

# Ionic and Covalent Bonding

- lonic Bonds 9.1 Describing Ionic Bonds
- ✓ An ionic bond is a chemical bond formed by the electrostatic attraction between positive and negative ions.
- ✓ The bond forms between two atoms when one or more electrons are transferred from the valence shell of one atom to the valence shell of the other.
- ✓ The atom that loses electrons becomes a cation (positive ion), and the atom that gains electrons becomes an anion (negative ion).
- ✓ As a result of the electron transfer, ions are formed, each of which has a noble-gas configuration.



$$Na([Ne]3s^1) + Cl([Ne]3s^23p^5) \longrightarrow Na^+([Ne]) + Cl^-([Ne]3s^23p^6)$$

Low ionization E High electron affinity

# > Lewis Electron-Dot Symbols

✓ is a symbol in which the electrons in the valence shell of an atom or ion are represented by dots placed around the letter symbol of the element

$$Na \cdot + \cdot Cl : \longrightarrow Na^+ + [:Cl:]^-$$

 Table 9.1
 Lewis Electron-Dot Symbols for Atoms of the Second and Third Periods

| Period | 1A<br>ns <sup>1</sup> | 2A<br>ns <sup>2</sup> | $3A$ $ns^2np^1$ | $4A \\ ns^2 np^2$ | $ \begin{array}{c} 5A \\ ns^2 np^3 \end{array} $ | 6A<br>ns <sup>2</sup> np <sup>4</sup> | 7A<br>ns <sup>2</sup> np <sup>5</sup> | 8A<br>ns <sup>2</sup> np <sup>6</sup> |
|--------|-----------------------|-----------------------|-----------------|-------------------|--------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Second | Li∙                   | ·Be ·                 | · B ·           | · Ċ·              | : Ņ ·                                            | : Ö ·                                 | : F ·                                 | : Ne :                                |
| Third  | Na·                   | ·Mg·                  | · Al·           | · Si ·            | : <u>P</u> ·                                     | : <u>S</u> ·                          | : Ċl ·                                | : Ar :                                |

(Q) Use Lewis electron-dot symbols to represent the transfer of electrons from magnesium to fluorine atoms to form ions with noble-gas configurations

$$: \overrightarrow{F} \cdot + \cdot \overrightarrow{Mg} \cdot + \cdot \overrightarrow{F} : \longrightarrow [: \overrightarrow{F} :]^{-} + \overrightarrow{Mg}^{2+} + [: \overrightarrow{F} :]^{-}$$

- > Energy Involved in Ionic Bonding
- ✓ Formation of an ionic bond between a sodium atom and a chlorine atom:
- (1)  $Na_{(g)} \rightarrow Na_{(g)}^+ + e^- \Delta H i.e = 496 kJ/mol$
- (2)  $Cl_{(g)} + e^{-} \rightarrow Cl_{(g)}$   $\Delta H E.A = -349 \text{ kJ/mol}$
- ✓ The overall energy is (496 349) = 147 kJ/mol
- →the process requires more energy to remove an electron from the sodium atom than is gained when the electron is added to the chlorine atom.
- → formation of ions from the atoms is not in itself energetically favorable.
- **BUT** When positive and negative ions bond →energy is released to make the overall process favorable.

Coulomb's law 
$$E = \frac{kQ_1Q_2}{r}$$

Coulomb's law states that the potential energy obtained in bringing two charges Q1 and Q2, initially far apart, up to a distance r apart is directly proportional to the product of the charges and inversely proportional to the distance between them.

$$E = \frac{kQ_1Q_2}{r}$$

 $k = 8.99 \text{ x} 10^9 \text{ J.m/C}^2$ 

The charge on Na<sup>+</sup> is +e and that on Cl<sup>-</sup> is -e.

