

The system shown remains at rest. 8. W=20 N The force of friction (in N) on the a=3m block on the incline is: b = 4 mC) 12 A) 4 B)8 D) 16 E) 20 9. As a 2.0-kg object moves from  $(2\hat{i} + 5\hat{j})$  m to  $(6\hat{i} - 2\hat{j})$  m, the constant resultant force acting on it is equal to  $(4\tilde{i} - 3\tilde{j})$  N. If the speed of the object at the initial position is 4.0 m/s, its kinetic energy (in J) at the final position is: C) 73 D) 86 E) 24 A) 53 B) 62 10. The plot below shows the force on an object as it moves along the x axis. The work (in J) done on the object as it moves from x = 0 m to x = 20 m is: 30 N 20 N 10 N 5 m 10 m 15 m 20 m x E) 750 (C) 450 D) 200 B) 90 A) 40 11. A box with a weight of 50 N rests on a horizontal surface. A person pulls

horizontally on it with a force of 15 N and it does not move. To start it moving, a second person pulls vertically upward on the box. If the coefficient of static friction is 0.4, the smallest vertical force (in N) for which the box moves is:



Scanned with CamScanner

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |                                       |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | اسم عدر من العلاق:                                  |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | رقم العتسلسل:                         | وقت المحاضرة: 1                                     |
| The University of Jordan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | General P                             | hurier (h0202101)                                   |
| Faculty of Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General P                             | nysics (00302101)                                   |
| <b>Physics Department</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Second Sec                            | econd Exam                                          |
| Name (in Arabic):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Student ID:                           | mester 2017/2018                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Even duration 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Student ID:                           | Section:                                            |
| Note 1: Following are 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | multiple chains auration: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | minutes)                              |                                                     |
| in the answers table. Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the answers in the table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | is. Write the symbol (                | of correct answer                                   |
| Note 2: Ignore air resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce in all problems and w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | will be graded.                       |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ake $ g  = 9.8$ m/s at th             | e Larth's surface.                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Answersta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ble /                                 |                                                     |
| Question 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 0 10 10                             | Vielalaterta                                        |
| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 8 9 10                              | 11 12 13 14 15                                      |
| of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALL A.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110                                   |                                                     |
| correct 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eDqb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0004                                  | Calebl                                              |
| answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                     |
| 0.1: The only three form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                                                     |
| E change and the start of the s | s that act on a 3-kg partie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the are as follows: $F_1 =$           | (2i+3j)N,                                           |
| $F_2 = (i + 2j)N$ and $F_3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2i + 5k)N. The magni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tude (in m/s <sup>2</sup> ) of the pa | orticle's acceleration is:                          |
| a. 9.80 b. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .33 c. 12.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d. 2.8                               | 9 e. 20.46                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                     |
| Q.2: A force $\vec{F} = (6\hat{i} - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i)N acts on a particle th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at undergoes a displace               | ment $\Delta \vec{r} = (3\vec{i} - \hat{j})m$ . The |
| work (in Joules) done by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | this force on the particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is:                                   |                                                     |
| [a.11 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L4 C. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.18                                  | (e.)20                                              |
| O.3: A 2-kg hanging mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (m <sub>1</sub> ) is connected by a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tring over a pulley                   | 1                                                   |
| to a 20-kg block (m2) that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is sliding on a 50° fixed i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inclined plane (see                   | ā                                                   |
| the adjacent figure). If the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e pulley's mass and the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mass of the string                    | a                                                   |
| are negligible, and all surf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | faces are frictionless, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e magnitude of the                    |                                                     |
| acceleration (in $m/s^2$ ) of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he moving system is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                     |
| a. 2.56 b. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.80 c. 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21                                    |                                                     |
| d. 1.15 (e) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 50 0                                                |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                     |
| O A: Two blocks M. = 3 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and $M_{2} = 5$ kg are in co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntact with each other                 | on                                                  |
| a frictionless horizontal s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | urface, as shown in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | adiacent figure.                      |                                                     |
| If a horizontal force $F = 1f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N is applied to M <sub>1</sub> , the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | magnitude (in N) of t                 | he F                                                |
| contact force between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e two blocks is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | $\square M_1 M_2$                                   |
| 22 ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c. 7 d. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e. Zero                               |                                                     |
| a. 2 (0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                     |
| Q.5: An object of mass m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | speed V and initial kine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tic energy K <sub>i</sub> . If the sp | eed of the object becomes 3V,                       |
| then the ratio $(K_1/K_1)$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | an a gamler. 20 Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                     |
| (a)9 b. (1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9) <u>c.</u> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d. 18                                 | e. 81                                               |
| Build many and a state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                     |

Scanned with CamScanner

| Q.6: A 50-kg                                            | object slides from r                                                                         | est from poin                                   | nt A on the rough                                     | h track AP                                      |                                             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|---------------------------------------------|
| shown in th                                             | e adjacent figure. If t                                                                      | he speed of                                     | the particle at p                                     | oint B is                                       | TIMA                                        |
| 6 m/s. The                                              | work (in J) done by fr                                                                       | ictional force                                  | es ls:                                                |                                                 |                                             |
| a7300                                                   | (b)-8900                                                                                     | c370                                            | 0                                                     | 1                                               | m m                                         |
| d4000                                                   | e5300                                                                                        |                                                 |                                                       |                                                 |                                             |
| Q.7: A ball (<br>height, and<br>ball by grav            | of mass 2 kg is fired<br>I then falls down to i<br>vitational force throu                    | straight up v<br>ts starting p<br>ugh the entit | with an initial spe<br>oint. Neglecting               | eed of 20 m/s. It rise<br>air resistance, the w | s to its maximum<br>rork (in J) done on the |
| a22.8                                                   | b. 18.6                                                                                      |                                                 | (Gyero                                                | d. 22.8                                         | e18.6                                       |
| connected<br>equilibriun<br>in the first                | by three wires. The<br>n. If m <sub>1</sub> = 15 kg, m <sub>2</sub> :<br>wire (measured in 1 | whole syste<br>= 25 kg and<br>Newtons) is       | rm is under stati<br>m1 = 60 kg. The<br>:             | ic<br>tension (T <sub>1</sub> )                 |                                             |
| a. 680                                                  | b. 588                                                                                       | c.196                                           | 088(.6)                                               | e. 294                                          | ma)                                         |
| Q.9: The a                                              | djacent figure show                                                                          | ws a box of                                     | mass 3 kg movi                                        | ing on                                          |                                             |
| a horizont                                              | al, frictionless surf.<br>ed spring of negligi                                               | ace with a s<br>ble mass th<br>with the spi     | peed of 4 m/s<br>at is attached h<br>ring and stops n | towards an<br>orizontally to<br>nomentarily     | $\overrightarrow{V}$                        |
| a rigid wal                                             | . The box comdes                                                                             |                                                 |                                                       | W/m the                                         |                                             |
| a rigid wal<br>before rev<br>maximum                    | ersing direction. If<br>compression (in m                                                    | the spring o<br>) of the spri                   | ng is:                                                | , with, the                                     | 200000                                      |
| a rigid wal<br>before rev<br><u>maximum</u><br>a. 0.550 | ersing direction. If<br>compression (in m<br>b. 0.219                                        | the spring o<br>) of the spri                   | c. 0.357                                              | , ny ni, the                                    | PHIMAN                                      |

Q.10: True or False:

"The work done by any conservative force on a particle moving through any closed path is zero"

(a) True

b. False

Q.11: A box with initial speed  $V_i = 5$  m/s slides on a rough horizontal surface. If the coefficient of kinetic friction is 0.8, the distance (in m) moved by the box before coming to a stop is:

| a. 0.56 | b. 2.34     | 6.)1.59 | d. 3.14 | e. 8.43 |
|---------|-------------|---------|---------|---------|
|         | 100 M M M M |         |         |         |

| Q.12: A poter | tial energy function    | for a two-dimensiona    | I force is of the form:    |                |
|---------------|-------------------------|-------------------------|----------------------------|----------------|
| U(x,y) = (3)  | $(^2y - 7x)$ J. The mag | nitude of the force (in | n N) that acts at the poin | t (1, 2) m is: |
| (2.)5.83      | b. 3.77                 | c. 9.80                 | d. 12.65                   | e. 25.41       |



Good Luck!!!



2. Three blocks (A, B, C), each having the same mass M, are connected by strings as shown. Block C is pulled to the right by a force  $\vec{F}$  that causes the entire system to accelerate. Neglecting friction, the net force acting on block B is:

C) 0.5

B) 200

A) 5



|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\setminus$ /                                                                                                                                                      | 1                                                                                                     |                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                    | ( V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30. 2                                                                                                                                                              | م الرقم المتسلسل: (                                                                                   | <u>اسم ملرس المادة:</u><br>رقم الشعبة: • إ |
| The Universi<br>Faculty of Sc<br>Physics Dep:                                                                                                      | ity of Jordan<br>cience<br>artment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                  | eneral Physics (1) (03<br>Second Exam<br>First Semester 2016/                                         | 2017                                       |
| • Stude                                                                                                                                            | nt's Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | นายา นระพ.ศ.โรStu                                                                                                                                                  | lent's ID                                                                                             | 3                                          |
| Note 1: Follo<br>in the answer<br>Note 2: Ignor<br>Note 3: The s                                                                                   | wing are 10 multiple-ch<br>s' table. <u>Only</u> the answe<br>re air resistance in all pr<br>significant digit notation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | noice questions. Write<br>ers in the table will be<br>oblems and take $ g  = 2$<br>is not taken into according                                                     | the symbol of correct a<br>graded.<br>9.8 m/s <sup>2</sup> at the Earth's s<br>mt throughout the give | nswer<br>urface.<br>n                      |
|                                                                                                                                                    | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | swers' Table                                                                                                                                                       |                                                                                                       |                                            |
| Question<br>Number<br>Symbol of<br>Correct                                                                                                         | 1 2 3 4<br>b b c e 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 6 7 8<br>bedb                                                                                                                                                    | 9 10 11 12<br>a b e c                                                                                 | 13 14 15<br>c q q                          |
| Answer                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                       |                                            |
| a. 246<br>Q.2: The wor                                                                                                                             | b.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c. 37                                                                                                                                                              | d. 15<br>is given by $W = at^3$ , v                                                                   | e. 100<br>where $a = 2.4 \text{ J/s}^3$ .  |
| a.138                                                                                                                                              | b 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c. 125                                                                                                                                                             | d. 207                                                                                                | e. 912                                     |
| Q.3: In the ad<br>springs have<br>constants of 2<br>cube and stre<br>An external f<br>the right and<br><i>P</i> , that holds<br>a. 34 N<br>d. 22 N | ljacent figure, two identi<br>unstretched lengths of 0<br>550 N/m. The springs are<br>tched to a length $L$ of 0.<br>Force $P$ pulls the cube a c<br>holds it there. (See Figu<br>the cube in place in Figu<br>b. 45 N<br>e. 11 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ical ideal massless<br>.25 m and spring<br>e attached to a small<br>30 m as in Figure A.<br>listance $D = 0.020$ m to<br>re B.) The external for<br>the B. is:<br> | Figure A<br>$\leftarrow L \rightarrow$<br>figure B<br>$\leftarrow L+D-$<br>figure D                   |                                            |
| Q.4: A force this force in r                                                                                                                       | $F = bx^3$ acts in the x direction of the x direction of the constant of the | ection, where the value = $0.00 \text{ m}$ to $x = 2.6 \text{ m}$                                                                                                  | of $b$ is 3.7 N/m <sup>3</sup> . The is:                                                              | work (in J) done t                         |
| a. 98.4                                                                                                                                            | b. 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c. 50.4                                                                                                                                                            | d. 9.8                                                                                                | E142.2                                     |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second second                                                                                                                                              | The second second second second                                                                       |                                            |

