22  rad ztπ α= and   t = 0.209 s gives 2288 rad/szα =  

EVALUATE:   At the start of the second revolution, 2
0 (288 rad/s )(0.209 s) 60.19 rad/s.zω = =  The distance 

the disk rotates in the next 0.0865 s is 
2 2 21 1

0 0 2 2(60.19 rad/s)(0.0865 s) (288 rad/s )(0.0865 s) 6.28 rad,z zt tθ θ ω α− = + = + =  which is two 

revolutions. 
 9.67. IDENTIFY:   21

2 .K Iω=  2
rad .a rω=  .m Vρ=  

SET UP:   For a disk with the axis at the center, 21
2 .I mR=  2,V t Rπ=  where 0 100 mt = . is the thickness 

of the flywheel. 37800 kg/mρ =  is the density of the iron. 

EXECUTE:   (a) 90 0 rpm 9 425 rad/s.ω = . = .  
6

5 2
2 2

2 2(10 0 10 J) 2 252 10 kg m .
(9 425 rad/s)

K
I

ω

 . ×  = = = . ×  ⋅
.  

 

2 .m V R tρ ρπ= =  2 41 1
2 2 .I mR tRρπ= =  This gives 1/4(2 / ) 3 68 mR I tρπ= = .  and the diameter is 7.36 m. 

(b) 2 2
rad 327 m/sa Rω= =  

EVALUATE:   In 21
2 ,K Iω=  ω must be in rad/s. rada  is about 33g; the flywheel material must have large 

cohesive strength to prevent the flywheel from flying apart. 
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 9.68. IDENTIFY:   The moment of inertia of the section that is removed must be one-half the moment of inertia of 
the original disk. 

SET UP:   For a solid disk, 21
2 .I mR=  Call m the mass of the removed piece and R its radius. 0

1 .
2m MI I=  

EXECUTE:   1
2 0m MI I=  gives 21

2 mR  = 21 1
0 02 2( ).M R  We need to find m. Since the disk is uniform, the 

mass of a given segment will be proportional to the area of that segment. In this case, the segment is the 

piece cut out of the center. So 
2 2

2 2
0 0 00

,R

R

m A R R
M A R R

π
π

= = =  which gives 
2

0 2
0

.R
m M

R

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 Combining the two 

results gives 
2

2 21 1 1
0 0 02 2 22

0
( ),R

M R M R
R

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 from which we get 0

01/ 4 0.841 .
2
R

R R= =  

EVALUATE:   Notice that the piece that is removed does not have one-half the mass of the original disk, nor 
it its radius one-half the original radius. 

 9.69. IDENTIFY:    The falling wood accelerates downward as the wheel undergoes angular acceleration. 
Newton’s second law applies to the wood and the wheel, and the linear kinematics formulas apply to the 
wood because it has constant acceleration.  

SET UP:   ,mΣ =
G GF a  ,Iτ α=  tan ,a Rα=  0 0

21 .
2y yy y v t a t− = +  

EXECUTE:    First use 21
0 0 2y yy y v t a t− = +  to find the downward acceleration of the wood. With v0 = 0, 

we have ay = 2(y – y0)/t2 = 2(12.0 m)/(4.00 s)2 = 1.50 m/s2. Now apply Newton’s second to the wood to 
find the tension in the rope. Σ =

G G
mF a  gives mg – T = ma, T = m(g – a), which gives 

T = (8.20 kg)(9.80 m/s2 – 1.50 m/s2) = 68.06 N. Now use atan = Rα  and apply Newton’s second law (in 
its rotational form) to the wheel. τ = Iα  gives TR = α ,I  I = TR/α  = TR/(a/R) = TR2/a 

I = (68.06 N)(0.320 m)2/(1.50 m/s2) = 4.65 ⋅ 2 .kg m  
EVALUATE:   The tension in the rope affects the acceleration of the wood and causes the angular 
acceleration of the wheel.  

 9.70. IDENTIFY:   Using energy considerations, the system gains as kinetic energy the lost potential energy, mgR. 
SET UP:   The kinetic energy is 2 21 1

2 2 ,K I mvω= +  with 21
2I mR= for the disk. .v Rω=  

EXECUTE:   2 2 2 21 1 1
2 2 2( ) ( ) .K I m R I mRω ω ω= + = +  21

2Using  and solving for ,mRΙ ω=  2 4
3

g
R

ω = and 

4 .
3

g
R

ω =  

EVALUATE:   The small object has speed 2 2 .
3

v gR=  If it was not attached to the disk and was dropped 

from a height h, it would attain a speed 2 .gR  Being attached to the disk reduces its final speed by a 

factor of 2 .
3

 

 9.71. IDENTIFY:   Use conservation of energy. The stick rotates about a fixed axis so 21
2 .K Iω=  Once we have 

ω  use v rω=  to calculate v for the end of the stick. 
SET UP:   The object is sketched in Figure 9.71. 
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 Take the origin of coordinates at the  
lowest point reached by the stick and  
take the positive y-direction to be upward. 

Figure 9.71   
 
EXECUTE:   (a) Use cm.U Mgy= 2 1 cm2 cm1( ).U U U Mg y y∆ = − = −  The center of mass of the meter stick 
is at its geometrical center, so cm1 1 00 my = .  and cm2 0 50 m.y = .  Then 

  ∆U = (0.180 kg)(9.80 m/s2 )(0.50 m − 1.00 m) = −0.882 J.  
(b) Use conservation of energy: 1 1 other 2 2.K U W K U+ + = +  Gravity is the only force that does work on  
the meter stick, so other 0.W =  1 0.K =  Thus 2 1 2 ,K U U U= − = −∆  where U∆  was calculated in part (a). 

21
2 22K Iω=  so 21

22 I Uω = −∆  and 2 2( )/ .U Iω = −∆  For stick pivoted about one end, 21
3I ML=  where 

1 00 m,L = .  so 2 2 2
6( ) 6(0 882 J) 5 42 rad/s.

(0 180 kg)(1 00 m)
U

ML
ω −∆ .= = = .

. .
 

(c) (1 00 m)(5 42 rad/s) 5 42 m/s.v rω= = . . = .  

(d) For a particle in free fall, with y+  upward, 0 0;yv =  0 1 00 m;y y− = − .  29 80 m/s ;ya = − .  and ?yv =  

Solving the equation 2 2
0 02 ( )y y yv v a y y= + −  for yv  gives 

2
02 ( ) 2( 9 80 m/s )( 1 00 m) 4 43 m/s.y yv a y y= − = − . − . = .- - -  

EVALUATE:   The magnitude of the answer in part (c) is larger. 1 grav,U  is the same for the stick as for a 

particle falling from a height of 1.00 m. For the stick 2 2 2 21 1 1 1
22 2 3 6( )( / ) .K I ML v L Mvω= = =  For the stick 

and for the particle, 2K  is the same but the same K gives a larger v for the end of the stick than for the 
particle. The reason is that all the other points along the stick are moving slower than the end opposite  
the axis. 

 9.72. IDENTIFY:   The student accelerates downward and causes the wheel to turn. Newton’s second law applies 
to the student and to the wheel. The acceleration is constant so the kinematics formulas apply. 
SET UP:   ,Iτ αΣ =  ,mΣ =

G GF a  − = + 2

0
1

0 2 ,
y yy y v t a t  0 .y y yv v a t= +  

EXECUTE:    Apply Iτ αΣ = to the wheel: TR = Iα  = I(α /R), so T = Iα /R2. 
Apply Σ =

G G
mF a  to the student: mg – T = ma, so T = m(g – a). 

Equating these two expressions for T and solving for the acceleration gives 2 .
/

mg
a

m I R
=

+
 Now apply 

kinematics for y – y0 to the student, using v0y = 0, and solve for t. 
2

0 02( – ) 2( – )( / ) .
y

y y y y m I R
t

a mg
+= =  

Putting in y – y0 = 12.0 m, m = 43.0 kg, I = 9.60 2kg m ,⋅  and R = 0.300 m, we get t = 2.92 s. 

Now use 0y y yv v a t= +  to get vy, where 2 .
/

mg
a

m I R
=

+
 Putting in the numbers listed above, the result is  

vy = 8.22 m/s. 
EVALUATE: If the wheel were massless, her speed would simply be v = 2gy  = 15.3 m/s, so the effect of 
the massive wheel reduces her speed by nearly half. 
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 9.73. IDENTIFY:   Mechanical energy is conserved since there is no friction. 
SET UP:   1 1 2 2,K U K U+ = +  21

2K Iω= (for rotational motion), 21
2K mv=  (for linear motion), 

21
12

I ML=  for a slender rod. 

EXECUTE:    Take the initial position with the rod horizontal, and the final position with the rod vertical. 
The heavier sphere will be at the bottom and the lighter one at the top. Call the gravitational potential 
energy zero with the rod horizontal, which makes the initial potential energy zero. The initial kinetic 
energy is also zero. Applying 1 1 2 2K U K U+ = +  and calling A and B the spheres gives 
0 = KA + KB + Krod + UA + UB + Urod . Urod = 0 in the final position since its center of mass has not moved. 

Therefore 0 = 21
A A2 m v  + 21

B B2 m v  + 21
2 Iω  + A 2

L
m g  – B .

2
L

m g  We also know that vA = vB = (L/2)ω.  

Calling v the speed of the spheres, we get 2 2 2 21 1 1 1
A2 2 2 12 2 20 ( )( )(2 / ) L L

B A Bm v m v ML v L m g m g= + + + −  

Putting in mA = 0.0200 kg, mB = 0.0500 kg, M = 0.120 kg, and L = 800 m, we get v = 1.46 m/s. 
EVALUATE:    As the rod turns, the heavier sphere loses potential energy but the lighter one gains potential 
energy. 

 9.74. IDENTIFY:   Apply conservation of energy to the system of cylinder and rope. 
SET UP:   Taking the zero of gravitational potential energy to be at the axle, the initial potential energy is 
zero (the rope is wrapped in a circle with center on the axle).When the rope has unwound, its center of 
mass is a distance Rπ below the axle, since the length of the rope is 2 Rπ and half this distance is the 
position of the center of the mass. Initially, every part of the rope is moving with speed 0 ,Rω  and when the 
rope has unwound, and the cylinder has angular speed ,ω  the speed of the rope is Rω  (the upper end of 

the rope has the same tangential speed at the edge of the cylinder). 2(1/2)I MR=  for a uniform cylinder. 

EXECUTE:   1 2 2.K K U= +  2 2 2 2
0 .

4 2 4 2
M m M m

R R mg Rω ω π⎛ ⎞ ⎛ ⎞+  = +  −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Solving for ω gives 

2
0

(4 / ) ,
( 2 )

mg R
M m
πω ω= +

+
 and the speed of any part of the rope is v Rω= .  

EVALUATE:   When 0,m →  0,ω ω→  When ,m M>>  2
0

2 g
R
πω ω= + and 2

0 2 .v v gRπ= +  This is the 

final speed when an object with initial speed 0v descends a distance .Rπ  
 9.75. IDENTIFY:   Apply conservation of energy to the system consisting of blocks A and B and the pulley. 

SET UP:   The system at points 1 and 2 of its motion is sketched in Figure 9.75. 
 

 

Figure 9.75 
 

Use the work-energy relation 1 1 other 2 2.K U W K U+ + = +  Use coordinates where y+  is upward and where 
the origin is at the position of block B after it has descended. The tension in the rope does positive work on 
block A and negative work of the same magnitude on block B, so the net work done by the tension in the 
rope is zero. Both blocks have the same speed. 
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EXECUTE:   Gravity does work on block B and kinetic friction does work on block A. Therefore 
other k .f AW W m gdµ= = −  

1 0K =  (system is released from rest) 

1 1 ;B B BU m gy m gd= =  2 2 0B BU m gy= =  
2 2 21 1 1

2 2 2 22 2 2 .A BK m v m v Iω= + +  

But (blocks) (pulley),v Rω=  so 2 2/v Rω =  and 
2 2 2 21 1 1

2 2 2 22 2 2( ) ( / ) ( / )A B A BK m m v I v R m m I R v= + + = + +  

Putting all this into the work-energy relation gives 
2 21

k 22 ( / )B A A Bm gd m gd m m I R vµ− = + +  
2 2

2 k( / ) 2 ( )A B B Am m I R v gd m mµ+ + = −  

k
2 2

2 ( )
/

B A

A B

gd m m
v

m m I R
µ−=

+ +
 

EVALUATE:   If B Am m>>  and 2/ ,I R  then 2 2 ;v gd=  block B falls freely. If I is very large, 2v  is very 
small. Must have kB Am mµ>  for motion, so the weight of B will be larger than the friction force on A. 

2/I R  has units of mass and is in a sense the “effective mass” of the pulley. 
 9.76. IDENTIFY:   Apply conservation of energy to the system of two blocks and the pulley. 

SET UP:   Let the potential energy of each block be zero at its initial position. The kinetic energy of the 
system is the sum of the kinetic energies of each object. ,v Rω=  where v is the common speed of the 
blocks and ω is the angular velocity of the pulley. 
EXECUTE:   The amount of gravitational potential energy which has become kinetic energy is 

2(4 00 kg 2 00 kg)(9 80 m/s )(5 00 m) 98 0 JK = . − . .  . = . .  In terms of the common speed v of the blocks, the 

kinetic energy of the system is 
2

21 1
1 22 2( ) .v

K m m v I
R

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

 

2
2 2

2
1 (0 380 kg m )4 00 kg 2 00 kg (10 422 kg).
2 (0 160 m)

K v v
⎛ ⎞. ⋅= . + . + = .⎜ ⎟⎜ ⎟.⎝ ⎠

 Solving for v gives 

98 0 J 3.07 m/s.
10.422 kg

v
.= =   

EVALUATE:   If the pulley is massless, 21
298 0 J (4 00 kg 2 00 kg)v. = . + . and 5 72 m/s.v = .  The moment of 

inertia of the pulley reduces the final speed of the blocks. 
 9.77. IDENTIFY:   1 2.I I I= +  Apply conservation of energy to the system. The calculation is similar to Example 9.8. 

SET UP:   
1

v
R

ω = for part (b) and 
2

v
R

ω =  for part (c). 

EXECUTE:   (a) 2 2 2 2 2 21 1 1
1 1 2 22 2 2 ((0 80 kg)(2 50 10  m) (1 60 kg)(5 00 10  m) )I M R M R − −= + = . . × + . . ×  

3 22 25 10  kg m .I −= . × ⋅  

(b) The method of Example 9.8 yields 2
1

2 .
1 ( / )

gh
v

I mR
=

+
 

2

3 2 2
2(9 80 m/s )(2 00 m) 3 40 m/s.

(1 ((2 25 10  kg m )/(1 50 kg)(0 025 m) ))
v −

.  .= = .  
+ . × ⋅ . .

 

(c) The same calculation, with 2R  instead of 1R  gives 4 95 m/s.v = .   
EVALUATE:   The final speed of the block is greater when the string is wrapped around the larger disk. 

,v Rω=  so when 2R R=  the factor that relates v to ω is larger. For 2R R= a larger fraction of the total 
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kinetic energy resides with the block. The total kinetic energy is the same in both cases (equal to mgh), so 
when 2R R= the kinetic energy and speed of the block are greater. 

 9.78. IDENTIFY:   The potential energy of the falling block is transformed into kinetic energy of the block and 
kinetic energy of the turning wheel, but some of it is lost to the work by friction. Energy conservation 
applies, with the target variable being the angular velocity of the wheel when the block has fallen a given 
distance. 
SET UP:   1 1 other 2 2,K U W K U+ + = +  where 21

2 ,K mv=  U = mgh, and Wother is the work done by friction. 

EXECUTE:   Energy conservation gives 2 21 1
2 2( 9 00 J) .mgh mv Iω+ − . = +  ,v Rω=  so 2 2 21 1

2 2mv mR ω=  

and 2 21
2( 9 00 J) ( ) .mgh mR I ω+ − . = +  Solving for ω  gives 

  
ω = 2[mgh + (−9.00 J)]

mR2 + I
= 2[(0.340 kg)(9.8 m/s2 )(3.00 m) − 9.00 J]

(0.340 kg)(0.180 m)2 + 0.480 kg ⋅ m2
 = 2.01 rad/s. 

EVALUATE:   Friction does negative work because it opposes the turning of the wheel. 
 9.79. IDENTIFY:   Apply conservation of energy to relate the height of the mass to the kinetic energy of the 

cylinder. 
SET UP:   First use (cylinder) 480 JK =  to find ω  for the cylinder and v for the mass. 

EXECUTE:   2 2 21 1
2 2 (10 0 kg)(0 150 m) 0 1125 kg m .I MR= = . . = . ⋅  21

2K Iω=  so 2 / 92 38 rad/s.K Iω = = .  

13 86 m/s.v Rω= = .  
SET UP:   Use conservation of energy 1 1 2 2K U K U+ = +  to solve for the distance the mass descends. Take 

0y =  at lowest point of the mass, so 2 0y =  and 1 ,y h=  the distance the mass descends. 

EXECUTE:   1 2 0K U= =  so 1 2.U K=  2 21 1
2 2 ,mgh mv Iω= +  where 12 0 kg.m = .  For the cylinder, 

21
2I MR=  and ,v/Rω =  so 2 21 1

2 4 .I Mvω =  Solving 2 21 1
2 4mgh mv Mv= +  for h gives 

2
1 13 9 m.

2 2
v M

h
g m
⎛ ⎞= + = .⎜ ⎟
⎝ ⎠

 

EVALUATE:   For the cylinder 2 2 2 21 1 1 1
cyl 2 2 2 4( )( / ) .K I MR v R Mvω= = =  21

mass 2 ,K mv=  so 

mass cyl(2 / ) [2(12 0 kg)/10 0 kg](480 J) 1150 J.K m M K= = . . =  The mass has 1150 J of kinetic energy when 

the cylinder has 480 J of kinetic energy and at this point the system has total energy 1630 J since 2 0.U =  
Initially the total energy of the system is 1 1 1630 J,U mgy mgh= = =  so the total energy is shown to be 
conserved. 

 9.80. IDENTIFY:   Energy conservation: Loss of U of box equals gain in K of system. Both the cylinder and 
pulley have kinetic energy of the form 21

2 .K Iω=  

2 2 2
box box box pulley pulley cylinder cylinder

1 1 1 .
2 2 2

m gh m v I Iω ω= + +  

SET UP:   
  
ωpulley =

vbox
rpulley

 and ωcylinder =
vbox

rcylinder
.  

  Let B = box, P = pulley, and C = cylinder. 

EXECUTE:   ( ) ( )
22

2 2 2B B1 1 1 1 1
B B B P P C C2 2 2 2 2

P C
.v v

m gh m v m r m r
r r

⎛ ⎞⎛ ⎞
= +   +   ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 2 2 2

B B B P B C B
1 1 1
2 4 4

m gh m v m v m v= + +  

and 
2

B
B 1 1 1 1

B P C2 4 4 4

(3 00 kg)(9 80 m/s )(2 50 m) 4 76 m s.
1 50 kg (7 00 kg)

m gh
v /

m m m
. . .= = = .  

+ + . + .
 

EVALUATE:   If the box was disconnected from the rope and dropped from rest, after falling 2.50 m its 
speed would be 2 (2 50 m) 7 00 m/s.v g= . = .  Since in the problem some of the energy of the system goes 
into kinetic energy of the cylinder and of the pulley, the final speed of the box is less than this. 
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 9.81. IDENTIFY:   The total kinetic energy of a walker is the sum of his translational kinetic energy plus the 
rotational kinetic of his arms and legs. We can model these parts of the body as uniform bars. 
SET UP:   For a uniform bar pivoted about one end, 21

3 .I mL=  5 0 km/h 1 4 m/s.v = . = .  
2 21 1

tran rot2 2and .K mv K Iω= =  

EXECUTE:   (a) 1
360 ( ) rad.° =  The average angular speed of each arm and leg is 

1
3  rad

1 05 rad/s.
1 s

= .  

(b) Adding the moments of inertia gives 
2 2 2 21 1 1

arm arm leg leg3 3 3[(0 13)(75 kg)(0 70 m) (0 37)(75 kg)(0 90 m) ].I m L m L= + = . . + . .  29 08 kg mI = . ⋅ .  
2 2 21 1

rot 2 2 (9 08 kg m )(1 05 rad/s) 5 0 J.K Iω= = . ⋅ . = .  

(c) 2 21 1
tran 2 2 (75 kg)(1 4 m/s) 73 5 JK mv= = . = .  and tot tran rot 78 5 J.K K K= + = .  

(d) rot

tran

5 0 J 6 4%.
78 5 J

K
K

.= = .
.

 

EVALUATE:   If you swing your arms more vigorously more of your energy input goes into the kinetic 
energy of walking and it is more effective exercise. Carrying weights in our hands would also be effective. 

 9.82. IDENTIFY:   The total kinetic energy of a runner is the sum of his translational kinetic energy plus the 
rotational kinetic of his arms and legs. We can model these parts of the body as uniform bars. 
SET UP:   Now 12 km/h 3 33 m/s.v = = .  2

tot 9 08 kg mI = . ⋅  as in the previous problem. 

EXECUTE:   (a) av
/3 rad 2 1 rad/s.
0 5 s

πω = = .
.

 

(b) 2 2 21 1
rot 2 2 (9 08 kg m )(2 1 rad/s) 20 J.K Iω= = . ⋅ . =  

(c) 2 21 1
tran 2 2 (75 kg)(3 33 m/s) 416 J.K mv= = . =  Therefore  

tot tran rot 416 J  20 J  436 J.K K K= + = + =  

(d) rot

tot

20 J 0.046,
436 J

K
K

= =  so Krot is 4.6% of Ktot. 

EVALUATE:   The amount rotational energy depends on the geometry of the object. 
 9.83. IDENTIFY:   We know (or can calculate) the masses and geometric measurements of the various parts of 

the body. We can model them as familiar objects, such as uniform spheres, rods, and cylinders, and 
calculate their moments of inertia and kinetic energies. 
SET UP:   My total mass is m = 90 kg. I model my head as a uniform sphere of radius 8 cm. I model my trunk 
and legs as a uniform solid cylinder of radius 12 cm. I model my arms as slender rods of length 60 cm. 

72 rev/min 7 5 rad/s.ω = = .  For a solid uniform sphere, I = 2/5 MR2, for a solid cylinder, 21
2 ,I MR=  and for  

a rod rotated about one end I = 1/3 ML2. 
EXECUTE:   (a) Using the formulas indicated above, we have Itot = Ihead + Itrunk+legs + Iarms, which gives 

( )2 2 2 22 1 1
tot 5 2 3(0 070 )(0 080 m) (0 80 )(0 12 m) 2 (0 13 )(0 60 m) 3 3 kg mI m m m= . . + . . + . . = . ⋅  where we have 

used m = 90 kg. 
(b) 2 2 21 1

rot 2 2 (3 3 kg m )(7 5 rad/s) 93 J.K Iω= = . ⋅ . =  

EVALUATE:   According to these estimates about 85% of the total I is due to the outstretched arms. If the 
initial translational kinetic energy 21

2 mv  of the skater is converted to this rotational kinetic energy as he 

goes into a spin, his initial speed must be 1 4 m/s..  
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 9.84. IDENTIFY:   Apply the parallel-axis theorem to each side of the square. 
SET UP:   Each side has length a and mass /4,M  and the moment of inertia of each side about an axis 

perpendicular to the side and through its center is ( )2 21 1 1
12 4 48 .Ma Ma=  

EXECUTE:   The moment of inertia of each side about the axis through the center of the square is, from the 

perpendicular axis theorem, 
22 2

.
48 4 2 12

Ma M a Ma⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 The total moment of inertia is the sum of the 

contributions from the four sides, or 
2 2

4 .
12 3

Ma Ma× =  

EVALUATE:   If all the mass of a side were at its center, a distance /2a from the axis, we would have 
2

214 .
4 2 4
M a

I Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 If all the mass was divided equally among the four corners of the square, a 

distance / 2a from the axis, we would have 
2

21
24 .

4 2
M a

I Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 The actual I is between these two 

values. 
 9.85. IDENTIFY:   The density depends on the distance from the center of the sphere, so it is a function of r. We 

need to integrate to find the mass and the moment of inertia. 
SET UP:   M dm dVρ= =∫ ∫  and .I dI= ∫  

EXECUTE:   (a) Divide the sphere into thin spherical shells of radius r and thickness .dr  The volume of 
each shell is 24 .dV r drπ=  ( ) ,r a brρ = −  with 3 33 00 10  kg/ma = . × and 3 49 00 10  kg/m .b = . ×  Integrating 

gives 2 3
0

4 3( )4 .
3 4

R
M dm dV a br r dr R a bRρ π π ⎛ ⎞= = = − = −⎜ ⎟

⎝ ⎠∫ ∫ ∫  

3 3 3 3 44 3(0 200 m) 3 00 10  kg/m (9 00 10  kg/m )(0 200 m) 55 3 kg.
3 4

M π ⎛ ⎞= . . × − . × . = .⎜ ⎟⎝ ⎠
 

(b) The moment of inertia of each thin spherical shell is 
2 2 2 2 42 2 2 8( )4 ( ) .

3 3 3 3
dI r dm r dV r a br r dr r a br dr

πρ π= = = − = −  

4 5
0 0

8 8 5( ) .
3 15 6

R R b
I dI r a br dr R a R

π π ⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠∫ ∫  

5 3 3 3 4 28 5(0 200 m) 3 00 10  kg/m (9 00 10  kg/m )(0 200 m) 0 804 kg m .
15 6

I
π ⎛ ⎞= . . × − . × . = . ⋅⎜ ⎟

⎝ ⎠
 

EVALUATE:   We cannot use the formulas M Vρ=  and 21
2I MR=  because this sphere is not uniform 

throughout. Its density increases toward the surface. For a uniform sphere with density 3 33 00 10  kg/m ,. ×  

the mass is 34 100 5 kg.
3

Rπ ρ = .  The mass of the sphere in this problem is less than this. For a uniform 

sphere with mass 55.3 kg and 0 200 m,R = . 2 22 0 885 kg m .
5

I MR= = . ⋅  The moment of inertia for the 

sphere in this problem is less than this, since the density decreases with distance from the center of  
the sphere. 

 9.86. IDENTIFY:   Write K in terms of the period T and take derivatives of both sides of this equation to relate 
/dK dt to / .dT dt  

SET UP:   2
T

ω π= and 21
2 .K Iω=  The speed of light is 83 00 10  m/s.c = . ×  

EXECUTE:   (a) 
2

2
2 .I

K
T
π=  

2

3
4 .dK I dT

dt dtT
π=-  The rate of energy loss is 

2

3
4 .I dT

dtT
π  Solving for the 

moment of inertia  in terms of the power ,I P  
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3 31 3
38 2

2 2 13
1 (5 10  W)(0 0331 s) 1 s 1 09 10 kg m
/4 4 4 22 10 s

PT
I

dT dtπ π
 

−  
× .=  =  = . × ⋅

. ×
 

(b) 
38 2

3
30

5 5(1 08 10 kg m ) 9 9 10 m,  about 10 km.
2 2(1 4)(1 99 10 kg)

I
R

M

 
 

 
. × ⋅= = = . ×
. . ×

 

(c) 
3

6 32 2 (9 9 10 m) 1 9 10 m/s 6 3 10 .
(0 0331 s)

R
v c

T
π π −. ×= = = . ×  = . ×

.
 

(d) 17 3
3 6 9 10 kg m ,

(4 /3)
M M

/
V R

ρ
π

= = = . × which is much higher than the density of ordinary rock by  

14 orders of magnitude, and is comparable to nuclear mass densities. 
EVALUATE:   I is huge because M is huge. A small rate of change in the period corresponds to a large 
release of energy. 

 9.87. IDENTIFY:   The graph with the problem in the text shows that the angular acceleration increases linearly 
with time and is therefore not constant. 
SET UP:   / ,z d dtω θ=  / .z zd dtα ω=  
EXECUTE:   (a) Since the angular acceleration is not constant, Eq. (9.11) cannot be used, so we must use 

/z zd dtα ω=  and   ω z = dθ /dt  and integrate to find the angle. The graph passes through the origin and has 

a constant positive slope of 6/5 rad/s3, so the equation for zα  is zα  = (1.2 rad/s3)t. Using /z zd dtα ω=  

gives 3 3 2
0 0 0

0 (1.2 rad/s ) (0.60 rad/s ) .
t t

z z zdt tdt tω ω α= + = + =∫ ∫  Now we must use /z d dtω θ=  and 

integrate again to get the angle. 
3 2 3 3

2 1 0 0
(0.60 rad/s ) (0.20 rad/s )

t t
zdt t dt tθ θ ω− = = =∫ ∫  = (0.20 rad/s3)(5.0 s)3 = 25 rad. 

(b) The result of our first integration gives ω z  = (0.60 rad/s3)(5.0 s)2 = 15 rad/s. 
(c) The result of our second integration gives 4π rad = (0.20 rad/s3)t3, so t = 3.98 s. Therefore  
ω z  = (0.60 rad/s3)(3.98 s)2 = 9.48 rad/s. 
EVALUATE: When the constant-acceleration angular kinematics formulas do not apply, we must go back to 
basic definitions. 

 9.88. IDENTIFY and SET UP:   The graph of a2 versus 2
0( )θ θ−  is shown in Figure 9.88. It is a straight line with 

a positive slope. The angular acceleration is constant. 
 

 

Figure 9.88 
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EXECUTE:   (a) From graphing software, the slope is 0.921 m2/s4 and the y-intercept is 0.233 m2/s4.  
(b) The resultant acceleration is 2 2 2

tan rad.a a a= +  tan za rα=  and 2
rad ,za rω=  where 

2 2
0 02 ( )z z zω ω α θ θ= + −  = 0 + 02 ( ).zα θ θ−  Therefore the resultant acceleration is 

a2 = (r α z )2 + [2r 2
0( )]zα θ θ−   

a2 = 2 2 2
04 ( )zr α θ θ−  + 2( ) .zrα  

From this result, we see that the slope of the graph is 2 24 ,zr α so 2 24 zr α  = 0.921 m2/s4. Solving for zα  

gives 
2 4

2
0.921 m /s=
4(0.800 m)zα  = 0.600 rad/s2. 

(c) Using 2 2
0 02 ( )z z zω ω α θ θ= + −  gives 2

zω  = 0 + 2(0.600 rad/s2)(3π/4 rad), ω z  = 1.6815 rad/s. The speed 

is v = r zω  = (0.800 m)(1.6815 rad/s) = 1.35 m/s. 
(d) Call φ  the angle between the linear velocity and the resultant acceleration. The resultant velocity is 

tangent to the circle, so 
2 2

rad

tan
tan .z z

z z

a r
a r

ω ωφ
α α

= = =  It is also the case that 2 2 ,z zω α θ= ∆  so 

2tan 2 2( /2) .z

z

α θφ θ π π
α

∆= = ∆ = =  Thus φ  = arctan π = 72.3°. 

EVALUATE:    According to the work in parts (a) and (b), the y-intercept of the graph is 2( )zrα  and is 

equal to 0.233 m2/s4. Solving for zα  gives zα  = 
2 4

2
0.233 m /s
(0.800 m)

 = 0.60 rad/s2, as we found in part (b). 

 9.89. IDENTIFY and SET UP:   The equation of the graph in the text is d = (165 cm/s2)t2. For constant 
acceleration, the second time derivative of the position (d in this case) is a constant. 

EXECUTE:   (a) ( )d d
dt

 = (330 cm/s2)t and 
2

2
( )d d

dt
 = 330 cm/s2, which is a constant. Therefore the 

acceleration of the metal block is a constant 330 cm/s2 = 3.30 m/s2. 

(b) v = 
( )d d
dt

 = (330 cm/s2)t. When d = 1.50 m = 150 cm, we have 150 cm = (165 cm/s2)t2, which gives  

t = 0.9535 s. Thus v = 330 cm/s2)(0.9535 s) = 315 cm/s = 3.15 m/s. 
(c) Energy conservation 1 1 2 2K U K U+ = +  gives 2 21 1

2 2 .mgd I mvω= +  Using ω  = v/r, solving for I and 

putting in the numbers m = 5.60 kg, d = 1.50 m, r = 0.178 m, v = 3.15 m/s, we get I = 0.348 2kg m .⋅  
(d) Newton’s second law gives mg – T = ma, T = m(g – a) = (5.60 kg)(9.80 m/s2 – 3.30 m/s2) = 36.4 N. 
EVALUATE:    When dealing with non-uniform objects, such as this flywheel, we cannot use the standard 
moment of inertia formulas and must resort to other ways. 

 9.90. IDENTIFY:   Apply 2  .I r dm= ∫  

SET UP: Let z be the coordinate along the vertical axis. ( ) .zR
r z

h
=  

2 2

2
R z

dm
h

πρ= and 
4

4
4 .

2
R

dI z dz
h

πρ=   

EXECUTE:   
4 4

4 5 4
4 40 0

1 .
2 10 10

hhR R
I dI z dz z R h

h h
πρ πρ πρ ⎡ ⎤= = = =  ⎣ ⎦∫ ∫  The volume of a right circular cone is 

2 21 1
3 3,  the mass is  and soV R h R hπ πρ=  

2
2 23 3 .

10 3 10
R h

I R MR
πρ⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

EVALUATE:   For a uniform cylinder of radius R and for an axis through its center, 21
2 .I MR=  I for the 

cone is less, as expected, since the cone is constructed from a series of parallel discs whose radii decrease 
from R to zero along the vertical axis of the cone. 
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 9.91. IDENTIFY:   Follow the steps outlined in the problem. 
SET UP:   / .z d dtω θ=  2 2/ .z zd dtα ω=  

EXECUTE:   (a) 0ds r d r d dθ θ βθ θ=  = +   so 2
0 2( ) .s r βθ θ θ= +  θ must be in radians. 

(b) Setting 2
0 2s vt r βθ θ= = + gives a quadratic in .θ  The positive solution is 

2
0 0

1( ) 2 .t r vt rθ β
β
⎡ ⎤= + −⎢ ⎥⎣ ⎦

 

(The negative solution would be going backwards, to values of r smaller than 0.r ) 

(c) Differentiating, 
2

0

( ) ,
2

θω
β

= =
+

z
d v

t
dt r vt

α z =
dω z
dt

= − βv2

(r0
2 + 2βvt)3 / 2

.  The angular acceleration zα  

is not constant. 
(d) 0 25 0 mm.r = .  θ  must be measured in radians, so (1 55 m/rev)(1rev/2 rad) 0 247 m/rad.β µ π µ= .   = .  
Using ( )tθ  from part (b), the total angle turned in 74 0 min 4440 s. =  is 

( )7 3 2 3
7

1 2(2 47 10 m/rad)(1 25 m/s)(4440 s) (25 0 10 m) 25 0 10  m
2 47 10 m/rad

θ − − −
−= . × . + . × − . ×

. ×
 

5 1 337 10  rad,θ = . ×  which is 42 13 10  rev.. ×  
(e) The graphs are sketched in Figure 9.91. 
EVALUATE:   zω must decrease as r increases, to keep v rω= constant. For zω to decrease in time, 

zα must be negative. 
 

