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12 D VECTORS AND THE GEOMETRY OF SPACE 

12.1 Three-Dimensional Coordinate Systems 

1. We start at the origin, which has coordinates (0, 0,. 0). First we move 4 units along the positive x-axis, affecting only the 

x-coordinate, bringing us to the point ( 4, 0, 0). We then move 3 units straight downward, in the negative z-direction. Thus 

only the z-coordinate is affected, and we arrive at {4, 0, - 3). 

3. The distance from a point to the yz-plane is the absolute value of the x-coordinate of the point. G(2, 4, 6) has the x -coordinate 

with the smallest absolute value, soC is the point closest to the ·yz-plane. A( - 4, 0, -1) must lie in the xz-plane since the 

distance from A to the xz-plane, given by the y-coordinate of A, is 0. 

5. The equation x + y = 2 represents the set of all points in 

JR3 whose x- andy-coordinates have a sum of2, or 

equivalently where y = 2 - x. This is the set 

{(x, 2 - x , z) I x E JR, z E R } which is a vertical plane 

that intersects the xy-plane in the line y = 2 - x, z = 0. X 

y=2 - x 

y=2 -x,z= O 

7. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices: 

IPQI = )(7 - 3)2 + [0 - ( -2)]2 + [1 - ( -3)] ~ = yf16 + 4 + 16 = 6 

IQRI = j(l- 7)2 + {2 - 0)2 + {1 - 1)2 = vf36 + 4 + o = .J40 = 2 v'15 

IRPI = )(3 - 1)2 + (- 2 - 2)2 + (- 3 - 1)2 = vf4+ 16+ 16 = 6 

The longest side is QR, but the Pythagorean Theorem is not satisfied: IPQI2 + IRPI2 =f:. IQRI2
. Thus PQR is not a right 

triangle. PQR is isosceles, as two sides have the same length. 

9. (a) First we find the distances between points: 

IABI = ){3- 2)2 + {7- 4)2 + (-2 - 2)2 = v'26 

IBGI = ){1- 3)2 + (3 - 7)2 + [3- ( - 2)]2 = v'45 = 3 v'5 

IACI = )(1- 2)2 + (3 - 4)2 + (3- 2)2 = J3 

In order for the points to lie on a straight line, the sum of the two shortest distances, must be equal to the longest distance. 

Sin<;:e v'26 + J3 =f:. 3 v'5, the three points do not lie on a straight line. 
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112 0 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

(b) First we find the distances between points: 

I DEl = J(l- 0)2 + [- 2- ( - 5)]2 + (4 - 5)2 ::::: VIT 

IEFI = )(3 - 1)2 + [4 - ( - 2)]2 + (2 - 4)2 = v'44 = 2 VIT 

IDFI = )(3 - 0)2 + [4- (-5)]2 + (2 - 5)2 = v'99 = 3Vll 

Since I DEl + IEFI = ID F I, the three points lie on a straight line. 

11. An equation of the sphere with center ( -3, 2, 5) and radius 4 is [x - ( - 3)]2 + (y - 2)2 + (z - 5)2 = 42 or 

(x + 3)2 + {y - 2)2 + (z- 5)2 = 16. The intersection of this sphere with the yz-plane is the set of points on the spher~ 

whose x-coordinate is 0. Putting x = 0 into the equation, we have 9 + (y - 2)2 + (z- 5)
2 = 16, x = 0 or 

(y- 2)2 + (z- 5)2 = 7, x = 0, which represents a circle in the yz -plane with center (0, 2, 5) and radius -/7. 

13. The radiusofthesphere is the distance between (4,3, - 1) and (3,8, 1): r = )(3 - 4)2 + (8 - 3)2 + [1 - (-1)]2 = V3o. 

Thus, an equation of the sphere is (x - 3)2 + (y - 8)2 + (z- 1)2 = 30. 

15. Completing squares in the equation x 2 + y 2 + z2 
- 2x - 4y + 8z = 15 gives 

recognize as an equation of a sphere with center (1, 2, - 4) and radius 6. 

17. Completing squares in the equation 2x2 
- 8x + 2y2 + 2z2 + 24z = 1 gives 

2(x2 
- 4x + 4) + 2y2 + 2~z2 + 12z + 36) = 1 + 8 + 72 :::} 2(x - 2)2 + 2y2 + 2(z + 6? = 81 :::} 

(x - 2)2 + y2 + (z + 6)2 = 8
2
1

, which we recognize as an equation of a sphere with center (2, 0, -6) and 

radius j¥ = 9/ v'2. 

19. (a) lfthe midpointofthe line segment from P 1(x1,y1,z1) to P2 (x2 ,y2 ,z2 ) is Q = (x1 ;x2
, Y1 ;v2

, z
1

; z
2

) , 

then the distances IPl Q l and IQP21 are equal, and each is half of IPt P21· We verify that this is the case: 

IP1QI = v [~ (x1 + X2) - X1]
2 + a<v1 + Y2 ) - Y1t + [t(z1 + Z2)- Z1] 

2 

/ ( 1 1 ) 2 ( 1 1 ) 2 ( 1 1 ) 2 = y 2X2 - 2X1 + 2Y2- 2Y1 + 2 Z2 - 2Z1 

= /(~) 2 
((x2 - x l)

2 + (y2 - vd + (z2 - z1)
2

] = ~J(x2 - xd + (y2- y1)
2 + (z2 - z1? 

= ~ IPtP21 
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 0 113 

!QP2\ = J [x2 - ~(X11 + X2)] 
2 + [y2- ~(Yl + Y2)] 

2 + [z2 - ~ (z1 + z2)) 
2 

= (~x2- ~ x1) 2 + ( h2- ~·yt) 2 + (tz2 - ~z1 ) 2 = J G)2 
[(x2- xd + (y2 - yl)2 + (z2 - z1)2) 

.= ~J(x2 - xd + (y2- y1)
2 + (z2- zd = ~ \P1P2\ 

So Q is indeed the midpoint of P 1P2. 

(b) By part (a), the midpoints of sides AB, B C and C A are P1 ( -~, 1, 4), P2 (1, ~. 5) and P3 (~ , ~, 4). (Re~all that a median 

of a triangle is a line segment from a vertex to the midpoint of the opposite side.) Then the lengths of the medians are: 

IAP2\ = Jo2 + (~ - 2)
2 

+ (5 - 3)2 = jf+4 = -fj = ~ 

\BP3\ = J (~ + 2)
2 + (~) 2 + (4- 5)

2 
= J¥ + * + 1 = J2j = ~JW 

\CP1\ = J ( -~- 4)
2 + (1 :__ 1}

2 + (4- 5? = J¥ + 1 = ~.J85 

21 . (a) Since the sphere touches the xy-plan.e, its radius is the distance from its center, (2, -3, 6), to the xy-plane, namely 6. 

Therefore r = 6 and an equation of the sphere is (x- 2? + (y + 3? + (z - 6? = 62 = 36. 

(b) The radius of this sphere is the distance from its center (2, - 3, 6) to the yz-plane, which is 2. Therefore, an equation is 

(~- 2)2 + (y + 3)2 + (z - 6) 2 = 4. 

(c) Here the radius is the distance from the center (2, - 3, G) to the xz-plane, which is 3. Therefore, an equation is 

(x- 2)2 + (y + 3)2 + (z- 6} 2 = 9. 

23. The equation x = 5 represents a plane parallel to the yz-plane and 5 units in front of it. 

25. The inequality y < 8 represents a half-space consisting of all points to the left of the plane y = 8. 

27. The inequality 0 ~ z ~ 6 represents a ll points on or between the horizontal planes z = 0 (the xy-plane) and z = 6. 

29. Because z = - 1, all points in the region must lie in the horizontal plane ~ = -1. In addition, x 2 + y2 = 4, so the region 

consists of all points that lie on a circle with radius 2 and center on the z-axis that is contained in the plane z = -1. 

31. The inequality x2 + y2 + z2 ~ 3 is equivalent to jx2 + y2 + z2 ~ J3, so the region consists of those points whose distance 

from the origin is at most V3. This is the set of all points on or inside the sphere with radius ../3 and center (0, 0 , 0). 

33. Here x2 + z2 ~ 9 or equiva lently Jx2 + z2 ~ 3 which describes the set of all points in JR3 whose distance from they-axis is 

at most 3. Thus, the inequality represents the region consisting of all points on or inside a circular cylinder of radius 3 with 

axis the y-axis. 

35. This describes a ll points whose x-coordinate is between 0 and 5, that is, 0 < x < 5. 

37. This describes a region all of whose points have a distance to the origin which is greater than r, but smaller than R. So 

inequalities describing the region are r < jx2 + y2 + z2 < R, or r 2 < x 2 -1- y2 + z2 < R 2
. 
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114 0 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

39. (a) To find the x- andy-coordinates of the point P, we project it onto £2 
I 

and project the resulting point Q onto the x- and y-axes. To find the 

z-coordinate, we project P onto either the xz-plane or the yz-plane 

(using our knowledge of its x- or y-coordinate) and then project the 

resulting point onto the z-axis. (Or, we could draw a line parallel to 

QO from P to the z-axis.) The coordinates of Pare (2, 1, 4). 

(b) A is the intersection of £ 1 and £2, B is directly below the 

y-intercept of L2, and 0 is directly above the x-intercept of £2. 

41. We need to find a set of points { P(x, y , z) II API = I BPI}. 

J(x + 1)2 + (y - 5)2 + (z- 3)2 = J(x - 6)2 + (y - 2)2 + (z + 2)2 ~ 

(x + 1)2 + (y- 5) + (z - 3)2 = (x - 6)2 + (y - 2)2 + (z + 2)2 => 

x2 + 2x + 1 + y2 
- lOy + 25 + z2 

- 6z + 9 = x 2 
- 12x + 36 + y2 

- 4y + 4 + z2 + 4z + 4 '=> 14x - 6y - lOz = 9. 

Thus the set of points is a plane perpendicular to the line segment joining A and B (since this plane must contain the 

perpendicular bisector of the line segment AB). 

43. The sphere x2 + y2 + z2 = 4 has center (0, 0 , 0) and radius 2. Completing squares in x2 
- 4x + y 2 

- 4y + z 2 
- 4z = -11 

gives (x2 
- 4x + 4) + (y2 

- 4y + 4) + (z2 
- 4z + 4) = - 11 + 4 + 4 + 4 => (x - 2)2 + (y - 2? + (z- 2)2 = 1, 

so this is the sphere with center (2, 2, 2) and radius 1. The (shortest) distance between the spheres is measured along 

the line segment connecting their centers. The distance between (0, 0, 0) and (2, 2, 2) is 

.J(2 - 0)2 + (2- 0)2 + (2 - 0)2 = ffi = 2 J3, and subtracting the radius of each circle, the distance between the 

spheres is 2 v'3 - 2 - 1 = 2 .J3 - 3. 

12.2 Vectors 

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude. 

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) arid direction at any given 

location. 

(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both 

magnitude (distance) and direction. 

(d) The population of the world is a scalar, because it has only magnitude. 

3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry, of the 

. -----+ --+ ---+ ------+ --+ --+ __. -----+ 
parallelog~am as a guide, we see that AB = D C, DA = CB, DE = EB, and EA = CE. 
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SECTION 12.2 VECTORS 0 

5. (a) un (b) 
u 

(c) 

w~ uNw 
u v+w 

(d) (e) 
u (f) u -:Gv ~ Dw u v v+u+w u-w-v 

---> 
7. Because the taif of dis the midpoint of QR we have QR = 2d, and by .the Triangle Law, 

a + 2d = b =? 2d=b-a =? d=!{b-a) = th - ~a. AgainbytheTriangleLawwehavec + d = bso 

c = b - d = b - ( ~ b - ~a) = ~ ~ + ~b. 

9. a= (3 - (- 1), 2 - 1}=(4, 1} 11.a =(2 - (-1), 2 - 3} = (3,-1} 

y y 

B(3, 2) A(-1, 3) 

0 X 
X 

13. a = ·(2 - 0, 3 - .3,-1 - 1} = (2, 0,-2} 15. (-1 , 4} + (6, - 2} = (-1 + 6, 4 + ( - 2)} = (5, 2) 

A(0, 3, 1) 

X 

17. (:~, 0, 1) + (0, 8, 0) = (3 + 0, 0 + 8, 1 + 0) 

= (3, 8, 1) 

(3, 0, 1) 

X 

y 

X 
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116 0 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

19. a + b = (5 + (-3) ,-12 + (-6)) = (2, - 18) 

2a + 3b = (10, -24) + (-9, -18) = (1, -42) 

lal = y'52 + ( - 12)2 = .jl69 = 13 

Ia- b l = 1(5- ( -3), - 12- ( -6))1 = 1(8, -6)1 = y'82 + ( - 6)2 = v'100 = 10 

21. a+ b = (i'+ 2j - 3 k) + ( -2 i - j + 5 k) = - i + j + 2k 

2a + 3b = 2 (i + 2j - 3 k) + 3 ( -2 i - j + 5 k) = 2 i + 4j - 6 k - 6 i - 3j + 15 k = - 4 i + j + 9k 

lal = y'12 + 22 + ( -3)2 = v'i4 

Ia - b l = l(i+ 2j - 3 k) - (-2 i -j +5 k)l = l3 i + 3 j - 8k l = y'32 +32 + (-8)2 = v'82 

23. The vector - 3 i + 7 j has length l-3 i + ~ j I = y' ( -3)2 + 72 = v'58, so by Equation 4 the unit vector with the same 

d. . . 1 ( 3. 7 ' ) 3 . 7 . 1rect1on IS r,:n - 1 + J =- r.;o 1 + r.;oJ · 
v58 v58 v58 

25. The vector 8 i - j + 4 k has length 18 i - j + 4 k l = y'82 + ( - 1)2 + 42 = J8I = 9, so by Equation 4 the unit vector with 

the same direction is ~ (8 i - j + 4 k ) = ~ i - ~ j + ~ k. 

27. y 
. .j3 

From the figure, we sec that t an 0 = -
1
- = J3 => B = 60°. 

X 

29. From the figure, we see that the x-component ofv is 

v1 = I vi cos(1r / 3) = 4 ·. ~ = 2 and they-component is 

V2 = I vi sin( 1r / 3) = 4 · .,;; = 2 v'3. Thus 

V = (th, V2) = (2, 2 .j3 ). 

31. The velocity vector v makes an angle of 40° with the horizontal and 

has magnitude equal to the speed at which the football was thrown. 

From the figure, we see that the horizontal component ofv is 

I vi cos 40° = 60 cos 40° ~ 45.96 ft/s and the vertical component 

is I vi sin 40° = 60 sin 40° ~ 38.57 fils. 

y 

v 

v, 

Vz 

X 
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SECTION 12.2 VECTORS 0 117 

33. The given force vectors can be expressed in terms of their horizontal and vertical components as -300 i and 

~00 cos 6~0 i + 200 sin 60°j = 200 ( ~) i + 200 ( ~) j = 100 i + 100 v'3 j . The resultant force F is the sum of 

these two vectors: F = ( -300 + 100) i + (0 + 100 v'3) j = - 200 i + 100J3j. Then we have 

IFI ~ V(-200)2 + (100v'3)
2 

= .j70,000 = 100 V7 ~ 264.6 N. Let() be the angle F makes with the 

· · · Th () lOO J3 . J3 d h . I . f F 1· . h d d positive x-ax1s. en tan = _
200 

= - 2 an t e termma pomt o 1es m t e secon qua rant, so 

() = tan- 1 
( - ~) + 180° ~ -40.9° f. 180° = 139.1° . 

35. With respect to the water's surface, the woman's velocity is the vector sum of the velocity of the ship with respect 

to the water, and the woman's velocity with respect to the ship. If we let north be the positive y-direction, then 

v = (0, 22) + (-3, 0) = (-3, 22). The woman's speed is lvl = .jg + 484 ~ 22.2 mi/ h. The vector v makes an angle() 

with the east, where()= tan- 1 
( ~;) ~ 98°. Therefore, the woman's direction is about N(98- 90)0 W = N8°W. 

37. Let T 1 and T 2 represent the tension vectors in each side of the 

clothesline as shown in the figure. T 1 and T 2 have equal vertical 

components and opposite horizontal components, so we can write 

T 1 = - a i + b j and T 2 = a i + b j [a, b > 0]. By similar triangles, !!_ = 
0

·
08 

=> a = 50b. The force due to gravity 
a 4 

acting on .Ule shirt has magnitude 0.8g ~ (0.8)(9.8) = 7.84 N, hence we have w = - 7.84j. The resultant T 1 + T 2 

of the tensile forces counterbalances w , so T 1 + T 2 = -w => (-a i + bj ) + (a i + bj ) = 7.84 j => 

( -50b i + bj ) + (50b i + bj ) = 2bj = 7.84j => b = 7
·:

4 = 3.92 and a= 50b = 196. Thus the tensions are 

T 1 = - a i + bj = - 196i + 3.92j and T 2 = ai + bj = 196i + 3.92j . 

Alternatively, we can find the value of() and proceed as in Example 7. 

39 .. (a) Set up coordinate axes so that the boatman is ·at the origin,- the canal is 

bordered by the y-axis and the line x = 3, and the current flows in the 

negative y-direction. The boatman wants to reach the point (3, 2). Let() be 

the angle, measured from the positive y-axis, in the direction he should 

steer. (See the figure.) 

y 

X 

In still water, the boat has velocity v b = (13 sjn B, 13 cos()) and the velocity of the current is V c (0, -3.5), so the true path 

of the boat is determined by the velocity vector v = v b + V c = (13 sin B, 13 cos() - 3.5). Let t be the time (in hours) 

after the boat departs; then the position of the boat at time t is given by tv and the boat crosses the canal when 

tv = (13sin0, 13cos0- 3.5) t = (3, 2). Thus 13(sinO)t = 3 => 3 
t = -

13 
. ()and (13 cosB- 3.5) t = 2. 

sm · 
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118 0 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

Substituting gives {13 cos (} - 3.5) 
13 

:in(} = 2 => 39 cos 8- 10.5 = 26 sin(} (1). Squaring both sides, we have 

1521 cos2 8 - 819 cos 8 + 110.25 = 676 sin2 
() = 676 (1 - cos2 9) 

2197 cos2 
(} - 819 cos(} - 565.75 = 0 

The quadratic formula gives 

8 
_ 819 ± v'C--819)2- 4{2197)( - 565.75) 

cos . - ·2{2197) 

· = 819 ± ~5g~42'572 :::::: 0. 72699 or - 0.35421 

The acute value for(} is approximately cos--1 (0.72699) :::::: 43.4°. Thus the boatman should steer in the direction that is 

43.4° from the bank, toward upstream. 

Alternate solution: We could solve ( 1) graphically by plotting y = 39 cos 8- 10.5 andy = 26 sin 8 on a graphing device 

and finding the appoximate intersection point (0.757, 17.85). Thus 0:::::: 0.757 radians or equivalently 43.4°. 

(b) From part (a) we know the trip is completed when t = ·-
3 
~ (} .· But 8 :::::: 43.4°, so the time required is approximately 

1 sm 

. 
3

43 4 
:::::: 0.336 hours or 20.2 minutes. 

13sm . 0 

41 . The slope of the tangent line to the graph ofy = x 2 at ,the point {2, 4) is 

dy I = 2xl = 4 
· dx x=2 x=2 

and a parallel vector is i + 4j which has length Ji + 4j J = .)12 + 42 = ..JPi, so unit vectors parallel to the tangent line 

are ±~ (i + 4 j ). 

43. By the Triangle Law, AB + BC = AC. Then AB + BC + CA = AC + CA, but AC + CA = AC + -AC = 0. 
~ _.. --t ,_.. -+ ------+- ------+- ----+- ._. ---+ ---+ ( --+) 

--+ --+ --+ 
SoAB+BC+CA = 0. 

45. (a), (b) (c) From the sketch, we estimate that s :::::: 1.3 and t:::::: 1.6. 

(d) c = sa + t b # 7 = 3s + 2t and 1 = 2s - t. 

Solving these equations gives s = t and t = V. 

47. Jr- roJ is the distance between the points (x, y , z) and (xo, y0 , z0 ), so the set of points is a sphere with radius 1 and 

center (xo, Yo, zo). 

Alternate method: Jr - ro J = 1 # J(x- xo)2 + (y- vo)2 + (z- zo)2 = 1 # 

(x - xo? + (y - yo)2 + (z - zo? = 1, which is the equation of a sphere with radius 1 and center (xo, yo, zo). 
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49. a+ (b + c) = (at, a2} + ((bt , b2} + (c1, c2}) = (at , a2} + (b1 + c1, ~ + c2) 

= (a1 + b1 + c1, a2 + ~ + c2} = ((a1 + bt) + c1, (a2 + ~) + c2) 

= (a1 + b1 ,a2 + b2} + (ct, c2} = ((a1,a2} + (b1 , b2}) + (c1,c2} 

.= (a+ b} + c 

SECTION 12.3 THE DOT PRODUCT 0 1-19 

_____. -+ -+ 

51 . Consider triangle ABC, where D and E are the midpoints of AB and BC. We know that AB. + BC = AC (1) and 

---+ ---+ _. I .-;. ---+ ---+ -+ . . ----+ ---t 

DB +BE= DE (2). However, DB = ~AB, and BE = ~BC. Substituting these expressions for DB and BE into 

---+ ---+ -+ ---t ----+ . .-. --+ 
· (2) gives ~AB + ~BC = DE. Comparing this with (1) gives DE = ~AC. Therefore·AC and DE are parallel and 

12.3 The Dot Product 

1. (a) a · b is a scalar, and the dot product is defined only for vectors, so (a · b) · c has no meaning. 

(b) (a . b) c is a scalar multiple of a vector, so it does have meaning. 

(c) Both [a[ and b · care scalars, so [al (b ·c) is an ordinary product of real numbers, and has meaning. 

(d) Both a and b +care vectors, so th~ dot product a · (b +c) has meaning. 

(e) a · b is a scalar, but cis a vector, and so the two quantities cannot be added and a · b -1:' c has no meaning. 

(f) Ia ! is a scalar, and the dot product is defined only for vectors, so lal · (b + c ) has no meaning. 

3. a· b = ( - 2, ~) · (- 5,1 2} = (-2)(-5} + (~)(12) = 10 + 4 = 14 

5. a · b = (4, 1, i ) · (6, -3, - 8) = (4)(6) + (1)(- 3) + (i) (- 8) = 19 

7. a· b = (2 i + j ) · (i - j + k ) = (2)(1) + (1)( - 1) + (0)(1) = 1 
'-1 ' '• \ 

9. By Theorem 3, a · b = lal lb1 cos 0 = (6)(5) cos 2
; = 30 ( -~) = -15. 

11. u , v , aJ)d ware all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60° and 

u · v = lullvl cos60° = (1)(1) (~) = ~. lfw is moved so it has the same initial point as u , we can see that the angle 

between them is 120° and we have u · w = lul lw l cos 120° = (1)(1) ( -~) = -~. 

