

# Chapter 2 Atoms, Molecules, and lons

- Required sections:
- 2.3 Nuclear Structure and Isotopes
- 2.4 Atomic Weights
- 2.8 Naming Simple Compounds
- 2.9 Writing Chemical Equations
- 2.10 Balancing Chemical Equations
- > Excluded sections: 2.1, 2.2, 2.5, 2.6, 2.7

# 2.3 Nuclear Structure; Isotopes

Mass number 
$$\longrightarrow A$$
 Element symbol Atomic number  $\longrightarrow Z$ 

e.g. 
$$\frac{20}{10}$$
Ne

Ca

Atomic number = Z = number of protons in the nucleus = number of electrons

Ca<sup>2+</sup>

Mass number = A = number of protons + number of

neutrons

Number of neutrons = A - Z



| TABLE                         | 2.1      | Properties                                                        | of the Electron, Prot                                       | on, and Neut                  | ron           |
|-------------------------------|----------|-------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|---------------|
| Particle                      | Mass (kg | g)                                                                | Charge (C)                                                  | Mass (amu)*                   | Charge (e)    |
| Electron<br>Proton<br>Neutron | 1.6726   | $9 \times 10^{-31}$<br>$2 \times 10^{-27}$<br>$3 \times 10^{-27}$ | $-1.60218 \times 10^{-19} $ $+1.60218 \times 10^{-19} $ $0$ | 0.00055<br>1.00728<br>1.00866 | -1<br>+1<br>0 |

<sup>\*</sup>The atomic mass unit (amu) equals  $1.66054 \times 10^{-27}$  kg; it is defined in Section 2.4.

Example 2.1:What is the nuclide symbol for a nucleus that contains 38 protons and 50 neutrons?

## **Periodic Table of The Elements**





# 2.4 Atomic Masses and atomic mass Units (amu)

One atomic mass unit (amu) is a mass unit = 1/12 of the mass

of a carbon-12 (12C) atom.

Diagram of a simple mass spectrometer, showing the separation of neon isotopes.



- <sup>20</sup>**Ne** (90.48%)
- <sup>21</sup>**Ne** (0.27%)
- <sup>22</sup>**Ne** (9.25%)



Magnet

- -Ne gas atoms form +ve ions when they collide with electrons.
- -Ne<sup>+</sup> atoms are accelerated from this region by the negative grid and pass between the poles of a magnet.
- -The beam of positively charged atoms is split into three beams by the magnetic field according to the mass/charge ratios.
- -The three beams then travel to a detector at the end of the tube

# Relative Atomic Masses $(A_r)$

Calculate the value of  $A_r$  for naturally occurring chlorine if the distribution of isotopes is 75.77%  $_{17}^{35}$ Cl and 24.23%  $_{17}^{37}$ Cl. Accurate masses for  $_{17}^{35}$ Cl and  $_{17}^{37}$ Cl are 34.97 and 36.97.

| Exercise 2.2 ing isotopes: | Chlorine consis        | ts of the follow-       |
|----------------------------|------------------------|-------------------------|
| Isotope                    | Isotopic<br>Mass (amu) | Fractional<br>Abundance |
| Chlorine-35                | 34.96885               | 0.75771                 |
| Chlorine-37                | 36.96590               | 0.24229                 |
| What is the atomic         | mass of chlorine?      |                         |

#### Example 2.2

Determining Atomic Mass from Isotopic Masses and Fractional Abundances

Chromium, Cr, has the following isotopic masses and fractional abundances:

| Mass<br>Number | Isotopic<br>Mass (amu) | Fractional<br>Abundance |
|----------------|------------------------|-------------------------|
| 50             | 49.9461                | 0.0435                  |
| 52             | 51.9405                | 0.8379                  |
| 53             | 52.9407                | 0.0950                  |
| 54             | 53.9389                | 0.0236                  |
|                |                        |                         |

What is the atomic mass of chromium?

**Solution** Multiply each isotopic mass by its fractional abundance, then sum:

$$49.9461 \text{ amu} \times 0.0435 = 2.17 \text{ amu}$$
  
 $51.9405 \text{ amu} \times 0.8379 = 43.52 \text{ amu}$   
 $52.9407 \text{ amu} \times 0.0950 = 5.03 \text{ amu}$   
 $53.9389 \text{ amu} \times 0.0236 = 1.27 \text{ amu}$   
 $51.99 \text{ amu}$ 

The atomic mass of chromium is 51.99 amu.