 

Figure 9.91 
 

 9.92. IDENTIFY and SET UP:   For constant angular speed .tθ ω=  
EXECUTE:   (a) tθ ω=  = (14 rev/s)(2π rad/rev)(1/120 s) = 42°, which is choice (d). 
EVALUATE:    This is quite a large rotation in just one frame. 

 9.93. IDENTIFY and SET UP:   The average angular acceleration is 0
av .

t
ω ωα −=  

EXECUTE:   (a) 0
av t

ω ωα −=  = [8 rev/s – (–14 rev/s)]/(10 s) = (2.2 rev/s)(2π rad/rev) = 44π/10 rad/s2 

which is choice (d). 
EVALUATE:    This is nearly 14 rad/s2. 

 9.94. IDENTIFY and SET UP:   The rotational kinetic energy is K = 1
2

Iω 2  and the kinetic energy due to running 

is 21
2 .K mv=   
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  EXECUTE:    Equating the two kinetic energies gives 1
2

mv2  = 21
2 .Iω  Using 21

2 ,I mR=  we have  

  2 2 21 1 1
2 2 2( ) ,mr mvω =  which gives (0.05 m)(14 rev/s)(2  rad/rev)

2 2
r

v
ω π= =  = 3.11 m/s, choice (c). 

EVALUATE:   This is about 3 times as fast as a human walks. 
 9.95. IDENTIFY and SET UP:   21

2 .I mR=  

EXECUTE:   (a) 21
2 ,I mR=  so if we double the radius but keep the mass fixed, the moment of inertia 

increases by a factor of 4, which is choice (d). 
EVALUATE: The difference in length of the two eels plays no part in their moment of inertia if their mass is 
the same in both cases. 
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 10.1. IDENTIFY:   Use Flτ =  to calculate the magnitude of the torque and use the right-hand rule illustrated in 
Section 10.1 in the textbook to calculate the torque direction. 
(a) SET UP:   Consider Figure 10.1a. 

 

 EXECUTE:   Flτ =  
sin (4 00 m)sin90l r φ= = . °  

4 00 ml = .  
(10.0 N)(4.00 m) 40 0 N mτ = = . ⋅  

Figure 10.1a   
 

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τG  
is directed out of the plane of the figure. 
(b) SET UP:   Consider Figure 10.1b. 

 

 EXECUTE:   Flτ =  
sin (4 00 m)sin120l r φ= = . °  

3 464 ml = .  
(10.0 N)(3.464 m) 34 6 N mτ = = . ⋅  

Figure 10.1b  
 

 

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τG  
is directed out of the plane of the figure. 
(c) SET UP:   Consider Figure 10.1c. 

 

 EXECUTE:   Flτ =  
sin (4 00 m)sin30l r φ= = . °  

2 00 ml = .  
(10.0 N)(2.00 m) 20 0 N mτ = = . ⋅  

Figure 10.1c  
 

 

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τG  
is directed out of the plane of the figure. 
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(d) SET UP:   Consider Figure 10.1d. 
 

 EXECUTE:   Flτ =  
sin (2.00 m)sin 60 1.732 ml r φ= = ° =  
(10.0 N)(1.732 m) 17 3 N mτ = = . ⋅  

Figure 10.1d  
 

 

This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector τG  is 
directed into the plane of the figure. 
(e) SET UP:   Consider Figure 10.1e. 

 

 EXECUTE:   Flτ =  
0r =  so 0l =  and 0τ =  

Figure 10.1e  
 

 

(f) SET UP:   Consider Figure 10.1f. 
 

 EXECUTE:   Flτ =  
sin ,l r φ=  180 ,φ = °  

so 0l =  and 0τ =  

Figure 10.1f   
 

EVALUATE:    The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of 
the force passes through the axis. 

 10.2. IDENTIFY:   Flτ =  with sin .l r φ=  Add the two torques to calculate the net torque. 
SET UP:   Let counterclockwise torques be positive. 
EXECUTE:   1 1 1 (8 00 N)(5 00 m) 40 0 N m.F lτ = − = − . . = − . ⋅  

2 2 2 (12 0 N)(2 00 m)sin30 0 12 0 N m.F lτ = + = . . . ° = + . ⋅  1 2 28 0 N m.τ τ τ∑ = + = − . ⋅  The net torque is 
28 0 N m,. ⋅  clockwise. 
EVALUATE:   Even though <1 2,F F  the magnitude of 1τ  is greater than the magnitude of 2,τ  because 1F  
has a larger moment arm. 

 10.3. IDENTIFY and SET UP:   Use Flτ =  to calculate the magnitude of each torque and use the right-hand rule 
(Figure 10.4 in the textbook) to determine the direction. Consider Figure 10.3. 

 

 

Figure 10.3 
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Let counterclockwise be the positive sense of rotation. 

EXECUTE:   2 2
1 2 3 (0 090 m) (0 090 m) 0 1273 mr r r= = = . + . = .  

1 1 1F lτ = −  

1 1 1sin (0 1273 m)sin135 0 0900 ml r φ= = . ° = .  

1 (18 0 N)(0 0900 m) 1 62 N mτ = − . . = − . ⋅  
τG1  is directed into paper 

2 2 2F lτ = +  

  l2 = r2sinφ2 = (0.1273 m)sin135° = 0.0900 m  

2 (26.0 N)(0 0900 m) 2 34 N mτ = + . = + . ⋅  

2τG  is directed out of paper 

3 3 3F lτ = +  

3 3 3sin (0 1273 m)sin90 0 1273 ml r φ= = . ° = .  

3 (14 0 N)(0 1273 m) 1 78 N mτ = + . . = + . ⋅  

3τG  is directed out of paper 

1 2 3 1 62 N m 2 34 N m 1 78 N m 2 50 N mτ τ τ τ∑ = + + = − . ⋅ + . ⋅ + . ⋅ = . ⋅  
EVALUATE:   The net torque is positive, which means it tends to produce a counterclockwise rotation; the 
vector torque is directed out of the plane of the paper. In summing the torques it is important to include  
+  or −  signs to show direction. 

 10.4. IDENTIFY:   Use sinFl rFτ φ= =  to calculate the magnitude of each torque and use the right-hand rule to 
determine the direction of each torque. Add the torques to find the net torque. 
SET UP:   Let counterclockwise torques be positive. For the 11.9 N force 1( ),F  0.r =  For the 14.6 N force 

2( ),F  0 350 mr = .  and 40 0 .φ = . °  For the 8.50 N force 3( ),F  0 350 mr = .  and 90 0 .φ = . °  
EXECUTE:    1 0.τ = 2 (14 6 N)(0 350 m)sin40 0 3 285 N m.τ = − . . . ° = − . ⋅  

3 (8 50 N)(0 350 m)sin90 0 2 975 N m.τ = + . . . ° = + . ⋅  3 285 N m 2 975 N m 0 31 N m.τ∑ = − . ⋅ + . ⋅ = − . ⋅ The net 
torque is 0 31 N m. ⋅ and is clockwise. 
EVALUATE:   If we treat the torques as vectors, 2

Gτ  is into the page and 3
Gτ  is out of the page. 

 10.5. IDENTIFY and SET UP:   Calculate the torque using Eq. (10.3) and also determine the direction of the 
torque using the right-hand rule. 
(a) ˆ ˆ( 0 450 m) (0 150 m) ;= − . + .r i jG ˆ ˆ( 5 00 N) (4 00 N)= − . + . .F i j

G
 The sketch is given in Figure 10.5. 

 

 

Figure 10.5 
 

EXECUTE:   (b) When the fingers of your right hand curl from the direction of rG  into the direction of F
G

 
(through the smaller of the two angles, angle )φ  your thumb points into the page (the direction of ,

Gτ  the 
-direction).z−  

(c) ˆ ˆ ˆ ˆ[( 0 450 m) (0 150 m) ] [( 5 00 N) (4 00 N) ]= × = − . + . × − . + .
GG Gr F i j i jτ  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(2 25 N m) (1 80 N m) (0 750 N m) (0 600 N m)= + . ⋅ × − . ⋅ × − . ⋅ × + . ⋅ ×G
i i i j j i j jτ  

ˆ ˆ ˆ ˆ 0× = × =i i j j  
ˆ ˆ ˆ,× =i j k  ˆ ˆ ˆ× = −j i k  
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Thus ˆ ˆ ˆ(1 80 N m) (0 750 N m)( ) ( 1 05 N m) .= − . ⋅ − . ⋅ − = − . ⋅G
k k kτ  

EVALUATE:   The calculation gives that 
Gτ  is in the -direction.z−  This agrees with what we got from the 

right-hand rule. 
 10.6. IDENTIFY:   Knowing the force on a bar and the point where it acts, we want to find the position vector for 

the point where the force acts and the torque the force exerts on the bar. 
SET UP:   The position vector is ˆ ˆx y= +r i jG  and the torque is .= ×

GG Gr Fτ  

EXECUTE:   (a) Using 3.00 mx =  and 4.00 m,y =  we have ˆ ˆ(3 00 m) (4 00 m) .= . + .Gr i j  

(b) ˆ ˆ ˆ ˆ[ 3 00 m (4 00 m) ] [ 7 00 N) ( 3 00 N) ].= × = . + . × . + − .( ) (
GG Gr F i j i jτ  

ˆ ˆ ˆ( 9 00 N m) ( 28 0 N m)( ) ( 37 0 N m) .= − . ⋅ + − . ⋅ − = − . ⋅G
k k kτ  The torque has magnitude 37 0 N m. ⋅  and is in 

the -direction.z−  
EVALUATE:   Applying the right-hand rule for the vector product to ×r F

GG  shows that the torque must be 
in the -directionz−  because it is perpendicular to both and ,r F

GG  which are both in the x-y plane. 
 10.7. IDENTIFY:   Use sinFl rFτ φ= = for the magnitude of the torque and the right-hand rule for the direction. 

SET UP:   In part (a), 0 250 mr = .  and 37 .φ = °  
EXECUTE:   (a) (17 0 N)(0 250 m)sin37 2 56 N m.τ = . . ° = . ⋅  The torque is counterclockwise. 
(b) The torque is maximum when 90φ = °  and the force is perpendicular to the wrench. This maximum 
torque is (17 0 N)(0 250 m) 4 25 N m.. . = . ⋅  
EVALUATE:   If the force is directed along the handle then the torque is zero. The torque increases as the 
angle between the force and the handle increases. 

 10.8. IDENTIFY:   The constant force produces a torque which gives a constant angular acceleration to the disk 
and a linear acceleration to points on the disk. 
SET UP:   z zIτ α∑ =  applies to the disk, 2 2

0 02 ( )z z zω ω α θ θ= + −  because the angular acceleration is 

constant. The acceleration components of the rim are tana rα=  and 2
rad ,a rω=  and the magnitude of the 

acceleration is 2 2
tan rad .a a a= +  

EXECUTE:   (a) z zIτ α∑ =  gives α= .zFr I  For a uniform disk, 

2 2 21 1
2 2 (40 0 kg)(0 200 m) 0 800 kg m .I MR= = . . = . ⋅  2

2
(30 0 N)(0 200 m)

7 50 rad/s .
0 800 kg mz

Fr
I

α . .= = = .
. ⋅

 

0 0.200 rev 1.257 rad.θ θ− = =  0 0,zω =  so 2 2
0 02 ( )z z zω ω α θ θ= + −  gives 

22(7 50 rad/s )(1 257 rad) 4 342 rad/s.zω = . . = .  (0 200 m)(4 342 rad/s) 0 868 m/s.v rω= = . . = .  

(b) 2 2
tan (0 200 m)(7 50 rad/s ) 1 50 m/s .a rα= = . . = .  2 2 2

rad (0 200 m)(4 342 rad/s) 3 771 m/s .a rω= = . . = .  
2 2 2
tan rad 4 06 m/s .a a a= + = .  

EVALUATE:   The net acceleration is neither toward the center nor tangent to the disk. 
 10.9. IDENTIFY:   Apply .z zIτ α∑ =  

SET UP:   0 0.zω =  2  rad/rev(400 rev/min) 41 9 rad/s
60 s/minz
πω ⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

EXECUTE:   
  
τ z = Iα z = I

ω z − ω0z
t

= (1.60 kg ⋅ m2 ) 41.9 rad/s
8.00 s

= 8.38 N ⋅ m.  

EVALUATE:   In , z z zIτ α= α  must be in 2rad/s .  
 10.10. IDENTIFY:   Apply z zIτ α∑ =  to the wheel. The acceleration a of a point on the cord and the angular 

acceleration α  of the wheel are related by .a Rα=  
SET UP:   Let the direction of rotation of the wheel be positive. The wheel has the shape of a disk and 

21
2 .I MR=  The free-body diagram for the wheel is sketched in Figure 10.10a for a horizontal pull and  
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in Figure 10.10b for a vertical pull. P is the pull on the cord and F is the force exerted on the wheel by  
the axle. 

EXECUTE:   (a) 2
21

2

(40 0 N)(0 250 m) 34 8 rad/s .
(9 20 kg)(0 250 m)

z
z I

τα . .= = = .
. .

 

2 2(0 250 m)(34.8 rad/s ) 8 70 m/s .a Rα= = . = .  

(b) ,xF P= −  .yF Mg=  2 2 2 2 2( ) (40 0 N) ( 9 20 kg 9 80 m/s ) 98 6 N.F P Mg= + = . + [ . ][ . ] = .  
2(9 20 kg)(9 80 m/s )tan

40 0 N
y

x

F Mg
F P

φ . .= = =
.

| |
| |

 and 66 1 .φ = . °  The force exerted by the axle has magnitude 

98.6 N and is directed at 66 1. °  above the horizontal, away from the direction of the pull on the cord. 
(c) The pull exerts the same torque as in part (a), so the answers to part (a) don’t change. In part (b), 
F P Mg+ =  and 2(9 20 kg)(9 80 m/s ) 40 0 N 50 2 N.F Mg P= − = . . − . = .  The force exerted by the axle has 
magnitude 50.2 N and is upward. 
EVALUATE:   The weight of the wheel and the force exerted by the axle produce no torque because they act 
at the axle. 

 

 

Figure 10.10 
 

 10.11. IDENTIFY:   Use z zIτ α∑ =  to calculate .α  Use a constant angular acceleration kinematic equation to 
relate ,zα  ,zω  and t. 

SET UP:   For a solid uniform sphere and an axis through its center, 22
5 .I MR=  Let the direction the sphere 

is spinning be the positive sense of rotation. The moment arm for the friction force is 0.0150 ml =  and the 
torque due to this force is negative. 

EXECUTE:   (a) 2
22

5

(0 0200 N)(0 0150 m) 14 8 rad/s
(0 225 kg)(0 0150 m)

z
z I

τα − . .= = = − .
. .

 

(b) 0 22 5 rad/s.z zω ω− = − .  0z z ztω ω α= +  gives 0
2

22 5 rad/s 1 52 s.
14 8 rad/s

z z

z
t ω ω

α
− − .= = = .

− .
 

  EVALUATE:   The fact that zα  is negative means its direction is opposite to the direction of spin. The 
negative zα  causes zω  to decrease.  

 10.12. IDENTIFY:   Apply m∑ =F a
G G  to the stone and z zIτ α∑ =  to the pulley. Use a constant acceleration 

equation to find a for the stone. 
SET UP:   For the motion of the stone take y+  to be downward. The pulley has 21

2 .I MR=  .a Rα=  

EXECUTE:   (a) 21
0 0 2y yy y v t a t− = +  gives 21

212 6 m (3 00 s)ya. = .  and 22.80 m/s .ya =  

Then y yF ma∑ =  applied to the stone gives .mg T ma− =  
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z zIτ α∑ =  applied to the pulley gives 2 21 1
2 2 ( / ).TR MR MR a Rα= =  1

2 .T Ma=  

Combining these two equations to eliminate T gives 
2

2 2
10 0 kg 2 80 m/s 2 00 kg.

2 2 9 80 m/s 2 80 m/s
M am

g a
⎛ ⎞⎛ ⎞ . .⎛ ⎞= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− . − .⎝ ⎠⎝ ⎠ ⎝ ⎠

 

(b) 21 1
2 2 (10 0 kg)(2 80 m/s ) 14 0 NT Ma= = . . = .  

  EVALUATE:   The tension in the wire is less than the weight 19 6 Nmg = .  of the stone, because the stone 
has a downward acceleration. 

 10.13. IDENTIFY:   Apply m∑ =F a
G G  to each book and apply z zIτ α∑ =  to the pulley. Use a constant 

acceleration equation to find the common acceleration of the books. 
SET UP:   1 2 00 kg,m = .  2 3 00 kg.m = .  Let 1T  be the tension in the part of the cord attached to 1m  and  

2T  be the tension in the part of the cord attached to 2.m  Let the -directionx+  be in the direction of the 
acceleration of each book. .a Rα=  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives 20

2 2
2( ) 2(1 20 m) 3 75 m/s .

(0 800 s)x
x xa
t
− .= = = .

.
 2

1 3 75 m/sa = .  so 

1 1 1 7 50 NT m a= = .  and 2 2 1( ) 18 2 N.T m g a= − = .  
(b) The torque on the pulley is 2 1( ) 0 803 N m,T T R− = . ⋅  and the angular acceleration is 

2 2
1/ 50 rad/s ,  so / 0.016 kg m .a R Iα τ α= = = = ⋅  

EVALUATE:   The tensions in the two parts of the cord must be different, so there will be a net torque on 
the pulley.  

 10.14. IDENTIFY:   Apply y yF ma∑ =  to the bucket, with +y  downward. Apply z zIτ α∑ =  to the cylinder, with 
the direction the cylinder rotates positive. 
SET UP:   The free-body diagram for the bucket is given in Figure 10.14a and the free-body diagram for 
the cylinder is given in Figure 10.14b. 21

2 .I MR=  α=(bucket) (cylinder)a R  

EXECUTE:   (a) For the bucket, .mg T ma− =  For the cylinder, z zIτ α∑ =  gives 21
2 .TR MR α=  /a Rα =  

then gives 1
2 .T Ma=  Combining these two equations gives 1

2mg Ma ma− =  and 

2 215 0 kg (9 80 m/s ) 7 00 m/s .
/2 15 0 kg 6 0 kg

mga
m M

⎛ ⎞.= = . = .⎜ ⎟+ . + .⎝ ⎠
 

2 2( ) (15 0 kg)(9 80 m/s 7 00 m/s ) 42 0 N.T m g a= − = . . − . = .  

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 22(7 00 m/s )(10 0 m) 11 8 m/s.yv = . . = .  

(c) 27.00 m/s ,ya =  0 0,yv =  0 10 0 m.y y− = .  21
0 0 2y yy y v t tα− = +  gives 

0
2

2( ) 2(10 0 m) 1 69 s
7 00 m/sy

y yt
a
− .= = = .

.
 

(d) y yF ma∑ =  applied to the cylinder gives − − = 0n T Mg  and 
242 0 N (12 0 kg)(9 80 m/s ) 160 N.n T mg= + = . + . . =  

EVALUATE:   The tension in the rope is less than the weight of the bucket, because the bucket has a 
downward acceleration. If the rope were cut, so the bucket would be in free fall, the bucket would strike 

the water in 2
2(10 0 m) 1 43 s
9 80 m/s

t .= = .
.

 and would have a final speed of 14.0 m/s. The presence of the 

cylinder slows the fall of the bucket. 
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Figure 10.14 
 

 10.15. IDENTIFY:   The constant force produces a torque which gives a constant angular acceleration to the wheel. 
SET UP:   0z z ztω ω α= +  because the angular acceleration is constant, and z zIτ α∑ =  applies to  
the wheel. 
EXECUTE:   0 0zω =  and 12.0 rev/s 75.40 rad/s.zω = =  0 ,z z ztω ω α= +  so 

20 75 40 rad/s 37 70 rad/s .
2 00 s

z z
z t

ω ωα − .= = = .
.

 z zIτ α∑ =  gives 

2
2

(80 0 N)(0 120 m) 0 255 kg m .
37 70 rad/sz

FrI
α

. .= = = . ⋅
.

 

  EVALUATE:   The units of the answer are the proper ones for moment of inertia.  
 10.16. IDENTIFY:   Apply m∑ =F a

G G  to each box and z zIτ α∑ = to the pulley. The magnitude a of the 
acceleration of each box is related to the magnitude of the angular acceleration α of the pulley by .a Rα=  
SET UP:   The free-body diagrams for each object are shown in Figure 10.16. For the pulley, 0 250 mR = .  
and 21

2 .I MR=  1T  and 2T  are the tensions in the wire on either side of the pulley. 1 12 0 kg,m = .  

2 5 00 kgm = .  and 2 00 kg.M = .  F
G

 is the force that the axle exerts on the pulley. For the pulley, let 
clockwise rotation be positive. 
EXECUTE:   (a) x xF ma∑ =  for the 12.0 kg box gives 1 1 .T m a=  y yF ma∑ =  for the 5.00 kg weight gives 

2 2 2 .m g T m a− =  z zIτ α∑ =  for the pulley gives 21
2 1 2( ) ( ) .T T R MR α− =  a Rα=  and 1

2 1 2 .T T Ma− =  

Adding these three equations gives 1
2 1 2 2( )m g m m M a= + +  and 

2 22
1

1 2 2

5 00 kg (9 80 m/s ) 2 72 m/s .
12 0 kg 5 00 kg 1 00 kg

ma g
m m M

⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟ ⎜ ⎟⎜ ⎟+ + . + . + .⎝ ⎠⎝ ⎠
 Then 

2
1 1 (12 0 kg)(2 72 m/s ) 32 6 N.T m a= = . . = .  2 2 2m g T m a− =  gives 

2 2
2 2( ) (5 00 kg)(9 80 m/s 2 72 m/s ) 35 4 N.T m g a= − = . . − . = .  The tension to the left of the pulley is 32.6 N 

and below the pulley it is 35.4 N. 
(b) 22 72 m/sa = .  
(c) For the pulley, x xF ma∑ =  gives 1 32 6 NxF T= = .  and y yF ma∑ =  gives 

2
2 (2 00 kg)(9 80 m/s ) 35 4 N 55 0 N.yF Mg T= + = . . + . = .  

EVALUATE:   The equation 1
2 1 2 2( )m g m m M a= + +  says that the external force 2m g  must accelerate all 

three objects. 
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Figure 10.16 
 

 10.17. IDENTIFY:   Since there is rolling without slipping, cm .v Rω=  The kinetic energy is given by 

tot cm rotK K K= +  where 21
cm cm2K Mv=  and 21

rot cm2 .K I ω=  The velocity of any point on the rim  

of the hoop is the vector sum of the tangential velocity of the rim and the velocity of the center of mass of 
the hoop. 
SET UP:   2.60 rad/sω =  and 0 600 m.R = .  For a hoop rotating about an axis at its center, 2.I MR=  
EXECUTE:   (a)   vcm = Rω = (0.600 m)(2.60 rad/s) = 1.56 m/s.  

(b) 2 2 2 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2 ( )( / ) (2 20 kg)(1 56 m/s) 5.35 JK Mv I Mv MR v R Mvω= + = + = = . . =  

(c) (i)   v = 2vcm = 3.12 m/s.  vG  is to the right. (ii) 0v =  

(iii) 
  
v = vcm

2 + vtan
2 = vcm

2 + (Rω )2 = 2vcm = 2.21 m/s.  vG  at this point is at 45°  below the horizontal. 

(d) To someone moving to the right at cm,v v=  the hoop appears to rotate about a stationary axis at its 
center. (i)  v = Rω = 1.56 m/s,  to the right. (ii) v = 1.56 m/s,  to the left. (iii) v = 1.56 m/s,  downward. 

  EVALUATE:   For the special case of a hoop, the total kinetic energy is equally divided between the motion 
of the center of mass and the rotation about the axis through the center of mass. In the rest frame of the 
ground, different points on the hoop have different speed.  

 10.18. IDENTIFY:   The tumbler has kinetic energy due to the linear motion of his center of mass plus kinetic 
energy due to his rotational motion about his center of mass. 
SET UP:   cm .v Rω=  0.50 rev/s 3.14 rad/s.ω = =  21

2I MR=  with 0 50 mR = . .  21
cm cm2K Mv=  and 

21
rot cm2 .K I ω=  

EXECUTE:   (a) tot cm rotK K K= +  with 21
cm cm2K Mv=  and 21

rot cm2 .K I ω=  

  vcm = Rω = (0.50 m)(3.14 rad/s) = 1.57 m/s.  21
cm 2 (75 kg)(1 57 m/s) 92 4 J.K = . = .  

2 2 2 21 1 1
rot cm cm2 4 4 46.2 J.K I MR Mvω ω= = = =  tot 92 4 J 46 2 J 140 J.K = . + . =  

(b) rot

tot

46 2 J 33%.
140 J

K
K

.= =  

EVALUATE:   The kinetic energy due to the gymnast’s rolling motion makes a substantial contribution 
(33%) to his total kinetic energy. 

 10.19. IDENTIFY:   Apply cm rot .K K K= +  
SET UP:   For an object that is rolling without slipping, cm .v Rω=  
EXECUTE:   The fraction of the total kinetic energy that is rotational is 

2
cm

2 2 2 2 2
cm cm cm cm cm

(1/2) 1 1
(1/2) (1/2) 1 ( / ) / 1 ( / )

I
Mv I M I v MR I

ω
ω ω

= =
+ + +

 

(a) 2
cm (1/2) , so the above ratio is 1/3.I MR=  
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(b) 2
cm (2/5)I MR = so the above ratio is 2/7.  

(c) 2
cm (2/3)I MR=  so the ratio is 2/5.  

(d) 2
cm (5/8)I MR=  so the ratio is 5/13.  

EVALUATE:   The moment of inertia of each object takes the form 2.I MRβ=  The ratio of rotational 

kinetic energy to total kinetic energy can be written as 1 .
1 1/ 1

β
β β

=
+ +

 The ratio increases as β  increases. 

 10.20. IDENTIFY:   Only gravity does work, so other 0W =  and conservation of energy gives 1 1 2 2.K U K U+ = +  
2 21 1

2 cm cm2 2 .K Mv I ω= +  

SET UP:   Let 2 0,y =  so 2 0U =  and 1 0 750 m.y = .  The hoop is released from rest so 1 0.K =  cm .v Rω=  

For a hoop with an axis at its center, 2
cm .I MR=  

EXECUTE:   (a) Conservation of energy gives 1 2.U K=  2 2 2 2 2 21 1
2 2 2 ( ) ,K MR MR MRω ω ω= + =  so 

2 2
1.MR Mgyω =  

2
1 (9 80 m/s )(0 750 m)

33 9 rad/s.
0 0800 m

gy
R

ω . .= = = .
.

 

(b) (0 0800 m)(33 9 rad/s) 2 71 m/sv Rω= = . . = .  
EVALUATE:   An object released from rest and falling in free fall for 0.750 m attains a speed of 

2 (0 750 m) 3 83 m/s.g . = .  The final speed of the hoop is less than this because some of its energy is in 
kinetic energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the 
hoop to be less than its weight. 

 10.21. IDENTIFY:   Apply ext cmm∑ =F a
G G

 and cmz zIτ α∑ =  to the motion of the ball. 
(a) SET UP:   The free-body diagram is given in Figure 10.21a. 

 

 EXECUTE:   y yF ma∑ =  

cosn mg θ=  and s s cosf mgµ θ=  

x xF ma∑ =  
sin cossmg mg maθ µ θ− =  

s(sin cos )g aθ µ θ− =  (Eq. 1) 
Figure 10.21a   

 

SET UP:   Consider Figure 10.21b. 
 

 n and mg act at the center of the ball  
and provide no torque. 

Figure 10.21b   
 

EXECUTE:   s cos ;f mg Rτ τ µ θ∑ = =  22
5I mR=  

cmz zIτ α∑ =  gives 22
s 5cosmg R mRµ θ α=  

No slipping means / ,a Rα =  so 2
s 5cosg aµ θ =  (Eq. 2) 
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We have two equations in the two unknowns a and s.µ  Solving gives 5
7 sina g θ=  and 

2 2
s 7 7tan tan 65 0 0 613.µ θ= = . ° = .  

(b) Repeat the calculation of part (a), but now 22
3 .=I mR  3

5 sina g θ=  and 
2 2

s 5 5tan tan 65 0 0 858µ θ= = . ° = .  

The value of sµ  calculated in part (a) is not large enough to prevent slipping for the hollow ball. 
(c) EVALUATE:   There is no slipping at the point of contact. More friction is required for a hollow ball 
since for a given m and R it has a larger I and more torque is needed to provide the same .α  Note that the 
required sµ  is independent of the mass or radius of the ball and only depends on how that mass is 
distributed. 

 10.22. IDENTIFY:   Apply m∑ =F a
G G  to the translational motion of the center of mass and z zIτ α∑ =  to the 

rotation about the center of mass. 
SET UP:   Let x+  be down the incline and let the shell be turning in the positive direction. The free-body 
diagram for the shell is given in Figure 10.22. From Table 9.2, 22

cm 3 .I mR=  

EXECUTE:   (a) x xF ma∑ =  gives cmsin .mg f maβ − =  z zIτ α∑ =  gives 22
3( ) .fR mR α=  With 

cm /a Rα =  this becomes 2
cm3 .f ma=  Combining the equations gives 2

cm cm3sinmg ma maβ − =  and 
2

2
cm

3 sin 3(9 80 m/s )(sin38 0 ) 3 62 m/s .
5 5

g
a

β . . °= = = .  22 2
cm3 3 (2 00 kg)(3 62 m/s ) 4 83 N.f ma= = . . = .  The 

friction is static since there is no slipping at the point of contact. cos 15 45 N.n mg β= = .  
4 83 N 0 313.

15 45 Ns
f
n

µ .= = = .
.

 

(b) The acceleration is independent of m and doesn’t change. The friction force is proportional to m so will 
double; 9 66 N.f = .  The normal force will also double, so the minimum sµ  required for no slipping 
wouldn’t change. 
EVALUATE:   If there is no friction and the object slides without rolling, the acceleration is sin .g β  
Friction and rolling without slipping reduce a to 0.60 times this value. 

 

 

Figure 10.22 
 

 10.23. IDENTIFY:   Apply conservation of energy to the motion of the wheel. 
SET UP:   The wheel at points 1 and 2 of its motion is shown in Figure 10.23. 
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 Take y = 0 at the center of the wheel when it is 
at the bottom of the hill. 

Figure 10.23  
 

 

The wheel has both translational and rotational motion so its kinetic energy is 2 21 1
cm cm2 2 .ω= +K I Mv  

EXECUTE:   1 1 other 2 2+ + = +K U W K U  

  Wother = Wfric = −2600 J  (the friction work is negative) 
2 2

1 1 1
1 1
2 2 ;K I Mvω= +  v Rω=  and 20 800I MR= .  so 

2 2 2
1 1 1 1

2 2 21 1
2 2(0 800) 0 900K MR MR MRω ω ω= . + = .  

2 0,=K  1 0,=U  2 =U Mgh  

Thus 2 2
1 fric0 900MR W Mghω. + =  

2/ 392 N/(9 80 m/s ) 40 0 kgM w g= = . = .  
2 2

1 fric0 900 ω. += MR Wh
Mg

 

2 2

2
(0 900)(40 0 kg)(0 600 m) (25 0 rad/s) 2600 J 14.0 m.

(40 0 kg)(9 80 m/s )
h . . . . −= =

. .
 

  EVALUATE:   Friction does negative work and reduces h. 
 10.24. IDENTIFY:   Apply conservation of energy to the motion of the marble. 

SET UP:   2 21 1
2 2 ,K mv Iω= +  with 22

5 .I MR=  cm for no slipping.v Rω=  

Let 0y =  at the bottom of the bowl. The marble at its initial and final locations is sketched in  
Figure 10.24. 
EXECUTE:   (a) Motion from the release point to the bottom of the bowl: 2 21 1

2 2 .mgh mv Iω= +  
2

2 21 1
2 2

2
5

vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 and 10 .
7

v gh=
 

 

Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction 

torque on the marble, 21
rot rot2 .mv K mgh K+ = ′ +  

102
7 5

2 2 7
′ = = =

ghvh h
g g

 

(b) mgh mgh= ′  so .h h′ =  
EVALUATE:   (c) With friction on both halves, all the initial potential energy gets converted back to 
potential energy. Without friction on the right half some of the energy is still in rotational kinetic energy 
when the marble is at its maximum height. 

 

 

Figure 10.24 
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 10.25. IDENTIFY:   As the cylinder falls, its potential energy is transformed into both translational and rotational 
kinetic energy. Its mechanical energy is conserved. 
SET UP:   The hollow cylinder has 2 21

2 ( ),a bI m R R= +  where 0 200 maR = .  and 0 350 m.bR = .  Use 

coordinates where y+  is upward and 0=y  at the initial position of the cylinder. Then 1 0y =  and 

2 ,y d=−  where d is the distance it has fallen. cm .ω=v R  21
cm cm2K Mv=  and 21

rot cm2 .ω=K I  

EXECUTE:   (a) Conservation of energy gives 1 1 2 2.K U K U+ = +  1 0,K =  1 0.U =  2 20 U K= +  and 

0 = − +mgd 2 21 1
cm cm2 2 .mv I ω+  2 2 2 2 2 21 1 1 1

cm cm2 2 2 4( [ ])( / ) [1 ( / ) ] ,a b b a bI m R R v R m R R vω = + = +  so 

2 21 1
cm2 2(1 [1 ( / ) ])a bR R v gd+ + =  and 

2 21 2
cm2

2
(1 [1 ( / ) ]) (1 0 663)(6 66 m/s) 3 76 m.

2 2(9 80 m/s )
a bR R v

d
g

+ + + . .= = = .
.

 

(b) 21
2 cm2K mv=  since there is no rotation. So 21

cm2mgd mv=  which gives 

2
cm 2 2(9 80 m/s )(3 76 m) 8 58 m/s.= = . . = .v gd  

(c) In part (a) the cylinder has rotational as well as translational kinetic energy and therefore less 
translational speed at a given kinetic energy. The kinetic energy comes from a decrease in gravitational 
potential energy and that is the same, so in (a) the translational speed is less. 

  EVALUATE:   If part (a) were repeated for a solid cylinder, 0aR =  and 3 39 m.= .d  For a thin-walled 
hollow cylinder, a bR R=  and 4 52 cm.= .d  Note that all of these answers are independent of the mass m 
of the cylinder.  