13. (a) i · j = (1, 0, 0) · (0, 1, 0) = (1)(0) + (0)(1) + (0)(0) = 0. Similarly, j · k = (0)(0) + (1)(0) + (0) (1) ,;, 0 and 

k . i = {0){1) + {0){0) + (1)(0) = 0. 

Another method: Because i, j , and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3) 

is cos~= 0. 

(b) By Pr~perty I of the dot product, i · i = lil 2 = 12 = 1 since i is a unit vector. Similarly, j · j = lj l2 = 1 and 

k . k = lkl2 = 1. 
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120 D CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

15. ja j = vW + 32 = 5, jbj = }22 + (- 1)2 = v'5, and a· b = {4){2) + {3)(- 1) = 5. ~rom Corollary 6, we have 

a· b 5 1 · . ( 1 ) · 
cos(}= jajjb/ = 

5
. v'5 = vg· So the angle between a and b IS(}= cos-

1 v'5 ~ 63°. 

17. jaj = .,j32 + ( -1)2 + 52 = .;35, jbj = .,j( - 2)2 + 42 + 32 = v'29, and a · b ~ {3){ -2) + ( -1)(4) + {5)(3) = 5. Then 

cos B = l:l ·l~l = .;35 ~ v'29 = v'1~15 and the angle between a and b is. B = cos-
1 

( v'1~15 ) ~ 81° . 

19. jaj = .J42 + ( -3)2 + 12 = .;26, jbj = .,j22 + 02 + ( -1)2 = v'5, and a. b = {4){2) + ( - 3)(0) + (1)( -1) = 7. 

h (} a· b · 7 7 d 8 . _1 ( 7 ) 52o 
T en cos = jajjbj = v'26 . v'5 = v'130 an = cos v'130 ~ . 

21. Let p, q, and r be the angles at vertices P, Q, and R respectively. 

--> -'-+ 
Then p is the angle between vectors PQ and P R , q is the angle 

--> --> 
between vectors QP and QR, and r is the angle between vectors 

--> . ---+ 
RPaildRQ. 

--> --> . 

Thuscos = PQ·PR = (- 2•3) · (1•4) = - 2 + 12 =___!Q_and =cos-1 (___!Q_) ~48° . Similarl, 
p !?O!!nl .,j(- 2)2+32 .j12+ 42 y'l3ffi v'ffi p y'ffi y 

---+ ---+ 
QP . QR . (2, -3) · (3, 1) 6 - 3 3 - 1 ( 3 ) 75o d 

cosq = IQ?IIQRI = v'4 + 9 v'9 + 1 = v'13 v'f5 = v'13Q so q =cos v'l3Q ~ an 

r ~ 180° - {48°+ 75°) = 57°. 

. ,___.,2 ,___.,2 1--,-+12 . ~-~-n 
Alternate solution: Apply the Law of Cosines three times as follows: cos p = ,__. , ,__. 

1 
2 PQ PR 

_ i?R( -I?QI2 .- IQJil.2 
_ j?Q( - lnl2 -IQ'RI2 

cos q - ,___.,, __. , , and cosr -

1

---.

11

.-.

1 
· 2 PQ QR 2 PR QR 

23. (a) a . b = ( -5){6) + (3)( - 8) + {7){2) = -40 -:/= 0, so a and bare not orthogonal. Also, s ince a is not a scalar multiple 

ofb, a and bare not parallel. 

(b) a · b = ( 4) ( -3) + (6)(2) = 0, so a and bare orthogonal (and not parallel). 

(c) a· b = (-1){3) + (2){4) + {5)(-1) = 0, soaand bare orthogonal (and not parallel). 

(d) Because a = - ~ b , a and b ~e parallel. 

--+ ---+ ----+ --+ ----+ ----+ 
25. QP = (-1, - 3, 2), QR = (4, - 2, - 1), and QP · QR = -4 + 6-2 = 0. Thus QP and QRare orthogonal, so the angle of 

the triangle at vertex Q is a right angle. 
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21. Let a = a1 i + a 2 j + a 3 k be a vector orthogonal to both i + j and i + k , Then a · (i + j ) = 0 <=> a1 + a2 = 0 and 

a . (i + k ) = 0 <=> a 1 + a3 = 0, so a 1 = - a2 ~ -a3. Furthermore a is to be a unit vector, so 1 = ai + a~+ a§ = 3ai 

. . 1 h l . 1. l k d 1 '+ 1 ' + 1 k tw . h . 1mphes a1 = ±73. T us a= 731- 7a J- 73 .an a = - 73 1 7aJ 73 are o sue umt vectors. 

29. The line 2x - y = 3 <=> y ·= 2x - 3 has slope 2, so a vector parallel to the line is a = (1, 2}. The line 3x + y = 7 <=> 

y = - 3x + 7 has slope - 3, so a vector parallel to the line is b = (1, - 3). The angle between the lines is the same as the 

angle 8 between the vectors. Here we have a · b = (1)(1) + (2)( - 3) = - 5, lal = v'P + 22 = v'5, and 

a · b -5 - 5 1 v'2 
[hi = J12 + ( -3)2 = v'lQ, so cos 8 = I alibi = y'5. v'1Q = 

5 
J2 =- J2 or ""'2· Thus 8 = 135°, and the 

acute angle between the lines is 180° - 135° = 45°. 

31. The curves y = x 2 andy= x3 meet when x 2 = x3 <=> x3
- x2 = 0 <=> x 2 (x - 1) = 0 <=> x = 0, x = 1. We have 

i:-x2 = 2x and .!£x3 = 3x2
, so the tangent lines of both curv~s have slope 0 at x = 0. Thus the angle between the curves is 

dx dx 

0° at th~ point (0, 0). For x = 1, ! x2 1:c=l = 2 and d~ xt:=l = 3 so the tangent lines at the point (1, 1) have slopes 2 and 

3. Vectors parallel to the tangent lines are (1, 2} and (1, 3}, and the angle (} between them is given by 

cos(} = (1, 2} . (1, 3} = 1 + 6 = _ 7_ 
1(1, 2}1 1(1,3}1 v'5v'W 5v'2 

~3. Since 1(2, 1, 2)1 = v'4 + 1 + 4 = V9 = 3, using Equations 8 and 9 we have cos a=~ . cos/3 =~. and cos-y = ~· The 

direction angles are given by a = cos-1 
( i) ~ 48°, /3 = cos- 1 (~) ~ 71°, and 1 = cos-1 (~) = 48°. 

35. Since I i- 2j- 3kl = v'1 + 4 + 9 = v'l4, Equations 8 and 9 give cos a = 7IT• cos/3 =*' and cos-y = 7&, while 

a = cos-1 (~) ~74° , {3 = cos- 1 (-~) ~ 122°, and /=cos-1 (-vih) ~ 143°. 

37. l(c, c, c) I = v'c2 + c2 + c2 = v'3c [since c > 0], so .cos a = cos/3 = cos:-y = ~ = ~ and 
v3c v3 

r;an a · b -5 · 4 + 12 · 6 
39. Ia I = J( -5)2 + 122 = v w:.r = 13. The scalar projection of b onto a is comp11 b = -

1
-

1 
= = 4 and the 

a 13 

vector projection ofb onto a is, proj11 b = ( j~~) 
1
:

1 
= 4 · f3 ( -5, 12} = (-~, -~ ). 

41 . la l = v'9 + 36 + 4 = 7 so the scalar projection of b onto a is compab = j~~ = ~ (3 + 12..:. 6) = l The vector 

. . f b . . . b 9 a 9 l (3 6 2} o (3 6 2} ( 27 54 18 ) proJeCtiOn o onto a IS, prOJa = 7j;f = 7 · 7 , , - = 4o , , - = 49 • 49• -49 · 
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122 0 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

43. lal = J4 + 1 + 16 = J2I so the scalar projection ofb onto a is compa b = a
1

· bl = 
0 

-;; 
2 

= -
1

- while the vector 
a 21 J2I 

. . fb . . b 1 a 1 2i- j + 4 k 1 ( • • ) 2 1 4 prOJeCtion 0 Onto a IS prOJa = J2T jaj = J2T · J2T = 2l 2 1 - J + 4 k = 21 i - 2T j + 2T k. 

' 
( 

a · b a·b 2 45. ortha b ) · a = (b - proja b ) · a = b · a - (proja b } · a = b · a - --2 a· a = b · a - - -2 Ia I = b · a - a· b = 0. 
Ja l lal 

So they are orthogonal by (7). 

a·b 
47. compa b = j;f = 2 ~ a · b = 2lal = 2 v'IO. lfb = (b1, b:l, b3) , then we need 3bl + Ob2- 1b3 = 2 v'IO. 

One possible solution is obtained by taking b1 = 0, b2 = 0, bs = - 2 v'IO. In general, b = ( s, t, 3s - 2 v'10 ), s, t E llt 

49. The displacement vector is D = (6 - 0) i + (12 - 10} j + (20- 8) k = 6 i + 2j + 12 k so, by Equation 12, the work done is 

W = F · D = (8 i - 6j + 9 k ) · (6i + 2j + 12k} = 48 - 12 + 108 = 144joules. 

51. Here ID I = 80 ft, IF I = 30 lb, and B = 40°. Thus 

w =F . D = IF IIDI cos B = (30)(80) cos 40° = 2400 cos 40° ~ 1839 ft-lb. 

53. First note that n = (a, b) is perpendicular to the line, because if Q1 = (a1, bt) and Q2 = (a2 , b2) lie on the line, then 

-----+ 
n · Q1 Q2 = aa2 - aa1 + ~ - bb1 = 0, since aa2 + bb:l = - c = aa1 + bb1 from the equation of the line. 

I 

Let P2 = (x2, y2) lie on the line. Then the distance from P1 to the line is tJ:te absolute value of the scalar projection 

fp----+p. (P-----tP. ) In · (x2- x1, Y2 - Yl ) l lax2- ax1 + by2 -lnJ1 I lax1 + by1 + cl 
o 1 2 onto n . compn 1 2 = I I = r:?'7l:? = r::?7'l:? 

n v a2 + b2 v a2 + b2 

since ax2 + by2 =-c. The required distance is 1(3)( - 2) + ( - 4)(3) + 51 = 1
5
3 . 

. )32 + (- 4)2 

55. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the 

coordinate axes. The diagonal of the cube that begins at the origin and ends at (1, 1, 1} has vector representation (1, 1, 1). 

The angle B between this vector and the vector of the edge which also begins at the ori~in and runs along the x-liXis [that is, 

( )] . . b B (1, 1, 1) · (1, 0, 0) 1 
1,0,0 1sg1ven ycos = I(1, 1, 1}I I(1, 0, 0) I = J3 

57. Consider the H- C-H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1, 0, 0) and 

(0, 1, 0) (or any H -C-H combination, for that matter). Vector representations of the line segments emanating from the 

carbon atom and extending to these two hydrogen atoms are ( 1 - t , 0 - t, 0 - t ) = ( t , - t, -t) and 

(0 - t . 1- t. 0- t) ~ ( - t , t , - t ). The bond angle, B, is therefore given by 
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59. Let a = (a1, a2, a3) and= (b1, b2, b3). 

Property 2: a· b = (a1, a2 , a3 ) · (b1, b2, bs) = a1b1 + a2b2 + asbs 

= b1a1 + ~a2 + b3a3 = (b1, ~. bs) · (a1 , a2, as ) = b ·a 

Property 4: (ca) · b = (ca1, ca2, ca3) · (b1, b2, bs) = (ca1)b1 + (ca2)b2 + (ca3)b3 

= c(a1b1 + a2b2 + asbs) = c (a· b) = a1(cb1) + a2(~) + a 3(cbs) 

= (a1 , a2, as)· (cbt, c~, cbs) = a· (c b) 

Property 5: 0 ·a = (0, 0, 0) · (a1, a2, a3) = {O)(al) + (O)(a2) + (O)(a3) = 0 

61 . Ia · b l = l lal lbl cos8l = lallbl lcos 81. Since lcos81 ~ 1, Ia · bl = lal lbl lcos 81 ~ lal lbl. 

Note: We have equality in the case ofcos8 = · ± 1, so 8 = 0 or 8 = 1r, thus equality when a and bare parallel. 

63. (a) t he Parallelogram Law states that the sum of the squares of the 

lengths of the diagonals of a parallelogram equals the sum of the 

squares of its (four) sides. 

(b) Ia + b l2 =(a + b) · (a + b)= lal2 + 2(a ·b)+ lbl2 and Ia - b l2 = (a- b)· (a- b)= lal2
- 2(a · b )+ lb l2 • 

Adding these two equations gives Ia + b l2 + Ia- b l2 = 2 lal 2 + 2 lbl2
. 

12.4 The Cross Product 

j 

1. a x b = 6 0 

0 8 

k 

-2 = I~ 
0 

-2

1

. 

1

6 - 2

1

. 

1

6 o I 
1 - J + k 

0 0 0 0 8 

= [0 - (- 16)]i - (0 - O)j + (48 - O) k = 16 i + 48k 

Now (a x b)· a = (16, 0, 48) · (6, 0, -2) = 96 + 0 - 96 = 0 and (a x b)· b = (16, 0, 48) · (0, 8, 0) = 0 + 0 + 0 = 0, so 

a x b is orthogonal to both a and b . 

j k 

3. a x b = 1 3 - 2 = I ~ ~~I i - ~-~ -~ lj + l ~~ ~I k 
-1 0 5 

·= (15 - O)i - (5 - 2) j + [0 - (- 3))k = 15 i -3j +3k 

Since (a x b) · a= {15i - 3j + 3k) · (i + 3j - 2k) = 15 - 9-6 = O, a x bisorthogonal to a . 

Since (ax b)· b = (15 i - 3j + 3 k) · ( - i + 5 k) = - 15 + 0 + 15 = 0, a x b is orthogonal to b . 
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124 0 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 

j k 

5. ax b = 1 - 1 -1 = ,-~ -~ li 11 - 1, . 11 
1 1 J + 1 -~ lk 

1 1 1 2 2 2 
2 2 

Now {ax b )· a= {~ i- j + ~ k ) · (i- j - k) = ~ + 1- ~ ~ 0 and 

(a x b ) · b = { ~ i - j + ~ k) · G i + j + ~ k) = ~ - 1 + ~ = 0, so a x b is orthogonal to both a and b . 

7. a x b = t 

j k 

1 1/t 

e t 2 1 

= 11 1/t I i -I t 1/t I· + I t 1 I k 
t21 t21 J t 2 t2 

= (1 - t) i - (t- t) j + (t3 
- t 2

) k = (1 - t) i + (t3 
- t 2

) k 

Since {a X b ). a = (1 -t,O,t3
- t2). (t, 1, 1/t) = t- e +0 +t2

- t = 0, a X b is orthogonal to a. 

Since (a x b ) · b = ( 1 - t, 0, t 3 
- t2

) • ( t2
, t 2

, 1) = t 2 
- t3 + 0 + t 3 

- t 2 = 0, a x b is orthogonal to b . 

9. According to the discussion precedin.g Theorem II , i x "j = k, so (i x j ) x k = k x k = 0 [by Example 2). 

11. (j - k) X (k- i) = (j - k) X k + (j - k) .X ( - i) 

= j X k + ( - k) X k + j X ( -i) + ( -k) X ( - i) 

= (j X k ) + (-1){k X k) + (- 1)(j X i)+ (-1)2 (k X i) 

= i + (-1) 0 + (-1)(- k) + J = i + j + k 

by Property 3 of Theorem I I 

by Property 4 of Theorem 11 

by Property 2 of Theorem I 1 

by Example 2 and 

the discussion preceeding Theorem II 

13. (a) Since b x cis a vector, the dot product a· (b x c) is meaningful and is a scalar. 

(b) b ·cis a scalar, so a x (b ·c) is meaningless, as the cross product is defined only for two vectors. 

(c) Since b x cis a vector, the cross 'product a x (b x c) is meaningful and results in another vector. 

(d) b · cis a scalar, so the dot product a · (b ·c) is meaningless, as the dot product is defined only for two vectors. 

(e) Since (a . b ) and ( c . d) are both scalars, the cross product (a . b ) X ( c . d) is meaningless. 

(f) a x band c x d arc both vectors, so the dot product (ax b )· (c x d ) is meaningful and is a scalar. 

15. If we sketch u an~ v starting from the same initial point, we see.that the 

angle between them is 60°. Using Theorem 9, we have 

lu x vi = lullvl sin 0 = {12)(16) sin 60° = 192 · v; = 96 v'3. 

By the right-hand rule, u x v is directed into the page. . 

v 
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j k 

17. axb = 2 - 1 3 = ~-~ :Ii - I~ : lj + I~ -1, k = ( -1-6) i - (2- 12)j+ [4- (- 4)] k = - 7i+10j+8 k 
2 . 

4 2 1 

j k 

=1 -~ ~ li -I: ~ l j + 1: 
21 . b x a = 4 2 1 k = [6- ( - 1)] i- {12 - 2)j + ( -4 - 4) k = 7 i - lOj- 8 k 

-1 
2 -1 3 

Notice a x b = - b x a here, as we know is always true by Property I of Theorem II . 

19. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate 

i j k 12 11 I 3 11 I 3 21 (3,2,1)x(-1, 1, 0) = 3 2 1 = i- · j + k= - i-j +5 k. 
1 0 -1 0 - 1 1 

- 1 1 0 

. I b h ± (-1, -1,5) ±(-1, -1,5) h . ( 1 1 5 ) 
So two umt vectors orthogona to ot are v'

1 
+ 

1 
+ 

25 
= 

3
../3 , t at 1s, - M, -M~ 37:3 

21 . Let a= (a1, a2, as). Then 

j k 

= Ia: :31i - ~~ :sl j + 1:1 
O x a= 0 0 0 0 lk= O, 

a2 
a1 a2 as 

j k 

= I a~ as I i _ I a1 as, . + I a1 a21 axO = a1 a2 as 
0 0 0 0 J 0 O k = O. 

0 0 0 

25. ax (b+c) =a x (b1 +c1,b2 +c2,bs +c3) 

= (a2(bs + cs)- a3(b2 + c2), as(b1 + c1)- a1(b3 + cs) , a1(b2 + c2)- a2(b1 + q)) 

= ((a2bs - asb2) + (a2cs - asc2), (asb1- a1bs) + (asc1 - a1c3), (a1b2 - a2b1) + (a1c2 - a2c1)) 

= (a2bs- asb2 , aab1 - a1bs, a1b2- a2b1 ) + (a2cs - asc2, asc1- a1c3, a1c2 - a2c1) 

= (a x b) + (a X c) 
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27. By plotting the vertices, we can see that the parallelogram is determined by the y 

---+ ---+ 
vectors AB = (2, 3) and AD= (4, -2}. We know that the area of the parallelogram 

determined by two vectors is equal to the length of the cross product of these vectors. 

. ---+ 
In order to compute the cross product, we consider the vector AB as the three-

---+ 
dimensional vector (2, 3 , 0) (and similarly for AD), and then the area of 

parallelogram ABCD is 

j k 

IA13 x ml= 2 3 o =l(o) i- (o) j+ (-4 - 12)kl=l-16kl = 16 

4 - 2 0 

---+ ---+ 
29. (a) Because the plane through P, Q, and R contains the vectors PQ and P R, a .vector orthogonal to both of these vectors 

---+ ---+ 
(such as their cross product) is also orthogonal to the plane. Here PQ = ( - 3, 1, 2} and P R = (3, 2, 4}, so 

---+ ---+ 
PQ x PR = ((1)(4)- (2)(2), (2)(3)- (-3)(4) , (-3)(2)- (1)(3)) = (0, 18, - 9) 

Therefore, (0, 18, - 9) (or any nonzero scalar multiple thereof, such as (0, 2, - 1)) is orthogonal to the plane through P , Q, 

andR. 

(b) Note that the area of the tr~angle determined by P, Q, and R ls equal to half of the area of the 

parallelogram determined by the three points. From part (a), the area of the parallelogram is 

I.PQ x PR I = I (0, 18, -9) I = y'O + 324 + 81 = v'4o5 = 9v'5, so the area of the triangle is ~ · 9v'5 = ~ .J5. 

---t ---+ 
31 . (a) PQ = (4, 3, - 2) and P R = (5, 5, 1}, so a vector orthogonal to the plane through P, Q, and R is 

---+ ---+ 
PQ x P R = ((3)(1) - ( -2)(5), ( -2)(5) - (4)(1), (4)(5) - (3) (5)) = (13, - 14, 5) [or any scalar mutiple thereof]. 

---+ ---+ 
(b) The area of the parallelogram determined by PQ and PR is 

IPQ x P'RI = 1(13,-14, 5)1 = yl132 + (- 14)2 +52 = v'395,sotheareaoftriangle PQR is ~v'39Q. 

33. By Equation 14, the volume of the parallelepiped detennined by a , b , and cis the magnitude of their scalar triple product, 

' 

1 2 3 11 21 1- 1 
which is a · (b x c) = -1 1 2 = 1 - 2 

. 1 4 2 
2 1 4 

2 1 1-1 11 4 + 3 2 1 = 1(4-2)-2(- 4-4) + 3(-1-2) = 9. 

Thus the volume of the parallelepiped is 9 cubic units. 

---t --+ --+ 
35. a= PQ = (4, 2, 2}, b = PR = (3, 3, -1), and c = P S = (5,5, 1). 

so the volume of the parallelepiped is 16 cubic units. 
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1 5 - 2 

37. u · (v x w)= 3-1 0 =1 1-
1

· 
0

1- 5 1
3 0

1+(- 2) 1
3 

-ll = 4 + 60 - 64 = 0,whichsaysthatthevolume 
9 - 4 5 - 4 5 9 . . 

5 9 - 4 

of the parallelepiped determined by u , v and w is 0, and jhus these three vectors are coplanar. 

39. The magnitude of the torque is Jr J = Jr x FJ = JrJJFJ sinO = (0.18 m)(60 N) sin(70 +lOt = 10.8 sin80° r::::: 10.6 N·m. 

41 . Using the notation of the text, r = {0, 0.3, 0) and F has direction (0, 3, -4). The angle(} between them can be determined by 

9 
(0, 0.3, 0) . {0, 3, -4) . 9 0.9 

cos = => cos = => 
J(o, o.3, o)JI{o,3, -4)1 (0.3)(5) 

cosO = 0.6 => (J r::::: 53.1°. Then Jr l = lri iFI sin(} => 

100 = 0.3IFisin53.1° => 1F i r:::::417N. 

