THEUNIVERSITYOFJORDAN PHYSICSDEPARTMENT GENERALPHYSICS-I (0302101) / FIRSTEXAM / NOVEMBER 8th 2018

FIRST SEMESTER 2018/2019

				لم الجامعي: الشعبة:	الر ا ر قم						اميم العلاليي: اميم المدو من:		
	Α	B	C	D	E		A	В	С	D	E		
Q1						08							
Q2	_					09							
Q3				1		010							
Q4						011							
Q5						012							
Q6					1-25	013							
Q7				1	TOP XX	014							

Useful Information:

Some of the results are rounded; $g = 9.8 \text{ m/s}^2$; $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$

1. A hot air balloon is traveling vertically upward at a constant speed of 5.00 m/s. When it is 21.0 m above the ground, a package is released from the balloon. After it is released, for how long is the package in the air?

A) t = 2.64 s B) t=5 s C) t=1.6 s D) t=3.8 s E) None

2. Two vectors A = 2i + 7j-3k and B = -3i + 4j + 11k, then the angle (in degrees) enclosed between the two vectors (A and B) is:

	a) 97	b) Zero	c) ABsin0	d) 8	3	e) –i + 11j +8k
3.	If A + 2B=3	i + 3jandA – 2B =	–7i + 5j, Then A	× B is:		
	<i>a</i>) 36k	b) 18k	c) 36	d) 9	e) – 9k	

4. Two masses, M1 = 20 kg and M2 = 30 kg are connected by a wire. A force F = 50 N acts on M1 as shown in the adjacent figure. If the surface is smooth and the mass of the wire is negligible, the tension in F M₂ the wire is: L) 21.2 N A) 3.5 N B) 9.8 N D) 18.7 N C) 15.3 N 5. The only two forces acting on a body have magnitudes of 20 N and 15 N and directions that differ by 80°. The resulting acceleration has a magnitude of 20 m/s². The mass (in kg) of the body is: e) 1.7 d)1.35 a) 2.6b) 2.4 c) 3.3 6.A fireman 50 m away from a burning building directs a stream of water from a ground-level fire hose at an angle 30° above the horizontal. If the speed of the stream as it leaves the hose is 40 m/s, the height (in m) at which the stream of the water will strike the building is: a) 9.8 b) 12.3 c) 28.7 d) 24.1 e)18.7 7.A net force F acts on a mass m and produces an acceleration a. What acceleration results if a net force 2F acts on mass 4m? E) a D) 2a A)a/2B) 8a C) 4a At t = 0, a particle leaves the origin with a velocity of 6.0 m/s in the positive y direction. Its acceleration is given by $\mathbf{a} = (3.0\mathbf{i} - 2.0\mathbf{j}) \mathbf{m/s}^2$. At the instant the particle reaches its maximum y S. coordinate how far (in meters) is the particle from the origin? e) 12 d) 16 c)20 b) 28 a) 15 A ball is thrown horizontally from the top of a building 0.12 km high. The ball strikes the ground 9. at a point 65 m horizontally away from and below the point of release. The speed (in m/s) of the ball just before it strikes the ground is: e)17 d)27 c)31 b)42 a)5010. If an object was thrown vertically from the ground level with initial speed 25 m/s and return to the same ground level after 5.1 seconds. What is the average velocity (in m/s) of the object when reaching the ground?

a) 12 b) 24 c) 6d) 0e) -12

2

A lift is going up. The variation in the speed of the lift 11. is as given in the graph. What is the height to which the lift takes the passengers ?

A) 3.6mB) 28.8m C) 36 m D) cannot be calculated from the above graph E) ZERO

3.0

d)

The speed of a particle moving in a circle 2.0 m in radius increases at the constant rate of 4.4 m/s^2 . 12. At an instant when the magnitude of the total acceleration (in m/s^2) is 6.0 m/s^2 , what is the speed of the particular of the particle? 3.5 c) b) 2.9 3.9 a) e) 1.4

Scanned with CamScanner

THEUNIVERSITYOFJORDAN
PHYSICSDEPARTMENT
GENERALPHYSICS-I (0302101) / FIRSTEXAM / NOVEMBER 8 th 2018
FIRST SEMESTER 2018/2019

					i incor e	ALIMILO.	That a	10.201				D1 II I
					بامعي:	الرقم ال						اسم الطالب:
					ببة:	رقم الش						اللم المترس:
												I
	A	B	С	D	E		A	B	C	D	E	
Q1						Q8						
Q2						Q9						-
Q3						Q10						-
Q4						Q11						-
Q5					1	Q12						-
Q6						Q13						-
07						Q14						
1. A	magnitu a) Zerc	ude of the	e acceler b) 24	ation (in 2	m/s ²) of t c) 48	he partic	le at the d) 12	instant w	hen its vo e) 36	elocity is	zero?	
2.	Two vo	ectors A	A = 2 i +	- 7 j – 31	k and B	= -3i +	- 4 j + 1	1 k . Th	en the n	nagnitu	ide of B	×A is:
	a) 49		b) –i +	- 11j +8	Skc) BA	cos Ø	d) 72		e) 95	5		
; <u>.</u>	If A + 2 vectors	2B=3i - (A and	+ 3jand B) is:	A – 2B	= −7i +	- 5 j , the	en the a	ingle (in	n degre	es) enc	losed b	etween the two
	<i>a</i>) 52		b) 128		c) Zer	0	d) 90)	e) 2	32		

4. Three equal mass blocks each of mass m =2.0 kg can move together over a horizontal frictionless surface. Two forces, $F_1 = 40$ N and $F_2 = 10$ N are applied on the three masses system as shown in the figure. The magnitude of the net force on the middle mass (in N) is:

5. If the only forces acting on a 3.0 kg mass are $F_1 = (4i - 9j)$ N and $F_2 = (5i + 3j)$ N, what is the magnitude of the acceleration (in m/s²) of the particle?