 10.26. IDENTIFY:   Apply z zIτ α∑ =  and m∑ =F a
G G  to the motion of the bowling ball. 

SET UP:   cm .a Rα=  s s .f nµ=  Let x+  be directed down the incline. 
EXECUTE:   (a) The free-body diagram is sketched in Figure 10.26. 
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up 
the hill. 
(b) The friction force results in an angular acceleration, given by .I fRα =  m∑ =F a

G G  applied to the 
motion of the center of mass gives cmsin ,mg f maβ − =  and the acceleration and angular acceleration are 
related by cm .a Rα=  

Combining, cm cm2sin 1 (7/5).I
mg ma ma

mR
β ⎛ ⎞= + =⎜ ⎟⎝ ⎠

 cm (5/7) sin .a g β=  

(c) From either of the above relations between f and cm,a  cm s s
2 2 sin cos .
5 7

f ma mg n mgβ µ µ β= = ≤ =  

s (2/7)tan .µ β≥  
EVALUATE:   If s 0,µ =  cm sin .a mg β=  cma  is less when friction is present. The ball rolls farther uphill 
when friction is present, because the friction removes the rotational kinetic energy and converts it to 
gravitational potential energy. In the absence of friction the ball retains the rotational kinetic energy that is 
has initially. 

 

 

Figure 10.26 
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 10.27. IDENTIFY:   As the ball rolls up the hill, its kinetic energy (translational and rotational) is transformed into 
gravitational potential energy. Since there is no slipping, its mechanical energy is conserved. 
SET UP:   The ball has moment of inertia 22

cm 3 .I mR=  Rolling without slipping means cm .v Rω=  Use 

coordinates where y+  is upward and 0y =  at the bottom of the hill, so 1 0y =  and 2 5 00 m.y h= = .  The 

ball’s kinetic energy is K = 2 21 1
cm cm2 2mv I ω+  and its potential energy is .U mgh=  

EXECUTE:   (a) Conservation of energy gives 1 1 2 2.K U K U+ = +  1 0,U =  2 0K =  (the ball stops). 

Therefore 1 2K U=  and 2 21 1
cm cm2 2 .mv I mghω+ =  

2
2 2 2cm1 1 2 1

cm cm2 2 3 3( ) ,vI mR mv
R

ω ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 so 

25
cm6 .mv mgh=  Therefore 

2

cm
6 6(9 80 m/s )(5 00 m) 7 67 m/s

5 5
ghv . .= = = .  and 

cm 7 67 m/s 67 9 rad/s.
0 113 m

v
R

ω .= = = .
.

 

(b) 2 2 21 1 1
rot cm2 3 3 (0 426 kg)(7 67 m/s) 8 35 J.K I mvω= = = . . = .  

EVALUATE:   Its translational kinetic energy at the base of the hill is 2 31
cm rot2 2 12 52 J.mv K= = .  Its total 

kinetic energy is 20.9 J,  which equals its final potential energy: 

2(0 426 kg)(9 80 m/s )(5 00 m) 20 9 J.mgh = . . . = .  
 10.28. IDENTIFY:   At the top of the hill the wheel has translational and rotational kinetic energy plus gravitational 

potential energy. The potential energy is transformed into additional kinetic energy as the wheel rolls down 
the hill. 
SET UP:   The wheel has 2,I MR=  with 2 25 kgM = .  and 0 425 m.R = .  Rolling without slipping means 

cmv Rω=  for the wheel. Initially the wheel has cm,1 11 0 m/s.v = .  Use coordinates where y+  is upward 

and 0y =  at the bottom of the hill, so 1 75 0 my = .  and 2 0.y =  The total kinetic energy of the wheel is 
2 21 1
cm cm2 2K mv I ω= +  and its potential energy is .U mgh=  

EXECUTE:   (a) Conservation of energy gives 1 1 2 2.K U K U+ = +  
2

2 2 2 2 2cm1 1 1 1
cm cm cm cm2 2 2 2 ( ) .v

K mv I mv mR mv
R

ω ⎛ ⎞= + = + =⎜ ⎟⎝ ⎠
 Therefore 2

1 cm,1K mv=  and 2
2 cm,2.K mv=  

1 1,U mgy=  2 2 0,U mgy= =  so 2 2
1 cm,1 cm,2.mgy mv mv+ =  Solving for cm,2v  gives 

2 2 2
cm,2 cm,1 1 (11 0 m/s) (9 80 m/s )(75 0 m) 29 3 m/s.v v gy= + = . + . . = .  

(b) From (b) we have 2 2 3
2 cm,2 (2 25 kg)(29 3 m/s) 1 93 10 J.K mv= = . . = . ×  

EVALUATE:   Because of the shape of the wheel (thin-walled cylinder), the kinetic energy is shared equally 
between the translational and rotational forms. This is not true for other shapes, such as solid disks or 
spheres. 

 10.29. (a) IDENTIFY:   Use z zIτ α∑ =  to find zα  and then use a constant angular acceleration equation to  
find .zω  
SET UP:   The free-body diagram is given in Figure 10.29. 

 

 EXECUTE:    Apply z zIτ α∑ =  to find the  
angular acceleration: 

zFR Iα=  

2
2

(18 0 N)(2 40 m) 0 02057 rad/s
2100 kg mz

FR
I

α . .= = = .
⋅

 

Figure 10.29  
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SET UP:   Use the constant zα  kinematic equations to find .zω  

?;zω =  0zω  (initially at rest); 20 02057 rad/s ;zα = .  15 0 st = .  

EXECUTE:   2
0 0 (0 02057 rad/s )(15 0 s) 0 309 rad/sz z ztω ω α= + = + . . = .  

(b) IDENTIFY and SET UP:   Calculate the work from ,zW τ θ= ∆  using a constant angular acceleration 
equation to calculate 0,θ θ−  or use the work-energy theorem. We will do it both ways. 
EXECUTE:   (1) zW τ θ= ∆   

2 2 21 1
0 0 2 20 (0.02057 rad/s )(15.0 s) 2.314 radz zt tθ θ θ ω α∆ = − = + = + =  

(18.0 N)(2.40 m) 43.2 N mz FRτ = = = ⋅  
Then (43.2 N m)(2.314 rad) 100 J.zW τ θ= ∆ = ⋅ =  
or 
(2) tot 2 1W K K= −  

tot ,W W=  the work done by the child 

1 0;K =  2 2 21 1
2 2 2 (2100 kg m )(0.309 rad/s) 100 JK Iω= = ⋅ =  

Thus 100 J,W =  the same as before. 
EVALUATE:    Either method yields the same result for W. 

(c) IDENTIFY and SET UP:    Use 
  
Pav = ∆W

∆t
 to calculate av.P  

EXECUTE:   av
100 J 6 67 W.
15 0 s

WP
t

∆= = = .
∆ .

 

EVALUATE:   Work is in joules, power is in watts. 
 10.30. IDENTIFY:   Apply P τω=  and .W τ θ= ∆  

SET UP:   P must be in watts, θ∆  must be in radians, and ω  must be in rad/s. 1 rev 2  rad.π=  
1 hp 746 W.=   rad/s 30 rev/min.π =  

EXECUTE:    (a) (175 hp)(746 W/hp) 519 N m.
rad/s(2400 rev/min)

30 rev/min

Pτ πω
= = = ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) (519 N m)(2  rad) 3260 JW τ θ π= ∆ = ⋅ =  

EVALUATE:   40 rev/s,ω =  so the time for one revolution is 0.025 s.  51 306 10  W,P = . ×  so in one 
revolution, 3260 J,W Pt= =  which agrees with our result. 

 10.31. IDENTIFY:   Apply z zIτ α∑ =  and constant angular acceleration equations to the motion of the wheel. 
SET UP:   1 rev 2  rad.π=   rad/s 30 rev/min.π =  

EXECUTE:   (a) 0 .z z
z zI I

t
ω ωτ α − = =  

( )2 rad/s(1/2)(2.80 kg)(0 100 m) (1200 rev/min)
30 rev/min 0 704 N m

2 5 sz

π

τ

⎛ ⎞. ⎜ ⎟
⎝ ⎠= = . ⋅

.
 

(b) av
(600 rev/min)(2.5 s) 25.0 rev 157 rad.

60 s/min
tω ∆ = = =  

(c)   W = τ∆θ = (0.704 N ⋅ m)(157 rad) = 111 J.  

(d) ( )
2

2 21 1
2 2

rad/s(1/2)(2.80 kg)(0 100 m) (1200 rev/min) 111 J.
30 rev/min

K I πω ⎛ ⎞⎛ ⎞ = = . =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

the same as in part (c). 
EVALUATE:   The agreement between the results of parts (c) and (d) illustrates the work-energy theorem. 
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 10.32. IDENTIFY:   The power output of the motor is related to the torque it produces and to its angular velocity 
by ,z zP τ ω=  where zω  must be in rad/s. 

SET UP:   The work output of the motor in 60.0 s  is 2 (9 00 kJ) 6 00 kJ,
3

. = .  so 6 00 kJ 100 W.
60 0 s

P .= =
.

 

2500 rev/min 262 rad/s.zω = =  

EXECUTE:    100 W 0 382 N m
262 rad/sz

z

Pτ
ω

= = = . ⋅  

EVALUATE:   For a constant power output, the torque developed decreases when the rotation speed of the 
motor increases. 

 10.33. (a) IDENTIFY and SET UP:    Use P = τ zω z  and solve for ,zτ  where zω  must be in rad/s. 

EXECUTE:    (4000 rev/min)(2  rad/1 rev)(1 min/60 s) 418 9 rad/szω π= = .  
51 50 10  W 358 N m

418 9 rad/sz
z

Pτ
ω

. ×= = = ⋅
.

 

(b) IDENTIFY and SET UP:   Apply m∑ =F a
G G  to the drum. Find the tension T in the rope using zτ  from 

part (a). The system is sketched in Figure 10.33. 
 

 EXECUTE:    v constant implies 0a =   
and T w=   

z TRτ =  implies  
/ 358 N m/0 200 m 1790 NzT Rτ= = ⋅ . =  

Thus a weight 1790 Nw =  can be lifted. 

Figure 10.33   
 

(c) IDENTIFY and SET UP:   Use .v Rω=  
EXECUTE:   The drum has 418 9 rad/s,ω = .  so (0 200 m)(418 9 rad/s) 83 8 m/s.v = . . = .  
EVALUATE:   The rate at which T is doing work on the drum is (1790 N)(83 8 m/s) 150 kW.P Tv= = . =  
This agrees with the work output of the motor. 

 10.34. IDENTIFY:   Apply z zIτ α∑ =  to the motion of the propeller and then use constant acceleration equations 
to analyze the motion. .W τ θ= ∆  

SET UP:   2 2 21 1
12 12 (117 kg)(2 08 m) 42 2 kg m .I mL= = . = . ⋅  

EXECUTE:   (a) 2
2

1950 N m 46 2 rad/s .
42 2 kg mI

τα ⋅= = = .
. ⋅

 

(b) 2 2
0 02 ( )z z zω ω α θ θ= + −  gives 22 2(46 2 rad/s )(5 0 rev)(2  rad/rev) 53 9 rad/s.ω αθ π= = . . = .  

(c) 4(1950 N m)(5 00 rev)(2  rad/rev) 6 13 10  J.W τθ π= = ⋅ . = . ×  

(d) 0
2

53 9 rad/s 1 17 s.
46 2 rad/s

z z

z
t ω ω

α
− .= = = .

.  
 

4

av
6 13 10  J 52 5 kW.

1 17 s
WP

t
. ×= = = .

∆ .
 

(e)  P = τω  = (1950  N ⋅ m )(53.9 rad/s) = 105 kW. 
EVALUATE:   .P τω=  τ  is constant and ω  is linear in t, so avP  is half the instantaneous power at the end 
of the 5.00 revolutions. We could also calculate W from 

2 2 2 41 1
2 2 (42 2 kg m )(53 9 rad/s) 6 13 10  J.W K Iω= ∆ = = . ⋅ . = . ×  

 10.35. (a) IDENTIFY:   Use sin .L mvr φ=  
SET UP:   Consider Figure 10.35 (next page). 
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 EXECUTE:   L = mvrsinφ =  
(2 00 kg)(12 0 m/s)(8 00 m)sin143 1. . . . °  

2115 kg m /sL = ⋅  

Figure 10.35  
 

 

To find the direction of L
G

 apply the right-hand rule by turning rG  into the direction of vG  by pushing on it 
with the fingers of your right hand. Your thumb points into the page, in the direction of .L

G
 

(b) IDENTIFY and SET UP:   By τ =
G

G d

dt

L
 the rate of change of the angular momentum of the rock equals 

the torque of the net force acting on it. 
EXECUTE:   2 2(8 00 m) cos 36 9 125 kg m /smgτ = . . ° = ⋅  

To find the direction of 
Gτ  and hence of / ,d dt

G
L  apply the right-hand rule by turning rG  into the direction of 

the gravity force by pushing on it with the fingers of your right hand. Your thumb points out of the page, in 
the direction of / .d dt

G
L  

EVALUATE:   L
G

 and /d dt
G
L  are in opposite directions, so L is decreasing. The gravity force is accelerating 

the rock downward, toward the axis. Its horizontal velocity is constant but the distance l is decreasing and 
hence L is decreasing. 

 10.36. IDENTIFY:   L Iω=  and disk woman.I I I= +  

SET UP:    ω = 0.80 rev/s = 5.026 rad/s.  21
disk disk2I m R=  and 2

woman woman .I m R=  

EXECUTE:   2 2(55 kg 50 0 kg)(4 0 m) 1680 kg m .I = + . . = ⋅  
2 3 2(1680 kg m )(5.026 rad/s) 8.4 10  kg m /s.L = ⋅ = × ⋅  

EVALUATE:   The disk and the woman have similar values of I, even though the disk has twice the mass. 
 10.37. IDENTIFY and SET UP:   Use .L Iω=  

EXECUTE:   The second hand makes 1 revolution in 1 minute, so 
(1 00 rev/min)(2  rad/1 rev)(1 min/60 s) 0 1047 rad/s.ω π= . = .  

For a slender rod, with the axis about one end, 
2 3 2 5 21 1

3 3 (6 00 10  kg)(0 150 m) 4 50 10  kg m .I ML − −= = . × . = . × ⋅  

Then 5 2 6 2(4 50 10  kg m )(0 1047 rad/s) 4 71 10  kg m /s.L Iω − −= = . × ⋅ . = . × ⋅  

  EVALUATE:   L
G

 is clockwise. 
 10.38. IDENTIFY:   z zL Iω=  

SET UP:   For a particle of mass m moving in a circular path at a distance r from the axis, 2I mr=  and 
.v rω=  For a uniform sphere of mass M and radius R and an axis through its center, 22

5 .I MR=  The earth 

has mass 24
E 5 97 10  kg,m = . ×  radius   RE = 6.37 × 106  m  and orbit radius 111 50 10  m.r = . ×  The earth 

completes one rotation on its axis in 24 h 86,400 s=  and one orbit in 71 y 3 156 10  s.= . ×  

EXECUTE:   (a) 
2 24 11 2 40 2

7
2  rad(5 97 10  kg)(1 50 10  m) 2 67 10  kg m /s.

3 156 10  sz z zL I mr πω ω ⎛ ⎞= = = . × . × = . × ⋅⎜ ⎟. ×⎝ ⎠
 

The radius of the earth is much less than its orbit radius, so it is very reasonable to model it as a particle for 
this calculation. 

(b) 2 24 6 2 33 22 2
5 5

2  rad( ) (5 97 10  kg)(6 38 10  m) 7 07 10  kg m /s
86,400 sz zL I MR

πω ω ⎛ ⎞= = = . × . × = . × ⋅⎜ ⎟⎝ ⎠
 

EVALUATE:   The angular momentum associated with each of these motions is very large. 
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 10.39. IDENTIFY:   / .z d dtω θ=  z zL Iω=  and / .z zdL dtτ =  

SET UP:    For a hollow, thin-walled sphere rolling about an axis through its center, 22
3 .I MR=  

0 240 m.R = .  
EXECUTE:   (a) 21 50 rad/sA = .  and 41 10 rad/s ,B = .  so that ( )tθ  will have units of radians. 

(b) (i) 32 4 .z
d At Bt
dt
θω = = +  At 3 00 s,t = .   

2 4 32(1 50 rad/s )(3 00 s) 4(1 10 rad/s )(3 00 s) 128 rad/s.zω = . . + . . =   
2 2 22 2

3 3( ) (12 0 kg)(0 240 m) (128 rad/s) 59 0 kg m /s.z zL MR ω= = . . = . ⋅  

(ii) 2(2 12 )z z
z

dL dI I A Bt
dt dt

ωτ = = = +  and 

2 2 4 22
3 (12 0 kg)(0 240 m) 2(1 50 rad/s ) 12(1 10 rad/s )(3 00 s) 56 1 N m.zτ ⎡ ⎤= . . . + . . = . ⋅⎣ ⎦  

EVALUATE:   The angular speed of rotation is increasing. This increase is due to an acceleration zα  that is 
produced by the torque on the sphere. When I is constant, as it is here, / / .z z z zdL dt Id dt Iτ ω α= = =  

 10.40. IDENTIFY and SET UP:   L
G

 is conserved if there is no net external torque. 
Use conservation of angular momentum to find ω  at the new radius and use 21

2K Iω=  to find the change 

in kinetic energy, which is equal to the work done on the block. 
EXECUTE:   (a) Yes, angular momentum is conserved. The moment arm for the tension in the cord is zero 
so this force exerts no torque and there is no net torque on the block. 
(b) 1 2L L=  so 1 1 2 2.I Iω ω=  Block treated as a point mass, so 2,I mr=  where r is the distance of the block 
from the hole. 

2 2
1 1 2 2mr mrω ω=  

2 2
1

2 1
2

0 300 m (2.85 rad/s) 11.4 rad/s
0 150 m

r
r

ω ω⎛ ⎞ .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

(c) 2 2 2 21 1 1
1 1 1 1 1 12 2 2K I mr mvω ω= = =  

  v1 = r1ω1 = (0.300 m)(2.85 rad/s) = 0.855 m/s  

  
K1 = 1

2
mv1

2 = 1
2

(0.0250 kg)(0.855 m/s)2 = 0.00914 J  

21
2 22K mv=  

  v2 = r2ω2 = (0.150 m)(11.4 rad/s) = 1.71 m/s  

K 2 = 1
2 mv

2

2  = 
 
1
2

(0.0250 kg)(1.71 m/s2)2 = 0.03655 J   

2 1 0 03655 J 0 00914 J 0 0274 J = 27.4 mJ.K K K∆ = − = . − . = .  
(d) totW K= ∆  
But tot ,W W= the work done by the tension in the cord, so W = 0.0274 J.  
EVALUATE:   Smaller r means smaller I. L Iω=  is constant so ω  increases and K increases. The work 
done by the tension is positive since it is directed inward and the block moves inward, toward the hole. 

 10.41. IDENTIFY:   Apply conservation of angular momentum. 
SET UP:   For a uniform sphere and an axis through its center, 22

5 .I MR=  

EXECUTE:   The moment of inertia is proportional to the square of the radius, and so the angular velocity 
will be proportional to the inverse of the square of the radius, and the final angular velocity is  

22 5
31

2 1
2

2  rad 7 0 10  km 4 6 10  rad/s.
(30 d)(86 400 s/d) 16 km

R
R ,

πω ω
⎛ ⎞⎛ ⎞ ⎛ ⎞ . ×= = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
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EVALUATE:   21 1
2 2 .K I Lω ω= =  L is constant and ω  increases by a large factor, so there is a large 

increase in the rotational kinetic energy of the star. This energy comes from potential energy associated 
with the gravity force within the star. 

 10.42. IDENTIFY and SET UP:   Apply conservation of angular momentum to the diver. 
SET UP:   The number of revolutions she makes in a certain time is proportional to her angular velocity. 
The ratio of her untucked to tucked angular velocity is 2 2(3 6 kg m )/(18 kg m ).. ⋅ ⋅  

EXECUTE:   If she had not tucked, she would have made 2 2(2 rev)(3 6 kg m )/(18 kg m ) 0 40 rev. ⋅ ⋅ = .  
in the last 1.0 s, so she would have made (0 40 rev)(1 5/1 0) 0 60 rev. . . = .  in the total 1.5 s. 

  EVALUATE:   Untucked she rotates slower and completes fewer revolutions.  
 10.43. IDENTIFY:   Apply conservation of angular momentum to the motion of the skater. 

SET UP:   For a thin-walled hollow cylinder 2.I mR=  For a slender rod rotating about an axis through its 
center, 21

12 .I ml=  

EXECUTE:   i fL L=  so i i f f .I Iω ω=  
2 2 21

i 120 40 kg m (8 0 kg)(1 8 m) 2 56 kg m .I = . ⋅ + . . = . ⋅  2 2 2
f 0 40 kg m (8 0 kg)(0 25 m) 0 90 kg m .I = . ⋅ + . . = . ⋅  

2
i

f i 2
f

2 56 kg m (0 40 rev/s) 1 14 rev/s.
0 90 kg m

I
I

ω ω
⎛ ⎞⎛ ⎞ . ⋅= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ⋅⎝ ⎠ ⎝ ⎠

 

EVALUATE:   21 1
2 2 .K I Lω ω= =  ω  increases and L is constant, so K increases. The increase in kinetic 

energy comes from the work done by the skater when he pulls in his hands. 
 10.44. IDENTIFY:   Apply conservation of angular momentum to the collision. 

SET UP:   Let the width of the door be l. The initial angular momentum of the mud is ( /2),mv l  since it 

strikes the door at its center. For the axis at the hinge, 21
door 3I Ml=  and 2

mud ( /2) .I m l=  

EXECUTE:   2 2
( /2) .

(1/3) ( /2)
L mv l
I Ml m l

ω = =
+

 

2 2
(0 500 kg)(12 0 m/s)(0 500 m) 0 223 rad/s.

(1/3)(40 0 kg)(1 00 m) (0 500 kg)(0 500 m)
ω . . .= = .

. . + . .
 

Ignoring the mass of the mud in the denominator of the above expression gives 0 225 rad/s,ω = .  
so the mass of the mud in the moment of inertia does affect the third significant figure. 
EVALUATE:   Angular momentum is conserved but there is a large decrease in the kinetic energy of the 
system. 

 10.45. IDENTIFY and SET UP:   There is no net external torque about the rotation axis so the angular momentum 
L Iω=  is conserved. 
EXECUTE:   (a) 1 2L L=  gives 1 1 2 2,I Iω ω=  so 2 1 2 1( / )I Iω ω=  

2 2 21 1
1 tt 2 2 (120 kg)(2 00 m) 240 kg mI I MR= = = . = ⋅  

2 2 2 2 2
2 tt p 240 kg m 240 kg m (70 kg)(2 00 m) 520 kg mI I I mR= + = ⋅ + = ⋅ + . = ⋅  

2 2
2 1 2 1( / ) (240 kg m /520 kg m )(3 00 rad/s) 1 38 rad/sI Iω ω= = ⋅ ⋅ . = .  

(b) 2 2 21 1
1 1 12 2 (240 kg m )(3 00 rad/s) 1080 JK I ω= = ⋅ . =  

2 2 21 1
2 2 22 2 (520 kg m )(1 38 rad/s) 495 JK I ω= = ⋅ . =  

EVALUATE:   The kinetic energy decreases because of the negative work done on the turntable and the 
parachutist by the friction force between these two objects. 
The angular speed decreases because I increases when the parachutist is added to the system. 

 10.46. IDENTIFY:   Apply conservation of angular momentum to the system of earth plus asteroid. 
SET UP:   Take the axis to be the earth’s rotation axis. The asteroid may be treated as a point mass and it 
has zero angular momentum before the collision, since it is headed toward the center of the earth. For the 
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earth, z zL Iω=  and 22
5 ,I MR=  where M is the mass of the earth and R is its radius. The length of a day is 

2  rad ,T π
ω

=  where ω  is the earth’s angular rotation rate. 

EXECUTE:   Conservation of angular momentum applied to the collision between the earth and asteroid 

gives 2 2 22 2
1 25 5( )MR mR MRω ω= +  and 1 22

5
2

.m M
ω ω

ω
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 12 1 250T T= .  gives 
2 1

1 1 250
ω ω

.= and 

1 21 250 .ω ω= .  1 2

2
0 250.ω ω

ω
− = .  2

5 (0 250) 0 100 .m M M= . = .  

EVALUATE:   If the asteroid hit the surface of the earth tangentially it could have some angular momentum 
with respect to the earth’s rotation axis, and could either speed up or slow down the earth’s rotation rate. 

 10.47. (a) IDENTIFY and SET UP:   Apply conservation of angular momentum ,L
G

 with the axis at the nail. Let 
object A be the bug and object B be the bar. Initially, all objects are at rest and 1 0.L =  Just after the bug 
jumps, it has angular momentum in one direction of rotation and the bar is rotating with angular velocity Bω  
in the opposite direction. 
EXECUTE:   2 A A B BL m v r I ω= −  where 1 00 mr = .  and 21

3B BI m r=  

1 2L L=  gives 21
3A A B Bm v r m r ω=  

3 0 120 rad/sA A
B

B

m v
m r

ω = = .  

(b) 1 0;K =  
2 2 2 2 2 41 1 1 1 1

2 2 2 2 2 3(0 0100 kg)(0 200 m/s) ( (0 0500 kg)(1 00 m) )(0 120 rad/s) 3 2 10  J.A A B BK m v I ω −= + = . . + . . . = . ×
(c) The increase in kinetic energy comes from work done by the bug when it pushes against the bar in 
order to jump. 
EVALUATE:   There is no external torque applied to the system and the total angular momentum of the 
system is constant. There are internal forces, forces the bug and bar exert on each other. The forces exert 
torques and change the angular momentum of the bug and the bar, but these changes are equal in 
magnitude and opposite in direction. These internal forces do positive work on the two objects and the 
kinetic energy of each object and of the system increases. 

 10.48. IDENTIFY:   As the bug moves outward, it increases the moment of inertia of the rod-bug system. The 
angular momentum of this system is conserved because no unbalanced external torques act on it. 

SET UP:   The moment of inertia of the rod is 21 ,
3

I ML=  and conservation of angular momentum gives 

1 1 2 2.I Iω ω=  

EXECUTE:   (a) 21
3

I ML=  gives 
3 2

2 2
3 3(3 00 10  kg m ) 0 0360 kg.

(0 500 m)
IM

L

−. × ⋅= = = .
.

 

(b) 1 2,L L=  so 1 1 2 2.I Iω ω=  2
0 160 m/s 0 320 rad/s,
0 500 m

v
r

ω .= = = .
.

 so 

3 2 3 2 2
bug(3 00 10  kg m )(0 400 rad/s) (3 00 10  kg m (0 500 m) )(0 320 rad/s).m− −. × ⋅ . = . × ⋅ + . .

3 2
3

bug 2
(3 00 10  kg m )(0 400 rad/s 0 320 rad/s) 3 00 10  kg.

(0 320 rad/s)(0 500 m)
m

−
−. × ⋅ . − .= = . ×

. .
 

EVALUATE:   This is a 3.00 mg bug, which is not unreasonable. 
 10.49. IDENTIFY:   Apply conservation of angular momentum to the collision. 

SET UP:   The system before and after the collision is sketched in Figure 10.49. Let counterclockwise 
rotation be positive. The bar has 21

23 .I m L=  

EXECUTE:   (a) Conservation of angular momentum: 21
1 0 1 23 .m v d m vd m L ω= − +  
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21
3 2

90 0 N(3 00 kg)(10 0 m/s)(1 50 m) (3 00 kg)(6 00 m/s)(1 50 m) (2 00 m)
9 80 m/s

ω.⎛ ⎞. . . = − . . . + .⎜ ⎟.⎝ ⎠
 

5 88 rad/s.ω = .  
(b) There are no unbalanced torques about the pivot, so angular momentum is conserved. But the pivot 
exerts an unbalanced horizontal external force on the system, so the linear momentum is not conserved. 
EVALUATE:   Kinetic energy is not conserved in the collision. 

 

 

Figure 10.49 
 

 10.50. IDENTIFY:   If we take the raven and the gate as a system, the torque about the pivot is zero, so the angular 
momentum of the system about the pivot is conserved. 
SET UP:   The system before and after the collision is sketched in Figure 10.50. The gate has 21

3 .I ML=  

Take counterclockwise torques to be positive. 
 

 

Figure 10.50 
 

EXECUTE:   (a) The gravity forces exert no torque at the moment of collision and angular momentum is 
conserved. 1 2.L L=  1 2 gatemv l mv l I ω=− +  with /2.l L=  

1 2 1 2
21

3

( ) 3 ( ) 3(1 1 kg)(5 0 m/s 2 0 m/s) 1 71 rad/s.
2 2(4 5 kg)(1 5 m)

m v v l m v v
MLML

ω + + . . + .= = = = .
. .

 

(b) Linear momentum is not conserved; there is an external force exerted by the pivot. But the force on the 
pivot has zero torque. There is no external torque and angular momentum is conserved. 

EVALUATE:   21
1 2 (1 1 kg)(5 0 m/s) 13 8 J.K = . . = .  

2 2 21 1 1
2 2 2 3(1 1 kg)(2 0 m/s) ( [4 5 kg][1 5 m/s] )(1 71 rad/s) 7 1 J.K = . . + . . . = .  This is an inelastic collision and 

2 1.K K<  

 10.51. IDENTIFY:   The precession angular velocity is ,wr
Iω

Ω =  where ω  is in rad/s. Also apply m∑ =F a
G G  to the 

gyroscope. 
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SET UP:   The total mass of the gyroscope is r f 0 140 kg 0 0250 kg 0 165 kg.m m+ = . + . = .  
2  rad 2  rad 2 856 rad/s.

2 20 sT
π πΩ = = = .

.
 

EXECUTE:   (a) 2
p tot (0 165 kg)(9 80 m/s ) 1 62 NF w= = . . = .  

(b) 
2

3
4 2

(0 165 kg)(9 80 m/s )(0 0400 m) 189 rad/s 1 80 10  rev/min
(1 20 10  kg m )(2 856 rad/s)

wr
I

ω −
. . .= = = = . ×

Ω . × ⋅ .
 

(c) If the figure in the problem is viewed from above, 
Gτ  is in the direction of the precession and L

G
 is 

along the axis of the rotor, away from the pivot. 
EVALUATE:   There is no vertical component of acceleration associated with the motion, so the force from 
the pivot equals the weight of the gyroscope. The larger ω  is, the slower the rate of precession. 

 10.52. IDENTIFY:   The precession angular speed is related to the acceleration due to gravity by ,mgr
Iω

Ω =  with 

.w mg=  
SET UP:   E 0 50 rad/s,Ω = .  Eg g=  and M 0 165 .g g= .  For the gyroscope, m, r, I, and ω  are the same on 

the moon as on the earth. 

EXECUTE:   .mgr
Iω

Ω =  constant,mr
g Iω
Ω = =  so E M

E M
.

g g
Ω Ω=  

E
M

M E
E

0 165 (0 165)(0 50 rad/s) 0 0825 rad/s.g
g

⎛ ⎞
Ω = Ω = . Ω = . . = .⎜ ⎟

⎝ ⎠
 

EVALUATE:   In the limit that 0g →  the precession rate 0.→  
 10.53. IDENTIFY:   An external torque will cause precession of the telescope. 

SET UP:   2,I MR=  with 22 5 10 m.R −= . ×  6 81 0 10 degree 1 745 10 rad.− −. × = . ×  
319,200 rpm 2 01 10 rad/s.ω = = . × 45 0 h 1 8 10 s.t = . = . ×  

EXECUTE:   
8

13
4

1 745 10 rad
9 694 10 rad/s.

1 8 10 st
φ −

−∆ . ×Ω = = = . ×
∆ . ×

 
I
τ
ω

Ω =  so 2 .I MRτ ω ω= Ω = Ω  Putting in 

the numbers gives 13 2 2 3 12(9 694 10 rad/s)(2 0 kg)(2 5 10 m) (2 01 10 rad/s) 2 4 10 N m.τ − − −= . × . . × . × = . × ⋅  
EVALUATE:   The external torque must be very small for this degree of stability. 

 10.54. IDENTIFY:   Apply z zIτ α∑ =  and constant acceleration equations to the motion of the grindstone. 
SET UP:   Let the direction of rotation of the grindstone be positive. The friction force is kf nµ=  and 

produces torque .fR  2  rad 1 min(120rev/min) 4  rad/s.
1 rev 60  s
πω π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 2 21

2 1 69 kg m .I MR= = . ⋅  

EXECUTE:   (a) The net torque must be 

20 4  rad/s(1 69 kg m ) 2 36 N m.
9 00 s

z zI I
t

ω ω πτ α −= = = . ⋅ = . ⋅
.

 

This torque must be the sum of the applied force FR  and the opposing frictional torques fτ  at the axle and 

kfR nRµ=  due to the knife. f k
1 ( ).F nR
R

τ τ µ= + +  

  
F = 1

0.500 m
(2.36 N ⋅ m) + (6.50 N ⋅ m) + (0.60)(160 N)(0.260 m)⎡⎣ ⎤⎦ = 67.6 N.  

(b) To maintain a constant angular velocity, the net torque τ  is zero, and the force F ′  is  
1 (6 50 N m 24 96 N m) 62 9 N.

0.500 m
F ′ = . ⋅ + . ⋅ = .  
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(c) The time t needed to come to a stop is found by taking the magnitudes in ,d
dt

τ =
G

G L  with fτ τ=  

constant; 
2

f f

(4  rad/s)(1 69 kg m ) 3 27 s.
6 50 N m

L It ω π
τ τ

. ⋅= = = = .
. ⋅

 

EVALUATE:   The time for a given change in ω  is proportional to ,α  which is in turn proportional to the 

net torque, so the time in part (c) can also be found as 2.36 N m(9 00 s) .
6.50 N m

t ⋅= .
⋅

 

 10.55. IDENTIFY:   Use the kinematic information to solve for the angular acceleration of the grindstone. Assume 
that the grindstone is rotating counterclockwise and let that be the positive sense of rotation. Then apply 

z zIτ α∑ =  to calculate the friction force and use k kf nµ=  to calculate k.µ  

SET UP:   0 850 rev/min(2  rad/1 rev)(1 min/60 s) 89.0 rad/szω π= =  

7.50 s;t =  0zω =  (comes to rest); ?zα =  
EXECUTE:   0 +z zz tω ω α=  

20 89.0 rad/s 11.9 rad/s
7.50 szα −= = −  

SET UP:   Apply z zIτ α∑ =  to the grindstone. The free-body diagram is given in Figure 10.55. 
 