43. From Theorem 9 we have Ia x bl = la l lbl sin 9, where 0 is the angle between a and b , and from Th,eorem 12.3.3 we have 

a· b = lal lb l cosO => Ja l lbl = a · be. Substituting the second equation into the first gives Ia x b l = a · b sin B, so 
cos cos (J 

Ia X b l = tan9. Here Ia X b l = 1(1, 2, 2)1 = V1 + 4 + 4 = 3, so tan() = Ia x bbl = ~ = J3 => () = 60° . 
. a· b a · v3 

45. (a) 

a 

The distance between a point and a line is the length of the perpendicular 

from the point to th~ line, here In I =d. But referring to triangle PQS, 

d = In I = IQP' sin (J = lbl sin 9. But 8 is the angle between QP = b 

--+ Ia x bl 
and QR = ~·Thus ~y Theorem 9, sinO = lai Jb l 

d d = lb1 . 9 = Jbi Ja x bl = Ia x b J 
an so 'I sm Jai Jbl laJ 

--+ ---+ 
(b) a= QR = (- 1, - 2, - 1) and b = QP = (1, - 5, - 7}. Then 

a x b = (( -2)( -7) - ( -1){ 7 5), ( - 1)(1)- ( - 1)( - 7) , ( -1)( -5)- ( - 2)(1)} = (9, - 8, 7). 

Thus the distance is d = Ia [:I bl = ~ JBl + 64 + 49 = ji¥ = j¥. 

47. From Theorem 9 we have Ia x b l = [al[b[ sin 9 so 

Ja x b]2 = [a[ 2 [b[ 2 sin2 
() = [a[ 2 lb[2 (1 - cos2 B) 

= fa i2 Jb[ 2
- ([ai Jb [ cos 9)2 = [a[ 2 lb[2 - (a · b)2 

by Theorem 12.3.3. 
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49. (a - b ) x (a + b) = (a - b) x a + (a - b ) x b 

=ax a+ (-b)x a +ax b+(- b)x b 

=(a X a)- (b x a)+ (a X b)- (b x b) 

= 0 - (b x a ) + (a x b)- 0 

=(ax b)+ (a x b) 

= 2(a x b ) 

51. a X (b X c) + b X (c X a) + c X (a X b) 

by Property 3 of Theorem 11 . 
by Property 4 ofTheorem I I 

by Property 2 ofTheorem II (with c =: -1) 

by Example2 

by Property I of Theorem ll 

= [(a · c)b- (a · b)c] + [(b · a)c- (b · c)a] + [(c · b)a - (c: a )b] 

= (a · c)b - (a· b )c+ (a · b)c- (b · c)a+ (b · c)a- (a · c)b = 0 

by Exercise 50 

53. (a) No. If a · b = a · c, then ·a · (b - c) = 0, so a is perpendicular to b - c, which can happen if b -:f. c. For example, 

let a = (1, 1, 1), b = (1, 0, 0) and c = (0, 1, 0). 

(b) No. If a x b =ax c then a x (b- c) = 0, which implies that a is parallel to b- c; which of course can happen 

ifb -:f. c. 

(c) Yes. Since a· c = a· b , a is perpendicular to b - c, by part (a). From part (b), a is also parallel to b - c. Thus since 

a -:f. 0 but is both parallel and perpendicular to b - c, we have b - c = 0, so b = c. 

12.5 Equations of Lines and Planes 

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are 

each scalar multipl~s of the third direction vector. Then the first two direction vectors are also scalar multiples of each 

other, so these vectors, and hence the two lines, are parallel. 

(b) False; for example, the x- and y-axes are both perpendicular to the z-axis, yet the x- andy-axes are not parallel. 

(c) True; each of the first two planes has a normal vector parallel to ~he normal vector of the third plane, so these two normal 

vectors are parallel to each other and the planes are parallel. 

(d) False; for example, the xy- and yz-planes are not parallel, yet they are both perpendicular to the xz-plane. 

(e) False; the x- and y-axes are not paralle l, yet they are both parallel to the plane z = 1. 

(f) True; if each line is perpendicular to a plane, then the lines' direction vectors are both parallel to a normal vector for the 

plane. Thus, the direction vectors arc parallel to each other and the lines are paralle l. 

(g) False; the planes y = 1 and z = 1 are not parallel, yet they are both parallel to the x-axis. 

(h) True; if each plane is perpendicular to a line; then any normal vector for each plane is parallel to a direction vector for the 

line. Thus, the normal vectors are parallel to each other and the planes are parallel. 

( i) True; see Figure 9 and the accompanying discussion. 
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(j) False; they can be skew, as in Example 3. 

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular 

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle B, 0° :S B < goo., and the 

line will intersect the plane at an angle goo -B. 

3. For this line, we have r 0 = 2 i + 2.4j + 3.5 k and v = 3 i + 2 j - k, so a vector equation is 

r = ro + t v = (2 i + 2.4 j + 3.5 k ) + t(3 i + 2j - k) = (2 + 3t) i + {2.4 + 2t) j + (3.5 - t) k and parametric equations are 

X = 2 + 3t, y = 2.4 + 2t, Z = 3.5 - t. 

5. A Line perpendicular to the given plane has the same direction as a normal vector to the plane, such as 

n = (1, 3, 1). So r 0 = i + 6 k , and we can take v = i + 3j + k. Then a vector equation is 
. ' 

r = {i + 6 k) + t(i + 3j + k ) = (1 + t) i + 3tj + (6 + t ) k , and parametric equations are x = 1 + t, y = 3t, z = 6 + t. 

7. The vector v = (2 - 0, 1 - ~ . - 3- 1) = (2, ~ . -4) is parallel to the line. Letting Po = (2, 1, -3), parametric equations 

2 1 1 3 4 h' l · . X - 2 y - 1 Z + 3 are x = 2 + t, y = + 2t , z =- - .t, w 1 e symmetnc equat1ons are -
2
- = 

112 
= ---=4 or 

X - 2 = 2y _ 2 = Z + 3. 
2 - 4 

9. v = (3- ( -8) , - 2- 1,4- 4) = (11, - 3,·0), and letting Po= (- 8, 1, 4), parametric equations are x = -8 + llt, 

4 0 4 I ·1 . . x + 8 y - 1 4 N . h h h d' . y = 1 - 3t, z = + t = , w 11 e symmetnc equations are ----u- :;:: _
3 

, z = . ottcc ere t at t e trectton number 

c = 0, so rather than writing z ~ 4 
in the symmetric equation we must write the equation z = 4 separately. 

11. The line has direction v = (1, 2, 1). Letting Po = (1, - 1, 1), parametric equations are x = 1 + t, y = -1 + 2t, z = 1 + t 

d . . 1 y + 1 1 an symmetriC equatiOns are x - = -
2
- = z - . 

13. Direction vectors of the lines are v 1 = (- 2 - ( - 4), 0 - ( - 6), - 3 - 1) = (2, 6, - 4) and 

v 2 = (5 - 10,3 - 18, 14 - 4) = ( -5, - 15, 10), and since v 2 = -:-~ v1 , the direction vectors and thus the lines are parallel. 

15. (a) The line passes through the point (1, - 5, 6) and a direction vector for the line is ( - 1, 2, - 3), so symmetric equations for 

. x- 1 y+5 z -6 
the line are ---=1 = -

2
- = --=3. 

x- 1 y+5 0-6 x - 1 
(b) The line intersects the xy-plane when z = 0, so we need -=1' = -

2
- = --=3 or -=1' = 2 => x = - 1, 

Y ~ 5 = 2 => y = -1. Thus the point of intersection with the xy-plane is ( - 1, - 1, 0). S imilarly for the yz-plane, 

we need x = 0 => 1 = y ~ 5 = z ~3 
6 => y = - 3, z = 3. Thus the line intersects the yz-plane at {0, - 3, 3). For 

the xz-plane, we need y = 0 => => x = -~, z = -~ . So the line intersects the xz-plane 
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\~~From Equation 4, the line segment. from ro ~ 2 i - j + .4 k to r 1 = 4 i + 6 j + k is 

r (t) = (1 - t)ro +tr1 = (1 - t)(2 i - j +4 k) +t(4 i + 6j + k ) = (2 i -j +4k) +t(2 i + 7j- 3k), 0 ::=; t ::=; 1. 

l 19. Since the direction vectors (2, -1, 3} and (4, - 2, 5} are not scalar multiples of each other, the Lfnes aren't parallel. For the 
\ ' ' \- -

lines to intersect, we must be able to find one value oft and one value of s that produce the same point from the respective 
..------______: ----·----- --~·-----------"'--

parametric equations. Thus we need to satisfy tlie following three equations: 3 + 2t = 1 + 48, 4 - t = 3 - 28, ...-----
1 + 3t = 4 + 5s. Solving the last two equations we get t = 1, 8 = 0 and checking, we see that these values don't satisfy the 

first equation. Thus the lines aren't parallel and don't intersect, so they must be skew lines. 

r 
·• 21. Since the direction vectors (1, - 2, - 3} and (1, 3, -7) aren't scalar multiples of each other, the lines aren't parallel. Parametric 

equations of the lines are L1: x = 2 + t, y = 3- 2t, z = 1 - 3t and L2: x ·= 3 + 8, y = -4 + 38, z = 2 -78. Thus, for the 

lines to intersect, the three equations 2 + t = 3 + 8, 3 - 2t = -4 + 3s, and 1- 3t = 2- 78 must be satisfied simultaneously. 

Solving the first two ~quations gives t = 2, 8 = 1 and checking,_ we see that these values do satisfy the third equation, so the 

lines intersect when t = 2 and 8 = 1, that is, at the point ( 4, -1, -5). 

23. Since the plane is perpendicular to the vector (1, -2, 5), we can take (1, - 2, 5} as a normal vector to the plane. 

(0, 0, 0) is a point on the plane, so setting a= 1, b = -2, c = 5 and xo = 0, yo = 0, z0 = 0 in Equation 7 gives 

1(x - 0) + (-2)(y- 0) + 5(z - 0) = 0 or x- 2y + 5z = 0 as an equation of the plane. 

25. i + 4j + k = (1, 4, 1} is a normal vector to the plane and ( - 1, ~, 3) is a point on the plane, so setting a= 1, b = 4, c = 1, 

xo = - 1, yo = ~, zo = 3 in Equation 7 gives 1 (x - ( -1 )] + 4 (11 - ~) + 1(z - 3) = 0 or x + 4y + z = 4 as an equation of 

the plane. 

27. Since the two planes are parallel, they will have the same normal vectors. So we can taken = (5, -1, - 1), and an equation of 

the plane is5(x-1) -1(y- (- 1)]-1[z- (-1)] = Oor5x -11- z = 7. 

29. Since the two planes are parallel , they will have the same normal vectors. So we can taken = (1, 1 , 1), and an equation of the 

plane is 1(x- 1) + 1 (y - ~) + 1 (z - ~) = 0 or x + y + z = Jt or 6x + 6y + 6z = 11. 

31. Here the vectors a= (1- 0, 0 - 1, 1 1 1) = (1, -1, 0) and b = (1 - 0, 1- 1, 0- 1) = (1, 0, - 1) lie in the plane, so 

ax b is a normal vector to the plane. Thus, we can taken= ax b = (1 - 0, 0 + 1, 0 + 1) = (1, 1, 1}. If P o is the point 

(0, 1, 1), an equation of the plane is 1(x- 0) + 1(y - 1) + 1(z - 1) = 0 or x + y + z = 2. 

33. Here the vectors a = (8 - 3, 2 - ( - 1), 4- 2} = (5, 3, 2) and b = (-1 - 3; - 2 - ( -1) , -3- 2} = (-4, - i , - 5) lie in 

the plane, so a normal vector to the plane is n = a x b = ( - 15 + 2, -8 + 25, - 5 + 12) = (-13, 17, 7) and an equation of 

the plane is - 13(x - 3) + 17[y- (-1)) + 7(z - 2) = 0 or -13x + 17y + 7z = -42. 

35. If we first find two nonparallel vectors in the plane, their cross product wi ll be a normal vector to the plane. Since the given 

line lies in the plane, its direction vector a= (-2, 5, 4) is one vector in the plane. We can verify that the given point (6, 0, -2) 
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does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and 

find a vector connecting the points. If we putt = 0, we see that ( 41 31 7) is ·on the line, so 

b = (6 - 4, 0- 3, -2 -7) = (2, -3, -9) and n = a x b = (-45 + 12,8-18,6 -10) = (- 33, - 10, - 4). Thus, an 

equation of the plane is -33{x - 6)- 10(y- 0)- 4[z - ( -2)] = 0 or 33x +lOy + 4z = 190. 

37. A direction vector for the line of intersection is a= n1 x n 2 = {1, 1, - 1) x (2, -1, 3) = (21 - 51 - 3), and a is parallel to the 

desired plane. Another vector parallel to the plane is the vector .connecting any point on the line of intersection to the given 

point ( - 1 1 21 1) in the plane. Setting x = 0, the equations of the planes reduce toy- z = 2 and -y+ 3z = 1 with 

simultaneous solution y = ~ and z = ~. So a point on the line is ( 01 ~ 1 ~) and another vector parallel to the plane is 

( - 1 1 -~ , -~).Then a normal vector to the plane is n = (2, - 51 -3) x (-11 -~, -~ ) = (-2,4, - 8) and an equation of 

the plane is -2{x + 1) + 4(y- 2) - B(z - 1) = 0 or x - 2y + 4z = --:1. 

39. If a plane is perpendicular to two other planes, its nonnal vector is perpendicular to the normal vectors of the other two planes. 

Thus (2, 1, -2) x (1, 0, 3) = (3- 0, -2- 6, 0 - 1) = (3, -8, - 1) is a normal vector to the desired plane. The point 

(1, 5, 1) lies on the plane, so an equation is 3(x - 1) - B(y - 5)- (z- 1) = 0 or 3x - By- z = - 38. 

---41. To find the x-intercept we set y = z = 0 in the equation 2x + 5y + z = 10 

and obtain 2x = 10 => x = 5 so the x-intercept is (5, 0, 0). When 

x = z = 0 we get 5y = 10 => y = 2, so they-intercept is (0, 2, 0). 

Setting x = y = 0 gives z = 10, so the z-intercept is (0, 0, 10) and we 

graph the portion of the plane that lies in the first octant. 

43. Setting y = z = 0 in the equation 6x - 3y + 4z = 6 gives 6x = 6 => 

x = 1, when x = z = 0 we have -3y = 6 => y = - 2, and x = y = 0 

implies 4z = 6 => z = ~.so the intercepts are (1, 0, 0), {0, -2, 0), and 

(01 '0, ~). The figure shows the portion of the plane cut off by the coordinate 

planes. 

I 

X 

X 

@ ubstitute the parametric equations ofthe line into the equation of the plane: (3- t) - (2 + t) + 2{5t) = 9 => 

Bt = 8 => t = 1. Therefore, the point of intersection of the line and the plane is given by x = 3 - 1 = 2, y = 2 + 1 = 3, 

and z = 5(1) =51 that is, the point (2, 3, 5). 

47. Parametric equationS for the line are x = t, y = 1 + t, z = ~t and substituting into the equation of the plane gives 

4{t)-{1+t)+3(~t)=8 => ~t=9 => t=2.Thusx = 2,y=1+2 .=3,z=H2)=1andthepointof 

intersection is (2, 31 1). 
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49. Setting x = 0, we see that (0, 1, 0) satisfies the equatio~s of both planes, so that they do in fact have a line of intersection. 

v = o 1 x 0 2 = (1, 1, 1} x (1, 0 , 1) = (1, 0, -1} is the direction of this line. Therefore, direction numbers of the intersecting 

line are 1, 0, - 1. 

51. Normal vectors for the planes are 01 = (1, 4, -3} and 0 2 = ( -3, 6, 7), so the normals (and thus the planes) aren't parallel. 
. . 

But 01 · 0 2 ,;, -3 + 24 - 21 = 0, so the normals (and thus the planes) are perpendicular. 

53. Normal vectors for the planes are 01 = (1, 1, 1) and 02 = (1, -1, 1). The normals are not parallel, so neither are tl1e planes. 

Furthe'rmore, o1 · o2 = 1 - 1 + 1 = 1 =F 0, so the planes aren't perpendicular. The angle between them is given by· 

cos8 = O t . 0 2 = __ 1_ = ~ 1(1) lolllo21 .j3.j3 3 => O=cos- 3 ::::::70.5o. 

55. The normals are 0 1 = (1, -4, 2) and 0 2 = (2, -8, 4). Since 02 = 2o1 , the normals (and tlms the planes) are parallel. 

57. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say z = 0. (This will fail if the line .of 

intersection does not cross the xy-plane; in that case, try setting x or y equal to 0.) The equations of the two planes reduce 

to x + y = 1 and x + 2y = 1. Solving these two equations gives x = 1, y = 0. Thus a point on ilie line is (1, 0,·0). 

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take 

v = o 1 x o 2 = (1, 1, 1) x (1, 2, 2) = (2- 2, 1 - 2, 2- 1) = (0, - 1, 1}. By Equations 2, parametric equations for tlle 

line are .'1: = 1, y = - t, z = t. 

. 0] . 0 2 1 + 2 + 2 5 h fi 0 -1 ( 5 ) 15 80 (b) The angle between the planes satisfies cos 0 = I II I = r;; If\ = r;;. T ere ore = cos r;; :::::: . . 
0] 02 v 3 v 9. 3 v 3 3 v 3 

59. Setting z = 0, tlle equations of the two planes become 5x- 2y = 1 and 4x + y = 6. Solving tllese two equations gives 

x = 1, y = 2 so a point on the line of intersection is (1, 2, 0). A vector v in the direction of this intersecting line is 

perpendicular to the normal vectors ofbotll planes. So we can use v = o 1 x 0 2 = (5, - 2, -2) x (4, 1, 1} = (0, - 13, 13} or 

equivalently we can take v = (0, -1, 1}, and symmetric equations for the line are x = 1, y _=-
1
2 = I or x = 1, y- 2 = -z. 

61. The distance from a point (x , y , z) to (1, 0, - 2) is d1 = ..j(x- 1)2 + y2 + (z + 2)2 and the distance from (x, y, z) to 

(3 ,4 , 0) is d2 = ..j(x- 3)2 + (y- 4)2 + z 2 . The plane consists of all points (x, y, z) where d1 = d2 => d{ = di <* 

(x- 1)2 + y2 + (z + 2)2 = (x - 3) 2 + (y - 4)2 + z2 <* 

x 2 
- 2x + y 2 + z2 + 4z + 5 = x2 

-: 6x + y 2 
- By + z2 + 25 <* 4:1; + By + 4z = 20 so an equation for the plane is 

4x + By + 4z = 20 or equivalently x + 2y + z = 5. 

Alternatively, you can argue that the segment joining points (1, 0, -2) and (3, 4, 0) is perpendicular to tlle plane and the plane 

includes the midpoint of the segment. 

63. The plane contains tlle points (a, 0, 0), (0, b, 0) and (0, 0, c) . Thus the vectors a = (-a, b, 0} and b = (- a, 0, c) lie in tlle 

plane, and o = a x b = (be- 0, 0 + ac, 0 + ab) = (be, ae, ab) is a normal vector to the plane. The equation of the plane is 
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there fore bcx + aetJ + abz = abc + 0 + 0 or bcx + acy + abz = abc. Notice that if a ol 0, b ol 0 and c ol 0 then we can 

' . X '1j Z 1 Th' . d . be I rewnte the equat1on as - + - + - = . ts 1s a goo equat1on to remem r. 
a b c 

65. Two vectors which are perpendicular to the·required line are the normal of the given plane, (1, 1, 1), and a direction vector for 

the given line, (1, - 1, 2). So a direction vector for the required line is (1, 1, 1} x (1, -1, 2} = (3, - 1, -2}. Thus L is given 

by (x, y, z} = (0, 1, 2} + t(3, -1 , - 2}, or in parametric form, x = 3t, y = 1- t , z = 2- 2t. 

67. Let Pi have normal vector D i. Then n1 = (3, 6, -3}, n 2 = (4, -12, 8), n a = (3, -9, 6), ll4 = (1, 2, - 1}. Now n 1 = 3D4, 

so n1 and n4 are parallel, and hence P1 and P4 are parallel; similarly P 2 and P3 are parallel because n2 = ! n 3. However, n 1 

and n 2 are not parallel (so not all four planes are parallel). Notice that the point (2, 0, 0) lies on both P 1 and P4 , so these two 

planes are identical. The point ( ~ , 0, 0) lies on P2 but not on P3, so these are different planes. 

69. Let Q = (1, 3, 4) and R = (2, 1, 1), points on the line corresponding to t = 0 and t = 1. Let . . 

---> --+ 
P = ( 4, 1, - 2). Then a = QR = (1, - 2, -3), b = QP = (3, - 2, - 6) . The distance is 

d = Ia x bl = 1(1, -2,-3} x (3,-2,-6}/ = 1(6, - 3,4)1 = J62 + (-3)2 + 42 = J6I = {61 
/al 1(1, -2, -3}/ 1(1, - 2, - 3}1 JP+(- 2)2 + (-3)2 v'I4 V14' 

1 BE . 9 tl d'ta . D iax1+by1 +cz1 +d/ /3(1) +2(- 2)+6(4)-5/ /181 18 
7 . y quat1on , 1e IS nee IS = = = r.n = - . 

Ja2+b2+ c2 . J 32 + 22 + 62 v49 7 

73. Put y = z = 0 in the equation of the first plane to get the point (2, 0, 0) on the plane. Because the planes are parallel, the 

distance D between them is the distance from (2, 0, 0) to the second plane. By Equation 9, 

D = /4(2) - 6(0) + 2(0) - 31 = _ 5_ = _5_ or 5 VT4. 
J42 + ( - 6)2 + (2)2 V56 2 VI4 28 

75. The distance between two parallel planes is the same as the distance between a point on on~ ofilie planes and the oilier plane. 

Let Po = (xo, yo, zo) be a point on the plane given by ax+ by + cz + dt = 0. Then axo + byo + czo + d1 = 0 and the 

distance between Po and ilie plane given by ax + by + cz + d2 = 0 is, from Equation 9, 

D = /ax o + byo + czo + d2/ = /-dl + d2 / , /d1 - d2 / 
Ja2 +b2+c2 Ja2 + b2+ c2 Ja2+ b2+c2 

77. £ 1: x = y = z =? x = y (1). £2: x + 1 = y/2 = z/3 =? x + 1 = y/2 (2). The solution of (l ) and (2) is 

x = y = - 2. However, when x = -2, x = z =? z = - 2, but x + 1 = z/3 =? z = - 3, a contradiction. Hence the 

lines do not intersect. For L1. v1 = (1, 1, 1), and for L2, v2 = (1, 2, 3}, so the lines are not parallel. Thus ilie lines are skew 

lines. If two lines are skew, they can be viewed as lying in two parallel planes and so ilie distance between the skew lines 

would be the same as the distance between these parallel planes. The common normal vector to the planes must be 

perpendicular to boili (1, 1, 1) and (1, 2, 3), the direction vectors of the two lines. So set 
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n = {1, 1, 1) x {1, 2, 3) = (3- 2, - 3 + 1, 2- 1) = {1, - 2, 1). From above, we know that ( - 2, -2, - 2) and ( -2, - 2, -3) 

are points of £1 and~ respectively. So in the notation of Equation 8, 1{ - 2)- 2( - 2) + 1( - 2) + d1 = 0 ~ d1 = 0 and 

1( -2) - 2( -2) + 1( -3) + d2 = 0 ~ d2 = 1. 

