
The University of Jorda General Physics 101	Second Exam	10:00 – 11:00) am	ent of Physics 2/12/2017	
الجامعي: نت المحاضرة: Consider g = 9.8 m/s ²	الرقم رقم الشعبة أو وأ	······································	الاسم: إسم الدكتور:,	
Question 1 2 Answer 4 b	3 4 5 Q & e	6 7 8 e d b	9 10 11 A	12 e
1. An applied force of 10 constant. The work done (A) 0.5 B) 2	(in J) by this force is:	a spring with a 20-N/n	m spring E) 200	
2. Three blocks (A, B, C shown. Block C is pulled accelerate. Neglecting fri	to the right by a force \vec{F}	that causes the entire		
•	A B	c → F		
A) 0 $(B) \vec{F}/3$	$(\vec{F}/2)$	D) $2\vec{F}/3$	E) \vec{F}	
A constant force (50-has been acting for 2 s the A) 100 B) 10	e rate at which it is doin		hen the force E) 63000	
4. Let M denote the ma surface is: A) R^2/M B) M		ote its radius. The rate $\widehat{\mathbb{D}}M/\mathbb{R}^2$	io g/G at Earth's E) R/M	
end of a 0.7-m st	s being swung (يتارجح) in ring. The minimum spec uccessfully over the top p	d (in m/s) needed for		
A) 1.3 B) 9.8	C) 3.9 D)	6.9 E 2.6		
then applied to it. If the	a rough (خشن) horizontal coefficients of friction a nal force on the box (in N	re $\mu_s = 0.5$ and $\mu_k =$	ontal force is 0.4, the	
A) 8 B) 40	C) 16	D) 20	E) 12	
7. The energy transferr [E(t) = 3.5 t + 6.2 t^2 , (in A) 3.5 B) 6	ed to a system as a function J)]. The time rate of this C) 16	on of time is equal to energy (in W) at $t = \frac{D}{42}$: 3.1 s is: E)70	

- The system shown remains at rest.

 The force of friction (in N) on the block on the incline is:
 - A) 4 B) 8
- C) 12
- D) 16 E) 20

- **9.** As a 2.0-kg object moves from $(2\hat{\mathbf{i}} + 5\hat{\mathbf{j}})$ m to $(6\hat{\mathbf{i}} 2\hat{\mathbf{j}})$ m, the constant resultant force acting on it is equal to $(4\hat{\mathbf{i}} 3\hat{\mathbf{j}})$ N. If the speed of the object at the initial position is 4.0 m/s, its kinetic energy (in J) at the final position is:
- (A) 53
- B) 62
- C) 73
- D) 86
- E) 24
- The plot below shows the force on an object as it moves along the x axis. The work (in J) done on the object as it moves from x = 0 m to x = 20 m is:

- A) 40
- B) 90
- **(2)**450
- D) 200
- E) 750
- 11. A box with a weight of 50 N rests on a horizontal surface. A person pulls horizontally on it with a force of 15 N and it does not move. To start it moving, a second person pulls vertically upward on the box. If the coefficient of static friction is 0.4, the smallest vertical force (in N) for which the box moves is:

- A) 12.5
- B 5.5
- C) 20.5
- D) 25.5
- E) 35.5
- A 0.50-kg object moves on a horizontal frictionless circular track with a radius of 2.5 m. An external constant force of 3.0 N, always tangent to the track, causes the object to speed up as it goes around. If the object starts from rest, then at the end of one revolution (دورة) the radial component of the force (in N) of the track on it is:
 - A) 19
- B) 96
- C) 47
- D) 75
- (E) 38

بد در ۱ کس

Fall 2017

$$W_{5}\frac{1}{2}(20)(0.5)^{2}$$

$$\vec{F}_B \cdot \vec{F}_3$$

$$y$$
) $g = \frac{GM}{R^2}$

D)M/R2

E) 2.6

s 40 (0.5) 100 2 fs s 12 N s 20 2020 E) 12 N

7) Ps dw st

Ps 3.5 + 12.4t

~ P@t=3 = 41.94

D) 42

T320N

9)
$$\vec{J}_{s}(6-2)\hat{i} + (-2-5)\hat{j}$$

 $\vec{J}_{s}(6-2)\hat{i} + (-2-5)\hat{j}$
 $\vec{J}_{s}(6-2)\hat{i} + (-2-5)\hat{j}$

$$W = \Delta K E$$
 $37 \cdot K E_2 - \frac{1}{2}(2)(4)^2$
 $K E_2 = 53 \text{ J}$

A) 53

10) contentate the Area

C) 450

الزقم العتسلسل

The University of Jordan **Faculty of Science** Physics Department

General Physics (b0302101) Second Exam Second Semester 2017/2018

Name (in Arabic):

Student ID:

Section:

(Exam duration: 75 minutes)

Note 1: Following are 15 multiple-choice questions. Write the symbol of correct answer in the answers table. Only the answers in the table will be graded.

Note 2: Ignore air resistance in all problems and take $|g| = 9.8 \text{ m/s}^2$ at the Earth's surface.

			1		AUSM	ers	table	e	/		/				
Question number	1	2/	3	4	5	6	A	8	9	10	11	12	13	14	145
Symbol of correct answer	d	9	é	B	d	Ø	0	d	d	0/4	d	9	4	é	6

Q.1: The only three forces that act on a 3-kg particle are as follows: $\vec{F_i} = (2\hat{i} + 3\hat{j})N$,

 $\vec{F}_2 = (\hat{i} + 2\hat{j})N$ and $\vec{F}_3 = (2\hat{i} + 5\hat{k})N$. The magnitude (in m/s²) of the particle's acceleration is:

a. 9.80

(d. 2.89

Q.2: A force $\vec{F} = (6\hat{i} - 2\hat{j})N$ acts on a particle that undergoes a displacement $\Delta \vec{r} = (3\hat{i} - \hat{j})m$. The work (in Joules) done by this force on the particle is:

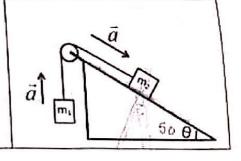
a. 11

b. 14

d. 18

(e:)20

Q.3: A 2-kg hanging mass (m₁) is connected by a string over a pulley to a 20-kg block (m₂) that is sliding on a 50⁰ fixed inclined plane (see the adjacent figure). If the pulley's mass and the mass of the string are negligible, and all surfaces are frictionless, the magnitude of the acceleration (in m/s2) of the moving system is:



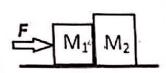
b. 9.80

c. 0.21

d. 1.15

@ 5.93

Q.4: Two blocks $M_1 = 3$ kg and $M_2 = 5$ kg are in contact with each other on a frictionless, horizontal surface, as shown in the adjacent figure. If a horizontal force F = 16 N is applied to M₁, the magnitude (in N) of the contact force between the two blocks is:



(B)4

c. 7

d. 10

e. Zero

Q.5: An object of mass m, speed V and initial kinetic energy Ki. If the speed of the object becomes 3V, then the ratio (K_I/K_I) is:

a)9

b. (1/9)

c. 1

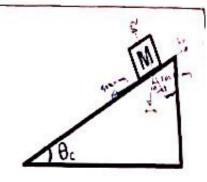
d. 18

e. 81

					m Anna Anna B
.7: A ball of	mass 2 kg is fired s	traight up v	vith an initial spe	eed of 20 m/s. It rise	s to its maximum
all by gravita	itional force throu	s starting p	oint. Neglecting	air resistance, the w	ork (in I) done on the
-22.8	b. 18.6		© Zero	d. 22.8	e18.6
.8: The adja	cent figure shows	a setup of t	hree masses th	at are	
onnected by	three wires. The	whole syste	m is under stat	ic	1.
quilibrium.	f m; = 15 kg, m; =	25 kg and	m, = 60 kg. The	tension (T ₁)	1 1 1
the mst wi	re (measured in t	lewtons) is:		1	me
. 680	b. 588	c.196	OSE(.b)	e. 294	Ar.
					[m ₃]
Q: The sell:	seant flaure at a			1-	
. 200	cent figure show frictionless surfa			7.70	
	spring of negligit				\overline{V}
	The box collides v				ν.
The second secon	sing direction. If				
	mpression (in m)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 20000
0.550	b. 0.219		c. 0.357	1_	PHINNI
0.179	e. 0.742	!	1545-555-551		
).10: True o				2 2 2	20 12 13 30
The work d	one by any conse	rvative forc	e on a particle r	noving through any	closed path is zero"
Taxa		b. False			
True		o, raise			
11. A box 1	with initial speed	V. = 5 m/s s	lides on a roug	h horizontal surface	e. If the coefficient of
				ox before coming t	
		•	-		1 90 -00
. 0.56	b. 2.34		£)1.59	d. 3.14	e. 8.43
L12: A pote	ntial energy funct	ion for a tv	vo-dimensional	force is of the form	n:
I(x,y) = (3	$x^2y - 7x$) J. The	magnitude	of the force (in	N) that acts at the	point (1, 2) m is:
	b. 3.77		c. 9.80	d. 12.65	e. 25.41
.)5.83	D. 3.77		c. 9.60	U. 12.03	
	., .7				
-	4-7				
6 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×)				

Q.6: A 50-kg object slides from rest from point A on the rough track

Q.13: A block of mass M rests on an inclined rough surface. The inclination angle of the surface is increased to θ_c at which point the block becomes on the verge of slipping. The coefficient of static friction of the surface is:

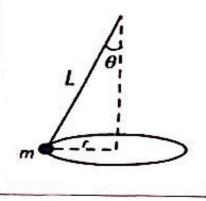


b. $cos(2\theta_c)$

 $c \sin(4\theta_c)$

e. $sin^2(\theta_c)$

Q.14: A small ball of mass m is suspended from a string of length L. The ball revolves with constant speed v in the horizontal circle of radius r as shown in the adjacent figure. If the string makes an angle θ with the vertical direction, the speed v of the ball is given by:



b. $\sqrt{rg}\cos\theta$

c. $\sqrt{rg} \csc \theta$

d. $\sqrt{rg} \cot \theta$

 $e.\sqrt{rg} \tan \theta$

Q.15: A force $\vec{F} = (8\hat{i} + 3\hat{j})$ N acts on a box that is sliding on a floor. At the instant the velocity of the box is $\vec{V} = (3\hat{i} - 2\hat{j})$ m/s, the instantaneous power (in Watts) supplied by this force is:

a. 30

(b.)18

c. 11

d. 55

e.78

Good Luck!!!