Scanned by CamScanner

| hat is fast<br>with the c                                                                                                                   | d to the wall is hori<br>tened to the ceiling<br>eiling. The angle 6                                                                                                                                                     | izontal and has a t<br>has a tension of<br>(measured in deg                                                                                                                                          | ension off 52 1<br>104 N, and mal<br>grees) is:                                                                                        | N. The<br>kes an :                                                                     | rope angle $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |          |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|
| a. 55 °                                                                                                                                     | b) 60°                                                                                                                                                                                                                   | c. 30°                                                                                                                                                                                               | d. 85°                                                                                                                                 |                                                                                        | e. 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |          |
| 2.6: A we<br>a perfectly<br>When a h                                                                                                        | eight W <sub>1</sub> = 20 N res<br>y smooth horizonta<br>orizontal force F =                                                                                                                                             | sts on a second we<br>al floor as shown<br>= 15 N is applied o                                                                                                                                       | eight $W_2 = 50$ f<br>in the adjacent<br>on the lower bo                                                                               | N on<br>figure.<br>x (see                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |
| adjacent f<br>direction                                                                                                                     | figure), both boxes of the net external                                                                                                                                                                                  | move together. T<br>force on the uppe                                                                                                                                                                | he magnitude (<br>er box is:                                                                                                           | (in N) (                                                                               | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W <sub>1</sub>                     | -        |
| a. 6.48 N<br>c. 4.28 N<br>e. Zero                                                                                                           | to the right<br>to the left                                                                                                                                                                                              | b. 6.48 N to<br>d. 4.28 N to                                                                                                                                                                         | o the left<br>the right                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W <sub>2</sub>                     | →F       |
| 0 412                                                                                                                                       | b. 0.58                                                                                                                                                                                                                  | 37 c.                                                                                                                                                                                                | 0.321                                                                                                                                  | d.                                                                                     | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ст <u>,</u> т                      | e. 0.115 |
| Q.8: A sy<br>a friction<br>figure. The<br>released to<br>block and                                                                          | vstem comprising l<br>less incline, and co<br>he 9.0-kg block ac<br>from rest. The tens<br>1 the 4.0-kg block<br>b 12                                                                                                    | blocks, a light fric<br>connecting ropes is<br>celerates downwa<br>sion in the rope co<br>(measured in N) i<br>c. 42                                                                                 | tionless pulley<br>shown in the a<br>rd when the sy<br>onnecting the 6<br>is:<br>d. 99                                                 | ,<br>adjacen<br>/stem is<br>i.0-kg<br>e. 60                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 40ks                             | 9.0 kg   |
| Q.8: A sy<br>a friction<br>figure. Th<br>released th<br>block and<br>a. 80                                                                  | vstem comprising b<br>less incline, and co<br>he 9.0-kg block ac<br>from rest. The tens<br>1 the 4.0-kg block<br>b. 12                                                                                                   | blocks, a light fric<br>connecting ropes is<br>celerates downwa<br>sion in the rope co<br>(measured in N) i<br>c. 42 c                                                                               | tionless pulley<br>shown in the s<br>ord when the sy<br>onnecting the 6<br>is:<br>d. 99                                                | ',<br>adjacen<br>/stem is<br>0.0-kg<br>e. 60                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 4 K<br>9 4 0 k<br>90'            | 9.0 kg   |
| Q.8: A sy<br>a friction<br>figure. The<br>released to<br>block and<br>a. 80<br>Q.9: Two<br>a very lig<br>air resista<br>(measure            | ystem comprising b<br>less incline, and co<br>he 9.0-kg block ac<br>from rest. The tens<br>d the 4.0-kg block<br>b. 12<br>b. 12<br>c objects are connec<br>that and frictionless<br>ance. If $M = 0.60$ k<br>d in N) is: | blocks, a light fric<br>connecting ropes is<br>celerates downwa<br>sion in the rope co<br>(measured in N) is<br>c. 42 co<br>ected by a very light<br>pulley as shown<br>as and $m = 0.40$ k          | tionless pulley<br>shown in the sy<br>onnecting the 6<br>is:<br>d. 99<br>ght flexible stri<br>in the adjacent<br>g, the tension        | adjacen<br>/stem is<br>0-kg<br>e. 60<br>ing that<br>t figure<br>in the s               | at a constraint of the second | er<br>ng                           | 9.0 kg   |
| Q.8: A sy<br>a friction<br>figure. The<br>released the<br>block and<br>a. 80<br>Q.9: Two<br>a very lig<br>air resista<br>(measure<br>a] 4.7 | ystem comprising l<br>less incline, and co<br>he 9.0-kg block ac<br>from rest. The tens<br>1 the 4.0-kg block<br>b. 12<br>b objects are connec<br>th and frictionless<br>ance. If $M = 0.60$ k<br>d in N) is:<br>b. 21.1 | blocks, a light fric<br>connecting ropes is<br>celerates downwa<br>sion in the rope co<br>(measured in N) is<br>c. 42 co<br>exted by a very lig<br>pulley as shown<br>ag and $m = 0.40$ k<br>c. 14.3 | tionless pulley<br>shown in the sy<br>onnecting the 6<br>is:<br>d. 99<br>th flexible stri<br>in the adjacent<br>g, the tension<br>d. 9 | ,<br>adjacen<br>/stem is<br>i.0-kg<br>e. 60<br>ing that<br>t figure<br>in the s<br>9.8 | at<br>5 6 4<br>6 4<br>6 4<br>6 4<br>6 4<br>6 4<br>6 4<br>6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 Ko<br>9 4 0 k<br>30'<br>er<br>19 | 9.0. kg  |

# Scanned by CamScanner

2

Q.11: Two moons orbit a planet in nearly circular orbits. Moon A has orbital radius r, and moon B has orbital radius 4r. Moon A takes 15 days to complete one orbit. Neglecting gravitational interactions between the two moons, the time (measured in days) needed for moon B to complete an orbit is:

a. 360 b. 180 c. 80 d. 160 e. 120

Q.12: Planet X has a mass equal to 1/3 that of Earth, a radius equal to 1/3 that of Earth, and an axial spin rate 1/2 that of Earth. With g representing, as usual, the acceleration due to gravity on the surface of Earth, the acceleration due to gravity on the surface of planet X is:

a. g/3 b. g/9 c. 3g d. 6g e. 9g

Q.13: A block is on a frictionless horizontal table, on earth. This block accelerates at  $3 \text{ m/s}^2$  when a 90 N horizontal force is applied to it. The block and table are then set up on the moon where the acceleration due to gravity is 1.62 m/s<sup>2</sup>. The weight (measured in N) of the block on the moon is:

a. 93.7 b. 76.7 5c. 48.6 d. 28.2 e. 36.8

| Q.14: The a<br>connected $m_1 = 10 \text{ kg}$<br>(measured | adjacent figure s<br>by three wires. T<br>$m_2 = 20 \text{ kg and}$<br>in Newtons) is: | hows a setup of the whole system $m_3 = 70$ kg, The | tree masses that<br>is under static en-<br>tension $(T_1)$ in t | are<br>quilibrium. If<br>he first wire |                      |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|----------------------|
| ā.]980                                                      | b. 518                                                                                 | c. 294                                              | d. 426                                                          | e. 686                                 | Mz<br>T <sub>3</sub> |
|                                                             |                                                                                        |                                                     |                                                                 |                                        | Miz                  |

Q. 15: True or False: "Any non-accelerating frame of reference is considered as an inertial reference frame" b. False True

Good Luck!!!

\*Take  $g = 9.8 \text{ m/s}^2$  and  $G = 6.7 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ .

"Fill in the Table at the END with your answers, using CAPITAL letters ONLY.

Q1) Only two forces act on a 5.0-kg mass. These are  $F_1 = (2i - 4j) N$  and  $F_2 = (3i - 6j) N$ . The magnitude of the resulting acceleration (in m/s<sup>2</sup>) is:

(A) 1.0 (B) 2.0 (C) 5.0 (D) 0.22 (E) 2.2

Q2) A 5.0-kg mass is suspended (غلقت) by a string from the ceiling (ستند) of an elevator. The tension in the string is 50 N. The acceleration (in m/s<sup>2</sup>) of the elevator is:

(A) 9.8, downward (B) 9.8, upward (C) 0.20, upward (D) 2.0, upward (E) 2.0, downward



In the above figure, the surfaces are frictionless and force P = 10 N. The magnitude of the force (in N) exerted (المونارة) on block 1 by block 2 is:

| (A) 10 | (B) 8.0 | (C) 6.0 | (D) 4.0 | (E) 2.0 |
|--------|---------|---------|---------|---------|
|        |         |         |         |         |

Q4) A block is released from rest on a 30<sup>0</sup>-incline and slides 9.0 m in 3.0 s. What is the coefficient of kinetic friction between the block and the surface of the incline?

| (A) 0.17 | (B) 0.81 | (C) 0.34 | (D) 0.28 | (E) 0.22 |
|----------|----------|----------|----------|----------|
| -        |          |          |          |          |
|          |          |          |          |          |

1

Q5) A mass of 1.0 kg, attached to the end of a string, swings in a vertical circle of tadius, 2.0 m. When the mass is at the lowest point of the circle, its speed is 10 m/s. The tension (in N) in the string at this point is:

|        | 10. 10 | (C) 30 | (D) 20 | (E) 10 |
|--------|--------|--------|--------|--------|
| (A) 60 | (B) 40 | (0) 20 |        |        |

1 S 1 S 1

Q6) A point is at a distance  $4R_E$  above the surface of the Earth ( $R_E$  being the Earth's radius which you need *not* know). The magnitude of the free-fall acceleration (in m/s<sup>2</sup>) at this pont is:

|         |         | 10125   | (D) 0.39 | (E) 0.61 |
|---------|---------|---------|----------|----------|
| (A) 9.8 | (B) 2.0 | (C) 2.5 | (2)      |          |

Q7) The initial velocity of a 5.0-kg particle is (2.0i - 5.0j) m/s. After t s, the velocity becomes ((5.0i - 6.0j) m/s. The work done (in J) by the *resultant* force during this time interval is:

| (E) 425 |
|---------|
|         |
| ŝ       |

Q8) A particle moves along the x-axis. It is acted upon by a force  $F_x$  (in N) that varies with position x (in m) as shown in the graph below. What work (in J) is done by this force as the particle moves from x = 2 m to x = 12 m?