By Exerci~e 75, the distance between these two skew lines is D = IO - II 
. v 1 +4 + 1 

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is 

n = (1, 1,1) x (1, 2, 3) = (1, - 2, 1). Pick any point on each of the lines, say ( - 2, -2, -2) and ( -2, - 2, - 3), and form the 

vector b = (0, 0, 1) connecting the two points. The distance between the two skew lines is the absolute value of the 'sca,lar 

. . . . ln·bl 11 · 0-2·0+1·11 1 
proJection ofb along n, that IS, D = -

1

-

1

- = = u;· 
. n v 1 +4+1 v6 

79. A direction vector for £1 is v1 = (2, 0, -1) and a direction vector for £ 2 is v 2 = (3, 2, 2). These vectors are not parallel so 

neither are the lines. Parametric equations for the lines are £1 : x = 2t, y = 0, z = - t, and £2: x = 1 + 3s, y = - 1 + 2s, 

z = 1 + 2s. No values oft and s satisfy ·these equations simultaneously, so the lines don't intersect and hence are skew . . we 

can view the lines as lying in two parallel planes; a common normal vector to the planes is n = v 1 X v2 = (2, - 7, 4). Line 

£ 1 passes through the origin, so (0, 0, 0) lies on one of the planes, and. (1, - 1, 1) is a point on £2 and therefore on the other 

plane. Equations of the planes then are 2x- 7y + 4z = 0 and 2x- 7y + 4z- 13 = 0, and by Exercise 75, the distance 

I0-(-13)1 13 
between the two skew lines is D = = rcn. 

v4+49 +16 v69 

Alternate solution (without reference to planes): Direction vectors of the two lines are v1 = (2, 0 , -1) and v 2 = (3, 2, 2). 

Then n = v 1 x v 2 = (2, - 7, 4} is perpendicular to both lines. Pick any point on each of the lines, say (0, 0, 0) and (1, -1, 1), 

and form the vector b = (1, -1, 1) connecting the two points. Then the distance between the two skew lines is the absolute 

value of the scalar projection of b a long n , that is, D = ln
1
·
1
bl = 12 + 7 + 41 = ~639 . 

D V4 + 49+16 YO::! 

81 . If a =F 0, then ax + by+ cz + d = 0 =? a(x + dja) + b(y - 0) + c(z - 0) = 0 which by (7) is the scalar equation of the 

plane through the point ( -d/ a, 0, 0) with normal vector (a , b, c). Similarly, if b =F 0 (or if c =F 0) the equation of the plane can 

be rewritten as a(x - 0) + b(y + djb) + c(z - 0) = 0 [or as a(x- 0) + b(y- 0) + c(z + djc) = 0] which by (7) is the 

scalar equation of a plane through the point (0, - d/b, 0) [or the point (0, 0, -d/c)] with normal vector (a, b, c). 
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12.6 Cylinders and Quadric Surfaces 

1. (a) In JR2
, the equation y = x2 represents a parabola. 

(b) In R3 , the equation y = x2 doesn't involve z, so any 

horizontal plane with equation z = k intersects the graph 

in a curve with equation y = x 2
• Thus, th~ surface is a 

parabolic cylinder, made up of infinitely many shifted 

copies of the same parabola. The rulings are parallel to 

the z-axis. 

(c) In R 3 , the equation z = y2 also represents a parabolic 

cylinder. Since x doesn't appear, the graph is formed by 

moving the parabola z = y2 in the direction of the x-axis. 

Thus, the rulings of the cylinder are parallel to the x-ax.is. 

3. Since y is missing from the equation, the vertical traces 

x 2 + z2 = 1, y = k, are copies of the same circle in 

the plane y = k. Thus the surface x 2 + z2 = 1 is a 

circular cylinder with rulings parallel to they-axis. 

SECTION 12.6 CYLINDERS AND QUADRIC SURFACES 0 135 

X 

z 

X 

z 

5. Since x is missing, each vertical trace z = 1 - y2 , 

x = k, is a copy of the same parabola in the plane 

x = k. Thus the surface z = 1 - y 2 is a parabolic 

cylinder with rulings parallel to the x-axis. 

.1' 
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136 D CHA~TER 12 VECTORS AND THE GEOMETRY OF SPACE 

7. Since z is missing, each horizontal trace xy = 1, 

z = k, is a copy of the same hyperbola in the plane 

z = k. Thus the surface xy = 1 is a hype~bolic 

cylinder with rulings parallel to the z-axis. 

9. (a) The traces ofx2 + y2
- z 2 = 1 in x = k are y2

- z 2 = 1 - k 2
, a family of hyperbolas. (Note that the hyp!!rbolas are 

oriented differently for -1 < k < 1 than for k < - 1 or k > 1.) The traces in y = k are x 2 
- z2 = 1 - k2

, a similar 

family of hyperbolas. The traces in z = k are x2 + y2 = 1 + k 2
, a family of circles. Fork = 0, the trace in the 

xy-plane, the circle is of radius 1. As I ki increases, so does the radius of the circle. This behavior, combined with the 

hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1. 

(b) The shape of the surface is unchanged, but the hyperboloid is 

rotated so that its axis is the y-axis. Traces in y = k are circles, 

while traces in x =. k and z = k are hyperbolas. 

(c) Completing the square in y gives x 2 + (y + 1)2 
- z2 = 1. The 

surface is a hyperboloid identical to the one in part (a) but shifted 

one unit in the negative y-direction. 

11. For x = y2 + 4z2
, the traces in x = k are y2 + 4z2 = k. When k >. 0 we 

have a family of ellipses. When k = 0 we have just a point at the origin, and 

the trace is empty for k < 0. The traces in y = k are x = 4z2 + k2
, a 

family of parabolas opening in the positive x -direction. Similarly, the traces 

in z = k are x = y2 + 4k2
, a family of parabolas opening in the positive 

x-direction. We recognize the graph as an elliptic parabofoid with axis the 

x-axis and vertex the origin. 
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13. x2 = y2 + 4z2 . The traces in x = k are the ellipses y2 + 4z2 = k2
. The 

traces in y = k are x 2 
- 4z2 = k2

, hyperbolas for k =/; 0 and two 

intersecting lines if k = 0. Similarly, the traces in 'z = k are 

x 2 - y2 = 4k2
, hyperbolas for k =/; 0 and two intersecting lines if k = 0. 

We recognize the graph as an elliptic cone with axis the x-axis and vertex 

the origin. 

15. - x 2 + 4y2 
- z2 = 4. The traces in x = k are the hyperbolas 

4y2 - z2 = 4 + k2
. The traces in y = k are x2 + z 2 = 4k2 

- 4, a family of 

circles for lkl > 1, and the traces in z ·= k are 4y2 
- x2 = 4 + k2

, a family 

of hyperbolas. Thus the surface is a hyperboloid of two sheets with 

axis the y-axis. 

17. 36x2 + y2 + 36z2 = 36. The traces in x = k are y2 + 36z2 = 36(1 - k2), 

a family of ellipses for lkl < 1. (The traces are a single point for lkl = 1 

and are empty for lkl > 1.) The traces in y = k' are the circles 

36x2 + 36z2 = 36- k2 
{"} x2 + z 2 = 1 - tok2

, lkl < 6, and the 

traces in z = k are the ellipses 36x2 + y2 = 36(1 - k2
), 1~ 1 < 1. The 

graph is an ellipsoid centered at the origin with intercepts x = ± 1, y = ± 6, 

z = ±1. 

19. y = z2 - x2
• The traces in x = k are the parabolas y = z2 

-:- k2
; 

the traces in y = k are k = z2 
- x 2

, which are hyperbolas (note the hyperbolas 

are oriented differently fork > 0 than fork < 0); and the traces in z = k are 

y z 2 x2 
the parabolas y = k2 

.- x 2
• Thus, l = 12 - ]2 is a hyperbolic paraboloid. 

X 

2 2 
21. This is the equation of an ellipsoid: x 2 + 4y2 + Dz2 = x 2 + ~ + ___!___, = 1, with x-intercepts ±1, y-intercepts ±i 

(1/2) (1/3t 0 

-

and z-intercepts ±~. So the major axis is the x-axis and the only possible graph is Vll . 

23. This is the equation of a hyperboloid of one sheet, with a = b = c = 1. Since the coefficient of y2 is negative, the axis of the 

hyperboloid is the y-axis, hence the correct graph is II. 
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25. There are no real values of x and z that satisfy this equation for y < 0, so this surface does not extend to the left of the 
. . 

xz-plane. The surface intersects the plane_y = k > 0 in an ellipse. Notice that y occurs to the first power whereas x and z 

occur to the second power. So the surface is an elliptic paraboloid with axis they-axis. Its graph is VI. 

27. This surface is a cylinder because the variable y is missing from the equation.' The intersection of the surface and the xz-plane 

is an ellipse. So the graph is VIII . 

. z2 . 
29. y2 = x 2 + ~z2 or y2 = x2 + g represents an elliptic 

cone with vertex (0, 0, 0) and axis the y-axis. 

z 

33. Completing squares in y and z gives 

4x2 + (y - 2)2 + 4(z - 3)2 = 4 or 

xz + (y ~ 2)
2 

+ (z - 3)2 = 1, an ellipsoid with 

center (0, 2, 3). 

z 

y 

• 2 

31. x 2 + 2y - 2z2 = 0 or 2y = 2z2 
- x2 or y = z2 

- ~ 

represents a hyperbolic paraboloid with center (0, 0, 0). 

35. Completing squares in all three variables gives 

(x - 2)2 
- (y + 1? + (z- 1)2 = 0 or 

(y + 1? = (x - 2)2 + (z -1?, a circular cone with 

center (2, -1, 1) and axis the horizontal line x = 2, 

z =l. 

37. Solving the equation for z we get z. = ±)1 + 4x2 + y2 , so we plot separately z = ) 1 + 4x2 + y2 and 

z = - ) 1 + 4x2 +y2 . 
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To restrict the z-range as in the second graph, we can use the option view= - 4 . . 4 in Maple's p l"ot3d command, or 

Plo.t Range - > {- 4 , 4} in Mathematica's Pl ot 3D command. 

39. Solving the equation for z we get z = ±y' 4x2 + y2 , so we plot separate ly z = y' 4x2 + y2 and z = - y' 4x2 + y2. 

41. z z=2 43. The surface is a paraboloid of revolution (circular paraboloid) with vertex at 

the origin, axis the y-axis and opens to the right. Thus the trace in the 

yz-plane is a lso a parabola: y = z 2, x = 0. The equation is y = x2 + z2. 

The parabola 
y=x2 

X 

45. Let P = (x, y, z) be an arbitrary point equidist ant from ( -1, 0, 0) and the plane x = 1. Then the distance from P to 

( -1, 0, 0) is y'(x + 1)2 + y2 + z 2 and the distance from P to the plane x = 1 is lx- 11 /Vf'i = lx - 11 

(by Equation 12.5.9). So lx- 11 = y'(x + 1)2 + y2 + z 2 ¢::> (x- 1)2 = (x + 1)2 + v.2 + z2 
¢:> 

x 2 - 2x + 1 = x 2 + 2x + 1 +. y2 + z2 
¢:> - 4x = y2 + z2

• Thus the collection of all such points P is a circular 

paraboloid with vertex at the origin, axis the x -axis, which opens in the negative direction. 

2 2 2 
47. (a) An equation for an ellipsoid centered at the origin with intercepts x = ±a, y = ±b, and z = ±cis x

2 
+ Y

2 
+ .=.._ = 1. 

a b c2 

Here the poles of the model intersect the z-axis at z = ± 6356.523 and the 'equator intersects the x- andy-axes at 

x = ±6378.137, y = ±6378.137, so an equation is 

x2 y2 z2 . 

(6378.137)2 + (6378.137)2 + (6356.523)2 = 1 

• • ~ ~ I ~ 
(b) Traces to z = k are the Circles (6378.137)2 + (6378.137)2 = 1 - (6356.523)2 

2 2 = (6378.137)2- (6378.137)
2 

k2 x + y ~6.~ . 
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(c) To identify the traces in y = mx we substitute y = mx into the equation of the ellipsoid: 

x2 (mx? . z2 

(6378.137) 2 + (6378.137)2 + (6356.523) 2 = 1 

(1 + m2 )x2 z2 

(6378.137)2 + (6356.523)2 = 
1 

x2 z2 

(6378.137)2 /(1 + m2) + (6356.523)2 = 
1 

As expected, this is a family of ellipses. 

49. If (a, b, c) satisfies z = y2 
- x 2

, then c = b2 
- a2

. L 1 : x = a + t, y = b + t, z = c + 2( b - a )t, 

51. 

£2: x =a+ t, y = b- t, z = c- 2(b + a)t. Substitute the parametric equations of £1 into the equation 

of the hyperbolic paraboloid in order to find the points of intersection: z = y2 
- x 2 => . ' 

I 
c + 2(b - a)t = (b + t) 2 

- (a+ t)2 = b2 
- a2 + 2(b- a)t => c = b2 

- a2
. As this is true for· all values of t, 

L 1 lies on z = y2 - x 2. Performing similar operations with £2 gives: z = y2
- x 2 => 

c- 2(b + a)t = (b- t)2
- (a+ t? = b2

- a2
- 2(b + a)t => c = b2

- a2
. This tells us that all of £2 also lies on 

The curve of intersection looks like a bent ellipse. The projection 

of this curve onto the xy-plane is the set of points (x, y, 0) which 

satisfy x 2 + y2 = 1 - y2 <=> x 2 + 2y 2 = 1 <=> 

y2 
x2 + = 1. This is an equation of an ellipse. 

{1//2)2 

12 Review 
CONCEPT CH ECK 

1. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction. 

2. To add two vectors geometrically, we can use either.the Triangle Law or the Parallelogram Law, as illustrated in Figures 3 

and 4 in ·section 12.2. Algebraically, we add the corresponding components of the vectors. 

3. For c > 0, c a is a vector with. the same direction as a and length c times the length of a. If c < 0, ca points in the opposite 

direction as a and has length JcJ times the length of a. (See Figures 7 and IS in Section 12.2.) Algebraically, to find c a we 

multiply each component of a by c. 

4. See (I) in Section 12.2. 

5. See Theorem 12.3.3 and Definition 12.3.1. 
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6. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto another. In 

particular, the dot product can determine if two· vectors are orthogonal. A lso, the dot product can be used to determine the 

work done moving an object given the force and di~placement vectors. 

7. See the boxed equations as well as Figures 4 and 5 and the accompanying discussion on page 828 [ET 804]. 

B. See Theorem 12.4.9 and the preceding discussion; use either (4) or (7) in Section 12.4. 

9. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two vectors are 

parallel. The cross product can also be used to find the area of a parallelogram determined by two vectors. In addition, the 

cross product can be used to determine torque if the force and position vectors are known . 
• 

10. (a) The area of the parallelogram determined by a and b is the length of the cross product: Ia x bl. 

(b) The volume of the parallelepiped determined by a, b, and cis the magnitude of their sca lar triple product: Ia . (b x c )l . 

11. If an equation of the plane is known, it can be written as ax + by + cz + d = 0. A normal vector, which is' perpendicular to the 

plane, is (a , b, c) (or any scalar multiple of (a , b, c)). If an equation is not known, we can use points on the plane to find two 

non-parallel vectors which lie in the plane. The cross, product of these vectors is a vector perpendicular to the plane. 

12. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle 

using Corollary 12.3.6. 

13. See (1), (2), and (3) in Section 12.5. 

14. See (5), (6), and (7) in Section 12.5. 

15. (a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are 

parallel if and only if their cross product is 0. 

(b) Two vectors are perpendicular if and only if their dot product is 0. 

(c) Two planes are parallel if and only if their normal vectors are parallel. 

--+ --+ 
16. (a) Determine the vectors PQ = (a1 , a2 , a3 ) and P R = (b1, ~. b3) . If there is a. scalar t such that . 

(a1, a 2, a3) = t (b1, ~. b3), then the vectors are parallel and the points must all lie on the same line. 

~ ---+ -+ ---+ 
Alternatively, if PQ x PR = 0, then PQ and PR are paralle l, ~o P, Q, and Rare collinear. 

Thirdly, an algebraic method is to determine an equation of the line joining two o.f the points, and then check whether or 

not the third point satisfies this equation. 

--+ --+ --+ 
(b) Find the vectors PQ =a, P R = b , PS = c . a x b is normal to the plane formed by P, Q and R, and so S lies on this 

plane if a x band care orthogonal, that is, if(a x b)· c = 0. (Or use the reasoning in Example 5 in Section 12.4.) 

A lternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point 

satisfies this equation. 
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17. (a) See Exercise 12.4.45. 

(b) See Example 8 in Section 12.5. 

(c) See Example 10 in Section 12.5. 

18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find 

the trace in the plane x = k (parallel to the yz-plane) by setting x = k and determining the curve represented by the resulting 

equation. Traces in the planes y = k (parallel to the xz-plane) and z = k {parallel to the xy-plane) are found similarly. 

19. See Table I in Section 12.6. 

TRUE-FALSE QUIZ 

1. This is false, as the dot product of two vectors is a scalar, not a vector. 

3. False. For example, ifu = i and ·v = j then iu · v i= 101 = 0 but iu l lvl = 1 · 1 = 1. In fact, by Theorem 12.3.3, 

lu · v i = liu llvl cos 91. 

5. True, by Theorem 12.3.2, property 2. 

7. True. If 9 is the angl~ between u and v , then by Theorem 12.4.9,lu x vi = iu l lv l sin 9 = lvllul sin 9 = 1':' x ui. 

(Or, by Theorem 12.4.1l,lu x v i = 1-v x ul = 1- lllv x ul = lv x ui.) 

9. Theorem 12.4.11 , property 2 tells us that this is true. 

11. This is true by Theorem 12.4.11, property 5. 

13. This is true because u x vis orthogonal to u (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0. 

15. This is false. A normal vector to the plane is n = (6, - 2, 4) . Because (3, - 1, 2) = ~n, the vector is parallel ton and hence 

perpendicular to the plane. 

17. This is fa lse. In IR2
, x 2 + y2 = 1 represents a circle, but { (x, y, z) I x 2 + y2 = 1} represents a three-dimensional surface, 

namely, a circular cylinder with axis the z -axis. 

19. False. For example, i · j = 0 but i i- 0 and j =f. 0. 

21. This is true. Ifu and v are both nonzero, then by (7) in s~ction 12.3, u · v = 0 implies that u and v are orthogonal. But 

u x v = 0 implies that u and v are parallel (see Corollary 12.4.10). Two nonzero vectors can't be both parallel and 

orthogonal, so at least one of u, v must be 0 . 
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EXERCISES 

1. (a) The radius of the sphere is the distance between the points ( - 1, 2, 1) and {6, -2, 3), namely, 

J [6 - ( -1)]2 + ( - 2 - 2)2 + (3 - 1)2 = 0f!}. By the formula for an equation of a sphere (see page 813 [ET 789]), 

an equation of the sphere with center ( -1, 2, 1) and radius J69 is (x + 1? + (y - 2)2 + (z- 1)2 = 69. 

(b) The intersection of this sphere with the yz -plane is the set of points on the sphere whose x-coord inate is 0. Putting x = 0 

into the equation, we have (y - 2)2 + (z - 1)2 = 68, x = 0 which represents a circle in the yz-plane with center (0 , 2, 1) 

and radius .J68. 

(c) Completing squares gives (x - 4)2 + (y + 1)2 + (z + 3? = - 1 + 16 + 1 + 9 = 25. Thus the sphere is centered at 

(4, -1, -3) and has radius 5. 

3. u . v = Ju J.JvJ c~s45° = (2)(3) '{!- = 3 .;2. Ju x vJ = JuJJvJ sin45° = (2)(3)~ = 3 .;2. 

By the right-hand rule, u x vis directed out of the page. 

5. Forthetwo vectors to be orthogonal, we need (3, 2,x} · (2x, 4,x} = 0 # (3)(2x) + (2){4) + (x)(x) = 0 # 

~ + 6x + 8 = 0 <=? (x + 2)(x + 4) = 0 <=? x = - 2 or x = -4. 

7. (a) (u x v ) · w = u · (v X w) = 2 

(b) u · (w x v ) = u · [- (v X w)] = - u · (v X w) = - 2 

(c) v · (u x w) = (v x u )· w =- (u x v) · w = - 2 

(d) (u x v ) · v = u · (v X v) = u · 0 = 0 

9. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals 

joining the points (0, 0, 0) to (1, 1, 1) and (1, 0, 0) to (0, 1, 1) are (1 ,' 1, 1} and (-1, 1, 1). Let 8 be the angle between these 

twovectors. (1, 1, 1)·{- 1, 1, 1} = -1+1 + 1 = 1=\(1, 1, 1) \ \{- 1,1,1)\ cos8=3cos8 => cosO = ~ => 

8 = cos- 1G) ~ 71°. 

---+ ---+ 
11 . AB = (1, 0, -1}, AC = (0, 4, 3), so 

---+ ---+ 
(a) a vector perpendicular to the plane is AB x AC = (0 + 4, -(3 + 0) , 4 - 0} = {4 , - 3, 4}. 

(b) t lAB X AC I = h116 + 9 + 16 = 4J.. 

13. Let H be the magnitude of the force directed 20° away from the direction of shore, and let H be the magnitude qfthe other 

force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives 

H cos 20° + Fz cos 30° = 255 (1), and F1 sin 20° - F2 sin 30° = 0 => A = F2 s~n 
2
3

0
°0 

(2) . Substituting (2) 
s1n ° 

into (1) gives F2(sin30° cot20° + cos 30°) = 255 => H ~ 114 N. Substituting this into (2~ gives F 1 ~ 166 N. 
I 
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15. The line has direction v = ( -3, 2, 3). Letting Po = ( 4, - 1, 2), parametric equation~ are 

X = 4 - 3t, y = -1 + 2t, Z = 2 + 3t. 

17. A direction vector for the line is a normal vector for the plane, n = (2, -1, 5), and parametric equations for the line are 

. X = -2 + 2t, y = 2 - t, Z = 4 + 5t. 

' 
19. Here the vectors a= (4- 3,0- (-1) ,2 - 1) = (1,1,1} and b = (6 - 3,3- (-1), 1 - 1) = {3,4, 0) lie in the plane, 

so n = a x b = ( -4, 3, 1) is a normal vector to the plane and an equation of the plane is 

- 4(x- 3) +3.(y - (- 1)) + 1(z -1) = 0 or - 4x+3y +z = - 14. 