a) zero b)5.0 e)25 d)3.6 e) 6.3

6.A fireman 50 m away from a burning building directs a stream of water from a ground-level fire hose at an angle 300 above the horizontal. If the speed of the stream as it leaves the hose is 40 m/s, the height (in m) at which the stream of the water will strike the building is:

a) 9.8 b) 12.3 c) 28.7 d) 24.1 e) 18.7

7. If all of the forces acting on an object balance so that the net force is zero, then

A. the object must be at rest

B. the object's speed will decrease

C. the object will follow a parabolic trajectory

D. the object's direction of motion can change, but not its speed

E. None of the above

8. At t = 0, a particle leaves the origin with a velocity of 6.3 m/s in the positive y direction and moves in the xy plane with a constant acceleration of (2.0i - 4.0j) m/s². At the instant the x coordinate of the particle is 15 m, the speed (in m/s) of the particle is:

a) 26 b) 14 c)10 d) 12 e) 16

9. A rock is thrown from the edge of the top of a building with an initial velocity of 12.2 m/s at an angle of 53° above the horizontal. The rock strikes the ground a horizontal distance of 35 m from the base of the building. Assume that the ground is level and that the side of the building is vertical. How tall (in meters) is the building?

a)43.6	b) 53.1	c)64.5	d)61.1	e)57.8

A particle confined to motion along the x axis moves with constant acceleration from x = 2.010. m to x = 8.0 m during a 2.5 second time interval. The velocity of the particle at x = 8.0 m is 2.8 m/s. What is the acceleration during this time interval? b) 0.32 c) 0.48

d) 0.57

e) 0.64

11. A lift is going up. The variation in the speed of the lift is as given in the graph. What will be the average velocity of the

A) 1 m/s B) 2.88 m/s C) 3.24 m/s D) 3 m/s E) none

12. A car travels counterclockwise around a flat circle of radius 0.25 km at a constant speed of 20 m/s. When the car is at point A as shown in the figure, what is the car's acceleration? [Hint: magnitude and direction]

Answer: 1.6 m/s^2 , west

- a. 1.6 m/s2, east
- b. Zero
- c. 1.6 m/s2, east
- d. 1.6 m/s2, north
- e. 1.6 m/s2, west

Scanned with CamScanner

- The system shown remains at rest. The force of friction (in N) on the block on the incline is:
 - A) 4 B) 20 C) 12
 - D) 16 (E) 8

9. As a 2.0-kg object moves from $(2\hat{i} + 5\hat{j}) m$ to $(6\hat{i} - 2\hat{j}) m$, the constant resultant force acting on it is equal to $(4\hat{i} - 3\hat{j}) N$. If the speed of the object at the initial position is 4.0 m/s, its kinetic energy (in J) at the final position is:

- A) 86 B) 62 C) 73 D) 53 E) 24
- 10. The plot below shows the force on an object as it moves along the x axis. The work (in J) done on the object as it moves from x = 0 m to x = 20 m is:

11. A box with a weight of 50 N rests on a horizontal surface. A person pulls horizontally on it with a force of 15 N and it does not move. To start it moving, a second person pulls vertically upward on the box. If the coefficient of static friction is 0.4, the smallest vertical force (in N) for which the box moves is:

12. A 0.50-kg object moves on a horizontal frictionless circular track with a radius of 2.5 m. An external constant force of 3.0 N, always tangent to the track, causes the object to speed up as it goes around. If the object starts from rest, then at the end of one revolution ($\epsilon_{2,2}$) the radial component of the force (in N) of the track on it is: (A) 19 B) 96 C) 38 D) 75 E) 47

Scanned by CamScanner

Helpful information: g = 9.8 m/s²; some answers are rounded.

Choose the correct answer and fill the Answer Table below:

(Q1) Find the magnitude and direction (with respect to the positive x-axis) of the vector A represented by the following pair of components: $A_x = -8.6 \text{ m}$ and $A_y = 5.2 \text{ m}$. (A) 7.5 m, 25.2°; (B) 3.3 m, 35.4°; (C) 4.6 m, 126°; (D) 10.0 m, 149°; (E) 5.6 m, 325°;

(Q2) Given the two vectors: $\vec{A} = -2.0\hat{i} + 3.0\hat{j} + 4.0\hat{k}$ and $\vec{B} = 3.0\hat{i} + 1.0\hat{j} - 3.0\hat{k}$. The angle between these two vectors is: (A) 95.2°; (B) 63.5°; (C) 17.4°; (D) 73.1°; (E) 130°;

(Q3) Given the two vectors $\vec{A} = 3.0i - 6.0j$ and $\vec{B} = -2.0i + 5.0j$, what is the magnitude of the vector $\vec{C} = 3\vec{A} - 2\vec{B}$? (A)31; (B) 7.3; (C) 4.0; (D) 90; (E) 64;

(Q4) The magnitude and direction of $\tilde{A} \times \tilde{B}$ (two vectors shown in the figure) are: (A) 3.13 cm² along the positive z-axis; (B) 4.61 cm² along the negative z-Axis; (C) 6.37 cm² along the negative z-axis; (D) 9.29 cm² along the negative z-axis; (E) 13.7 cm² along the positive z-axis;

(Q5) The position of a particle moving along the x axis is given by: $x = (21 - 22t - 6.0 r^2)$ m, where t is in s. What is the average velocity (in m/s) during the time interval t = 1.0 s to t = 3.0 s?

(A) - 8.0; (B) 8.0; (C) - 4.0; (D) - 2.0; (E) - 6.0;

(Q6) The position of a particle moving along the x axis is given by: $x = 6.0 t^2 - 1.0 t^3$, where x is in meters and t in seconds. What is the position (in m) of the particle when it achieves its maximum speed in the positive x direction?