Spring 17/18

made - EQN -> 1

A) True

$$\frac{1}{2} ph v^{2}_{i} = (pig) (0.8) (d)$$

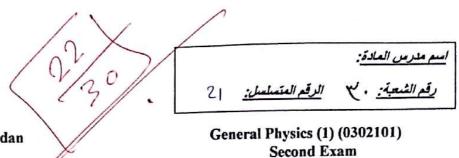
$$\frac{1}{2} mv^{2}_{i} - fnd = 0$$

$$\frac{1}{2} mv^{2}_{i} - fnd = 0$$

$$C) 1.59$$

12)
$$\frac{\partial u}{\partial x} = -(6xy - 7)$$
 $\vec{F}_s(6xy - 7)\hat{i} + (3x^2)\hat{j}$
 $\vec{F}_s(5\hat{i}) + (-3\hat{j})$
 $\frac{\partial u}{\partial y} = -(3x^2)$ $|F| = 5.83$ A) 5.83
13) $f_s = M_s$
 $f_s = M_s$
 $f_s = M_s$
 $f_s = M_s$
 $f_s = M_s$

14) V 5 Trg tand 2020 E) Tro


Fing Fant

* check page '68" from O mas Abbullad notetook

s (8)(3) + (3)(-2)

s 18 wests

13)18

First Semester 2016/2017

The University of Jordan **Faculty of Science Physics Department**

Note 1: Following are 10 multiple-choice questions. Write the symbol of correct answer in the answers' table. Only the answers in the table will be graded.

Note 2: Ignore air resistance in all problems and take $|g| = 9.8 \text{ m/s}^2$ at the Earth's surface.

Note 3: The significant digit notation is not taken into account throughout the given answers.

				1	Ansv	vers	'Ta	ble					,		
Question Number	X	2	3	4	5/	6	7	8	9	10	11	12/	13/	14	15
Symbol of Correct Answer	b	Ь	C	e	b	e	d	Ь	9	b	e	c	c	9	a

Q.1: A force $\vec{F} = (2\hat{i} - \hat{j})N$ acts on an object. The work (in J) that this force does as the object moves from the origin (0, 0, 0) to the point (13, 11, 0) m is: [Hint: the displacement of the particle is: $\Delta \vec{r} = (13\hat{i} + 11\hat{j})m$] b. 26 a. 246 c. 37 d. 15 e. 100

Q.2: The work performed as a function of time for a process is given by $W = at^3$, where $a = 2.4 \text{ J/s}^3$.

The instantaneous power output (measured in W) at $t = 8.7 \,\mathrm{sec}$ is:

a.138

b. 545

c. 125

d. 207

Figure A

e. 912

Q.3: In the adjacent figure, two identical ideal massless springs have unstretched lengths of 0.25 m and spring constants of 550 N/m. The springs are attached to a small cube and stretched to a length L of 0.30 m as in Figure A. An external force P pulls the cube a distance D = 0.020 m to the right and holds it there. (See Figure B.) The external force P, that holds the cube in place in Figure B, is: a. 34 N b. 45 N c. 28 N

d. 22 N

e. 11 N

Figure B

Q.4: A force $F = bx^3$ acts in the x direction, where the value of b is 3.7 N/m³. The work (in J) done by this force in moving an object from x = 0.00 m to x = 2.6 m is:

a. 98.4

c. 50.4

d. 9.8

Q.5: In the adjacent figure, a block of mass M hangs at rest. The rope that is fastened to the wall is horizontal and has a tension off 52 N. The rope that is fastened to the ceiling has a tension of 104 N, and makes an angle θ with the ceiling. The angle θ (measured in degrees) is: Μ e. 15° d. 85° b. 60° a. 55 ° c. 30° Q.6: A weight $W_1 = 20 \text{ N}$ rests on a second weight $W_2 = 50 \text{ N}$ on a perfectly smooth horizontal floor as shown in the adjacent figure. When a horizontal force F = 15 N is applied on the lower box (see adjacent figure), both boxes move together. The magnitude (in N) and direction of the net external force on the upper box is: a. 6.48 N to the right b. 6.48 N to the left W2 d. 4.28 N to the right c. 4.28 N to the left e. Zero Q.7: A 5.00-kg box slides 9.00 m across a horizontal floor before coming to rest. If the box had an initial speed of 3.00 m/s, then, the coefficient of kinetic friction (μ_K) between the floor and the box is: e. 0.115 d. 0.051 c. 0.321 b. 0.587 a. 0.412 Q.8: A system comprising blocks, a light frictionless pulley, a frictionless incline, and connecting ropes is shown in the adjacent figure. The 9.0-kg block accelerates downward when the system is released from rest. The tension in the rope connecting the 6.0-kg block and the 4.0-kg block (measured in N) is: 9.0 kg 30 e. 60 d. 99 c. 42 b. 12 a. 80 Q.9: Two objects are connected by a very light flexible string that passes over a very light and frictionless pulley as shown in the adjacent figure. Neglecting air resistance. If M = 0.60 kg and m = 0.40 kg, the tension in the string (measured in N) is: e. 19 d. 9.8 c. 14.3 b. 21.1 a. 4.7 O.10: True or False: "The action and reaction forces are equal in magnitude, opposite in direction and act on the same objects" False

Q-12: Planet X h				
spin rate 1/2 that	of Earth. With g rep	/3 that of Earth, a radiu presenting, as usual, the ity on the surface of pl	us equal to 1/3 that of Ear e acceleration due to grav lanet X is:	th, and an axial rity on the surfac
a. g/3	b. g/9	c. 3g	d. 6g	e. 9g
a. 93.7	b. 76.7	€ 48.6	d. 28.2	e. 36.8
connected by the	ent figure shows a seree wires. The whole	etup of three masses that	at are equilibrium. If	e. 36.8
$m_1 = 10 \text{ kg, } m_2 = 10 \text$		kg, The tension (T_1) in	the first wire	T ₂
ā.]980 1	b. 518 c.	294 d. 426	e. 686	M ₂
		1 1 1 1		

Good Luck!!!

Fall 16/17

2)
$$P_{int} = \frac{Jw}{Jt}$$

$$= 7.2 t^{2}$$

$$P_{int} = 8.7 - 5$$

3)

$$P = \frac{4}{100} (550)$$
 $P_{5} 22$

$$w = \int_{0}^{2.6} 3.7x^{3} dx = 42.27$$

11)
$$\frac{V_A}{T_A^2} = \frac{V_B}{T_B^2}$$

$$\frac{\sqrt{3}}{(15)^2} = \frac{64\sqrt{3}}{T_B}$$

$$T_B = 120 \text{ Jeays}$$

E) 39

$$F_{5} \frac{G \frac{m}{3}}{\frac{r^{2}}{q}} = \frac{3GM}{r^{2}} \times \frac{3g}{r^{2}}$$

$$T_{1} = (10+20+70)(9.8)$$

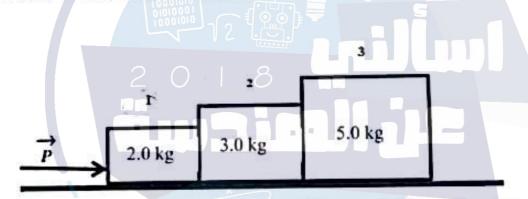
$$T_{1} = 980$$

$$A)980$$

Take $g = 9.8 \text{ m/s}^2$ and $G = 6.7 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$.

"Fill in the Table at the END with your answers, using CAPITAL letters ONLY.

Q1) Only two forces act on a 5.0-kg mass. These are $F_1 = (2i - 4j)$ N and $F_2 = (3i - 6j)$ N. The magnitude of the resulting acceleration (in m/s2) is:


- (A) 1.0
- (B) 2.0
- (C) 5.0
- (D) 0.22 (E) 2.2

Q2) A 5.0-kg mass is suspended (غانت) by a string from the ceiling (عنن) of an elevator. The tension in the string is 50 N. The acceleration (in m/s²) of the elevator is:

(A) 9.8, downward (B) 9.8, upward (C) 0.20, upward (D) 2.0, upward

(E) 2.0, downward

Q3)

In the above figure, the surfaces are frictionless and force P = 10 N. The magnitude of the force (in N) exerted (المؤثّرة) on block 1 by block 2 is:

- (A) 10
- (B) 8.0
- (C) 6.0
- (D) 4.0
- (E) 2.0

Q4) A block is released from rest on a 300-incline and slides 9.0 m in 3.0 s. What is the coefficient of kinetic friction between the block and the surface of the incline?

- (A) 0.17
- (B) 0.81
- (C) 0.34
- (D) 0.28
- (E) 0.22

Q5) A mass of 1.0 kg, attached to the end of a string, swings in a vertical circle of tadius 2.0 m. When the mass is at the lowest point of the circle, its speed is 10 m/s. The tension (in N) in the string at this point is:

(A) 60

(B) 40

(C) 30

(D) 20

(E) 10

Q6) A point is at a distance 4Rs above the surface of the Earth (Rs being the Earth's radius which you need not know). The magnitude of the free-fall acceleration (in m/s2) at this pont is:

(A) 9.8

(B) 2.0

(C) 2.5

(D) 0.39

(E) 0.61

Q7) The initial velocity of a 5.0-kg particle is (2.0i - 5.0j) m/s. After t s, the velocity becomes ((5.0i - 6.0j) m/s. The work done (in J) by the resultant force during this time interval is:

(A) zero

(B) 100

(C) 80

(D) 10

(E) 425

Q8) A particle moves along the x-axis. It is acted upon by a force F. (in N) that varies with position x (in m) as shown in the graph below. What work (in J) is done by this force as the particle moves from x = 2 m to x = 12 m?

(A) + 40

(B) -30

(C) +30

(D) -10

(E) + 10

 $F_s(N)$ 20 10 ø

Q9) A 1.0-kg block slides (يَنزلق) down a 30°-incline at a constant speed of 10 m/s. At what rate (in W) is work done on the block by the gravitational force?

(A) + 49

(B) -98

(C) zero

(D) + 100

(E) -100

Q10)

In the above figure, the system is released from rest with the spring in its equilibrium position. The pulley and the horizontal surface are frictionless. If the spring constant k = 600 N/m and M = 5.0 kg, what is the maximum extension (hairless) (in cm) of the spring?

Q11) A 5.0-kg particle is dropped from rest. After falling a distance of 100 m, it has a speed of 25 m/s. What is the work done (in kJ) by the nonconservative air-resistive force on the particle during this fall?

$$(A) + 2.0$$

$$(B) -2.5$$

$$(D) -3.3$$

$$(E) - 3.9$$

Q12) The potential energy function for a certain system is given (in J) by the expression $U(x,y) = x^2y^4 - 4x + 3y$, where x and y are in m. The magnitude of the corresponding force (in N) at x = 1.0 m and y = 1.0 m is:

Fill in the Table below with your answers, using CAPITAL letters ONLY:

V	V	Y	V		J	/	~		,
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	09	1 010
E	C	E	A	A	E	C	C	Δ	10
				QII	Q12				<i></i>
				0	E	7			
				V	V				

1)
$$F_{eq} = (2+3)\hat{i} + (-10)\hat{j}$$
 $a > 5 > 2.23$
 $|F| > 5\sqrt{5}$
 $F > ma$
 $5\sqrt{5} > 8a$

2) $T - mg > ma$
 $50 - 49 < 5a$
 $a > 0.2$

2) $P > (2+3+10)$
 $P > (2+3+5)$
 $a > 10 - F_{21} > 2(1)$
 $a > 10 > 100$
 $a > 2 > 10 > 100$
 $a > 2 > 10 > 34$
 $a > 2 > 10 > 100$
 $a > 2 > 10 > 100$
 $a > 2 > 100 > 100$
 $a > 2 > 100 > 34$

T 560

A) 60

$$9^{*} \le \frac{GM}{(4r+r)^{2}} \le \frac{GM}{25r^{2}}$$

$$g^* = \frac{9.8}{25} \le 0.392$$

$$\frac{1}{2}(4)(20) - \frac{1}{2}(2)(10) \le 30 - 40 = -10$$

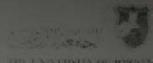
11)
$$mgh + W + \frac{1}{2}mv^{2}$$

$$4900 + W + \frac{1562.5}{5}$$

$$W = -3.33 + 5$$

$$W = -3.33 + 5$$

$$(12) F_{x} = \frac{\partial U}{\partial x} = 2xy^{4} - 4$$


$$\vec{F}$$
, $(2xy^2-4)\hat{i} + (4x^2y^3+3)\hat{j}$

$$\vec{F} = -2\hat{i} + 7\hat{j} = 0$$

0) - 3.3

1.

