Chapter 2 Atoms, Molecules, and lons - Required sections: - 2.3 Nuclear Structure and Isotopes - 2.4 Atomic Weights - 2.8 Naming Simple Compounds - 2.9 Writing Chemical Equations - 2.10 Balancing Chemical Equations - > Excluded sections: 2.1, 2.2, 2.5, 2.6, 2.7 # 2.3 Nuclear Structure; Isotopes Mass number $$\longrightarrow A$$ Element symbol Atomic number $\longrightarrow Z$ e.g. $$\frac{20}{10}$$ Ne Ca Atomic number = Z = number of protons in the nucleus = number of electrons Ca²⁺ Mass number = A = number of protons + number of neutrons Number of neutrons = A - Z | TABLE | 2.1 | Properties | of the Electron, Prot | on, and Neut | ron | |-------------------------------|----------|---|---|-------------------------------|---------------| | Particle | Mass (kg | g) | Charge (C) | Mass (amu)* | Charge (e) | | Electron
Proton
Neutron | 1.6726 | 9×10^{-31}
2×10^{-27}
3×10^{-27} | $-1.60218 \times 10^{-19} $ $+1.60218 \times 10^{-19} $ 0 | 0.00055
1.00728
1.00866 | -1
+1
0 | ^{*}The atomic mass unit (amu) equals 1.66054×10^{-27} kg; it is defined in Section 2.4. Example 2.1:What is the nuclide symbol for a nucleus that contains 38 protons and 50 neutrons? ## **Periodic Table of The Elements** # 2.4 Atomic Masses and atomic mass Units (amu) One atomic mass unit (amu) is a mass unit = 1/12 of the mass of a carbon-12 (12C) atom. Diagram of a simple mass spectrometer, showing the separation of neon isotopes. - ²⁰**Ne** (90.48%) - ²¹**Ne** (0.27%) - ²²**Ne** (9.25%) Magnet - -Ne gas atoms form +ve ions when they collide with electrons. - -Ne⁺ atoms are accelerated from this region by the negative grid and pass between the poles of a magnet. - -The beam of positively charged atoms is split into three beams by the magnetic field according to the mass/charge ratios. - -The three beams then travel to a detector at the end of the tube # Relative Atomic Masses (A_r) Calculate the value of A_r for naturally occurring chlorine if the distribution of isotopes is 75.77% $_{17}^{35}$ Cl and 24.23% $_{17}^{37}$ Cl. Accurate masses for $_{17}^{35}$ Cl and $_{17}^{37}$ Cl are 34.97 and 36.97. | Exercise 2.2 ing isotopes: | Chlorine consis | ts of the follow- | |----------------------------|------------------------|-------------------------| | Isotope | Isotopic
Mass (amu) | Fractional
Abundance | | Chlorine-35 | 34.96885 | 0.75771 | | Chlorine-37 | 36.96590 | 0.24229 | | What is the atomic | mass of chlorine? | | #### Example 2.2 Determining Atomic Mass from Isotopic Masses and Fractional Abundances Chromium, Cr, has the following isotopic masses and fractional abundances: | Mass
Number | Isotopic
Mass (amu) | Fractional
Abundance | |----------------|------------------------|-------------------------| | 50 | 49.9461 | 0.0435 | | 52 | 51.9405 | 0.8379 | | 53 | 52.9407 | 0.0950 | | 54 | 53.9389 | 0.0236 | | | | | What is the atomic mass of chromium? **Solution** Multiply each isotopic mass by its fractional abundance, then sum: $$49.9461 \text{ amu} \times 0.0435 = 2.17 \text{ amu}$$ $51.9405 \text{ amu} \times 0.8379 = 43.52 \text{ amu}$ $52.9407 \text{ amu} \times 0.0950 = 5.03 \text{ amu}$ $53.9389 \text{ amu} \times 0.0236 = 1.27 \text{ amu}$ 51.99 amu The atomic mass of chromium is 51.99 amu. **Answer Check** The average mass (atomic mass) # 2.8 Naming Simple Compounds (Chemical nomenclature) -nomenclature of some simple inorganic compounds Ionic Compounds (Most ionic compounds contain metal + nonmetal atoms) ## **Cations** - Positively charged ions - Formed from metals - Atoms lose electrons - **e.g.