(A) 12; (B) 32; (C) 16; (D) 4.0; (E) 1.0;

1

'Take the valu	e of the gravitati	onal acceleration, g	$= 9.8 \text{ m/s}^2$.	
"Fill in the T	able at the END w	with your answers, I	using CAPITAL	letters ONLY.
Q1) Given tha magnitude of	at $\mathbf{A} = (15, 80^{\circ})$ [$\mathbf{A} - \mathbf{B}$?	in (plane) polar co	ordinates] and I	$\mathbf{B} = 12\mathbf{i} - 16\mathbf{j}$. What is the
(A) 23	(B) 32	(C) 5.0	(D) 15	(E) 35
Q2) If $A = 12$	i - 16j and $B = -$	-24i + 10j, what is	the direction of	the vector $\mathbf{C} = 2\mathbf{A} - \mathbf{B}$?
(A) -41°	(B) -49 ⁰	(C) +49°	(D) -90 ⁰	(E) +21 ⁰
Q3) The prod	$uct 2(\mathbf{i} \times \mathbf{k}).3(\mathbf{i} \times \mathbf{k})$	j) is:		
Q3) The prod (A)0 Q4) A car tra for 15 minute km) are:	(B) -6 (B) -6 (Wels north at 30 es. The total dist	j) is: (C) 6 (m/s for 30 mine tance the car has	(D)i (D)i ites. It then tra traveled and it	(E) j vels <i>south</i> at 40 m/s s <i>displacement</i> (both in
Q3) The prod (A)0 Q4) A car tra for 15 minute km) are: (A) 18; 18 S	(B) -6 (Wels north at 30 es. The total dist (B) 36; 36 S	j) is: (C) 6 (m/s for 30 minu <i>tance</i> the car has (C) 36; 36 N	(D)i ites. It then tra traveled and it (D) 90; 18 N	(E) j vels <i>south</i> at 40 m/s s <i>displacement</i> (both in (E) 90; 36 N
Q3) The prod (A)0 Q4) A car tra for 15 minute km) are: (A) 18; 18 S (A) 18; 18 S (A) 18; 18 S (A) 18; 18 S (A) 18; 18 S	(B) -6 (B) -6 (C) -6 (C	j) is: (C) 6 (m/s for 30 minutance the car has the moving along the far (in m) is the car has the car	(D)i ates. It then tra traveled and it (D) 90; 18 N x-axis is given particle from t	(E) j wels south at 40 m/s s displacement (both in (E) 90; 36 N by $x = (24t - 2.0t^3)$ m he origin when it is no

(A) 14	(B) 44	(C) 74	(D) 30	(E) 60	
1111-	1	1		(1.) 00	

1

Q7) A pa moves in particle's	article starts from the xy-plane wi speed (in m/s) a	the origin at $t = 0$ th a <i>constant</i> accel	with a velocity of (leration of (3.0i – 6	(16i – 12j) m/s and .0j) m/s ² . The
(A) 52	(B) 46	(C) 43	(D) 39	(E) 33
Q8) A pro velocity o strikes the	pjectile is fired (c of 30 m/s in the h e ground is:	أطلق) from a height porizontal direction	of 30 m above the n. The projectile's a	ground with an initial speed (in m/s) just before i
(A) 54	(B) 35	(C) 31	(D) 43	(E) 39
Q9) A pa The parti accelerati	rticle moves at cle makes <i>four</i> on (in m/s²) is	a constant speed revolutions each	in a circular path 1 second. The may	with a radius of 2.0 <i>cm</i> gnitude of its (radial)
	(B) 20	(C) 15	(D) 13	(E) 18
(A) 24	A contraction of the second			
(A) 24 010) A part (the partic tal acceler.	icle moves alon le is 2.0 m/s and ation (in m/s ²)?	g a circular path o I changing at the	of radius 1.0 m. A rate of 3.0 m/s ² , v	t an instant when the spe what is the magnitude of
(A) 24 (10) A part f the partic tal acceler. () 2.0	icle moves alon le is 2.0 m/s and ation (in m/s ²)? (B) 5.0	g a circular path (I changing at the (C) 4.0	of radius 1.0 m. A rate of 3.0 m/s ² , v (D) 3.0	t an instant when the sp what is the magnitude of (E) 6.0

Fill in the Table below with your answers, using CAPITAL letters ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	07	08	00	
B	A	B	D	C	A	F	E	09	- (
./	. /		/	. /	1			LV_	
V	V	X	V	V	X	L	-	1	1

Q7 A rock is thrown downward from an unknown height above the ground with an initial speed of 10 m/s. It strikes the ground 3.0 s later. The initial height (in m) of the rock above the ground is:

D) 30

Č) 74 B) 14 A) 44

Q8 The diagram to the right shows 3 vectors which sum to zero, all of equal length. The only true statement among the following is:

A)
$$\vec{A} + \vec{B} = \vec{A} - \vec{C}$$

B) $\vec{A} + \vec{B} = \vec{B} - \vec{C}$
C) $\vec{A} - \vec{B} = 2\vec{A} - \vec{C}$
D) $\vec{A} - \vec{B} = 2\vec{A} - \vec{C}$
E) $2\vec{A} + 2\vec{B} = 2\vec{C}$

E) 60

Section 1.