THE UNIVERSITY OF JORDAN Pysics DEPARTMENT

GENERAL PHYSICS I (0302101) / SECOND EXAM / AUG 6th 2016

SUMMER SEMESTER 2015/2016

الوقع الجامعي: م العدرس! رقم الشعبة 09 05 02 Q10 Q6 Q3 QII 04 012 HE FOLLOWING QUESTIONS A mass of 25 kg is acted on by two forces: force F1 is 25 N due east, and force F2 is 15 N due north. The magnitude of the acceleration (in m/s²) of the mass is: (1) 2.41 1.17 3.63 4.26 2.15 A 0.20-kg object attached to the end of a string swings in a vertical circle (radius = 80 cm). At the top of the circle the speed of the object is 4.5 m/s. The magnitude of the tension (in N) in the string at this position is 3.1 c) 6.4 d) (6)

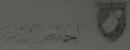
3 A force accelerates a body of mass M. The same force applied to a second body produces three times the acceleration. The mass of the second body is:

3M c) M/3 d) 9M M/9

It takes 32.0 J of work to stretch a spring 20.0 cm from its unstressed length. The extra work (in J) 4. required to stretch the spring an additional 10.0 cm is:

14 c) 40 51 8)

5. The required work (in kJ) for a 2000 kg car moving on a horizontal road to increase its velocity from (2i + 3j) m/s to (5i + 12j) m/s is:


426.3 (a) 312 d) 243 182 c) b)

A constant resultant force of (2i + 5j) N affects an object and causes it to move with constant velocity of 4j m/s. The power (in Watts) required for this process is:

17 (a)) 28 c) 42 d) 12 c)

50+ Contractions

a)	0.31	b)	1.0	(c)	Zero			e)	0.1
A force	e acting on an ork (in Joules)	object movi done by this	ng along I s force as	the x axis	s is given	by F = (from x =	14 x - 3.0 - 1 m to	x^2) N, w x = 2 m	here x is in i
<u> </u>	12	b)	28	c)	40	d)	42	e)	- 28
A 2.0 Ignorii ground	kg mass is pro	jected from ce, the kineti	the edge of conergy (if the top (in kilo J	of a 20 r oules) of	n tall bui the mass	lding with	a veloc re it strik	ity of 24 m/s es the levele
a)	0.18	(b)	0.97	c)	0.89	d)	0.26	e)	0:4
A 700 His po	N university s wer output (in	tudent in bar Watts) is:	sie trainin	g climbs	a 10.0 m	vertical	rope at a	constant	speed in 8.0
g)	560	b)	600	c)	900	d)	700	(0)	875
A pote I = 31	ential energy y – Zx. The f (-7, 3)	b)	(3, -7)	at act at	(7, -3)	at (1, 0)	are: (-3, 7)		(0, 0)
A pote J = 3x) The fig	y-7x. The f	b) ots the total	(3, -7) accelera	at act at (i) tion of a	(7, -3)	at (1, ()) d) e movir	(-3, 7)	ise in a	
A pote I = 3r () The fig (50 m	y -7x. The f (-7, 3) rure represer at a certain t	b) ots the total	(3, -7) accelera	at act at (i) tion of a	(7, -3)	at (1, ()) d) e movir	(-3, 7) (g clocky tion (in)	ise in a	circle of ra-
A pote (4 = 31) The fig (50 m)	y -7x. The f (-7, 3) (ure represer at a certain t 13 5.7 7.5 Zero	b) ots the total	(3, -7) accelera	at act at (i) tion of a	(7, -3)	at (1, ()) d) e movir	(-3, 7) (g clocky tion (in)	rise in a m/s!) is:	circle of ra-
A pote I = 3r) The fig 50 m	%y −7x. The f (-7, 3) (ure represer at a certain t 13 5.7 7.5	b) ots the total	(3, -7) accelera	at act at (i) tion of a	the poir (7, -3) a particle agential	at (1, ()) d) e movir	(-3, 7) (g clocky tion (in)	rise in a m/s!) is:	circle of ra-
A pote (4 = 31) The fig (50 m)	y -7x. The f (-7, 3) (ure represer at a certain t 13 5.7 7.5 Zero	b) ots the total	(3, -7) accelera	at act at (i) tion of a	the poir (7, -3) a particle agential	at (1, 0) d) d) e movir accelera	(-3, 7) ag clocky ation (in)	rise in a m/si) is:	circle of ra-

Summer 15/16

1)
$$V = \frac{15}{5} = \frac{15^2 + 25^2}{5} = \frac{15^2 + 25^2}{5} = \frac{15}{5} = \frac{15}{$$

A) 1.17

$$T = 3.0625$$

T = 3.0625

$$m = \frac{M}{3}$$

B) 3.1

4)
$$w = \frac{1}{2} (1600) (\frac{q}{100} - \frac{4}{100})$$

$$32 = \frac{1}{2} (1600) (\frac{q}{100} - \frac{4}{100})$$

$$w = 40$$

$$W = \frac{1}{2} (1600) \left(\frac{9}{100} - \frac{4}{100} \right)$$

5)
$$V_{f} = 169$$

$$V_{i} = 13$$

$$W_{s} = \frac{1}{2}(2000)(169 - 13)$$

$$W_{s} = 1560005$$

6)
$$P_s F_{,v}$$

 $P = 2(0) + 5(4) +$

8) Ws
$$\int F.dx$$

$$= \int 14x - 3x^{3} dx$$

= 12

10)
$$P \leq \frac{w}{t} \leq \frac{mg \Delta x}{t}$$

$$P = (700)(10)$$

E) 875

11)
$$F_{x} = -\frac{\partial u}{\partial x} = -(9x_{y}^{2} - 7) \otimes (1,0) = 7$$

$$F_{y} = \frac{\partial u}{\partial y} = \frac{(3x^{3})}{(3x^{3})} (3(1,0)) = \frac{(7,-3)}{(7,-3)}$$

12) at s a sin 30 material [12]

c) 7.5

The University of Jordan / Department of Physics First Semester 2015/2016 Physics 101/ Second Exam

Student name (بالعربية):_

KEY__

Section number : ____

Lectu	irer nan	ne :					Studer	nt numbe	er :		
V	Som	e helpful	l informa	tion: gra	vitational	accel	eration g	$= 9.8 \ m$	$/s^2$		
desk.	Calcula	ators car	not be sh	nared. Yo	ou have <u>7</u>	<u> 5 min</u>	utes to c	omplete	alculator your exanthe exam.	m.	own
	A	В	С	D	Е		A	В	С	D	Е
1						7					
2						8					
3						9					
4						10					
5						11					
6						12					
2.	(A) 2.5 An obtathe obtained	8 ject of ma	(B) 5.1 ass 4.0-kg all to 38 N	is placed	s the accel	f an ele leration	evator flo	evator (ii	(E) 12 force exern m/s ²)? rd (E) 0.3	-	_
3.	it from	the poin	t (2m, -1n		point (4m,	-3m).	What is the		g on a part done by the		
	(A) 60)	(B) 40		(C) 30		(D) 80		(E) 70		
4.	the lov	west poin	t in the sv	ving the t	_	the str	ing is equ	ual to 20	a string (l N. To whan?	_	
	(A) 36	i	(B) 20		(C) 30		(D) 28		(E) 17		
5.	-	_					-		s lower er 0 kg bloc		•

compressed (مضغوط) spring. The system is then released from rest. How far above the point of

(D) 15

(E) 25

(C) 10

(A) 20

release will the block rise (in cm)?

(B) 31

6. A potential energy function for a two-dimensional force is of the form $U = 3x^2y$. Find the force that acts at the point (1, 1).

(A) $\vec{F} = -12\hat{i} - 3\hat{j}$ (B) $\vec{F} = -6\hat{j}$ (C) $\vec{F} = -24\hat{i} - 12\hat{j}$ (D) $\vec{F} = -6\hat{i} - 3\hat{j}$ (E) $\vec{F} = -6\hat{i}$

7. A 6.0-kg block slides along a horizontal surface. If μ_k = 0.20 for the block and surface, at what rate is the friction force doing work on the block (in W) at an instant when its speed is 4.0 m/s?

(A) - 63

(B) -47

(C) + 50

(D) + 25

(E) -55

8. A particle of mass (1.5 kg) is moving on the x-axis with an acceleration given as $a = (6.0x + 5.0) m/s^2$, What is the speed of the particle in (m/s) at the moment it reaches

x = 4.0 m, given that the particle started motion from origin with initial velocity 2.0 m/s?

(A) 10.1

(B) 14.7

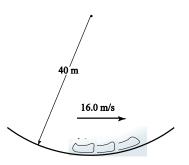
(C) 11.8

(D) 13.1

(E) 9.5

9. An airplane moves at constant speed of 140 m/s as it travels around a vertical circular loop which has a 1.0-km radius. What is the magnitude of the net force causing the centripetal acceleration on the 71-kg pilot (in N)?

(A) 1000


(B) 1392

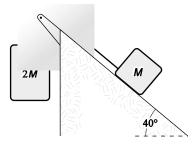
(C) 1200

(D) 1310

(E) 1022

10. A roller-coaster car has a mass of 400 kg when fully loaded with passengers (ركاب). At the bottom of a circular dip of radius 40 m (as shown in the figure) the car has a speed of 16 m/s. What is the magnitude of the force the track exerts on the car at the bottom of the dip (in kN)?

(A) 10.1


(B) 9.7

(C) 8.1

(D) 13.1

(E) 6.5

11. What is the magnitude of the tension in the string (in N) if M = 2.0 kgin the figure shown? Assume the surface is frictionless.

(A) 21.

(B) 19.7

(C) 32.2

(D) 42.9

(E) 56.5

12. A box of mass (42 kg) is placed on top of a rough horizontal surface whose coefficients of friction are $(\mu_s = 0.6, \mu_k = 0.4)$. If a man tried to push the box by applying a force of (210 N),

what would be the magnitude of the friction force (in N)?