Q9) A 1.0-kg block slides (التزلق) down a 30°-incline at a constant speed of 10 m/s. At what rate (in W) is work done on the block by the gravitational force?

| (4)+49           | (B) -98 | (C) zero | (D) +100 | (E) -100 |
|------------------|---------|----------|----------|----------|
| ( <u>M</u> ) +43 | (6) 10  |          |          |          |

Q10)



In the above figure, the system is released from rest with the spring in its equilibrium position. The pulley and the horizontal surface are frictionless. If the spring constant k = 600 N/m and M = 5.0 kg, what is the maximum extension (here) (in cm) of the spring?

| (A) 50                                         | (B) 16                                                       | (C) 80                                                               | (D) 24                                   | h X (E) 20                                        |
|------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|
| Q11) A 5.0-<br>speed of 25<br>on the parti     | kg particle is dro<br>m/s. What is the<br>cle during this fa | opped from rest. A<br>work done (in kJ)<br>II?                       | fter falling a dista<br>by the nonconser | nce of 100 m, it has a vative air-resistive force |
| (A) +2.0                                       | (B) -2.5                                                     | (C) +2.9                                                             | ( <u>D</u> ) -3.3                        | (E) -3.9                                          |
| Q12) The po<br>$U(x,y) = x^2y$<br>force (in N) | $x^4 - 4x + 3y$ , whe<br>at x = 1.0 m and                    | nction for a certain<br>re x and y are in m<br>$y \approx 1.0$ m is: | n system is given<br>1. The magnitude    | (in J) by the expression of the corresponding     |
| (A) zero                                       | (B) 6.0                                                      | (C) 9.0                                                              | (D) 7.0                                  | (E) 7.3                                           |

### Fill in the Table below with your answers, using CAPITAL letters ONLY: V L Q2 01 04 Qé Q3 Q5 Q7 Q8 09 E E C A A E C C A 9 Q11 Q12 E O



I

|        |                         |                                                                                                                |                                 |                         | Contraction of the second seco |                        |                                 |                           |                               |                              | 73            |
|--------|-------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|---------------------------|-------------------------------|------------------------------|---------------|
|        | JC                      | J V Vina                                                                                                       |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                           |                               | 52.24                        | A.            |
|        |                         | en andre en | ACCENT OF LAND                  | on a hori               | zontal s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ITTons A               | <b>Labers</b> Ale               | 1                         | HE LARV                       | ARSITA IN                    | JURDAN        |
| 7.     | A 25.<br>the bl<br>movi | 0 kg block is it<br>lock in motion.<br>ng with constar                                                         | After it is in<br>it speed. The | motion, a<br>coefficie  | horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tal force a            | nerizent<br>of 60.0 N<br>on is: | al force o<br>l is requir | r 75.0 N<br>ed to ke          | is required<br>ep the bloc   | l to set<br>k |
|        | a)                      | 0.31                                                                                                           | b)                              | 1.0                     | ¢)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zero                   | 1                               | 0.24                      | c)                            | 0.1                          |               |
| 8.     | A for<br>The y          | ce acting on an<br>vork (in Jouies)                                                                            | object movie<br>done by this    | ng along t<br>force as  | he x axis<br>the objec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s is given<br>I moves  | by F = (<br>from x =            | 14 x - 3.0<br>- 1 m to    | $(x^2) N, x = 2 m$            | vhere x is i<br>is:          | n m.          |
|        | 0                       | 12                                                                                                             | b)                              | 28                      | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                     | dr                              | 42                        | e)                            | - 28                         |               |
| 9.     | A 2.0<br>Ignor<br>groun | kg mass is pro<br>ing air resistand                                                                            | jected from t                   | he edge o<br>c energy ( | f the top<br>in kito J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of a 20 r<br>oules) of | n tall bui<br>the mass          | lding wit<br>just hefo    | h a veloc<br>re it stril      | tity of 24 m<br>kes the leve | t/s.<br>eled  |
|        | e)                      | 0.18                                                                                                           | (b))                            | 0.97                    | ¢)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89                   | d)                              | 0.26                      | e)                            | 0.4                          |               |
| 10,    | A 700<br>His pe         | N university s<br>wer output (in                                                                               | udent in bas<br>Watts) is:      | ic trainin              | g climbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a 10.0 m               | vertical                        | rope at a                 | constant                      | speed in 8                   | .00 s.        |
|        | <i>a</i> )              | 560                                                                                                            | b)                              | 600                     | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900                    | d)                              | 700                       | 0                             | 875                          |               |
| н.     | A pot<br>Li = 30        | ential energy<br>@y – 7x. The f                                                                                | function fo                     | r a two-o<br>ments th   | timensi<br>at act at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onal torr<br>the poin  | e is of t<br>ut (1, 0)          | he form<br>are:           |                               |                              |               |
| ninews | <i>a</i> )              | (-7, 3)                                                                                                        | b)                              | (3, -7)                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (7, -3)                | ( d)                            | (-3, 7                    | ) e)                          | (0, 0)                       | ini           |
| 2.     | The fig<br>2.50 m       | gure represer<br>at a certain t                                                                                | its the total<br>ime. At this   | accelera<br>s instant,  | tion of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a particle<br>gential  | e movie<br>accelera             | ig clocks<br>ition (in    | <u>vise in</u> a<br>m/s?) is: | circle of                    | radius        |
|        | a)                      | 13                                                                                                             |                                 |                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                     | C                               | a =                       | = 15.0                        | $m/s^2$                      |               |
|        | Ö                       | 7.5                                                                                                            |                                 |                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 A                    | A                               |                           | 大                             | ł                            |               |
|        | d)<br>e)                | Zero                                                                                                           |                                 |                         | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.                     |                                 | ~/                        | 13                            | W                            |               |
|        |                         |                                                                                                                |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                      | 50 m                            | Fruit                     | la                            |                              |               |
|        |                         |                                                                                                                |                                 |                         | EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M                      |                                 | 1                         |                               | ! (                          | $\square$     |
|        |                         |                                                                                                                |                                 |                         | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                      |                                 |                           | 2                             |                              | 1             |

### The University of Jordan / Department of Physics First Semester 2015/2016 Physics 101/ Second Exam

Section number : \_\_\_\_ KEY \_\_ Lecturer name :\_\_\_\_\_ Student name (بالعربية):\_\_\_\_\_ Student number :\_\_\_\_\_

✓ Some helpful information: gravitational acceleration  $g = 9.8 \text{ m/s}^2$ 

<u>Notes:</u> Turn off your <u>cell phone</u> and put it out of sight. Keep your calculator on your own desk. <u>Calculators</u> cannot be shared. You have <u>75 minutes</u> to complete your exam. Be sure to fill the box below with your final answers before the end of the exam.

|   | А | В | С | D | Е |    | А | В | С | D | Е |
|---|---|---|---|---|---|----|---|---|---|---|---|
| 1 |   |   |   |   |   | 7  |   |   |   |   |   |
| 2 |   |   |   |   |   | 8  |   |   |   |   |   |
| 3 |   |   |   |   |   | 9  |   |   |   |   |   |
| 4 |   |   |   |   |   | 10 |   |   |   |   |   |
| 5 |   |   |   |   |   | 11 |   |   |   |   |   |
| 6 |   |   |   |   |   | 12 |   |   |   |   |   |

1. A particle of mass (11 kg) is subject to two forces such that one force has a magnitude of 21 N directed east, and the other force has a magnitude of 39 N directed east-north, what is the magnitude of the particle's acceleration (in m/s<sup>2</sup>)?

(A) 2.8 (B) 5.1 (C) 7.5 (D) 3.7 (E) 12

2. An object of mass 4.0-kg is placed on top of an elevator floor. If the force exerted by the floor on the object is equal to 38 N. What is the acceleration of the elevator (in  $m/s^2$ )?

(A) 0.8 upward (B) 0.8 downward (C) 1.3 upward (D) 1.3 downward (E) 0.3 downward

3. A force of magnitude 20N directed in the positive x direction is acting on a particle and displacing it from the point (2m, -1m) to the point (4m, -3m). What is the work done by the force (in J)?

(A) 60 (B) 40 (C) 30 (D) 80 (E) 70

- 4. A certain pendulum consists of a 1.5-kg mass swinging at the end of a string (length = 2.0 m). At the lowest point in the swing the tension in the string is equal to 20 N. To what maximum height (in cm) above this lowest point will the mass rise during its oscillation?
  - (A) 36 (B) 20 (C) 30 (D) 28 (E) 17
- 5. A spring (k = 600 N/m) is placed in a vertical position with its lower end supported by a horizontal surface. The upper end is compressed 20 cm, and a 4.0 kg block is placed on the compressed ( $\Delta \omega \omega \omega$ ) spring. The system is then released from rest. How far above the point of release will the block rise (in cm)?

6. A potential energy function for a two-dimensional force is of the form  $U = 3x^2y$ . Find the force that acts at the point (1, 1).

(A)  $\vec{F} = -12\hat{i} - 3\hat{j}$  (B)  $\vec{F} = -6\hat{j}$  (C)  $\vec{F} = -24\hat{i} - 12\hat{j}$  (D)  $\vec{F} = -6\hat{i} - 3\hat{j}$  (E)  $\vec{F} = -6\hat{i}$ 

- 7. A 6.0-kg block slides along a horizontal surface. If  $\mu_k = 0.20$  for the block and surface, at what rate is the friction force doing work on the block (in W) at an instant when its speed is 4.0 m/s?
  - (A) -63 (B) -47 (C) +50 (D) +25 (E) -55
- 8. A particle of mass (1.5 kg) is moving on the x-axis with an acceleration given as  $a = (6.0x + 5.0) m/s^2$ , What is the speed of the particle in (m/s) at the moment it reaches

x = 4.0 m, given that the particle started motion from origin with initial velocity 2.0 m/s?

- (A) 10.1 (B) 14.7 (C) 11.8 (D) 13.1 (E) 9.5
- 9. An airplane moves at constant speed of 140 m/s as it travels around a vertical circular loop which has a 1.0-km radius. What is the magnitude of the net force causing the centripetal acceleration on the 71-kg pilot (in N)?
  - (A) 1000 (B) 1392 (C) 1200 (D) 1310 (E) 1022
- 10. A roller-coaster car has a mass of 400 kg when fully loaded with passengers ((22)). At the bottom of a circular dip of radius 40 m (as shown in the figure) the car has a speed of 16 m/s. What is the magnitude of the force the track exerts on the car at the bottom of the dip (in kN)?



(A) 10.1 (B) 9.7 (C) 8.1 (D) 13.1

11. What is the magnitude of the tension in the string (in N) if M=2.0 kg in the figure shown? Assume the surface is frictionless.



(A) 21.

- (B) 19.7 (C) 32.2
- 12. A box of mass (42 kg ) is placed on top of a rough horizontal surface whose coefficients of friction are ( $\mu_s = 0.6, \mu_k = 0.4$ ). If a man tried to push the box by applying a force of (210 N),

(D) 42.9

(E) 6.5

(E) 56.5

what would be the magnitude of the friction force (in N)?