 $e=1.602 \times 10^{-19} \text{ C}$ 

 $r = distance between Na^+ and Cl^- = 282 pm, or 2.82 x <math>10^{-10} m$ .

$$E = \frac{-(8.99 \times 10^9 \,\mathrm{J \cdot m/C^2}) \times (1.602 \times 10^{-19} \,\mathrm{C})^2}{2.82 \times 10^{-10} \,\mathrm{m}} = -8.18 \times 10^{-19} \,\mathrm{J}$$

- ✓ The minus sign means energy is released
- ✓ This energy is for the formation of one ion pair
- ✓ Multiplying by Avogadro's number, 6.02 x 10<sup>23</sup> → -493 kJ/mol

✓ The lattice energy is the change in energy that occurs when an ionic solid is separated into isolated ions in the gas phase. For sodium chloride, the process is



- ✓ The negative sign shows that there has been a net decrease in energy, which you expect when stable bonding has occurred.
- ✓ Ionic bond forms between elements if the ionization energy of one is sufficiently small and the electron affinity of the other is sufficiently large

# The Born-Haber Cycle for NaCl (Energy diagram)

$$\begin{array}{c} \Delta H^{\circ}_{sub} & \Delta H^{\circ}_{ie} \\ Na_{(s)} \rightarrow Na_{(g)} \rightarrow Na+_{(g)} \\ \\ \frac{1}{2} & Cl_{2(g)} \rightarrow Cl_{(g)} \rightarrow Cl-_{(g)} \\ \Delta H^{\circ}_{d} & \Delta H^{\circ}_{ea} \end{array}$$

$$\Delta H^{\circ}_{f} = \Delta H^{\circ}_{sub} + \Delta H^{\circ}_{ie} + 1/2 \Delta H^{\circ}_{d} + \Delta H^{\circ}_{ea} + U_{o} \qquad U_{o} = \text{Lattice Energy}$$

$$-411 = 109 + 496 + 1/2 (242) + (-349) + U_{o}$$

$$U_{o} = -788 \text{ kJ/mol}$$

You must use the correct stoichiometry and signs to obtain the correct lattice energy.

- > Properties of Ionic Substances
- ✓ Strong ionic bonds (strong electrostatic interaction) → highmelting points of ionic solids.
- m.p of MgO (2800 °C) > m.p NaCl (801 °C)  $E = \frac{kQ_1Q_2}{r}$  charges (Mg<sup>2+</sup> and O<sup>2-</sup>), charges (Na<sup>+</sup> and Cl<sup>-</sup>),
- ✓ The liquid melt from an ionic solid consists of ions, and so the liquid melts conducts an electric current.
- ✓ Ionic liquids have low m.p (RT) because of the cations are large and non-spherical.

# 9.2 Electron Configurations of Ions

> lons of the Main-Group Elements

| Table 9.2 Ionization Energies of Na, Mg, and Al (in kJ/mol)* |                                |        |       |        |  |  |
|--------------------------------------------------------------|--------------------------------|--------|-------|--------|--|--|
|                                                              | Successive Ionization Energies |        |       |        |  |  |
| Element                                                      | First                          | Second | Third | Fourth |  |  |
| Na                                                           | 496                            | 4,562  | 6,910 | 9,543  |  |  |
| Mg                                                           | 738                            | 1,451  | 7,733 | 10,542 |  |  |
| Al                                                           | 578                            | 1,817  | 2,745 | 11,577 |  |  |

- √ Valence electrons are easily removed.
- ✓ Much higher energy is needed to remove further electrons.
- → No compounds are found with ions having charges greater than the group number.
- ✓ Boron (Group 3A) doesn't form ionic compounds with B³+ ions, the bonding is normally covalent.
- ✓ The remaining elements of Group 3A do form compounds containing 3+ ions because of decreasing ionization energy.
- ✓ Thallium in 3A, Period 6, has compounds with 1<sup>+</sup> ions and compounds with 3<sup>+</sup> ions

$$T1([Xe]4f^{14}5d^{10}6s^26p^1) \longrightarrow T1^+([Xe]4f^{14}5d^{10}6s^2) + e^-$$