(A) 210

(B) 247

(C) 220

(D) 165

(E) 230

Fall 15/16

1)
$$F = (21 + 39\cos(45))\hat{i} + (39\cos(45))\hat{j}$$

$$a = 5.07$$

$$\frac{20-15}{2} = \frac{(15)^{2}}{2}$$

$$V^2 \leq \frac{20}{3}$$

$$\frac{1}{2}\frac{20}{3}$$
, 10 h

5)
$$\frac{1}{2} K x^2 = mgh$$

 $\frac{1}{2} (600) (-0.2)^2 s 4 (9.8) h$

University of Jordan Faculty of Science Department of Physics

Date: 31/12/2013 **First Semester**

Time: 4:00 - 5:00 pm

General Physics I – PHYS. 0302101 **Makeup Second Exam**

Name (In Arabic): **KEY ANSWER Instructor: Student Number: Section:**

Constants: $g = 9.8 \text{ m/s}^2$

- Choose the closest correct answer and fill the Answer Table.

(O1) A 0.5-kg mass attached to the end of a string swings in a vertical circle of radius equals 2.0 m. When the mass is at the lowest point on the circle, the speed of the mass is 12 m/s. The magnitude of the force (in N) of the string on the mass at this position is:

(B) 36; **(A)** 31;

(C) 41; **(D)** 46;

(E) 57;

(Q2) A particle moves in a circular path with constant speed. Its acceleration is:

(B) constantly increasing; (**A**) Zero:

(C) constant in direction;

(**D**) constant in magnitude and direction;

(E) constant in magnitude;

(Q3) A 2.0-kg particle has an initial velocity of $(5\hat{i}-4\hat{j})$ m/s. Sometime later, its velocity is $(7\hat{i}+3\hat{i})$ m/s. How much work was done by the resultant force during this time interval. assuming no energy (in J) is lost in the process?

(A) 17;

(B) 34;

(C) 19:

(D) 53;

(E) 27;

(Q4) Equal amounts of work are performed on two bodies, A and B, initially at rest, and of masses M and 2M respectively. The relation between their speeds immediately after the work has been done on them is:

(A) $v_B = \sqrt{2}v_A$; (B) $v_B = 2 v_A$; (C) $v_A = v_B$; (D) $v_A = \sqrt{2}v_B$;

(E) $v_A = 2 v_B$;

(Q5) A pendulum is made by letting a 2.0-kg object swing at the end of a string that has a length of 1.5 m. The maximum angle the string makes with the vertical as the pendulum swings is 30°. If air resistance is neglected, the speed (in m/s) of the object at the lowest point in its trajectory is:

(A) 1.6;

(B) 2.0;

(C) 2.5;

(D) 2.7;

(E) 3.1;

(Q6) A 10-N force acts on a 2.0-kg object initially at rest. The rate at which the force is doing work (in *Watt*) at time t = 2.0 sec is:

(A) 900;

(B) 200;

(C) 500;

(D) 400;

(E) 100;

(Q7) In a given displacement of a particle, its kinetic energy increases by 25 J while its potential energy decreases by 10 J. The work (in J) of the non-conservative forces acting on the particle during this displacement is:

(A) - 15;

(B) +35;

(C) + 15:

(D) -35;

(E) +55;

	~	itial velocity of (4 $\hat{i} + 3 \hat{j}$) m/s. The	3 /		
$(A) - 24 \hat{1}$;	(B) 24 î;	(C) $+18\hat{j}$;	(D) $-18\hat{j}$;	$(E) - 16 \hat{i};$	
	ks to an 8.0-kg ob	with a velocity of 5.0 ject initially at rest.	-		
(A) 15;	(B) 30;	(C) 25;	(D) 20;	(E) 5;	
		d player has an ini The turntable com			

Through how many radians does the turntable rotate after being turned off? Assume constant angular acceleration.

(A) 12; (B) 8.0; (C) 10; (D) 16; (E) 6.8;

(Q11) Two points A and B are located on a disk that rotates about its axis. Point A is four times as far from the axis as point B. If the tangential speed of point B is equal to v, then the tangential speed of point A is:

(A) v; **(B)** 4v; **(C)** 3v; **(D)** 2v; **(E)** 5v;

(Q12) Two particles ($m_1 = 0.20 \ kg$, $m_2 = 0.30 \ kg$) are positioned at the ends of a 2.0-m long rod of negligible mass. The moment of inertia (in $kg.m^2$) of this system about an axis perpendicular to the rod and through the center of mass is:

(A) 0.38; (B) 0.75; (C) 1.2; (D) 0.48; (E) 1.7;

-Answer Table-Fill the appropriate square of the correct answer with (X).

Q's	A	В	C	D	E	Q's	A	В	C	D	E
1						7					
2						8					
3						9					
4						10					
5						11					
6						12					

First Semester (2013) - Makeup second Exam.

Q:m = 0.5 Kg

r = 2 m

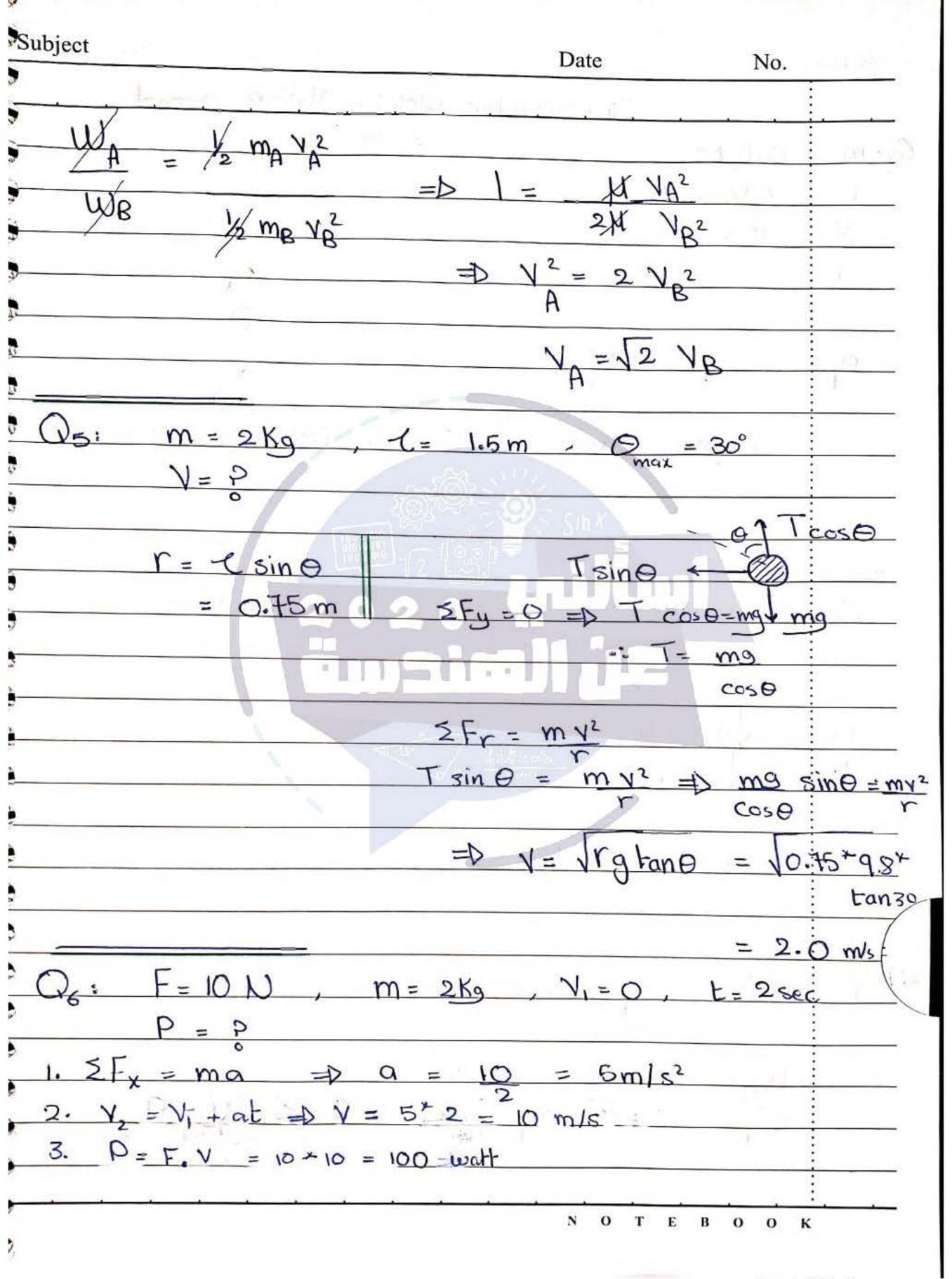
V = 12m/s

F= P

ZF = my2

 $my^2 = T = 0.5*(12)^2 + 0.5*9.8$

= 41 N


m= 2kg = V1 = (5i-4j) m/s W= ?

Y2=(7i+3j)m/s

 $|V_1| = \sqrt{(5)^2 + (4)^2} = 6.4$

|Y2|= V(7)+ (3)2 = 7.6

W = DKE = 1 m (V2 - V,2) = 1 (x) (4.6)2 - (6.4)2) 17 T

$$W = DKE + DU$$

= 25 - 10 = +15 T

$$Q_{8i}$$
- $m = 3 \text{ Kg}$, $V_1 = (4i + 3j) \text{ m/s}$, $\overline{I} = 2$

$$\vec{T} = m(\vec{v}_2 - \vec{v}_1)$$

= 3 (-4i+3j-4i-3j)
= 3 (-8i) = -24i D.s

$$Q_q :- m_{R} = 2K_g$$
, $V_1 = 5m/s$, $\Delta KE = \frac{2}{s}$
 $m_{g} = 8K_g$, $V_{1} = 0$

$$m_{A}V_{A_{1}} + m_{B}V_{B_{1}} = (m_{A} + m_{B}) V_{2}$$

$$\Delta KE = K_{p} - K_{1}$$

$$= \frac{1}{2} (m_{A} + m_{B}) V_{2}^{2} - (\frac{1}{2} m_{A} V_{2}^{2} + \frac{1}{2} m_{B} V_{B}^{2})$$

$$=\frac{1}{2}(10)(1)^{2}-\frac{1*2*25}{2}=-20J$$

University of Jordan Faculty of Science Department of Physics

Date: 14/12/2013 First Semester

Time: 4:00 – 5:00 pm

General Physics I – PHYS. 0302101 Second Exam

Name (In Arabic): KEY ANSWER
Student Number:

Section:

Constants: $g = 9.8 \text{ m/s}^2$

(Q1) An airplane moves 100 m/s as it travels around a vertical circular loop which has a 1.0-km radius. The magnitude of the resultant force (in kN) on the 70-kg pilot of this plane at the bottom of this loop is:

(A) 0.70; (B) 1.37; (C) 2.1; (D) 1.3; (E) 1.58;

(Q2) An object (a) of mass m flies in a horizontal circle of radius R at a speed v. Another object (b) has the same mass m and flies in a horizontal circle of radius R at a speed of v/2. Then the ratio of the centripetal acceleration of the object (a) to that of object (b) is:

(A) 0.25; (B) 0.5; (C) 1.0; (D) 2.0; (E) 4.0;

(Q3) Single conservative force acting on an object moving along the x axis is given by: $F_x = (14 \ x - 3 \ x^2) \ N$, where x is in m. The Change in potential energy ΔU (in J) done by this force as the object moves from $x = -1 \ m$ to $x = +2 \ m$ is:

(A) - 20.1; (B) + 38.0; (C) - 12.0; (D) + 16.0; (E) - 28.0;

(Q4) A 12-kg block on a horizontal frictionless surface is attached to a light spring (force constant = 700 N/m). The block is initially at rest at its equilibrium position when a force of magnitude 80 N acting parallel to the surface is applied to the block. The speed (in m/s) of the block when it is 13 cm from its equilibrium position is:

(A) 0.55; (B) 0.68; (C) 0.78; (D) 0.86; (E) 0.90;

(Q5) A constant force of 10 N in the negative y direction acts on a particle as it moves from the origin to the point $(3\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 1\hat{\mathbf{k}})$ m. The work (in J) done by the given force during this displacement is:

(A) -45; **(B)** -30; **(C)** -60; **(D)** +30; **(E)** +12;

(Q6) A 2.0-kg block slides down a plane (inclined at 40° with the horizontal) at a constant speed of 5.0 m/s. The Power (in W) at which the gravitational force doing on the block is:

(A) zero; (B) - 55.2; (C) + 78.7; (D) + 94.5; (E) + 63.0;

^{*} Choose the closest correct answer and fill the Answer Table.

g particle is located center of mass of the	I at $(-2, -2)$ m. Ye three-particle	Where a 20 g part system is at the C	g particle is located a cicle must be placed (in prigin? (D) (-3,-14);	n m) so that the		
(Q8) A 2.0-kg object during the	ect is moving al ime interval. Th is time interval	ong the x-axis. It e magnitude of th	as speed increases from the average total force (D) 5.0;	m 30 m/s to 40		
(A) 2.0; (Q9) A ball falls t conserved in the ba (A) only if $h > H$; (D) only if $h \le H$;	ll-earth system (B)		bounces to height h . (C) only if $h = \frac{1}{2}$. Momentum is		
	of 2.0 <i>rad/s</i> . T	Γwo seconds later				
(Q11) A wheel rotating about a fixed axis has an angular position given by $\theta = 3 - 2t^3$, where θ is measured in radians and t in seconds. The angular velocity (in rad/s) of the wheel at $t = 2.0$ s is:						
uniformly by angul circumference of th	a radius of 2 ar acceleration	.0 m whose more	(D) -62 ; ment of inertia is 50 net force (in N) acting (D) 135;	$kg.m^2$ rotates		
(A) /3; (E) 100;	(C) 113;	(D) 133;	(E) 130 ;		
		Answer Tal	ole			

Answer Table Fill the appropriate square of the correct answer with (X).

Q's	A	В	C	D	E	Q's	A	В	C	D	E
1						7					
2						8					
3						9					
4						10					
5						11					
6						12					

First semester (2013) - Second Exam

$$Q_{18}$$
 = 100 m/s, $r = 1 \text{ Km} = 10^3 \text{ m}$

$$= \frac{70 * (100)^2}{1000} = \frac{7000}{1000} = 0.7 \text{ KN}$$

$$\begin{vmatrix} a = V^2 \\ c \end{vmatrix} \neq \begin{vmatrix} a - V^2 \\ R \end{vmatrix} = \begin{vmatrix} A - V^2 \\ R \end{vmatrix} = \begin{vmatrix} A - V^2 \\ R \end{vmatrix}$$

Subject		Date	No.	
Q28-	$F_{x} = (14x - 3x^{2})N$	All la		
		Supply Supply		
	AU = 2			- 7
	$X=-1 \rightarrow X=2$		172	
	2	2		:
)	$DU = -\int F_x dx =$	- (14x-3x2 dx		
)		2		
	(1)	- (7x2-X3)		
				:
		120-0-171	(()-	
		= -(28-8-(7))	10	•
		- (20 - 6) =	- 12	•

Scanned with CamScanner

Q4 : m = 12 kg K=700, N=0, F=80 X=0.13m

W= 1Kx2 + 1mv2

=0.13+ 80

 $= \frac{1}{2}(400)(0.13)^2 + \frac{1}{2}(15)V^2$

= 10.4T

=D V = 0.86 m/s

W=

8 = 40° m = 2 Kg

19.6 N

F. y coso

mg cos40:

= 19.6+5 * cos(50)

+63 Watt

Subject No. Date a =- ma = 0.03kg at r=(3,4) b = mb=0.04Kg at r=1-2,-2) Co m=0.02 kg at r= 22 X ,y = (0,0) Xcm = maray + mbrby + mercx mat Mb + MC 0.01 + 0.02 rex -0.5 = r Yom = ma Tay + mb Tby + marcy ma+mb+me 0.04 + 0.02 Ry - 0.5, -2 1, = 30 m/s, V2 = 40m/s m= 2 kg t = 5s IF = ma Vz= V1+ at

= 2 * 2

= 4N

N O T E B O O F

40=30+5a => a= 2 m/s2

Subject

Date

No.

 Q_{108} $w_1 = 2 \text{ rad/s}, \quad E_2 = 2, \quad N=5$

$$0 = 5 * 1211 = 1011 rad$$

$$0 = \omega_i t + \frac{1}{2} \alpha t^2$$

$$\alpha = 13.7 \text{ rad}/\text{S}^2$$

$$Q_{18} = 3 - 2t^{3}$$
 $t = 2$

$$\omega = d\theta = -6t^2$$

$$|w| = -6(4) = -24 \text{ rad/s}$$
 $t=2$

$$Q_{128} = r = 2m$$
, $I = 50 \text{ kg.m}^2$, $\alpha = 6 \text{ rad/s}^2$
 $F = 9$

Q6 = If an object is moving in constant velocity,
on a circular path which radius (r = 0.01m), and it's
angular velocity (5 rev./sec.) then in find acceleration.

Q73- Find I (I for one object = ML2).

0.8 2m 2m 0.3

O88- If an object (7kg) is moving with velocity (21+95) Find it's momentum (magnitude)
Tind angular velocity ?? (57) 15m
QIDE An object is moving with angular velocity (20 rad/s) and after (5 sec.) the angular velocity (12 rad/s) Find angular displacement?
(V1=49 m/s, V2=-6.5 m/s) They collide and start moving as one object Find their velocity after collision??
CD12 & Find I about 0 The standard of the

```
** Solu. Is- OP = Favg. Dt (mVp-mVi)
         =7 2234(0) - 2234(25) = Favy #0.26 (Favy = 2.1 *105)
* Solu. 2 g-
              1200 rev. # 1 min. # 2II = 1256.6 rad/s.
                  we= wi+ xt
            =7 12 56.6 = 0 +10.5 (X) =7 | X = 120 rad /31/
Solu.3 & 0 = 3-263
                w = -6t^2 / | x = -12t = | x | = -12 \text{ rad/s}^2
## Solu.4 & AP = Favg. At
                                        -18 m/s ____ Dt =0.11 s.
             myg-mVi = Fag. Dt
            22 (-18-31) = F*0.11 =7/F=-9800 N.
* Solu. 5 g.
              T=IX
                               Vi Vi= wi+tol
                 =945
                                  150=0+100
                = 45 kg. m2
                                      d= 5rad/s2
Solu. 6 8
                 V=rw
                                  1 W=5A
                 V = 0.01 + 31.4
                  = 0.314 m/sec.
           a_t = \frac{V^2}{V} = \frac{0.314^2}{0.314^2} = \frac{9.86 \text{ m/s}^2}{1}
** Solu. 7 g- I=I,+ I2
                 = \frac{M_1L^2}{3} + \frac{M_2L^2}{3} = \frac{2^2}{3}(0.8 + 0.3)
                = 1.47 kg · m2 >
```

Sol. 8 & -
$$QP = mV$$

= $7(8\hat{c} - P\hat{c}) = 56\hat{c} + 63\hat{c}$
 $P = \sqrt{56^2 + 63^2} = 84.3 \text{ kg. m}$

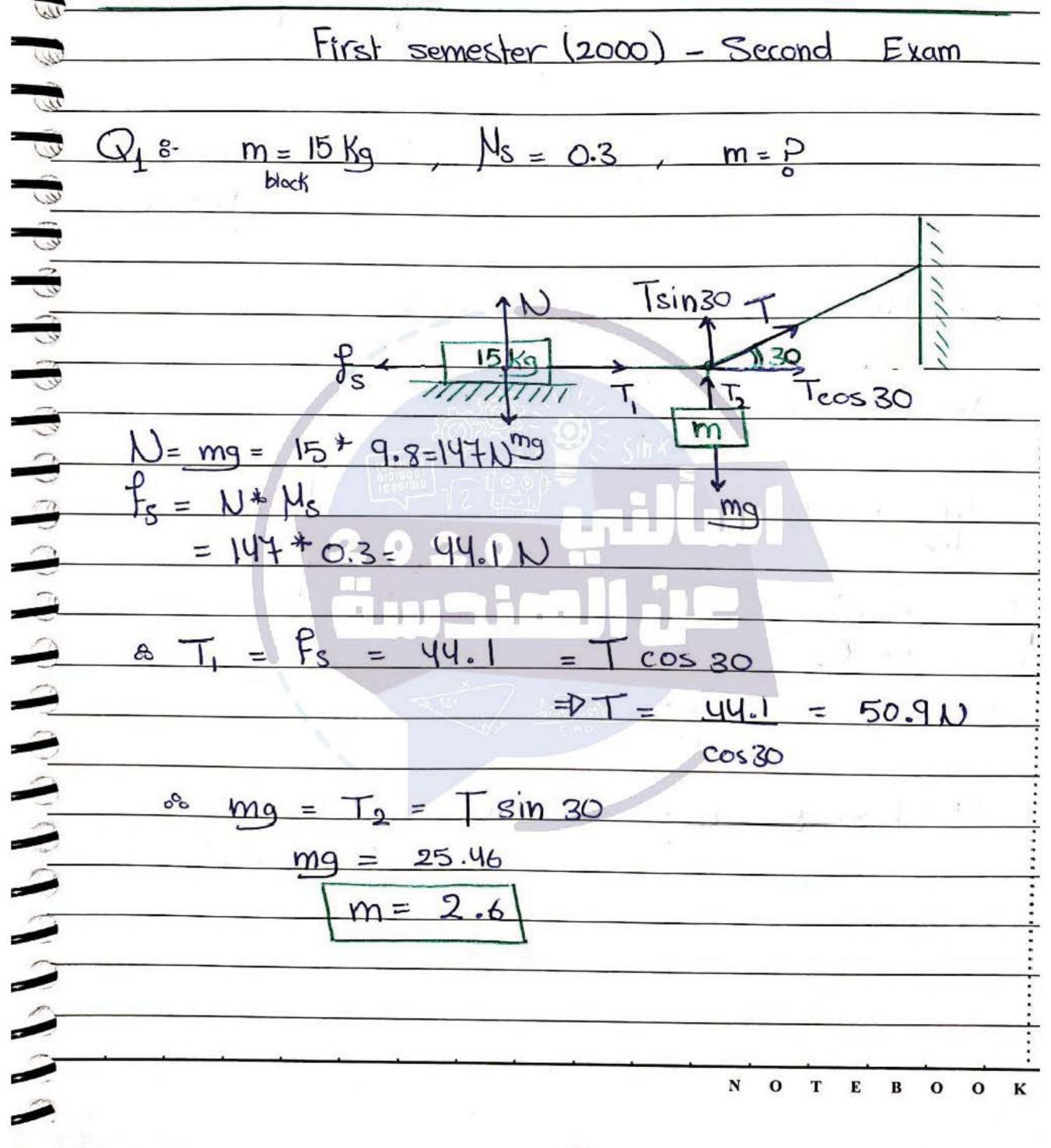
Solu. 9 ?