21 . Substitution of the parametric equations into the equation of the plane gives 2x- y + z = 2(2- t) - (1 + 3t) + 4t = 2 =? 

. . 
- t + 3 = 2 => t = 1. When t = 1, the parametric equations give x = 2 - 1 = 1, y = 1 + 3 = 4 and z = 4. Therefore, 

the point of intersection is (1,4,4). 

23. Since the direction vectors (2, 3, 4) and (6, --;1, 2) aren't parallel, neither are the lines. For the lines to intersect, the three 

equations 1 + 2t = -1 + 6s, 2 + 3t = 3 - s, 3 + 4t = -5 + 2s must be satisfied simultaneously. Solving the first two 

equations gives t = k. s = ~ and checking we see these values don't satisfy the third equation. Thus the lines aren't parallel 

and they don't intersect, so they must be skew. 

25. n 1 = (1, 0, -1) and n2 = (0, 1, 2). Setting z = 0, it is easy to see that (1, 3, 0) is a point on ,the line of intersection of 

x - z = 1 andy+ 2z = 3. The direction of this line is v 1 = n 1 x n 2 = (1, -2, 1). A second vector parallel to the desired 

plane is v 2 = (1,1, -2), since it is perpendicular to x + y- 2z = 1. Therefore, the normal of the plane in question is 

n = v 1 x v 2 = (4 - 1, 1 + 2, 1 + 2) = 3 (1, 1, 1) . Taking (x0 , y0 , z0 ) = (1, 3, 0), the equation we are looking for is 

(x- 1) + (y- 3) + z = 0 ¢* x + y + z = 4. 

. - l-2- (-24)1 - 22 . 
27. By Exercise 12.5.75, D - - ~· 

y'32 + I2 + ( -4)2 v26 

29. The equation x = z represents a plane perpendicular to 

the xz-plane and intersecting the xz-plane in the line 

x = z,y = 0. 

X 

31. The equation x 2 = y2 + 4z2 represents a (right elliptical) 

cone with vertex at the origin and axis the x -axis. 

X 
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. . . y2 2 
33. An equivalent equation IS - x 2 + 4 -;- z = 1, a 35. Completing the squate in y gives 

hyperboloid of two sheets with axis the y-ax.is. For 

IYI > 2, traces parallel to the xz-plane are circles. 

z2 
4x2 + 4(y - 1)2 + z2 = 4 or x 2 + (y - 1)2 +- = 1, 4 . 

an ellipsoid centered at (0, 1, 0). 

z 

(0, 1,2) 

(O, l , -2) 

. x2 y2 2 2 2 
<=> 4 + 

16 
= l. The equation of the ellipsoid is ~ + i

6 
+ : 2 = l, since the horizontal trace in the 

plane z = 0 must be the original ellipse. The traces of the ellipsoid in the yz -plane must be circles since the surface is obtained 

2 2 2 

by rotation about the x-axis. Therefore, c2 = 16 and the equation of the ellipsoid is ~ + i
6 

+ ~6 = 1 <=> 

4x2 + y2 + z2 = 16. 
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D PROBLEMS PLUS 

1. Since three-dimensional situations are often difficult to visualize and work with, let 

us first try to find an analogous problem in two dimensions. The analogue of a cube 

is a square and the analogue of a sphere is a circle. Thus a similar problem in two 

dimensions is the following: if five circles with the same radius rare contained in a 

square of side 1 m so that the circles touch each other and four of the circles touch 

two sides ofthe square, find r. 

The diagonal of the square is .J2. The diagonal is a lso 4r + 2x . But x is the diagonal of a smaller square of side r . Therefore 

x = .J2r ~ .J2=4r+2x =4r+2.J2r= (4+2.J2)r ~ r = 4 /{,/2. 

Let's use these ideas to solve the original three-dimensional problem. The diagonal of the cube is \/12 + 12 + 12 = v'a. 

The diagonal of the cube is also 4r + 2x where x is the diagonal of a smaller cube with edger. Therefore 

r;; r;; v'3 2 v'a - 3 x = Jr2 + 1·~ + r2 = v'3r ~ v'a = 4r+2x .=4r+2v3r = (4+2v3)r.Thus r= r;;= 
4 + 2v3 2 

The radius of each ball is ( v'3 - ~) m. 

3. (a) We find the line of intersection L as in Example 12.5. 7(b). Observe that the point ( - 1, c, c) lies on both planes. Now since 

L lies in both planes, it is perpendicular to both of the normal vectors n1 and n 2, and thus parallel to their cross product 

j k 

n 1 x n 2 = c 1 1 = (2c, -c2 + 1, -c2 - 1). So symmetric equations of L can be written as 

1 - c c 

x +1 y - c z - c 
-- = ~1 = ~1 , provided that c I 0, ±1. 
- 2c (..- - c + 

If c = 0, then the two planes are given by y + z = 0 and x = - 1, so symmetric· equations of L are x = - 1, y = - z. If 

c = - 1, then the two planes are given by -x + y + z = - 1 and x + y + z = -1, and they intersect in the line x = 0, 

y = - z - 1. If c = 1, then the two planes are given by x + y + z = 1 and x - y + z = 1, and they intersect in the line 

y = 0, X = 1- Z. 

(b) If we set z = t in the symmet~ic equations and solve for x andy separately, we get x + 1 = (t - c)( - 2c) 
c2 + 1 

(t- c)(c2
- 1) 

y - c = c2 +1 
- 2ct + (c2 

- 1) (c2 
- 1)t + 2c El. . . fr th . 

~ x = c2 + 
1 

, Y = & + 1 . unmatmg c om ese equattons, we 

have x 2 + y 2 = t 2 + 1. So the curve traced out by L in the plane z = tis a circle with center~~ (0, 0 , t) and 

radius J fl + 1. 
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148 0 CHAPTER 12 PROBLEMS PLUS 

(c) The area of a horizontal cross-section of the solid is A ( z) = 1r(z2 + 1 ), so V = J; A( z )dz = 1r ( ~ z3 + z] ~ = 4
3,.. 

53 53 54 50 5"- 2 -
jv5 1 = 24 . 32 jv 1j = 23 . 32 . Similarly, jv5j = 24 . 33 , jv.71 :;= 25 . 34, and in general, jv ,. j = 2n_2 . 

3
n_ 3 = 3(ir 

2
. 

Thus 

f Jv ,.J = lv1 l + lv 2l + f 3(i)"-
2 = 2 + 3 + f 3(~)" 

n = l n = 3 n=l 

00 ll 

= 5 + E .2.(!~)"- 1 = 5 + ___L_ [sum of a geometric series] = 5 + 15 = 20 
n=l 

2 
G 1 - ~ 

7. (a) When 8 = 8., the block is not moving, so the sum of the forces on the block 
I 

must be 0, thus N + F + W = 0. This re lationship is illustrated 

geometrically in the figure. Since the vectors form a right triangle, we have 

- J!l_ 11- .• n 
tan(O.) - INI - n - fl-s· 

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force 

H , with initial points at the origin. We then rotate this system so that Flies along the positive x -axis and the inclined plane 

is parallel to the x-axis. (See the follo~ing figure.) 

N 

F 

w 

IF! is maximal, so jFj = 11-. n for f) > B_,. Then the vectors, in terms of components parallel and perpendicular to the 

inclined plane, are 

N =n j F = (11-.n) i 

W = ( - mg sin 0) i + ( -mg cos fJ) j H = (hmin cos B) i + ( - hmin sin B) j 
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Equ!lting components, we have 

JJ-,n- mg sin(}+ hm1n cosO= 0 ,=? hmin cos(}+ J-L •• n = mgsin(} (1) 

n- mg cos()- hrnin s infJ = 0 =? hmin sin(}+ mgcos(} = n (2) 

(c) Since (2) is solved for n, we substitute into (1): 

hmin cos() + JJ-~ (hmin sin(}+ mg cos 9) = mg sin 9 =? 

hmin cos fJ + hmin/1-s sin fJ = mg sin fJ - mgJJ-. cos(} '* 

1 (sin8 - JJ-.• cos'(} ) . ( tau8 - /1-., ) 
tmin = mg cos (}+ 1-t. sin(} = mg 1 + JJ-. tau(} 

() kn (} th. b h ( tan8 - tanfJ8 ) d . . . . . 
From part a we ow JJ-~ = tan ., so IS ecomes min = mg 

1 
+tan (}, tau(} an usmg a tngonomctnc tdentlty, 

this is mg tau(8- 8. ) as desired. 

Note for fJ = 8., hmin = mgtau 0 = 0, which makes sense since the block is at rest for 8. , thus no additional force H 

is necessary to prevent it from moving. As(} increases, the factor tau(8- 8.), and hence the value of hmin, increases 

slowly for small values ofB- 8. but much more rapidly as 8 - e. becomes significant. This seems reasonable, as the 

steeper the inclined ~lane, the less the horizont~l components of the various forces affect the movement of the block, so we 

would need a much larger magnitude of horizontal force to keep the block motionless. If we allow f) --+ 90°, corresponding 

to the inclined plane being placed vertically, the value of hmin is quite large; this is to be expected, as it takes a great 

amount of horizontal force to keep an object from moving vertically. In fact, without friction (so (} 8 = 0), we would have 

(} --+ 90° :::? hmin --+ oo, and it would be impossible to keep the block from slipping. 

(d) Since hmo.x is the largest value of h that keeps the block from s lipping, the force of friction is keeping the block from · 

moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part {b), then, 

except that we have F = -(JJ-.n) i. (Note that IFI is again maximal.) Following our procedure in parts (b) and (c), we 

equate components: 

- JJ-,n- mgsin(} + hmux cos(} = 0 :::? hme.x cos(}- /)-8 n = mgsin8 

n - mg cos (} - hm:l.X sin (} = 0 '* hmax sin (} + mg cos e = n 

Then substituting, 

hmax cos 8 - /1-s ( hmax sin 8 + mg cos B) = mg sin 8 '* 
hmax cos(} - hmn.x/1-s sin(} = mg sin(} + mgJJ-. cos e '* 
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h _ (sin0+J.£.cos8) _ · ( tan8 +J.£.) 
max- mg - mg 

cos 0 - J.£8 sin B 1 - J.£
8 

tan B 

( 
tanB +tan B. ) 

== mg 1- tan B. tanB = mgtan(B +B .• ) 

We would expect hmax to increase as 8 increases, with similar behavior as we establ ished for hmin, but with hmax values 

al~ays larger than hmin· We can see that this is. the case if we graph hmo.x as a function of 8, as the curve is the graph of 

hmin translated 20. to the left, so the equation does seem reasonable. Notice that the equation predicts hmo.x --+ oo as 

. 8--+ (90° - 0., ). In fact, as hmnx increases, the nonnal force increases as well. When (90° - Bs) :50 :S: 90°, the 

horizontal force is completely counteracted by the sum of the f!Orlnal and frictional forces, so no part of the horizontal 

force contributes to moving the block up the plane no matter how large its magnitude: 

® 2012 Cen&ns• Lc3tning. All Rights Rescn ·ed. May not be SCMn<d. copiod. or dupticntod, or posted 10 o publicly accessible website, in whole·or in part. 



13 D VECTOR FUNCTIONS 

13.1 Vector Functions and Space Curves 

1. The component functions v'4- t2 , e-3t, and ln(t + 1) are a ll defined wher4 - t2 2: 0 => - 2 ~ t ~ 2 and 

t + 1 > 0 => t > - 1, so the domain ofr is ( -1, 2]. 

3. lim e- 31 = e0 = 1, lim~= lim -
1
- = 

1 
= 

t-+O t--+o sin2 t . t.-o sin2 t lim sin2 t 

and lim cos 2t = cos 0 = 1. Thus 
t-+0 

~ t--+0 t2 

1 _ I_ _ 1 

( 
. t)2 - !2 - ' 

lim~ 
t --+0 t 

lim (e-st i + 4 j +cos 2t k) = [lim e-3t] i + [urn 4] j + [rim cos 2t] k = i + j + k. 
t-+O sm t t-+O t-+O sm t t -+O 

]. 1 + t 2 

1
. (1/ t2

) + 1 0 + 1 
1 1

. _ 1 t ,. 
1
. 1 - e-2

t 
1
. 1 1 

0 S. ~~ 1- t2 = t~ (1/t2)- 1 = 0 - 1 = - 't2.~ tan = 2 • t~ t = t2.~ t - -te_2_t = - 0 = 0· Thus 

( 
1 + e 1 - e-2t) . 

lim -1 2 ,tan-1 t , t =(-l,f,O). 
t--+oo - t 

7. The corresponding parametric equations for this curve are x = sin t, y = t. 

We can make a table of values, or we can eliminate the parameter: t = y => 

x = sin y, with y E JR. By comparing different values oft, we find tl)e direction in 

which t increases as indicated in the graph. 

9. The corresponding parametric equations are x = t, y = 2 - t, z = 2t, which are 

parametric equations of a line through the point (0, 2, 0) and with direction vector 

(1, -1, 2). 

X 
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152 D CHAPTER 13 VECTOR FUNCTIONS 

11. The corresponding parametric equations are x = 1, y = cos t , z = 2 sin t. 

Eliminating the parameter in y and z gives ~2 + (z/ 2)2 = cos2 t + sin2 t = 1 

or y2 + z 2 / 4 = 1. Since x = 1, the curve is an ellipse centered at (1, 0, 0) in 

the plane x = 1. 

13. The parametric equations are X = e. y = t 4
• z = t 6

. These are positive 

for t =I 0 and 0 when t = 0. So the curve lies entirely in the first octant. 

The projection of the graph onto the xy-plane is y = x 2
, y > 0, a half parabola. 

Onto the xz-plane z = x 3, z > 0, a half cubic, and the yz-plane, y 3 = z2
• 

X 

,,' 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

, I 
,' 

,,,- y= xl 

X 

15. Tbe projection of the curve onto the xy-plane is given by r (t) = (t , sin t, 0} [we use 0 for the z-component] whose graph 

is the curve y =sin x, z = 0. Similarly, the projection onto the xz-plane is r (t) = (t, 0, 2 cost), whose graph is the cosine 

wave z = 2 cos x, y = 0, and the projection onto the yz-plane is r (t) = (0, sin t, 2 cost) whose graph is the ellipse 

xy-plane xz-plane 

From the projection onto the yz-plane we see that the curve lies on an elliptical 

cylinder with axis the x -axis . The other two projections show that the curve 

oscillates both vertically and horizontally as we move in the x-direction, 

suggesting that the curve is an elliptical helix that spirals along the cylinder. 

17. Taking ro = (2, 0, 0) and r1 = (6, 2, -2), we have from Equation 12.5.4 

2 

- I 

-2 

yz-plane 

r (t) = {1 - t)ro +t r1 = {1- t) {2,0, 0) +t{6, 2,-2), 0 ~ t ~ 1 or r {t) = (2 + 4t,2t, - 2t);O ~ t ~ 1. 

Parametric equations are x = 2 + 4t, y = 2t, z = -2t, 0 ~ t ~ 1. 
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19. Taking r o = (0, - 1, 1) and r 1 = ( ~ . ~. i), we have 

r (t) = (1- t) ro +t r1 = (1 - t) (0, - 1, 1) + tO,~.~), 0 ~ t ~ 1 or r (t) = (~t,-1 + 1t,1 - tt), 0 ~ t ~ 1. 
. . 

Parametric equations are x = ~t, y = - 1 + ~t, z = 1 - tt. 0 ~ t ~ 1. 

21 . x = tcost, y = t, z = t ~in t, t ;:::: 0. At any point (x, y, z) on the curve, x 2 + z2 = t 2 cos2 t + t2 sin2 t = t 2 = y2 so the 

curve Hes on the circular cone x2 + z2 = y2 with axis they-axis . Also notice that y ;:::: 0; the graph is II. 

23. x = t , y = 1/ (1 + t 2
)., z = t 2

• At any point on the curve we have z = x2
, so the curve lies on a parabolic cylinder parallel 

to they-axis. Notice that 0 < y ~ 1 and z ;:::: 0. Also the curve passes through (0, 1, 0) when t = 0 and y --+ 0, z --+ oo as 

t --+ ±oo, so the graph must be V. 

25. x = cos Bt, y = sin Bt, z = e0
·
8

L, t ;:::: 0. x 2 + y2 = cos2 Bt + sin2 Bt = 1, so the curve lie~ on a circular cylinder with 

axis the z-axis. A point (x, y, z) on the curve lies directly above the point (x, y, 0), which moves counterclockwise around the 

unit circle in the xy-plane as t increases. The curve starts at (1-, 0, 1), when t = 0, and z --+ oo (at an increasing rate) as 

t --+ oo, so the graph is IV. 

27. Ifx = tcost, y = tsint, z = t , then x 2 + y2 = t2 cos2 t + t 2 sin2 t = t2 = z2
, 

so the curve lies on the cone z2 = x2 + y 2. Since z = t, the curve is a spiral on 

this cone. 

29. Parametric equations for the curve are x = t, y = 0, z = 2t - t2
• Substituting into the equation of the paraboloid 

gives 2t- t 2 = t2 => 2t = 2t2 => t = 0, 1. Since r(O) = 0 and r (1) = i + k , the points of intersection 

are(O, O, O)and (1, 0, 1). 

31. r (t) =(cost sin 2t,sint sin2t,cos 2t). 

We include both a regular plot and a plot 

showing a tube of radius 0.08 around the · 

·curve. 
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33. r(t) = (t, t sin t, t cost) 35. r (t) = (cos2t,cos3t ,cos4t) 

37. 

X 

X 

:li = (1 + .cos 16t) cost, y = (1 +cos 16t) sin t, z = 1 +cos 16t. At any 

point on the graph, 

x2 + y2 = (1 +cos 16t)2 cos2 t + (1 +cos 16t)2 sin2 t 

= (1 + cos 16t )2 = z2
, so the graph lies on the cone x 2 + y2 = z2

• 

From the graph at left, we see that this curve looks like the projection of a 

leaved two-dimensional curve onto a cone. 

39. Ift = - 1, then x = 1, y = 4, z = 0, so the curve passes through the point (1,4, 0). 1ft= 3, then x = 9, y = - 8, z = 28, 

so the curve passes through the point {9, - 8, 28). For the point (4, 7, - 6) to be on the curve, we require y = 1 - 3t = 7 ==> 

t = -2. But then z = 1 + ( - 2? = -7 # -6, so (4, 7, -6) is not on the curve. 

41. Both equations are solved for z, s~ we ~an substitute to eliminate z : J x2 + y2 = 1 + y ==> x2 + y 2 = 1 + 2y + y2 ==> 

x 2 = 1 + 2y ==> y = ~(x2 - 1). We can form parametric equations for the curve C of intersection by choosing a 

parameter x = t , then y = ~(t2 - 1) and z = 1 + y = 1 + ~(t2 - 1) = ~(t2 + 1). Thus a vector function representing C 

is r (t) = t i + 1 (t2 - 1) j + ~(t2 + 1) k. "· 

43. The projection of the curve C of intersection onto the xy-plane is the circle x 2 + y2 = 1, z = 0, so we can write x = cost, · 

y = sin t, 0 $ t $ 27!'. Since C also lies on the surface z = x2 
- y2

, we have z = x 2 
- y2 = cos2 t - sin2 tor cos 2t. 

Thus parametric equations for Care x = cost, y = sin t, ; = cos 2t, 0 $ t $ 27l', and the corresponding vector function 

45. 

is r (t) = cost i + sin t j +cos 2t k , 0 $ t $ 27!'. 

z 

X 

The projection of the curve C of intersection onto the 

xy-plane is the circle x 2 + y2 = 4, z = 0. Then we can write 

x = 2 cost, y = 2 sin t , 0 $ t $ 27l'. Since C also lies on 

the surface z = x 2 , we have z = x2 = (2 cost)~ = 4 cos2 t. 

Then parametric equations for C are x = 2 cost, y = 2 sin t, 
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47. For the particles to collide, we require r1 ( t) = r 2 ( t) ¢:> ( t2, 7t - 12, t2) = .( 4t - 3, t2, 5t - 6). Equating components 

gives t2 = 4t- 3, 7t - 12 = t2, and t2 = 5t- 6. From the first equation, t 2
- 4t + 3 = 0 ¢:> (t- 3)(t -1) = 0 sot = 1 

or t = 3. t = 1 does not satisfy the other two equations, butt = 3 does. The piuticles collide when t = 3, at the 

point (9, 9, 9). 

49. Let u (t) = (u1(t), u2(t ), u3(t)) and v (t) = (v1 (t) , V2(t), va(t)). In each part of this problem the basic procedure is to use 

Equation l and then analyze the individual component functions using the limit properties we have already developed for 

real-valued functions. 

(a) lim u (t ) + lim v(t) = I lim u1 (t), lim u2(t), lim ua(t)) + I Jim V1 (t ), lim v2(t), lim v3(t) ) and the limits of these 
t-+a. t--+a \ t -+a t-+a t--+a \t--+a t--+a t-a. 

component functions must each exist since the vector functions both possess limits as. t -+ a. Then adding the two vectors 

and using the addition property oflimits for real-valued functions, we have that 

lim u(t) + lim v (t) = I Jim u1 (t) + lim v1 (t) , lim u2(t) + lim v2(t), lim ua(t) + lim v3 (t)) 
t --..o. t -+a \t--+<L t-+a t -.a t - (1. t-+u t-~>a 

= lim (u1(t) +VI (t), U2(t) + V2(t ), 'U3(t) + V3(t)) 
t-+a . 

[using (I) backward] 

= lim (u(t ) + v(t)] 
t-a 

(b) lim cu(t) = lim (cu1 (t), cu2(t), C'U3(t)) = I lim cu1(t) , lim cu2(t) , lim cua(t) ) 
t -+a t --+a \t- a t -+a t -+a 

= I c lim u1(t) , c lim u~(t), c lim u3(t) ) = c I lim u1 (t), lim u2 (t), lim ua(t)) 
\ t -a t -+ a t -+ a \t__,. a. t-+a t-+a 

= c lim (u1 (t), u2(t) , u3(t)) = c lim u (t) 
t--+a t-a 

(c) lim u(t) · lim v(t) = I lim u1(t) , lim u2(t), lim u3(t) ) ·I lim v1(t), lim v2 (t) , lim v3(t)) 
t-+a t--+a \t-a t -+a t-a \t--.n. · t-+a t - a. 

= [lim u1(t)] [u~ v1(t)] + [lim u2(t)] [lim v2(t)] _;_ .[lim us (t)] [urn v3(t)] 
t --+a t -+a t -+ a t --+a t -+a t -+a 
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(d) lim u (t) x ·lim v (t) = ( lim u1 {t), l.im u2(t), lim u3(t)) x ( lim v1(t), lim v2(t), lim va(t)) 
t-a t-a t - a t--+a t.-a t-+o. t-+a t-ta. 