- ✓ The first three elements of Group 4A (C, Si, and Ge) are metalloids and usually form covalent rather than ionic bonds.
- ✓ Tin (Sn) and lead (Pb) (group 4A) commonly form ionic compounds with 2+ ions.
- ✓ Tin forms tin(II) chloride, SnCl₂, which is an ionic compound
  and tin(IV) chloride SnCl₄ which is a covalent compound.
- ✓ Bi (group 5A) forms ionic Bi<sup>3+</sup> cpds and covalent Bi<sup>5+</sup> cpds.
- ✓ Anions of Groups 5A to 7A gain electrons (large EA) to form noble-gas or pseudo-noble-gas configurations.
- ✓ Hydrogen forms compounds of the 1<sup>-</sup> ion, H<sup>-</sup> (hydride ion).
- ✓ Although the electron affinity of nitrogen  $(2s^22p^3) = 0$
- ✓  $N^{3-}$  ion  $(2s^22p^6)$  is stable in the presence of Li<sup>+</sup> (Li<sub>3</sub>N)and other alkaline earth elements ions (Mg<sub>3</sub>N<sub>2</sub>).
- (Q)Write the electron configuration and the Lewis symbol for N<sup>3-</sup>.

N: [He]
$$2s^22p^3$$
 N³-: [He] $2s^22p^6$  Sn: [Kr] $4d^{10}5s^25p^2$  Sn²+: [Kr] $4d^{10}5s^2$  Sn²+: [Kr] $4d^{10}5s^2$  Sn²+: [Kr] $4d^{10}5s^2$ 

#### > Transition-Metal lons

✓ M<sup>2+</sup> is a common oxidation state as two electrons are removed from the outer ns shell. Fe: [Ar] 4s<sup>2</sup>3d<sup>6</sup>

Fe<sup>2+</sup>: [Ar]  $3d^6$  loses 4s electrons first

Fe<sup>3+</sup>: [Ar]  $3d^5$  then loses 3d electrons

- (Q) What are the correct electron configurations for Cu & Cu<sup>2+</sup>?
- A. [Ar] 3d <sup>9</sup>4s<sup>2</sup>, [Ar] 3d <sup>9</sup>
- B. [Ar] 3d <sup>10</sup>4s<sup>1</sup>, [Ar] 3d <sup>8</sup>4s<sup>1</sup>
- C. [Ar] 3d <sup>10</sup>4s<sup>1</sup>, [Ar] 3d <sup>9</sup>
- D. [Ar] 3d <sup>9</sup>4s<sup>2</sup>, [Ar] 3d <sup>10</sup>4s<sup>1</sup>
- E. [K] 3d <sup>9</sup>4s<sup>2</sup>, [Ar] 3d <sup>9</sup>
- (Q) What are the correct electron configurations for zirconium(II) and zirconium(IV) ions?
- A. [Kr]  $5d^2$  [Kr]  $4d^1$
- B. [Ar]  $4d^25s^2$  [Ar]  $5s^2$
- C. [Kr]  $4d^2$  [Kr]
- D. [Kr] 4d 65s<sup>2</sup> [Kr] 4d 6
- E. [Rb]  $4d^2$  [Rb]

#### > 9.3 Ionic Radii

Determining the iodide ion radius in the lithium iodide (LiI) crystal





Ionic radius of  $I^-$ = 426 / 2 = 213 pm

Exercise 9.6 arrange the following ions in order of increasing ionic radius: Sr<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>.

$$Mg^{2+} < Ca^{2+} < Sr^{2+}$$



✓ Ionic radii increase down any column because of the addition of electron shells.