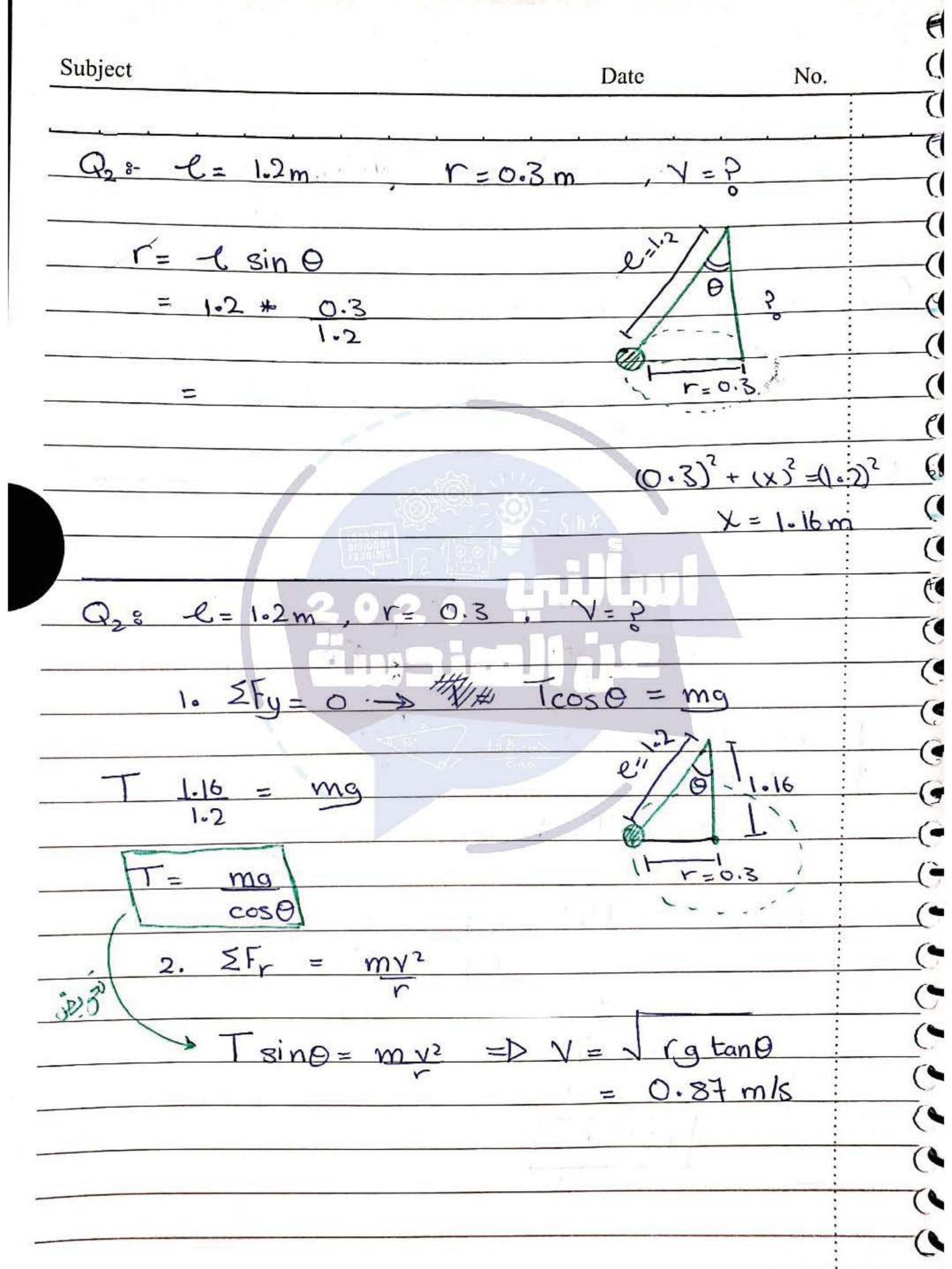
 $F = \frac{Mv^2}{r}$
 $V = r + w$
 $W = \frac{10}{5} = \frac{1}{72} \text{ rad /sec.}$
 $V = r + w$
 $V = r +$

University of Jordan Physics Department Date: 9/12/2000

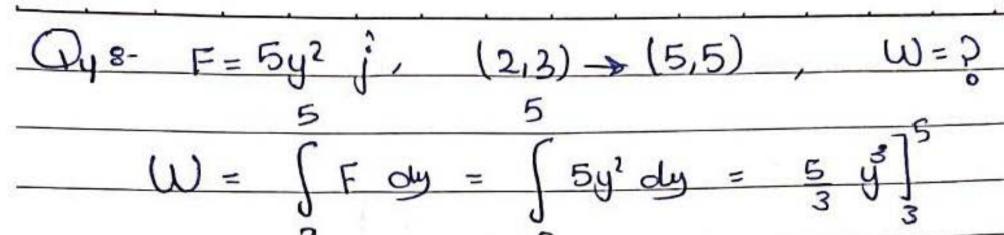
First Semester 2000/2001

Time: 8.30 - 9.30


GENERAL PHYSICS 1:(0302101) SECOND EXAM


_	المن باللغة العزبية: الرقم الجامعي:
-	م المدرس: الشعبة : رقم الجلوس:
1	
	A 15kg block is placed on a reagh horizontal surface of μ =0.3. The block is kept in equilibrium as shown in the figure. The maximum hanging mass for which the system will remain in equilibrium is: (a) 2.6 (b) 25.5 (c) 42.1 (d) 76.4 (e) 4.3
	A conical pendulum is formed by attaching a small ball to a 1.2m string. The ball swings with uniform velocity around a horizontal circle of radius 30cm as shown in the figure. The velocity (m.s ²¹) of the ball is: (a) 11.5 (b) 0.72 (c) 0.87 (d) 3.4 (e) 0.52
	A 4kg particle experiences a net force along the x-axis given by F=3x ² - 6, where F is in Newton and x is in meters. If the particle starts to move from rest at x=0, the power (w) delivered to the particle when it is at x=4m is: (a) 168 (b) 150 (c) 476 (d) 345 (e) 188
	A force F=(5y ² N.m ²) j is applied to a particle. The work done (J) by the force on the particle as it moves along a straight line from (2, 3) to (5, 5) is: (a) 527 (b) 20 (c) 1466 (d) 163 (e) 200
141	This graph represents the power developed by a motor. The energy (J) 20 expended by the motor in time interval t=10s to t=30s is: (a) 200 (b) 100 (c) 0.5 (d) 600 (e) 500

A 2.2 kg block placed on a frictionless 20° inclined plane. A force of 16 N acting parallel to the incline as shown the figure. The acceleration (m/s*) of the block is: (a) 2.0 down the incline (b) 5.3 up the incline (c) 2.0 up the incline (d) 3.9 down the incline (e) 3.9 up the incline An object attached to the end of a string swings 7) in a vertical circle (بتعرك في دائرة صودية) of radius 1.2 m, as shown in the figure. At an instant when 0= 30°, the speed of the object is 6.0 m/s and the tension in the string is 38 N. The mass (kg) of the object is: (a) 2.0 (b) 1.5 (c) 1.8 (d) 1.3 (e) 0.80 A block of mass 5.0 kg is moving with 3.0 m/s on a rough horizontal surface (coefficient of - kinetic friction = 0.40) when it collides with a spring, as shown in the figure. The spring is compressed a maximum distance of 0.20 m. The spring constant (N/m) is: (a) 1020 (b) 1804 (c) 2196 (d) 361 9) A 1.2-kg mass is projected down a rough circular track (radius = 2.0 m) as shown below. The speed of the mass at point A is 3.5 m/s, and at point B, it is 6.0 m/s. How much work is done on the mass between A and B by the force of friction? (a) -9.3 J (b) -7.3 J (c) -8.1 J (d) -10.8 J (c) -24 J 10) A 4 kg mass is placed on a rough horizontal surface. Two forces in the same plane act on the mass as shown in the figure. The magnitude of the force F(N) that enable (مكته من) the 4kg mass to accelerate with (3m.s") j is: (a) 13.4 (b) 7.5 (c) 6.7 (d) 4.8 (c) 10.0°


Answer Table

Q.No.	A	B	C.	D	e
	140	2110	since.		-
2	7	19.6	17.0	11.00	12.
3	4 60		100		
4	2.13	275	96.10	18 10	33
_ 5		200		-	
6			4 Feet	53	1.00
7	100	1			
. 8			K ()		:
9	5.45	W 1	100		- :- }
10	2 (4)	1111	1	100	15 .