(A) 210 (B) 247 (C) 220 (D) 165 (E) 230

| student's Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Second Exam 17/04/2016<br>Student's Number:<br>Time: One Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ecturer's Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time: One Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| ill in the Table (page 2) with th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e letters corresponding to your answers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| <ol> <li>A particle is moving in a cirradial direction and F<sub>i</sub> is the particle then the total net for</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rcular path. If $F_r$ is the magnitude of the net force in the he magnitude of the net tangential force acting on the rce is                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| A) $F = \sqrt{F_r + F_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B) $F = F_r - F_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| $F = \sqrt{F_r^2 - F_t^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D) $F = \sqrt{F_{c}^{2} + F_{c}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| E) None of the above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| loop-the-loop track of ra<br>smallest value of y such th<br>without losing contact with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | adius R. What is the hat the object will slide the track?                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| A) R/2 B) R/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C) R D) 2R E) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| done by the man is about:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | objectX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| A) 0.0 J B) 5.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C) 11.8 J D) 2.0 J E) 3.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| <ul> <li>A) 0.0 J B) 5.9 J</li> <li>4. A 0.4 kg particle moves alo<br/>The potential energy is giv<br/>meters. If the particle has a<br/>it is at the origin is:</li> <li>A) 2.5 m/s B) 5.6 m/s</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>ven by $U(x) = 8.0 (J/m^2)x^2 + 4.0 (J/m^4)x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| <ul> <li>A) 0.0 J B) 5.9 J</li> <li>4. A 0.4 kg particle moves alored to the potential energy is given meters. If the particle has a it is at the origin is:</li> <li>A) 2.5 m/s B) 5.6 m/s</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>yen by $U(x) = 8.0(J/m^2)x^2 + 4.0(J/m^4)x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s<br>and u of mass m is given by $U(x) = x + 1 + 2$ when it                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| <ul> <li>A) 0.0 J B) 5.9 J</li> <li>A 0.4 kg particle moves alo<br/>The potential energy is giv<br/>meters. If the particle has a<br/>it is at the origin is:</li> <li>A) 2.5 m/s B) 5.6 m/s</li> <li>5. The potential energy of a b</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>yen by $U(x) = 8.0(J/m^2)x^2 + 4.0(J/m^4)x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s<br>body of mass m is given by $U(x) = mgx + \frac{1}{2}kx^2$ , where k                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| <ul> <li>A) 0.0 J B) 5.9 J</li> <li>A 0.4 kg particle moves alor<br/>The potential energy is give<br/>meters. If the particle has a<br/>it is at the origin is:</li> <li>A) 2.5 m/s B) 5.6 m/s</li> <li>5. The potential energy of a b<br/>a constant. The magnitude</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>yen by $U(x) = 8.0(J/m^2)x^2 + 4.0(J/m^4)x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s<br>body of mass m is given by $U(x) = mgx + \frac{1}{2}kx^2$ , where k<br>of the corresponding force is:                                                                                                                                                              |  |  |  |  |  |  |  |  |
| <ul> <li>A) 0.0 J B) 5.9 J</li> <li>A 0.4 kg particle moves alor<br/>The potential energy is give<br/>meters. If the particle has a<br/>it is at the origin is:</li> <li>A) 2.5 m/s B) 5.6 m/s</li> <li>5. The potential energy of a b<br/>a constant. The magnitude</li> <li>A) <sup>1</sup>/<sub>2</sub> m g x<sup>2</sup> - <sup>1</sup>/<sub>6</sub> k x<sup>3</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>yen by $U(x) = 8.0 (J/m^2)x^2 + 4.0 (J/m^4)x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s<br>body of mass m is given by $U(x) = mgx + \frac{1}{2}kx^2$ , where k<br>of the corresponding force is:<br>B) $-mg + \frac{1}{2}kx$ C) $mg - kx$                                                                                                                   |  |  |  |  |  |  |  |  |
| A) 0.0] B) 5.9 J<br>4. A 0.4 kg particle moves alo<br>The potential energy is give<br>meters. If the particle has a<br>it is at the origin is:<br>A) 2.5 m/s B) 5.6 m/s<br>5. The potential energy of a bac<br>a constant. The magnitude<br>A) $\frac{1}{2}mgx^2 - \frac{1}{6}kx^3$<br>D) $-\frac{1}{2}mgx^2 + \frac{1}{6}kx^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>yen by $U(x) = 8.0 (J/m^2)x^2 + 4.0 (J/m^4)x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s<br>body of mass m is given by $U(x) = mgx + \frac{1}{2}kx^2$ , where k<br>of the corresponding force is:<br>B) $-mg + \frac{1}{2}kx$ C) $mg - kx$<br>E) $-mg - kx$                                                                                                  |  |  |  |  |  |  |  |  |
| A) 0.0] B) 5.9 J<br>4. A 0.4 kg particle moves along the potential energy is given meters. If the particle has a it is at the origin is:<br>(A) 2.5 m/s B) 5.6 m/s<br>5. The potential energy of a base of a second stant. The magnitude of a second stant is a constant. The magnitude of a second stant is a constant of a second stant is used to magnitude from the first floor of m above. The power required to the power required states a second state of the power required states a second state. The power required states a second state of the power required states a second state of the power required states a second state. The power required states a second state of the power required states a second state of the power required states a second state. The power required states a second state of the power required states a second states a second state of the power required states a second state of the power required states a second state of the power required states a second states a second state of the power required states a second state of the power states a second states a second state of the power states a second state of the | C) 11.8 J D) 2.0 J E) 3.9 J<br>ong the x-axis under the influence of a conservative force<br>yen by $U(x) = 8.0 (J/m^2) x^2 + 4.0 (J/m^4) x^4$ (J), where x is<br>a speed of 5.0 m/s when it is at $x = 1.0$ m, its speed when<br>C) 9.2 m/s D) 11.2 m/s E) 8.7 m/s<br>body of mass m is given by $U(x) = mgx + \frac{1}{2}kx^2$ , where k<br>of the corresponding force is:<br>B) $-mg + \frac{1}{2}kx$ C) $mg - kx$<br>E) $-mg - kx$<br>by 10 people (60 kg each) per<br>of a store to the second floor,<br>uired is approximately: |  |  |  |  |  |  |  |  |

- 7. A nonconservative force (Hint think of the force of friction):
- A) cannot do any work
- B) must be perpendicular to the velocity of the particle on which it acts.
- C) violates Newton's third law.
- D) violates Newton's second law.
- E) none of the above.
- A 6.0 kg block is released from rest 80 m above the ground. When it has fallen 50 m its kinetic energy is approximately (ignore air resistance) :

| A) | 1 176 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B) | 47 040 J | C) | 2 940 J | D) | 196] | E) 3 528 J |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----|---------|----|------|------------|--|
|    | and the second division of the second divisio |    |          |    |         |    |      |            |  |

- 9. The momentum of a system of particles is changing with time as 0.7 t + 1.2 t<sup>2</sup>, in kg m/s where t is in seconds. The magnitude of the net force at t = 3.0 s
- A) cannot be determined without knowing the momentum at t = 0.
- B) is 7.9 N
- C) 183.1 N
- D) is 5.5 N

E) cannot be determined without knowing the masses of the particles.

10. The figure shows a 3.00 kg steel ball which strikes a wall with a speed of 10.0 m/s at an angle of  $\theta$ =60° with the surface. The ball bounces off with the same speed and angle. The ball is in contact with the wall for 0.20 s. The impulse is

| A) | $\vec{I} = 260.0 \ \hat{j}$ | (kg. m s-1) |
|----|-----------------------------|-------------|
|----|-----------------------------|-------------|

- C)  $\vec{l} = 52.0 \,\hat{i} \, (\text{kg. m s}^{-1})$
- E)  $\vec{I} = -52.0 \hat{j}$  (kg. m s<sup>-1</sup>)

B) 1.5

11. An object of mass  $m_1 = 4.0$  kg is traveling at 6.0 m/s. It strikes an object of mass  $m_2 = 8.0$  kg, which is statio iry. The two objects stick together. Their common final speed is: D)

B)

| A) | 10m/s | B) | 2.3 m/s | C) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0 m/s                                                                                                        | D) | 1.5 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E) | 3.0 m/s |
|----|-------|----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
|    |       |    |         | and the second sec | the second s |    | and the second se |    |         |

12. An object of mass  $m_1 = 4.0$  kg is traveling at 3.0 m/s. It strikes an object of mass  $m_2 = 8.0$  kg, which is stationary, in a head-on (elastic) collision. If  $v_{1f}$  and  $v_{2f}$  are

the final velocities of  $m_1$  and  $m_2$ , after the collision, respectively, then  $\frac{v_{2f}}{v_{1f}}$  is:

1.0

A) 2.0

| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|
| Answer   |   |   |   |   |   |   |   |   |   |    |    |    |

E) 0.67

3 14

 $\vec{l} = -260.0 \,\hat{i} \, (\text{kg. m s}^{-1})$ 

D)  $\vec{l} = -52.0 \,\hat{i} \, (\text{kg. m s}^{-1})$ 

D) 0.5

کل الشکر **للطالبة علاك العناتي** على حل الاسؤلم



$$Q^{2} \stackrel{\circ}{,} \Delta U + \Delta K = 0$$

$$\frac{1}{29} + \frac{1}{2} \frac{1$$

$$Q 4 = \Delta U + \Delta K = 0$$

$$8 x^{2} + 4 x^{4} = -\frac{1}{2} = (v_{p}^{2} - v_{i}^{2})$$

$$at x_{51} \rightarrow v_{7} = 5$$

$$8 + 4 = -\frac{1}{2} = 0.4 (25 - v_{i}^{2})$$

$$12 = -0.2 (25 - v_{i}^{2})$$

$$60 = v_{i}^{2} - 25$$

$$v_{i} = 9, 2$$

C

Q5: U(x) = mgx + 
$$\frac{1}{2}$$
 Kx<sup>1</sup> K-s constant  
 $\frac{-\partial U}{\partial x} = -(mg + Kx)$  E  
 $x - mg - Kx$ 

13

 $Q \neq 3$  none of the above  $\underline{E}$  $Q \otimes 3^{\circ}$  when the block at high 50 m, it's  $\Delta U = \bigoplus \Delta U_{a+80} - \Delta U_{a+80}$ 

$$\Delta K = \Delta U$$

$$\Delta U_{a+80} = mgh = 6x9.8 \times 80 = 4704$$

$$\Delta U_{a+80} = mgh = 6\times 9.8 \times 30 = 1764$$

$$\Delta U_{a+50} = 4704 - 1764 = 2940 \qquad \subseteq$$

### The University of Jordan / Department of Physics First Semester 2015/2016 Physics 101/ Second Exam

Section number : \_\_\_\_ KEY \_\_ Lecturer name :\_\_\_\_\_ Student name (بالعربية):\_\_\_\_\_ Student number :\_\_\_\_\_

✓ Some helpful information: gravitational acceleration  $g = 9.8 \text{ m/s}^2$ 

<u>Notes:</u> Turn off your <u>cell phone</u> and put it out of sight. Keep your calculator on your own desk. <u>Calculators</u> cannot be shared. You have <u>75 minutes</u> to complete your exam. Be sure to fill the box below with your final answers before the end of the exam.

|   | А | В | С | D | Е |    | А | В | С | D | Е |
|---|---|---|---|---|---|----|---|---|---|---|---|
| 1 |   |   |   |   |   | 7  |   |   |   |   |   |
| 2 |   |   |   |   |   | 8  |   |   |   |   |   |
| 3 |   |   |   |   |   | 9  |   |   |   |   |   |
| 4 |   |   |   |   |   | 10 |   |   |   |   |   |
| 5 |   |   |   |   |   | 11 |   |   |   |   |   |
| 6 |   |   |   |   |   | 12 |   |   |   |   |   |

1. A particle of mass (11 kg) is subject to two forces such that one force has a magnitude of 21 N directed east, and the other force has a magnitude of 39 N directed east-north, what is the magnitude of the particle's acceleration (in m/s<sup>2</sup>)?

(A) 2.8 (B) 5.1 (C) 7.5 (D) 3.7 (E) 12

2. An object of mass 4.0-kg is placed on top of an elevator floor. If the force exerted by the floor on the object is equal to 38 N. What is the acceleration of the elevator (in  $m/s^2$ )?

(A) 0.8 upward (B) 0.8 downward (C) 1.3 upward (D) 1.3 downward (E) 0.3 downward

3. A force of magnitude 20N directed in the positive x direction is acting on a particle and displacing it from the point (2m, -1m) to the point (4m, -3m). What is the work done by the force (in J)?

(A) 60 (B) 40 (C) 30 (D) 80 (E) 70

- 4. A certain pendulum consists of a 1.5-kg mass swinging at the end of a string (length = 2.0 m). At the lowest point in the swing the tension in the string is equal to 20 N. To what maximum height (in cm) above this lowest point will the mass rise during its oscillation?
  - (A) 36 (B) 20 (C) 30 (D) 28 (E) 17
- 5. A spring (k = 600 N/m) is placed in a vertical position with its lower end supported by a horizontal surface. The upper end is compressed 20 cm, and a 4.0 kg block is placed on the compressed ( $\Delta \omega \omega \omega$ ) spring. The system is then released from rest. How far above the point of release will the block rise (in cm)?

# University of Jordan - Department of Physics - PHY 101 Second Exam - December 13, 2014 - (9:30 - 10:30) am

KEY إسم الطالب: \_\_\_\_\_ ---- الرقم الجامعي: ----إسم الدكتور: \_\_\_\_\_ المحاضرة: \_\_\_\_\_ رقم الشعبة أو وقت المحاضرة: \_\_\_\_\_

Given:  $(g = 9.8 \text{ m/s}^2)$ 

| Circle the let | ter of the corre                      | ect answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | بة الصحيحة | ل حرف الإجاب | ضع دائرة حو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.             | A                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.             | A                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.             | A                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.             | Α                                     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.             | Α                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.             | Α                                     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.             | A                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.             | A                                     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.             | Α                                     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C          | XXX          | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.            | Α                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11.            | A                                     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.            | A                                     | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | and second and a second second second | and an and the second s |            | 1            | and the second sec |

-1-

1.

A 1 kg particle undergoes a circular motion. At certain moment, the magnitude of the tangential and radial accelerations is 1.2 and 1.3 m/s<sup>2</sup> respectively.