| Table 9.3 | Ionic Radii (in pm) of Some Main-Group Elements |                    |                  |                  |                 |
|-----------|-------------------------------------------------|--------------------|------------------|------------------|-----------------|
| Period    | 1A                                              | 2A                 | 3A               | 6A               | 7A              |
| 2         | Li <sup>+</sup>                                 | Be <sup>2+</sup>   |                  | $O^{2-}$         | $F^-$           |
|           | 60                                              | 31                 |                  | 140              | 136             |
| 3         | Na <sup>+</sup>                                 | $Mg^{2+}$          | $A1^{3+}$        | $S^{2-}$         | Cl-             |
|           | 95                                              | 65                 | 50               | 184              | 181             |
| 4         | K <sup>+</sup>                                  | Ca <sup>2+</sup>   | Ga <sup>3+</sup> | Se <sup>2-</sup> | $\mathrm{Br}^-$ |
|           | 133                                             | 99                 | 62               | 198              | 195             |
| 5         | $Rb^+$                                          | $\mathrm{Sr}^{2+}$ | In <sup>3+</sup> | Te <sup>2-</sup> | I-              |
|           | 148                                             | 113                | 81               | 221              | 216             |
| 6         | Cs <sup>+</sup>                                 | Ba <sup>2+</sup>   | T1 <sup>3+</sup> |                  |                 |
|           | 169                                             | 135                | 95               |                  |                 |

> Pattern across a period

| Cation      | $Na^+$ | $Mg^{2+}$ | $Al^{3+}$ | Anion       | $S^{2-}$ | $Cl^-$ |
|-------------|--------|-----------|-----------|-------------|----------|--------|
| Radius (pm) | 95     | 65        | 50        | Radius (pm) | 184      | 181    |

- ✓ All of these cations have Ne configuration  $1s^22s^22p^6$  but different nuclear charges (they are isoelectronic).
- ✓ Isoelectronic refers to different species having the same number and configuration of electrons

9.47 Arrange the following in order of increasing ionic radius:

✓ Within an isoelectronic series, the radius increases as the atomic number decreases

(Q) arrange the following ions in order of decreasing ionic radius: F<sup>-</sup>, Mg<sup>2+</sup>, O<sup>2-</sup>

isoelectronic series  $\rightarrow$  Mg<sup>2+</sup> (Z=12) < F<sup>-</sup> (Z=9) < O<sup>2-</sup> (Z=8)

**9.49** Arrange the following in order of increasing ionic radius: F<sup>-</sup>, Na<sup>+</sup>, and N<sup>3-</sup>.

isoelectronic series  $\rightarrow$  Na<sup>+</sup> (Z=11) < F<sup>-</sup> (Z=9) < N<sup>3-</sup> (Z=7)

9.48 Which has the larger radius, N<sup>3-</sup> or P<sup>3-</sup>? P<sup>3-</sup>

## > Covalent Bonds

✓ a chemical bond formed by the sharing of a pair of electrons between atoms.

# 9.4 Describing Covalent Bonds

✓ The distance between nuclei at minimum energy is called the bond length of H₂.

Figure 9.11 ◀

Potential-energy curve for H<sub>2</sub> The stable molecule occurs at the bond distance corresponding to the minimum in the potential-energy curve.

H(g) **Figure 9.10** ▲

The electron probability distribution for the H<sub>2</sub> molecule
The electron density (shown in red) occupies the space
around both atoms.

 $H_2(g)$ 

H(g)



Distance between nuclei ——

#### Lewis Formulas

$$H \cdot + \cdot H \longrightarrow H : H \qquad H : H$$
 $H \cdot + \cdot Cl : \longrightarrow H : Cl :$ 

$$3H \cdot + \cdot \stackrel{\cdot}{N} : \longrightarrow H : \stackrel{\cdot}{N} : \stackrel{\cdot}{H}$$

- Coordinate Covalent Bonds
- ✓ is a bond formed when both electrons of the bond are donated by one atom

$$A \cdot + \cdot B \longrightarrow A : B$$
  
 $A + : B \longrightarrow A : B$ 

$$H^{+} +: NH_{3} \longrightarrow \left| \begin{array}{c} H \\ \vdots \\ H: N: H \\ \vdots \\ H \end{array} \right|^{+}$$

- > Octet Rule
- ✓ The tendency of atoms in molecules to have eight electrons in their valence shells (two for hydrogen atoms)

# > Multiple Bonds



# 9.5 Polar Covalent Bonds (Polar Bonds)

✓ is a covalent bond in which the bonding electrons spend more time near one atom than the other.