= ([lim u2(t)] [lim v3(t)] - [lim us(t)] [lim v2(t)] , 
t-+a t-+a t-+n t -+a. 

[lim ua(t)] [lim v1(t)] - [lim u1(t)] [tim vs(t)], 
t-+a t-+a t -+a t-+a 

[p~u1(t)) [~~v2(t)) - [l~u2(t)] [E~ vl(t)]) 

= (J~ [u2(t )v3(t)- u3(t)v2(t)] , E~ [ua(t)v1(t) - u1(t)va(t)] , 

~~ [u1(t)v2(t)- u2(t)v1(t)]) 

= lim (·u2(t)va(t)- ua(t)v2(t), U3 (t) v1 (t) - u1(t)v3(t), u1(t)v2(t)- tt2(t)v1 (t)) 
t-+a · 

= lim (u (t) x v (t)] 
t-<> 

51 . Let r (t) = (! (t), g (t), h (t)) and b = {b1, b2, ba) . If lim r (t) = b, then lim r (t) exists, so by (1), 
t-a. t-+a 

b = lim r (t) ~ ( lim f(t), lim g(t), lim h(t)). By the definition of equal vectors we have lim f(t) ·= b1, lim g(t) = b2 
t-+a t-a t-a t -+a t-a t -+a 

and lim h(t) = b3• But these are limits of real-valued functions, so by the definition of limits, for every c > 0 there exists 
t-Hl 

<h > 0, 02 > 0, oa > 0 so that ifO < It - a l < 01 then lf(t) - b1 l < c/3, ifO < it- a l < 02 then lg(t) - b2l < c/ 3, and 

ifO < It- al <·o3 then lh(t) - ba l < c/3. Letting o = minimumof{o1,02,6a}, then ifO < It - a l < 8we have 

!f(t) - ~1 l + lg(t)- ~2 l + lh(t)- bal < c/3 + c/3 + c/3 =c. But 

lr(t) - bl = l(f(t) - b1, g(t) - b2 , h(t) - ba) l = J(f(t)- b1)2 + (g(t) - b2 )2 + (h(t) - ba)2 

::; J[J(t)- b1)2 + J[g(t)- b2]2 + J[h(t)- b3)2 = lf (t)- bll + lg(t)- b2 l + lh(t)- b3l 

Thus for every c > 0 there exists o > 0 such that if 0 < It - a l < o then 

lr.(t)- b l ::; !f(t) - b1 l + lg(t) - b2 l + lh(t) - b3 l <c. Conversely, suppose for every e > 0, there exists o > 0 such 

tharif O <It - a!< o then !r (t) - bl < c ¢:> l(f(t)- b1 ,g(t) - b2,h(t) - ba) l < c *> 

J [f(t) - b!)2 + [g(t)- b2j2 + [h(t) - baj2 < c ¢:> (J(t) - b1]
2 + [g(t)- b2]2 + [h(t) - baf < c2. But each term 

on the left side of the last inequality is positive, so if 0 < It - a l < o, then [! ( t) - b1]2 < c2, [g( t) - b2]2 < c2 and 

[h(t) - b3]2 < c2 or, taking the square root of both sides in each ofthe above, lf(t) - b1 l < c, lg(t) - b2 l < . c and 

lh(t) - b3l <c. And by definition of limits of real-valued functiQns we have lim f(t) = b1, lim g(t) = b2 and 
t -+a t - a 

lim h(t) = b3. But by (1) , lim r (t) = I lim f (t) , lim g(t ), lim h(t)), so lim r (t) = (b1, ~. ba) = b. 
t -+a. t-+a \t-a t - •a t - a t-+c& 
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13.2 Derivatives and Integrals of Vector Functions 

1. (a) 

r (4.5) - r(4) 

Q 

r(4.2)- r(4) 

)(. 

(b) r(4·5)- r (4) = 2[r(4.5}- r(4}], so we draw a vector in the same 
0.5 

direction but with twice the length of the vector r(4.5}- r(4). 

r ( 4·2) - r ( 4) = 5[r( 4.2) - r ( 4)], so we draw a vector in the same 
0.2 

direction but with 5 times the (ength of the vector r( 4.2) - r( 4). 

(c) By Definition I, r '(4) = J..i~ r(
4 + ~ - r (

4
). T (4) = ~~~!~I· 

(d) T( 4) is a unit vector .in the same direction as r' ( 4), that is, parallel to the 

tangent line to the curve at r(4) with length 1. 

3. Since (x + 2)2 = t2 = y - 1 => 

y = (x + 2? + 1, the curve is a 

parabola. 

5. x = sin t, y = 2 cos t so 

x 2 + (y/ 2)2 = 1 and the curve is 

an e llipse. 

(a), (c) 

)(. 

(a), (c) 

(b) r'(t) = (1, 2t}, 

r'( - 1) = (1,·-2) 

(b) r'(t) ~ cost i - 2sintj, 

'(71")- v'2. '2 . r 4 -21 -y~ J 
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· 7. Since x = e2t = (et)2 = y2
, the 

curve is part of a parabola. Note 

that here x > 0, y > 0. 

(a), (c) y 

X 

9. r ' (t) = \! [t sin t], :t [e) ·, ! [t cos 2t]) = (t c~s t +sin t, 2t , t(- sin 2t) · 2 +cos 2t) 

= (t cost+ sin t , 2t, cos 2t - 2t sin 2t) 

11. r(t) =ti+j + 2Vt k => r'(t)=1 i + Oj +2(~t- 112)k = i+ ~ k 

13. r (t) = et
2 

i - j + ln(1 + 3t) k => r'(t) = 2tet
2 

i + -
3
- k 

1 +3t 

15. r ' (t) = 0 + b + 2t c = b + 2t c by Formulas 1 and 3 of Theorem 3. 

(b) r '(t) = 2e2
t i + et j , 

r '(O) = 2 i + j 

r '(O) = (1, 2, 2). So lr '(O)I = .JP + 22 + 22 = .J§ = 3 and . . 

19. r '(t) = - sin ti + 3j + 4cos 2t k => r '(O) = 3j + 4k. Thus 

T(~) = 1::~~~~ = .J02 +~2 +42 (3 j +4k) = t(3j +4k) = ~ j + ~ k. 

21. r(t) = (t, t2
, t3

) => r' (t) = (1, 2t, 3t2
). Then r ' (1) = (1, 2, 3) and lr' (1)1 = \,/12 + 22 + 32 = v'l4, so 

( ) r ' ( 1) 1 ( ) 1 1 2 a ) " ( ) ( ) T 1 = ir' (1)i = V'i4 1,2,3 = \V'i4'V'i4 ' V'i4 . r t = 0,2,6t ,so 

j k 

r '(t) x r"(t) = 1 2t 3t2 

0 2 6t 

= 12t 3t21 i - 11 3t2 1· + 11 2t I k 
2 6t 0 6t J 0 2 

= {12f- 6t~) i - (6t- O) j + (2 - 0) k = (6f , -6t, 2) 

23. The vector equation for the curve is r(t) = ( 1 + 2 Jt, t3
- t, t 3 + t ), so r '(t) = ( 1/ Vt, 3f - 1, 3t2 + 1). The point 

(3, 0, 2) corresponds tot= 1, so the tangent vector there is r ' (1) = (1, 2, 4). Thus, the tangent line goes through the point 

(3, 0, 2) and is parallel to the vector (1, 2, 4). Parametric equations are x = 3 + t, y = 2t, z ,;,. 2 + 4t. 

25. The vector equation for the curve is r (t) = ( e- t cost, e- t s in t, e-t), so 

r' (t) = (e-t(- sin t) +(cost)( -e-t), e-t cost+ (sin t)( -e-t), ( -e- t)) 

= ( - e-t(cos t +sin t), e- t(cos t - sin t), -e-') 

The point (1, 0, 1) corresponds to t = 0, so the tangent vector there is 

r '(O) = ( -e0 (cos 0 +sin 0), e0 (cos0- sin 0) , -e0
) = (-1, 1, -1}. Thus, the tangent line is parallel to the. vector 

(- 1, 1, - 1} and parametric equations are x = 1 + ( -1)t = 1 - t, y = 0 + 1 · t = t , z = 1 + ( - 1)t = 1 - t. 
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27. First we parametrize the curve C of intersection. The projection of C onto the xy-plane is contained in the circle· 

x2 + y2 = 25, z = 0, so we can write x = 5 cost, y = 5 sin t. C also lies on the cylinder y2
• + z2 = 20, and z ~ 0 

near the point (3, 4, 2), so we can write z = )20 - y2 = V20 - 25 sin2 t. A vector equation then for C is 

r (t) = (5c~st,5sint, )20- 25sin2 t) =} r '(t) = ( -5 sint,5cost, ~(20- 25sin2 t)-112 (-50sintcost) ). 

The point (3, 4, 2) corresponds tot = cos-1 (~),so the tangent vector there is 

The tangent line is parallel to this vector and passes through (3, 4, 2), so a vector equation for the line 

is r (t) = (3 - 4t)i + ( 4 + 3t)j + (2 - 6t)k. 

29. r(t) =(t,e- t , 2t - e ) =* r '(t)=(1,-e- t,2 - 2t). At(0,1,0), 

t = 0 and r '(O) = {1, - 1, 2). Thus, parametric equations of the tangent 

.line are x = t, y = 1 - t, z = 2t. 

31 . r(t) = (tcost,t,t sint) =* r'(t) = (cost-tsint, 1,tcost+sint). 

At ( -1r, 1r, 0), t = 1r and r ' (1r) = ( -1, 1, -1r). Thus, parametric equations 

of the tangent line are x = -1r - t , y = 1r + t, z = -1rt. 

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of 

intersection. Since r; (t) = (1, 2t, 3t2
) and t = 0 at (0, 0, 0), r} (0) = (1, 0, 0) is a tangent vector to r 1 at (0, 0, 0). Similarly, 

r~(t) = (cost, 2cos2t, 1) and since r 2(0) = (0, 0, 0), r~ (0) = (1, 2, 1) is a tangent vectortor2 at (0, 0,0). IfO is the angle 

between these two tangent vectors, then cos 0 = 7f7r, (1, 0, 0~ · (1, 2, 1) = -js and 9 = col:l- 1 
( -js ) ~ 66°. 

35. J; (t i - t 3 j + 3t5 k ) dt = (J; t dt). i- (J; t3 dt) j + (!0
2 

3t5 dt) k 

= (~t2]~ i - [tt4]~ j + [~t0] ~ k 

= H4- O)i - t{16 - O)j + ~(64- O) k = .2i -4j +32 k 
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37. f~"'12 (3sin2 t cost i + 3 sin t cos2 t j + 2 sin t cost k ) dt 

= (I; 12 3 sin2 t cost dt) i + (.ro" 12 3 sin t cos2 t dt) j + (I; 12 2 sin t cost dt) k 

= [sin 3 t) ~ 12 
i + [- cos3 t] ~ 12 j+ [sin 2 t) ~ 12 k = ( 1 - 0) i + ( 0 + 1) j + ( 1 - 0) k = i + j + k 

39. f (sec2 t i + t(e + 1)3 j + t 2 ln t k ) dt = (f sec2 t dt) i + (f t(t,2 + 1)3 dt) j + (f t 2 ln t dt) k 

=tan t i + t(t2 + 1)4 j + (tt3 ln t- ~t3)k + C , 

where C is a vector constant of integration. [For the z-cornponent,- integrate by pa~s with u = ln t, dv = t 2 dt.] 

41. r'(t) = 2t i + 3t2 j + Vt k =} r (t) = t2.i + e j + tt312 k + c , where cis a constant vector. 

But i + j = r (1) = i + j + i k + C. Thus C = -tk and r (t) = ·t 2 i + t 3 j + ( tt312
- ~) k. 

Fo.r Exercises 43-46, 1et u (t) = (u1 (t), u2 (t), u3 (t)) and v (t) = (v1 ( t) , v2(t), v3 ( t)). In each of these exercises, the procedure is to apply 

Theorem 2 so that the corresponding properties of derivatives of real-valued funciions can be used. 

d d 
43. -d [u (t) + v (t)] = -d (u1(t) +v1(t),u2(t) +v2(t),ua(t) +v3 (t)) t t . 

= (! [u1(t) +v1 (t)],! [u2(t) +v2(t)], ;t [ua(t) + va(t)]) 

= M(t) + vW), u~(t) + vHt), u3(t) +vW)) 

= M (t), u~ (t ), u3(t)) + M(t), v~(t), v3(t)) = u ' (t) + v' (t) 

d d 
45. dt [u(t) x v(t)] = dt (u2(t)va(t) - ua(t)v2(t),ua(t)v1(t) - u1(t)v3(t),u1(t)v2(t) - u2(t)v1(t)) 

= (u~va(t) + u2(t)v3(t) - u3(t)v2(t) - u3(t)v2(t), 

u3(t)vl(t) + ua(t)v~ (t)- uW)va(t)- u1(t)vW), 

u~ (t)vz(t) .+ U1 (t)vW) - u2(t)vl (t) - uz(tM (t)) 

= (uW)va(t) - u3(t)v2 (t), u3(t)vl (t)- u~(t)va(t), ui(t)'!!2(t)- u2(t)vl(t)) 

+ (uz(t)vW) - ua(tM(t), u3(t)vi (t)- ul(t)v3(t), u1 (t)vW) :- uz(t)v~ (t)) 

= u ' (t) x v (t) + u (t) x v' (t) 

· Alternate solution: Let r(t) = u(t) x v(t). Then 

r(t +h)- r (t) = [u (t +h) X v(t +h)] - (u(t) x v(t)] 

= [u(t + h) x v(t + h)] - [u(t) x v(t)] + [u (t + h) x v(t)] - [u (t t h) X v (t)] 

= u (t + h) x [v (t +h) - v(t)] + [u (t +h) - u (t)] X v(t) 

(Be careful of the order of the cross product.) Dividing through by hand taking the limit as h--+ 0 we have 

r'(t) = lim u (t +h) x [v~ +h) - v (t)] + lim [u(t +h) - u (t)] X v(t) = u(t) x v'(t) + u'(t) X v (t) 
h- o . h- o h 

by Exercise 13.1.49(a) and Definition 1. 
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47. :t [u (t) · v(t)] = u'(t) · v (t) + u (t) ·.v'(t) [by Formula 4 of Theorem 3] 

= (cost, - sin t , 1) · (t, cost, sin t) + (sin t , cost, t) · (1,- sin t, cost) 

= t cos t - cos t sin t + sin t + sin t - cos t sin t + t cos t 

= 2tcost + 2sint - 2cost sint 

49. By Formula 4 of Theorem 3, f' (t) = u ' (t) · v (t) + u (t) · v' (t), and v' (t) = (1, 2t, 3t2 ), so 

j'(2) = u'(2) · v{2) + u {2) · v'{2) = (3, 0, 4) · (2,4,8) + (1, 2, - 1) · (1, 4, 12) = 6 + 0 + 32 + 1 + 8- 12 = 35. 

d . 
51 . - [r(t) x r ' (t)] = r ' (t) ~ r' (t) + r (t) x r" (t) by Formula 5 of Theorem 3. But r' (t) x r' (t) = 0 (by Example 2 in 

dt 

Section 12.4). Thus,! [r (t) x r '(t)] = r(t) x r"(t) . 

53. ~ Jr (t)l = dd [r(t) · r(t)]112 = ~ [r(t) · r (t)]-1
1

2 [2r (t) · r '(t)] = -
1 

(1 )I r(t) · r '(t) 
dt t · - r t 

55. Since u (t) = r (t) · [r '(t) x r"(t)), 

u' (t) = r 1 (t) · [r' (t) X r" (t)] + r (t) · ! [r ' {t) X r 11 (t)) 

= 0 + r(t). · (r"(t) x r "(t) + r'(t) X r 111 (t)] 

= r(t) · (r' (t) X r 111 (t)] 

13.3 Arc Length and Curvature 

1. r (t) = (t,3cos t,3sin t) =? r' (t) = (1,-3sin t,3cost) =? 

Jr '(t)l = ) 12 + (- 3 sint)2 + (3cost) 2 = ) 1 + 9(sin2 t + cos2 t) = v'IO. 

[since r' (t) ..l r ' (t) x r" (t)] 

[since r"(t) x r"(t) = 0] 

Then using Formula3, we have L = f~5 lr'(t)l dt = ts v'Wdt = .fi0t] ~ 5 ~ 10 .fiO. 

3. r(t) = v'2t i + etj + e- tk =? r '(t) = v'2 i + etj - e-tk =? 

lr'{t)l = J ( v'2/ + (et)2 + ( -e- t)2 =:= J2 + e2t + e u = .J(et + e- t)2 = et + e- t [since et + e- t > OJ. 

Then L = }~1 lr ' (t) i dt = J~(et + e- t) dt = [et - e- t] ~ = e- e-1
. 

5. r(t) = i + t 2 j + t 3 k =? r'(t) = 2t j + 3t2 k =? ir'(t)i = J4t2 + 9t4 = t J4 + 9t2 . [since t 2': OJ. 

Then L = J0
1

lr '(t) i dt = J; tJ4 + 9t2 dt = fa· t(4 + 9t2
)

3
1

2t = 2
1
7 (133

1
2

- 43
1

2
) = 2\ (133

/
2

- 8). 

7. r(t) = (t2
, t3

, t4
) =? r 1 (t) = (2t, 3t2 , 4t3

) => lr ' (t) i = V(2t? + (3t2)2 + (4t3) 2 = J4t2 + 9t4 + 1fit6, so 

L = J~ lr'(t)l dt = J; J4t2 + 9t4 + 16t6 dt ~ 18.6833. 
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9. r (t) = (sin t,cost,tant) =} r '(t ) = (cost, - sin t,sec2t) =} 

lr '(t)l = ..jcos2 t + (-sin t)2 + (sec2 t)2 = v'l + sec4 t and L = J0,.
14 lr '(t )l dt = J~"'14 v'1 +sec4 t dt ~ 1.2780. 

11. The projection of the curve C onto the xy-plane is the c6rve x2 = 2y or y = ~ x 2
, z = 0. Then we can choose the parameter 

x = t =} y = ~t2 . Since C also lies on the surface 3z = xy, we have z .= ~xy = ~(t)(~t2) = i t 3
. Then paramen:ic 

equations for C are x = t, y = ~t2, z = *t3 and the corresponding vector equation is r (t) = (t , ~ t2 , ~t3 ). The origin 

corresponds to t = 0 and the point (6, 18,_36) corresponds tot = 6, so 

L = f0
6 

lr' (t)l dt = ]~6 1(1, t , lt2)1 dt = J~ V12 + t 2 + (~t2 ) 2 dt = f0
6 
J1 + t2 + i t4. dt 

= f0
6 
J(1 + ~t2 )2 dt = j~(1 + tt2

) dt = [t + ~t3)~ = 6 + 36 = 42 

13. r (t) = 2t i + (1 - 3t) j + (5 + 4t) k =} r '(t) = 2i- 3j + 4 k and "* = lr'(t) l :::::: v'4 +9 + 16 = .;29. Then 

8 = 8( t) = J~ lr' ( u) I du = J; .;29 du = .;29 t. Therefore, t = ~ 8, and substituting for t in the original equation, we 

have r (t(s)) = ~8 i + (1- ~8)j + (5+ ~8) k. 

15. Here r (t) = (3 sin t , 4t, 3 cos t), so r ' (t) = (3cos t , 4, -3 sin t) and lr '(t) l = ..)9 cos2 t + 16 + 9 sin2 t = v'25 = 5. 

The point (0, 0, 3) corresponds to t = 0, so the arc length function beginning at (0, 0, 3) and measuring in the positive 

direction is given by 8( t) = J; lr' ( u) I du = J; 5 du = 5t. 8( t ) = 5 =} 5t = 5 . =} t = 1, thus your location after 

moving 5 units along the curve is (3 sin 1, 4, 3 cos 1). 

17. (a) r (t) = (t, 3 cost, 3 sin t) =} r' (t ) = (1, - 3 sin t, 3 cost) =} lr' (t) l = ..)i + 9sin2 t + 9 cos2 t = v'IO. 

· ( ) r' (t) 1 ( . ) / 1 ;l • 3 ) 
ThenT t = lr '{t)l = "710 1, - 3 sm t,3cost or \"Tlii,-'710smt,'711icost. 

T' (t) = fto (0, - 3cost, -3sin t) =} IT '(t)l = 7io ..)o + 9cos2 t + 9sin2 t = #o· Thus 

N (t) = ~~:~~~ ~ = ~~~ (0, -3cos t , -3sin t) = (0,-cost,- sin t). 

(b) ~t(t) = IT '(t) l = 3/v'W = ~ 
lr'(t)l v'W 10 

19. (a)r(t) = (v'2 t,et,e- t) =} r '(t) = (v'2,et,-e-t) =} Jr'(t)J=v'2 +e2L + e 2t =..J(et+e-t)2= et+e-t. 

Then 

[after multiplying by :: ] and 

T '(t) = _1_ (v'2e' 2e2t 0)- 2e2t ( V'fe' e2t - 1) 
e2'+ 1 ' ' (e2' + 1)2 ' ' 

~ (e2' ~ 1)2 ((e2
' + 1) (v'2e' ,2e2', 0) - 2e2

' ( .J2 e',e2
', - 1)) = (e2' ~ 1)2 (v'2e' (1 .:... e

2
') ,2e

2
',2e

2
') 
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Then 

Therefore 

T '(t) e
2

t + 1 1 ( rn t( 2t) 2t 2t) 
N (t) = !T '(t)! = J2 et (e2t + 1)2 v2e 1 - e , 2e , 2e 

= 1 (J2et(1- e2t) 2e2t 2e2t) = _1_ (1- e2t J2 et· J2et) 
J2et(e2t+1) ' , e2t+ 1 , , 

!T'(t)! J2et 1 - J2et - J2e2t - .J2e2t 
(b) ~~:(t) = lr'(t)l = e2t + 1 . et + e t - eSt+ 2et + e-t - e4t + 2e2t + 1 -:- (e2t + 1)2 

21. r (t) = t3 j + e k =} r'(t) = 3e j + 2t k, r"(t) = 6t j + 2 k, lr '(t) ! = y'o2 + (3t2)2 + (2t)2 = v'9t4 + 4t2, 

, " _ 2 _ lr '(t) X r "(t)i _ ·6t2 _ 6t2 
r ' (t) x r"(t) = -6t2 i, Jr (t) X r (t)J - 6t . Then ~~:(t)- I () 3 - 3 - (

9 1 
. 2)312. 

r ' t I ( v'9t4 + 4t2 ) t ' + 4t 

23. r (t) = 3t i + 4 sin t j + 4cost k =? r '(t) = 3 i + 4costj - 4sin tk, r"(t) = -4sintj - 4cos~k, 

Jr '(t)! = Jg + 16 cos2 t + 16sin2 t = .J9+T6 = 5, r '(t) x r"(t) = -16 i + 12cos t j - 12 sin t k, 

Jr' (t) x r " (t)! = }256 + 144 cos2 t + 144sin2 t = J405 = 20. Then ~~:(t) = lr' (t) x r~ (t)J = 2~ = ..! . 
, Jr '(t)[ · 5 25 

25. r (t) = (t, t2, t3) =? r ' (t) = (1, 2t, 3t2). The point (1, 1, 1) corresponds to t = 1, and 1)
1 (1) = (1, 2, 3) =? 

