

Quantum Theory of The Atom

- ➤ Note: This is a summary of the lecture. Much more was discussed during the lecture!
- > Quantum Numbers:
- ✓ The allowed values and general meaning of each of the four quantum numbers of an electron in an atom are as follows:

1. Principal Quantum Number (n)

This quantum number is the one on which the energy of an electron in an atom principally depends.

it can have any positive value: 1, 2, 3, and so on

LetterKLM $N \dots$ n123 $4 \dots$

2. Angular Momentum Quantum Number (I) (Also Called Azimuthal Quantum Number)

This quantum number distinguishes orbitals of given n having different shapes. it can have any integer value from 0 to n - 1.

Letterspdf $g \dots$ l0123 $4 \dots$

✓ Orbitals of the same n but different l are said to belong to 2
different subshells of a given shell

3. Magnetic Quantum Number (m_I)

This quantum number distinguishes orbitals of given n and l,that is, of given energy and shape but having a different orientation in space; the allowed values are the integers from -I to +I.

✓ There are 2l + 1 orbitals in each subshell of quantum number l.

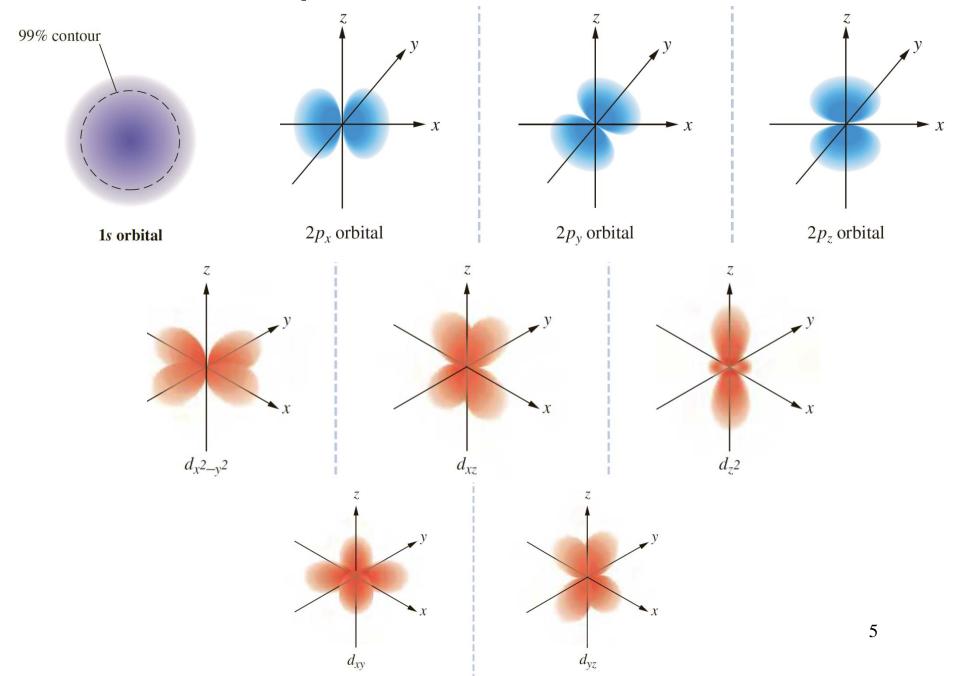
4. Spin Quantum Number (m_s)

This quantum number refers to the two possible orientations of the spin axis of an electron; possible values are +1/2 and -1/2

(Q) State whether each of the following sets of quantum numbers is permissible for an electron in an atom. If a set is not permissible, explain why.

a.
$$n = 1, l = 1, m_l = 0, m_s = +\frac{1}{2}$$
 b. $n = 3, l = 1, m_l = -2, m_s = -\frac{1}{2}$

c.
$$n = 2, l = 1, m_l = 0, m_s = +\frac{1}{2}$$
 d. $n = 2, l = 0, m_l = 0, m_s = 1$


 Table 7.1
 Permissible Values of Quantum Numbers for Atomic Orbitals

n	1	m_I^*	Subshell Notation	Number of Orbitals in the Subshell
1	0	0	1 <i>s</i>	1
2	0	0	2 <i>s</i>	1
2	1	-1, 0, +1	2 <i>p</i>	3
3	0	0	3 <i>s</i>	1
3	1	-1, 0, +1	3 <i>p</i>	3
3	2	-2, -1, 0, +1, +2	3 <i>d</i>	5
4	0	0	4s	1
4	1	-1, 0, +1	4 <i>p</i>	3
4	2	-2, -1, 0, +1, +2	4 <i>d</i>	5
4	3	-3, -2, -1, 0, +1, +2, +3	4 <i>f</i>	7

Exercise 7.7 Explain why each of the following sets of quantum numbers is not permissible for an orbital.

a.
$$n = 0$$
, $l = 1$, $m_l = 0$, $m_s = +\frac{1}{2}$
b. $n = 2$, $l = 3$, $m_l = 0$, $m_s = -\frac{1}{2}$
c. $n = 3$, $l = 2$, $m_l = +3$, $m_s = +\frac{1}{2}$
d. $n = 3$, $l = 2$, $m_l = +2$, $m_s = 0$

Atomic Orbital Shapes