 

Figure 10.55 
 

The normal force has zero moment arm for rotation about an axis at the center of the grindstone, and 
therefore zero torque. The only torque on the grindstone is that due to the friction force kf  exerted by the 
ax; for this force the moment arm is l R=  and the torque is negative. 
EXECUTE:   k kz f R nRτ µ∑ = − = −  

21
2I MR=  (solid disk, axis through center) 

Thus z zIτ α∑ =  gives 1
2

2
k ( ) znR MRµ α− =  

2

k
(50.0 kg)(0.260 m)( 11.9 rad/s ) 0.483

2 2(160 N)
zMR

n
αµ −= − = − =  

EVALUATE:   The friction torque is clockwise and slows down the counterclockwise rotation of the 
grindstone. 

 10.56. IDENTIFY:   Use a constant acceleration equation to calculate zα  and then apply .z zIτ α∑ =  

SET UP:   2 22
3 2 ,  where 8.40 kg, 2.00 kg,I MR mR M m= + = =  so 20.600 kg m .I = ⋅  

0 75.0 rpm 7.854 rad/s; 50.0 rpm 5.236 rad/s; 30.0 s.zz tω ω= = = = =  

EXECUTE:   
z

2
0  gives 0.08726 rad/s .zz ztω ω α α= + = −  0.0524 N m.z zIτ α= = − ⋅  

EVALUATE:   The torque is negative because its direction is opposite to the direction of rotation, which 
must be the case for the speed to decrease. 

 10.57. IDENTIFY:   Use z zIτ α∑ =  to find the angular acceleration just after the ball falls off and use 
conservation of energy to find the angular velocity of the bar as it swings through the vertical position. 
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SET UP:   The axis of rotation is at the axle. For this axis the bar has 21
bar12 ,I m L=  where bar 3 80 kgm = .  

and 0 800 m.L = .  Energy conservation gives 1 1 2 2.K U K U+ = +  The gravitational potential energy of the 
bar doesn’t change. Let 1 0,y =  so 2 /2.y L= −  

EXECUTE:   (a) ball ( /2)z m g Lτ =  and 2 21
ball bar bar ball12 ( /2) .I I I m L m L= + = +  z zIτ α∑ =  gives 

ball ball
2 21

ball barbar ball12

( /2) 2
/3( /2)z

m g L g m
L m mm L m L

α
⎛ ⎞

= = ⎜ ⎟++ ⎝ ⎠
 and 

2
22(9 80 m/s ) 2 50 kg 16 3 rad/s .

0 800 m 2 50 kg [3 80 kg]/3zα ⎛ ⎞. .= = .⎜ ⎟. . + .⎝ ⎠
 

(b) As the bar rotates, the moment arm for the weight of the ball decreases and the angular acceleration of 
the bar decreases. 
(c) 1 1 2 2.K U K U+ = +  2 20 .K U= +  21

bar ball ball2 ( ) ( /2).I I m g Lω+ = − −  

2
ball ball

2 2
ball barball bar

4 9 80 m/s 4(2 50 kg)
/3 0 800 m 2 50 kg (3 80 kg)/3/4 /12

m gL g m
L m mm L m L

ω
⎛ ⎞ ⎛ ⎞. .= = =⎜ ⎟ ⎜ ⎟+ . . + .+ ⎝ ⎠⎝ ⎠

 

5 70 rad/s.ω = .  
EVALUATE:   As the bar swings through the vertical, the linear speed of the ball that is still attached to the 
bar is (0 400 m)(5 70 rad/s) 2 28 m/s.v = . . = .  A point mass in free-fall acquires a speed of 2.80 m/s after 
falling 0.400 m; the ball on the bar acquires a speed less than this. 

 10.58. IDENTIFY:   Newton’s second law in its linear form applies to the elevator and counterweight, in its 
rotational form it applies to the pulley. We have constant acceleration, so we can use the standard linear 
kinematics formulas. 

 SET UP:   For the pulley 21
2I MR= .  The elevator has mass 1 2

22,500 N 2300 kg
9 80 m/s

m = = .
.

 The free-body 

diagrams for the elevator, the pulley, and the counterweight are shown in Figure 10.58. Apply Σ =
G GmF a  to 

the elevator and to the counterweight. For the elevator take +y upward and for the counterweight take +y 
downward, in each case in the direction of the acceleration of the object. Apply Iτ α∑ =  to the pulley, 
with clockwise as the positive sense of rotation. n is the normal force applied to the pulley by the axle. The 
elevator and counterweight each have acceleration a, where a Rα= .  21

0 0 2y yy y t a tυ− = +  applies. 

 

 

Figure 10.58 
 
EXECUTE:  Solve parts (a) and (b) together. Calculate the acceleration of the elevator: 

21
0 0 2y yy y t a tυ− = +  gives  20

2 2
2( ) 2(6 75 m) 1 50 m/s .

(3 00 s)
y ya
t
− .= = = .

.
 

y yF ma∑ =  for the elevator gives 1 1 1T m g m a− =  and 
2 2 4

1 1( ) (2300 kg)(1 50 m/s 9 80 m/s ) 2 60 10 NT m a g= + = . + . = . ×  
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Iτ α∑ =  for the pulley gives 21
2 1 2( ) ( )T T MR α− = .  With /a Rα =  this becomes 1

2 1 2T T Ma− = .   
4 2 41 1

2 1 2 22 60 10 N (875 kg)(1 50 m/s ) 2 67 10 NT T Ma= + = . × + . = . ×  

y yF ma∑ =  for the counterweight gives 2 2 2m g T m a− =  and 
4

32
2 2 2

2 67 10 N 3 22 10 kg
9 80 m/s 1 50 m/s

T
m

g a
. ×= = = . ×

− . − .
 

and 43 16 10 Nw = . × .  
EVALUATE:  The tension in the cable must be different on either side of the pulley in order to produce the 
net torque on the pulley required to give it an angular acceleration. The tension in the cable attached to the 
elevator is greater than the weight of the elevator and the elevator accelerates upward. The tension in the 
cable attached to the counterweight is less than the weight of the counterweight and the counterweight 
accelerates downward. 

 10.59. IDENTIFY:   Blocks A and B have linear acceleration and therefore obey the linear form of Newton’s 
second law .y yF ma∑ =  The wheel C has angular acceleration, so it obeys the rotational form of Newton’s 

second law .z zIτ α∑ =  
SET UP:   A accelerates downward, B accelerates upward and the wheel turns clockwise. Apply y yF ma∑ =   

to blocks A and B. Let +y be downward for A and +y be upward for B. Apply z zIτ α∑ =  to the wheel, with the 
clockwise sense of rotation positive. Each block has the same magnitude of acceleration, a, and .a Rα=  
Call the TA the tension in the cord between C and A and TB the tension between C and B. 
EXECUTE:   For A, y yF ma∑ =  gives .A A Am g T m a− =  For B, y yF ma∑ =  gives .B B BT m g m a− =  For 

the wheel, z zIτ α∑ =  gives ( / )A BT R T R I I a R wα− = =  and 2 .A B
IT T a

R
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 Adding these three 

equations gives 2( ) .A B A B
Im m g m m a

R
⎛ ⎞− = + +⎜ ⎟
⎝ ⎠

 Solving for a, we have 

2 2
2 2 2

4 00 kg 2 00 kg (9 80 m/s ) 0 921 m/s .
/ 4 00 kg 2 00 kg (0 220 kg m )/(0 120 m)

A B

A B

m ma g
m m I R

⎛ ⎞ ⎛ ⎞− . − .= = . = .⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + . + . + . ⋅ .⎝ ⎠⎝ ⎠

  
α = a

R
= 0.921 m/s2

0.120 m
= 7.68 rad/s2.  

  TA = mA(g − a) = (4.00 kg)(9.80 m/s2 − 0.921 m/s2 ) = 35.5 N.

  TB = mB (g + a) = (2.00 kg)(9.80 m/s2 + 0.921 m/s2 ) = 21.4 N.  
EVALUATE:   The tensions must be different in order to produce a torque that accelerates the wheel when 
the blocks accelerate. 

 10.60. IDENTIFY:   Apply m∑ =
G GF a  to the crate and z zIτ α∑ =  to the cylinder. The motions are connected by 

(crate) (cylinder).a Rα=  
SET UP:   The force diagram for the crate is given in Figure 10.60a. 

 

 EXECUTE:   Applying y yF ma∑ =  gives 
.T mg ma− =  Solving for T gives 

2 2( ) (50 kg)(9.80 m/s 1.40 m/s ) 560 N.T m g a= + = + =  

Figure 10.60a   
 

 
SET UP:   The force diagram for the cylinder is given in Figure 10.60b. 
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 EXECUTE:   z zIτ α∑ =  gives ,zFl TR Iα− =  where 
0 12 ml = .  and 0 25 mR = . .  a Rα=  so / .z a Rα =  

Therefore .Fl TR Ia/R= +  

Figure 10.60b   
 

2 20 25 m (2 9 kg m )(1 40 m/s )(560 N) 1300 N.
0 12 m (0 25 m)(0 12 m)

R Ia
F T

l Rl
. . ⋅ .⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠. . .

 

EVALUATE:   The tension in the rope is greater than the weight of the crate since the crate accelerates 
upward. If F were applied to the rim of the cylinder (l = 0.25 m), it would have the value 625 N.F =  This 
is greater than T because it must accelerate the cylinder as well as the crate. And F is larger than this 
because it is applied closer to the axis than R so has a smaller moment arm and must be larger to give the 
same torque. 

 10.61. IDENTIFY:   Apply ext cmm∑ =
G GF a  and cmz zIτ α∑ =  to the roll. 

SET UP:   At the point of contact, the wall exerts a friction force f directed downward and a normal force n 
directed to the right. This is a situation where the net force on the roll is zero, but the net torque is not zero. 
EXECUTE:   (a) Balancing vertical forces, rod cos ,F f w Fθ = + +  and balancing horizontal forces 

rod ksin   With F n f n,θ µ= . =  these equations become rod kcos ,F n F wθ µ= + +  rod sin .F nθ =   Eliminating 

n and solving for rodF  gives 
2

rod
k

(16 0 kg)(9 80 m/s ) (60 0 N) 293 N.
cos sin cos 30 (0 25)sin30

w FF
θ µ θ

+ . . + .= = =
− ° − . °

 

(b) With respect to the center of the roll, the rod and the normal force exert zero torque. The magnitude of 
the net torque is k( ) , andF f R f nµ− =  may be found by insertion of the value found for rodF  into either 
of the above relations; i.e., k rod sin 36 57 N.f Fµ θ= = .  Then,  

2
2

2
(60.0 N 36.57 N)(18.0 10 m) 16.2 rad/s .

(0.260 kg m )I
τα

−− ×= = =
⋅

 

EVALUATE:   If the applied force F is increased, rodF  increases and this causes n and f to increase. The 
angle θ changes as the amount of paper unrolls and this affects α  for a given F. 

 10.62. IDENTIFY:   Apply z zIτ α∑ =  to the flywheel and m∑ =
G GF a  to the block. The target variables are the 

tension in the string and the acceleration of the block. 
(a) SET UP:   Apply z zIτ α∑ =  to the rotation of the flywheel about the axis. The free-body diagram for 
the flywheel is given in Figure 10.62a. 

 

 EXECUTE:   The forces 
n and Mg act at the axis so 
have zero torque. 

z TRτ∑ =  

zTR Iα=  

Figure 10.62a   
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SET UP:   Apply m∑ =
G GF a  to the translational motion of the block. The free-body diagram for the block is 

given in Figure 10.62b. 
 

 EXECUTE:   y yF maΣ =  
cos 36 9 0n mg− . ° =  
cos 36 9n mg= . °  

k k k cos 36 9f n mgµ µ= = . °  

Figure 10.62b   
 

x xF ma∑ =  

ksin36 9 cos36 9mg T mg maµ. ° − − . ° =  

k(sin36 9 cos36 9 )mg T maµ. ° − . ° − =  
But we also know that block wheel,a Rα=  so /a Rα = .  Using this in the z zIτ α∑ =  equation gives 

/TR Ia R=  and 2( / ) .T I R a=  Use this to replace T in the x xF ma∑ =  equation: 
2

k(sin36 9 cos36 9 ) ( / )mg I R a maµ. ° − . ° − =  

k
2

(sin36 9 cos36 9 )
/

mga
m I R

µ. ° − . °=
+

 

[ ]2
2

2 2
(5 00 kg)(9 80 m/s ) sin36 9 (0 25)cos36 9

1 12 m/s .
5 00 kg 0 500 kg m /(0 200 m)

a
. . . ° − . . °

= = .
. + . ⋅ .

 

(b) 
2

2
2

0 500 kg m (1 12 m/s ) 14 0 N
(0 200 m)

T . ⋅= . = .
.

 

EVALUATE:   If the string is cut the block will slide down the incline with 
2

ksin36 9 cos36 9 3 92 m/s .a g gµ= . ° − . ° = .  The actual acceleration is less than this because sin36 9mg . °  
must also accelerate the flywheel. ksin36 9 19 6 N.mg f. ° − = .  T is less than this; there must be more force 
on the block directed down the incline than up the incline since the block accelerates down the incline. 

 10.63. IDENTIFY:   Apply m∑ =F a
G G  to the block and z zIτ α∑ =  to the combined disks. 

SET UP:   For a disk, 21
disk 2 ,I MR=  so I for the disk combination is 3 22 25 10  kg m .I −= . × ⋅  

EXECUTE:   For a tension T in the string, and .a
mg T ma TR I I

R
α− = = =  

Eliminating T and solving for a gives 2 2 ,
/ 1 /

m ga g
m I R I mR

= =
+ +

 where m is the mass of the hanging 

block and R is the radius of the disk to which the string is attached. 
(a) With 1 50m = .  kg and 2 22 50 10 m, 2 88 m/s .R a−= . × = .  

(b) With 1 50m = .  kg and 2 25 00 10 m, 6 13 m/s .R a−= . × = .  
The acceleration is larger in case (b); with the string attached to the larger disk, the tension in the string is 
capable of applying a larger torque. 
EVALUATE:   / ,v Rω =  where v is the speed of the block and ω  is the angular speed of the disks. When R 
is larger, in part (b), a smaller fraction of the kinetic energy resides with the disks. The block gains more 
speed as it falls a certain distance and therefore has a larger acceleration. 
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 10.64. IDENTIFY:   Apply both m∑ =
G GF a  and z zIτ α∑ =  to the motion of the roller. Rolling without slipping 

means cm .a Rα=  Target variables are cma  and f. 
SET UP:   The free-body diagram for the roller is given in Figure 10.64. 

 

 EXECUTE:   Apply m∑ =
G GF a   

to the translational motion of the 
 center of mass: 

x xF ma∑ =  

cmF f Ma− =  

Figure 10.64   
 

Apply z zIτ α∑ =  to the rotation about the center of mass: 

z fRτ∑ =  

thin-walled hollow cylinder: 2I MR=  
Then z zIτ α∑ =  implies 2 .fR MR α=  
But cm ,Rα α=  so cm.f Ma=  
Using this in the x xF ma∑ =  equation gives cm cm.F Ma Ma− =  

cm /2a F M,=  and then cm ( /2 ) /2.f Ma M F M F= = =  
EVALUATE:   If the surface were frictionless the object would slide without rolling and the acceleration 
would be cm / .a F M=  The acceleration is less when the object rolls. 

 10.65. IDENTIFY:   Apply m∑ =
G GF a  to each object and apply z zIτ α∑ =  to the pulley. 

SET UP:   Call the 75.0 N weight A and the 125 N weight B. Let AT  and BT  be the tensions in the cord to 

the left and to the right of the pulley. For the pulley, 21
2 ,I MR=  where 80 0 NMg = .  and 0 300 m.R = .  

The 125 N weight accelerates downward with acceleration a, the 75.0 N weight accelerates upward with 
acceleration a and the pulley rotates clockwise with angular acceleration ,α  where .a Rα=  
EXECUTE:   m∑ =

G GF a  applied to the 75.0 N weight gives .A A AT w m a− =  m∑ =
G GF a  applied to the 125.0 N 

weight gives .B B Bw T m a− =  z zIτ α∑ =  applied to the pulley gives 21
2( ) ( )B A zT T R MR α− =  and 

1
2 .B AT T Ma− =  Combining these three equations gives ( /2)B A A Bw w m m M a− = + +  and 

pulley

125 N 75 0 N 0 2083 .
/2 75 0 N 125 N 40 0 N

B A

A B

w wa g g g
w w w

⎛ ⎞− − .⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟⎜ ⎟+ + . + + .⎝ ⎠⎝ ⎠
(1 / ) 1 2083 90 62 N.A A AT w a g w= + = . = .  (1 / ) 0 792 98 96 N.B B BT w a g w= − = . = .  m∑ =

G GF a  applied to the 
pulley gives that the force F applied by the hook to the pulley is pulley 270 N.A BF T T w= + + =  The force 
the ceiling applies to the hook is 270 N. 
EVALUATE:   The force the hook exerts on the pulley is less than the total weight of the system, since the 
net effect of the motion of the system is a downward acceleration of mass. 

 10.66. IDENTIFY:   Newton’s second law in its linear form applies to the person, and in its rotational form it 
applies to the wheel.  
SET UP:    ,mΣ =

G GF a ,τ αΣ =z zI  and α=tan .a R  For a uniform disk, 21
2 .I MR=  Call m the mass of the 

person and M the mass of the wheel. 
EXECUTE:  (a) For the person, Σ =

G GmF a  gives mg – T = ma, so T = m(g – a).  
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For the wheel, Στ z = Iα
z
 gives TR = Iα z  = I(a/R), which gives T = Ia/R2. 

Combining the two expressions for T and using I = 1
2

MR2  gives  

21
2( )MR (a/R2) = m(g – a).  Solving for M gives  M = 2m(g – a)/a. Putting in m = 90.0 kg and a = g/4 gives 

M = 540 kg. 
(b) As we saw in (a), T = m(g – a) = 3mg/4 = 3(90.0 kg)(9.80 m/s2)/4 = 662 N. 
EVALUATE:   The tension is 3

4  the person’s weight because it must reduce his acceleration by 3
4 .  

 10.67. IDENTIFY:   Apply ext cmm=∑F a
G G  to the motion of the center of mass and apply cmz zIτ α∑ =  to the 

rotation about the center of mass. 
SET UP:   2 21

22( ) .I mR mR= =  The moment arm for T is b. 

EXECUTE:   The tension is related to the acceleration of the yo-yo by (2 ) (2 ) ,m g T m a− =  and to the 

angular acceleration by .a
Tb I I

b
α= =  Dividing the second equation by b and adding to the first to 

eliminate T yields 2 2 2
2 2 2,   .

(2 / ) 2 ( / ) 2 /
ma g g g

m I b R b b R b
α= = =

+ + +
 The tension is found by 

substitution into either of the two equations: 
2

2 2 2
2 ( / ) 2(2 )( ) (2 ) 1 2 .

2 ( / ) 2 ( / ) (2( / ) 1)
R b mgT m g a mg mg

R b R b b R

⎛ ⎞
= − =  − = =⎜ ⎟⎜ ⎟+ + +⎝ ⎠

 

EVALUATE:   0a →  when 0.b →  As ,b R→  2 /3.a g→  
 10.68. IDENTIFY:   Apply conservation of energy to the motion of the shell, to find its linear speed v at points A 

and B. Apply m=∑F a
G G  to the circular motion of the shell in the circular part of the track to find the 

normal force exerted by the track at each point. Since r R<<  the shell can be treated as a point mass 
moving in a circle of radius R when applying .m=∑

G GF a  But as the shell rolls along the track, it has both 
translational and rotational kinetic energy. 
SET UP:   1 1 2 2.K U K U+ = +  Let 1 be at the starting point and take 0y =  to be at the bottom of the track, 

so 1 0.y h=  2 21 1
2 2 .K mv Iω= +  22

3I mr=  and / ,v rω =  so 25
6 .K mv=  During the circular motion, 

2
rad / .a v R=  

EXECUTE:   (a) m=∑F a
G G  at point A gives 

2
.vn mg m

R
+ =  The minimum speed for the shell not to fall off 

the track is when 0n →  and 2 .v gR=  Let point 2 be A, so 2 2y R=  and 2
2 .v gR=  Then 

1 1 2 2K U K U+ = +  gives 5
0 62 ( ).mgh mgR m gR= +  5 17

0 6 6(2 ) .h R R= + =  

(b) Let point 2 be B, so 2 .y R=  Then 1 1 2 2K U K U+ = +  gives 25
0 26 .mgh mgR mv= +  With 17

6h R=  this 

gives 2 11
5 .v gR=  Then m=∑F a

G G  at B gives 
2

11
5 .vn m mg

R
= =  

(c) Now 21
2K mv=  instead of 25

6 .mv  The shell would be moving faster at A than with friction and would 

still make the complete loop. 
(d) In part (c): 21

0 2(2 ) .mgh mg R mv= +  17
0 6h R=  gives 2 5

3 .v gR=  m=∑F a
G G  at point A gives 

2vmg n m
R

+ =  and 
2

2
3 .vn m g mg

R
⎛ ⎞

= − =⎜ ⎟⎜ ⎟
⎝ ⎠

 In part (a), 0,n =  since at this point gravity alone supplies the 

net downward force that is required for the circular motion. 
EVALUATE:   The normal force at A is greater when friction is absent because the speed of the shell at A is 
greater when friction is absent than when there is rolling without slipping.  
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 10.69. IDENTIFY:   As it rolls down the rough slope, the basketball gains rotational kinetic energy as well as 
translational kinetic energy. But as it moves up the smooth slope, its rotational kinetic energy does not 
change since there is no friction. 
SET UP:   22

cm 3 .I mR=  When it rolls without slipping, cm .v Rω=  When there is no friction the angular 

speed of rotation is constant. Take y+  upward and let 0y =  in the valley. 
EXECUTE:   (a) Find the speed cmv  in the level valley: 1 1 2 2.K U K U+ = +  1 0,y H=  2 0.y =  1 0,K =  

2 0.U =  Therefore, 1 2.U K=  2 21 1
0 cm cm2 2 .mgH mv I ω= +  

2
2 2 2cm1 1 2 1

cm cm2 2 3 3( ) ,vI mR mv
R

ω ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 so 

25
0 cm6mgH mv=  and 2 0

cm
6 .

5
gH

v =  Find the height H it goes up the other side. Its rotational kinetic energy 

stays constant as it rolls on the frictionless surface. 2 2 21 1 1
cm cm cm2 2 2 .mv I I mgHω ω+ = +  

2
cm 3

05 .
2

v
H H

g
= =  

(b) Some of the initial potential energy has been converted into rotational kinetic energy so there is less 
potential energy at the second height H than at the first height 0H .  
EVALUATE:   Mechanical energy is conserved throughout this motion. But the initial gravitational potential 
energy on the rough slope is not all transformed into potential energy on the smooth slope because some of 
that energy remains as rotational kinetic energy at the highest point on the smooth slope. 

 10.70. IDENTIFY:   Apply conservation of energy to the motion of the ball as it rolls up the hill. After the ball 
leaves the edge of the cliff it moves in projectile motion and constant acceleration equations can be used. 
(a) SET UP:   Use conservation of energy to find the speed 2v  of the ball just before it leaves the top of the 
cliff. Let point 1 be at the bottom of the hill and point 2 be at the top of the hill. Take 0y =  at the bottom 
of the hill, so 1 0y =  and 2 28 0 m.y = .  
EXECUTE:   1 1 2 2K U K U+ = +  

2 2 2 21 1 1 1
1 1 2 2 22 2 2 2mv I mgy mv Iω ω+ = + +  

Rolling without slipping means /v rω =  and 2 2 2 21 1 2 1
2 2 5 5( )( / ) .I mr v r mvω = =  

2 27 7
1 2 210 10mv mgy mv= +  

2 10
2 1 27 15 26 m/sv v gy= − = .  

SET UP:   Consider the projectile motion of the ball, from just after it leaves the top of the cliff until just 
before it lands. Take y+  to be downward. Use the vertical motion to find the time in the air: 

0 0,yv =  29 80 m/s ,ya = .  0 28 0 m,y y− = .  ?t =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 2 39 st = .  

During this time the ball travels horizontally 
0 0 (15 26 m/s)(2 39 s) 36 5 m.xx x v t− = = . . = .  

Just before it lands, 0 23 4 m/sy y yv v a t= + = .  and 0 15 3 m/sx xv v= = .  

2 2 28 0 m/sx yv v v= + = .  

(b) EVALUATE:   At the bottom of the hill, / (25 0 m/s)/ .v r rω = = .  The rotation rate doesn’t change while 
the ball is in the air, after it leaves the top of the cliff, so just before it lands (15 3 m/s)/ .rω = .  The total 
kinetic energy is the same at the bottom of the hill and just before it lands, but just before it lands less of 
this energy is rotational kinetic energy, so the translational kinetic energy is greater. 

 10.71. IDENTIFY:   Apply conservation of energy to the motion of the boulder. 
SET UP:   2 21 1

2 2K mv Iω= +  and v Rω=  when there is rolling without slipping. 22
5 .I mR=  

EXECUTE:   Break into two parts, the rough and smooth sections. 
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Rough: 2 21 1
1 2 2 .mgh mv Iω= +  

2
2 21 1

1 2 2
2 .
5

vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 2
1

10 .
7

v gh=  

 Smooth: Rotational kinetic energy does not change. 2 21 1
2 rot Bottom rot2 2 .mgh mv K mv K+ + = +  

2 2 2
2 1 Bottom Bottom 1 2

1 10 1 10 10. 2 (9 80 m/s )(25 m) 2(9 80 m/s )(25 m) 29 0 m/s.
2 7 2 7 7

gh gh v v gh gh⎛ ⎞+ = = + = . + . = .⎜ ⎟⎝ ⎠
 

EVALUATE:   If all the hill was rough enough to cause rolling without slipping, 

Bottom
10 (50 m) 26 5 m/s.
7

v g= = .  A smaller fraction of the initial gravitational potential energy goes into 

translational kinetic energy of the center of mass than if part of the hill is smooth. If the entire hill is 
smooth and the boulder slides without slipping, Bottom 2 (50 m) 31 3 m/s.v g= = .  In this case all the initial 
gravitational potential energy goes into the kinetic energy of the translational motion. 

 10.72. IDENTIFY:   Apply Newton’s second law in its linear and rotational form to the cylinder. The cylinder does 
not slip on the surface of the ramp. 
SET UP: ext cm,M∑ =

G GF a  ,τ αΣ =z zI  21
2 ,I mR=  and acm = Rα  for no slipping.  Take the x-axis parallel 

to the surface of the ramp; call up the ramp positive since that is the direction in which the cylinders must 
accelerate. Take the y-axis perpendicular to the surface. For uniform acceleration 21

0 0 2 .x xx x v t a t− = +  

EXECUTE: (a)  The forces balance in the y-direction, so the normal force n is n = θcosmg .  In the  
x-direction, Σ =x xF ma gives  
F – fs – mg sinθ  = ma. 
Now apply .z zIτ αΣ =  

fsR = 21
2( )mR (a/R), which gives a = 2fs/m. Putting this result into the previous result gives 

F – fs – mg sinθ  = m(2fs/m) = 2fs. 
Solving for F gives 
F = 3fs + mg sinθ  = 3µsn + mg sinθ  = 3µsmg cosθ  + mg sinθ  = mg(3µs cosθ  + sinθ ) 
F = (460 kg)(9.80 m/s2)[3(0.120) cos37° + sin 37°] = 4010 N. 
(b) From part (a) we have 
a = 2fs/m = (2µsmg cosθ )/m = 2µsg cosθ .   
Linear kinematics using 21

0 0 2x xx x v t a t− = +  gives  

t = 0 0
2

( ) ( )2 2 6.00 m
2 cos (0.120)(9.80 m/s )cos37°s

x x x x
a µ g θ
− −= =  = 2.53 s. 

EVALUATE: Just lifting the 460-kg vertically would require a force of mg = 4510 N, so we don’t do very 
much better by rolling them up the slope since friction opposes the linear motion. 

 10.73. IDENTIFY:   Apply conservation of energy to the motion of the wheel.  
SET UP:   2 21 1

2 2 .K mv Iω= +  No slipping means that / .v Rω =  Uniform density means 

r s2  and ,m R m Rλ π λ= =  where rm  is the mass of the rim and sm  is the mass of each spoke. For the 

wheel, rim spokes.I I I= +  For each spoke, 21
s3 .I m R=  

EXECUTE:   (a) 2 21 1
2 2 .mgh mv Iω= +  2 21

rim spokes r s36( )I I I m R m R = + = +   

Also, r s 2 6 2 ( 3).m m m R R Rπ λ λ λ π= + = + = +  Substituting into the conservation of energy equation 

gives 2 2 2 21 1 1
2 2 32 ( 3) (2 )( 3)( ) 2 6( ) .R gh R R R R RRλ π λ π ω π λ λ ω⎡ ⎤+ = + + +⎣ ⎦  

2

2 2
( 3) ( 3)(9 80 m/s )(58 0 m) 124 rad/s

( 2) (0 210 m) ( 2)
gh

R
π πω

π π
+ + . .= = =

+ . +
 and 26 0 m/sv Rω= = .  
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(b) Doubling the density would have no effect because it does not appear in the answer. ω  is inversely 
proportional to R so doubling the diameter would double the radius which would reduce  by half, butω  
v Rω=  would be unchanged. 
EVALUATE:   Changing the masses of the rim and spokes by different amounts would alter the speed v at 
the bottom of the hill. 

 10.74. IDENTIFY:   The rings and the rod exert forces on each other, but there is no net force or torque on the 
system, and so the angular momentum will be constant. 
SET UP:   For the rod, 21

12 .I ML=  For each ring, 2,I mr=  where r is their distance from the axis. 

EXECUTE:   (a) As the rings slide toward the ends, the moment of inertia changes, and the final angular 

velocity is given by 
2 21 4 2

11 112
2 1 1 12 2 3 21

2 212

2 5 00 10  kg m ,
42 2 00 10  kg m

ML mrI
I ML mr

ωω ω ω ω
−

−

⎡ ⎤ ⎛ ⎞+ . × ⋅
⎢ ⎥= = = =⎜ ⎟⎜ ⎟+ . × ⋅⎢ ⎥ ⎝ ⎠⎣ ⎦

 so 

 ω2 = 12.0 rev/min.  
(b) The forces and torques that the rings and the rod exert on each other will vanish, but the common 
angular velocity will be the same, 12.0 rev/min.  
EVALUATE:   Note that conversion from rev/min to rad/s  was not necessary. The angular velocity of the 
rod decreases as the rings move away from the rotation axis. 

 10.75. IDENTIFY:   Use conservation of energy to relate the speed of the block to the distance it has descended. 
Then use a constant acceleration equation to relate these quantities to the acceleration. 
SET UP:   For the cylinder, 21

2 (2 ) ,I M R=  and for the pulley, 21
2 .I MR=  

EXECUTE:   Doing this problem using kinematics involves four unknowns (six, counting the two angular 
accelerations), while using energy considerations simplifies the calculations greatly. If the block and the 
cylinder both have speed v, the pulley has angular velocity /v R  and the cylinder has angular velocity 

/2 ,v R  the total kinetic energy is 

2 2
2 2 2 2 21 (2 ) 3( /2 ) ( / ) .

2 2 2 2
M R MRK Mv v R v R Mv Mv

⎡ ⎤
= + + + =⎢ ⎥

⎢ ⎥⎣ ⎦
 

This kinetic energy must be the work done by gravity; if the hanging mass descends a distance y, 
,K Mgy=  or 2 (2/3) .v gy=  For constant acceleration, 2 2 ,v ay=  and comparison of the two expressions 

gives /3.a g=  
EVALUATE:   If the pulley were massless and the cylinder slid without rolling, 2Mg Ma=  and /2.a g=  
The rotation of the objects reduces the acceleration of the block. 

 10.76. IDENTIFY:   As Jane grabs the helpless Tarzan from the jaws of the hippo, the angular momentum of the 
Jane-Vine-Tarzan system is conserved about the point at which the vine swings. Before and after that, 
mechanical energy is conserved. 
SET UP:   Take y+  upward and 0y =  at the ground. The center of mass of the vine is 4.00 m from either 
end. Treat the motion in three parts: (i) Jane swinging to where the vine is vertical. Apply conservation of 
energy. (ii) The inelastic collision between Jane and Tarzan. Apply conservation of angular momentum. 
(iii) The motion of the combined object after the collision. Apply conservation of energy. The vine has 

21
vine3I m l=  and Jane has 2

Jane ,I m l=  so the system of Jane plus vine has 21
tot vine Jane3( ) .I m m l= +  

Angular momentum is .L Iω=  
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Figure 10.76a 
 

EXECUTE:   (a) The initial and final positions of Jane and the vine for the first stage of the motion are 
sketched in Figure 10.76a. The initial height of the center of the vine is vine, 1 6 50 mh = .  and its final 

height is vine, 2 4 00 m.h = .  Conservation of energy gives 1 1 2 2.U K U K+ = +  1 0K =  so 

21
Jane vine vine tot2(5 00 m) (6 50 m) (4 00 m) .m g m g m g I ω. + . = . + Jane vine

21
vine Jane3

2[ (5 00 m) (2 50 m)] ,
( )

m m g
m m l

ω . + .=
+

 

which gives 
2

21
3

2[(60 0 kg)(5 00 m) (30 0 kg)(2 50 m)](9 80 m/s ) 1 28 rad/s.
(30 0 kg) 60 0 kg (8 00 m)

ω . . + . . .= = .
⎡ ⎤. + . .⎣ ⎦

 

(b) Conservation of angular momentum applied to the collision gives 1 2,L L=  so 1 1 2 2.I Iω ω=  

1 1 28 rad/s.ω = .  
2 3 21

1 3 (30 0 kg) 60 0 kg (8 00 m) 4 48 10 kg m .I ⎡ ⎤= . + . . = . × ⋅⎣ ⎦
2 3 2 2 3 2

2 1 Tarzan 4 48 10 kg m (72 0 kg)(8 00 m) 9 09 10 kg m .I I m l= + = . × ⋅ + . . = . × ⋅
3 2

1
2 1 3 2

2

4 48 10 kg m (1 28 rad/s) 0 631 rad/s.
9 09 10 kg m

I
I

ω ω
⎛ ⎞⎛ ⎞ . × ⋅= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. × ⋅⎝ ⎠ ⎝ ⎠

 

 

 

Figure 10.76b 
 

(c) The final position of Tarzan and Jane, when they have swung to their maximum height, is shown in 
Figure 10.76b. If Tarzan and Jane rise to a height h, then the center of the vine rises to a height /2.h  
Conservation of energy gives 21

Jane Tarzan vine2 ( ) /2,I m m gh m ghω = + +  where 3 29 09 10 kg mI = . × ⋅  and 

0 631 rad/s,ω = .  from part (b).  
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2 3 2 2

2
Jane Tarzan vine

(9 09 10 kg m )(0 631 rad/s) 1 26 m.
2( 0 5 ) 2(60 0 kg 72 0 kg 15 0 kg)(9 80 m/s )

Ih
m m m g

ω . × ⋅ .= = = .
+ + . . + . + . .