	i ha		:ō.	اسم مدرس الما
\langle	10	<u>21 :</u>	30 <u>الرقم اله</u>	رقم الشعبة:
The University of Jordan	\backslash	General Phy	ysics (1) (302 rst Exam	101)
Faculty of Science Physics Department	\nearrow	First Sem	iester 2016/2	017
Student's Name:	(Ann. D. M.R.M.	دStudent's II	D	.¥
Note 1: Following are 10 mult in the answers' table. <u>Only</u> the Note 2: Ignore air resistance ir	iple-choice question answers in the table all problems and ta	s. Write the symbol will be graded. ke $ g = 9.8 \text{ m/s}^2$ at	the Earth's su	rface.
Note 3: The significant digit no	otation is not taken :	into account unoug		/
answers.	Anowers' T	able	. /	
Question Number	Answers -	4 5 0	7	8/9/10
Symbol of Correct d	~ e/ g/	b/d/e	(. b	a e a
1		1 1		
Q.1: A particle moves along th	e x-axis. Its position	varies with time a	The accelera	tion (in m/s^2) of
$X(t) = 3t^3 - 4t^2 + 2t - 5, w$	here X is in meters	and t is in seconds.	. The accelere	
this particle at $t = 1$ sec is:	o r	30	d. 10	e. zero
a. 5.0 04.	0			
		Then $13\vec{4} - 2\vec{B}$	l is:	
Q.2: If $A = i + j - k$ and E	5 = 2i - 5j + k	, men, jon 22	3.61	el 10.3
1 5 00	~ / / /		J.U.L	
a. 2.02 b. 5.02	C. /.12			
a. 2.02 b. 5.02 Q.3: A particle moves along th shown in the adjacent figure.	e X-axis. Its velocity The distance (in m)	varies with time a moved by this	IS V(m/s) ↑	
a. 2.02 b. 5.02 Q.3: A particle moves along th shown in the adjacent figure. particle during the time interv	c. 7.12 e X-axis. Its velocity The distance (in m) al t _i = 0 to t _f = 15 se	varies with time a moved by this ec is:	IS V(m/s)	
a. 2.02 b. 5.02 Q.3: A particle moves along th shown in the adjacent figure. particle during the time interv] 125 b. 100	c. 7.12 The X-axis. Its velocity The distance (in m) al $t_1 = 0$ to $t_f = 15$ set c. 25 d. 1	varies with time a moved by this ec is: 50 e. 20	0 V(m/s)	+
a. 2.02 b. 5.02 Q.3: A particle moves along the shown in the adjacent figure. particle during the time interv 1 125 b. 100	c. 7.12 re X-axis. Its velocity The distance (in m) ral $t_i = 0$ to $t_f = 15$ se c. 25 d. 1	y varies with time a moved by this ec is: 50 e. 20	0 V(m/s)	5 10 15
a. 2.02 b. 5.02 Q.3: A particle moves along the shown in the adjacent figure. Darticle during the time interv 125 b. 100	c. 7.12 The X-axis. Its velocity The distance (in m) ral $t_1 = 0$ to $t_f = 15$ second c. 25 d. 1	y varies with time a moved by this ec is: 50 e. 20	$\begin{array}{c c} V(m/s) \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	f = 1 f
a. 2.02 b. 5.02 Q.3: A particle moves along the shown in the adjacent figure. particle during the time interv 1/125 b. 100 2.4: A ball is fired with an initi irection. The speed (in m/s) c	c. 7.12 re X-axis. Its velocity The distance (in m) ral $t_i = 0$ to $t_f = 15$ set c. 25 d. 1 al velocity of 20 m, of the ball after 1 set	y varies with time a moved by this ec is: 50 e. 20 /s that makes an all ec of its launch is:	$\begin{array}{c c} 10 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	5 10 15 $t(s)$
a. 2.02 b. 5.02 Q.3: A particle moves along the shown in the adjacent figure. particle during the time interv 125 b. 100 Q.4: A ball is fired with an initi irection. The speed (in m/s) c . 9.8 b. 12.5	c. 7.12 e X-axis. Its velocity The distance (in m) al $t_i = 0$ to $t_f = 15$ set c. 25 d. 1 al velocity of 20 m, of the ball after 1 set c.	y varies with time a moved by this ec is: 50 e. 20 /s that makes an an ec of its launch is: 20.0	NS V(m/s) 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0	t(s) 5 10 15 to ve the horizontal e. zero
a. 2.02 b. 5.02 Q.3: A particle moves along the shown in the adjacent figure. Darticle during the time intervention of the second se	c. 7.12 The X-axis. Its velocity The distance (in m) ral $t_i = 0$ to $t_f = 15$ set c. 25 d. 1 al velocity of 20 m, of the ball after 1 set c.	y varies with time a moved by this ic is: 50 e. 20 /s that makes an all ec of its launch is: 20.0	$\frac{10}{10}$ $\frac{10}{5}$ 0 $\frac{5}{0}$ 0 $\frac{5}{0}$ 0 $\frac{10}{10}$	5 10 15 bove the horizontal e. zero
a. 2.02 b. 5.02 Q.3: A particle moves along the shown in the adjacent figure. Darticle during the time interv 1 125 b. 100 Q.4: A ball is fired with an initi lirection. The speed (in m/s) of . 9.8 b. 12.5 .5: The height (in m) from whe speed of 30 m/s is:	c. 7.12 The Aistance (in m) The distance (in m) al $t_1 = 0$ to $t_f = 15$ second c. 25 d. 1 al velocity of 20 m, of the ball after 1 second c. c. ich an object must	y varies with time a moved by this ec is: 50 e. 20 /s that makes an all ec of its launch is: 20.0 : be released from	NS V(m/s) 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0	t it hits the ground a

.

Back

Q,6: A fireman 50 m away from a burning building directs a stream of water from a ground-level fire hose at an angle of 30⁰ above the horizontal. If the speed of the stream as it leaves the hose is 40 m/s. The height (in m) at which the stream of water strike the building is:

			J 75 20	e. 7.63
- 11.86	b. 9.80	c. 18.64	0. 25.50	

 ∞ .7: The adjacent figure shows a particle moving clockwise in a circular path of radius 2.50 m. If the total acceleration vector of the particle at the shown instant has a magnitude of 15.0 m/s² and makes an angle of 30° with the radius (as shown in the figure). For that instant, the speed (in m/s) of the particle is: · c. 7.50 b. 5.69 a. 65.69 e. 9.80 d. 12.99 Q.8: A particle initially located at the origin has an acceleration of $\vec{a} = 3\hat{j}$ m/s² and an initial velocity of $\vec{V_i} = 5\hat{i}$ m/s. The speed (in m/s) of this particle at t=2 sec is:

e. Zero d. 10.29 a) 7.81 b. 9.80 c. 3.21

Q.9: The angle enclosed between vector $\vec{A} = 3\hat{i} + 2\hat{j} - \hat{k}$ and the negative Y-axis is: c. 37.2⁰ d. 90⁰ a. 180⁰ b. 75.4⁰ e. 122.3°

C.10: The earth has a radius of 6380 km and turns around once on its axis in 24 h. The magnitude (in m/s²) of the radial acceleration of an object at the earth's equator is: a. 9.80 b. 0.205 c. 0.034 d. 4.90

e. Zero

Good Luck!!!