**, **Na** has 11 *e*⁻ and 11 *p* **Examples:** **NaCl** K_2SO_4 Exception: NH₄CI Na⁺ has 10 e^- and 11 p ## **Anions** - Negatively charged ions - Formed from non-metals - Atoms gain electrons - **e.g., CI** has 17 *e*⁻ and 17 *p* **CI** has 18 *e* and 17 *p* | TABLE 2.3 | Comn | non Monatomic | lons of the Main | -Group Elemen | ts* | | | |-----------|-----------------|--------------------|-------------------|--------------------|------------------|------------------|-----------------| | | IA | IIA | IIIA | IVA | VA | VIA | VIIA | | Period 1 | | | | | | | H^- | | Period 2 | Li ⁺ | Be^{2+} | В | C | N^{3-} | O^{2-} | F^- | | Period 3 | Na ⁺ | Mg^{2+} | Al ³⁺ | Si | P | S^{2-} | Cl ⁻ | | Period 4 | K^+ | Ca ²⁺ | Ga ³⁺ | Ge | As | Se ²⁻ | Br^- | | Period 5 | Rb^+ | Sr^{2+} | In ³⁺ | Sn^{2+} | Sb | Te ²⁻ | I^- | | Period 6 | Cs ⁺ | Ba^{2+} | Tl^{+}, Tl^{3+} | Pb ²⁺ | Bi ³⁺ | | | | | | | | | | | | ^{*}Elements shown in color do not normally form compounds having monatomic ions. # > Rules for Predicting the Charges on Monatomic Ions: - In most main-group metallic elements: charge = group number in the periodic table (the Roman numeral). - 2. Some metallic elements of high atomic number have more than one cation: - (i) Common cations, charge = (group number 2) - (ii) Charge = group number. Example (Pb): common ion Pb²⁺ in addition to Pb⁴⁺ - 3. Most transition elements form more than one monatomic cation. - -Most of these elements have one ion with a charge of 2+. - Examples: (Fe) has common cations Fe²⁺ and Fe³⁺. (Cu) has common cations Cu⁺ and Cu²⁺. - 4. Charge on a monatomic anion for a **nonmetallic main-group element** = (**group number 8**). - Example: (O) has the monatomic anion O². - (The group number is 6; the charge is [(6-8)=-2] # Rules for Naming Monatomic Ions - 1. Monatomic cations are named after the element if there is only one such ion. - Example: Al3+ is called aluminum ion; Na+ is called sodium ion. 2. If there is more than one monatomic cation of an element→Rule 1 is not sufficient →Use *Stock system*Example: Fe²⁺ is called iron(II) ion and Fe³⁺ is called iron(III) ion. -Older system of nomenclature, such ions are named by adding the suffixes *-ous* and *-ic* to a stem name of the element to indicate the ions of lower and higher charge, respectively. ## **Examples:** Fe²⁺ (ferrous ion) and Fe³⁺ (ferric ion) Cu⁺ (cuprous ion) and Cu²⁺ (cupric ion) - Few transition metal cations, such as Zn, have only a single ion →usually name them by just the metal name. - Also, It's not wrong to name Zn²⁺ as zinc(II) ion. - 3. The names of the monatomic **anions** are obtained from a stem name of the element followed by the suffix *-ide*. Example: Br⁻ is called **bromide** ion, from the stem name *brom-* for bromine and the suffix *-ide*. | TABI | TABLE 2.4 Common Cations of the Transition Elements | | | | | | |------------------|---|---------------------|------------------|-------------------------|------------------|-------------------------| | lon | Ion Name | | lon | Ion Name | lon | Ion Name | | Cr ³⁺ | Chromiu | m(III) or chromic | Co ²⁺ | Cobalt(II) or cobaltous | Zn^{2+} | Zinc | | Mn^{2+} | Mangane | se(II) or manganous | Ni ²⁺ | Nickel(II) or nickel | Ag^+ | Silver | | Fe ²⁺ | Iron(II) o | r ferrous | Cu ⁺ | Copper(I) or cuprous | Cd^{2+} | Cadmium | | Fe ³⁺ | Iron(III) | or ferric | Cu ²⁺ | Copper(II) or cupric | Hg ²⁺ | Mercury(II) or mercuric | # Polyatomic Ions # (oxoanions) | Name | Formula | Name | Formula | |-------------------------------------|-------------------------------|---------------------------------|-----------------------| | Mercury(I) or mercurous | Hg_2^{2+} | Permanganate | $\mathrm{MnO_4}^-$ | | Ammonium | $\mathrm{NH_4}^+$ | Nitrite | NO_2^- | | Cyanide | CN ⁻ | Nitrate | NO_3^- | | Carbonate | CO_3^{2-} | Hydroxide | OH^- | | Hydrogen carbonate (or bicarbonate) | HCO_3^- | Peroxide | O_2^{2-} | | Acetate | $C_2H_3O_2^-$ | Phosphate | $PO_4^{\ 3}$ | | Oxalate | $C_2O_4^{\ 2-}$ | Monohydrogen phosphate | $\mathrm{HPO_4}^{2-}$ | | Hypochlorite | ClO ⁻ | Dihydrogen phosphate | $H_2PO_4^-$ | | Chlorite | ${ m ClO_2}^-$ | Sulfite | SO_3^{2-} | | Chlorate | ClO ₃ | Sulfate | SO_4^{2-} | | Perchlorate | ${ m ClO_4}^-$ | Hydrogen sulfite (or bisulfite) | ${\rm HSO_3}^-$ | | Chromate | $\text{CrO}_4^{\ 2-}$ | Hydrogen sulfate (or bisulfate) | ${ m HSO_4}^-$ | | Dichromate | $\operatorname{Cr_2O_7}^{2-}$ | Thiosulfate | $S_2O_3^{2-}$ | # > Polyatomic Ions NO₂ nitr<u>ite</u> ion NO₃ nitrate ion $ClO^$ hypochlorite ion ClO₂ chlor<u>ite</u> ion ClO₃ chlor<u>ate</u> ion ClO_4 perchlorate ion Naming an Ionic Compound from Its Formula (Q) Name the following compounds: Metal → nonmetal Mg₃N₂: magnesium nitride CrSO₄: chromium(II) sulfate PbCrO₄: Lead(II) chromate FeCl₂: Iron (II) chloride FeCl₃: Iron (III) chloride Cr₂S₃: chromium(III) sulfide "Criss-cross" rule - K₂O - NH₄CIO₃ ammonium chlorate - $Mg(C_2H_3O_2)_2$ - ZnBr₂ Calcium hydroxide - Cr_2O_3 chromium(III) oxide - zinc bromide potassium oxide magnesium acetate $Ca(OH)_2$ (Q) Determine The Formula of the following compounds: Manganese(II) bromide MnBr₂ Ammonium phosphate $(NH_4)_3PO_4$ Mercury(I) Fluoride Hg_2F_2 Mercury(II) Fluoride HgF₂ Mercury(I) nitride $(Hg_2)_3N_2$ $Fe_3(PO_4)_2$ Iron(II) phosphate Titanium(IV) oxide TiO₂ $TI(NO_3)_3$ Thallium(III) nitrate - (Q) Which is the correct name for Cu₂S? - A. copper sulfide - B. copper(II) sulfide - C. copper(II) sulfate - D. copper(I) sulfide - E. copper(I) sulfite - (Q) Which is the correct formula for ammonium sulfite? - A. NH₄SO₃ - B. (NH₄)₂SO₃ - C. (NH₄)₂SO₄ - D. NH₄S - E. $(NH_4)_2S$ - (Q) Name the following compounds: - (a) $Fe(NO_3)_2$ - (b) Na₂HPO₄ - (c) $(NH_4)_2(C_2O_4)$ - (Q)Write chemical formulas for the following compounds: - (a) cesium sulfide - (b) calcium phosphate # Naming Hydrates 1.Name ionic compound 2. Give number of water molecules in formula using Greek prefixes CoCl₂.6H₂O cobalt(II) chloride hexahydrate Fel₃·3H₂O iron(III) iodide trihydrate $Fe(NO_2)_3.9H_2O$ iron(III) nitrite nonahydrate | Greek Prefixes for
Naming Compounds | | | | |--|--------|--|--| | Number | Prefix | | | | 1 | mono- | | | | 2 | di- | | | | 3 | tri- | | | | 4 | tetra- | | | | 5 | penta- | | | | 6 | hexa- | | | | 7 | hepta- | | | | 8 | octa- | | | | 9 | nona- | | | | 10 | deca- | | | **TABLE 2.6** Naming Molecular Compounds: (Non-metal + Non-metal) or (Non-metal + Metalliod) **-binary compounds:** *composed of only two elements e.g.