 

EVALUATE:   Mechanical energy is lost in the inelastic collision. 
 10.77. IDENTIFY:   Apply conservation of energy to the motion of the first ball before the collision and to the 

motion of the second ball after the collision. Apply conservation of angular momentum to the collision 
between the first ball and the bar. 
SET UP:   The speed of the ball just before it hits the bar is 2 15 34 m/s.v gy= = .  Use conservation of 
angular momentum to find the angular velocity ω  of the bar just after the collision. Take the axis at the 
center of the bar. 
EXECUTE:     L1 = mvr = (5.00 kg)(15.34 m/s)(2.00 m) = 153.4 kg ⋅ m2 /s  
Immediately after the collision the bar and both balls are rotating together. 

2 totL I ω=  
2 2 2 2 21 1

tot 12 122 (8 00 kg)(4 00 m) 2(5 00 kg)(2 00 m) 50 67 kg mI Ml mr= + = . . + . . = . ⋅  

  L2 = L1 = 153.4 kg ⋅ m2 /s  

2 tot/ 3 027 rad/sL Iω = = .  
Just after the collision the second ball has linear speed (2 00 m)(3 027 rad/s) 6 055 m/sv rω= = . . = .  and is 

moving upward. 21
2 mv mgy=  gives 1 87 my = .  for the height the second ball goes. 

EVALUATE:   Mechanical energy is lost in the inelastic collision and some of the final energy is in the 
rotation of the bar with the first ball stuck to it. As a result, the second ball does not reach the height from 
which the first ball was dropped. 

 10.78. IDENTIFY:   Apply τ =Σ
G

G d

dt
.

L
 

SET UP:   The door has 21
3 .I ml=  The torque applied by the force is av,rF  where /2.r l=  

EXECUTE:   av av, av and .rF L rF t rJτ∑ = ∆ = ∆ =  The angular velocity ω  is then 

av av av
21

3

( /2) 3 ,
2

L rF t l F t F t
I I mlml

ω ∆ ∆ ∆ ∆= = = =  where l  is the width of the door. Substitution of the given 

numeral values gives 0 514 rad/s.ω = .  
EVALUATE:   The final angular velocity of the door is proportional to both the magnitude of the average 
force and also to the time it acts. 

 10.79. IDENTIFY:   Apply conservation of angular momentum to the collision. Linear momentum is not conserved 
because of the force applied to the rod at the axis. But since this external force acts at the axis, it produces 
no torque and angular momentum is conserved. 
SET UP:   The system before and after the collision is sketched in Figure 10.79. 
EXECUTE:   (a) 1

b rod4m m=  
 

 EXECUTE:   1
1 b rod4 ( /2)L m vr m v L= =  

1
1 rod8L m vL=  

2 rod b( )L I I ω= +  
21

rod rod3I m L=  
2 21

b b rod4 ( /2)I m r m L= =  
21

b rod16I m L=  

Figure 10.79   
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Thus 1 2L L=  gives 2 21 1 1
rod rod rod8 3 16( )m vL m L m L ω= +  

191
8 48v Lω=  

6
19 /v Lω =  

(b) 2 21 1
1 rod2 8K mv m v= =  

2 2 2 2 21 1 1 1 1
2 rod b rod rod2 2 2 3 16( ) ( )(6 /19 )K I I I m L m L v Lω ω= = + = +  

2 2 219 6 31
2 rod rod2 48 19 152( )( )K m v m v= =  

Then 
23

rod2 152
21

1 rod8

3/19.
m vK

K m v
= =  

EVALUATE:   The collision is inelastic and 2 1.K K<  
 10.80. IDENTIFY:   As you walk toward the center of the turntable, the angular momentum of the system (you plus 

turntable) is conserved. By getting closer to the center, you are decreasing the moment of inertia of the 
system. Newton’s second law applies to you, and static friction provides the centripetal force on you. 
SET UP:   0 0 2 2 ,I Iω ω=  I = mr2 for a point mass, ω= 2

rad ,ra  max
s s ,f nµ=  and .mΣ =

G GF a  
EXECUTE:   At the closest distance, the friction force is  
fs = µsn = µsmg 
Newton’s second law gives  
fs = ma = mrω 2  
Combining these two equations gives  
µsmg = mrω 2  

Conservation of angular momentum gives 
2

0 t 0
0 02

t
.I I mr

I I mr
ω ω ω

⎛ ⎞+= = ⎜ ⎟⎜ ⎟+⎝ ⎠
 Solving the earlier equation for µs 

and using the previous result gives  
22 2 2

t 0 0
s 2

t
.r I mr r

g gI mr
ω ωµ

⎛ ⎞+= = ⎜ ⎟⎜ ⎟+⎝ ⎠
 Putting in m = 70.0 kg, r = 3.00 m, and 

2
t = 1200 kg m ,I ⋅  and using ω

0
 = 2π/(8.0 s), we get µs = 0.780. 

EVALUATE:  This coefficient of static friction is a physically reasonable. 
 10.81. IDENTIFY:   As the disks are connected, their angular momentum is conserved, but some of their initial 

kinetic energy is converted to thermal energy. The 2400 J of thermal energy is equal to the loss of 
rotational kinetic energy.  
SET UP:   1 1 2 2 ,I Iω ω=  21

2 .K Iω=  

EXECUTE: Angular momentum conservation gives ( ) .A A
A A A B

A B

II I I
I I

ωω ω ω= + → =
+

  The loss of 

kinetic energy is 2 21 1
1 2 02 2 ( ) .A A BK K K I I Iω ω∆ = − = − +   Combining these two equations gives 

2
0 1 .

2
A A

A B

I IK
I I

ω ⎛ ⎞
∆ = −⎜ ⎟+⎝ ⎠

 The loss of kinetic energy should be no more than 2400 J, so 

2
0 1 2400 J.

2
A A

A B

I I
I I

ω ⎛ ⎞
− ≤⎜ ⎟+⎝ ⎠

 The quantity 
2
0

2
AI ω is the kinetic energy of A, KA. Therefore we can solve the 

inequality for KA, giving (2400 J) .A B
A

B

I IK
I

⎛ ⎞+≤ ⎜ ⎟
⎝ ⎠

 Since IA = IB/3, the maximum kinetic energy of A is 

3200 J. 
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EVALUATE:   This situation is the rotational analog to a collision in which one object is initially at rest and 
they stick together. As in that situation, the momentum (angular in this case) is conserved but the kinetic 
energy is not. 

 10.82. IDENTIFY:   This is a collision in which one object is initially stationary and they stick together. The rod is 
pivoted at one end, so it can only rotate after it is struck. The puck has angular momentum, some of which 
is transferred to the rod, but the angular momentum of the puck-rod system is conserved. 
SET UP:   The initial angular momentum of the puck is mvr, the final angular momentum of the rod is ω,I  

and 21
rod 3 .I ML=  

EXECUTE:   After the collision, ω  = 2π/T, where T = 0.736 s, r = L, and I = Irod + Ipuck. Conservation of 

angular momentum gives 2 21
3( ) .mvr ML mL ω= +  Solving for v gives 

2 21
3

2( )
.

ML mL
Tv

mL

π⎛ ⎞+ ⎜ ⎟
⎝ ⎠=  Putting in 

m = 0.163 kg, M = 0.800 kg, L = 2.00 m, T = 0.736 s gives v = 45.0 m/s. 
EVALUATE: This situation is the rotational analog to a collision in which one object is initially at rest and 
they stick together. As in that situation, the momentum (angular in this case) is conserved but the kinetic 
energy is not. 

 10.83. IDENTIFY:   We must break this problem up into three parts: the motion on the waterslide, the collision 
with the pole, and the swing of the pole after the collision. On the slide, mechanical energy is conserved. 
During the collision with the pole, angular momentum is conserved. During the swing of the pole after the 
collision, mechanical energy is conserved. 

SET UP:   On the slide and after the collision, 1 1 2 2K U K U+ = +  is valid. 2
pole

1 ,
3

I ML=  the initial angular 

momentum of the person is mvr = mvL, the final angular momentum of the pole-person system is 
2

2
person pole( ) .

3
MLI I mLω ω

⎛ ⎞
+ = +⎜ ⎟⎜ ⎟

⎝ ⎠
 The kinetic energy after the collision is 21

2K Iω= =  

2
2 21

2 .
3

MLmL ω
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

 

EXECUTE:   We work backward, starting with the swinging motion after the collision. We take the zero of 
potential energy to be the bottom of the pole just after the person grabs it. 1 1 2 2K U K U+ = +  gives  
K1 + Uperson,1 + Upole,1 = 0 + Upole,2 + Uperson,2 

( ) ( )21 0 1 cos 1 cos
2 2 2 2

L L LI Mg mgL Mgω θ θ⎡ ⎤+ + = − + + −⎢ ⎥⎣ ⎦
 

Solving for ω  and using the moment of inertia of the person-plus-pole we get 

2 21
3

(1 cos )(2 )gL m M
ML mL

θω − +=
+

 = [ ]2

2 21
3

(9.80 m/s )(6.00 m)(1 cos72.0 ) 2(70.0 kg 24.0 kg)
(24.0 kg)(6.00 m) (70.0 kg)(6.00 m)

− ° +
+

  

ω  = 1.54 rad/s. 
Now we use conservation of angular momentum during the collision to find the speed of the person just 
before the collision. 

mvL = 
2

2
person pole( )

3
MLI I mLω ω

⎛ ⎞
+ = +⎜ ⎟⎜ ⎟

⎝ ⎠
 

Solving for v and putting in the numbers gives 
2 21

3( ) (3 )
3

Lv ML mL m M
mL m
ω ω= + = +  = (1.54 rad/s)(6.00 m)[3(70.0 kg) + 24.0 kg]/[3(70.0 kg)]  

v = 10.30 m/s. 
Now use energy conservation to find the initial height h. 
0 + U1 = K2 + 0 
mgh = 1

2 mv2 

h = v2/2g = (10.30 m/s)2/[2(9.80 m/s2)] = 5.41 m. 



10-36   Chapter 10 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EVALUATE:   The final height reached by the person at the end of the swing is hf = (6.00 m)(1 – cos72°) = 
4.15 m, which is less than the original heighgt of 5.41 m. Part of the reason for the decreased height is the 
fact that the pole also swings up, and part is due to the loss of kinetic energy during the inelastic collision. 
We cannot do this problem in a single step because different conservation laws are involved. 

 10.84. IDENTIFY:   Angular momentum is conserved, so 0 0 2 2.I Iω ω=  
SET UP:   For constant mass the moment of inertia is proportional to the square of the radius. 
EXECUTE:   2 2

0 0 2 2 ,R Rω ω=  or 2 2 2 2
0 0 0 0 0 0 0 0 0( ) ( )= 2 ,R R R R R R Rω ω ω ω ω ω= + ∆ + ∆ + ∆ + ∆  where the terms in 

R ω∆ ∆  and 2( )ω∆  have been omitted. Canceling the 2
0 0R ω  term gives ∆R = −

R0

2
∆ω
ω0

= −1.1 cm.  

EVALUATE:   0/R R∆ and 0/ω ω∆  are each very small so the neglect of terms containing R ω∆ ∆ or 2( )ω∆  
is an accurate simplifying approximation. 

 10.85. IDENTIFY:   Apply conservation of angular momentum to the collision between the bird and the bar and 
apply conservation of energy to the motion of the bar after the collision. 
SET UP:   For conservation of angular momentum take the axis at the hinge. For this axis the initial angular 
momentum of the bird is bird (0.500 m) ,m v  where bird 0.500 kgm = and 2.25 m/s.v =  For this axis the 

moment of inertia is 2 2 21 1
bar3 3 (1.50 kg)(0.750 m) 0.281 kg m .I m L= = = ⋅  For conservation of energy, the 

gravitational potential energy of the bar is bar cm ,U m gy=  where cmy is the height of the center of the bar. 
Take cm,1 0,y =  so cm,2 0.375 m.y = −  

EXECUTE:   (a) 1 2L L=  gives 21
bird bar3(0.500 m) ( ) .m v m L ω=  

bird
2 2

bar

3 (0.500 m) 3(0.500 kg)(0.500 m)(2.25 m/s) 2.00 rad/s.
(1.50 kg)(0.750 m)

m v
m L

ω = = =  

(b) 1 1 2 2U K U K+ = +  applied to the motion of the bar after the collision gives 

2 21 1
1 bar 22 2( 0.375 m) .I m g Iω ω= − +  2

2 1 bar
2 (0.375 m).m g
I

ω ω= +  

2 2
2 2

2(2.00 rad/s) (1.50 kg)(9.80 m/s )(0.375 m) 6.58 rad/s.
0.281 kg m

ω = + =
⋅

 

EVALUATE:   Mechanical energy is not conserved in the collision. The kinetic energy of the bar just after 
the collision is less than the kinetic energy of the bird just before the collision. 

 10.86. IDENTIFY:   Angular momentum is conserved, since the tension in the string is in the radial direction and 
therefore produces no torque. Apply m∑ =

G GF a  to the block, with 2
rad / .a a v r= =  

SET UP:   The block’s angular momentum with respect to the hole is .L mvr=  

EXECUTE:    The tension is related to the block’s mass and speed, and the radius of the circle, by
2

.vT m
r

=  

2 2 2 2 2
2

3 3 3

1 ( ) .m v r mvr LT mv
r m r mr mr

= = = =  The radius at which the string breaks is 

  
r3 = L2

mTmax

=
(mv1r1)2

mTmax

=
(0.130 kg)(4.00 m/s)(0.800 m)⎡⎣ ⎤⎦

2

(0.130 kg)(30.0 N)
,  from which r = 0.354 m.  

EVALUATE:   Just before the string breaks, the speed of the rock is 0.800 m(4.00 m/s) 9.04 m/s.
0.354 m

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 We 

can verify that using T = mv2/R that   v = 9.04 m/s and r = 0.354 m do give 30.0 N.T =  
 10.87. IDENTIFY:   Apply conservation of momentum to the system of the runner and turntable. 

SET UP:   Let the positive sense of rotation be the direction the turntable is rotating initially. 
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EXECUTE:   The initial angular momentum is 1 1,I mRvω −  with the minus sign indicating that runner’s 
motion is opposite the motion of the part of the turntable under his feet. The final angular momentum is 

2
2 ( ),  soI mRω +  1 1

2 2 .I mRv
I mR
ωω −=

+
 

2

2 2 2

(80 kg m )(0.200 rad/s) (55.0 kg)(3.00 m)(2.8 m/s) 0.776 rad/s.
(80 kg m ) (55.0 kg)(3.00 m)

ω ⋅ −= = −
⋅ +

 

EVALUATE:   The minus sign indicates that the turntable has reversed its direction of motion. This 
happened because the man had the larger magnitude of angular momentum initially. 

 10.88. IDENTIFY:   We use the power and angular velocity to calculate the torque. 
SET UP:   τω= ,P  1 hp = 746 W. 
EXECUTE:  (a) First make the necessary conversions: 1 ft lb = (0.3048 m)(4.448 N) = 1.356 N m⋅ ⋅  
1 rpm = 1 rev/min = (2π rad)/(60 s) = 0.1047 rad/s. 
Solve for torque and use the above conversions:  

/Pτ ω=  = [(285 hp)/(5300 rpm)]{(746 W/hp)/[(0.1047 rad/s)/rpm]} = 383 N m⋅  = 283 ft lb.⋅  
As we can see, 283 ft lb⋅  is less than the maximum 305 ⋅ft lb.  
(b) P τω=  = (305 ft lb)⋅ (3900 rpm)(1.356 N m⋅ / ft lb)⋅ [(0.1047 rad/s)/rpm] = 169 kW = 226 hp. 
The power of 226 hp is smaller than the maximum of 285 hp. 
(c) Make the following conversions:  

1.356 N m 0.1047 rad/s 1 hphp = (ft lb) (rpm)
1 ft lb 1 rpm 746 W

τ ω ⎛ ⎞⋅⎛ ⎞ ⎛ ⎞⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
= 1.9031 × 10–4 (ft lb) (rpm),τ ω⋅  so 1/c =  

1.9031 × 10–4, which gives c = 5254. 
(d) From (c), =P τω  gives 580 hp = τ (6000 rpm)/5254, so τ  = 508 ⋅ft lb.  
EVALUATE:   Torque, power, and angular velocity are often expressed in diverse units, so conversions are 
frequently necessary. 

 10.89. IDENTIFY:   All the objects have the same mass and start from rest at the same height h. They roll without 
slipping, so their mechanical energy is conserved. Newton’s second law, in its linear and rotational forms, 
applies to each object. Since the objects have different mass distributions, they will take different times to 
reach the bottom of the ramp. 
SET UP: 1 1 2 2,K U K U+ = +  ext cm,M∑ =

G GF a   ,Iτ αΣ =  tot cm rot ,K K K= +   21
cm cm2 ,K Mv=  

21
rot cm2 .K I ω=  

EXECUTE:   (a) We can express the moment of inertia of a round object as I = cmR2, where c depends on 
the shape and mass distribution. Energy conservation gives 1 1 2 2,K U K U+ = +  so 

2
2 2 2 2 2 2 21 1 1 1 1 1

2 2 2 2 2 2
vmgh mv I mv cmR mv cmR
R

ω ω ⎛ ⎞= + = + = + ⎜ ⎟
⎝ ⎠

 = 21
2 (1 ).v c+  Solving for v2 gives 

2 2 .
1

ghv
c

=
+

 This v is the speed at the bottom of the ramp. The object with the greatest speed v will also have 

the greatest average speed down the ramp and will therefore take the shortest time to reach the bottom. Thus 
the object with the smallest c will have the greatest v and therefore the shortest time in the bar graph shown 
with the problem. For a solid cylinder, 21

2I mR=  so c = ½, for a hollow cylinder, I = mR2, so c = 1, and 

likewise we get c = 2/5 for a solid sphere and c = 2/3 for a hollow sphere. The smallest value of c is 2/5 for 
a solid sphere, so that object must take the shortest time, which makes it object A. The largest value of c is 1 
for a hollow cylinder, so that object takes the longest time, which makes it object D. The hollow sphere has 
a larger c than the solid cylinder, so it takes longer than the solid cylinder, so C must be the hollow sphere 
and B the solid cylinder. Summarizing these results, we have 
 A: solid sphere, c = 2/5 
 B: solid cylinder, c = 1/2 
 C: hollow sphere, c = 2/3 
 D: hollow cylinder, c = 1 
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(b) All the objects start from rest at the same initial height and roll without slipping, so they all have the 
same kinetic energy at the bottom of the ramp. 
(c) Using 21

rot cm2 ,K I ω=  we have Krot = ½ (cmR2)(v/R)2 = ½ mcv2. Using our result for v2 from (a) gives 

1
rot 2

2 1 .11 1

ghK mc mgh
c

c

⎛ ⎞
⎜ ⎟⎛ ⎞= = ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎜ ⎟+⎜ ⎟
⎝ ⎠

 From this result, we see that the object with the largest c has the largest 

rotational kinetic energy because the denominator in the parentheses is the smallest. Therefore the hollow 
cylinder, with c = 1, has the largest rotational kinetic energy. 
(d) Apply Newton’s second law. Perpendicular to the ramp surface, we get n = mg cosθ  for the normal 
force. Parallel to the surface, with down the ramp as positive, we get mg sinθ  – fs = ma. Taking torques 
about the center of the rolling object gives fR = Iα  = (mcR2)(a/R), which gives fs = mca, so ma = fs/c. 
Putting this into the previous equation gives mg sinθ  – fs = fs/c, which can be written as  
mg sinθ  = fs(1 + 1/c). We want the minimum coefficient of friction to prevent slipping, so  
fs = µsn = µsmg cosθ .  Putting this into the previous equation gives  mg sinθ  = (µsmg cosθ )(1 + 1/c). 

Solving for µs gives s
tan .11

c

θµ =
+

 We want µs such that none of the objects will slip, so we must find the 

maximum µs. That will occur when c has its largest value since that will make the denominator smallest, 
and that is for the hollow cylinder for which c = 1. This gives µs = (tan 35.0°)/2 = 0.350. 
EVALUATE:   As a check, part (a) could be solved using Newton’s second law, as we did in part (d). As a 
check in part (d), find µs for the solid sphere which has the smallest value of c. This gives 

s
tan35.0 tan35.0 0.200.1 3.51

2/5

° °= = =
+

µ  This is less than the 0.350 we found in (d), so a coefficient of friction of 

0.350 is more than enough to prevent slipping of the solid sphere.  
 10.90. IDENTIFY:   The work done by the force F is equal to the kinetic energy gained by the flywheel. This work 

is the area under the curve in a F-versus-d graph. 
SET UP:   W = Fd, 21

2 ,K Iω=  ω= .v r  

EXECUTE:   (a) The pull is constant, so the linear and angular accelerations are constant. Therefore  
v = 2vav = 2(d/t), so ω  = v/R = 2d/tR. The work done is equal to the kinetic energy of the flywheel, so 

Fd = 
  
1
2

Iω 2  = 
2

1
2

2 .dI
tR

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Solving for I gives  

I = Ft2R2/2d = (25.0 N)(2.00 s)2(0.166 m)2/[2(8.35 m)] = 0.165 2kg m .⋅  
(b) The kinetic energy gained is equal to the work done which is equal to the area under the curve on the  
F-d graph. This gives 
K = (60.0 N)(3.00 m) + ½ (60.0 N)(3.00 m) = 270 J. 

(c) 21
2K Iω=  so 2

2 2(270 J)
0.165 kg m

K
I

ω = =
⋅

 = 57.2 rad/s. Converting to rpm gives 

(57.2 rad/s)[(60 s)/(1 min)][(1 rev)/(2π rad)] = 546 rpm. 
EVALUATE:  In this case, we could have deduced the equation for F as a function of d from the graph and 
integrated to find the work. But for a more complicated F-d dependence, that would have been impossible, 
but we could still estimate the area quite accurately from the graph. 

 10.91. IDENTIFY:   The answer to part (a) can be taken from the solution to Problem 10.86. The work-energy 
theorem says .W K= ∆  
SET UP:   Problem 10.86 uses conservation of angular momentum to show that 1 1 2 2.r v r v=  

EXECUTE:   (a) 2 2 3
1 1 / .T mv r r=  

(b)  and dT r
G G  are always antiparallel. .d Tdr⋅ = −T r

G G   
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2 1

1 2

2
2 2 2

3 2 2
1

1 1 1
2 1

1 1 .
2

r r

r r

dr mvW T dr mv r r
r r r

⎡ ⎤
= −  = = −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  

(c) 2 1 1 2( / ),v v r r=  so  
2

2 2 211
2 1 1 22 ( ) ( / ) 1 ,

2
mvK m v v r r⎡ ⎤∆ = − =  −⎣ ⎦  which is equal to the work found in part (b). 

 EVALUATE:   The work done by T is positive, since T
G

 is toward the hole in the surface and the block 
moves toward the hole. Positive work means the kinetic energy of the object increases. 

 

 10.92. IDENTIFY:   Apply ext cmm∑ =F a
G G  and cmz zIτ α∑ =  to the motion of the cylinder. Use constant 

acceleration equations to relate xa  to the distance the object travels. Use the work-energy theorem to find 
the work done by friction. 
SET UP:   The cylinder has 21

cm 2 .I MR=  

EXECUTE:   (a) The free-body diagram is sketched in Figure 10.92. The friction force is 

k k k,  so  .f n Mg a gµ µ µ= = =  The magnitude of the angular acceleration is k k
2

2 .
(1/2)

MgR gfR
I RMR

µ µ= =  

(b) Setting 0( )v at R t Rω ω α= = = −  and solving for t gives 0 0 0

k k k
,

2 3
R R Rt

a R g g g
ω ω ω

α µ µ µ
= = =

+ +
  

and 
2 2 2

2 0 01 1
k2 2

k k
( ) .

3 18
R Rd at g

g g
ω ωµ

µ µ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

(c) The final kinetic energy is 2 2(3/4) (3/4) ( ) ,Mv M at=  so the change in kinetic energy is 

2
2 2 2 20

k 0 0
k

3 1 1 .
4 3 4 6

RK M g MR MR
g

ωµ ω ω
µ

⎛ ⎞
∆ = − = −⎜ ⎟

⎝ ⎠
 

EVALUATE:   The fraction of the initial kinetic energy that is removed by friction work is 
21
06
21
04

2 .
3

MR

MR

ω
ω

=  

This fraction is independent of the initial angular speed 0.ω  
 

 

Figure 10.92 
 

 10.93. IDENTIFY:   The vertical forces must sum to zero. Apply .z

z

wr
L I
τ

ω
Ω = =  

SET UP:   Denote the upward forces that the hands exert as and .L RF F  ( ) ,L RF F rτ = −  where 
0 200 m.r = .  

EXECUTE:   The conditions that and L RF F  must satisfy are L RF F w+ =  and ,L R
IF F
r
ω− = Ω  where the 

second equation is ,Lτ = Ω  divided by r. These two equations can be solved for the forces by first adding 

and then subtracting, yielding 1
2L

IF w
r
ω⎛ ⎞= + Ω⎜ ⎟

⎝ ⎠
 and 1

2 .R
IF w
r
ω⎛ ⎞= − Ω⎜ ⎟

⎝ ⎠
 Using the values  
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2(8 00 kg)(9 80 m/s ) 78 4 N w mg= = . . = . and 
2(8 00 kg)(0 325 m) (5 00 rev/s 2  rad/rev) 132 7 kg m/s

(0 200 m)
I
r
ω π. . . ×= = . ⋅

.
 gives 

39 2 N (66 4 N s),  39 2 N (66 4 N s).L RF F= . + Ω . ⋅ = . − Ω . ⋅  
(a) 0, 39 2 N.L RF FΩ = = = .  
(b) 0 05 rev/s 0 314 rad/s, 60 0 N, 18 4 N.L RF FΩ = . = . = . = .  
(c) 0 3 rev/s 1 89 rad/s, 165 N, 86 2 N,L RF FΩ = . = . = = − .  with the minus sign indicating a downward force. 

(d) 39 2 N0  gives  0 590 rad/s, which is 0 0940 rev/s.
66 4  N sRF .= Ω = = . .

. ⋅
 

EVALUATE:   The larger the precession rate ,Ω  the greater the torque on the wheel and the greater the 
difference between the forces exerted by the two hands. 

 10.94. IDENTIFY:   The rotational form of Newton’s second law applies. 
SET UP: Iτ αΣ =  and  0 .z z ztω ω α= +  
EXECUTE: Στ = Iα  = / ,tω∆ ∆  where I = Iperson + I0. Solving for Iperson gives Iperson = τ α/  – I0. 

Iperson =  2 2 2.5 N × m 1.5 kg × m = 6.0 kg × m ,
1.0 rad/s

3.0 s

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 which is choice (b). 

EVALUATE:   The moment of inertia of the turntable is considerably less than that of the person, which is a 
good thing. If the moment of inertia of the table were much greater than that of the person, the person’s 
body would have a small effect on the angular acceleration of the table, making it hard to get an accurate 
measurement. 

 10.95. IDENTIFY and SET UP:     Moment of inertia depends on the distribution of mass. 
EXECUTE:  Extending her legs increases the person’s moment of inertia to increase. With a constant torque 
on the turntable, this would decrease her angular acceleration, which is choice (c). 
EVALUATE:   The person being studied should be told to lie still during the procedure. 

 10.96. IDENTIFY and SET UP:   The torque is the product of the force times the lever arm, and .Iτ αΣ =  
EXECUTE:  Doubling the lever arm with a constant force doubles the torque, which then doubles the angular 
acceleration, so choice (b) is correct. 
EVALUATE:   Doubling the diameter of the pulley would also allow the tension to be decreased by a factor 
of 2 and still keep the same original angular acceleration. 

 10.97. IDENTIFY and SET UP:   The parallel-axis theorem, I = Icm + md2, applies to the person. 
EXECUTE:   The measured moment of inertia would be I, but this would be greater than Icm, so the measured 
value would be too large, choice (a). 
EVALUATE:   Care is essential to position the person properly on the turntable. 
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 11.1. IDENTIFY:   Use 1 1 2 2 3 3
cm

1 2 3

+ …

…

+ +=
+ + +

m x m x m xx
m m m

 to calculate cm.x  The center of gravity of the bar is at its 

center and it can be treated as a point mass at that point. 
SET UP:   Use coordinates with the origin at the left end of the bar and the -axisx+  along the bar. 

1 0 120 kg,m = .  2 0 055 kg,m = .  3 0 110 kg.m = .  

EXECUTE:   1 1 2 2 3 3
cm

1 2 3

(0.120 kg)(0.250 m) 0 (0.110 kg)(0.500 m) 0.298 m.
0.120 kg 0.055 kg 0.110 kg

m x m x m xx
m m m

+ + + += = =
+ + + +

 The 

fulcrum should be placed 29.8 cm to the right of the left-hand end. 
EVALUATE:   The mass at the right-hand end is greater than the mass at the left-hand end. So the center of 
gravity is to the right of the center of the bar. 

 11.2. IDENTIFY:   Use 1 1 2 2 3 3
cm

1 2 3

+ …

…

+ +=
+ + +

m x m x m xx
m m m

 to calculate cmx  of the composite object. 

SET UP:   Use coordinates where the origin is at the original center of gravity of the object and x+  is to the 
right. With the 1.50 kg mass added, cm 2 20 cm,x = − .  m1 = 5.00 kg  and m2 = 1.50 kg.  1 0.x =  

EXECUTE:   2 2
cm

1 2
.m xx

m m
=

+
 1 2

2 cm
2

5 00 kg 1 50 kg ( 2 20 cm) 9 53 cm.
1 50 kg

⎛ ⎞ ⎛ ⎞+ . + .= = − . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

m mx x
m

 

The additional mass should be attached 9.53 cm to the left of the original center of gravity. 
EVALUATE:   The new center of gravity is somewhere between the added mass and the original center of 
gravity. 

 11.3. IDENTIFY:   Treat the rod and clamp as point masses. The center of gravity of the rod is at its midpoint, and 
we know the location of the center of gravity of the rod-clamp system. 

SET UP:   1 1 2 2
cm

1 2
.m x m xx

m m
+=
+

 

EXECUTE:   2(1.80 kg)(1.00 m) (2.40 kg)1.20 m
1.80 kg 2.40 kg

.x+=
+

 

2
(1.20 m)(1.80 kg 2.40 kg) (1.80 kg)(1.00 m) 1.35 m

2.40 kg
x + −= =  

EVALUATE:   The clamp is to the right of the center of gravity of the system, so the center of gravity of the 
system lies between that of the rod and the clamp, which is reasonable. 

 11.4. IDENTIFY:   Apply the first and second conditions for equilibrium to the trap door. 
SET UP:   For 0zτ∑ =  take the axis at the hinge. Then the torque due to the applied force must balance the 
torque due to the weight of the door. 
EXECUTE:   (a) The force is applied at the center of gravity, so the applied force must have the same 
magnitude as the weight of the door, or 300 N.  In this case the hinge exerts no force. 
(b) With respect to the hinges, the moment arm of the applied force is twice the distance to the center of 
mass, so the force has half the magnitude of the weight, or 150 N.  

EQUILIBRIUM AND ELASTICITY 

11
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The hinges supply an upward force of 300 N 150 N 150 N.− =  
EVALUATE:   Less force must be applied when it is applied farther from the hinges. 

 11.5. IDENTIFY:   Apply 0zτ∑ =  to the ladder. 
SET UP:   Take the axis to be at point A. The free-body diagram for the ladder is given in Figure 11.5. The 
torque due to F must balance the torque due to the weight of the ladder. 
EXECUTE:     F(8.0 m)sin40° = (3400 N)(10.0 m), so F = 6.6 kN.  
EVALUATE:   The force required is greater than the weight of the ladder, because the moment arm for F is 
less than the moment arm for w. 

 

 
Figure 11.5 

 

 11.6. IDENTIFY:   Apply the first and second conditions of equilibrium to the board. 
SET UP:   The free-body diagram for the board is given in Figure 11.6. Since the board is uniform its center 
of gravity is 1.50 m from each end. Apply 0,yF∑ =  with y+  upward. Apply 0zτ∑ =  with the axis at the 
end where the first person applies a force and with counterclockwise torques positive. 
EXECUTE:   0yF∑ =  gives 1 2 0F F w+ − =  and 2 1 160 N 60 N 100 N.F w F= − = − =  0zτ∑ =  gives 

2 (1 50 m) 0F x w− . =  and 
2

160 N(1 50 m) (1 50 m) 2 40 m.
100 N

wx
F

⎛ ⎞ ⎛ ⎞= . = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 The other person lifts with a 

force of 100 N at a point 2.40 m from the end where the other person lifts. 
EVALUATE:   By considering the axis at the center of gravity we can see that a larger force is applied by 
the person who pushes closer to the center of gravity. 

 

 

Figure 11.6 
 

 11.7. IDENTIFY:   Apply 0yF∑ =   and 0zτ∑ =  to the board. 
SET UP:   Let y+  be upward. Let x be the distance of the center of gravity of the motor from the end of the 
board where the 400 N force is applied. 
EXECUTE:    (a) If the board is taken to be massless, the weight of the motor is the sum of the applied 

forces, 1000 N.  The motor is a distance (2.00 m)(600 N) 1 20 m
(1000 N)

= .  from the end where the 400 N force is 

applied, and so is 0.800 m from the end where the 600 N force is applied. 
(b) The weight of the motor is 400 N 600 N 200 N 800 N.+ − =  Applying 0zτ∑ =  with the axis at the end 
of the board where the 400 N acts gives (600 N)(2 00 m) (200 N)(1 00 m) (800 N)x. = . +  and 1 25 m.x = .  
The center of gravity of the motor is 0.75 m from the end of the board where the 600 N force is applied. 
EVALUATE:   The motor is closest to the end of the board where the larger force is applied. 
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 11.8. IDENTIFY:   Apply the first and second conditions of equilibrium to the shelf. 
SET UP:   The free-body diagram for the shelf is given in Figure 11.8. Take the axis at the left-hand end of the 
shelf and let counterclockwise torque be positive. The center of gravity of the uniform shelf is at its center. 
EXECUTE:    (a) 0zτ∑ =   gives t s 2(0 200 m) (0 300 m) (0 400 m) 0.w w T− . − . + . =  

2
(25 0 N)(0 200 m) (50 0 N)(0 300 m) 50 0 N

0 400 m
T . . + . .= = .