**Answer Check** The average mass (atomic mass)

# 2.8 Naming Simple Compounds (Chemical nomenclature)

-nomenclature of some simple inorganic compounds

Ionic Compounds

(Most ionic compounds contain metal + nonmetal atoms)

## **Cations**

- Positively charged ions
- Formed from metals
- Atoms lose electrons
- **e.g.**, **Na** has 11 *e*<sup>-</sup> and 11 *p*

**Examples:** 

**NaCl** 

 $K_2SO_4$ 

Exception: NH<sub>4</sub>CI

Na<sup>+</sup> has 10  $e^-$  and 11 p

## **Anions**

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons
- **e.g., CI** has 17 *e*<sup>-</sup> and 17 *p*

**CI** has 18 *e* and 17 *p* 

| TABLE 2.3 | Comn            | non Monatomic      | lons of the Main  | -Group Elemen      | ts*              |                  |                 |
|-----------|-----------------|--------------------|-------------------|--------------------|------------------|------------------|-----------------|
|           | IA              | IIA                | IIIA              | IVA                | VA               | VIA              | VIIA            |
| Period 1  |                 |                    |                   |                    |                  |                  | $\mathrm{H}^-$  |
| Period 2  | Li <sup>+</sup> | $\mathrm{Be}^{2+}$ | В                 | C                  | $N^{3-}$         | $O^{2-}$         | $F^-$           |
| Period 3  | Na <sup>+</sup> | $Mg^{2+}$          | Al <sup>3+</sup>  | Si                 | P                | $S^{2-}$         | Cl <sup>-</sup> |
| Period 4  | $K^+$           | Ca <sup>2+</sup>   | Ga <sup>3+</sup>  | Ge                 | As               | Se <sup>2-</sup> | $Br^-$          |
| Period 5  | $Rb^+$          | $\mathrm{Sr}^{2+}$ | In <sup>3+</sup>  | $\mathrm{Sn}^{2+}$ | Sb               | Te <sup>2-</sup> | $I^-$           |
| Period 6  | Cs <sup>+</sup> | $Ba^{2+}$          | $Tl^{+}, Tl^{3+}$ | Pb <sup>2+</sup>   | Bi <sup>3+</sup> |                  |                 |
|           |                 |                    |                   |                    |                  |                  |                 |

<sup>\*</sup>Elements shown in color do not normally form compounds having monatomic ions.

# > Rules for Predicting the Charges on Monatomic Ions:

- In most main-group metallic elements: charge = group number in the periodic table (the Roman numeral).
- 2. Some metallic elements of high atomic number have more than one cation:
- (i) Common cations, charge = (group number 2)
- (ii) Charge = group number. Example (Pb): common ion Pb<sup>2+</sup> in addition to Pb<sup>4+</sup>

- 3. Most transition elements form more than one monatomic cation.
- -Most of these elements have one ion with a charge of 2+.
- Examples: (Fe) has common cations Fe<sup>2+</sup> and Fe<sup>3+</sup>. (Cu) has common cations Cu<sup>+</sup> and Cu<sup>2+</sup>.
- 4. Charge on a monatomic anion for a **nonmetallic main-group element** = (**group number 8**).
- Example: (O) has the monatomic anion O<sup>2</sup>.
- (The group number is 6; the charge is [(6-8)=-2]

# Rules for Naming Monatomic Ions

- 1. Monatomic cations are named after the element if there is only one such ion.
- Example: Al3+ is called aluminum ion; Na+ is called sodium ion.

2. If there is more than one monatomic cation of an element→Rule 1 is not sufficient →Use *Stock system*Example: Fe<sup>2+</sup> is called iron(II) ion and Fe<sup>3+</sup> is called iron(III) ion.

-Older system of nomenclature, such ions are named by adding the suffixes *-ous* and *-ic* to a stem name of the element to indicate the ions of lower and higher charge, respectively.