The	University of Jorda	n / Departmen	t of Physics/ Sum	ner Semester
	First	Exami Saturd	ay 16/7/2016	1-102
tudent's N	lame: GRR J	re (anat)a	Student	's Number: 21
.ecturer's	Name: mel	eleto.s.1	Time: f	q :30 - 11:30
Take the v	alue of the gravitation	al acceleration g	$= 9.8 \text{ m/s}^{2}$.	
'Fill in the	Table at the END with	h your answers,	using CAPITAL let	ters ONLY.
21) In the j	graph shown, the aver	age velocity (in	m/s)	
between t =	0 s and t = 5 s is:			nı)
A) 0 D) 6.0	B) 4.3 <u>C)</u> E) 3.3	1.2	6	
	<u></u>			
				2 5 7
Q2) An ob initial spec	bject is thrown vertical ed of 20 m/s. It strikes	lly downward fi the ground 2.0	rom a height <i>h</i> abov s later. The height <i>h</i>	e the ground, with an (in m) is:
A) 90	B) 74	<u>C)</u> 60	D) 20	E) 30
O3) Starti	ing from Point A, a g	irl walks 20 m i	in a direction 30° so	outh of west. She then
walks 30	m towards the north to	o Point B. What	is the distance AB (in m)?
A) 53	B) 55	C) 48	<u>D)</u> 26	E.) 28
04) If A =	(12 m, 30°) and B =	(25 m, 130°), th	en the direction of y	rector C = A + B is:
A) 17°	B) 107°	C) 73°	D) 163°	<u>E)</u> 103°
•••••				hen $A_{(B \times C)}$ is:
Q5) Give	n three vectors: A = i -	- 2j + 3k; B = 2	1-3J; C-J+35, J	E) 51
A) 0	B) i – 2j + 10k	ι C)7k	D) 09	

Q6) The position of a particle moving in the xy-plane is given by

 $r = -(4t^2 + 28)i + (2t^4 + 5)j$

where r is in meters and t is seconds. The magnitude of the acceleration (in m/s^2) at t = 2 s is:

12.10	D) 15	C) 20	D) 25	E) 96
A110	D) 1.5	0,20		
	10			
	and the second se	a second second second second second		

Q7) A particle starts moving from the origin with a velocity of 10.0j m/s and an acceleration of (5.00i - 8.00j) m/s². The particle's speed (in m/s) at t = 1.00 s is:

C) 15.6

Q8) A ball is thrown from a height of 7.0 m above the ground. The ball is thrown with an initial velocity of 12 m/s at an angle of 37° above the horizontal. How far from the building (in m) does it strike the ground?

Q9) A particle moves along a circular path of radius 2.0 m. At an instant when the speed of the particle is 3.0 m/s and changing at the rate of 2.0 m/s², what is the magnitude of its total acceleration (in m/s²)?

4175	B) 6.7	C) 5.4	D) 4.9	E) 2.5	
A) (.2	0,0.1	1000			
				(marked a second s	

Q10) Which of the following statements is correct for a particle moving in a uniform circular motion?

A) Its acceleration is zero.

(B) 20.5 E) 5.30

A) 34.6 D) 11.8

B) Its velocity is constant.

C) Its speed is constant.

- D) Its acceleration is constant.
- E) None of the above.

Fill in the Table below with your answers, using CAPITAL letters ONLY:

CI	D	D	E	E	E	A	B	D	C
/	X,	/	V	V 2	/	V		V	V
						8. 10			

The University of Jordan / Department of Physics General Physics (0302101) / First Exam 17/3/2016 Student's Name: Student's Number: Lecturer's Name: Time: One Hour

Take the value of the gravitational acceleration g = 9.8 m/s². Fill in the Table at the END with the letters corresponding to your answers.

Q1) A car moving along a *straight* road changes its velocity from 40 m/s to 80 m/s in a distance of 300 m. Its (constant) acceleration (in m/s²) during this time is:

Q5) At t = 0, a particle leaves the origin with a velocity of 12 m/s in the positive xdirection. It then moves in the xy-plane with a *constant* acceleration of $\vec{a} = -2\hat{i} + 4\hat{j}$ m/s². At the instant the y-coordinate of the particle is 50 m, what is its x-coordinate (in m)?

Q7) A particle moves along a circular path whose radius is 3.0 m. At the instant when the speed of the particle is 3.0 m/s and is changing at the rate of 5.0 m/s², the magnitude of its *total* acceleration (in m/s^2) is:

A) 4.5	B) 5.8	C) 6.0	D) 6.7	E) 7.5

Q8) In the figure, all surfaces are frictionless. The masses are $m_1 = 6.0 \text{ kg}$, $m_2 = 3.0 \text{ kg}$; and the system is released form rest. The acceleration of the system (in m/s²) is:

30°

5.0 kg

m

θ

Q9) A 5.0 kg box is pulled across a rough surface at *constant speed* by a force F = 20 N that makes an angle of 30° with the horizontal, as shown. The coefficient of kinetic friction μ_k is: F = 20 N

A) 0.29	B) 0.35	C) 0.31	
D) 0.22	E) 0.44	6	

A) 4.0	B) 2.7	C) 3.1
D) 1.5	E) 0.41	

Fill in the Table below with the letters corresponding to your answers:

Q1 Q2	Q3	Q4 Q	Q6	Q7	Q8	Q9	Q10

The University of Jordan / Department of Physics General Physics (0302101) / First Exam 17/3/2016 Student's Name: Student's Number: Lecturer's Name: Time: One Hour

Take the value of the gravitational acceleration $g = 9.8 \text{ m/s}^2$. Fill in the Table at the END with the letters corresponding to your answers.

Q1) A car moving along a *straight* road changes its velocity from 40 m/s to 80 m/s in a distance of 300 m. Its (constant) acceleration (in m/s²) during this time is:

Q5) At t = 0, a particle leaves the origin with a velocity of 12 m/s in the positive xdirection. It then moves in the xy-plane with a *constant* acceleration of $\vec{a} = -2i + 4j$ m/s². At the instant the y-coordinate of the particle is 50 m, what is its x-coordinate (in m)?