The magnitude of the total acceleration (in  $m/s^2$ ) for the particle at this moment is:

A) 1.8 B) 1.2 C) 2.5 D) 0.1 E) 1.3

2.

A spring is stretched 5.00 cm from its equilibrium position. If this stretching requires 30.0 J of work, the spring constant (in kN/m) is:

A) 24 B) 6 C) 12 D) 0.3 E) 1.3

3.

A 1.5 kg ball has a speed of 20 m/s when it is 15 m above the ground. The total energy (in J) of the ball is:

A) 80 B) 300 C) 520 D) 220 E) 0

4.

A 1500 kg car accelerates from 0 to 25 m/s in 7 s.

The average power delivered by the engine (1 hp = 746 W) is:

B) (-11L/8, 9L/10)

D) (-3L/8, L/10)

| A) 60 hp | B) 80 hp | C) 90 hp | D) 70 hp | E) 180 hp |  |
|----------|----------|----------|----------|-----------|--|
|          |          |          |          |           |  |

5.

The coordinates of the center of mass for the system shown in **Figure 1** are (L/4, -L/5). The coordinates of the 2-kg mass is:



6.

A) (-5L/8, 3L/10)

C) (-5L/8, L/10) E) (-L/4, L/4)

Consider a particle of mass m moving with linear momentum  $\vec{p}$ .

This particle is located at the vector position  $\vec{r}$ . The term  $\begin{bmatrix} \frac{d^2\vec{r}}{dt^2} \times \frac{d\vec{p}}{dt} \end{bmatrix}$  gives: A) Force B) 0 C) Impulse D) Acceleration E) Velocity

7.

ŧ.

A 4 kg particle is subjected to a force acting in the x-direction,  $F_x = (3+0.5x)$  N. The work (in J) done by the force as the particle moves from x=0 to x=4 m is:

A) +20 B) -5 C) +16 D) 0 E) +5

- 2 -

### 8 & 9

### 8.

A 0.30 kg mass attached to the end of a string swings in a vertical circle (R = 1.6 m), as shown in **Figure 2**. At an instant when  $\theta$  = 50°, the tension in the string is 8.0 N. The magnitude of the resultant force (in N) on the mass at this instant is:

A) 5.6 B) 6.5 C) 6.1 D) 2.3 E) 5.1



### 9.

While the mass is passing the instant of the previous question ( $\theta = 50^{\circ}$ ) and moving forward, the speed when  $\theta = 51^{\circ}$  is:



### 11.

A 10 kg object is dropped from rest. After falling a distance of 50 m, it has a speed of 26 m/s. The work (in kJ) done by the air resistive (friction) force on the object during this fall is:

| A) $-1.3$ B) $-1.5$ C) $-1.8$ D) $-2.0$ E) | B) -1.5 C) -1.8 D) -2.0 E) -2 | .3 |
|--------------------------------------------|-------------------------------|----|
|--------------------------------------------|-------------------------------|----|

### 12.

A 0.28 kg ball has an elastic, head-on collision with a second ball that is initially at rest. The second ball moves off with half the original speed of the first ball. The mass (in kg) of the second ball is:



### Scanned by CamScanner

| PHYSICS DEPARTMENT<br>SPRING SEMESTER 2014/2015<br>PHYSICS 101 (2nd Exam)<br>(May. 3 <sup>rd</sup> , 2015)                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   | d Exam)<br><sup>rd</sup> , 2015) |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|--------|-------|----------|---------|--------|-------------------|----------------------------------|-----------|
| Student's Name (In Arabic):                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   |                                  |           |
| Useful Information: Some Results Are Rounded. CONSIDER (ACCELERATION<br>DUE TO CRAVITY) $a = 0.8 m/s^2$                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   |                                  |           |
| DUE 10 GRAVITY) $g = 9.8 \text{ m/s}$                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   |                                  |           |
| List your final answers in this table using Capital Letters.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   |                                  |           |
| Only the an                                                                                                                                                                                                                                                                                              | nswer<br>01.                                                                                                                                                                                                                                                                                                                        | in this | s table | will b    | e grad | led   | 07.      | 00.     | 00.    | 010.              | 011.                             | 012       |
| Final                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                   | Q2.     | E       | D         | B      | B     | B        | A       | D      | Q10:              | A                                | B         |
| Q1: An obj<br>true?<br>A) The acc<br>C) The vel<br>E) None of                                                                                                                                                                                                                                            | <ul> <li>Q1: An object is in a uniform circular motion. Which of the following statements must be true?</li> <li>A) The acceleration of the object is zero.</li> <li>B) The acceleration of the object is constant.</li> <li>C) The velocity of the object is constant.</li> <li>D) The speed of the object is constant.</li> </ul> |         |         |           |        |       |          |         |        | must be<br>stant. |                                  |           |
| 02. If F -                                                                                                                                                                                                                                                                                               | (23 0                                                                                                                                                                                                                                                                                                                               | (i) N   | is the  | oply f    |        |       |          | ) 100 m |        | hat is the        |                                  |           |
| $Q_2$ . If $\mathbf{r}$ –                                                                                                                                                                                                                                                                                | (5i - 8)                                                                                                                                                                                                                                                                                                                            | f the p | article | $(m/s^2)$ | 7      | ung o | II a 2.0 | )-kg m  | ass, w | nat is ti         | ie magi                          | intude of |
| A) 1.5                                                                                                                                                                                                                                                                                                   | (                                                                                                                                                                                                                                                                                                                                   | B       | ) 6.5   | (         |        | C) 4. | 3        | D)      | 9.4    |                   | E                                | ) 7.2     |
| Q3: A ball attached to the end of a string of length<br>of 4 m swings in a vertical circle as shown in the<br>figure. The tension (in N) in the string when $\theta = 35^{\circ}$<br>is:<br>A) 6.5 B) 10 C) 9.0<br>D) 7.5 E) 12                                                                          |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   |                                  |           |
| Q4: A particle moves along a circular path of radius 2.0 m. At an instant when the speed of<br>the particle is equal to 3.0 m/s and changing at the rate of $5.0 \text{ m/s}^2$ , what is the magnitude of<br>the total acceleration of the particle (in $\text{m/s}^2$ )?A) 7.5B) 5.0C) 5.4D) 6.7E) 4.5 |                                                                                                                                                                                                                                                                                                                                     |         |         |           |        |       |          |         |        |                   |                                  |           |

Q5: A box of mass 25.0 kg is placed on a rough horizontal surface. If the coefficient of<br/>kinetic friction between the surface and a box is 0.450, how much force is required to move<br/>the box at a constant speed across the surface (in N)?A) 17.0B) 110C) 140D) 240E) 270





General Physics-1 (0302101) / Second Exam

| Name (in Arabic): <mark>KEY ANSWER</mark> | Instructor: |
|-------------------------------------------|-------------|
| Registration No.:                         | Section:    |

## - Choose the closest correct answer and fill the Answer Table. (Use $g = 9.8 \text{ m/s}^2$ )

1. The tension in a string from which a 4.0-kg object is suspended in an elevator is equal to 44 N. What is the acceleration of the elevator?

**a.** 11 m/s<sup>2</sup> upward. **b.**  $1.2 \text{ m/s}^2$  downward. e. 2.4  $m/s^2$  downward. **d.** 10 m/s<sup>2</sup> upward.

- **c.** 1.2 m/s<sup>2</sup> upward.
- A book is placed on a chair. Then a videocassette is placed on the book. The floor exerts 2. a normal force
  - **c.** only on the chair. **a.** on all three. **b.** only on the book.
  - **d.** upwards on the chair and downwards on the book.

e. only on the objects that you have defined to be part of the system.

- A 4.0-kg block slides down a 35° incline at a constant speed when a 16-N force is applied 3. acting up and parallel to the incline. What is the coefficient of kinetic friction between the block and the surface of the incline?
  - **b.** 0.23 **a.** 0.20

- - **d.** 0.33 **e.** 0.41
- A 4.0-kg mass on the end of a string rotates in a circular motion on a horizontal 4. frictionless table. The mass has a constant speed of 2.0 m/s and the radius of the circle is 0.80 m. What is the magnitude of the resultant force acting on the mass?

**a.** 40 N **b.** 30 N **c.** 44 N **d.** 0 N e. 20 N

**c.** 0.26

A roller-coaster car has a mass of 500 kg when fully loaded 5. with passengers. The car passes over a hill of radius 15 m, as shown. At the top of the hill, the car has a speed of 8.0 m/s. What is the force of the track on the car at the top of the hill?



| <b>a.</b> 7.0 kN up.       | <b>b.</b> 2.2 kN down. | <b>c.</b> 2.8 kN down. |
|----------------------------|------------------------|------------------------|
| <mark>d.</mark> 2.8 kN up. | <b>e.</b> 2.2 kN up.   |                        |

6. A 30 kg child sitting 5.0 m from the center of a merry-go-round has a constant speed of 5.0 m/s. While she remains seated in the same spot and travels in a circle, the work the seat performs on her in one complete rotation is

**a.** zero. **b.** 150 J. **c.** 1500 J. **d.** 4700 J. **e.** 46,000 J.

7. A constant force of 15 N in the negative y direction acts on a particle as it moves from the origin to the point  $(3\mathbf{i} + 3\mathbf{j} - 1\mathbf{k})$  m. How much work is done by the given force during this displacement?

**a.** +30 J. **b.** -45 J. **c.** +45 J. **d.** -30 J. **e.** +75 J.

8. When a ball rises vertically to a height h and returns to its original point of projection, the work done by the gravitational force is

**a.** +2mgh. **b.** -mgh. **c.** +mgh. **d.** -2mgh. **e.** 0.

9. The only force acting on a 2.0-kg body moving along the x axis is given by  $F_X = (2x) N$ , where x is in m. If the velocity of the object at x = 0 is +3.0 m/s, how fast is it moving at x = 2.0 m?

**a.** 5.0 m/s. **b.** 3.6 m/s. **c.** 4.1 m/s. **d.** 5.8 m/s. **e.** 2.8 m/s.

10. Carts A and B have equal masses and travel equal distances on straight frictionless tracks while a constant force F is applied to A, and a constant force 2F is applied to B. The relative amounts of work done by the two forces are related by

**a.**  $W_A = 4 W_B$ . **b.**  $W_A = 2 W_B$ . **c.**  $W_A = W_B$ . **d.**  $W_B = 2 W_A$ . **e.**  $W_B = 4 W_A$ .

### - Answer Table -

Fill the appropriate square of the correct answer with (X).

| Q | a | b | c | d | e | Q  | a | b | c | d | e |
|---|---|---|---|---|---|----|---|---|---|---|---|
| 1 |   |   |   |   |   | 6  |   |   |   |   |   |
| 2 |   |   |   |   |   | 7  |   |   |   |   |   |
| 3 |   |   |   |   |   | 8  |   |   |   |   |   |
| 4 |   |   |   |   |   | 9  |   |   |   |   |   |
| 5 |   |   |   |   |   | 10 |   |   |   |   |   |

| University of Jordan               | Date: 31/12/2013         |
|------------------------------------|--------------------------|
| Faculty of Science                 | First Semester           |
| Department of Physics              | Time: 4:00 – 5:00 pm     |
| General P                          | nysics I – PHYS. 0302101 |
| Mal                                | keup Second Exam         |
| Name (In Arabic): <b>KEY ANSWE</b> | R Instructor:            |
| Student Number:                    | Section:                 |

Constants:  $g = 9.8 \text{ m/s}^2$ 

- Choose the closest correct answer and fill the Answer Table.