.
 

0yF∑ =  gives 1 2 t s 0T T w w+ − − =  and 1 25 0 N.T = .  The tension in the left-hand wire is 25.0 N and the 
tension in the right-hand wire is 50.0 N. 
EVALUATE:   We can verify that 0zτ∑ =   is zero for any axis, for example for an axis at the right-hand end 
of the shelf. 

 

 

Figure 11.8 
 

 11.9. IDENTIFY:   Apply the conditions for equilibrium to the bar. Set each tension equal to its maximum value. 
SET UP:   Let cable A be at the left-hand end. Take the axis to be at the left-hand end of the bar and x be the 
distance of the weight w from this end. The free-body diagram for the bar is given in Figure 11.9. 
EXECUTE:    (a) 0yF∑ =  gives bar 0A BT T w w+ − − =  and 

bar 500 0 N 400 0 N 350.0 N 550 N.A Bw T T w= + − = . + . − =  
(b) 0zτ∑ =  gives bar(1 50 m) (0 750 m) 0.BT wx w. − − . =  

bar(1 50 m) (0 750 m) (400 0 N)(1 50 m) (350 N)(0 750 m) 0 614 m.
550 N

BT wx
w

. − . . . − .= = = .  The weight should 

be placed 0.614 m from the left-hand end of the bar (cable A). 
EVALUATE:   If the weight is moved to the left, AT  exceeds 500.0 N and if it is moved to the right BT  
exceeds 400.0 N. 

 

 

Figure 11.9 
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 11.10. IDENTIFY:   Apply the first and second conditions for equilibrium to the ladder. 
SET UP:   Let 2n  be the upward normal force exerted by the ground and let 1n  be the horizontal normal 
force exerted by the wall. The maximum possible static friction force that can be exerted by the ground  
is s 2.nµ  
EXECUTE:    (a) Since the wall is frictionless, the only vertical forces are the weights of the man and the 
ladder, and the normal force 2.n  For the vertical forces to balance, 2 1 m 160 N 740 N 900 N,n w w= + = + =  
and the maximum frictional force is s 2 (0 40)(900 N) 360 N.nµ = . =  
(b) Note that the ladder makes contact with the wall at a height of 4.0 m above the ground. Balancing 
torques about the point of contact with the ground, 

1(4 0 m) (1 5 m)(160 N) (1 0 m)(3/5)(740 N) 684 N m,n. = . + . = ⋅  so 1 171 0 N.n = .  This horizontal force 
must be balanced by the friction force, which must then be 170 N to two figures. 
(c) Setting the friction force, and hence 1,n  equal to the maximum of 360 N and solving for the distance x 
along the ladder, (4 0 m)(360 N) (1 50 m)(160 N) (3/5)(740 N),x. = . +  so 2 7 m.x = .  
EVALUATE:   The normal force exerted by the ground doesn’t change as the man climbs up the ladder. But 
the normal force exerted by the wall and the friction force exerted by the ground both increase as he moves 
up the ladder. 

 11.11. IDENTIFY:   The system of the person and diving board is at rest so the two conditions of equilibrium 
apply. 
(a) SET UP:   The free-body diagram for the diving board is given in Figure 11.11. Take the origin of 
coordinates at the left-hand end of the board (point A). 

 

 1F  is the force applied at the support 

point and 2F  is the force at the end 
that is held down. 

Figure 11.11   
 

EXECUTE:   0Aτ∑ =  gives 1(1 0 m) (500 N)(3 00 m) (280 N)(1 50 m) 0F+ . − . − . =  

1
(500 N)(3 00 m) (280 N)(1 50 m) 1920 N

1 00 m
F . + .= =

.
 

(b) y yF ma∑ =  

1 2 280 N 500 N 0F F− − − =  

2 1 280 N 500 N 1920 N 280 N 500 N 1140 NF F= − − = − − =  
EVALUATE:   We can check our answers by calculating the net torque about some point and checking that 

0zτ∑ =  for that point also. Net torque about the right-hand end of the board: 
(1140 N)(3 00 m) (280 N)(1 50 m) (1920 N)(2 00 m). + . − . = 3420 N m 420 N m 3840 N m 0,⋅ + ⋅ − ⋅ =  which 
checks. 

 11.12. IDENTIFY:   Apply the first and second conditions of equilibrium to the beam. 
SET UP:   The boy exerts a downward force on the beam that is equal to his weight. 
EXECUTE:    (a) The graphs are given in Figure 11.12. 
(b) 6 25 m when 0,Ax F= . =  which is 1.25 m beyond point B. 
(c) Take torques about the right end. When the beam is just balanced, 0, so 900 N.A BF F= =  

The distance that point B must be from the right end is then (300 N)(4.50 m) 1 50 m.
(900 N)

= .  
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EVALUATE:   When the beam is on the verge of tipping it starts to lift off the support A and the normal 
force AF  exerted by the support goes to zero. 

 

 

Figure 11.12 
 
 

 11.13. IDENTIFY:   Apply the first and second conditions of equilibrium to the strut. 
(a) SET UP:   The free-body diagram for the strut is given in Figure 11.13a. Take the origin of coordinates 
at the hinge (point A) and y+   upward. Let hF  and vF  be the horizontal and vertical components of the  

force F  exerted on the strut by the pivot. The tension in the vertical cable is the weight w of the 
suspended object. The weight w of the strut can be taken to act at the center of the strut. Let L be the length 
of the strut. 

 

 EXECUTE:    
y yF ma∑ =  

v 0F w w− − =  

v 2F w=  

Figure 11.13a   
 

Sum torques about point A. The pivot force has zero moment arm for this axis and so doesn’t enter into the 
torque equation. 

0Aτ =  
sin30 0 (( /2)cos30 0 ) ( cos30 0 ) 0TL w L w L. ° − . ° − . ° =  

sin30 0 (3 /2)cos30 0 0T w. ° − . ° =  
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3 cos30 0 2 60
2sin30 0
wT w. °= = .

. °
 

Then x xF ma∑ =  implies h 0T F− =  and h 2 60 .F w= .  

We now have the components of F  so can find its magnitude and direction (Figure 11.13b). 
 

 2 2
h vF F F= +  

2 2(2 60 ) (2 00 )F w w= . + .  
3 28F w= .  

v

h

2 00tan
2 60

F w
F w

θ .= =
.

 

37 6θ = . °  
Figure 11.13b   

 

(b) SET UP:   The free-body diagram for the strut is given in Figure 11.13c. 
 

 

Figure 11.13c 
 

The tension T has been replaced by its x and y components. The torque due to T equals the sum of the 
torques of its components, and the latter are easier to calculate. 
EXECUTE:   0 ( cos30 0 )( sin 45 0 ) ( sin30 0 )( cos45 0 )A T L T Lτ∑ = + . ° . ° − . ° . ° −  

      w (L/2)cos45.0°⎡⎣ ⎤⎦ − w(Lcos45.0°) = 0  

The length L divides out of the equation. The equation can also be simplified by noting that 
sin 45.0 cos45.0 .° = °  
Then (cos30.0 sin30.0 ) 3 /2.T w° − ° =  

3 4 10
2(cos30 0 sin30 0 )

wT w= = .
. ° − . °

 

x xF ma∑ =  

h cos30 0 0F T− . ° =  

h cos30 0 (4 10 )(cos30 0 ) 3 55F T w w= . ° = . . ° = .  

y yF ma∑ =  

v sin30 0 0F w w T− − − . ° =  
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v 2 (4 10 )sin30 0 4 05F w w w= + . . ° = .  
 
 

 From Figure 11.13d, 
2 2

h vF F F= +  
2 2(3 55 ) (4 05 ) 5 39F w w w= . + . = .  

v

h

4 05tan
3 55

F w
F w

θ .= =
.

 

48 8θ = . °  
Figure 11.13d   

 

EVALUATE:   In each case the force exerted by the pivot does not act along the strut. Consider the net 
torque about the upper end of the strut. If the pivot force acted along the strut, it would have zero torque 
about this point. The two forces acting at this point also have zero torque and there would be one nonzero 
torque, due to the weight of the strut. The net torque about this point would then not be zero, violating the 
second condition of equilibrium. 

 11.14. IDENTIFY:   Apply the first and second conditions of equilibrium to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.14. vH  and hH  are the vertical and 
horizontal components of the force exerted on the beam at the wall (by the hinge). Since the beam is 
uniform, its center of gravity is 2.00 m from each end. The angle θ  has cos 0 800θ = .  and sin 0.600.θ =  
The tension T has been replaced by its x- and y-components. 
EXECUTE:   (a) v ,H  hH  and cosxT T θ=  all produce zero torque. 0zτ∑ =  gives 

load(2 00 m) (4 00 m) sin (4 00 m) 0w w T θ− . − . + . =  and 

  
T = (190 N)(2.00 m) + (300 N)(4.00 m)

(4.00 m)(0.600)
= 658.3 N,  which rounds to 658 N. 

(b) 0xF∑ =  gives h cos 0H T θ− =  and Hh = (658.3 N)(0.800) = 527 N.  0yF∑ =  gives 

v load sin 0H w w T θ− − + =  and Hv = w + wload − T sinθ = 190 N + 300 N − (658 N)(0.600) = 95 N.  

EVALUATE:   For an axis at the right-hand end of the beam, only w and vH  produce torque. The torque 
due to w is counterclockwise so the torque due to vH  must be clockwise. To produce a clockwise torque, 

vH  must be upward, in agreement with our result from 0.yF∑ =  
 

 

Figure 11.14 
 

 11.15. IDENTIFY:   The boom is at rest, so the forces and torques on it must each balance. 
SET UP:   0,τ∑ =  0,∑ =xF  0.∑ =yF  The free-body is shown in Figure 11.15 (next page). Call L the 
length of the boom. 
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Figure 11.15 
 

EXECUTE:  (a) 0τ∑ =  gives load( sin 60 0 ) ( cos60 0 ) (0 35 cos60 0 ) 0T L w L w L. ° − . ° − . . ° =  and 

3load cos60 0 (0 35cos60 0 ) (5000 N)cos60 0 (2600 N)(0 35cos60 0 ) 3 41 10 N.
sin 60 0 sin 60 0

w wT . ° + . . ° . ° + . . °= = = . ×
. ° . °

 

(b) 0∑ =xF  gives h 0F T− =  and h 3410 NF = .   

0∑ =yF  gives v load 0F w w− − =  and v 5000 N 2600 N 7600 N= + =F  
EVALUATE:   The bottom of the boom is the best point about which to take torques because only one 
unknown (the tension) appears in our equation. Using the top (or the center of mass) would give a torque 
equation with two (or three) unknowns. 

 11.16. IDENTIFY:   Apply the conditions of equilibrium to the wheelbarrow plus its contents. The upward force 
applied by the person is 650 N. 
SET UP:   The free-body diagram for the wheelbarrow is given in Figure 11.16. 650 N,F =  wb 80 0 Nw = .  
and w is the weight of the load placed in the wheelbarrow. 
EXECUTE:   (a) 0zτ∑ =  with the axis at the center of gravity gives (0 50 m) (0 90 m) 0n F. − . =  and 

0 90 m 1170 N.
0 50 m

n F .⎛ ⎞= =⎜ ⎟.⎝ ⎠
 0yF∑ =  gives wb 0F n w w+ − − =  and 

wb 650 N 1170 N 80 0 N 1740 N.w F n w= + − = + − . =  
(b) The extra force is applied by the ground pushing up on the wheel. 
EVALUATE:   You can verify that 0zτ∑ =  for any axis, for example for an axis where the wheel contacts 
the ground. 

 

 
Figure 11.16 
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 11.17. IDENTIFY:   The beam is at rest so the forces and torques on it must each balance. 
SET UP:   0,τ∑ =  0,∑ =xF  0.∑ =yF  The distance along the beam from the hinge to where the cable is 

attached is 3.0 m. The angle φ  that the cable makes with the beam is given by 4 0 msin ,
5 0 m

φ .=
.

 so 

53 1φ = . °.  The center of gravity of the beam is 4.5 m from the hinge. Use coordinates with + y  upward 
and +x  to the right. Take the pivot at the hinge and let counterclockwise torque be positive. Express the 
hinge force as components vH  and hH .  Assume vH  is downward and that hH  is to the right. If one of 
these components is actually in the opposite direction we will get a negative value for it. Set the tension in 
the cable equal to its maximum possible value, 1 00 kNT = . .  

EXECUTE:  (a) The free-body diagram is shown in Figure 11.17, with T  resolved into its x- and y-
components. 

 

 

Figure 11.17 
 

(b) 0τ∑ =  gives ( sin )(3 0 m) (4 5 m) 0T wφ . − . =  

  
w = (T sinφ)(3.00 m)

4.50 m
= (1000 N)(sin53.1°)(3.00 m)

4.50 m
= 533 N  

(c) 0∑ =xF  gives h cos 0H T φ− =  and h (1 00 kN)(cos53 1 ) 600 NH = . . ° =  
0∑ =yF  gives vsin H 0T wφ − − =  and v (1 00 kN)(sin53 1 ) 533 N 267 N.= . . ° − =H  

EVALUATE:   cos ,T φ  vH  and hH  all have zero moment arms for a pivot at the hinge and therefore 
produce zero torque. If we consider a pivot at the point where the cable is attached we can see that vH  
must be downward to produce a torque that opposes the torque due to w. 

 11.18. IDENTIFY:   Apply the conditions for equilibrium to the crane. 
SET UP:   The free-body diagram for the crane is sketched in Figure 11.18 (next page). hF  and vF  are the 

components of the force exerted by the axle. T  pulls to the left so hF  is to the right. T  also pulls 
downward and the two weights are downward, so vF  is upward. 
EXECUTE:    (a) 0zτ∑ =  gives c b([13 m]sin 25 ) ([7 0 m]cos55 ) ([16 0 m]cos55 ) 0.T w w° − . ° − . ° =  

4(11,000 N)([16 0 m]cos55 ) (15,000 N)([7 0 m]cos55 ) 2 93 10  N.
(13 0 m)sin 25

T . ° + . °= = . ×
. °

 

(b) 0xF∑ =  gives h cos30 0F T− ° =  and 4
h 2 54 10  N.F = . ×  

0yF∑ =  gives v c bsin30 0F T w w− ° − − =  and 4
v 4 06 10  N.F = . ×  

EVALUATE:   
4

v
4

h

4 06 10  Ntan
2 54 10  N

F
F

θ . ×= =
. ×

 and 58 .θ = °  The force exerted by the axle is not directed along 

the crane. 
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Figure 11.18 

 

 11.19. IDENTIFY:   Apply the first and second conditions of equilibrium to the rod. 
SET UP:   The force diagram for the rod is given in Figure 11.19. 

 

 
Figure 11.19 

 

EXECUTE:   0,zτ∑ =  axis at right end of rod, counterclockwise torque is positive 

  (190 N)(1.50 m) + (90 N)(0.50 m) − (T1 sin30.0°)(3.00 m) = 0  

  
T1 = 285 N ⋅ m + 45 N ⋅ m

1.50 m
= 220 N  

x xF ma∑ =  

2 1cos cos30 0T Tθ − ° =  and   T2 cosθ = (220 N)(cos30°) = 190.5 N  

y yF ma∑ =  

  T1 sin30° + T2 sinθ − 190 N − 90 N = 0  

  T2 sinθ = 280 N − (220 N)sin30° = 170 N  

Then 
T2 sinθ
T2 cosθ

= 170 N
190.5 N

 gives  tanθ = 0.89239  and θ = 41.7°  

And 
  
T2 = 170 N

sin41.7°
= 255 N.  

EVALUATE:   The monkey is closer to the right rope than to the left one, so the tension is larger in the right 
rope. The horizontal components of the tensions must be equal in magnitude and opposite in direction. 
Since 2 1,T T>  the rope on the right must be at a greater angle above the horizontal to have the same 
horizontal component as the tension in the other rope. 
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 11.20. IDENTIFY:   Apply the first and second conditions for equilibrium to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.20. 
EXECUTE:   The cable is given as perpendicular to the beam, so the tension is found by taking torques 
about the pivot point;   T (3.00 m) = (1.40 kN)(2.00 m)cos25.0° + (5.00 kN)(4.50 m)cos25.0°,  and 

  T = 7.64 kN.  The vertical component of the force exerted on the beam by the pivot is the net weight minus 
the upward component of T, 6.00 kN − T cos25.0° = −0.53 kN.  The vertical component is downward. The 
horizontal force is   T sin25.0° = 3.23 kN.  
EVALUATE:   The vertical component of the tension is nearly the same magnitude as the total weight of the 
object and the vertical component of the force exerted by the pivot is much less than its horizontal component. 

 

 
Figure 11.20 

 

 11.21. (a) IDENTIFY and SET UP:   Use Flτ =  to calculate the torque (magnitude and direction) for each force 
and add the torques as vectors. See Figure 11.21a. 

 

 EXECUTE:    
1 1 1 8.00 N 3.00 mF lτ = = +( )( )  

1 24.0 N mτ = + ⋅  

2 2 2 8.00 N 3.00 mF l lτ = − = − +( )( )  

2 24.0 N m (8.00 N)lτ = − ⋅ −  
Figure 11.21a   

 
 

1 2 24.0 N m 24.0 N m (8.00 N) (8.00 N)z l lτ τ τ∑ = + = + ⋅ − ⋅ − = −  
Want l that makes 6.40 N mzτ∑ = − ⋅  (net torque must be clockwise) 

(8.00 N) 6.40 N ml− = − ⋅  
(6.40 N m)/8.00 N 0.800 ml = ⋅ =  

(b) 2 1τ τ>  since 2F  has a larger moment arm; the net torque is clockwise. 
(c) See Figure 11.21b. 

 

 1 1 1 (8.00 N)F l lτ = − = −  

2 0τ =  since 2F  is at the axis 

Figure 11.21b   
 

6.40 N mzτ∑ = − ⋅  gives (8.00 N) 6.40 N ml− = − ⋅  
0.800 m,l =  same as in part (a). 

EVALUATE:   The force couple gives the same magnitude of torque for the pivot at any point. 
 11.22. IDENTIFY:   The person is in equilibrium, so the torques on him must balance. The target variable is the 

force exerted by the deltoid muscle. 
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SET UP:   The free-body diagram for the arm is given in Figure 11.22. Take the pivot at the shoulder joint 
and let counterclockwise torques be positive. Use coordinates as shown. Let F be the force exerted by the 
deltoid muscle. There are also the weight of the arm and forces at the shoulder joint, but none of these 
forces produce any torque when the arm is in this position. The forces F and T have been replaced by their 
x- and y-components. 0.zτ∑ =  

 

 

Figure 11.22 
 

EXECUTE:   0zτ∑ =  gives ( sin12.0 )(15.0 cm) ( cos35 )(64.0 cm) 0.F T° − ° =  
(36.0 N)(cos35 )(64.0 cm) 605 N.

(sin12.0 )(15.0 cm)
F °= =

°
 

EVALUATE:   The force exerted by the deltoid muscle is much larger than the tension in the cable because 
the deltoid muscle makes a small angle (only 12.0°) with the humerus. 

 11.23. IDENTIFY:   The student’s head is at rest, so the torques on it must balance. The target variable is the 
tension in her neck muscles. 
SET UP:   Let the pivot be at point P and let counterclockwise torques be positive. 0.zτ∑ =  
EXECUTE:    (a) The free-body diagram is given in Figure 11.23. 

 
 

 

Figure 11.23 
 

(b) 0zτ∑ =  gives (11.0 cm)(sin 40.0 ) (1.50 cm) 0.w T° − =  
2(4.50 kg)(9.80 m/s )(11.0 cm)sin 40.0 208 N.

1.50 cm
T °= =  

EVALUATE:   Her head weighs about 45 N but the tension in her neck muscles must be much larger 
because the tension has a small moment arm. 

 11.24. IDENTIFY:   Use 0 .⊥=
∆

l FY
A l
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SET UP:   2 4 250.0 cm 50.0 10  m .A −= = ×  

EXECUTE:   relaxed: 4
4 2 2

(0.200 m)(25.0 N) 3.33 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

maximum tension: 5
4 2 2

(0.200 m)(500 N) 6.67 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

EVALUATE:   The muscle tissue is much more difficult to stretch when it is under maximum tension. 

 11.25. IDENTIFY and SET UP:   Apply 0l F
Y

A l
⊥=

∆
 and solve for A and then use 2A rπ=  to get the radius and 

2d r=  to calculate the diameter. 

EXECUTE:   0l F
Y

A l
⊥=

∆
 so 0l F

A
Y l

⊥=
∆

 (A is the cross-section area of the wire) 

For steel, 112 0 10  PaY = . ×  (Table 11.1) 

Thus A = (2.00 m)(700 N)
(2.0 × 1011 Pa)(0.25 × 10−2  m)

= 2.8 × 10−6  m2.  

2,A rπ=  so   r = A/π = 2.8 × 10−6  m2 /π = 9.44 × 10−4  m  

  d = 2r = 1.9 × 10−3  m = 1.9 mm.  
EVALUATE:   Steel wire of this diameter doesn’t stretch much; 0/ 0.12%.l l∆ =  

 11.26. IDENTIFY:   Apply 0 .⊥=
∆

l FY
A l

 

SET UP:   From Table 11.1, for steel, 112 0 10  PaY = . ×  and for copper, 111 1 10  Pa.Y = . ×  
2 4 2( /4) 1.77 10  m .A dπ −= = ×  4000 NF⊥ =  for each rod. 

EXECUTE:   (a) The strain is 
0

.l F
l YA
∆ =  For steel 4

11 4 2
0

(4000 N) 1 1 10 .
(2.0 10  Pa)(1.77 10  m )

l
l

−
−

∆ = = . ×
× ×

 

Similarly, the strain for copper is 42.1 10 .−×  
(b) Steel: 4 5(1.1 10 )(0.750 m) 8.3 10  m.− −× = ×  Copper: 4 4(2.1 10 )(0.750 m) 1.6 10  m.− −× = ×  
EVALUATE:   Copper has a smaller Y and therefore a greater elongation. 

 11.27. IDENTIFY:   Apply 0 .⊥=
∆

l FY
A l

 

SET UP:   2 4 20.50 cm 0.50 10  mA −= = ×  

EXECUTE:   11
4 2 2

(4.00 m)(5000 N) 2 0 10  Pa
(0.50 10  m )(0.20 10 m)

Y − −= = . ×
× ×

 

EVALUATE:   Our result is the same as that given for steel in Table 11.1. 

 11.28. IDENTIFY:   Apply 0 .⊥=
∆

l FY
A l

 

SET UP:   2 3 2 5 2(3.5 10  m) 3.85 10  m .A rπ π − −= = × = ×  The force applied to the end of the rope is the 

weight of the climber: 2(65.0 kg)(9.80 m/s ) 637 N.F⊥ = =  

EXECUTE:   8
5 2

(45.0 m)(637 N) 6.77 10  Pa
(3.85 10  m )(1.10 m)

Y −= = ×
×

 

EVALUATE:   Our result is a lot smaller than the values given in Table 11.1. An object made of rope 
material is much easier to stretch than if the object were made of metal. 

 11.29. IDENTIFY:   Use the first condition of equilibrium to calculate the tensions 1T  and 2T  in the wires 
(Figure 11.29a, next page). Then use Eq. (11.10) to calculate the strain and elongation of each wire. 
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Figure 11.29a 

 

SET UP:   The free-body diagram for 2m  is given in Figure 11.27b. 
 

 EXECUTE:    
y yF ma∑ =  

2 2 0T m g− =  

2 98 0 NT = .  

Figure 11.29b   
 

SET UP:   The free-body-diagram for 1m  is given in Figure 11.29c. 
 

 EXECUTE:    
y yF ma∑ =  

1 2 1 0T T m g− − =  

1 2 1T T m g= +  

1 98 0 N 58 8 N 157 NT = . + . =  

Figure 11.29c   
 

(a) stress
strain

Y =  so stressstrain F
Y AY

⊥= =  

upper wire: 31
7 2 11

157 Nstrain 3 1 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = . ×

× ×
 

lower wire: 32
7 2 11

98 Nstrain 2.0 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = ×

× ×
 

(b) 0strain /l l= ∆  so 0(strain)l l∆ =  

upper wire: 3 3(0.50 m)(3.1 10 ) 1.6 10  m 1.6 mml − −∆ = × = × =  

lower wire: 3 3(0.50 m)(2.0 10 ) 1.0 10  m 1.0 mml − −∆ = × = × =  
EVALUATE:   The tension is greater in the upper wire because it must support both objects. The wires have 
the same length and diameter, so the one with the greater tension has the greater strain and elongation. 

 11.30. IDENTIFY:   Apply  stress ,⊥= F
A

 stressstrain ,=
Y

  0 .⊥=
∆

l FY
A l

 

SET UP:   The cross-sectional area of the post is 
2 2 2(0 125 m) 0 0491 m .A rπ π= = . = .  The force applied to the 

end of the post is 
2 4(8000 kg)(9.80 m/s ) 7.84 10  N.F⊥ = = ×  The Young’s modulus of steel is 112.0 10  Pa.Y = ×  

EXECUTE:   (a) 
4

6
2

7.84 10  Nstress 1.60 10  Pa.
0.0491 m

F
A
⊥ ×= = − = − ×  The minus sign indicates that the stress is 

compressive. 
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(b) strain = stress
Y

= − 1.60 × 106  Pa
2.0 × 1011 Pa

= −8.0 × 10−6.  The minus sign indicates that the length decreases. 

(c) 6 5
0(strain) (2.50 m)( 8.0 10 ) 2.0 10  ml l − −∆ = = − × = − ×  

EVALUATE:   The fractional change in length of the post is very small. 
 11.31. IDENTIFY:   The amount of compression depends on the bulk modulus of the bone. 

SET UP:   
0

V p
V B
∆ ∆= −  and 51 atm 1.01 10 Pa.= ×  

EXECUTE:   (a) 9 7

0
(15 10 Pa)( 0.0010) 1.5 10 Pa 150 atm.Vp B

V
∆∆ = − = − × − = × =  

(b) The depth for a pressure increase of 71.5 10 Pa×  is 1.5 km. 
EVALUATE:   An extremely large pressure increase is needed for just a 0.10% bone compression, so pressure 
changes do not appreciably affect the bones. Unprotected dives do not approach a depth of 1.5 km, so bone 
compression is not a concern for divers. 

 11.32. IDENTIFY:   Apply 
0

.∆ ∆= −V p
V B

 

SET UP:   0 .V pV
B
∆∆ = −  p∆  is positive when the pressure increases. 

EXECUTE:   (a) The volume would increase slightly. 
(b) The volume change would be twice as great. 
(c) The volume change is inversely proportional to the bulk modulus for a given pressure change, so the 
volume change of the lead ingot would be four times that of the gold. 
EVALUATE:   For lead, 104.1 10  Pa,B = ×  so /p B∆  is very small and the fractional change in volume is 
very small. 

 11.33. IDENTIFY and SET UP:   Use 
0

V p
V B
∆ ∆= −  and k = 1/B  to calculate B and k. 

EXECUTE:   
6 3

9
3

0

(3.6 10  Pa)(600 cm ) 4.8 10  Pa
/ ( 0.45 cm )
pB

V V
∆ ×= − = − = + ×

∆ −
 

9 10 11/ 1/4.8 10  Pa 2.1 10  Pak B − −= = × = ×  
EVALUATE:   k is the same as for glycerine (Table 11.2). 

 11.34. IDENTIFY:   Apply 
0

.∆ ∆= −V p
V B

 Density / .m V=  

SET UP:   At the surface the pressure is 51.0 10  Pa,×  so 81.16 10  Pa.p∆ = ×  3
0 1.00 m .V =  At the surface 

31.00 m  of water has mass 31.03 10  kg.×  

EXECUTE:   (a) 0( )p VB
V

∆= −
∆

 gives 
8 3

30
9

( ) (1.16 10  Pa)(1.00 m ) 0.0527 m
2.2 10  Pa

p VV
B

∆ ×∆ = − = − = −
×

 

(b) At this depth 31.03 10  kg×  of seawater has volume 3
0 0.9473 m .V V+ ∆ =  The density is 

3
3 3

3
1.03 10  kg 1.09 10  kg/m .

0.9473 m
× = ×  

EVALUATE:   The density is increased because the volume is compressed due to the increased pressure. 

 11.35. IDENTIFY:   The forces on the cube must balance. The deformation x is related to the force by || .
F hS
A x

=  

||F F=  since F is applied parallel to the upper face. 

SET UP:   2(0 0600 m)A = .  and 0 0600 m.h = .  Table 11.1 gives 104.4 10  PaS = ×  for copper and 
100.6 10  Pa×  for lead. 

EXECUTE:   (a) Since the horizontal forces balance, the glue exerts a force F in the opposite direction. 
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(b) 
2 3 10

5(0.0600 m) (0.250 10  m)(4.4 10  Pa) 6.6 10  N
0.0600 m

AxSF
h

−× ×= = = ×  

(c) 
5

2 10
(6.6 10  N)(0.0600 m) 1.8 mm

(0.0600 m) (0.6 10  Pa)
Fhx
AS

×= = =
×

 

EVALUATE:   Lead has a smaller S than copper, so the lead cube has a greater deformation than the copper cube. 

 11.36. IDENTIFY:   Apply || .=
F hS
A x

 

SET UP:   59.0 10  N.F = ×||  2(0.100 m)(0.500 10  m).A −= ×  0.100 m.h =  From Table 11.1, 
107.5 10  PaS = ×  for steel. 

EXECUTE:   (a) 
5

|| 2
2 10

(9 10  N)Shear strain 2.4 10 .
[(0.100 m)(0.500 10 m)][7.5 10  Pa]

F
AS

−
−

×= = = ×
× ×

 

(b) Since shear strain = x/h, 3(Shear strain) (0.024)(0.100 m) 2.4 10 m.x h −= ⋅ = = ×  
EVALUATE:   This very large force produces a small displacement; / 2.4%.x h =  

 11.37. IDENTIFY:   The force components parallel to the face of the cube produce a shear which can deform the cube. 

SET UP:   
   
S =

FP

Aφ
, where φ = x / h.  F  is the component of the force tangent to the surface, so 

(1375 N)cos8.50 1360 N.F = ° =  φ  must be in radians, 1.24 0.0216 rad.φ = ° =  

EXECUTE:   6
2

1360 N 7.36 10 Pa.
(0.0925 m) (0.0216 rad)

S = = ×  

EVALUATE:   The shear modulus of this material is much less than the values for metals given in Table 11.1 
in the text. 

 11.38. IDENTIFY:   The breaking stress of the wire is the value of /⊥F A  at which the wire breaks. 

SET UP:   From Table 11.3, the breaking stress of brass is 84 7 10  Pa.. ×  The area A of the wire is related to 
its diameter by 2/4.A dπ=  

EXECUTE:   7 2
8

350 N 7.45 10 m , so 4 / 0.97 mm.
4.7 10  Pa

A d A π−= = × = =
×

 

EVALUATE:   The maximum force a wire can withstand without breaking is proportional to the square of 
its diameter. 

 11.39. IDENTIFY and SET UP:   Use stress .⊥= F
A

 

EXECUTE:   7
2 3 2

90.8 NTensile stress 3.41 10  Pa
(0.92 10  m)

F F
A rπ π
⊥ ⊥

−= = = = ×
×

 

EVALUATE:   A modest force produces a very large stress because the cross-sectional area is small. 

 11.40. IDENTIFY:   The proportional limit and breaking stress are values of the stress, / .F A⊥  Use 0l FY
A l

⊥=
∆

 to 

calculate .l∆  
SET UP:   For steel, 1020 10  Pa.Y = ×  .F w⊥ =  

EXECUTE:   (a) 3 10 6 2 3(1.6 10 )(20 10  Pa)(5 10  m ) 1.60 10  N.w − −= × × × = ×  

(b) 30 (1.6 10 )(4.0 m) 6.4 mmF ll
A Y

−⊥⎛ ⎞∆ = = × =⎜ ⎟
⎝ ⎠

 

(c) 3 10 6 2 3(6.5 10 )(20 10  Pa)(5 10  m ) 6.5 10  N.− −× × × = ×  
EVALUATE:   At the proportional limit, the fractional change in the length of the wire is 0.16%. 

 11.41. IDENTIFY:   The elastic limit is a value of the stress, / .F A⊥  Apply m∑ =F a  to the elevator in order to 
find the tension in the cable. 
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SET UP:   8 81
3 (2 40 10  Pa) 0 80 10  Pa.F

A
⊥ = . × = . ×  The free-body diagram for the elevator is given in 

Figure 11.41. F⊥   is the tension in the cable. 

EXECUTE:   8 4 2 8 4(0.80 10  Pa) (3.00 10  m )(0.80 10  Pa) 2.40 10  N.F A −
⊥ = × = × × = ×  y yF ma∑ =  applied to 

the elevator gives F mg ma⊥ − =  and 
4

2 22 40 10  N 9 80 m/s 10 2 m/s
1200 kg

F
a g

m
⊥ . ×= − = − . = .  

EVALUATE:   The tension in the cable is about twice the weight of the elevator. 
 

 
Figure 11.41 

 

 11.42. IDENTIFY:   Apply the first and second conditions of equilibrium to the door. 
SET UP:   The free-body diagram for the door is given in Figure 11.42. Let 1H  and 2H  be the forces exerted 
by the upper and lower hinges. Take the origin of coordinates at the bottom hinge (point A) and y+  upward. 

 

 EXECUTE:    
We are given that 
H1v = H2v = w/2 = 165 N.  

x xF ma∑ =  

2h 1h 0H H− =  

1h 2hH H=  
The horizontal components 
of the hinge forces are equal 
in magnitude and opposite in 
direction. 

Figure 11.42   
 

Sum torques about point A. 1v,H  2v,H   and 2hH  all have zero moment arm and hence zero torque about 
an axis at this point. Thus 0Aτ∑ =  gives 1h (1.00 m) (0.50 m) 0H w− =  

1
1h 2

0.50 m (330 N) 165 N.
1.00 m

H w⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

The horizontal component of each hinge force is 165 N. 
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EVALUATE:   The horizontal components of the force exerted by each hinge are the only horizontal forces 
so must be equal in magnitude and opposite in direction. With an axis at A, the torque due to the horizontal 
force exerted by the upper hinge must be counterclockwise to oppose the clockwise torque exerted by the 
weight of the door. So, the horizontal force exerted by the upper hinge must be to the left. You can also 
verify that the net torque is also zero if the axis is at the upper hinge. 