Subject Date No. F = 3x2 -6 X=0→ X=4 3x2-6 6x 40 T W = DKE 40= 3 * 16 - 6 = 42 N x=4 188

= 5 (125-27)

= 1163

Q== t=(0s -> t=30s

W= (Pdf (vial)

= 20* 20 + 1 * 20* 105

= 400 + 100 = 500

Q18- m= 2.2 Kg, 0=20°, F= 16N, a=2

ZFx = ma

F - mgsin0 = ma

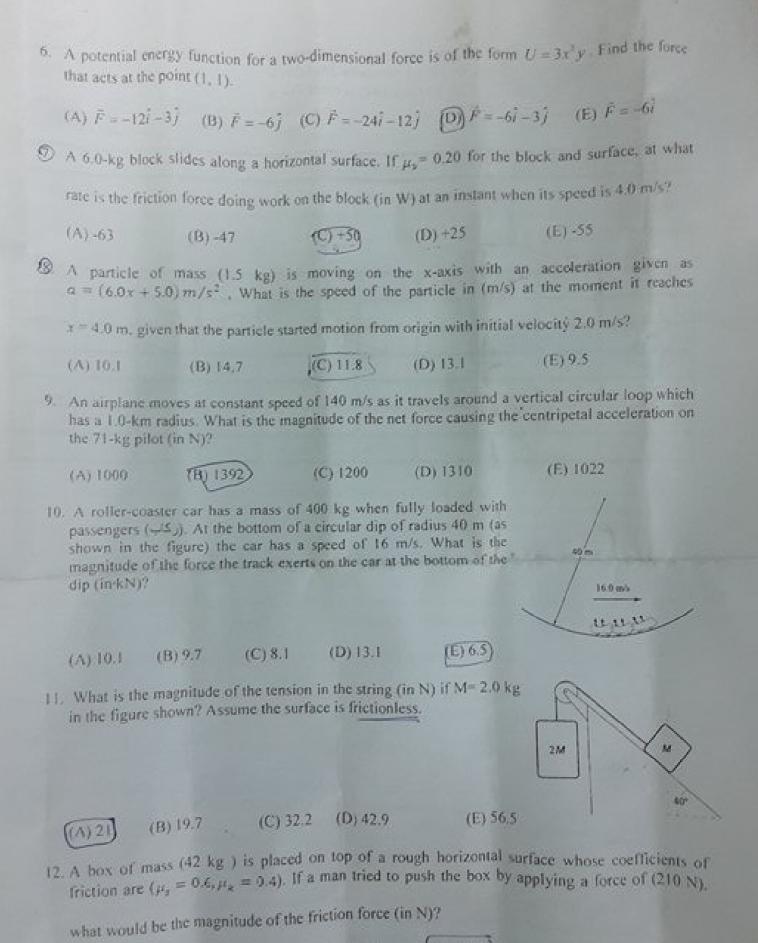
16 - 7.37 = 2.29

=D a = 3.9 up the incline

Masino

mg

Mgcoso


(

(

0

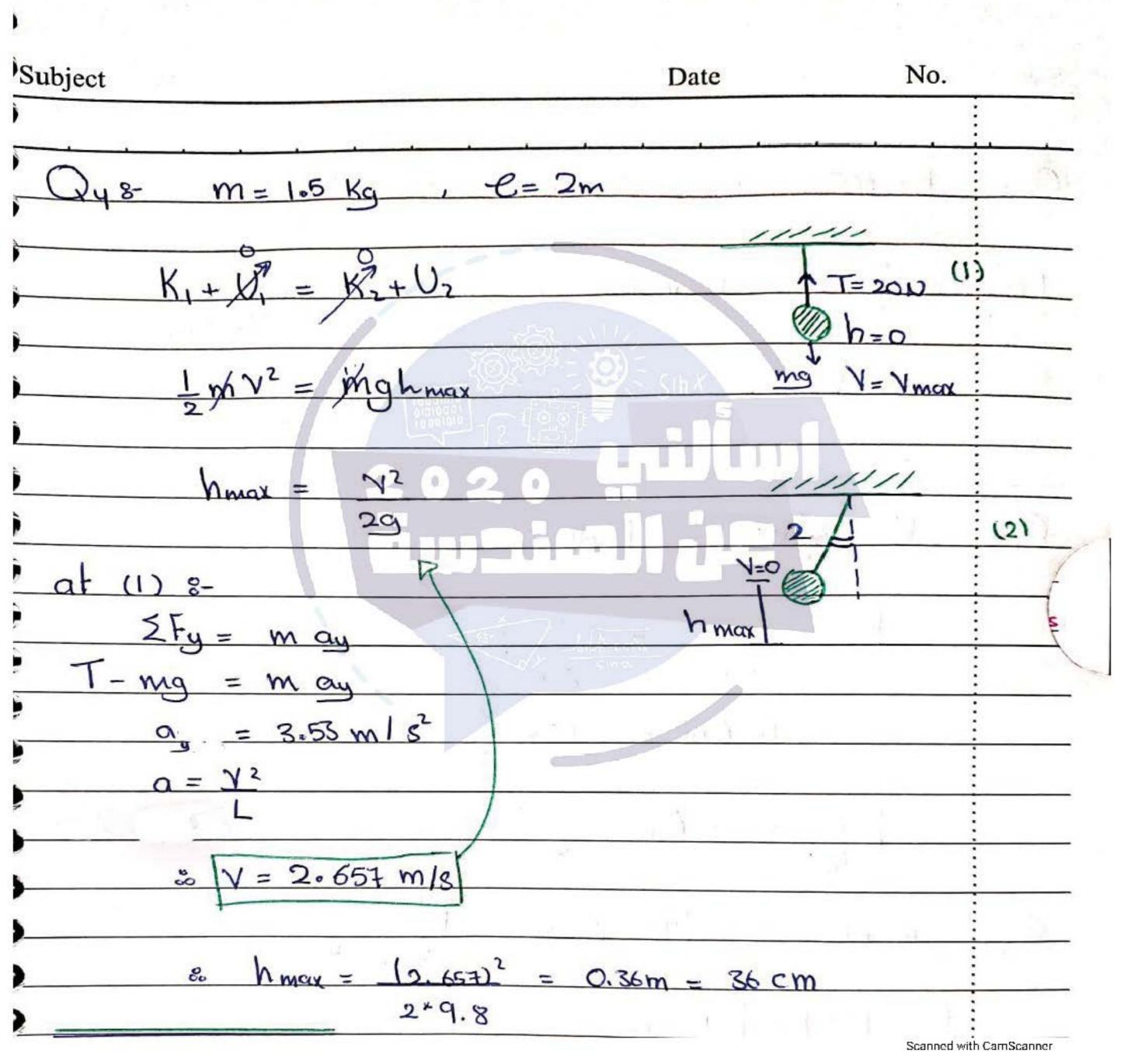
2

2				11		
6				12	2	
	1.	A particle of madirected east, an magnitude of the	nd the other force	e has a magnit	s such that one for ude of 39 N direc	ce has a magnitude of 21 leted east-north, what is the
		(A) 2.8	(B) 5.1	(C) 7.5	(D) 3.7	(E) 12
	2.	An object of matthe object is equal	ss 4.0-kg is placed al to 38 N. What i	d on top of an elest the acceleration	evator floor. If the for of the elevator (in	Force exerted by the floor of m/s ²)?
		(A) 0.8 upward	(B) 0.8 downwa	ard (C) 1.3 upwa	rd (D) 1.3 downwar	d (E) 0.3 downward
	3	A force of magn it from the point	itude 20N directe (2m, -1m) to the	d in the positive point (4m, -3m).	x direction is acting What is the work d	on a particle and displacin one by the force (in J)?
		(A) 60	(B) 40	(C) 30	(D) 80	(E) 70
	Đ	al - lawast point	in the swing the	tension in the st	nging at the end of ring is equal to 20 during its oscillation	a string (length = 2.0 m). A N. To what maximum height 1?
		(A) 36	(B) 20	(C) 30)	(D) 28	(E) 17
	5)	horizontal surfa	Ti- unner Pi	system is then	II ZV CIII. aliu a 7.	s lower end supported by 0 kg block is placed on the How far above the point
		(A) 20	(B) 31	(C) 10	(D) 15	(E) 25
1						

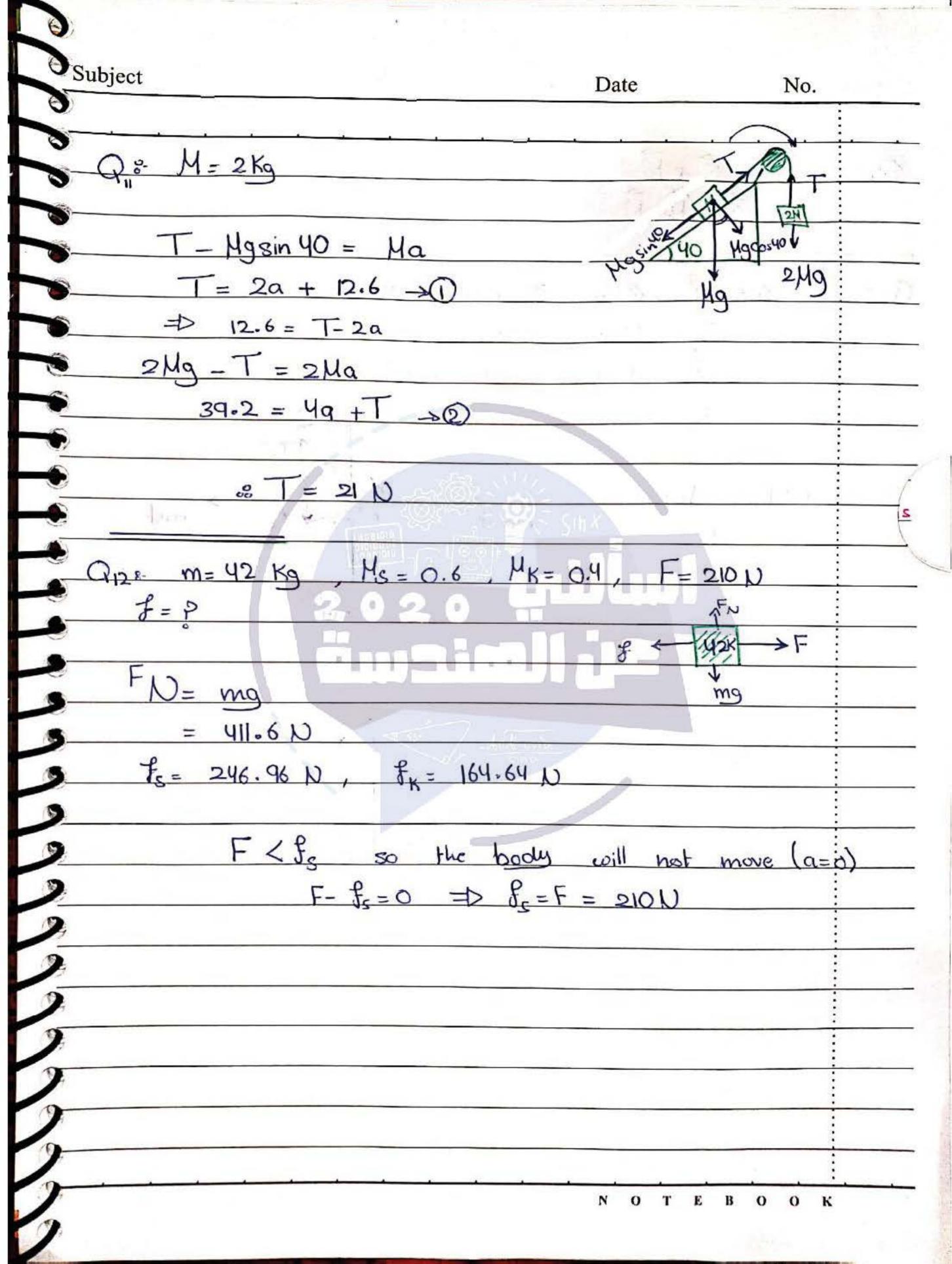
(D) 165

(E) 230

(C) 220


(B) 247

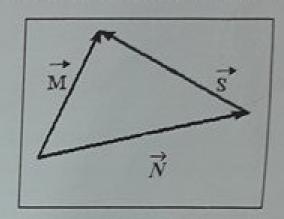
(A) 210


First semester 2015 - second Ex	kam
Q18 m=11 Kg / F1 = 21 N.?	
F2 = 39 N, east-north	<u>:</u>
Q = P	A F2
$Q_{X} = \sum_{i} F_{X} = F_{i} + F_{i} \cos 45 = 4.4$	2 mls2, ?
$a_y = \frac{F_2 \sin 45}{m} = \frac{2.5 \text{m/s}^2}{2}$	3
a = 5.1 m/s2	
District the second sec	
	

Scanned with CamScanner

No. Date Subject a=2 $m = 4 \, \text{Kg}$ 38 -(0.3 downward) 20 N, +1 Pointes (U,-3) Pointru = Point (2) - Pointe = 20 × 2 = 40 T

= -47 watt


A)
$$\overline{M} = \overline{S} - \overline{N}$$

$$\widehat{B} \widehat{S} = \overline{M} - \overline{N}$$

C)
$$\overline{M} = \overline{N} - \overline{S}$$

D)
$$\overline{M} + \overline{S} + \overline{N} = 0$$

E)
$$\overline{N} = \overline{S} + \overline{M}$$

Q2: An airplane undergoes the following displacements: First, it flies 66 km in a direction 30° east of north. Next, it flies 49 km due south. Finally, it flies 100 km 30° north of west. How far (in km) the airplane ends up from its starting point.