$$H: H: H: Cl: Na^+: Cl:^-$$
Nonpolar covalent Polar covalent Ionic

- > Electronegativity is a measure of the ability of an atom in a molecule to draw bonding electrons to itself.
- ✓ Mulliken electronegativity ( $\chi$ ):  $X = \frac{I.E. + E.A.}{2}$
- ✓ F has large *E.A.* and large *I.E.* → large electronegativity
- ✓ Li has small E.A. and small I.E. → small electronegativity
- $\checkmark$  Pauling's electronegativity ( $\chi$ ): depends on bond enthalpies
- ✓ Electronegativity increases from left to right and decreases from top to bottom in the periodic table.
- ✓ Metals are the least electronegative elements (they are electropositive) and nonmetals the most electronegative.
- ✓ The absolute value of the difference in electronegativity of two
  bonded atoms gives a rough measure of the polarity of a bond

$$\Delta \chi$$
: 0.0 0.9 2.1 H—C1

H—H, H—Cl, and Na—Cl

19

# > Writing Lewis Electron-Dot Formulas

#### These will be done in class:

H<sub>2</sub>O, NH<sub>3</sub>, CCl<sub>2</sub>F<sub>2</sub>, CO<sub>2</sub>, SCl<sub>2</sub>, POCl<sub>3</sub>, COCl<sub>2</sub>, HSO<sub>3</sub>Cl, CO<sub>3</sub><sup>2-</sup>, NH<sub>4</sub>+, BF<sub>4</sub>-, H<sub>3</sub>O+, ClO<sub>2</sub>-.



## CONCEPT CHECK 9.2

Each of the following may seem, at first glance, to be plausible electron-dot formulas for the molecule  $N_2F_2$ . Most, however, are incorrect for some reason. What concepts or rules apply to each, either to cast it aside or to keep it as the correct formula?

a :F:N:N:F:

b :F:N::N:F:

c :F::N:N:F:

d :F:N:N:F:

e :F:N::F:N

f :F:N N:F

# 9.7 Delocalized Bonding: Resonance



- ✓ The lengths of the two oxygen—oxygen bonds (that is, the distances between the atomic nuclei) are both 128 pm.
- √ delocalized bonding

$$\mathbf{CO_3^{2^-}} \qquad \boxed{\begin{bmatrix} :0:\\\\\\\\C\\\\ :0...O:\end{bmatrix}^{2^-}} \longleftrightarrow \begin{bmatrix} :0:\\\\\\\\C\\\\ :0...O:\end{bmatrix}^{2^-} \longleftrightarrow \begin{bmatrix} :0:\\\\\\\\\\C\\\\ :0...O:\end{bmatrix}^{2^-}$$

 $NO_3$ 

# 9.8 Exceptions to the Octet Rule

# AICI<sub>3</sub> @ RT & at melting point (very low 192°C)



# 9.9 Formal Charge and Lewis Formulas

**RULE A** Whenever you can write several Lewis formulas for a molecule, choose the one having the lowest magnitudes of formal charges.

**RULE B** When two proposed Lewis formulas for a molecule have the same magnitudes of formal charges, choose the one having the negative formal charge on the more electronegative atom.

**RULE C** When possible, choose Lewis formulas that do not have like charges on adjacent atoms.

(Q) Write the Lewis formula that best describes the charge distribution in the sulfuric acid molecule, H<sub>2</sub>SO<sub>4</sub>, according to the rules of formal charge. (HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, HCN)

(Q) Draw three resonance structures for the molecule nitrous oxide, N<sub>2</sub>O (the atomic arrangement is NNO)

$$\stackrel{-...}{N} = \stackrel{+}{N} = \stackrel{...}{O} : N = \stackrel{+}{N} - \stackrel{...}{O} : \stackrel{-}{N} = \stackrel{-...}{O} : \stackrel{+}{N} = \stackrel{+}{O} : \stackrel{-...}{N} = \stackrel{+}{O} : \stackrel{+}{N} = \stackrel{+}{O} : \stackrel{-...}{O} : \stackrel{-...}{O}$$

Structure (b) is the most important one because the negative charge is on the more electronegative oxygen atom.