 11.43. IDENTIFY:   The center of gravity of the combined object must be at the fulcrum. Use 
1 1 2 2 3 3

cm
1 2 3

+ …

…

+ +=
+ + +

m x m x m xx
m m m

 to calculate cm.x  

SET UP:   The center of gravity of the sand is at the middle of the box. Use coordinates with the origin at 
the fulcrum and x+  to the right. Let 1 25 0 kg,m = .  so 1 0 500 m.x = .  Let 2 sand ,m m=  so 2 0 625 m.x = − .  

cm 0.x =  

EXECUTE:   1 1 2 2
cm

1 2
0m x m xx

m m
+= =
+

 and 1
2 1

2

0.500 m(25.0 kg) 20.0 kg.
0.625 m

xm m
x

⎛ ⎞= − = − =⎜ ⎟−⎝ ⎠
 

EVALUATE:   The mass of sand required is less than the mass of the plank since the center of the box is 
farther from the fulcrum than the center of gravity of the plank is. 

 11.44. IDENTIFY:   Apply 0zτ∑ =  to the bridge. 
SET UP:   Let the axis of rotation be at the left end of the bridge and let counterclockwise torques be positive. 
EXECUTE:   If Lancelot were at the end of the bridge, the tension in the cable would be (from taking 
torques about the hinge of the bridge) obtained from 

2 2(12.0 m) (600 kg)(9.80 m/s )(12.0 m) (200 kg)(9.80 m/s )(6 0 m),T = + .  so 6860 N.T =  
This exceeds the maximum tension that the cable can have, so Lancelot is going into the drink. To find the 
distance x Lancelot can ride, replace the 12.0 m multiplying Lancelot’s weight by x and the tension 

3
max by 5 80 10 NT T = . ×  and solve for x; 

3 2

2
(5.80 10  N)(12.0 m) (200 kg)(9.80 m/s )(6.0 m) 9.84 m.

(600 kg)(9.80 m/s )
x × −= =  

EVALUATE:   Before Lancelot goes onto the bridge, the tension in the supporting cable is 
2(6 0 m)(200 kg)(9 80 m/s ) 980 N,

12 0 m
T . .= =

.
 well below the breaking strength of the cable. As he moves 

along the bridge, the increase in tension is proportional to x, the distance he has moved along the bridge. 
 11.45. IDENTIFY:   Apply the conditions of equilibrium to the climber. For the minimum coefficient of friction the 

static friction force has the value s s .f nµ=  

SET UP:   The free-body diagram for the climber is given in Figure 11.45. sf  and n are the vertical and horizontal 
components of the force exerted by the cliff face on the climber. The moment arm for the force T is (1 4 m)cos10 .. °  

EXECUTE:   (a) 0zτ∑ =  gives (1.4 m)cos10 (1.1 m)cos35.0 0.T w° − ° =  

2(1.1 m)cos35.0 (82.0 kg)(9.80 m/s ) 525 N
(1.4 m)cos10

T °= =
°

 

(b) 0xF∑ =  gives sin 25 0 222 N.n T= . ° =  0yF∑ =  gives s cos25 0f T w+ ° − =  and 
2

s (82.0 kg)(9.80 m/s ) (525 N)cos25 328 N.f = − ° =  

(c) s
s

328 N 1 48
222 N

f
n

µ = = = .  

EVALUATE:   To achieve this large value of sµ  the climber must wear special rough-soled shoes. 
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Figure 11.45 

 

 11.46. IDENTIFY:   The beam is at rest, so the forces and torques on it must balance. 
SET UP:   The weight of the beam acts 4.0 m from each end. Take the pivot at the hinge and let 
counterclockwise torques be positive. Represent the force exerted by the hinge by its horizontal and 
vertical components, hH  and v.H 0,xF∑ =  0yF∑ =  and 0.zτ∑ =  
EXECUTE:   (a) The free-body diagram for the beam is given in Figure 11.46a. 

 

 
Figure 11.46 

 

(b) The moment arm for T is sketched in Figure 11.46b and is equal to (6.0 m)sin 40.0 .°  0zτ∑ =  gives 

(6.0 m)(sin 40.0 ) (4.0 m)(cos30.0 ) 0.T w° − ° =  
2

4(1150 kg)(9.80 m/s )(4.0 m)(cos30.0 ) 1.01 10 N.
(6.0 m)(sin 40.0 )

T °= = ×
°

 

(c) 0xF∑ =  gives h cos10.0 0H T− ° =  and 3
h cos10.0 9.97 10 N.H T= ° = ×  

EVALUATE:   The tension is less than the weight of the beam because it has a larger moment arm than the 
weight force has. 
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 11.47. IDENTIFY:   In each case, to achieve balance the center of gravity of the system must be at the fulcrum. Use 
1 1 2 2 3 3

cm
1 2 3

+ …

…

+ +=
+ + +

m x m x m xx
m m m

 to locate cm,x  with im  replaced by .iw  

SET UP:   Let the origin be at the left-hand end of the rod and take the is-axx+  to lie along the rod. Let 
1 255 Nw =  (the rod) so 1 1 00 m,x = .  let 2 225 Nw =  so 2 2 00 mx = .  and let 3 .w W=  In part (a) 

3 0 500 mx = .  and in part (b) 3 0 750 m.x = .  

EXECUTE:   (a) cm 1 25 m.x = .  1 1 2 2 3 3
cm

1 2 3

w x w x w xx
w w w

+ +=
+ +

 gives 1 2 cm 1 1 2 2
3

3 cm

( )w w x w x w xw
x x

+ − −=
−

 and 

(480 N)(1.25 m) (255 N)(1.00 m) (225 N)(2.00 m) 140 N.
0 500 m 1.25 m

W − −= =
. −

 

(b) Now 3 140 Nw W= =  and 3 0 750 m.x = .  

cm
(255 N)(1.00 m) (225 N)(2.00 m) (140 N)(0.750 m) 1 31 m.

255 N 225 N 140 N
x + += = .

+ +
 W must be moved 

1 31 m 1 25 m 6 cm. − . =  to the right. 
EVALUATE:   Moving W to the right means cmx  for the system moves to the right. 

 11.48. IDENTIFY:   Apply 0zτ∑ =  to the hammer. 
SET UP:   Take the axis of rotation to be at point A. 
EXECUTE:   The force 1F  is directed along the length of the nail, and so has a moment arm of 

(0.080 m)sin 60 .°  The moment arm of 2F  is 0.300 m,  so 

2 1
(0.0800 m)sin60 (400 N)(0.231) 92.4 N.

(0.300 m)
F F °= = =  

EVALUATE:   The force 2F  that must be applied to the hammer handle is much less than the force that the 
hammer applies to the nail, because of the large difference in the lengths of the moment arms. 

 11.49. IDENTIFY:   Apply the conditions of equilibrium to the horizontal beam. Since the two wires are 
symmetrically placed on either side of the middle of the sign, their tensions are equal and are each equal to 

w /2 137 N.T mg= =  

SET UP:   The free-body diagram for the beam is given in Figure 11.49. vF  and hF  are the vertical and 
horizontal forces exerted by the hinge on the beam. Since the cable is 2.00 m long and the beam is 1.50 m 

long, 1.50 mcos
2.00 m

θ =  and 41.4 .θ = °  The tension cT  in the cable has been replaced by its horizontal and 

vertical components. 

EXECUTE:   (a) 0zτ∑ =  gives c beam w w(sin 41.4 )(1.50 m) (0.750 m) (1.50 m) (0.60 m) 0.T w T T° − − − =  

  
Tc = (16.0 kg)(9.80 m/s2 )(0.750 m) + (137 N)(1.50 m + 0.60 m)

(1.50 m)(sin41.4°)
= 408.6 N,  which rounds to 409 N. 

(b) 0yF∑ =  gives v c beam wsin 41.4 2 0F T w T+ ° − − =  and 

Fv = 2Tw + wbeam − Tc sin41.4° = 2(137 N) + (16.0 kg)(9.80 m/s2 ) − (408.6 N)(sin41.4°) = 161 N.  The 
hinge must be able to supply a vertical force of 161 N. 
EVALUATE:   The force from the two wires could be replaced by the weight of the sign acting at a point 
0.60 m to the left of the right-hand edge of the sign. 
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Figure 11.49 

 

 11.50. IDENTIFY:   Apply the first and second conditions of equilibrium to the bar. 
SET UP:   The free-body diagram for the bar is given in Figure 11.50. n is the normal force exerted on the 
bar by the surface. There is no friction force at this surface. hH  and vH  are the components of the force 
exerted on the bar by the hinge. The components of the force of the bar on the hinge will be equal in 
magnitude and opposite in direction. 

 

 EXECUTE:    
x xF ma∑ =  

F = Hh = 220 N  

y yF ma∑ =  

v 0n H− =  

v ,H n=  but we don’t 
know either of these 
forces. 

Figure 11.50   
 

0Bτ∑ =  gives (4.00 m) (3.00 m) 0.F n− =  

  
n = (4.00 m/3.00 m)F = 4

3
(220 N) = 293 N  and then Hv = 293 N.  

Force of bar on hinge: 
horizontal component 220 N, to right 
vertical component 293 N, upward 
EVALUATE:     Hh /Hv = 220/293 = 0.75 = 3.00/4.00,  so the force the hinge exerts on the bar is directed 

along the bar. n  and F  have zero torque about point A, so the line of action of the hinge force H  must 
pass through this point also if the net torque is to be zero. 

  

 11.51. IDENTIFY:   We want to locate the center of mass of the leg-cast system. We can treat each segment of the 
leg and cast as a point-mass located at its center of mass. 
SET UP:   The force diagram for the leg is given in Figure 11.51 (next page). The weight of each piece acts 
at the center of mass of that piece. The mass of the upper leg is ul (0.215)(37 kg) 7.955 kg.m = =  The mass 
of the lower leg is ll (0.140)(37 kg) 5.18 kg.m = =  Use the coordinates shown, with the origin at the hip 

and the x-axis along the leg, and use ul ul ll ll cast cast
cm

ul ll cast
.x m x m x mx

m m m
+ +=

+ +
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Figure 11.51 
 

EXECUTE:   Using ul ul ll ll cast cast
cm

ul ll cast
,x m x m x mx

m m m
+ +=

+ +
 we have 

cm
(18.0 cm)(7.955 kg) (69.0 cm)(5.18 kg) (78.0 cm)(5.50 kg) 49.9 cm

7.955 kg 5.18 kg 5.50 kg
x + += =

+ +
 

EVALUATE:   The strap is attached to the left of the center of mass of the cast, but it is still supported by 
the rigid cast since the cast extends beyond its center of mass. 

 11.52. IDENTIFY:   Apply the first and second conditions for equilibrium to the bridge. 
SET UP:   Find torques about the hinge. Use L as the length of the bridge and T Band w w  for the weights 
of the truck and the raised section of the bridge. Take y+  to be upward and x+  to be to the right. 

EXECUTE:   (a) 3 1
T B4 2sin70 ( )cos30 ( )cos30 ,TL w L w L° = ° + °  so 

23 1
T B 54 2( )(9.80 m/s )cos30

2.84 10  N.
sin70

m m
T

+ °
= = ×

°
 

(b) Horizontal: 5cos(70 30 ) 2.18 10  NT ° − ° = ×  (to the right).  

Vertical: 5 
T B sin 40 2.88 10 Nw w T+ − ° = ×  (upward). 

EVALUATE:   If φ  is the angle of the hinge force above the horizontal,  
5

5
2.88 10  Ntan
2.18 10  N

φ ×=
×

 and 52.9 .φ = °  The hinge force is not directed along the bridge. 

 11.53. IDENTIFY:   The leg is not rotating, so the external torques on it must balance. 
SET UP:   The free-body diagram for the leg is given in Figure 11.53. Take the pivot at the hip joint and let 
counterclockwise torque be positive. There are also forces on the leg exerted by the hip joint but these 
forces produce no torque and aren’t shown. 0zτ∑ =  for no rotation. 
EXECUTE:   (a) 0zτ∑ =  gives (10 cm)(sin ) (44 cm)(cos ) 0.T wθ θ− =  

4.4 cos 4.4
sin tan
w wT θ

θ θ
= =  and for 60 ,θ = °  

24.4(15 kg)(9.80 m/s ) 370 N.
tan 60

T = =
°

 
 

 
Figure 11.53 

 

(b) For 5 ,θ = °  7400 N.T =  The tension is much greater when he just starts to raise his leg off the ground. 
(c) → ∞T  as 0.θ →  The person could not raise his leg. If the leg is horizontal so θ  is zero, the moment 
arm for T is zero and T produces no torque to rotate the leg against the torque due to its weight. 
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EVALUATE:   Most of the exercise benefit of leg-raises occurs when the person just starts to raise his legs 
off the ground. 

 11.54. IDENTIFY:   The arm is stationary, so the forces and torques must each balance. 
SET UP:   0,τ∑ =  0,∑ =xF  0.∑ =yF  Let the forearm be at an angle φ  below the horizontal. Take the 
pivot at the elbow joint and let counterclockwise torques be positive. Let + y  be upward and let +x  be to 

the right. Each forearm has mass 1
arm 2 (0 0600)(72 kg) 2 16 kg= . = . .m  The weight held in each hand is 

,=w mg  with 7 50 kgm = . .  T  is the force the biceps muscle exerts on the forearm. E  is the force 
exerted by the elbow and has components vE  and hE .  
EXECUTE:   (a) The free-body diagram is shown in Figure 11.54. 

 

 
Figure 11.54 

 

(b) 0τ∑ =  gives arm(5 5 cm)(cos ) (16 0 cm)(cos ) (38 0 cm)(cos ) 0T w wθ θ θ. − . − . =  

2 2
arm16 0 38 0 16 0(2 16 kg)(9 80 m/s ) 38 0(7 50 kg)(9 80 m/s ) 569 N

5 5 5 5
w w

T
. + . . . . + . . .= = =

. .
 

(c) 0∑ =xF  gives h 0E = .  0∑ =yF  gives v arm 0,− − − =T E w w  so 

2 2
v arm 569 N (2 16 kg)(9 80 m/s ) (7 50 kg)(9 80 m/s ) 474 N= − − = − . . − . . =E T w w  

Since we calculate vE  to be positive, we correctly assumed that it was downward when we drew the free-body 
diagram. 
(d) The weight and the pull of the biceps are both always vertical in this situation, so the factor cosθ  
divides out of the 0τ∑ =  equation in part (b). Therefore the force T stays the same as she raises her arm. 
EVALUATE:   The biceps force must be much greater than the weight of the forearm and the weight in her 
hand because it has such a small lever arm compared to those two forces.  

 11.55. IDENTIFY:   The presence of the fetus causes the woman’s center of mass to shift forward. Figure 11.55 
(next page) shows the cylinder and sphere model suggested in the problem.  

SET UP:   1 1 2 2 3 3
cm

1 2 3
.+ …

…

+ +=
+ + +

m x m x m xx
m m m

 The mass of each object can be considered as located at its center 

of mass, at its geometrical center. Use coordinates that have the origin at the center of the cylinder and the 
x-axis horizontal.  
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Figure 11.55 

 

EXECUTE:   (a) Before pregnancy, cm,i 0x = .  The center of mass of the pregnant woman is at  

cm,f
0 (20 cm)(10 kg) 2 9 cm

60 kg 10 kg
x

+= = . .
+

 Her center of mass moves a horizontal distance of 2.9 cm forward. 

(b) The woman must shift her upper body backward to keep her center of mass from extending past her feet. 
(c) The unnatural posture and curved back strains the back muscles. 
EVALUATE:   Observation of a pregnant woman walking should confirm the results found here. 

 11.56. IDENTIFY:   Apply the first and second conditions of equilibrium to each rod. 
SET UP:   Apply 0yF∑ =  with y+  upward and apply 0zτ∑ =  with the pivot at the point of suspension 
for each rod. 
EXECUTE:   (a) The free-body diagram for each rod is given in Figure 11.56. 
(b) 0zτ∑ =   for the lower rod: (6 0 N)(4 0 cm) (8 0 cm)Aw. . = .  and 3 0 N.Aw = .  

0yF∑ =  for the lower rod: 3 6 0 N 9 0 N.AS w= . + = .  

0zτ∑ =  for the middle rod: 3(3 0 cm) (5 0 cm)Bw S. = .  and 5 0 (9 0 N) 15 0 N.
3 0Bw .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

0yF∑ =  for the middle rod: 2 39 0 N 24 0 N.S S= . + = .  

0zτ∑ =  for the upper rod: 2(2 0 cm) (6 0 cm)CS w. = .  and 2 0 (24 0 N) 8 0 N.
6 0Cw .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

0yF∑ =  for the upper rod: 1 2 32 0 N.CS S w= + = .  

In summary, 3 0 N,Aw = .  15 0 N,Bw = .  8 0 N.Cw = .  1 32 0 N,S = .  2 24 0 N,S = .  3 9 0 N.S = .  
(c) The center of gravity of the entire mobile must lie along a vertical line that passes through the point 
where 1S  is located. 
EVALUATE:   For the mobile as a whole the vertical forces must balance, so 1 6.0 N.A B CS w w w= + + +  

 

 
Figure 11.56 
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 11.57. IDENTIFY:   Apply 0zτ∑ =  to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.57. 
EXECUTE:   0, axis at hinge,zτ∑ =  gives T (6.0 m)(sin40°) − (6490 N)(3.75 m)(cos30°) = 0  and 

   T = 5500 N.  
EVALUATE:   The tension in the cable is less than the weight of the beam. sin 40T °  is the component of T 
that is perpendicular to the beam. 

 

 
Figure 11.57 

 
 

 11.58. IDENTIFY:   Apply the first and second conditions of equilibrium to the drawbridge. 
SET UP:   The free-body diagram for the drawbridge is given in Figure 11.58 (next page). vH  and hH  are 
the components of the force the hinge exerts on the bridge. In part (c), apply z Iτ α∑ =  to the rotating 
bridge and in part (d) apply energy conservation to the bridge. 
EXECUTE:   (a) 0zτ∑ =  with the axis at the hinge gives (7.0 m)(cos37 ) (3.5 m)(sin37 ) 0w T− ° + ° =  and 

5cos37 (45,000 N)2 2 1.19 10  N.
sin37 tan37

T w
°= = = ×
° °

 

(b) 0xF∑ =  gives 5
h 1.19 10  N.H T= = ×  0yF∑ =  gives 4

v 4.50 10  N.H w= = ×  

2 2 5
h v 1.27 10  N.H H H= + = ×  v

h
tan H

H
θ =  and 20.7 .θ = °  The hinge force has magnitude 51.27 10  N ×  

and is directed at 20.7° above the horizontal. 
(c) We can treat the bridge as a uniform bar rotating around one end, so 21/3 .I mL=  z zIτ α∑ =  gives 

2( /2)cos37 1/3 .mg L mL α° =  Solving for α  gives 
2

23 cos37 3(9.80 m/s )cos37 0.839 rad/s .
2 2(14.0 m)

g
L

α ° °= = =  

(d) Energy conservation gives 1 2,U K=  giving 2 2 21/2  (1/2)(1/3  ) .mgh I mLω ω= =  Trigonometry gives 

/2 sin37 .h L= °  Canceling m, the energy conservation equation gives 2 2( /2) sin37 (1/6) .g L L ω° =  Solving 

for ω  gives 
23 sin37 3(9.80 m/s )sin37 1.12 rad/s.

14.0 m
ω ° °= = =g

L
 

EVALUATE:   The hinge force is not directed along the bridge. If it were, it would have zero torque for an 
axis at the center of gravity of the bridge and for that axis the tension in the cable would produce a single, 
unbalanced torque. 
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Figure 11.58 

 
 

 11.59. IDENTIFY:   The amount the tendon stretches depends on Young’s modulus for the tendon material. The 
foot is in rotational equilibrium, so the torques on it balance. 

SET UP:   T

0

/ .
/

F AY
l l

=
∆

 The foot is in rotational equilibrium, so 0.zτ∑ =  

EXECUTE:   (a) The free-body diagram for the foot is given in Figure 11.59. T is the tension in the tendon 
and A is the force exerted on the foot by the ankle. (75 kg) ,n g=  the weight of the person. 

 
 

 
Figure 11.59 

 
 

(b) Apply 0,zτ∑ =  letting counterclockwise torques be positive and with the pivot at the ankle: 

(4.6 cm) (12.5 cm) 0.T n− =  212.5 cm (75 kg)(9.80 m/s ) 2000 N,
4.6 cm

T ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 which is 2.72 times his weight. 

(c) The foot pulls downward on the tendon with a force of 2000 N. 

T
0 6 6 2

2000 N (25 cm) 4.4 mm.
(1470 10  Pa)(78 10 m )

Fl l
YA −

⎛ ⎞∆ = = =⎜ ⎟ × ×⎝ ⎠
 

EVALUATE:   The tension is quite large, but the Achilles tendon stretches about 4.4 mm, which is only 
about 1/6 of an inch, so it must be a strong tendon. 

 11.60 IDENTIFY:   Apply 0zτ∑ =  to the beam. 
SET UP:   The center of mass of the beam is 1.0 m from the suspension point. 
EXECUTE:   (a) Taking torques about the suspension point, 

(4.00 m)sin30 (140.0 N)(1.00 m)sin30 (100 N)(2.00 m)sin30 .w ° + ° = °  
The common factor of sin30°  divides out, from which 15 0 N.w = .  
(b) In this case, a common factor of sin 45°  would be factored out, and the result would be the same. 
EVALUATE:   All the forces are vertical, so the moments are all horizontal and all contain the factor sin ,θ  
where θ  is the angle the beam makes with the horizontal. 

 11.61. IDENTIFY:   Apply 0zτ∑ =  to the flagpole. 
SET UP:   The free-body diagram for the flagpole is given in Figure 11.61. Let clockwise torques be 
positive. θ  is the angle the cable makes with the horizontal pole. 
EXECUTE:   (a) Taking torques about the hinged end of the pole 
(200 N)(2.50 m) (600 N)(5.00 m) (5.00 m) 0.yT+ − = 700 N.yT =  The x-component of the tension is then 
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2 2(1000 N) (700 N) 714 N.xT = − =  tan .
5.00 m

y

x

Th
T

θ = =  The height above the pole that the wire must 

be attached is 700(5.00 m) 4.90 m.
714

=  

(b) The y-component of the tension remains 700 N. Now 4 40 mtan
5 00 m

θ .=
.

 and 41 35 ,θ = . °  so 

700 N 1060 N,
sin sin 41 35

yT
T

θ
= = =

. °
 an increase of 60 N. 

EVALUATE:   As the wire is fastened closer to the hinged end of the pole, the moment arm for T decreases 
and T must increase to produce the same torque about that end. 

 

 
Figure 11.61 

 

 11.62. IDENTIFY:   Apply 0∑ =F  to each object, including the point where D, C, and B are joined. Apply 
0zτ∑ =  to the rod. 

SET UP:   To find  and ,C DT T  use a coordinate system with axes parallel to the cords. 
EXECUTE:   A and B are straightforward, the tensions being the weights suspended: 

2(0 0360 kg)(9 80 m/s ) 0 353 NAT = . . = .  and 2(0 0240 kg 0 0360 kg)(9 80 m s ) 0 588 N.BT /= . + . . = .  
Applying 0xF∑ =  and 0yF∑ =  to the point where the cords are joined, cos36 9 0 470 NC BT T= . ° = .  and 

cos53 1 0 353 N.D BT T= . ° = .  To find ,ET  take torques about the point where string F is attached. 
2(1 00 m) sin36.9 (0.800 m) sin53.1 (0.200 m) (0.120 kg)(9.80 m/s )(0.500 m)E D CT T T. = ° + ° +  and 

0 833 N.ET = .  

FT  may be found similarly, or from the fact that E FT T+  must be the total weight of the ornament. 
2(0 180kg)(9 80m/s ) 1 76 N, from which 0 931 N.FT. . = . = .  

EVALUATE:   The vertical line through the spheres is closer to F than to E, so we expect ,F ET T>  and this 
is indeed the case. 

 11.63. IDENTIFY:   The torques must balance since the person is not rotating. 
SET UP:   Figure 11.63a (next page) shows the distances and angles. 90 .θ φ+ = °  56.3θ = °  and 

33.7 .φ = °  The distances 1x  and 2x  are 1 (90 cm)cos 50.0 cmx θ= =  and 2 (135 cm)cos 112 cm.x φ= =  
The free-body diagram for the person is given in Figure 11.63b. l 277 Nw =  is the weight of his feet and 
legs, and t 473 Nw =  is the weight of his trunk. fn  and ff  are the total normal and friction forces exerted 
on his feet and hn  and hf  are those forces on his hands. The free-body diagram for his legs is given in  
Figure 11.63c. F is the force exerted on his legs by his hip joints. For balance, 0.zτ∑ =  
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Figure 11.63 

 

EXECUTE:   (a) Consider the force diagram of Figure 11.63b. 0zτ∑ =  with the pivot at his feet and 
counterclockwise torques positive gives h (162 cm) (277 N)(27.2 cm) (473 N)(103.8 cm) 0.n − − =  

h 350 N,n =  so there is a normal force of 175 N at each hand. f h l t 0n n w w+ − − =  so 

f l t h 750 N 350 N 400 N,n w w n= + − = − =  so there is a normal force of 200 N at each foot. 
(b) Consider the force diagram of Figure 11.63c. 0zτ∑ =  with the pivot at his hips and counterclockwise 
torques positive gives f l f(74.9 cm) (22.8 cm) (50.0 cm) 0.f w n+ − =  

f
(400 N)(50.0 cm) (277 N)(22.8 cm) 182.7 N.

74.9 cm
f

−= =  There is a friction force of 91 N at each foot. 

0xF∑ =  in Figure 11.63b gives h f ,f f=  so there is a friction force of 91 N at each hand. 
EVALUATE:   In this position the normal forces at his feet and at his hands don’t differ very much. 

 11.64. IDENTIFY:   The bar is in equilibrium until the cable breaks, so the forces and torques on it must all 
balance. 
SET UP:   Look at the bar when the cable is just ready to break. At that time, the tension in it is 455 N. 

0,Σ =xF  0,Σ =yF  0.τ∑ =z   

EXECUTE:   (a) Take torques about the hinge, calling L your distance from the hinge. 0zτ∑ =  gives 
(455 N)(sin37.0°)(8.00 m) – (65.0 kg)(9.80 m/s2)L(cos64.0°) – (30.0 kg)(9.80 m/s2)(4.00 m)(cos64.0°) = 0. 
Solving for L gives L = 6.00 m from the hinge, which is 2.00 m from the upper end of the bar. 
(b) Calling H the magnitude of the hinge force, Σ Fx = 0  gives Hx = (455 N)(cos27.0°) = 405.4 N. 

  
Σ Fy = 0  gives Hy = (65.0 kg)(9.80 m/s2) + (30.0 kg)(9.80 m/s2) + (455 N)(sin27.0°) = 1138 N. 
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2 2 2 2(405.4 N) (1138 N) 1210 N.= + = + =x yH H H  

The angle that H makes above the horizontal is 1138 Narctan arctan 70.4 .
405.4 N

φ = = = °y

x

H
H

 

EVALUATE:   The bar rises at 64.0° above the horizontal but the hinge force points at 70.4° above the 
horizontal, so the hinge force does not point along the bar. 

 11.65. IDENTIFY:   Apply the equilibrium conditions to the crate. When the crate is on the verge of tipping it 
touches the floor only at its lower left-hand corner and the normal force acts at this point. The minimum 
coefficient of static friction is given by the equation s s .f nµ=  
SET UP:   The free-body diagram for the crate when it is ready to tip is given in Figure 11.65. 
EXECUTE:   (a) 0zτ∑ =  gives (1 50 m)sin53 0 (1 10 m) 0.P w. . ° − . =  

31 10 m 1 15 10  N
[1 50 m][sin53 0 ]

P w⎛ ⎞.= = . ×⎜ ⎟. . °⎝ ⎠
 

(b) 0yF∑ =  gives cos53 0 0.n w P− − . ° =  
3 3cos53 0 1250 N (1 15 10  N)cos53 1 94 10  Nn w P= + . ° = + . × ° = . ×  

(c) 0yF∑ =  gives 3
s sin53.0 (1.15 10  N)sin53.0 918 N.f P= ° = × ° =  

(d) s
s 3

918 N 0.473
1.94 10  N

f
n

µ = = =
×

 

EVALUATE:   The normal force is greater than the weight because P has a downward component. 
 

 
Figure 11.65 

 11.66. IDENTIFY:   Apply 0zτ∑ =  to the meterstick. 
SET UP:   The wall exerts an upward static friction force f and a horizontal normal force n on the stick. 
Denote the length of the stick by l. s .f nµ=  
EXECUTE:   (a) Taking torques about the right end of the stick, the friction force is half the weight of the 
stick, /2.f w=  Taking torques about the point where the cord is attached to the wall (the tension in the 
cord and the friction force exert no torque about this point), and noting that the moment arm of the normal 
force is tan ,l θ  tan /2. Then, ( / ) tan 0 40,  so arctan (0 40) 22 .n w f nθ θ θ= = < . < . = °  

(b) Taking torques as in part (a), ( ) and  tan .
2 2
l lfl w w l x nl w wxθ= + − = +  In terms of the coefficient of 

friction s ,µ  s
/2 ( ) 3 2tan tan .

/2 2
f l l x l x
n l x l x

µ θ θ+ − −> = =
+ +

 Solving for x, s

s

 3tan 30 2 cm.
2 tan
lx θ µ

µ θ
−> = .

+
 

(c) In the above expression, setting s10 cm and 100 cm and solving for  givesx l µ= =  

s
(3 20 ) tan 0 625.

1 20
/l

/l
θµ −> = .

+
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EVALUATE:   For 15θ = °  and without the block suspended from the stick, a value of s 0 268µ ≥ .  is 
required to prevent slipping. Hanging the block from the stick increases the value of sµ  that is required. 

 11.67. IDENTIFY:   Apply the first and second conditions of equilibrium to the crate. 
SET UP:   The free-body diagram for the crate is given in Figure 11.67. 

 

 (0 375 m)cos45wl = . °  

2 (1 25 m)cos45l = . °  

Let 1F  and 2F  be the vertical 
forces exerted by you and your 
friend. Take the origin at the 
lower left-hand corner of the 
crate (point A). 

Figure 11.67    
 

EXECUTE:   y yF ma∑ =  gives 1 2 0F F w+ − =  
2

1 2 (200 kg)(9 80 m/s ) 1960 NF F w+ = = . =  
0Aτ∑ =  gives 2 2 0wF l wl− =  

2
2

0 375 mcos451960 N 590 N
1 25 mcos45

wlF w
l

⎛ ⎞ . °⎛ ⎞= = =⎜ ⎟ ⎜ ⎟. °⎝ ⎠⎝ ⎠
 

Then 1 2 1960 N 590 N 1370 N.F w F= − = − =  
EVALUATE:   The person below (you) applies a force of 1370 N. The person above (your friend) applies a 
force of 590 N. It is better to be the person above. As the sketch shows, the moment arm for 1F  is less than 

for 2,F  so must have 1 2F F>  to compensate. 
 11.68. IDENTIFY:   Apply the first and second conditions for equilibrium to the forearm. 

SET UP:   The free-body diagram is given in Figure 11.68a, and when holding the weight in Figure 11.68b. 
Let y+  be upward. 
EXECUTE:   (a) Elbow 0τ∑ =  gives B(3 80 cm) (15 0 N)(15 0 cm)F . = . .  and B 59 2 N.F = .  
(b) Elbow 0τ∑ =   gives B(3 80 cm) (15 0 N)(15 0 cm) (80 0 N)(33 0 cm)F . = . . + . .  and B 754 N.F =  The biceps 
force has a short lever arm, so it must be large to balance the torques. 
(c) 0yF∑ =   gives E B 15.0 N 80.0 N 0F F− + − − =  and E 754 N 15.0 N 80.0 N 659 N.F = − − =  
EVALUATE:   (d) The biceps muscle acts perpendicular to the forearm, so its lever arm stays the same, but 
those of the other two forces decrease as the arm is raised. Therefore the tension in the biceps muscle 
decreases.  
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Figure 11.68   

 

 11.69. IDENTIFY:   Apply 0zτ∑ =  to the forearm. 
SET UP:   The free-body diagram for the forearm is given in Figure 11.10 in the textbook. 
EXECUTE:   (a) 0, axis at elbowzτ∑ =  gives 

2 2 2 2
(  sin ) 0. sin  so .h hD

wL T D w T
h D L h D

θ θ−  =  = =
+ +

 

max max 2 2
.hDw T

L h D
=

+
 

(b) 
2

max max
2 22 2

1 ; the derivative is positive.dw T h D
dD h DL h D

⎛ ⎞
= −⎜ ⎟⎜ ⎟++ ⎝ ⎠

 

EVALUATE:   (c) The result of part (b) shows that maxw  increases when D increases, since the derivative is 
positive. maxw  is larger for a chimp since D is larger. 

 11.70. IDENTIFY:   The beam is at rest, so the forces and torques on it must all balance. 
SET UP:   The cables could point inward toward each other or outward away from each other. We shall 
assume they point away from each other. Call d the distance of the center of gravity from the left end, call 
w the weight of the beam, and call T the tension in the right-hand cable. 0,Σ =xF  0,Σ =yF  0.τ∑ =z  

EXECUTE:      Σ Fx = 0  gives (620 N)(sin30.0°) – T(sin50.0°) = 0, so T = 404.68 N. 

  
Σ Fy = 0  gives (620 N)(cos30.0°) + (404.68 N)(cos50.0°) – w = 0, so w = 797 N. 

Taking torques about the left end, 0zτ∑ =  gives (404.68 N)(cos50.0°)(4.00 m) – (797 N)d = 0, so  
d = 1.31 m from the left end of the beam, or 2.69 m from the right end. 
EVALUATE:   The center of gravity is closer to the cable having the greater tension. The answer would be 
no different if we assumed that the cables pointed inward toward each other. 

 11.71. IDENTIFY:   The beam is at rest, so the forces and torques on it must all balance. 
SET UP:   0,Σ =xF  0,Σ =yF  0.τ∑ =z  Look at the situation where the cable is just about to break, in 
which case the tension in it is 650 N. 
EXECUTE:    (a) Taking torques about the hinge, with L the length of the beam, 0zτ∑ =  gives 
(650 N)(sin30.0°)L – mg(L/2)(cos22.0°) = 0, which gives m = 71.535 kg, which rounds to 71.5 kg. 
(b) Now m = 61.5 kg. Taking torques about the hinge and calling T the tension, we have 
LT(sin30.0°) = (61.5 kg)(9.80 m/s2)(L/2)(cos22.0°), so T = 559 N. 
Call H the magnitude of the hinge force. Σ Fx = 0  gives Hx = (559 N)(sin38.0°) = 344.24 N 

  
Σ Fy = 0  gives Hy + (559 N)(cos38.0°) – (61.5 kg)(9.80 m/s2), so Hy = 162.1 N. 