B) 81

C) 73

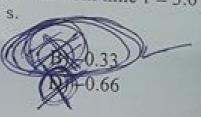
D) 86

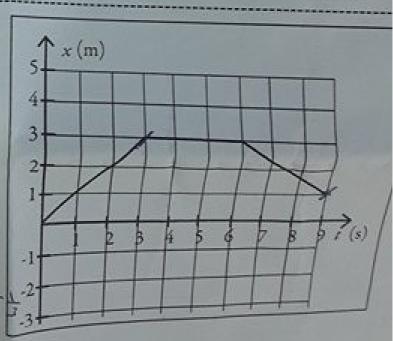
E) 93

Q3: What is the angle between the vector $\vec{A} = +3\hat{i} - 2\hat{j} - 3\hat{k}$ and the +y-axis?

A) 25°

B) 65°


C) 90°


D)115°

E) 155°

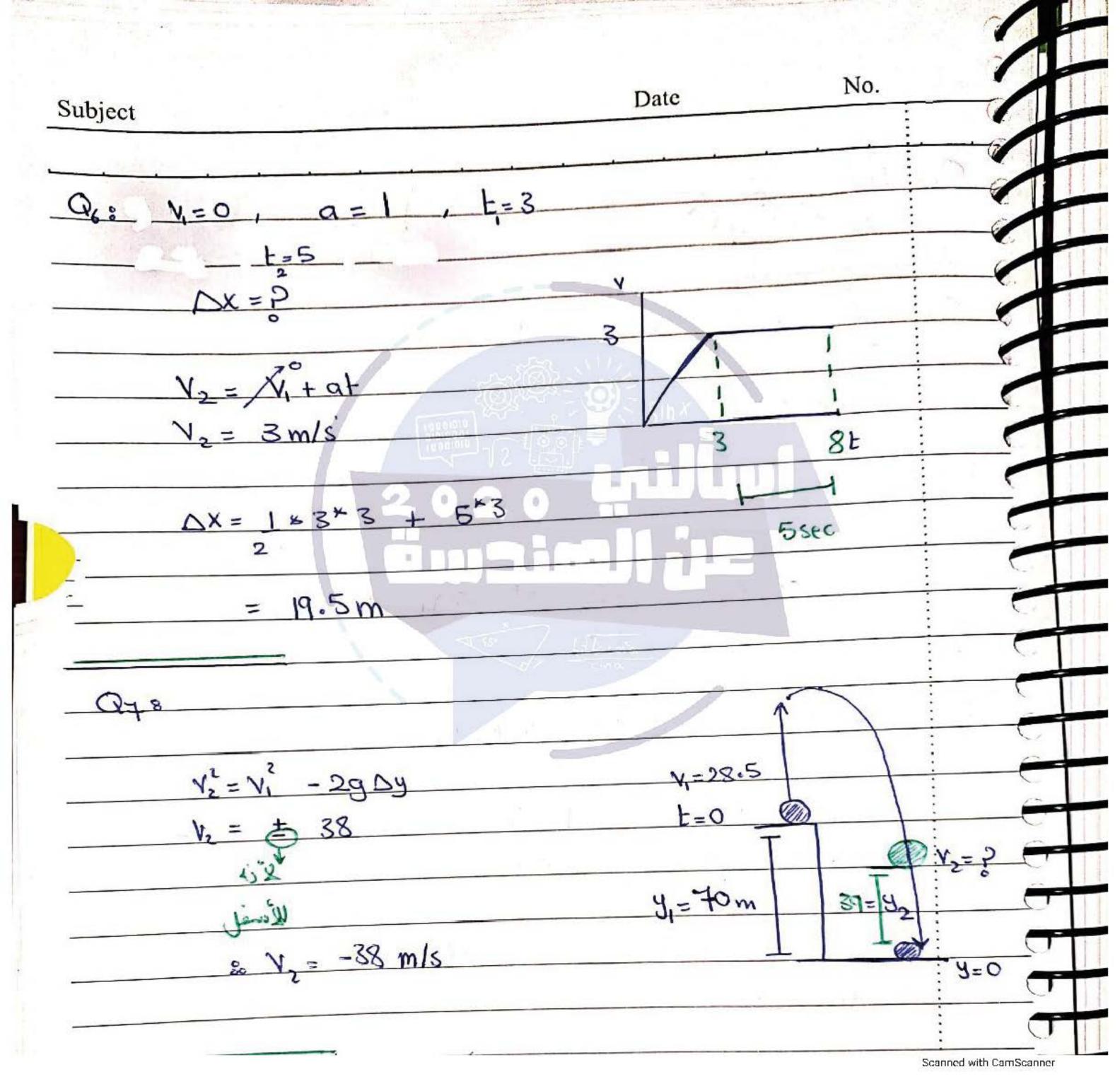
Q4: The figure shows the position of an object as a function of time. What is the average velocity (in m/s) of the object during the time interval from time t = 3.0 s and time t = 9.0 s.

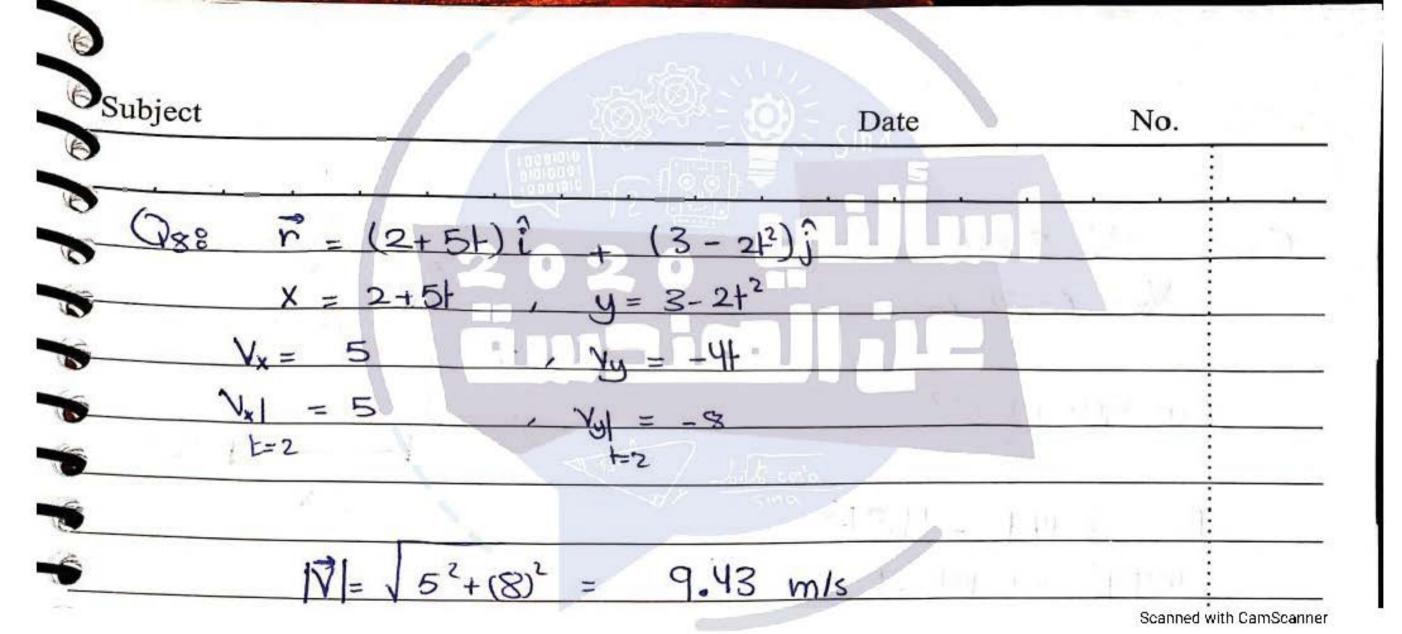
t = 3.00 s. The	e car then continues its starting point?	for 5.00 s at consta	ant velocity. How far (in m) has the car
A) 4.50	B) 2.00	C) 15.0	D)19.5	E) 25.0
ground and ex	periences negligible	e air resistance. The	a point on a roof 70 m e ball rises, then falls a he velocity of the ball	nd strikes the
A) -45	B -38	C) 38	D) 45	E) -23
Q8: An object where quantiti	has a position give es are in SI units. V	en by $r = [2.0 \text{ m} + 6]$ What is the speed (i	(5.00 m/s)()i + [3.0 m n m/s) of the object at	$(2.00 \text{ m/s}^2)/2/\hat{y}$ time $t = 2.00 \text{ s}$?
A) 13.0	B 9.43	C) 7.58	D) 6.40	E) 1.42
horizontal. The	ball leaves her ha	nd 1.00 m above th	00 m/s at an angle of 4 ne ground and experient anding does the ball h	nce negligible a
A) 1.67	B) 3.80	C) 5.05	D)6.39	E) 7.46
with a radius 2	tied to the end of a 2.00 m making 7.00 on of the ball (in m	revolutions every	e mass. The ball is rota 10.0 seconds. What is	ated in a circle the magnitude of
A) 74.2	B) 67.9	◎38.7	D) 29.3	E) 14.8

Q5: The velocity of an object as a function of time is given by v(t) = 2.00 m/s + (3.00 m/s) t

D) 2.00

ates with a constant acceleration of 1.00 m/s2 for


E) 7.00


 $= (1.0 \text{ m/s}^2) t^2$. Determine the acceleration (in m/s²) of the object at time t = 5.00 s.

C) 0.00

B) -2.00

A)-7.00

V=8mls Vx= 8 cos40 = 6.128 m/s = 5.14+ -4.9+2 4.912 -5.14 + -1 = 0 t = 1.22 sec > Dx = 7:46 m Subject No. Date a=2 E=10 1-2m V= ZJTrl 8.8 mls 38.7 m/s2 Scanned with CamScanner