Q7) A particle moves along a circular path whose radius is 3.0 m. At the instant when the speed of the particle is 3.0 m/s and is changing at the rate of 5.0 m/s², the magnitude of its *total* acceleration (in m/s²) is:

A) 4.5	B) 5.8	C) 6.0	D) 6.7	E) 7.5

Q8) In the figure, all surfaces are frictionless. The masses are $m_1 = 6.0 \text{ kg}$, $m_2 = 3.0 \text{ kg}$; and the system is released form rest. The acceleration of the system (in m/s²) is:

30°

5.0 kg

m

θ

Q9) A 5.0 kg box is pulled across a rough surface at *constant speed* by a force F = 20 N that makes an angle of 30° with the horizontal, as shown. The coefficient of kinetic friction μ_k is: _F = 20 N

A) 0.29	B) 0.35	C) 0.31
D) 0.22	E) 0.44	

Q10) A block of mass $m = 4.0 \text{ kg slides down a } 35^{\circ}$ incline when a force of F = 10 N is applied *upward* parallel to the incline. If the coefficient of kinetic friction between the block and the incline is $\mu_k = 0.2$, find the acceleration (in m/s²) of the block:

A) 4.0	B) 2.7	C) 3.1
D) 1.5	E) 0.41	

Fill in the Table below with the letters corresponding to your answers:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10

$$I = \frac{1}{2} \text{ Stroight road} \longrightarrow 1-0$$

$$V_{1} = 40$$

$$V_{1} = 80$$

$$\Delta x = 300$$

$$B^{0} = V_{1}^{2} = 2a (\Delta x)$$

$$\Delta x = 300$$

$$B^{0} = V_{0}^{2} = 2(140) \text{ A}$$

$$A = \frac{4800}{600} = 8 \text{ m}^{1/3}$$

$$A = \frac{4800}{600} = 8 \text{ m}^{1/3}$$

$$A = \frac{4800}{600} = 8 \text{ m}^{1/3}$$

$$A = \frac{2}{2} - u_{1}^{2} + 6^{\frac{1}{6}k}$$

$$B = 32 + 8^{\frac{1}{6}k}$$

$$C = 83 - 2^{\frac{1}{6}k}$$

$$A = (22) - u_{1}^{2} + 6^{\frac{1}{6}k}$$

$$A = (10 - 10 \cos(45) - 10 \cos(45))$$

$$A = -10 \frac{1}{2}$$

$$A = -$$

$$\begin{array}{c} (5) \quad \forall i = 1/2 \ 1 \\ a = -2 \ 1 + 4 \ 1 \\ i = 0 \\ y = 50 \end{array} \qquad \overrightarrow{\eta} - \overrightarrow{r}_{i} = \overline{\psi}_{i} + \frac{1}{2} (-2 \ 1 + 4 \ 1) \ 1 \\ i = 0 \\ y = 20 \end{array} \qquad \overrightarrow{\eta} - \overrightarrow{r}_{i} = \frac{1}{2} t \ 1 + \frac{1}{2} (-2 \ 1 + 4 \ 1) \ 1 \\ i = (12 \ t - 1^{2}) \ 1 + (21^{2}) \ 1 \\ i = (12 \ t - 1^{2}) \ 1 + (21^{2}) \ 1 \\ i = (12 \ t - 1^{2}) \ 1 + (21^{2}) \ 1 \\ i = 25 \\ t = 5 \end{array} \qquad \begin{array}{c} (-35) \\ (-35) \end{array} \qquad \overrightarrow{\psi} = \frac{1}{2} t - \frac{1}{2} \frac{1}{2} t - \frac{1}{2} \frac{1}{2} t - \frac{1}{2}$$

$$\frac{F_{sin30} + N = 5g}{E_{sin30} + N} = 5g - F_{sin30}$$
$$= 49 - 10 = 39$$

Constant speed =>
$$a=0$$

 $EF = m(a)$
 $F\cos 30 - FK = Earo$
 $20(\cos 30) - N(M_K) = 0$
 $N(M_K) = 17.3$
 $MK = \frac{17.3}{39} = 0.49$

The University of Jordan Faculty of Science Department of Physics First Semester 2014/2015 Date: 27/10/2014 Time: 5:00-6:00

General Physics I (0302101)

First Exam

	t.	=V	
Name:		-	
Number:	ue van der wer der der ver der fah den ver felt		
Instructor:			

Constants: $g = 9.8 \text{ m/s}^2$.

Answer Sheet

List your final answer in this table. Only the answer in this table will be graded.

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Answer	e	a	b	C	d	e	a	9	a	C

1. If vector \vec{B} is added to vector \vec{A} , the result is $6\hat{i} + \hat{j}$. If \vec{B} is subtracted from \vec{A} , the result is $-4\hat{i} + 7\hat{j}$. What is the magnitude of \vec{A} ?

(c) 6.1

(a) 1.4 (b) 4.6

(d) 5.1

(e) 4.1

2. At t = 0, a particle leaves the origin with a velocity of 12 m/s in the positive x direction and moves in the xy plane with a constant acceleration of $(-2.0\hat{i} + 4.0\hat{j})$ m/s². At the instant the y coordinate of the particle is 18 m, what is the x coordinate of the particle?

(a) 27 m (b) zero (c) 23 m (d) 38 m (e) 48 m

3. Two forces are the only forces acting on a 3.0 kg object which moves with an acceleration of 3.0 m/s^2 in the positive y direction. If one of the forces acts in the positive x direction and has a magnitude of 8.0 N, what is the magnitude of the other force?

(a) 14 N (b) 12 N (c) 11 N (d) 10 N (e) 16 N

4. Two vectors $\vec{A} = 6\hat{i} - 5\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} - 8\hat{j}$. The scalar (Dot) product of these two vectors is: (a) 44 (b) 48 (c) 58 (d) 63 (e) 68

5. The position of a particle moving along the x axis is given by $x = (21 + 22t - 6.0t^2) \text{ m}$, where t is in s. What is the average velocity (in units of m/s) during the time interval t = 1.0 s to t = 3.0 s?

(a) -14 (b) 8.0 (c) 14 (d) -2.0 (e) -8.0

6. Two vectors lying in the xz plane are given by the equations $\vec{A} = 2\hat{i} + 3\hat{k}$ and $\vec{B} = -\hat{i} + 2\hat{k}$. The value of $\vec{A} \times \vec{B}$ is:

- (a) $7\hat{j}$ (b) \hat{j} (c) $\hat{i} + 5\hat{k}$ (d) $-7\hat{k}$ (e) $-7\hat{j}$
- 7. A 1.8 kg block is released from rest at the top of a rough (خشن) 30° inclined plane. As the block slides down the incline, its acceleration is 3.0 m/s² down the incline. Determine the magnitude of the force of friction acting on the block.