Jr '(1)1 = v'1 + 4 +9 = Jf4. r"(t) = (0, 2,6t ) =? r"(1) = (0, 2,6). r '(1) x r"(1) = (6, - 6,2),so 

·lr '(1) x r"(1)! = yf36 + 36 + 4 = J76. Then ~~:(1_} = lr'(~;,~1~'~(1)1 = ::;; = ~ VSJ. 

4 , 3 "( ) 2 ( ) lf"(x) ! l12x
2
1 12x2 

27. f (x) = x , f (x) = 4x , f x = 12x • II: x = [l + (J'(x))2)3/2 = [1 + (4x3)2]3/ 2 = (1 + 16x6)3/ 2 

29. f(x) = xe"', J'(x) = xe"' + e"', f"(x) = xe"' + 2e"', 

lf"(x) i !xe"'+2e"' l !x+2Je"' 
~~:{x) = [1 + (/'(x))2J312 = [1 + (xe"' + e"')2)3/2 = [1 + (xe"' + e"')2 j3/2 

Jy"(x) J e"' _ :r 2x -3/2 
31. Since y' = y" = e"', the curvature is ~~:(x) = 312 = (

1 
+ e2"' )312 - e (1 + e ) . 

. [1 + (y'(x))2] 

To find the maximum curvature, we first find the critical numbers of ~~:(x): 

1 + 2:r 3 2x 1 2 2x '( ) _ "'( 2x)-3/2 "'(-;!)( 2x)- 5/2(2 2x) _ x e - e _ x - e 
II: x - e 1 + e + e . 2 1 + e e - e (1 + e2"')5/2 - e (1 + e2x)5/2. 

~~:' (x) = 0 when 1 - 2e2"' = 0, so e2"' = ~ or x = - ~ ln 2. And since 1 - 2e2"' > 0 for x < - ~ ln 2 and 1 - 2e2"' < 0 
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164 D CHAPTER 13 VECTOR FUNCTIONS 

for x > - ~ ln. 2, the maximum curvature is attained at the point (-~ ln 2, e(- In 
2

) 12
) = (- ~ ln 2, ~). 

Since lim e"'(1 + e2x)-3 12 = 0, ~~:(x) approaches 0 as x---+ oo. 
:.~: - oo 

33. (a) C appears to be changing direction more quickly at P than Q, so we would expect the curvature to be great~r at P. 

(b) First we sketch approximate osculating circles at P and Q. Using the 

axes scale as a guide, we measure the radius of the osculating circle 

at P to be approximately 0.8 units, thus p = .!. => 
K, 

"'= .!. ~ -
0

1 ~ 1.3. Similar!y,'we estimate the radius of the 
p .8 

osculating circle at Q to be 1.4 units, son, = .!. ~ ....!...
4 
~ 0.7. 

p 1. 

j6x-'11 6 

[1 + (-2x-3)z]3/2 = :z;4 (1 + 4x- 6)3/ 2' 

The appearance of the two humps in this graph is perhaps a little surpris ing, but it is 

explained by the fact that y = x - 2 increases asymptotically at the origin from both 

directions, and so its graph has very little bend there. [Note th~t r;,(O) is undefined.] 

37. r(t) = (tet , e- 1 ,../2t) => .r '(t) = ((t +l)et,-e-'·,../2), r"(t) = ((t+2)et,e-t, O). Then 

-1 

r' (t) x r" (t) = ( -.J2e-t, ../2(t + 2)e1
, 2t + 3), · Jr ' (t) x r " (t)l = y'2e- 21 + 2(t + 2) 2 e2t + (2t + 3)2, 

lr'(t)J = . l(t + 1)2e2t + e zt + 2, ( ) lr'(t) x r "(t) l y'2e-
2
t +'2(t + 2)2e

2
t + (2t + 3)2 

v and "' t = lr'(t)13 = ((t + 1)2e2t + e-2t + 2]3/2 

We plot the space curve and its curvature function for - 5 :::; t :::; 5 below. 

y 
- 5 

K(l) 

0.6 

5 I 

, 

c 

X 

From the graph of r;,(t) we see that curvature is maximized fort = 0, so the curve bends most sharply at the point (0, 1 , 0). 

The curve bends more gradually as we move away from this point, becoming almost linear. This is reflected in the curvature 

graph, where n,(t) becomes nearly 0 as /tl increases. 

39. Notice that the curve b has two inflection points at which the graph appears alrnos,t straight. We would expect the curvature to 

be 0 or nearly 0 at these values, bu't the curve a isn 't near 0 there. Th~s, a must be the graph of y = f ( x) rather than the graph 

of curvature, and b is the graph .of y = K-( x). 
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41. Using a CAS, we find (after simplifYing) 

6 v'4cos2 t - 12cost + 13 
~~:(t) = (17 _ 12 cos t)3 12 • (To compute cross 

products in Maple, use the VectorCa1cu1us or 

Li nearA1gebra package and the Cross Produc t (a, b) 

command; in Mathematica, use Cross (a, b].) Curvature is 

largest at integer multiples of2:rr. 

43. X = t2 => :i; = 2t => X = 2, y = t 3 => iJ = 3t2 => ij = 6t. 

K(!) 

0 21T 41T 61r I 

\xy- iJx\ j(2t)(6t) - (3t2)(2) j j12t2- 6t21 6t2 
Then ~~:(t) = [:i;2 + y2)3/2 = [(2t)2 + (3t2)2j3/ 2 = (4t2 + W)3/2 = (4t2 + 9t4)3/2 · 

45. x = et cos t => :i; = e1(cos t- sint) => x = e1( - sint- cost)+ et(cost- sin t) = - 2et sin t, 

y = et sint => iJ = et (cos t + sin't) => y = e1(- sint +cost)+ et(cos t + sint) = 2et cost. Then 

\:i;ij - 1ixl jet(cos t- sin t)(2et cost) - e1(cos t + sin t)( -2et sin t}j 
x;( t) = . . = .:....__;..__ __ __;_;_---:-:_-:---:--------'-:-'-;;-;;;--~ 

[x2 + y2
]312 ([et(cos t- sin t)J2 + [et(cos t +sin t)j2)3/ 2 

j2e21(cos2 t - sin t cost + sin t cos t + sin2 t) j j2e2t(1) j 2e2t 1 

= [e21(cos2t - 2costsint +sin2 t + cos2 t + 2cos t sint +sin2t)] 3
'
2 = [e2t(1 + 1)]312 = e31 (2)3 / 2 = -..fiet 

( 
2 ) _ _ r '(t) _ (2t,2t2 ,1) _ (2t,2t\ 1) _ ( 2 2 1 47. 1, 3 ,1 correspondstot - 1. T (t)-\r'(t)\ - v'4t2 + 4t4 + 1 - 2t2 + 1 ,soT(1) - 3•3•3)· 

T '(t) = - 4t(2t2 + 1)-2 ( 2t, 2t2, 1) + (2t2 + 1)-1 (2,4t , 0) [by Formula 3 of Theorem 13.2.3] 

= (2t2 + 1)- 2 ( -8t2 + 4t2 + 2, -8t3 + 8t3 + 4t, -4t) = 2(2t2 + 1)- 2 (1- 2t2 , 2t, -2t) 

(1 - 2t2, 2t, -2t) - (1- 2t2, 2t, - 2t) 
v'1 - 4t2 + 4t4 + 8t2 - 1 + 2t2 

49. (0,7r,-?) corresponds tot ='lr. r(t) = (2sin 3t,t,2cos3t) => 

T(t) = r ' (t) = (6 cos 3t,1,-6sin3t) =: - 1- (6cos 3t, 1,-6 sin 3t ). 
\r' (t) \ } 36 cos2 3t + 1 + 36sin2 3t V37 

T(1r) = ~ ( - 6, 1, 0) is a normal vector for the normal plane, and so (-6, 1, 0) is also normal. Thus an equation for the 

plane ·is - 6(x - 0) + 1(y -1r) + O(z + 2) = 0 ory ·- 6x = ~· 

18 
ffi=> 

N (t) = ~~:m, = (-sin3t, O, - cos 3t). So N(1r) = (0, 0, 1) and B (1r) = ~ (-6, 1, 0) x (0,0, 1) = ~ {1, 6, 0). 

Since B(1r) is a normal to the osculating plane, so is (1, 6, 0) . 

An equation for the plane is 1(x- 0) + 6(y -1r) + O(z + 2) = 0 or x + 6y = 61r. 

© 2012 Ccngo&e Lcorning. All Rights Reserved. May not be scanned, copied, or duplicutcd, or posted to • publicly accessible wel><ite, in whole or in part. 



166 0 CHAPTER 13 VECTOR FUNCTIONS 

51. The ellipse is given by the parametric equations x = 2 cost, y = 3 sin t, so using the result from Exercise 42, 

~~:(t) = l:i:ii- xyl = l(-2sint}(-3sint)- (3cost)(- 2cost)1 = 6 
[:i:2 + 1?]3/ 2 ( 4 sin2 t + 9 cos2 t~S/2 ( 4 sin2 t + 9 cos2 t)3/ 2 • 

At (2, 0}, t = 0. N.ow ~~:(0} = 2
6
7 = ~.so the radius of the osculating circle is 

1/ ~(0} = ~ and its center is ( -~, 0). Its equation is therefore (x + ~ )2 + y2 = ¥· 
At (0, 3}, t = ~.and~~:(~) = ~ = ~· So the radius of the osculating circle is~ and 

its center is ( 0, ~). Hence its equation is x 2 + (y - ~) 2 
= lf . 

53. The tangent vector is normal to the normal plane, and the ve~tor (6, 6, - 8) is normal to the given plane. 

But T (t) II r '(t) and (6, 6, -8) II (3, 3, -4), so we need to find t such that r' (t) II (3, 3, - 4}. 

s 

r (t) = (t3 
1 3t, t4

) :::::? r ' (t) = (3t 2
, 3, 4t3 ) II (3, 3, - 4) when t = - 1. So the planes are parallel at the point ( - 1, -3, 1). 

55. First we parametrize the curve of intersection. We can choose y = t; then x = y2 = t 2 and z = x 2 = t4
, and the curve is 

given by r (t) = ( t 2
, t, t 4

). r ' (t) = (2t, 1, 4t3 ) and the point (1, 1, 1) corresponds tot= 1, so r ' (1) := (2, 1, 4) is a normal 

vector for the normal plane. Thus an equation of the normal plane is 

r' (t) 1 
2(x - 1) + 1(y - 1} + 4(z- 1) = 0 or 2x + y + 4z = 7. T (t) = -

1 
'( )I = . ( 2t, 1, 4t3

) and 
· r t J 4t2 + 1 + 16t6 

T ' (t) = - H 4t2 + 1 + 1?t6 ) - S/2 (8t + 96t5 ) (2t, 1, 4t3 ) + ( 4t2 + 1 + 16t6 ) - l/
2 ( 2, 0, 12t 2 

). A normal vector for 

the osculating plane is B(l) = T (1) x N (1), but r'(1 ) = (2, 1, 4) is parallel to T (1) and 

T ' (1} = -~ (21)-3:2 ( 104} (2, 1, 4} + (21)-112 (2, 0, 12) = 
21

3TI ( -31, -26, 22) is parallel to N (1) as is (-31, .:...26, 22), 

so (2, 1, 4} x (- 31, - 26, 22} = (126, -168, -21) is normal to the osculating plane. Thus an equation for the osculating 

plane is 126(x - 1) - 168(y - 1) - 21(z- 1) = 0 or 6x- 8y - z = -3. 

l
dTI dT 

57 - ldTI_IdT/dtl_ ldT / dtl d N - dT / dt -N - dt dt _dT /dt_dT b h Ch' R l 
. ~~:- ds- ds/dt - ds/dt an - ldT/dtl 'so~~: - ~dTids - ds /dt-ds yte am ue. 

59. (a) IB/ = 1 ~ B · B = 1 
d 

~ ds (B · B )= 0 

(b) B = T x N :::::? 

dt dt 

dB J. B 
ds 

: = ! (T x N) = :~ (T x N } ds~dt = :t (T x N } lr'~t)l = [(T ' x N ) + (T X N'))lr'~t)l 

[( 

1 T ' ) ( ')] 1 , T X N ' = T X IT ' I + T X N lr '(t) l = Tr'Tt)'l 
dB 

:::::? -J. T 
ds 
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(c) B = T x N => T _L N , B _L T and B _LN. SoB, T and N form an orthogonal set of vectors in the three

dimensional space !R3 . From parts (a) and (b), dBfds is perpendicular to both BandT, so dB/ ds is parallel to N . 

Therefore, dB/ ds = -r(s)N , where r(s) is a scalar. 

-
(d) Since B = T x N , T _L N and both T and N are unit vectors, B is a unit vector mutually perpendicular to both T and 

N. For a plane curve, T and N always lie in the plane of the curve, so that B is a constant unit vector always 

perpendicular to the plane. Thus dB/ ds = 0, but dB fds = - r(s)N and N =/= 0, so r(s) = 0. 

61. (a) r ' = s' T => r " = s" T + s' T ' = s" T + s' ~~ s' = s" T + ~(s') 2 N by the first Serret-Frenet formula. 

(b) Using part (a), we have 

r ' X r" = (s' T ) X (s" T + ~cs')2 N ] 

= ((si T ) x (s" T )] + ((s'T ) x (~(s'? N)) [by Property 3 of Theorem 12.4.11) 

= (s' s")(T x T ) + ~~;(s')3(T x N ) = 0 + ~~;(s'? B = ~~;(s')3 B 

(c) Using part (a), we have 

r 111 = [s" T + ~~;(s')2 N ]' = s111 T + s" T ' ;t- ~'(s'? N + 2~~;s' s" N + ~~;(s'? N ' 

= s"' T + s"dT s' + ~'(s'? N + 2~s' s" N + ~(s')2 dN s' 
ds ds 

= s"' T + s" s'~N + K1(s') 2 N + 2~s' s" N + ~~;(s') 3 (-~ T + rB) [by the second formula] 

= [s"'- K2 {s'?J T + (3~s' s" + ~~;'(s')2] N + ~~;r(s')3 B 

(d) Using parts (b) and (c) and the facts that B · T = 0, B · N = 0, and B · B = 1, we get 

(r ' x r ") . r 111 = ~~:(s') 3 B · { (s111 
- ~2 (s') 3 ] T + (3~s' s" + ~~ (s') 2

] N + KT(s')3 B} = ~~:(s')3 ~r(s')3 = T 

Jr ' x r " J2 
· J~~:(s')3 B J2 (~~;(s')3] 2 • 

63. r = (t, tt2, !t3
) => r ' = (1, t, t2

), r" = (0, 1, 2t), r 111 = (0, 0, 2) => r ' x r " = (t 2
, - 2t, 1) => 

(r 'x r")· r"' (t2 , - 2t,1) ·(0,0,2) 2 
T - - - --,---....,..--

- Jr' x r 11 J2 - t 4 + 4t2 + 1 - t 4 + 4t2 + 1 

65. For one helix, the vector equation is r (t ) = (10 cost, 10 sin t, 34t/(2rr)) (measuring in angstroms), because the radius of each 

helix is 10 angstroms, and z increases by 34 angstroms for each increase of 271' in t. Using the arc length formula, Jetting t go 

from 0 to 2.9 x 108 x 21r, we find the appmximate length of each helix to be 

B s . / ] 2.9x l0
8 

x2rr 
L = J;·9

xlO x zrr Jr'(t)J dt = j~ ·9x 10 
x zrr y (- 10 sint)2 + {10cost)2 + U!)2 dt = ..j100 + (~!)2 t 

0 

= 2.9 x 108 x 21r J10o + ( g! )2 ~ 2.07 x 1010 A- more than two meters! 
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13.4 Motion in Space: Velocity and Acceleration 

1: (a) Ifr(t) = x(t) i + y (t) j + z(t) k is the position vector of the particle at timet, then the average velocity over the time 

.interval [0, 1] is 

_ r(l)- r (O) _ (4.5 i + 6.0j + 3.0k)- (2.7 i + 9.8j + 3.7k) _ 1 8 . 3 8 . 0 ? k s· .1 I h th v ave - -
1 

- . 1 - . J - . . 1m1 ar y, over t e o er 
1-0 • 

intervals we have 

[0.5, 1] : 
_ r(1)- r (0.5) _ (4.5 i + 6.0j + 3.0 k)- (3.5 i + i2j + 3.3 k ) _ 

2 0
. _ 

2 4
. _ 

0 6 
k 

Vave- 1 - 0.5 - 0.5 - . 1 . J . 

[1, 2] : 
_ r (2)- r (1) _ (7.3i+7.8 j+2.7k) - (4.5i+6.0j +3.0k) _

28
. 

1 8
._

03
k . 

V ave - 2 _ 1 - . 1 - · 1 + · J · 

[1, 1.5]: 
_ r(1.5) -r(1) _ (5.9i+6.4j+2.8k)-(4.5 i +6.0j+3.0 k) _

28
. · 

08
._

04
k 

Yavo- - - · 1 + · J • 1.5 -1 0.5 . . 

(b) We can estimate the velocity at t = 1 by averaging the average velocities over the time intervals [0.5, 1] and [1, 1.5]: 

v(1) ~ ~{(2 i - 2.4j- 0.6k) + (2.8 i +0.8j- 0.4k)] = 2.4i - 0.8j - o·.5k. Then the speed is 

Jv (1)\ ~ )(2.4)2 + ( - 0.8)2 + ( -0.5)2 ~ 2.58. 

( 
. 1 2 ) 3. r(t) = - 2t ,t => 

v{t) = r'(t) = (-t, i) 

a(t) = r"(t) = (-:- 1, 0) 

jv(t)\ = Jt2 + 1 

5.r(t)=3costi+2sintj => 

v (t) = -3sinti+2costj 

a(t) = -3cost i- 2sintj 

Att = 2: 

v{2) = ( -2, 1) 

a(2) .= (-1,0) 

Att = 71'/3: 

v(~) =-¥ i+j 

a(i) = -~ i - J3j 

Jv (t) \ = )9sin2 t + 4cos2 t;:::: .) 4 + 5sin2 t 

Notice that x2 /9 + y2j4 = sin2 t + cos2 t = 1, so the path is an ellipse. 

Att = 1: 

v(t) = i + 2tj v(1) = i + 2 j 

a(t) = 2j a(1) = 2j 

z 

(3,0) 
/ 

X 

Jv(t)l=~ Y 

Here x = t, y = t2 => y = ~2 and z = 2, so the path of the particle is a 

parabola in the plane z = 2. 
X 
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9. r (t) = (t2 + t, e - t , t3
) => v(t) = r ' (t) = (2t + 1, 2t - 1, 3t2

), a(t) = v' (t) = (2, 2, 6t), 

lv (t) i = .j(2t + 1)2 + (2t- 1)2 + (3t2 )2 = v'9t4 + 8t2 + 2. 

11. r (t) = v'2t i + e' j + e-t k => v (t) = r'(t) = v'2 i + e' j - e-' k, a(t) = v '(t) = e' j + e-' k, 

lv(t)l = v'2 + e2 ' + e zt = J(e' + e-') 2 = e' + e-' . 

13. r (t) = e'(cost, sint, t) => 

v (t) = r'(t) = e'(cost,.sin t, t~ + et (-sint,cost, 1) = et (cost - sint,sint +cost, t + 1) 

a(t) = v '-(t) = 'e'(cost- sint - sin t - cost, sin t +cost+ cost - sin t , t + 1 + 1) 

= et(- 2sin t , 2 cost, t + 2) 

lv(t)i = etJcos2 t + sin2 t - 2cost sint + sin2 t + cos2 t + 2sin tcost + t 2 + 2t + 1 

= e' .Jt2 + 2t + 3 

15. a(t) = i + 2j => v(t) = J a(t) dt = J(i + 2j) dt = t i + 2tj + C and k = v {0) = C, 

.soC = k and v(t) = t i + 2tj + k. , r {t) = J v(t)"dt = J (t i + 2t j + k) dt = ~t2 i + t2 j + t k + D . 

But i = r (0) = D, soD= i and r(t) = (tt2 + 1) i + t2 j + tk. 

17 .. (a) a(t) = 2t i + sintj +cos 2t k => · 

v( t) = J (2t i + sin t j + cos 2t k) dt = t2 i - cost j + t sin 2t k + C 

and i = v (O) = -j + C, so C = i + j 

and v(t) = (t2 + 1) i + (1- cost) j + t sin2tk. 

r (t) = J[(t2 + 1) i + (1- cost) j + t sin2tk)dt 

= (tt3 + t) i + (t- sin t)j- ~cos 2t k + D 

(b) 

0.6 
0.4 

% 0.2 
0 

Butj = r(O) = - i k+ D , soD = j + {kand r (t) = (tt3 +t) i+ (t -sint + 1)j + (!- { cos2t) k. 

19. r (t) = ( t 2
' 5t, e- 16t) =} v(t) = (2t, 5, 2t - ,16), lv(t)i = v'4t2 + 25 + 4t2 - 64t + 256 = v'8t2 - 64t + 281 

and dd lv(t)i = t(se - 64t + 281)- 112 (16t - 64) . This is zero if and only if the numerator is zero, that is, 
t . 

16t - 64 = 0 or t = 4. Since :t lv(t) l < 0 fort < 4 a~d :t lv(t)l > 0 fort > 4, the minimum speed of -/153 is atta.ined 

at t = 4 units of time. 

21 . IF (t) i = 20 N in the direction of the positive z-axis, so F (t) = 20 k. Also m = 4 kg, r{O) = 0 and v {O) = i - j . 

Since 20k = F(t) = 4 a(t) , a (t) = 5k. Then v (t) = 5t k + c1 where c1 = i- j so v(t) = i - j + 5tk and the 

speed is lv (t)l = v 1 + 1 + 25t2 = v'25t2 + 2. Also r (t) = t i - t j + ~t2 k + cz and 0 = r (O), so C 2 = 0 

and r (t) = t i - t j + ~ t2 k. 
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23. lv(O) I = 200 m/s and, since the angle of elevation is 60°, a unit vector in the _direction of the velocity is 

(cos60°)i+ (sin60°)j = ~ i + 4!j. Thusv(O) = 2oo(~i + 4j) = lOOi+ 100J3j and ifwesetuptheaxessothatthe 

projectile starts at the origin, then r(O) = 0. Ignoring air resistance, the only force is that due to gravity, so 

F(t) = ma(t) = -m9 j where 9 ~ 9.8 m/s2. Thus a(t) = -9.8j and, integrating, we have v (t) = - 9.8t j +C. But 

100 i + 100 V3 j = v(O) = C , so v( t) = 100 i + ( 100 V3 - 9.8t) j and then (integrating again) 

r (t) = lOOt i + (100 V3 t- 4.9t2) j + D where·O = r(O) = D. Thus the position function of the projectile is 
' 

r(t) = lOO t i + (100 V3t- 4.9t2 ) j . 

