يع الشعب /NERAL CHEMISTRY I

on 1 red d out of

no

Calculate the standard enthalpy of formation of PCI₃(g) in kJ/mol

$$1/2 P_4(s) + 3 Cl_2(g) \rightarrow 2 PCl_3(g)$$

$$\Delta H = -639.4 \text{ kJ}$$

Note: most stable form of P element is P₄(s).

- O a. 0.00
- O b. -287.0
- O c. -213.1
- O d. -319.7
- O e. -639.4

4

ut of

Use the following to calculate the mass of $H_2O(g)$ would be obtained if the reaction released 369 kJ of heat. Molar mass of $H_2O = 18.0 \text{ g/mol}$

 $C_3H_8(g)+5 O_2(g) \rightarrow 3 CO_2(g) +4 H_2O(g) \Delta H=-2043 kJ$

Select one:

- O a. 99.8 g
- O b. 13.0 g
- O c. 3.25 g
- O d. 0.814 g
- O e. 18.0 g

Next page

RERAL CHEMISTRY I/ جميع الشعب

tion 3
et
ered
ed out of

30

tion

A mixture of gases contains 4.7 mol of N₂ gas and 2.7 mol of Ar gas. If the total pressure of the mixture was 2.8 atm, what would be the partial pressure of N₂ (in atm.) ?

Select one:

- O a. 0.64
- O b. 1.0
- O c. 1.4
- O d. 2.8
- O e. 1.8

Next page

evious page

In a constant volume calorimeter, a 0.836 g of hexane (C_6H_{14}) are burned, the calorimeter temperature rises from 25.00 °C to 26.95 °C. The heat capacity of the calorimeter and its contents was 20.7 kJ/ °C. What is the enthalpy of combustion for one mole of hexane? Molar mass of C_6H_{14} = 86.18 g/mol

Select one:

- \bigcirc a. 5.58 x 10⁷
- O b. 39.98
- O c. 557.7
- O d. 0.3915
- O e. 4161.3

Next page

Question 5

Not yet answered

Marked out of 1.5

P Flag question What is the enthalpy (in kJ) of the following reaction at constant pressure?

$$CH_4(g)+ NH_3(g) \rightarrow HC$$

$$HCN(g) + 3H_2(g)$$

Use the following thermochemical equations:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\Delta H = -91.8 \text{ kJ}$$

C(graphite) +
$$2H_2(g) \rightarrow CH_4(g)$$

$$\Delta H = -74.9 \text{ kJ}$$

$$H_2(g)$$
 +2C(graphite) + $N_2(g)$ \rightarrow 2HCN(g) $\Delta H =$

$$\Delta H = + 270.3 \text{ kJ}$$

et ered ed out of

ag tion A 0.590 gram of volatile liquid was vaporized at 96 °C and expanded in 200 ml flask at 800 mmHg. Calculate the molar mass of this liquid in g/mol.

R = 0.082 atm.L/mol.K or 8.314 kg·m²/s²·K·mol

Select one:

- O a. 84.9
- O b. 68.1
- O c. 73.0
- O d. 60.7
- O e. 78.1

vious page

Next

جميع الشعب /I RAL CHEMISTRY

The volume of certain amount of nitrogen at 23°C and 746 mmHg is 10.1 cm³. What is the volume of nitrogen at 25 °C and

820 mmHg?

- O a. 9.99
- O b. 0.894
- O c. 10.2
- O d. 11.0
- O e. 9.25

RERAL CHEMISTRY I/ جميع الشعب

stion 8

/et

vered

ked out of

lag stion Calculate the rms speed (in m/s) of He (molar mass = 4.0 g/mol) molecules in a cylinder at 27 °C and 8.7 atm.

R = 0.082 atm.L/mol.K or $8.314 \text{ kg} \cdot \text{m}^2/\text{s}^2 \cdot \text{K} \cdot \text{mol}$

- O a. 406.0
- O b. 136.0
- O c. 1367.7
- O d. 12.8
- O e. 42.8

5	Select one:
	a. Gas molecules frequently collide with one another by inelastic collisions.
d.	 b. Gases are composed of molecules whose size is negligible compared with the average distance between then
	O c. Gas molecules exert neither attractive nor repulsive forces on one another.
	O d. Gas molecules are in constant motion in random directions.
	e. The average kinetic energy of the molecules is proportional only to the temperature of the gas in kelvins.
	J. e. Me average name as

RERAL CHEMISTRY I/ جميع الشعب

on 10

out of

red

The work done when a gas is compressed in a cylinder is 366 J. During this process, there is a heat transfer of 173 J from the gas to the surroundings. Calculate the energy change for this process (in J).

Select one:

- O a. +539
- O b. -539
- O c. +193
- O d. +732
- O e. -193

ous page