(Q1) A 0.5-kg mass attached to the end of a string swings in a vertical circle of radius equals 2.0 m. When the mass is at the lowest point on the circle, the speed of the mass is 12 m/s. The magnitude of the force (in N) of the string on the mass at this position is: (A) 31; (B) 36; (C) 41; (D) 46; (E) 57;

| (Q2) A particle moves in a circular path with constant | t speed. Its acceleration is: |
|--------------------------------------------------------|-------------------------------|
| (A) Zero; (B) constantly increasing;                   | (C) constant in direction ;   |
| ( <b>D</b> ) constant in magnitude and direction ;     | (E) constant in magnitude ;   |

(Q3) A 2.0-kg particle has an initial velocity of  $(5\hat{i}-4\hat{j}) m/s$ . Sometime later, its velocity is  $(7\hat{i}+3\hat{j}) m/s$ . How much work was done by the resultant force during this time interval, assuming no energy (in *J*) is lost in the process?

(A) 17; (B) 34; (C) 19; (D) 53; (E) 27;

(Q4) Equal amounts of work are performed on two bodies, A and B, initially at rest, and of masses M and 2M respectively. The relation between their speeds immediately after the work has been done on them is:

(A)  $v_B = \sqrt{2}v_A$ ; (B)  $v_B = 2 v_A$ ; (C)  $v_A = v_B$ ; (D)  $v_A = \sqrt{2}v_B$ ; (E)  $v_A = 2 v_B$ ;

(Q5) A pendulum is made by letting a 2.0-kg object swing at the end of a string that has a length of 1.5 m. The maximum angle the string makes with the vertical as the pendulum swings is  $30^{\circ}$ . If air resistance is neglected, the speed (in m/s) of the object at the lowest point in its trajectory is:

(A) 1.6; (B) 2.0; (C) 2.5; (D) 2.7; (E) 3.1;

(Q6) A 10-*N* force acts on a 2.0-*kg* object initially at rest. The rate at which the force is doing work (in *Watt*) at time t = 2.0 sec is:

(A) 900; (B) 200; (C) 500; (D) 400; (E) 100;

(Q7) In a given displacement of a particle, its kinetic energy increases by 25 J while its potential energy decreases by 10 J. The work (in J) of the non-conservative forces acting on the particle during this displacement is:

(A) - 15; (B) + 35; (C) + 15; (D) - 35; (E) + 55;

(Q8) A 3.0-kg ball with an initial velocity of  $(4 \ \hat{i} + 3 \ \hat{j})$  m/s collides with a wall and rebounds with a velocity of  $(-4 \ \hat{i} + 3 \ \hat{j})$  m/s. The impulse (in N.s) exerted on the ball by the wall is:

(A)  $-24\hat{1}$ ; (B)  $24\hat{1}$ ; (C)  $+18\hat{1}$ ; (D)  $-18\hat{1}$ ; (E)  $-16\hat{1}$ ;

(Q9) A 2.0-kg object moving with a velocity of 5.0 m/s in the positive x direction collides with and sticks to an 8.0-kg object initially at rest. How much kinetic energy (in J) is lost in this collision?

(A) 15; (B) 30; (C) 25; (D) 20; (E) 5;

(Q10) The turntable of a record player has an initial angular velocity of 8.0 rad/s at the moment when it is turned off. The turntable comes to rest 2.5 s after being turned off. Through how many radians does the turntable rotate after being turned off? Assume constant angular acceleration.

(A) 12; (B) 8.0; (C) 10; (D) 16; (E) 6.8;

(Q11) Two points A and B are located on a disk that rotates about its axis. Point A is *four* times as far from the axis as point B. If the tangential speed of point B is equal to v, then the tangential speed of point A is:

(A) v; (B) 4 v; (C) 3 v; (D) 2 v; (E) 5 v;

(Q12) Two particles  $(m_1 = 0.20 \ kg, m_2 = 0.30 \ kg)$  are positioned at the ends of a 2.0-*m* long rod of negligible mass. The moment of inertia (in  $kg.m^2$ ) of this system about an axis perpendicular to the rod and through the center of mass is: (A) 0.38; (B) 0.75; (C) 1.2; (D) 0.48; (E) 1.7;

| 0.38; | <b>(B)</b> 0.75 ; | (C) 1.2; | ( <b>D</b> ) 0.48 ; | (E) 1.7 ; |
|-------|-------------------|----------|---------------------|-----------|
|       |                   |          |                     |           |

-Answer Table-Fill the appropriate square of the correct answer with (X).

| Q's | A | B | С | D | Ε | Q's | Α | B | С | D | E |
|-----|---|---|---|---|---|-----|---|---|---|---|---|
| 1   |   |   |   |   |   | 7   |   |   |   |   |   |
| 2   |   |   |   |   |   | 8   |   |   |   |   |   |
| 3   |   |   |   |   |   | 9   |   |   |   |   |   |
| 4   |   |   |   |   |   | 10  |   |   |   |   |   |
| 5   |   |   |   |   |   | 11  |   |   |   |   |   |
| 6   |   |   |   |   |   | 12  |   |   |   |   |   |

University of Jordan Faculty of Science Department of Physics Date: 14/12/2013 First Semester Time: 4:00 – 5:00 pm

General Physics I – PHYS. 0302101

Second Exam

Name (In Arabic): **KEY ANSWER** Student Number: Instructor: Section:

### Constants: $g = 9.8 \text{ m/s}^2$

### \* Choose the closest correct answer and fill the Answer Table.

(Q1) An airplane moves 100 m/s as it travels around a vertical circular loop which has a 1.0-km radius. The magnitude of the resultant force (in kN) on the 70-kg pilot of this plane at the bottom of this loop is:

(A) 0.70; (B) 1.37; (C) 2.1; (D) 1.3; (E) 1.58;

(Q2) An object (a) of mass m flies in a horizontal circle of radius R at a speed v. Another object (b) has the same mass m and flies in a horizontal circle of radius R at a speed of v/2. Then the ratio of the centripetal acceleration of the object (a) to that of object (b) is: (A) 0.25; (B) 0.5; (C) 1.0; (D) 2.0; (E) 4.0;

(Q3) Single conservative force acting on an object moving along the x axis is given by:  $F_x = (14 \ x - 3 \ x^2) N$ , where x is in m. The Change in potential energy  $\Delta U$  (in J) done by this force as the object moves from  $x = -1 \ m$  to  $x = +2 \ m$  is :

(A) -20.1; (B) +38.0; (C) -12.0; (D) +16.0; (E) -28.0;

(Q4) A 12-kg block on a horizontal frictionless surface is attached to a light spring (force constant = 700 N/m). The block is initially at rest at its equilibrium position when a force of magnitude 80 N acting parallel to the surface is applied to the block. The speed (in m/s) of the block when it is 13 cm from its equilibrium position is:

(A) 0.55; (B) 0.68; (C) 0.78; (D) 0.86; (E) 0.90;

(Q5) A constant force of 10 N in the negative y direction acts on a particle as it moves from the origin to the point  $(3\hat{i}+3\hat{j}-1\hat{k})$  m. The work (in J) done by the given force during this displacement is:

(A) -45; (B) -30; (C) -60; (D) +30; (E) +12;

(Q6) A 2.0-kg block slides down a plane (inclined at  $40^{\circ}$  with the horizontal) at a constant speed of 5.0 m/s. The Power (in W) at which the gravitational force doing on the block is:

(A) zero; (B) - 55.2; (C) + 78.7; (D) + 94.5; (E) + 63.0;

(Q7) Three particles are placed in the xy plane. A 30 g particle is located at (3, 4) m, a 40 g particle is located at (-2, -2) m. Where a 20 g particle must be placed (in m) so that the center of mass of the three-particle system is at the Origin?

(A) (-0.5, -2.0); (B) (1, 0); (C) (2.5, 2); (D) (-3, -14); (E) (0, -2);

 $(\mathbf{Q8})$  A 2.0-kg object is moving along the x-axis. Its speed increases from 30 m/s to 40 m/s during a 5.0-s time interval. The magnitude of the average total force (in N) acting on the object during this time interval is:

(A) 2.0; (B) 3.0; (C) 4.0; (D) 5.0; (E) 6.0;

(Q9) A ball falls to the ground from height H and bounces to height h. Momentum is conserved in the ball-earth system

(A) only if h > H; (B) only if h = 0; (C) only if h = H; (E) only if  $h \ge H$ ;

(Q10) At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration has an angular velocity of 2.0 *rad/s*. Two seconds later it has turned through 5.0 complete revolutions. The angular acceleration (*in rad/s*<sup>2</sup>) of this wheel is:

(A) 15.7; (B) 13.7; (C) 9.7; (D) 7.7; (E) 5.7;

(Q11) A wheel rotating about a fixed axis has an angular position given by  $\theta = 3 - 2t^3$ , where  $\theta$  is measured in radians and t in seconds. The angular velocity (in rad/s) of the wheel at t = 2.0 s is:

(A) -24; (B) -38; (C) -54; (D) -62; (E) -96;

**Q12)** A disk with a radius of 2.0 *m* whose moment of inertia is 50  $kg.m^2$  rotates uniformly by angular acceleration of 6.0  $rad/s^2$ . The net force (in *N*) acting tangent to the circumference of this disk is: (A) 75; (B) 100; (C) 115; (D) 135; (E) 150;

Answer Table Fill the appropriate square of the correct answer with (X).

| Q's | Α | B | С | D | Ε | Q's | Α | B | С | D | Ε |
|-----|---|---|---|---|---|-----|---|---|---|---|---|
| 1   |   |   |   |   |   | 7   |   |   |   |   |   |
| 2   |   |   |   |   |   | 8   |   |   |   |   |   |
| 3   |   |   |   |   |   | 9   |   |   |   |   |   |
| 4   |   |   |   |   |   | 10  |   |   |   |   |   |
| 5   |   |   |   |   |   | 11  |   |   |   |   |   |
| 6   |   |   |   |   |   | 12  |   |   |   |   |   |

| University of Jordan      | n                        | Date: 31/12/2013     |
|---------------------------|--------------------------|----------------------|
| Faculty of Science        | <b>First Semester</b>    |                      |
| <b>Department of Phys</b> | sics                     | Time: 4:00 – 5:00 pm |
|                           | General Physics I – PHYS | . 0302101            |
|                           | Makeup Second Ex         | am                   |
| Name (In Arabic):         | <b>KEY ANSWER</b>        | Instructor:          |
| Student Number:           |                          | Section:             |

Constants:  $g = 9.8 \text{ m/s}^2$ 

- Choose the closest correct answer and fill the Answer Table.

(Q1) A 0.5-kg mass attached to the end of a string swings in a vertical circle of radius equals 2.0 m. When the mass is at the lowest point on the circle, the speed of the mass is 12 m/s. The magnitude of the force (in N) of the string on the mass at this position is:
(A) 31; (B) 36; (C) 41; (D) 46; (E) 57;
(Q2) A particle moves in a circular path with constant speed. Its acceleration is:
(A) Zero; (B) constantly increasing; (C) constant in direction;
(D) constant in magnitude and direction; (E) constant in magnitude;

(Q3) A 2.0-kg particle has an initial velocity of  $(5\hat{i}-4\hat{j})$  m/s. Sometime later, its velocity is  $(7\hat{i}+3\hat{j})$  m/s. How much work was done by the resultant force during this time interval,

 assuming no energy (in J) is lost in the process?