## **Examples:**

Fe<sup>2+</sup> (ferrous ion) and Fe<sup>3+</sup> (ferric ion)

Cu<sup>+</sup> (cuprous ion) and Cu<sup>2+</sup> (cupric ion)

- Few transition metal cations, such as Zn, have only a single ion →usually name them by just the metal name.
- Also, It's not wrong to name Zn<sup>2+</sup> as zinc(II) ion.
- 3. The names of the monatomic **anions** are obtained from a stem name of the element followed by the suffix *-ide*. Example: Br<sup>-</sup> is called **bromide** ion, from the stem name *brom-* for bromine and the suffix *-ide*.

| TABI             | TABLE 2.4 Common Cations of the Transition Elements |                     |                  |                         |                  |                         |
|------------------|-----------------------------------------------------|---------------------|------------------|-------------------------|------------------|-------------------------|
| lon              | Ion Name                                            |                     | lon              | Ion Name                | lon              | Ion Name                |
| Cr <sup>3+</sup> | Chromiu                                             | m(III) or chromic   | Co <sup>2+</sup> | Cobalt(II) or cobaltous | $Zn^{2+}$        | Zinc                    |
| $Mn^{2+}$        | Mangane                                             | se(II) or manganous | Ni <sup>2+</sup> | Nickel(II) or nickel    | $Ag^+$           | Silver                  |
| Fe <sup>2+</sup> | Iron(II) o                                          | r ferrous           | Cu <sup>+</sup>  | Copper(I) or cuprous    | $Cd^{2+}$        | Cadmium                 |
| Fe <sup>3+</sup> | Iron(III)                                           | or ferric           | Cu <sup>2+</sup> | Copper(II) or cupric    | Hg <sup>2+</sup> | Mercury(II) or mercuric |

# Polyatomic Ions

# (oxoanions)

| Name                                | Formula                       | Name                            | Formula               |
|-------------------------------------|-------------------------------|---------------------------------|-----------------------|
| Mercury(I) or mercurous             | $Hg_2^{2+}$                   | Permanganate                    | $\mathrm{MnO_4}^-$    |
| Ammonium                            | $\mathrm{NH_4}^+$             | Nitrite                         | $NO_2^-$              |
| Cyanide                             | CN <sup>-</sup>               | Nitrate                         | $NO_3^-$              |
| Carbonate                           | $CO_3^{2-}$                   | Hydroxide                       | $\mathrm{OH}^-$       |
| Hydrogen carbonate (or bicarbonate) | $HCO_3^-$                     | Peroxide                        | $O_2^{2-}$            |
| Acetate                             | $C_2H_3O_2^-$                 | Phosphate                       | $PO_4^{\ 3}$          |
| Oxalate                             | $C_2O_4^{\ 2-}$               | Monohydrogen phosphate          | $\mathrm{HPO_4}^{2-}$ |
| Hypochlorite                        | ClO <sup>-</sup>              | Dihydrogen phosphate            | $H_2PO_4^-$           |
| Chlorite                            | ${ m ClO_2}^-$                | Sulfite                         | $SO_3^{2-}$           |
| Chlorate                            | ClO <sub>3</sub>              | Sulfate                         | $SO_4^{2-}$           |
| Perchlorate                         | ${ m ClO_4}^-$                | Hydrogen sulfite (or bisulfite) | ${\rm HSO_3}^-$       |
| Chromate                            | $\text{CrO}_4^{\ 2-}$         | Hydrogen sulfate (or bisulfate) | ${ m HSO_4}^-$        |
| Dichromate                          | $\operatorname{Cr_2O_7}^{2-}$ | Thiosulfate                     | $S_2O_3^{2-}$         |

# > Polyatomic Ions

NO<sub>2</sub> nitr<u>ite</u> ion NO<sub>3</sub> nitrate ion  $ClO^$ hypochlorite ion ClO<sub>2</sub> chlor<u>ite</u> ion ClO<sub>3</sub> chlor<u>ate</u> ion  $ClO_4$ perchlorate ion

Naming an Ionic Compound from Its Formula

(Q) Name the following compounds: Metal → nonmetal

Mg<sub>3</sub>N<sub>2</sub>: magnesium nitride

CrSO<sub>4</sub>: chromium(II) sulfate

PbCrO<sub>4</sub>: Lead(II) chromate

FeCl<sub>2</sub>: Iron (II) chloride

FeCl<sub>3</sub>: Iron (III) chloride

Cr<sub>2</sub>S<sub>3</sub>: chromium(III) sulfide

"Criss-cross" rule

- K<sub>2</sub>O
- NH<sub>4</sub>CIO<sub>3</sub> ammonium chlorate
- $Mg(C_2H_3O_2)_2$
- ZnBr<sub>2</sub>

