Not yet answered

Marked out of

 A 86.9-g sample of chromium (s = 0.447 J/(g . °C)), initially at 338.33°C, is added to an insulated vessel containing 189.9 g of water (s = 4.18 J/(g . °C)), initially at 16.17°C. At equilibrium, the final temperature of the metal–water mixture is 28.06°C. How much heat was absorbed by the water? The heat capacity of the vessel is 0.220 kJ/°C.

- O a. 6.82 kJ
- O b. 112 kJ
- O c. 9.43 kJ
- O d. 15.2 kJ
- O e. 12 kJ

Question 2	A bond in which both electrons of the bond are donated by one atom is called .
Not yet	
answered	a. a double bond
Marked out of 1.0	O b. a triple bond
₹ Flag	c. a coordinate covalent bond
question	O d. a polar covalent bond

O e. an ionic bond

Not yet answered

Marked out of

₹ Flag question A student must prepare 7.00 L of 0.100 M Na₂CO₃. Which is the best procedure for preparing this solution?

- a. Measure 74.2 g Na₂CO₃ and add 7.00 L of H₂O.
- b. Measure 74.2 g Na₂CO₃ and add 7.00 kg of H₂O.
- c. Measure 10.6 g Na₂CO₃ and add H₂O until the final homogeneous solution has a volume of 7.00 L.
- d. Measure 74.2 g Na₂CO₃ and add H₂O until the final homogeneous solution has a volume of 7.00 L.
- e. Measure 10.6 g Na₂CO₃ and add 7.00 kg of H₂O.

Not yet	An atom of which of the following elements has the highest fourth ionization energy?
nswered	○ a. Se
larked out of .0	O b. Si
Flag	O c. Al
question	O d. Ga
	O e. As

THING TOTAL GLOBIOG

Time left 0:48:21

Marked out of 1.0

P Flag question

O a. 11

O b. 7 O c. 15

O d. 9

O e. 13

In the Lewis dot formula that minimizes formal charge, how many bonds are there in the tetrathionate ion, S₄O₆²⁻?

Not yet answered

Marked out of

1.0 P Flag

question

An impure sample of benzoic acid is titrated with 0.9855 M NaOH. A 3.412-g sample requires 24.43 mL of titrant to reach the endpoint. What is the percent by mass of benzoic acid in the sample?

C₆H₅COOH(aq) + NaOH(aq) → NaC₆H₅COO(aq) + H₂O(I)

- O a. 2.407 %
- O b. 0.01971 %
- O c. 19.71 %
- O d. 100 %
- O e. 86.18 %

Not yet answered

Marked out of

₹ Flag question A 70.4-L sample of a gaseous hydrocarbon, measured at 1.00 atm pressure and 25.0°C, is burned in excess oxygen, liberating 4.06 × 10³ kJ of heat at constant pressure. What is the identity of the hydrocarbon? (R = 0.0821 L . atm/(K . mol));

Substance ΔH°f (kJ/mol) CO₂(g) –393.5

 $H_2O(I)$ -393.5 -285.8

- \bigcirc a. propylene (C₃H₆, \triangle H°f = 20.41 kJ/mol)
- \bigcirc b. ethane (C₂H₆, \triangle H°f = -84.68 kJ/mol)
- c. acetylene (C₂H₂, ΔH°f = 226.73 kJ/mol)
- \bigcirc d. ethylene (C₂H₄, \triangle H°f = 52.47 kJ/mol)
- \bigcirc e. propane (C₃H₈, \triangle H°f = -104.7 kJ/mol)

Not yet answered

Marked out of 1.0

P Flag question For each of the following species except , the electronic structure may be adequately described by two resonance formulas.

Not yet answered

Marked out of

 Suppose atom 1 has the same number of protons as atom 2, and atom 2 has the same number of neutrons as atom

3. Atom 1 does not have the same number of neutrons as atom 3. Which of the following statements is true?

- a. Atoms 1 and 3 must be isotopes.
- O b. Atom 3 must have the same number of protons as atom 1.
- c. Atom 3 must have the same number of protons as atom 2.
- d. Atoms 1 and 2 must be isotopes.
- e. Atom 2 must have the same number of neutrons as atom 1.