 (A) 17;
 (B) 34;
 (C) 19;
 (D) 53;
 (E) 27;

(Q4) Equal amounts of work are performed on two bodies, A and B, initially at rest, and of masses M and 2M respectively. The relation between their speeds immediately after the work has been done on them is:

(A)  $v_B = \sqrt{2}v_A$ ; (B)  $v_B = 2 v_A$ ; (C)  $v_A = v_B$ ; (D)  $v_A = \sqrt{2}v_B$ ; (E)  $v_A = 2 v_B$ ;

(Q5) A pendulum is made by letting a 2.0-kg object swing at the end of a string that has a length of 1.5 m. The maximum angle the string makes with the vertical as the pendulum swings is  $30^{\circ}$ . If air resistance is neglected, the speed (in m/s) of the object at the lowest point in its trajectory is:

(A) 1.6; (B) 2.0; (C) 2.5; (D) 2.7; (E) 3.1;

(Q6) A 10-N force acts on a 2.0-kg object initially at rest. The rate at which the force is doing work (in *Watt*) at time t = 2.0 sec is:

(A) 900; (B) 200; (C) 500; (D) 400; (E) 100;

(Q7) In a given displacement of a particle, its kinetic energy increases by 25 J while its potential energy decreases by 10 J. The work (in J) of the non-conservative forces acting on the particle during this displacement is:

(A) - 15; (B) + 35; (C) + 15; (D) - 35; (E) + 55;

(Q8) A 3.0-kg ball with an initial velocity of  $(4 \ \hat{i} + 3 \ \hat{j})$  m/s collides with a wall and rebounds with a velocity of  $(-4 \ \hat{i} + 3 \ \hat{j})$  m/s. The impulse (in N.s) exerted on the ball by the wall is:

(A)  $-24\hat{1}$ ; (B)  $24\hat{1}$ ; (C)  $+18\hat{j}$ ; (D)  $-18\hat{j}$ ; (E)  $-16\hat{1}$ ;

(Q9) A 2.0-kg object moving with a velocity of 5.0 m/s in the positive x direction collides with and sticks to an 8.0-kg object initially at rest. How much kinetic energy (in J) is lost in this collision?

(A) 15; (B) 30; (C) 25; (D) 20; (E) 5;

(Q10) The turntable of a record player has an initial angular velocity of 8.0 rad/s at the moment when it is turned off. The turntable comes to rest 2.5 s after being turned off. Through how many radians does the turntable rotate after being turned off? Assume constant angular acceleration.

(A) 12; (B) 8.0; (C) 10; (D) 16; (E) 6.8;

(Q11) Two points A and B are located on a disk that rotates about its axis. Point A is *four* times as far from the axis as point B. If the tangential speed of point B is equal to v, then the tangential speed of point A is:

(A) v; (B) 4v; (C) 3v; (D) 2v; (E) 5v;

(Q12) Two particles  $(m_1 = 0.20 \ kg, m_2 = 0.30 \ kg)$  are positioned at the ends of a 2.0-*m* long rod of negligible mass. The moment of inertia (in  $kg.m^2$ ) of this system about an axis perpendicular to the rod and through the center of mass is: (A) 0.38; (B) 0.75; (C) 1.2; (D) 0.48; (E) 1.7;

|          | -Answer Table-                           |        |            |
|----------|------------------------------------------|--------|------------|
| Fill the | appropriate square of the correct answer | with ( | <b>X).</b> |

| Q's | Α | В | С | D | Ε | Q's | Α | B | С | D | Ε |
|-----|---|---|---|---|---|-----|---|---|---|---|---|
| 1   |   |   |   |   |   | 7   |   |   |   |   |   |
| 2   |   |   |   |   |   | 8   |   |   |   |   |   |
| 3   |   |   |   |   |   | 9   |   |   |   |   |   |
| 4   |   |   |   |   |   | 10  |   |   |   |   |   |
| 5   |   |   |   |   |   | 11  |   |   |   |   |   |
| 6   |   |   |   |   |   | 12  |   |   |   |   |   |



# Physics 1 Second Exam



Q1: A car (m = 2234 kg) and it's velocity is 25 m/s collide with a tree, it needs 0.26 seconds to stopped them; Find force applied from tree on car ... Q28- An object start moving in a circular path from rest, after (10.5) sec., the object has a rate with (12000 rev/min), Find its angular acceleration ... Q38-An object moves in a circular path, the angular displacement is given with (3-213); Find angular acceleration after 1 sec. Q48-A ball (m=22kg) is thrown to a wall with velocity (31 m/s) and it rebounds after (0.11 sec) with velocity (18 m/s) then & J-ind the force applied QDs An object is moving from rest and ofter 10 sec, it has an angular velocity (50 rad/s), if its moment of Inartia (I = 9 kg.m2) ... Find it's Gorque ... Q6=-If an object is moving in constant velocity, on a circular path which radius (r=0.01m), and it's angular velocity (5 rev./sec.) then in find acceleration ... OPTS- Find I (I for one object = ML2) ... 0.8 2m 2m 0.3



$$4# Sol. 8 &= -Q^{2} = mV$$

$$= 7 (82-PG) = 562 + 633$$

$$P = \sqrt{56^{2} + 63^{2}} = 84.3 \text{ kg. m}$$

$$4# Solu.9 = F = Mv^{2} \qquad | V = r + w$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 2 \text{ rad / sec.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 20 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / s^{2}}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} = 1300 \text{ rad / scc.}$$

$$W = \frac{10}{5} \text{ rad / scc.}$$

$$W = \frac{10}{5} \text{ rad / scc.}$$

$$W = \frac{10}{5} \text{ rad / scc.}$$

University of Jordan Physics Department Date: 9/12/2000

First Semester 2000/2001 Time: 8.30 - 9.30

GENERAL PHYSICS 1:(0302101) SECOND EXAM

NOTE: Acceleration due to gravity, g=9.8 m/s<sup>2</sup> ... الرقم الجامعي: الاسم باللغة العزبية: hung that at 1: A 15kg block is placed on a rengh D horizontal surface of u . =0.3. The block is kept in equilibrium as 1.5.K shown in the figure. The maximum hanging mass for which the system will remain in m equilibrium is: (b) 25.5 . (c) 42.1 (d) 76.4 (c) 4.3 (a) 2.6 A conical pendulum is formed 2) by attaching a small ball to a 1.2m string. The ball swings with uniform velocity around a horizontal circle of radius 30cm as shown in the figure. The velocity (m.s") of the ball is: m 9 (c) 0.87 (d) 3.4 (e) 0.52 (a) 11.5 (b) 0.72 A 4kg particle experiences a net force along the x-axis given by F=3x2 - 6, where F is 3) in Newton and x is in meters. If the particle starts to move from rest at x=0, the power (w) delivered to the particle when it is at x=4m is: (a) 168 (b) 150 (d) 345 (c) 188 (c) 476 A force F=(5y2 N.m2) j is applied to a particle. The work done (J) by the force on the 3) particle as it moves along a straight line from (2, 3) to (5, 5) is: (b) 20 (c) 1466 (d) 163 (e) 200 (a) 527 Power is (W) 2. This graph represents the power developed by a motor. The energy (J) 20 expended by the motor in . time interval t=10s to t=30s is: 10 (a) 200 (b) 100 (c) 0.5 (e) 500(d) 600

10

40

Cime [

30

- A 2.2 kg block placed on a frictionless 20° inclined plane. A force of 16 N acting parallel to the incline as shown the figure. The acceleration (m/s<sup>2</sup>) of the block is:
  (a) 2.0 down the incline (b) 5.3 up the incline (c) 2.0 up the incline (d) 3.9 down the incline fe) 3.9 up the incline
  An object attached to the end of a string swings
  - in a vertical circle (بتحرك في دلتر: عمردية) of radius 1.2 m, as shown in the figure. At an instant when  $\theta=30^\circ$ , the speed of the object is 6.0 m/s and the tension in the string is 38 N. The mass (kg) of the object is: (a) 2.0 (b) 1.5 (c) 1.8 (d) 1.3 (e) 0.80
- A block of mass 5.0 kg is moving with 3.0 m/s on a rough horizontal surface (coefficient of kinetic friction = 0.40) when it collides with a spring, as shown in the figure. The spring is compressed a maximum distance of 0.20 m. The spring constant (N/m) is:

   (a) 1020
   (b) 1804
   (c) 2196
   (d) 361
   (e) 929



θ

- 9) A 1.2-kg mass is projected down a rough circular track (radius = 2.0 m) as shown below. The speed of the mass at point A is 3.5 m/s, and at point B, it is 6.0 m/s. How much work is done on the mass between A and B by the force of friction? (a) -9.3 J (b) -7.3 J (c) -8.1 J (d) -10.8 J (c) -24 J
- A 4 kg mass is placed on a rough horizontal surface. Two forces in the same plane act on the mass as shown in the figure.

The magnitude of the force F(N) that enable (تسكند من) the 4kg mass to accelerate with (3m.s<sup>-2</sup>) j is:

(a) 13.4 (b) 7.5 (c) 6.7 (d) 4.8 (c) 10.0

| Q.No. | A     | B     | C      | D       | e    |
|-------|-------|-------|--------|---------|------|
|       | 14.24 | 110   | No.    | 1.1.1   | 1.00 |
| 2     |       | 19.5  | 1.1.1  | 1.1.1.1 | 1.1  |
| 3     | 1.00  |       | 1.1    | 1.1.1   | 1    |
| 4     | 2.10  | 175   | 94.10  | 1.8.10  | 43   |
| _ 5   |       | 12    |        | 1       |      |
| 6     |       | 1.200 | 6 Beck | 1.2.3   | 1.45 |
| 7     | 1.1.1 | 1     | C      | 14      | 1.   |
| 8     |       |       | K. 2.) | 1       | 1    |
| 9     | 1.25  | 12    | 1.00   | 1.1     |      |
| 10    |       | 1.1   | 1.1    | 1027    | 5.00 |

### Answer Table

| - |                  | 5                                                 | ٩                                                     | S                                   |            | ij                                |         | -                                        | 6  | 5 4 |   | 12 - | - | Notes: desk. <u>C</u><br>Be sure                        | 1.1         |
|---|------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------|------------|-----------------------------------|---------|------------------------------------------|----|-----|---|------|---|---------------------------------------------------------|-------------|
|   | rcleas<br>(A) 2( | A spr<br>horizo                                   | A cert<br>the lov<br>(in cm                           | A forc<br>it from                   | (A) 0.1    | An ob<br>the ob                   | (A) 2.8 | A parti<br>directe<br>magnit             |    | 2   |   |      | > | Furn o<br>alculat<br>to fill t                          | Some        |
|   | e will the       | ing (k =<br>intal sur<br>essed (1                 | ain pend<br>west poi<br>) above                       | e of mag<br>1 the poin              | 8 upware   | ject of m<br>ject is eq           | ~       | cle of m<br>d east, a<br>ude of th       |    | //  | 8 | 9    | B | ff your<br>ors can<br>he box                            | helpful     |
|   | (B) 3            | = 600 N/ı<br>face. The<br>مضغود                   | lulum con<br>nt in the s<br>this lowes<br>(B) 2(      | gnitude 20<br>nt (2m, -11<br>(B) 40 | 1 (B) 0.8  | ual to 38 1                       | (B) 5.1 | ass (11 kg<br>and the o<br>re particle   |    |     |   |      | C | cell pho<br>not be shi<br>below w                       | information |
|   |                  | n) is plac<br>upper end<br>ring. The<br>ring cm)? | sists of a 1<br>wing the t<br>tt point wil            | N directed<br>m) to the p           | 3 downwar  | ; is placed<br>N. What is         |         | g) is subje<br>ther force<br>s accelera  |    |     |   |      | D | ne and p<br>ared. You<br>ith your f                     | 10          |
|   | (C) 10           | ed in a<br>d is comp<br>system is                 | .5-kg material constant in the mass                   | in the point (4m, (C) 30            | -d (C) 1.3 | on top of<br>the accele           | (C) 7.5 | ect to two<br>has a m<br>tion (in m      |    |     |   |      | Π | ut it out<br>ut it out<br>u have <u>75</u><br>inal ansy |             |
|   |                  | vertical<br>pressed<br>then re                    | ss swing<br>the strii<br>s rise du                    | sitive x<br>-3m). W                 | upward     | an eleveration (                  | 1)      | forces<br>nagnitud<br>/s <sup>2</sup> )? | 12 | 10  | 9 | 7    |   | of sig<br>minu<br>vers be                               |             |
|   | (D) 15           | position<br>20 cm, <i>a</i><br>cleased fr         | ging at the<br>ng is equa<br>ring its or<br>(D) 28    | direction<br>Vhat is the<br>(D) 80  | (D) 1.3 d  | ator floor<br>of the elev         | 0) 3.7  | such that<br>le of 39                    | 2  |     |   |      | λ | fore the                                                | Stine       |
|   |                  | with its<br>and a 4.0<br>om rest.                 | e end of a<br>al to 20 N<br>scillation                | is acting<br>work do                | ownward    | . If the fo<br>vator (in n        | (1      | one force<br>N directe                   |    |     | 1 | 8    | в | your ca<br>mplete y<br>end of th                        | - 0 8 m/    |
|   | (E) 25           | lower en<br>kg block<br>How far a                 | 1 string (le<br>1. To what<br>2.<br>3.<br>C<br>(E) 17 | on a partic<br>ne by the<br>(E) 70  | E)0.3 de   | rce exerte<br>n/s <sup>2</sup> )? | E) 12   | e has a m<br>ed east-n                   |    |     |   | 11   | C | lculator<br>/our exar<br>ne exam.                       | 2           |
|   |                  | d suppor<br>is place<br>above the                 | mgth = 2.<br>maximu                                   | cle and di<br>force (in             | ownward    | d by the                          |         | agnitude<br>orth, wha                    |    |     |   |      | D | on your<br>n.                                           |             |
|   |                  | ted by<br>ed on the<br>point o                    | .0 m). A<br>m heigh                                   | splacing<br>J)?                     |            | floor on                          | -       | of 21 N<br>at is the                     | 1  | 2   |   |      | E | own                                                     |             |