* NaCl, MgCl₂ (ionic). CO, H₂O, CCl₄, NH₃ (molecular) ## -Order of Elements in the Formula: In ionic compounds: metal → non-metal NaCl not ClNa ## In molecular compounds: # > Rules for Naming Binary Molecular Compounds - 1. The name of the compound has the elements in the order given in the previous formula. - 2. Name the first element using the exact element name. - 3. Name the second element by writing the stem name of the element with the suffix *-ide* - 4. You add a prefix, derived from the Greek, to each element name to denote the subscript of the element in the formula. Note: the prefix *mono-* is not used, unless it is needed to distinguish two compounds of the same two elements. # **Examples:** | N_2O_3 | dinitrogentrioxide | |----------|---| | HCI | hydrogen chloride NOT monohydrogen monochloride | | CO_2 | carbon | dioxide | |--------|--------|---------| |--------|--------|---------| carbon monoxide | SF_4 | sulfur tetrafluoride | CIO ₂ chlorine dioxide | |-----------------|----------------------|--| | SF ₆ | sulfur hexafluoride | Cl ₂ O ₇ dichlorine heptoxide ⁸ | H₂S dihydrogen sulfideNO nitrogen monoxideH₂O water ammonia NH_3 common name: hydrogen sulfide common name: nitric oxide N₂O₄ dinitrogen tetroxide P₄O₆ tetraphosphorus hexoxide Cl₂O₆ dichlorine hexoxide PCl₃ phosphorus trichloide PCl₅ phosphorus pentachloide disulfur dichloride tetraphosphorus trisulfide carbon disulfide sulfur trioxide S_2CI_2 P_4S_3 CS_2 SO_3 # nitrogen dioxide Chlorine monofluoride Boron trifluoride Hydrogen selenide Or dihydrogen selenide $GaBr_3$ $GeBr_4$ $CaBr_2$ $Hg_2(NO_2)_2.H_2O$ Gallium (III) bromide Germanium tetrabromide Calcium bromide Mercury(I) nitrite monohydrate # > Acids and Corresponding Anions Some Overnions and Their Corresponding Overside | lable 2.8 | Some Oxoanions and Their Corre | sponding Oxoacids | \$ | |-------------------------------|--------------------------------|-------------------|-----------------------| | Oxoanion | | Oxoacid | | | CO_3^{2-} | Carbonate ion | H_2CO_3 | Carbon <i>ic acid</i> | | NO_2^- | Nitrite ion | HNO_2 | Nitrous acid | | NO_3^- | Nitrate ion | HNO_3 | Nitric acid | | PO ₄ ³⁻ | Phosphate ion | H_3PO_4 | Phosphoric acid | | SO ₃ ²⁻ | Sulfite ion | H_2SO_3 | Sulfurous acid | | SO ₄ ²⁻ | Sulfate ion | H_2SO_4 | Sulfur <i>ic acid</i> | | ClO- | Hypochlorite ion | HClO | Hypochlorous acid | | ClO ₂ - | Chlorite ion | HClO ₂ | Chlorous acid | | ClO ₃ | Chlorate ion | $HClO_3$ | Chloric acid | | ClO ₄ | Perchlorate ion | HClO ₄ | Perchloric acid | ### Binary Compound HBr(g), hydrogen bromide HF(g), hydrogen fluoride #### Acid Solution hydrobromic acid, HBr(aq) hydrofluoric acid, HF(aq) Selenium has an oxoacid, H₂SeO₄, called selenic acid. What is the formula and name of the corresponding anion? Selenate SeO₄²⁻ Exercise 2.10 What are the name and formula of the anion corresponding to perbromic acid, HBrO₄? BrO₄ perbromate ## > Chemical Reactions: Equations Example 2.12 Balancing Simple Equations Balance first the atoms for elements that occur in only one substance on each side of the equation. (a) $$H_3PO_3 \rightarrow H_3PO_4 + PH_3$$ (b) Ca + $$H_2O \rightarrow Ca(OH)_2 + H_2$$ (c) $$Fe_2(SO_4)_3 + NH_3 + H_2O \rightarrow Fe(OH)_3 + (NH_4)_2SO_4$$ Exercise 2.13 Find the coefficients that balance the following equations. a. $$O_2 + PCI_3 \rightarrow POCI_3$$ b. $$P_4 + N_2O \rightarrow P_4O_6 + N_2$$ c. $$As_2S_3 + O_2 \rightarrow As_2O_3 + SO_2$$ d. $$Ca_3(PO_4)_2 + H_3PO_4 \rightarrow Ca(H_2PO_4)_2$$