Structure (c) is the least important one because it has a larger separation of formal charges. Also, the positive charge is on the more electronegative oxygen atom.

# > 9.10 Bond Length and Bond Order



#### covalent radius:

Covalent radius of an atom X = half of the covalent bond length of a homonuclear X-X single bond.

If covalent radius of (C = 76 pm) & (Cl = 102)pm)  $\rightarrow$  covalent radius of C-Cl = (76 + 102) = 178 pm chloromethane, CH<sub>3</sub>Cl, 178.4 pm;

tetrachloromethane, CCl<sub>4</sub>, 176.6 pm; Bond lengths: Triple bond < Double Bond < Single Bond **Average Bond Lengths of** Some Common Single, **Double, and Triple Bonds** 

| Bond<br>Type | Bond<br>Length<br>(pm) |
|--------------|------------------------|
| С—Н          | 107                    |
| С—О          | 143                    |
| C=O          | 121                    |
| С—С          | 154                    |
| C=C          | 133                    |
| C≡C          | 120                    |
| C—N          | 143                    |
| C=N          | 138                    |
| C≡N          | 116                    |
| N—O          | 136                    |
| N=O          | 122                    |
| О—Н          | 96                     |

- > Trends for atomic radii
- 1. Within a period, the covalent radius tends to decrease with increasing atomic number.
- 2. Within a group, the covalent radius tends to increase with period number.
- (Q) Consider the molecules N<sub>2</sub>H<sub>4</sub>, N<sub>2</sub>, and N<sub>2</sub>F<sub>2</sub>. Which molecule has the shortest nitrogen—nitrogen bond? Which has the longest nitrogen—nitrogen bond?



# 9.11 Bond Enthalpy (BE)

"bond enthalpy" and "bond energy" are often used interchangeably

$$CH_4(g) \longrightarrow C(g) + 4H(g); \Delta H = 1662 \text{ kJ}$$

$$\rightarrow BE(C-H) = \frac{1}{4} \times 1662 \text{ kJ} = 416 \text{ kJ}$$

- ✓ Because it takes energy to break a bond, bond enthalpies are always positive numbers.
- ✓ Bond enthalpy is a measure of the strength of a bond: the larger the bond enthalpy, the stronger the chemical bond

(Q) Use bond enthalpies to estimate the enthalpy change for the following reaction:

$$CH_4(g) + Cl_2(g) \longrightarrow CH_3Cl(g) + HCl(g)$$

Given that bond enthalpies (kJ/mol) for:

$$(C-H) = 413$$
,  $(CI-CI) = 242$ ,  $(C-CI) = 328$ ,  $(H-CI) = 431$ ,

$$\Delta H \approx BE(\text{C}-\text{H}) + BE(\text{C}-\text{C}\text{I}) - BE(\text{C}-\text{C}\text{I}) - BE(\text{C}-\text{C}\text{I}) - BE(\text{H}-\text{C}\text{I})$$

$$= (413 + 242 - 328 - 431) \text{ kJ}$$

$$= -104 \text{ kJ}$$

In general, the enthalpy of reaction is (approximately) equal to the sum of the bond enthalpies for bonds broken minus the sum of the bond enthalpies for bonds formed.

**Exercise 9.18** Use bond enthalpies to estimate the enthalpy change for the combustion of ethylene,  $C_2H_4$ , according to the equation

$$C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g)$$

Given that bond enthalpies (kJ/mol) for:

$$(C=C) = 614$$
,  $(C-H) = 413$ ,  $(O=O) = 498$ ,  $(C=O) = 804$ ,  $(O-H) = 463$ 

$$C = C + 3O_2 \longrightarrow 2O = C = O + 2H' H$$

$$\Delta H = \{[614 + (4 \times 413) + (3 \times 498)] - [(4 \times 804) + (4 \times 463)]\} \text{ kJ}$$
  
= -1308 kJ