| 2 | 12. A how of mass $(\mu_x = 0.6, \mu_y = 0.4)$ . If a main friction are $(\mu_x = 0.6, \mu_y = 0.4)$ . If a main what would be the magnitude of the friction (A) 210 (B) 247 (C) | (A) 2) (B) 19.7 (C) 32.2 (D | <ul> <li>(A) 10.1</li> <li>(B) 9.7</li> <li>(C) 8.1</li> <li>(D) 11. What is the magnitude of the tension in the in the figure shown? Assume the surface is 1</li> </ul> | <ol> <li>A roller-coaster car has a mass of 400 kg<br/>passengers (-45). At the bottom of a circula<br/>shown in the figure) the car has a speed<br/>magnitude of the force the track exerts on the<br/>dip (m/kN)?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (A) 1000 (B) 1392 (C) 12 | <ul> <li>(A) 10.1</li> <li>(B) 14.7</li> <li>(C) 10.1</li> <li>(B) 14.7</li> <li>(C) 10.1</li> <li>(C) 140.7</li> <li>(C) 140.7</li></ul> | x = 4.0 m, given that the particle started motion | (A)-63 (B)-47 (C)-5<br>$\bigcirc$ A particle of mass (1.5 kg) is moving<br>$a = (6.0x + 5.0) m/s^2$ , What is the speed | rate is the friction force doing work on the blo | A 6.0-kg block slides along a horizontal surf              | (A) $\vec{F} = -12\vec{i} - 3\vec{j}$ (B) $\vec{F} = -6\vec{j}$ (C) $\vec{F} =$ | <ol> <li>A potential energy function for a two-dimens<br/>that acts at the point (1, 1).</li> </ol> |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
|   | tried to push the box by applying a force of<br>1 force (in N)?<br>220 (D) 165 (E) 230                                                                                           | 342.9 (E) 56.5              | 13.1 E) 6.5)<br>(in N) if M= 2.0 kg                                                                                                                                      | when fully loaded with<br>ar dip of radius 40 m (s<br>of 16 m/s. What is the<br>e car at the bottom of the<br>transformed to the transformed to the<br>transformed to the transformed to the transformed to the<br>transformed to the transformed to the transforme | 00 (D) 1310 (E) 1022     | a) (0) (5)<br>m/s as it travels around a vertical circular loop<br>of the net force causing the contripctal acceleration<br>of the net force causing the contripctal acceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on from origin with initial velocity 2.0 m/s?     | (D)+25 (E)-55<br>g on the x-axis with an acceleration gi<br>d of the particle in (m/s) at the moment it                 | ock (in W) at an instant when its speed is 4.0 n | face. If $\mu_{\rm F} = 0.20$ for the block and surface, i | $-24\hat{i}-12\hat{j}$ (D) $\hat{F} = -6\hat{i}-3\hat{j}$ (E) $\tilde{F} = -6$  | sional force is of the form $U = 3x^2y$ . Find the                                                  |  |

| $DU = \frac{DX}{Dt} = \frac{1-3}{4-3} = \frac{2}{5}$                                        | A) $25^{\circ}$ B) $65^{\circ}$ C<br>Q4: The figure shows the position of an object as a function of time. What is the average velocity (in m/s) of the object during the time interval from time $t = 3.0$ s and time $t = 9.0$ s. | How far (in km) the airplane ends up from its<br>A 79 B) 81 C<br>Q3: What is the angle between the vector $\vec{A}$ =          | A) $\overline{M} = \overline{S} - \overline{N}$<br>(B) $\overline{S} = \overline{M} - \overline{N}$<br>(C) $\overline{M} = \overline{N} - \overline{S}$<br>(D) $\overline{M} + \overline{S} + \overline{N} = 0$<br>(E) $\overline{N} = \overline{S} + \overline{M}$<br>(Q2: An airplane undergoes the following displaced on the following displace | List your final answers in the<br>Only the answer in<br>Prinal<br>Answer<br>Q1: For the vectors shown in the figure, exp                                                                  | $\label{eq:GRAVITY} \begin{array}{l} \mbox{Some Results Are Rounded.} \\ GRAVITY) \ g=9.8 \ m/s^2 \end{array}$ |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | C) 90° (b) 115° E) 155°<br>x(m)                                                                                                                                                                                                     | ath. Finally, it flies 100 km 30° north of west.<br>s starting point.<br>C) 73 D) 86 E) 93<br>= +3i - 2j - 3k and the +y-axis? | $\frac{1}{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is table using Capital Letters<br>this table will be graded<br>$Q_5: Q_6: Q_7: Q_8: Q_9: Q_1$<br>$V Q R R Q C Q_1$<br>ress vector $\vec{S}$ in terms of vectors $\vec{M}$ and $\vec{N}$ . | CONSIDER (ACCELERATION DUE TO                                                                                  |



 $-(1.0 \text{ m/s}^2)$  /2. Determine the acceleration (in m/s<sup>2</sup>) of the object at time t = 5.00 s

| <br>0-7.00  |
|-------------|
| <br>B)-2.00 |
| <br>C) 0.00 |
| D) 2.00     |
| <br>E) 7.00 |

Q6: A car starts from rest and accelerates with a constant acceleration of 1.00 m/s<sup>2</sup> for t = 3.00 s. The car then continues for 5.00 s at constant velocity. How far (in m) has the car traveled from its starting point?

| ********************* | A) 4.50 |
|-----------------------|---------|
|                       | B) 9.00 |
|                       | C) 15.0 |
|                       | (D)19.5 |
|                       | E) 25.0 |

ground and experiences negligible air resistance. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 28.5 m/s. The velocity of the ball (in m/s) when it is 39 m above the ground is: Q7: A ball is thrown upward at time t = 0.00 s, from a point on a roof 70 m above the

|    | 10  | 2            |
|----|-----|--------------|
|    | 10  | -            |
|    | 40  | SIG          |
|    | 80  | 4            |
|    | 10  | 0            |
|    | 10  |              |
|    | 89  |              |
|    | ٤.  |              |
|    | 20  |              |
|    | 10  |              |
|    | 10  |              |
|    | 10  |              |
|    | 1   |              |
|    | ι.  |              |
|    | 100 |              |
|    | 22  | 500          |
|    | ιe  | <b>(</b> )   |
|    | 12  | ~            |
|    | 180 | SLC          |
|    | 125 | w            |
|    |     | 00           |
|    | 87  |              |
|    | 10  |              |
|    | 50  |              |
|    | 10. |              |
|    |     |              |
|    | 100 | 0            |
| 20 | 100 | 53           |
|    | 33  | 100          |
|    | 100 | 8            |
|    | 88  | ~            |
|    | 80  |              |
|    | 10  |              |
|    | 12  |              |
|    | 10  |              |
|    | 80  |              |
|    | 10  |              |
|    | 20  |              |
|    | 88  |              |
|    | 88  |              |
|    | 10  |              |
|    | 80  |              |
|    | 10  | 9 <b>6</b> 1 |
|    | 10  | 2            |
|    | 18  |              |
| ÷  | 80  | 10           |
|    | 1   | ~            |
|    | 20  |              |
|    | х.  |              |
|    |     |              |
|    | 81  |              |
|    |     |              |
|    | 88  |              |
|    |     |              |
|    | 20  |              |
|    | 15  |              |
|    |     |              |
|    |     |              |
|    | 68  | -            |
|    |     | (1)          |
|    |     | -            |
| 3  |     | 100          |
|    |     | N            |
| 20 |     | 0            |
|    |     |              |

Q8: An object has a position given by t = [2.0 m + (5.00 m/s)t] + [3.0 m - (2.00 m/st)t]where quantities are in SI units. What is the speed (in m/s) of the object at time  $t = 2.00 \text{ s}^2$ 

| 1000         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100          | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.00        | Contract of the local division of the local  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.80         | S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 040          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 220          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 62         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 24         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 2.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 24         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 51         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 181          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 51         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 54         | Contraction of the local division of the loc |
| 100          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 81         | ALC: NOT THE OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 81         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -8           | State of Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | - CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 100 A 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 2          | 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | 100 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 18         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 12         | - here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12           | 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | All the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - 1 <b>-</b> | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | COLUMN TWO IS NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\ge Q9$ : A child throws a ball with an initial speed of 8.00 m/s at an angle of 40.0° above the horizontal. The ball leaves her hand 1.00 m above the ground and experience negligible air resistance. How far (in m) from where the child is standing does the ball hit the ground?

|   | 10  | P.   |   |
|---|-----|------|---|
|   | 15  | 1    |   |
|   |     | 100  |   |
|   | ٤.  | 6    |   |
|   | :   | -    |   |
|   |     |      |   |
|   | 8.  |      |   |
|   | 1   |      |   |
|   | 5.  |      |   |
|   | 81  |      |   |
|   | ٩.  |      |   |
|   | ٤.  |      |   |
|   | 1   |      |   |
|   | ε.  |      |   |
|   | 1   |      |   |
|   | ٤.  | B    |   |
|   | 1   | 0    |   |
|   | а.  | S.   |   |
|   | а.  | 00   |   |
|   | 4   | ö    |   |
|   | 3   |      |   |
|   | а.  |      |   |
|   | а.  |      |   |
|   | 41  |      |   |
|   | 8   |      |   |
|   | 8   |      |   |
|   | 83  |      |   |
|   | 12  |      |   |
| 0 | 12  |      |   |
|   | 1   |      |   |
|   | 13  | 0    |   |
| 9 |     | 3    |   |
|   | 12  | in   |   |
| 5 | 12  | -    |   |
| • | 18  | No.  |   |
|   | - 8 |      |   |
|   | 1   |      |   |
|   | 12  |      |   |
|   | 18  |      |   |
|   | 18  | 2    | 5 |
| 2 | 82  | (m   | ٥ |
| ÷ | 83  | 10   | 8 |
|   | 18  | 6    | ł |
| 2 | 28  | 5    |   |
|   | 81  | 5    |   |
| 2 | 2   | 6    |   |
|   | 1   |      |   |
|   | 18  |      |   |
|   | 12  |      |   |
|   | 12  |      |   |
|   | 18  |      |   |
|   | R   |      |   |
| 8 |     |      |   |
| 1 | 18  |      |   |
|   | R   |      |   |
|   | 1   |      |   |
|   | 1   | TT . |   |
| 1 | 1   | 0    |   |
|   | 1   | -    |   |
|   | E.  | -    |   |
|   | 1   | 4    |   |
|   | 1   | 5    |   |
|   | 120 |      |   |