Calcium hydroxide

- $Cr_2O_3$ chromium(III) oxide
  - zinc bromide

potassium oxide

magnesium acetate

 $Ca(OH)_2$ 

(Q) Determine The Formula of the following compounds:

Manganese(II) bromide MnBr<sub>2</sub> Ammonium phosphate  $(NH_4)_3PO_4$ Mercury(I) Fluoride  $Hg_2F_2$ Mercury(II) Fluoride HgF<sub>2</sub> Mercury(I) nitride  $(Hg_2)_3N_2$  $Fe_3(PO_4)_2$ Iron(II) phosphate Titanium(IV) oxide TiO<sub>2</sub>  $TI(NO_3)_3$ Thallium(III) nitrate

- (Q) Which is the correct name for Cu<sub>2</sub>S?
  - A. copper sulfide
  - B. copper(II) sulfide
  - C. copper(II) sulfate
  - D. copper(I) sulfide
  - E. copper(I) sulfite
  - (Q) Which is the correct formula for ammonium sulfite?
  - A. NH<sub>4</sub>SO<sub>3</sub>
  - B. (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>
  - C. (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>
  - D. NH<sub>4</sub>S
  - E.  $(NH_4)_2S$

- (Q) Name the following compounds:
- (a)  $Fe(NO_3)_2$
- (b) Na<sub>2</sub>HPO<sub>4</sub>
- (c)  $(NH_4)_2(C_2O_4)$

- (Q)Write chemical formulas for the following compounds:
- (a) cesium sulfide
- (b) calcium phosphate

# Naming Hydrates

1.Name ionic compound

2. Give number of water molecules in formula using Greek

prefixes

CoCl<sub>2</sub>.6H<sub>2</sub>O cobalt(II) chloride hexahydrate

Fel<sub>3</sub>·3H<sub>2</sub>O iron(III) iodide trihydrate

 $Fe(NO_2)_3.9H_2O$  iron(III) nitrite nonahydrate

| Greek Prefixes for<br>Naming Compounds |        |  |  |
|----------------------------------------|--------|--|--|
| Number                                 | Prefix |  |  |
| 1                                      | mono-  |  |  |
| 2                                      | di-    |  |  |
| 3                                      | tri-   |  |  |
| 4                                      | tetra- |  |  |
| 5                                      | penta- |  |  |
| 6                                      | hexa-  |  |  |
| 7                                      | hepta- |  |  |
| 8                                      | octa-  |  |  |
| 9                                      | nona-  |  |  |
| 10                                     | deca-  |  |  |

**TABLE 2.6** 

Naming Molecular Compounds:

(Non-metal + Non-metal) or (Non-metal + Metalliod)

**-binary compounds:** *composed of only two elements e.g.* NaCl, MgCl<sub>2</sub> (ionic). CO, H<sub>2</sub>O, CCl<sub>4</sub>, NH<sub>3</sub> (molecular)

## -Order of Elements in the Formula:

In ionic compounds: metal → non-metal NaCl not ClNa

## In molecular compounds:

# > Rules for Naming Binary Molecular Compounds

- 1. The name of the compound has the elements in the order given in the previous formula.
- 2. Name the first element using the exact element name.
- 3. Name the second element by writing the stem name of the element with the suffix *-ide*
- 4. You add a prefix, derived from the Greek, to each element name to denote the subscript of the element in the formula. Note: the prefix *mono-* is not used, unless it is needed to distinguish two compounds of the same two elements.