1.0 P Flag

question

O c. 25 g

O d. 45 g

O e. 20 g

Not yet answered

Marked out of 1.0

Flag question

All the following statements about resonance are true except

- a. Resonance describes a more stable situation than does any one contributing resonance formula
- b. Resonance describes the oscillation and vibration of electrons.
- c. Resonance describes the bonding as intermediate between the contributing resonance formulas.
- d. The contributing resonance formulas differ only in the arrangement of the electrons.
- e. A single Lewis formula does not provide an adequate representation of the bonding.

Time left 0:22:23

Not yet answered

Marked out of

Flag
 question

How many p orbitals are in the n = 3 shell?

- O a. 5
- O b. 1
- O c. 3
- O 0.
- O d. 0
- O e. 6

Not yet

answered Marked out of

1.0

P Flag question O a. C₂F₄ O b. PCl₃

A 1.50-L sample of a gas at STP has a mass of 4.75 g. What is one possible formula of the gas?

O c. NF₃

d. NHF₂

O e. NO₂

	Time left 0:17:00
Question 18	The approximate CCO angle in acetone, , is
Not yet	
answered	O a. 109°.
Marked out of	O b. 90°.
1.0	○ c. 120°.
	O d. 180°.
	O e. 60°.

Time left 0:14:03

O e. Cr2O

Not yet answered

Marked out of

 Analysis of a compound containing only C and Cl revealed that it contains 33.33 % C atoms by number and has a molar mass of 248.75 g/mol. What is the molecular formula of this compound?

- O a. C₂Cl₄
- O b. C₃Cl₆
- O c. C₂Cl₆
- O d. CCl₃
- O e. CCl₂

Q7: 0,9855 M x 0.02443 L = 0,02408 mol NaOH 1 mol NaOH -> 1 mol Co H 5 COOH MW COH = 122 0.02408 -> ?? M = 0.02408 mol x 122 9 = 2.938 9 mass /. = 2.938 x 100% = 86.1% Q8: PTOT = PN + POZ + PCHY + PCOZ 1.06 = MRT N2RT N3RT + N4RT 1.06 2 (M1+N2+N3+N4) x RxT 1.06 2 (0.14+0.037+0.104+N) x 0.0821 x (27+273) 8.481 No 20,0 839 mol Q9: N = PV = 70.4 x 1 RT 0.0821 x 298 = 2.88 mol -4060 KJ = -1411 KJ/mol 2 28 mol -> you have to calculat DH; from each choice to find the one gives you -1411 KJ/mol, here it is C2H4 by Willing equation then balance it and solve C2H4 +302 -> 2CO2 +2H20 DH: =2x-393.5+2x-285.8+52.47 =-1411 KJ/mol

Q10:	503	d	6+3×6+2 ; Ö: ; Ö - S -	and the second s
Q 11: Q12: Q13:			= 73.69 x 20	0.14.72≈15
Q14:	I Fy Trigona	95.	$F - \overline{I} - \overline{F}$ $F - \overline{I} - F$ $F - \overline{I} - F$	36ē Octahedral SP³d²
Q16:	3 orbi	t alls [C		

Q17:	n= PV RT	= 1 ×1.5 0.0821×2	<u> </u>	57mol	
	Molar Mo	ss = 4.750	271 <u>9</u>		
and 71	the on	e the mo	lar mass ich have	for eac a molar	h answer mass of
	0	M	ol		
	2	H angle	C - C - H	C-C-C 11 0.	Trigonal Plannar 120°
Q19:	Msample z	4.94g Y	$nCr = 3.0$ $n_0 = 4.94$		= 1.88g
m	Cr 3.06	1.88	Cr	\bigcirc_2	
nn	0.056	0.1175			
(atio	1	2		a	