(a) 3.4 N (b) 7.0 N (c) 5.2 N (d) 2.1 N (e) 1.2 N

8. Starting from rest, a car travels 1,350 meters in 1.00 minute. It accelerated at 1.0 m/s² until it reached its cruising speed (السرعة القصوى). Then it drove the remaining distance at constant velocity. What was its cruising speed (in units of m/s)?

(a) 44 (b) 48 (c) 58 (d) 30 (e) 90

9. A ball leaves the ground at an angle of 30° above the horizontal and at a speed of 10 m/s. What is the maximum height reached?

(a) 1.3 m (b) 6.8 m (c) 7.9 m (d) 5.1 m (e) 2.9 m

10. A force accelerates a body of mass M. The same force applied to a second body produces nine times the acceleration. What is the mass of the second body?

(a) 18M (b) 9M (c) M	(d) (d)	2M/9 (e) 2M
----------------------	---------	--------	-------

University of Jordan Faculty of Science Department of Physics Fall Semester 2013/2014 Date: 3/11/2013 Time: 1:00-2:00

General Physics I (0302101) First Exam

Name:------KEY ANSWER------Number:-----Instructor:-----

-Answer Sheet

List your final answer in this table. Only the answer in this table will be graded.

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Answer										

1.If $\vec{A} = 2\hat{i} - 6\hat{j} + 3\hat{k}$, what is the angle (in degrees) the vector \vec{A} makes with the z-axis? (a) 56 (b) 65 (c) 90 (d) 149 (e) 73

2. A particle moving along the *x* axis has a position given by $x = (24t - 2.0t^3)$ m, where *t* is measured in s. What is the magnitude of the acceleration (in units of m/s²) of the particle at the instant when its velocity is zero?

(a) 24 (b) zero (c) 12 (d) 36 (e) 48

3. If the only forces acting on a 2.0 kg mass are $\vec{\mathbf{F}}_1 = (3.0\hat{\mathbf{i}} - 8.0\hat{\mathbf{j}})N$ and

 $\vec{\mathbf{F}}_2 = (5.0\hat{\mathbf{i}} + 3.0\hat{\mathbf{j}})N$, what is the magnitude of the acceleration (in units of m/s²) of the particle?

- (a) 8.7 (b) 6.6 (c) 2.4 (d) 3.1 (e) 4.7
- 4. If $\vec{A} = 7\hat{i} 6\hat{j} + 5\hat{k}$, $|\vec{B}| = 7$, and the angle between \vec{A} and \vec{B} (when the two are drawn starting from the same point) is 60°, what is the scalar product of these two vectors?
 - (a) 37 (b) 26 (c) 82 (d) 16 (e) 61

5. A particle starts from the origin at t = 0 with a velocity of $(16\hat{i} - 12\hat{j})$ m/s and moves in the *xy* plane with a constant acceleration of $\vec{a} = (3.0\hat{i} - 6.0\hat{j})$ m/s². What is the speed of the particle at t = 2.0 s?

(a) 68 m/s (b) 22 m/s (c) 33 m/s (d) 48 m/s (e) 59 m/s

- 6. A projectile is thrown from the top of a building with an initial velocity of 30 m/s in the horizontal direction. The top of the building is 30 m above the ground. What is the speed of the projectile just before it strikes the ground?
 - (a) 31 m/s (b) 52 m/s (c) 83 m/s (d) 39 m/s (e) 26 m/s
- 7. A block is pushed across a horizontal surface by the force shown. If the coefficient of kinetic friction between the block and the surface is 0.30, F = 20 N, $\theta = 30^{\circ}$, and M = 3.0 kg, what is the magnitude of the acceleration of the block (in units of m/s²)?

8. If $\vec{C} = [10 \text{ m}, 30^\circ]$, what is the Cartesian coordinates of this vector?

(a) (2.2, 4.4) m	(b) (4.3, 2.5) m	(c) (8.7, 5.0) m
(d) (13, 7.5) m	(e) (1.0, 10) m	

9. A car travels north at 30 m/s for 30 minutes. It then travels south at 40 m/s for 15 minutes. The total distance the car has traveled and its displacement are:

(a) 18 km; 18 km South	(b) 36 km; 36 km South
(c) 36 km; 36 km North	<mark>(d) 90 km; 18 km North</mark>
(e) 90 km; 36 km North	

- 10. A 80 kg block sits on a rough horizontal surface. A force of magnitude 2.0 N acting parallel to the surface is applied to the block. The coefficient of static and kinetic friction between the block and the surface are $\mu_s = 0.40$ and $\mu_k = 0.30$ respectively. What is the magnitude of the force of friction acting on the block?
 - (a) 235 N (b) 314 N (c) 2.0 N (d) 6.0 N (e) 4.0 N

Physics 101 – Make-up Exam – 19/11/2013 – 3:00-4:00 pm

Student's Name (In Arabic): <mark>KEY ANSWER</mark>	
Instructor's Name (In Arabic):	(The value of g=9.8 m/s ²).
مؤال. اعلمْ أنَّه لنْ تُقَيَّمَ أيَّة إجابة خارجَ الصَّندوق مُطْلَقاً.	ضَعِ الإجابةَ داخلَ الصّندوق المُثْبَت أسفلَ كلّ س

1. A proton moving along the *x* axis has an initial speed of 4.0×10^6 m/s and a constant acceleration of 6.0×10^{12} m/s². What is the speed (in m/s) of the proton after it has traveled a distance of 80 cm?

2. An object is thrown vertically and has an upward velocity of 18 m/s when it reaches one fourth of its maximum height above its launch point. What is the initial launch speed (in m/s) of the object?

3. A long jumper left the ground at an angle 10 degrees and made a horizontal range of 10 meters. The maximum height he achieved was (in m):

4. If $|\vec{\Delta}| = 10$, $|\vec{B}| = 15$, and $\alpha = 130^\circ$, determine the scalar product of the two vectors shown.