2 2 2 2(344.24 N) (162.1 N)= + = +x yH H H  = 380 N. The angle that the hinge force makes above the 

horizontal is  162.1 N= arctan = arctan = 25.2°.
344.24 N

φ y

x

H

H
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EVALUATE:   The hinge force points at 25.2° above the horizontal but the beam makes an angle of 22.0° 
below the horizontal, so the hinge force does not point along the beam. We never needed to know the 
length of the beam since it always canceled out in the equations. 

 11.72. IDENTIFY:   Apply 0zτ∑ =  to the wheel. 
SET UP:   Take torques about the upper corner of the curb. 
EXECUTE:   The force F   acts at a perpendicular distance R h−  and the weight acts at a perpendicular 

distance 2 2 2( ) 2 .R R h Rh h− − = −  Setting the torques equal for the minimum necessary force, 
22 .Rh hF mg

R h
−=

−
 

(b) The torque due to gravity is the same, but the force F  acts at a perpendicular distance 2 ,R h−  

so the minimum force is 2( ) 2 /(2 ).mg Rh h R h− −  
EVALUATE:   (c) Less force is required when the force is applied at the top of the wheel, since in this case 
F  has a larger moment arm. 

 11.73. IDENTIFY:   Apply the first and second conditions of equilibrium to the gate. 
SET UP:   The free-body diagram for the gate is given in Figure 11.73. 

 

 
Figure 11.73 

 

Use coordinates with the origin at B. Let AH  and BH  be the forces exerted by the hinges at A and B. The 

problem states that AH  has no horizontal component. Replace the tension T  by its horizontal and vertical 
components. 
EXECUTE:   (a) 0Bτ∑ =  gives ( sin30.0 )(4.00 m) ( cos30.0 )(2.00 m) (2.00 m) 0T T w+ ° + ° − =  

(2sin30.0 cos30.0 )T w° + ° =  

  
T = w

2sin30.0° + cos30.0°
= 700 N

2sin30.0° + cos30.0°
= 375 N.  

(b) x xF ma∑ =  says   HBh − T cos30.0° = 0  

  HBh = T cos30.0° = (375 N)cos30.0° = 325 N.  

(c) y yF ma∑ =  says v v sin30 0 0A BH H T w+ + . ° − =  

  H Av + HBv = w − T sin30.0° = 700 N − (375 N)sin30.0° = 512 N.  

EVALUATE:   T has a horizontal component to the left so hBH  must be to the right, as these are the only 
two horizontal forces. Note that we cannot determine vAH  and vBH  separately, only their sum. 

 11.74. IDENTIFY:   Use 1 1 2 2 3 3
cm

1 2 3

+ …

…

+ +=
+ + +

m x m x m xx
m m m

 to locate the -coordinatex  of the center of gravity of the 

block combinations. 
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SET UP:   The center of mass and the center of gravity are the same point. For two identical blocks, the 
center of gravity is midway between the center of the two blocks. 
EXECUTE:   (a) The center of gravity of the top block can be as far out as the edge of the lower block. The 
center of gravity of this combination is then 3 /4L  to the left of the right edge of the upper block, so the 
overhang is 3 /4.L  
(b) Take the two-block combination from part (a), and place it on top of the third block such that the 
overhang of 3 /4L  is from the right edge of the third block; that is, the center of gravity of the first two 
blocks is above the right edge of the third block. The center of mass of the three-block combination, 
measured from the right end of the bottom block, is /6L−  and so the largest possible overhang is 
(3 /4) ( /6) 11 /12.L L L+ =  Similarly, placing this three-block combination with its center of gravity over the 
right edge of the fourth block allows an extra overhang of /8,L  for a total of 25 /24.L  
(c) As the result of part (b) shows, with only four blocks, the overhang can be larger than the length of a 
single block. 

EVALUATE:   The sequence of maximum overhangs is 18 22 25, , ,....
24 24 24

L L L  The increase of overhang 

when one more block is added is decreasing. 
 11.75. IDENTIFY:   Apply the first and second conditions of equilibrium, first to both marbles considered as a 

composite object and then to the bottom marble. 
(a) SET UP:   The forces on each marble are shown in Figure 11.75. 

 

 EXECUTE:    
2 1 47 NBF w= = .  

sin /2R Rθ =  so 30θ = °  
0,zτ∑ =  axis at P  

(2 cos ) 0CF R wRθ − =  

0 424 N
2cos30C

mgF = = .
°

 

0 424 NA CF F= = .  

Figure 11.75   
 

(b) Consider the forces on the bottom marble. The horizontal forces must sum to zero, so sin .AF n θ=  

0 848 N
sin30

AFn = = .
°

 

Could use instead that the vertical forces sum to zero 
cos 0BF mg n θ− − =  

0 848 N,
cos30
BF mgn −= = .

°
 which checks. 

EVALUATE:   If we consider each marble separately, the line of action of every force passes through the 
center of the marble so there is clearly no torque about that point for each marble. We can use the results 
we obtained to show that 0xF∑ =  and 0yF∑ =  for the top marble. 
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 11.76. IDENTIFY:   Apply 0zτ∑ =  to the right-hand beam. 
SET UP:   Use the hinge as the axis of rotation and take counterclockwise rotation as positive. If wireF  is 
the tension in each wire and   w = 260 N  is the weight of each beam, wire2 2 0F w− =  and wire .F w=  Let L 
be the length of each beam. 

EXECUTE:   (a) 0zτ∑ =  gives wire csin cos sin 0,
2 2 2 2 2

L LF L F wθ θ θ− − =   where θ  is the angle between the 

beams and cF  is the force exerted by the cross bar. The length drops out, and all other quantities except cF   are 

known, so 

  

Fc =
Fwire sin(θ /2) − 1

2
w sin(θ /2)

1
2

 cos(θ /2)
= (2Fwire − w) tanθ

2
.   Therefore 

  
Fc = (260 N) tan 53°

2
= 130 N.  

(b) The crossbar is under compression, as can be seen by imagining the behavior of the two beams if the 
crossbar were removed. It is the crossbar that holds them apart. 
(c) The upward pull of the wire on each beam is balanced by the downward pull of gravity, due to the 
symmetry of the arrangement. The hinge therefore exerts no vertical force. It must, however, balance the 
outward push of the crossbar. The hinge exerts a force 130 N horizontally to the left for the right-hand 
beam and 130 N to the right for the left-hand beam. Again, it’s instructive to visualize what the beams 
would do if the hinge were removed. 
EVALUATE:   The force exerted on each beam increases as θ  increases and exceeds the weight of the beam 
for 90 .θ ≥ °  

 11.77. IDENTIFY:   Apply the first and second conditions of equilibrium to the bale. 
(a) SET UP:   Find the angle where the bale starts to tip. When it starts to tip only the lower left-hand 
corner of the bale makes contact with the conveyor belt. Therefore the line of action of the normal force n 
passes through the left-hand edge of the bale. Consider 0zτΣ =  with point A at the lower left-hand corner. 
Then 0nτ =  and 0,fτ =  so it must be that 0mgτ =  also. This means that the line of action of the gravity 
must pass through point A. Thus the free-body diagram must be as shown in Figure 11.77a. 

 

 
EXECUTE:   0 125 mtan

0 250 m
β .=

.
 

27 ,β = °  angle where tips 

Figure 11.77a    
 

SET UP:   At the angle where the bale is ready to slip down the incline sf  has its maximum possible value, 

s s .f nµ=  The free-body diagram for the bale, with the origin of coordinates at the cg is given in  
Figure 11.77b. 
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 EXECUTE:    
y yF ma∑ =  

cos 0n mg β− =  
cosn mg β=  

s s cosf mgµ β=  

s( f  has maximum value 
when bale ready to slip) 

x xF ma∑ =  

s sin 0f mg β− =  

s cos sin 0mg mgµ β β− =  

stan β µ=  

s 0 60µ = .  gives that 31β = °  
Figure 11.77b   

 

27β = °  to tip; 31β = °  to slip, so tips first 
(b) The magnitude of the friction force didn’t enter into the calculation of the tipping angle; still tips at 

27 .β = °  For s 0 40µ = .  slips at arctan(0.40) 22 .β = = °  
Now the bale will start to slide down the incline before it tips. 
EVALUATE:   With a smaller sµ  the slope angle β  where the bale slips is smaller. 

 11.78. IDENTIFY:   Apply the equilibrium conditions to the pole. The horizontal component of the tension in the 
wire is 22.0 N. 
SET UP:   The free-body diagram for the pole is given in Figure 11.78. The tension in the cord equals the 
weight W. vF  and hF  are the components of the force exerted by the hinge. If either of these forces is 
actually in the opposite direction to what we have assumed, we will get a negative value when we solve for it. 
EXECUTE:   (a) sin37 0 22 0 NT . ° = .  so 36 6 N.T = .  0zτ∑ =  gives ( sin37 0 )(1 75 m) (1 35 m) 0.T W. ° . − . =  

(22 0 N)(1 75 m) 28 5 N.
1 35 m

W . .= = .
.

 

(b) 0yF∑ =  gives v cos37 0 0F T w− . ° − =  and v (36 6 N)cos37 0 55 0 N 84 2 N.F = . . ° + . = .  0xF∑ =  

gives hsin37 0 0W T F− . ° − =  and h 28 5 N 22 0 N 6 5 N.F = . − . = .  The magnitude of the hinge force is 
2 2

h v 84 5 N.F F F= + = .  

EVALUATE:   If we consider torques about an axis at the top of the pole, we see that hF  must be to the left 
in order for its torque to oppose the torque produced by the force W. 

 
 

 
Figure 11.78 

 

 11.79. IDENTIFY:   Apply the first and second conditions of equilibrium to the door. 
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(a) SET UP:   The free-body diagram for the door is given in Figure 11.79. 
 

 
Figure 11.79 

 

Take the origin of coordinates at the center of the door (at the cg). Let ,An k ,Af ,Bn  and kBf  be the 
normal and friction forces exerted on the door at each wheel. 
EXECUTE:   y yF ma∑ =  

k k

k k

0
950 N

0

A B

A B

x x

A B

A B

n n w
n n w

F ma
f f F
F f f

+ − =
+ = =

∑ =
+ − =

= +

 

k k ,A Af nµ=  k k ,B Bf nµ=  so k k( ) (0 52)(950 N) 494 NA BF n n wµ µ= + = = . =  
0Bτ∑ =  

,Bn  k ,Af  and kBf  all have zero moment arms and hence zero torque about this point.  
Thus (1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) ( ) (950 N)(1.00 m) (494 N)(1.60 m) 80 N
2.00 m 2.00 mA

w F hn − −= = =  

And then 950 N 950 N 80 N 870 N.B An n= − = − =  
(b) SET UP:   If h is too large the torque of F will cause wheel A to leave the track. When wheel A just 
starts to lift off the track An  and kAf  both go to zero. 
EXECUTE:   The equations in part (a) still apply. 

0A Bn n w+ − =  gives 950 NBn w= =  
Then k k 0 52(950 N) 494 NB Bf nµ= = . =  

k k 494 NA BF f f= + =  
(1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) (950 N)(1.00 m) 1.92 m
494 N

wh
F

= = =  

EVALUATE:   The result in part (b) is larger than the value of h in part (a). Increasing h increases the 
clockwise torque about B due to F and therefore decreases the clockwise torque that An  must apply. 

 11.80. IDENTIFY:   Apply 0zτ∑ =  to the slab. 

SET UP:   The free-body diagram is given in Figure 11.80a. 3 75 mtan
1 75 m

β .=
.

 so 65 0 .β = . °  

20.0 90β α° + + = °  so 5.0 .α = °  The distance from the axis to the center of the block is 
2 23 75 m 1 75 m 2 07 m.

2 2
. .⎛ ⎞ ⎛ ⎞+ = .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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EXECUTE:   (a) (2 07 m)sin5 0 (3 75 m)sin52 0 0.w T. . ° − . . ° =  0 061 .T w= .  Each worker must exert a force 
of 0 012 ,w.  where w is the weight of the slab. 
(b) As θ  increases, the moment arm for w decreases and the moment arm for T increases, so the worker 
needs to exert less force. 
(c) 0T →  when w passes through the support point. This situation is sketched in Figure 11.80b. 

(1 75 m)/2tan
(3 75 m)/2

θ .=
.

 and 25 0 .θ = . °  If θ  exceeds this value the gravity torque causes the slab to tip over. 

EVALUATE:   The moment arm for T is much greater than the moment arm for w, so the force the workers 
apply is much less than the weight of the slab. 

 
 

 
Figure 11.80 

 

 11.81. IDENTIFY:   Apply Newton’s second law to the mass to find the tension in the wire. Then apply 0l FY
A l

⊥=
∆

 

to the wire to find the elongation this tensile force produces. 
(a) SET UP:   Calculate the tension in the wire as the mass passes through the lowest point. The free-body 
diagram for the mass is given in Figure 11.81a. 

 

 The mass moves in an arc of a  
circle with radius R = 0.70 m.   
It has acceleration rada  directed 
in toward the center of the circle, 
so at this point rada  is upward. 

Figure 11.81a   
 

EXECUTE:   y yF ma∑ =  
2T mg mRω− =  so that 2( ).T m g Rω= +  

But ω  must be in rad/s: 
(120 rev/min)(2  rad/1 rev)(1 min/60 s) 12 57 rad/s.ω π= = .  

Then 
  
T = (12.0 kg) 9.80 m/s2 + (0.70 m)(12.57 rad/s)2⎡

⎣
⎤
⎦ = 1445 N.  

Now calculate the elongation l∆  of the wire that this tensile force produces: 

0F l
Y

A l
⊥=
∆

 so 
  
∆l =

F⊥ l0
YA

= (1445 N)(0.70 m)
(7.0 × 1010  Pa)(0.014 × 10−4  m2 )

= 0.0103 m = 1.0 cm.  
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(b) SET UP:   The acceleration rada  is directed in toward the center of the circular path, and at this point in 
the motion this direction is downward. The free-body diagram is given in Figure 11.81b. 
 

 EXECUTE:    
y yF ma∑ =  

2mg T mRω+ =  
2( )T m R gω= −  

Figure 11.81b   
 

2 2(12.0 kg) (0.70 m)(12.57 rad/s) 9.80 m/s 1210 N.T ⎡ ⎤= − =⎣ ⎦  

30
10 4 2

(1210 N)(0.70 m) 8.6 10  m = 0.86 cm.
(7.0 10  Pa)(0.014 10  m )

F ll
YA

−⊥
−∆ = = = ×

× ×
 

EVALUATE:   At the lowest point T and w are in opposite directions and at the highest point they are in the 
same direction, so T is greater at the lowest point and the elongation is greatest there. The elongation is at 
most 1.4% of the length. 

 11.82. IDENTIFY:   For a spring, .F kx=  0 .F lY
A l

⊥=
∆

 

SET UP:   F F W⊥ = =  and .l x∆ =  For copper, 1011 10  Pa.Y = ×  

EXECUTE:   (a) 
0 0

.YA YAF l x
l l

⎛ ⎞ ⎛ ⎞
= ∆ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This in the form of ,=F kx  with 
0

.YAk
l

=  

(b) 
10 4 2

5

0

(11 10  Pa) (6.455 10  m) 1.9 10  N/m
0.750 m

YAk
l

π −× ×= = = ×  

(c) 5 3(1.9 10  N/m)(1.25 10  m) 240 NW kx −= = × × =  
EVALUATE:   For the wire the force constant is very large, much larger than for a typical spring. 

 11.83. IDENTIFY:   Use the second condition of equilibrium to relate the tension in the two wires to the distance w 

is from the left end. Use 
  
stress =

F⊥
A

 and 0l FY
A l

⊥=
∆

 to relate the tension in each wire to its stress and 

strain. 
(a) SET UP:   stress / ,F A⊥=  so equal stress implies /T A  same for each wire. 

2 2/2 00 mm /4 00 mmA BT T. = .  so 2 00B AT T= .  
The question is where along the rod to hang the weight in order to produce this relation between the 
tensions in the two wires. Let the weight be suspended at point C, a distance x to the right of wire A. The 
free-body diagram for the rod is given in Figure 11.83. 

 

 EXECUTE:    
0Cτ∑ =  

(1.05 m ) 0B AT x T x+ − − =  

Figure 11.83   
 
 

But 2 00B AT T= .  so 2 00 (1 05 m ) 0A AT x T x. . − − =  
2 10 m 2 00x x. − . =  and 2 10 m/3 00 0 70 mx = . . = .  (measured from A). 
(b) SET UP:   stress/strainY =  gives that strain stress/ / .Y F AY⊥= =  
 



Equilibrium and Elasticity   11-39 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

EXECUTE:   Equal strain thus implies 

2 11 2 11(2 00 mm )(1 80 10  Pa) (4 00 mm )(1 20 10  Pa)
A BT T=

. . × . . ×
 

4 00 1 20 1 333 .
2 00 1 80B A AT T T. .⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟. .⎝ ⎠⎝ ⎠

 

The 0Cτ∑ =  equation still gives (1 05 m ) 0.B AT x T x. − − =  
But now 1 333B AT T= .  so (1 333 )(1 05 m ) 0.A AT x T x. . − − =  
1 40 m 2 33x. = .  and 1 40 m/2 33 0 60 mx = . . = .  (measured from A). 
EVALUATE:   Wire B has twice the diameter so it takes twice the tension to produce the same stress. For 
equal stress the moment arm for BT  (0.35 m) is half that for AT  (0.70 m), since the torques must be equal. 
The smaller Y for B partially compensates for the larger area in determining the strain and for equal strain 
the moment arms are closer to being equal. 

 11.84. IDENTIFY:   Apply 0l FY
A l

⊥=
∆

 and calculate .l∆  

SET UP:   When the ride is at rest the tension F⊥  in the rod is the weight 1900 N of the car and occupants. 

When the ride is operating, the tension F⊥  in the rod is obtained by applying m∑ =F a  to a car and its 
occupants. The free-body diagram is shown in Figure 11.84. The car travels in a circle of radius sin ,r l θ=  
where l is the length of the rod and θ  is the angle the rod makes with the vertical. For steel, 

112 0 10  Pa.Y = . ×   ω = 12.0 rev/min = 1.2566 rad/s.  

EXECUTE:   (a) 40
11 4 2

(15.0 m)(1900 N) 1.78 10  m 0.18 mm
(2.0 10  Pa)(8.00 10  m )

l Fl
YA

−⊥
−∆ = = = × =

× ×
 

(b) x xF ma∑ =  gives 2 2sin sinF mr mlθ ω θω⊥ = =  and 

2 2 3
2

1900 N (15 0 m)(1.2566 rad/s) 4.592 10  N.
9 80 m/s

F mlω⊥
⎛ ⎞= = . = ×⎜ ⎟.⎝ ⎠

 

34.592 10  N (0 18 mm) 0 44 mm.
1900 N

l
⎛ ⎞×∆ = . = .⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   y yF ma∑ =  gives cosF mgθ⊥ =  and cos / .mg Fθ ⊥=  As ω  increases F⊥  increases and 
cosθ  becomes small. Smaller cosθ  means θ  increases, so the rods move toward the horizontal as ω  
increases. 

 

 
Figure 11.84 
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 11.85. IDENTIFY:   Apply 
0

.F lY
A l
⊥ ⎛ ⎞∆= ⎜ ⎟

⎝ ⎠
 The height from which he jumps determines his speed at the ground. 

The acceleration as he stops depends on the force exerted on his legs by the ground. 
SET UP:   In considering his motion take y+  downward. Assume constant acceleration as he is stopped by 
the floor. 

EXECUTE:   (a) 4 2 9 4

0
(3.0 10  m )(14 10  Pa)(0.010) 4.2 10  NlF YA

l
−

⊥
⎛ ⎞∆= = × × = ×⎜ ⎟
⎝ ⎠

 

(b) As he is stopped by the ground, the net force on him is net ,F F mg⊥= −  where F⊥  is the force exerted 

on him by the ground. From part (a), 4 42(4 2 10  N) 8 4 10  NF⊥ = . × = . ×  and 
4 2 48.4 10  N (70 kg)(9.80 m/s ) 8.33 10  N.F = × − = ×  netF ma=  gives 3 21.19 10  m/s .a = ×  

3 21.19 10  m/sya = − ×  since the acceleration is upward. 0y y yv v a t= +  gives 
3 2

0 ( 1.19 10  m/s )(0.030 s) 35.7 m/s.y yv a t= − = − × =  His speed at the ground therefore is 35 7 m/s.v = .  

This speed is related to his initial height h above the floor by 21
2 mv mgh=  and 

2 2

2
(35 7 m/s) 65 m.

2 2(9 80 m/s )
vh
g

.= = =
.

 

EVALUATE:   Our estimate is based solely on compressive stress; other injuries are likely at a much lower 
height. 

 11.86. IDENTIFY:   The graph gives the change in length of the wire as a function of the weight hanging from it, 
which is equal to the tension in the wire. Young’s modulus Y applies to the stretching of the wire. Energy 
conservation and Newton’s second law apply to the swinging sphere. 

SET UP:   0 ,⊥=
∆

l FY
A l

  + = +1 1 2 2 ,K U K U  ,Σ = mF a   2
rad / .=a v R  

EXECUTE:   (a) Solve 0l FY
A l

⊥=
∆

 for ∆l  and realize that ⊥ = :F mg   ∆ = 0 .
gl

l m
AY

 Therefore, in the graph of 

∆l  versus m, the slope is equal to gl0/AY. The equation of the graph is given in the problem as  
∆l  = (0.422 mm/kg)m, so the slope is 0.422 mm/kg, so gl0/AY = 0.422 mm/kg = 4.22 × 10–4 m/kg. Solving 

for Y gives Y = 0
4 .

(4.22 10 m/kg)−×
gl

A
 Using A = πr2 and putting in the given numbers gives 

11
4 2 4

(9.80 m/s)(22.0 m) 8.80 10 Pa.
(4.30 10 m) (4.22 10 m/kg)π − −= = ×

× ×
Y  

(b) Use energy conservation to find the speed of the sphere. 1 1 2 2+ = +K U K U  gives 

21
(1 cos )

2
.mgL mvθ =−  Solving for v using θ  = 36.0° and L = 22.0 m gives v = 9.075 m/s. 

Now apply Newton’s second law to the sphere at the bottom of the swing. Σ = mF a  and 2
rad /a v R=  give 

T – mg = mv2/L, so T = mv2/L +mg = (9.50 kg)(9.075 m/s)2/(22.0 m) + (9.50 kg)(9.80 m/s2) = 129 N. 
Using the value of Y found in part (a), we have 

4 2 110 (129 N)(22.0 m)/[ (4.30 10 m) (8.80 10 Pa)] 0.00554 m 5.54 mm.F ll
AY

−⊥∆ = = π × × = =  

EVALUATE:   For a wire 22 m long, 5.5 mm is a very small stretch, 0.0055/22 = 0.025%. 
 11.87. IDENTIFY:   The bar is at rest, so the forces and torques on it must all balance.  

SET UP:   0,Σ =yF   0.τ∑ =z   
EXECUTE:   (a) The free-body diagram is shown in Figure 11.87a, where Fp is the force due to the knife-
edge pivot. 
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Figure 11.87a 

 

(b) 0,τ∑ =z  with torques taken about the location of the knife-edge pivot, gives 
(2.00 kg)g(1.30 m) – Mg(0.38 m) – m2g(x – 1.50 m) = 0 
Solving for x gives 
x = [(2.00 kg)(1.30 m) – M(0.38 m)](1/m2) + 1.50 m 
The graph of this equation (x versus 1/m2) is a straight line of slope [(2.00 kg)(1.30 m) – M(0.38 m)]. 
(c) The plot of x versus 1/m2 is shown in Figure 11.87b. The equation of the best-fit line is  
x = (1.9955 m ⋅ kg )/m2 + 1.504 m. The slope of the best-fit line is 1.9955 m kg,⋅  so  
[(2.00 kg)(1.30 m) – M(0.38 m)] = 1.9955 m kg,⋅  which gives M = 1.59 kg. 

 

 
Figure 11.87b 

 

(d) The y-intercept of the best-fit line is 1.50 m. This is plausible. As the graph approaches the y-axis, 1/m2 
approaches zero, which means that m2 is getting extremely large. In that case, it would be much larger than 
any other masses involved, so to balance the system, m2 would have to be at the knife-point pivot, which is 
at x = 1.50 m. 
EVALUATE:   The fact that the graph gave a physically plausible result in part (d) suggests that this 
graphical analysis is reasonable. 

 11.88. IDENTIFY:   The bar is at rest, so the forces and torques on it must all balance. 
SET UP:    0,Σ =xF 0,Σ =yF   0.τ∑ =z  

EXECUTE:   (a) Take torques about the hinge, calling m the mass of the bar and L its length. 0zτ∑ =  gives  

θ =sin .
2

L
xT mg  Solving for T gives /2 .

sin θ
= mgLT

x
 Therefore the alternative having the largest value of  

x sinθ  will have the smallest tension, and the one with the smallest value of x sinθ  will have the greatest 
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tension. Calculating x sinθ  for each alternative gives the following values. A: 1.00 m, B: 1.30 m,  
C: 0.451 m, D: 0.483 m. Therefore alternative B gives the smallest tension and C produces the largest 
tension 
(b) Calling H the magnitude of the hinge force, 0xFΣ =  gives cos .xH T θ=  Using the value of T from 

part (a), we get /2 /2. cos .
sin tanx

mg L mg LH
x x

θ
θ θ

= =  From this result, we can see that Hx is greatest when 

x tanθ  is the smallest, and Hx is least when x tanθ  is greatest. Calculating x tanθ  for each alternative 
gives A: 1.15 m, B: 2.60 m, C: 0.565 m, D: 1.87 m. Therefore alternative C gives the greatest Hx and B 
gives the smallest Hx. 
(c) Taking torques about the point where the cable is connected to the bar, 0zτ∑ =  gives 

( /2).= −yH x mg x L  Solving for Hy gives Hy = mg(1 – L/2x). Since Hy could be positive or negative, we 

should calculate all four possibilities. For alternative A, we have 2.00 m1 0.500 .
4.00 myH mg mg

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 For B 

we have 2.00 m1 0.333 ,
3.00 myH mg mg

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 and likewise we get Hy = –0.333mg for C and Hy = –1.00mg 

for D. Therefore alternative D gives the largest Hy and B and C both give the smallest value. 
(d) Alternative B is clearly optimal because it results in the smallest values for T, Hx, and Hy. It might be a 
good idea to avoid alternative C because it has the greatest T and Hx. 
EVALUATE:   As a check, part (c) could be solved by using 0.Σ =yF  

 11.89. IDENTIFY:   Apply the equilibrium conditions to the ladder combination and also to each ladder. 
SET UP:   The geometry of the 3-4-5 right triangle simplifies some of the intermediate algebra. Denote the 
forces on the ends of the ladders by and L RF F  (left and right). The contact forces at the ground will be 
vertical, since the floor is assumed to be frictionless. 
EXECUTE:   (a) Taking torques about the right end, (5 00 m) (480 N)(3 40 m) (360 N)(0 90 m),LF . = . + .  
 so 391 N.LF =  RF  may be found in a similar manner, or from 840 N 449 N.R LF F= − =  
(b) The tension in the rope may be found by finding the torque on each ladder, using the point A as the 
origin. The lever arm of the rope is 1.50 m. For the left ladder, 

(1 50 m) (3 20 m) (480 N)(1 60 m), so 322 1 NLT F T. = . − . = .  (322 N to three figures). As a check, using the 
torques on the right ladder, (1 50 m) (1 80 m) (360 N)(0 90 m)RT F. = . − .  gives the same result. 
(c) The horizontal component of the force at A must be equal to the tension found in part (b). The vertical 
force must be equal in magnitude to the difference between the weight of each ladder and the force on the 
bottom of each ladder, 480 N 391 N 449 N 360 N 89 N.− = − =  The magnitude of the force at A is then 

2 2(322 1 N) (89 N) 334 N.. + =  
(d) The easiest way to do this is to see that the added load will be distributed at the floor in such a way that 

(0.36)(800 N) 679 N, and (0.64)(800 N) 961 N.L L R RF F F F= + = = + =′ ′  Using these forces in the form for 
the tension found in part (b) gives 

(3 20 m) (480 N)(1 60 m) (1 80 m) (360 N)(0 90 m) 937 N.
(1 50 m) (1 50 m)

L RF FT ′ . − . ′ . − .= = =
. .

 

EVALUATE:   The presence of the painter increases the tension in the rope, even though his weight is 
vertical and the tension force is horizontal. 

 11.90. IDENTIFY:   Apply 0zτ∑ =  to the post, for various choices of the location of the rotation axis. 
SET UP:   When the post is on the verge of slipping, sf  has its largest possible value, s s .f nµ=  
EXECUTE:   (a) Taking torques about the point where the rope is fastened to the ground, the lever arm of 
the applied force is /2h  and the lever arm of both the weight and the normal force is tan ,h θ  and so 

( ) tan .
2
h

F n w h θ= −  
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Taking torques about the upper point (where the rope is attached to the post), .
2
h

fh F=  Using sf nµ≤  

and solving for F, 
1 1

s

1 1 1 12 2(400 N) 400 N.
tan 0.30 tan36.9

F w
µ θ

− −⎛ ⎞ ⎛ ⎞≤ − = − =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

(b) The above relations between ,  and  becomeF n f  3 2( )  tan , ,
5 5

F h n w h f Fθ= − =  and eliminating  

f and n and solving for F gives 
1

s

2/5 3/5 ,
tan

F w
µ θ

−
⎛ ⎞

≤ −⎜ ⎟
⎝ ⎠

 and substitution of numerical values gives  

750 N to two figures. 
(c) If the force is applied a distance y above the ground, the above relations become 

( ) tan ,  ( ) ,Fy n w h F h y fhθ= − − =  which become, on eliminating and ,n f  
s

(1 / ) ( / ) .
tan

y h y hw F
µ θ

⎡ ⎤−≥ −⎢ ⎥
⎣ ⎦

 

As the term in square brackets approaches zero, the necessary force becomes unboundedly large. The 
limiting value of y is found by setting the term in square brackets equal to zero. Solving for y gives 

tan tan36.9 0.71.
tan 0.30 tan36.9s

y
h

θ
µ θ

°= = =
+ + °

 

EVALUATE:   For the post to slip, for an axis at the top of the post the torque due to F must balance the 
torque due to the friction force. As the point of application of F approaches the top of the post, its moment 
arm for this axis approaches zero. 

 11.91. IDENTIFY:   Apply 0l FY
A l

⊥=
∆

 to calculate .l∆  

SET UP:   For steel, 112 0 10  Pa.= . ×Y  

EXECUTE:   (a) From 0 ,⊥=
∆

l FY
A l

 
2

4
10 7 2

(4.50 kg)(9.80 m/s )(1.50 m) 6.62 10  m, or 0.66 mm
(20 10  Pa)(5.00 10 m )

l −
−∆ = = ×

× ×
 to two 

figures. 
(b) 2 2(4.50 kg)(9.80 m/s )(0.0500 10  m) 0.022 J.−× =  
(c) The magnitude F  will vary with distance; the average force is 0(0.0250 cm/ ) 16.7 N,YA l =  and so the 

work done by the applied force is 2 3(16.7 N)(0.0500 10  m) 8.35 10  J.− −× = ×  
(d) The average force the wire exerts is (4.50 kg) 16.7 N 60.8 N.g + =  The work done is negative, and 

equal to 2 2(60.8 N)(0.0500 10  m) 3.04 10  J.− −− × = − ×  

(e) The equation 0l FY
A l

⊥=
∆

 can be put into the form of Hooke’s law, with 
0

.YAk
l

=  21
el 2 ,U kx=  so 

2 21
el 2 12 ( ).U k x x∆ = −  4

1 6.62 10  mx −= ×  and 3 4
2 10.500 10  m 11.62 10  m.x x− −= × + = ×  The change in 

elastic potential energy is 

 

(20 × 1010  Pa)(5.00 × 10−7  m2 )
2(1.50 m)

(11.62 × 10−4  m)2 − (6.62 × 10−4  m)2⎡
⎣

⎤
⎦ = 3.04 × 10−2  J,  the negative of 

the result of part (d). 
EVALUATE:   The tensile force in the wire is conservative and obeys the relation .W U= −∆  

 11.92. IDENTIFY and SET UP:   The forces and torques on the competitor must balance, so 0,Σ =xF  0,Σ =yF  

and 0.τ∑ =z   
EXECUTE:   Take torques about his feet, giving  (T1 – T2)(1.5 m)(cos30°) = mg(1.0 m)(sin30°). Solving for 
T2 gives T2 = 1160 N – [(80.0 kg)(9.80 m/s2)/(1.5 m)]tan30° = 858 N ≈ 860 N, which is choice (c). 
EVALUATE:   We find T2 < T1 as expected. 
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 11.93. IDENTIFY and SET UP:   The forces and torques on the competitor must balance, so 0,Σ =xF  0,Σ =yF  

and 0.τ∑ =z  
EXECUTE:   As in the previous problem, T1 – T2 is proportional to tan ,θ  so as θ  increases, so does tanθ  
and so does T1 – T2, which makes choice (a) correct. 
EVALUATE:   The result is physically reasonable. As he leans back, the ropes get lower, which reduces 
their moment arm, and his weight also gets lower, which increases its moment arm. Therefore to keep 
balance, the diffrerence in the tensions must be greater than before. 

 11.94. IDENTIFY and SET UP:   Apply τ = .Fl  
EXECUTE:   The moment arm for T1 has increased, so T1 can be smaller and still produce the same torque 
needed to balance the torque due to gravity, so choice (c) is correct.   
EVALUATE:   If the rope is held too high, it will be hard for the competitor to hold it, so there is a limit on 
how much the holding height can be effectively increased. 

 11.95. IDENTIFY and SET UP:   The competitor will slip if the static friction force would need to be greater than its 
maximum possible value. max

s s .µ=f n  
EXECUTE:   From earlier work, we know that T1 – T2 = 1160 N – 858 N = 302 N. The maximum static 
friction force is   fs

max = µsn  = (0.50)(80.0 kg)(9.80 m/s2) = 392 N. He needs only 302 N to balance the 
tension difference, yet the static friction force could be as great as 392 N, so he is not even ready to slip. 
Therefore he will not move, choice (d). 
EVALUATE:   The friction force is 302 N, not 392 N, because he is not just ready to slip. 
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