

Course Number: 0302101

<u>Course Title:</u> Introductory Physics 1 <u>Prerequisites and/or Corequisites:</u> None

Textbook: "University Physics with Modern Physics".

H. D. Young and R. A. Freedman

15th edition (Pearson, 2020)

Recommended References:

 \geq

- 1. R. A. Serway and J. W. Jewett Jr., "Physics for Scientists and Engineers with Modern Physics", 9th edition, (Thomson Learning, Belmont, CA, USA, 2014).
- 2. D. Halliday, R. Resnick, and J. Walker, "Extended Principles of Physics", 9th Edition (John Wiley & Sons, Inc., 2011).
- 3. W. Bauer, G. D. Westfall, "University Physics with Modern Physics", (McGraw Hill, 2011).
- 4. J. S. Walker, "Physics" Fourth Edition, (Addison Wesley, 2010).
- 5. Giancoli, "Physics for Scientists & Engineers with Modern Physics", Fourth Edition, (Pearson Education, 2009).
- 6. Ohanian and Market, "Physics for Engineers and Scientists", Extended Third Edition, (W. W. Norton & Company, 2007).

Course Contents:

Chapter	Contents
1	Units, Physical Quantities and Vectors 1.7 Vectors and Vector Addition
	1.8 Components of Vectors1.9 Unit Vectors
	1.10 Products of Vectors
2	Motion Along a Straight Line
	2.1 Displacement, Time, Average Velocity
	2.2 Instantaneous Velocity
	2.3 Average and instantaneous Acceleration
	2.4 Motion with Constant Acceleration
	2.5 Freely Fulling Objects 2.6 Velocity and Position by Integration
	Antion in Two or Three Dimensions
3	2.1 Desition and Velocity Vectors
	3.1 Position und verocity vectors
	3.3 Projectile Mation
	3.4 Motion in a Circle
	Newton's Laws of Motion
	4.1 Force and Interactions
	4.2 Newton's First Law
4	4.3 Newton's Second Law
	4.4 Mass and Weight
	4.5 Newton's Third Law
	4.6 Free body Diagrams
13	13.1 Newton's Law of Gravitation
	13.2 Weight
	Applying Newton's Laws
	5.1 Using Newton's First Law: Particles in Equilibrium
5	5.2 Using Newton's Second Law: Dynamics of Particles
	5.3 Friction Forces
	5.4 Dynamics of Circular Motion
	5.5 The Fundamental Forces of Nature

	Work and Kinetic Energy			
6	6.1 Work			
	6.2 Kinetic Energy and the Work-Energy Theorem			
	6.3 Work and Energy with Varying Forces			
	6.4 Power			
7	Potential Energy and Energy Conservation			
	7.1 Gravitational Potential Energy			
	7.2 Elastic Potential Energy			
	7.3 Conservative and Non-Conservative Forces			
	7.4 Force and Potential Energy			
8	Momentum, Impulse, and Collisions			
	8.1 Momentum and Impulse			
	8.2 Conservation of Momentum			
	8.3 Momentum Conservation and Collisions			
	8.4 Elastic Collisions			
	8.5 Centre of Mass (No Integrals)			
	Rotation of Rigid Bodies			
	9.1 Angular Velocity and Acceleration			
9	9.2 Rotation with Constant Angular Acceleration			
5	9.3 Relating Linear and Angular Kinematics			
	9.4 Energy in Rotational Motion			
	9.5 Parallel-Axis Theorem			
	Dynamics of Rotational Motion			
	10.1 Torque			
10	10.2 Torque and Angular Acceleration for a Rigid Body			
	10.4 Work and Power in Rotational Motion			
	10.5 Angular Momentum			
	10.6 Conservation of Angular Momentum			
11	Equilibrium and Elasticity (<u>self-reading</u>)			
	11.1 Conditions for Equilibrium			
	11.2 Centre of Gravity			
	11.3 Solving Rigid-Body Equilibrium Problems			

Course Coordinator:

• Dr. Moneeb Shatnawi E-mail: <u>moneeb.shatnawi@ju.edu.jo</u>

<u>Course web site:</u> Students of all sections of physics 101 are required to frequently check the announcements written at the course e-learning web site: <u>https://elearning.ju.edu.jo/moodle10/course/view.php?id=8553</u>

Examinations:

All exams are multiple-choice and computerized.

Exam	Weight %	Tentative Date	Included Material
First	20 %	To be announced later	Required sections in chapters: 1, 2, 3
Second	30 %	To be announced later	Required sections in chapters: 4, 5, 13, 6, 7
Final	50 %	To be announced later	Required sections in all chapters.

Good Luck!!!