5. The tension in a string from which a 4.0-kg object is suspended in an elevator is equal to 44 N.

What is the acceleration (magnitude and direction) of the elevator (in m/s^2)?

6. A 1.5-kg mass has an acceleration of (4.0**i** – 3.0**j**) m/s². Only two forces act on the mass. If one of the forces is (2.0**i** – 1.4**j**) N, what is the magnitude of the other force (in N)?

7. An object with initial speed of 16.0 m/s slides a distance of 20.0 m before coming to rest on a rough horizontal surface. The coefficient of kinetic friction is:

8. Given F = 40 N and M = 1.5 kg. What is the tension in the string connecting M and 2M (in N)? Assume that all surfaces are frictionless.

9. Given $(\vec{A} = 2\hat{\imath} - 3\hat{\jmath} + 1\hat{k})$ and $(\vec{B} = 4\hat{\imath} + 5\hat{\jmath} - 2\hat{k})$. What is the product $\vec{A} \times \vec{B}$?

10. A ball is thrown horizontally from the top of a building 100 m high. The ball strikes the ground at a point 65 m horizontally away from and below the point of release.

What is the speed (in m/s) of the ball just before it strikes the ground?

-		5	٩	S		ij		-	6	5 4		12 -	-	Notes: desk. <u>C</u> Be sure	1.1
	rcleas (A) 2(A spr horizo	A cert the lov (in cm	A forc it from	(A) 0.1	An ob the ob	(A) 2.8	A parti directe magnit		2			>	Furn o alculat to fill t	Some
	e will the	ing (k = intal sur essed (1	ain pend west poi) above	e of mag 1 the poin	8 upware	ject of m ject is eq	~	cle of m d east, a ude of th		//	8	9	B	ff your ors can he box	helpful
	(B) 3	= 600 N/ı face. The مضغود	lulum con nt in the s this lowes (B) 2(gnitude 20 nt (2m, -11 (B) 40	1 (B) 0.8	ual to 38 1	(B) 5.1	ass (11 kg and the o re particle					C	cell pho not be shi below w	information
		n) is plac upper end ring. The ring cm)?	sists of a 1 wing the t tt point wil	N directed m) to the p	3 downwar	; is placed N. What is		g) is subje ther force s accelera					D	ne and p ared. You ith your f	10
	(C) 10	ed in a d is comp system is	.5-kg material constant in the mass	in the poi oint (4m, (C) 30	-d (C) 1.3	on top of the accele	(C) 7.5	ect to two has a m tion (in m					Π	ut it out ut it out 1 have <u>75</u> inal ansy	
		vertical pressed then re	ss swing the strii s rise du	sitive x -3m). W	upward	an eleveration (1)	forces nagnitud /s ²)?	12	10	9	7		of sig minu vers be	
	(D) 15	position 20 cm, <i>a</i> cleased fr	ging at the ng is equa ring its or (D) 28	direction Vhat is the (D) 80	(D) 1.3 d	ator floor of the elev	0) 3.7	such that le of 39	2				λ	fore the	Stine
		with its and a 4.0 om rest.	e end of a al to 20 N scillation	is acting work do	ownward	. If the fo vator (in n	(1	one force N directe			1	8	в	your ca mplete y end of th	- 0 8 m/
	(E) 25	lower en kg block How far a	1 string (le 1. To what 2. 3. C (E) 17	on a partic ne by the (E) 70	E)0.3 de	rce exerte n/s ²)?	E) 12	e has a m ed east-n				11	C	lculator /our exar ne exam.	2
		d suppor is place above the	mgth = 2. maximu	cle and di force (in	ownward	d by the		agnitude orth, wha					D	on your n.	
		ted by ed on the point o	.0 m). A m heigh	splacing J)?		floor on	-	of 21 N at is the	1	2			E	own	

2	12. A how of mass $(\mu_x = 0.6, \mu_y = 0.4)$. If a main friction are $(\mu_x = 0.6, \mu_y = 0.4)$. If a main what would be the magnitude of the friction (A) 210 (B) 247 (C)	(A) 2) (B) 19.7 (C) 32.2 (D	 (A) 10.1 (B) 9.7 (C) 8.1 (D) 11. What is the magnitude of the tension in the in the figure shown? Assume the surface is 1 	 A roller-coaster car has a mass of 400 kg passengers (-45). At the bottom of a circula shown in the figure) the car has a speed magnitude of the force the track exerts on the dip (m/kN)? 	(A) 1000 (B) 1392 (C) 12	 (A) 10.1 (B) 14.7 (C) 10.1 (B) 14.7 (C) 10.1 (C) 140.7 (C) 140.7	x = 4.0 m, given that the particle started motion	(A)-63 (B)-47 (C)-5 \bigcirc A particle of mass (1.5 kg) is moving $a = (6.0x + 5.0) m/s^2$, What is the speed	rate is the friction force doing work on the blo	A 6.0-kg block slides along a horizontal surf	(A) $\vec{F} = -12\vec{i} - 3\vec{j}$ (B) $\vec{F} = -6\vec{j}$ (C) $\vec{F} =$	 A potential energy function for a two-dimens that acts at the point (1, 1). 	
	tried to push the box by applying a force of 1 force (in N)? 220 (D) 165 (E) 230	342.9 (E) 56.5	13.1 E) 6.5) (in N) if M= 2.0 kg	when fully loaded with ar dip of radius 40 m (s of 16 m/s. What is the e car at the bottom of the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transforme	00 (D) 1310 (E) 1022	a) (0) (5) m/s as it travels around a vertical circular loop of the net force causing the contripctal acceleration of the net force causing the contripctal acceleration.	on from origin with initial velocity 2.0 m/s?	(D)+25 (E)-55 g on the x-axis with an acceleration gi d of the particle in (m/s) at the moment it	ock (in W) at an instant when its speed is 4.0 n	face. If $\mu_{\rm F} = 0.20$ for the block and surface, i	$-24\hat{i}-12\hat{j}$ (D) $\hat{F} = -6\hat{i}-3\hat{j}$ (E) $\tilde{F} = -6$	sional force is of the form $U = 3x^2y$. Find the	