# **Examples:**

| $N_2O_3$ | dinitrogentrioxide                              |
|----------|-------------------------------------------------|
| HCI      | hydrogen chloride NOT monohydrogen monochloride |

| $CO_2$ | carbon | dioxide |
|--------|--------|---------|
|--------|--------|---------|

carbon monoxide

| $SF_4$          | sulfur tetrafluoride | CIO <sub>2</sub> chlorine dioxide                                |
|-----------------|----------------------|------------------------------------------------------------------|
| SF <sub>6</sub> | sulfur hexafluoride  | Cl <sub>2</sub> O <sub>7</sub> dichlorine heptoxide <sup>8</sup> |

H<sub>2</sub>S dihydrogen sulfideNO nitrogen monoxideH<sub>2</sub>O water

ammonia

 $NH_3$ 

common name: hydrogen sulfide common name: nitric oxide

N<sub>2</sub>O<sub>4</sub> dinitrogen tetroxide

P<sub>4</sub>O<sub>6</sub> tetraphosphorus hexoxide

Cl<sub>2</sub>O<sub>6</sub> dichlorine hexoxide

PCl<sub>3</sub> phosphorus trichloide

PCl<sub>5</sub> phosphorus pentachloide

disulfur dichloride tetraphosphorus trisulfide carbon disulfide sulfur trioxide  $S_2CI_2$ 

 $P_4S_3$ 

 $CS_2$ 

 $SO_3$ 



# nitrogen dioxide



Chlorine monofluoride



Boron trifluoride



Hydrogen selenide Or dihydrogen selenide

 $GaBr_3$   $GeBr_4$   $CaBr_2$  $Hg_2(NO_2)_2.H_2O$  Gallium (III) bromide
Germanium tetrabromide
Calcium bromide
Mercury(I) nitrite monohydrate

# > Acids and Corresponding Anions

Some Overnions and Their Corresponding Overside





| lable 2.8                     | Some Oxoanions and Their Corre | sponding Oxoacids | \$                    |
|-------------------------------|--------------------------------|-------------------|-----------------------|
| Oxoanion                      |                                | Oxoacid           |                       |
| $CO_3^{2-}$                   | Carbonate ion                  | $H_2CO_3$         | Carbon <i>ic acid</i> |
| $\mathrm{NO}_2^-$             | Nitrite ion                    | $HNO_2$           | Nitrous acid          |
| $NO_3^-$                      | Nitrate ion                    | $HNO_3$           | Nitric acid           |
| PO <sub>4</sub> <sup>3-</sup> | Phosphate ion                  | $H_3PO_4$         | Phosphoric acid       |
| SO <sub>3</sub> <sup>2-</sup> | Sulfite ion                    | $H_2SO_3$         | Sulfurous acid        |
| SO <sub>4</sub> <sup>2-</sup> | Sulfate ion                    | $H_2SO_4$         | Sulfur <i>ic acid</i> |
| ClO-                          | Hypochlorite ion               | HClO              | Hypochlorous acid     |
| ClO <sub>2</sub> -            | Chlorite ion                   | HClO <sub>2</sub> | Chlorous acid         |
| ClO <sub>3</sub>              | Chlorate ion                   | $HClO_3$          | Chloric acid          |
| ClO <sub>4</sub>              | Perchlorate ion                | HClO <sub>4</sub> | Perchloric acid       |

### Binary Compound

HBr(g), hydrogen bromide HF(g), hydrogen fluoride

#### Acid Solution

hydrobromic acid, HBr(aq) hydrofluoric acid, HF(aq)



Selenium has an oxoacid, H<sub>2</sub>SeO<sub>4</sub>, called selenic acid. What is the formula and name of the corresponding anion? Selenate SeO<sub>4</sub><sup>2-</sup>

Exercise 2.10

What are the name and formula of the anion corresponding to perbromic acid, HBrO<sub>4</sub>?

BrO₄ perbromate

## > Chemical Reactions: Equations

Example 2.12 Balancing Simple Equations

Balance first the atoms for elements that occur in only one substance on each side of the equation.

(a) 
$$H_3PO_3 \rightarrow H_3PO_4 + PH_3$$

(b) Ca + 
$$H_2O \rightarrow Ca(OH)_2 + H_2$$

(c) 
$$Fe_2(SO_4)_3 + NH_3 + H_2O \rightarrow Fe(OH)_3 + (NH_4)_2SO_4$$

Exercise 2.13

Find the coefficients that balance the following equations.

a. 
$$O_2 + PCI_3 \rightarrow POCI_3$$

b. 
$$P_4 + N_2O \rightarrow P_4O_6 + N_2$$

c. 
$$As_2S_3 + O_2 \rightarrow As_2O_3 + SO_2$$

d. 
$$Ca_3(PO_4)_2 + H_3PO_4 \rightarrow Ca(H_2PO_4)_2$$