(a) Parametric equations for the projectile are x(t) = lOOt, y(t) = 100 V3 t- 4.9t2. The projectile reaches the ground when 

y(t) = O(and t > 0) => 100 V3t- 4.9t2 = t(100 V3- 4.9t) = 0 => t = 104~f ~ 35.3 s. So the range is 

x( 104°;0) = 100e04~f3) ~ 3535 rn. 

(b) The maximum height is reached when y(t) has a critical number (or equivalently, when the vertical component 

of velocity is 0): y' ( t) = 0 => 100 J3 - 9.8t = 0 => t = 100~{3 ~ 17.7 s. Thus the maximum height is 

v( 10~{!) = 100 V3 ( 10~{!) - 4.9 ( 109~{!r ~ 1531 m. 

(c) From part (a), impact occurs at t = 10J.;f s. Thus, the velocity at impact is 

v ( 104°{!) = 1~0 i + [ 100 J3 - 9.8 ( 104°f)] j = 100 i- 100 J3j and the speed is 

lv ( 101.f) I= JIO,OOO + 30,000 = 200 mjs. 

25. As in Example 5, r (t) = (vo cos45°)t i + [(vo sin45°)t- t9t2] j = t[voJ2 t i + (voJ2 t- gt2
) j] . The ball lands when 

voJ2 . . I . 1 rn2' vo J2 2 90 d h .. . I t = -- s. Now smce 1t ands 90 m away, 90 = x = -2 vo v L. -- or v0 = 9 an t e m1t1a 
9 g ' 

y = 0 (and t > .0) ::::>: 

velocity is vo = J90g ~ 30 mjs. 

27. Let a be the angle ,of elevation. Then v0 = 150m/sand from Example 5, the horizontal distance traveled by the projectile is 

d = v5 s~ 2a. Thus 
1502 

;in 
2
a = 800 => sin 2a = ~~~; ~ 0.3484 => 2a ~ 20.4° or 180 - 20.4 = 159.6°. 

Two angles of elevation then are a ~ 10.2° and a :=::: 79.8°. 

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100, 0) 

and (600, 0). The initial speed is v0 = 80 m/s and let 0 be the angle the catapult is set' at As in Example 5, the trajectory of 

the catapulted rock is given byr(t) = (80cosO)ti + [(80sin0)t- 4.9t2] j. The topofthe near city wall is at (100, 15), 

which the rock will hit when (80 cos 0) t = 100 => t = -
4 

5 
O and (80 sin O)t - 4.9t2 = 15 => 

cos 
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SECTION 13.4 MOTION IN SPACE: VELOCin' AND ACCELERATION D 171 

80 sin 9 . -- - 4.9 -- = 15 => 100 tan () - 7.65625 sec2 fJ = 15. Replacing sec2 9 with tan 2 8 + 1 gives 5 ( 5 )
2 

4cos9 4 cosfJ 

7.65625 tan2 9 - 100 tanfJ + 22.65625 = 0. Using the quadratic formula, we have tan 9 ~ 0.230635, 12.8306 => 

B ~ 13.0°, 85.5°. So for 13.0° < 9 < 85.5°, the rock will land beyond the near city wall. The base of the far wall is 

located at (600, 0) which the rock hits if (80 cos fJ)t = 600 => t = 
2 

15 
n and (80sin 9)t - 4.9t2 = 0 => 

COSu 

. 15 ( 15 )
2 

80sm0 · --n - 4.9 -
2 

(} = 0 => 600tan9- 275.625sec2 fJ = 0 => 
2cOS!7 COS 

275.625 tan2 9 - 600 tan0 + 275.625 = 0. Solutions are tan(}~ 0.658678, 1.51819 => (} ~ 33.4°, 56.6°.· Thus the 

rock lands beyond the enclosed city ground for 33.4° < (} < 56.6°, and the angles that allow the rock to land on city ground 

are 13.0° < () < 33.4~, 56.6° < 9 < 85.5°. If you consider t~at the rock can hit the far wall and bounce back into the city, we 

calculate the angles that cause the rock to hit the top of the wall at (600, 15): (80 cos 9)t = 600 => t = ~ and 
2 cos(} 

(80sin fJ)t- 4.9t2 = 15 => 600tan0 -275.625sec2 
(} = 15 => 275.625 tan2 

(} - 600 tan(}+ 290.625 = o. 

Solutions are tan 9 :::::: 0. 727506, 1.44936 => (} :::::: 36.0°, 55.4°, so the catapult should be set with angle fJ where 

13.0° < (} < 36.0°' 55.4° < (} < 85.5° . 

31. Here a (t) = - 4 j - 32 k so v (t) = -4tj - 32t k + v o = - 4t j- 32t k + 50 i +80 k = 50 i- 4t j + (80 - 32t) k and 

r (t) = 50t i- 2t2 j + (BOt- 16e) k (note that r o = 0). The ball lands when the z-component ofr (t) is zero 

and t > 0: SOt - 16t2 = 16t{5 - t) = 0 => t = 5. The position of the ball then is 

r (5) = 50(5) i - 2{5)2 j + [80(5) - 16(5)2
] k = 250 i - 50 j or equivalently the point (250, - 50, 0). This is a distance of 

J2502 + ( -50)2 + 02 = )65,000 :::::: 255ft from the origin at an angle oftan- 1 (~) :::::: 11.3° from the eastern direction 

toward the south. The speed of the ball is lv (5) l = I 50 i- 20j - 80 k l = J502 + ( - 20)2 + ( -80)2 = v'9300:::::: 96.4 ftls. 

33. (a) After t seconds, the boat will be 5t meters west of point A. The velo~ity 

of the water at that location is 4~0 (5t)(40- 5t) j . The velocity of the 

boat in still water is. 5 i , so the resultant velocity of the boat is 

v(t) = 5 i + 4~0 (5t)( 40- 5t) j = 5i + ( ~t- fG-t2
) j . Integrating, we obtain 

r (t) = 5t i + (~tl - -fGt3 ) j +C. lfwe place the origin at A (and consider j 

20 

to coincide with the northern direction) then r (O) = 0 => C = 0 and we have r (t) = 5t i + (~t2 
-

1
1
6 
e) j . The boat 

reaches the east bank after 8 s, and it is located at r(8) = 5(8)i + ( ~(8)2 - -fG (8?) j = 40 i + 16j. Thus the boat is 16 m 

downstream. 

(b) Let Q be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by 

5(cos Q) i + 5(sin Q) j . At t seconds, the boat is 5(cos Q)t meters from the west bank, at which point the velocity 

of the water is .1 ~0 [5(cos Q)t][40- 5(cos Q)t] j . The resultant velocity of the boat is given by 
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v(t) = 5(cos a:) i + [5 sin a:+ 4g0 (5t cos a:)( 40 - 5t cos a:)] j = (5 cos a:) i + (5 sin a:+ ~t cos a: - -fue cos2 a:) j. 

Integrating, r (t) = (5t cos a:) i + (5tsin a:+ ~t2 cos a:- -ftt3 cos2 a:) j (where we have again placed 

the origin at A). The boat will reach the east bank ~hen 5t cos a: = 40 =? t = ~ = -
8
-. 

5 cos a: cos a: 

In order to land at point B ( 40, 0) we need 5t sin a: + ~ e cos a: - ft t 3 cos2 a: = 0 =? 

5(-
8

- ) sin a:+~ (-
8
-)

2 

cos a:- -ft (-
8
-)

3

.cos
2 a:= 0 =? 

cos a: cos a: cos a: 
-

1
- (40sina: + 48 - 32) = 0 =? 

cos a: 

40 sin a: + 16 = 0 =? sin a: = - %. Thus a: = sin - l (-%) ~ -23.6°, so the boat should head 23.6° south of 

east (upstream). The path does seem realistic. The boat initially heads 

upstream to counte~act the effect of the current. Near the center of the river, 

the current is stronger and the boat is pushed downstream. When the boat 

nears the eastern bank, the current is slower and the boat is able to progress 

upstream to arrive at point B. 

If 

0 1--=:::==::::::::;::>o-f'...::::::::=:=::::~ 40 

- 12 

35. Ifr' (t) = c x r(t) then r' (t) is perpendicular to both c and r(t). Remember that r ' (t) points in the direction of motion, so if 

r' (t) is always perpendicular to c, the path of the particle must lie in a plane perpendicular to c. But r ' (t) is also perpendicular 

to the position vector r(t) which confines the path to a sphere centered at the origin. Considering both restrictions, the path 

must be contained in a circle that lies in a plane perpendicular to c, and the circle is centered on a line through the origin in the 

direction of c. 

37. r(t) = (3t - t 3
) i + 3t2 j =? r'(t) = (3 - 3t2 ) i + 6tj, 

lr' (t)i = J(3- 3t2 )2 + (6t)2 = v'9 + 18t2 + 9t4 = J(3 - 3t2 ) 2 = 3 + 3t2
, 

r" (t) ·= -6t i + 6j, r' (t) x r" (t) = (18 + 18t2 ) k. Then Equation 9 gives 

- r ' (t) . r" (t) - (3 - 3e)( -6t) + (6t)(6) - 18t + 18t3 
- 18t(1 + t2

) - 6t 
aT- lr '(t)/ - 3 +3t2 - 3 + 3t2 - 3(1 + t 2 ) -

[or by Equation 8, 

I d [ 2] ] dE . LO . - lr'(t) X r "(t) i - 18 + 18e - 18(1 + t 2
) - 6 

aT = v = dt 3 + 3t = 6t an quat10n g1ves aN - ir'(t)i - 3 + 3t2 - 3(1 + t 2) - · 

39. r (t) = cost i +sin t j + t k =? r '(t) = - sint i + costj + k , ir'(t)i = Vsin2 t + cos2 t + 1 = V'2, 
r" (t) = - cost i- sin tj, r' (t) x r" (t) =sin t i - cos tj + k. 

_ r'(t) · r"(t) _ sintcost - sintcost _
0 

d _lr'(t) x r"(t)l _ Vsin2 t+cos2 t+ 1 = .J2 = l 
Then D.T - lr'(t)i - . .j2 - an aN - lr'(t)i - -/2 -/2 · 

41. r (t)=et i +-/2t j +e-t k =? r'(t)=et i+-/2j -e- 1 k, ir(t) i=v'e21· +2+ e 2t=J(e1· +e t)2=e'· +e- t, 

e2t _ e- 2t (et + e- t)(et _ e- t) . 
r"(t) = et i + e-t k. Then aT = = = et - e:- t = 2sinht 

et + e t et + e t 
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43. The tangential component of a is the length of the projection of a onto T, so we sketch 

the scalar projection of a in the tangential direction to the curve and estimate its length to 

be 4.5 (using the fact that a has length 10 as a guide). Similarly, the normal component of 

a is the length of the projection of a onto N, so we sketch the scalar projection of a in the 

normal direction to the curve and estimate its lengttJ to be 9.0. Thus aT ::::::: 4.5 cmf s2 and 
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X 

45. _If the engines are turned off at timet, then the spacecraft wi ll continue to travel in the direction ofv(t) , so we need at such 

that for some scalars > 0, r(t) + s v (t) = (6, 4, 9). v(t) = r ' (t) = i + ~ j + (t2 ~ 1)2 k => 

4 8(3- t)t 
so 7- t2 + 1 + (t2 + 1)2 = 9 ¢} 

24t- 12t2 - 4 - -;-:-;;:--:--::-.;--:- = 2 ¢} t 4 + 8t2 
- 12t + 3 = 0. (t2 + 1)2 

·a is easily seen that t = 1 is a root of this polynomial. Al~o 2 + ln 1 + 3 ~ 1 
= 4, sot= 1 is the desired solution. 

13 Review 
CONCEPT CHECK 

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative 

or integral, we can differentiate or integrate each component of the vector funct ion. 

2. The tip of the moving vector r (t) of a continuous vector function traces out a space curve. 

3. The tangent vector to a smooth curve at a point P with pos ition vector r(t) is the vector r ' (t). The tangent line at p ' is the line 

through P parnllel to the tangent vector r ' (t). The unit tangent vector is T (t) = ,::m,. 
4. (a) (a) - (f) See Theorem 13.2.3. 

5. Use Formula 1 3.3.2, or equivalently, 1 3.3.3. 

6. (a) TI1e curvature of a curve is"' = I~~ I where Tis the unit tangent vector. 

I T '(t) I 
(b) K.(t) = . r '(t) 

(c) K.(t) = lr' (t ) X r" (t)l 
[r'(t)[3 

_ if"(x) l · 
(d) K-(x)- [1 + (f'(x))2j3/2 

T' (t) 
7. (a) The unit normal vector: N (t) = IT'(t) l' The binormal vector: B (t) = T (t) x N (t). 

(b) See the discussion preceding Example 7 in Section 13.3. 

8. (a) Ifr(t) is the position vector of the particle on the space curve, the velocity v (t) = r'(t), the speed is given by lv (t )i, 

and the acceleration a (t) = v ' (t) = r" (t). 
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174 D CHAPTER 13 VECTOR FUNCTIONS 

(b) a = a7:T +aN N where aT = v' and aN = 1w 2 . 

9. See the statement of Kepler's Laws on page 892 [ET 868]. 

TRUE-FALSE QUIZ 

1. True. If we reparametrize the curve by replacing u = t3
, we have r(u) = u i + 2u~ + 3uk, which is a line through the origin 

with direction vector i + 2 j + 3 k. 

3. False. The vector function represents a line, but the line does not pass through the origin; the x-component is 0 only for t ;, 0 

which co~esponds to the point {0, 3, 0) not {0, 0, 0). 

d 
5. False. By Formula 5 ofTheorem 13.2.3, -d (u(t) x v(t)] = u '(t ) x v (t) + u (t) x v'(t). . t 

7. False. K- is the magnitude of the rate of change of the unit tangent vector T with respect to arc length s, not with respect tot. 

9. True. At an inflection point where f is twice continuously differentiable we must have !" ( x) = 0, and by Equation 13.3.11, 

the curvature is 0 there. 

11. False. If r(t) is the position of a moving particle at timet and lr(t)l = 1 then the particle lies on the unit circle or the unit 

sphere, but this does not mean that the speed lr'(t)l must be constant. As a counterexample, let r (t) = (t, Jl=t2), then 

r' (t) = ( 1, -t/J1 - t 2 ) and lr(t) l = Jt2 + 1 - t 2 = 1 but lr'(t)l = yf1 + t2 /(1- t 2 ) = 1/~ which is not 

constant. 

13. True. See the discussion preceding Example 7 in Section 13.3. 

EXERCISES 

1. (a) The corresponding parametric equations for the curve are x = t, 

y = cos 1rt, z = sin -rrt. Since y2 + z2 = 1, the curve is contained in a 
I 

circular cylinder with axis the x-axis. Since x = t, the curve is a helix. 

(b) r(t) = t i + cos rij +sin -rrt k => 

r'(t) = i- -rrsin 1rt j + -rrcos -rrt k ~ 

r" ( t) = --rr2 cos 1rt j - 1r
2 siri 7rt k 

X 

3. The projection of the curve C of interSection onto the xy-plane is the circle x 2 + y2 = 16, z = 0. So we can write 

x = 4 cost, y = 4 sin t, 0 S t S 21r. From the equation of the plane, w~ have z = 5 - x = 5 - 4 cos t, so parametric 

equations for Care x = 4 cost, y = 4 sin t, z = 5 - 4 cost, 0 S t S 2-rr, and the corresponding vector function is 

r(t) = 4 cost i + 4 sin t j + (5 - 4 cost) k , 0 S t S 21r. 
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5. f~(t2 i +tcos 1rtj +sin 1rt k ) dt = (!0
1 

t 2 dt) i + (I~ tcos 1rtdt) j +(I; sin 1rtdt) k 
I 

= [~t3 ]~ i + (~sin 1rt]~ - f0
1 ~sin 1rtdt) j +[-~cos 1rt]~ k 

1 • [ 1 t]l . 2 k 1 • 2 • 2 k = ]j l + ;1fCOS1l" 0 J+ ;r ;= 3 1 - ;:lf J+ ;r 

where we integrated by parts in the y-component. 

1. r(t) = ( t 2
, t 3

, t 4) . =? r 1(t) = ( 2t, 3e,4t3
) =? Jr 1 (t) J = J 4t2 + 9t4 + 16t6 and 

. L = J; Jr 1 (t)J dt = J; J4t2 + 9t4 + 16t6 dt. Using Simpson's Rule with f(t) = J4t2 + 9t4 + 16t6 and n = 6 we 

have tlt = 3(i0 = ~ and 

L ~ ';' [f(O) + 4f(~) + 2f{1) + 4Ja) + 2/(2) + 4f(~) + /{3)] 

= i [vo +o +o + 4 . ..j4(~/ + 9 (~)4 + 16(~)6 + 2 . .J4(1)2 + 9{1)4 + 16(1)6 

+ 4. J4G)
2 

+ 9G)
4 

+ 16Gt + 2 . .J4(2)2 + 9(2)4 + 16{2)6 

+4· 4(~)2 +9(~)4 +16(~t+.J4(3)2 +9{3)4+ 16(3)6 ] 
~ 86.631 

9. The angle of intersection of the two curves, 8, is the angle between their respective tangents at the point of intersection. 

For both curves the point {1, 0, 0) occurs when t = 0. 

r W) = - sin t i +cos t j + k =? rHO) = j + k and r 2(t) = i + 2t j + 3t2 k =} r~(O) = i. 

r i {0) · r~ (0) = (j + k ) · i = 0. Therefore, the curves intersect in a right angle, that is, 8 = ~. 

(b) T'(t) = -Ht4 +t2 + 1)- 312 (4t3 +2t) (t2,t, 1) + (t4 + t 2 + 1)-112 (2t, 1, 0) 

- 2t3
- t 2 1 

(t4 + t2 + 1)3/2 (t , t , 1) + (t4 + t2 + 1)1 /2 (2t, 1, 0) 

- ( -2t5
- t3

, - 2t4
- t 2

, - 2t3 
- t) + (2t5 + 2t3 + 2t, t 4 + t 2 + 1, 0) - (t3 + 2t, - t4 + 1, -2t3 - t) 

- (t4 + t2 + 1)3/2 - (t4 + t2 + 1)3/2 

1 Jt6 + 4t4 + 4t2 + t 8 - 2t4 + 1 + 4t6 + 4t4 + t2 JtB + 5t6 + 6t4 + 5t2 + 1 
IT (t)l = (t4 + t2 + 1)3/2 = (t4 + t2 + 1)3/2 

(t 3 + 2t 1 - t 4 - 2t3 - t ) 
N (t) - ' ' 

- Jt!!. + 5t6 + 6t4 + 5t2 + 1 . 

JT 1(t) \ J t!!. + 5t6 + 6t4 + 5t2 + 1 
(c) "'(t) = Jrl(t) l = (t4 + t2 + 1)2 or 

13 I 4 3 II 12 2 d ( ) lv"l 
. y = X , y = X an It X = (1 + (y')2)3/2 

Jt4 + 4t2 + 1 
(t4 + t2 + 1)3/2 

and 
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15. r (t) = (sin2t, t,cos2t) => r '(t) = (2cos2t, 1, -2sin2t) => T (t) = -js (2 cos2t, 1, - 2sin2t) => 

T '(t) = ~ (- 4sin 2t, 0, -4cos 2t) => N (t) = (-sin 2t, 0,- cos2t). SoN = N ('rr) = (0, 0, - 1) and 

B = T x N = -js (-1, 2, 0}. So a normal to the osculating plane is (-1, 2, 0) and an equation is 

- l (x- 0) + 2(y- 1r) + O(z - 1) = 0 or x - 2y + 27r = 0. 

17. r (t) = tlnt i +tj + e-t k , v (t) = r '(t) = (1 + lnt) i + j - e-~ k, 

lv (t)i = J(l + ln t)2 + 12 + (-e-:-t)2 = vf2 +2 ln t + (ln t)2 +e- 2 t, a(t) = v'(t) = t i + e-t k 

19. We set up the axes so that the shot leaves the ath lete's hand 7 ft above the origin. Then we are given r (O) = 7j, 

lv (O)I = 43 ft/ s, and v (O) has direction given by a 45° angle of elevation. Then a unit vector in the direction ofv(O) is 

~(i + j ) => v(O) = ~(i + j ). Assuming air resistance is negligible, the only external force is due to gravity, so .as in 

Example 13.4.5 we have a = - g j where here g ~ 32 ft/s2
. Since v ' (t) = a (t), we integrate, giving v (t) = - gt j + C 

where C = v (O) = ~(i + j ) => v (t) = ~ i + ( ~ - gt) j . Since r '(t) = v (t) we integrate again, SO· 

r(t) = ~t i + ( ~t - ~gt2) j + D. ButD = r (O) = 7j => r (t) = ~t i + ( ~t- ~gt2 + 7)j. 

(a) At 2 seconds, the shot is at r(2) = ~(2) i + ( ~ (2) - ~g(2)2 + 7) j ~ 60.8 i + 3.8j, so the shot is about 3.8 ft. above 

the ground, at a horizontal distance of 60.8 ft from the athlete. 

(b) The shot reaches its maximum height when the vertical component of velocity is 0: ~ - gt = 0 => 

t = ;: ~ 0.95 s. Then r (0.95) ~ 28.9 i + 21.4j , so the maximum height is approximately 21.4 ft. 
v2g . 

(c) The shot hits the ground when the vertical component ofr(t) is 0, so ~t - ~gt2 + 7 = 0 => 

-16t2 + ~t + 7 = 0 => t ~ 2.11 s. r (2.11) ~ 64.2 i - 0.08j , thus the shot lands approximately 64.2 ft from the 

athlete. 

21. (a) Instead of proceeding directly, we use formula 3 ofTheorem 13.2.3: r (t) = t R (t) => 

v = r'(t) = R (t) + t R'(t) = coswt i + sinwtj +t v a. 

(b) Using the same method as in part (a) and starting with v = R (t) + t R '(t), we have 

a= v ' = R '(t) + R '(t) + t R "(t) = 2 R '(t) + t R "(t) = 2 vd + tad. 

(c) Here we have r(t) = e-' coswt i + e- t sin wtj ,; e-t R (t). So, as in parts (a) and (b), 

v = r '(t) = e-t R '(t)- e-t R (t) = e-t[R '(t) - R (t)) => 

a = v' = e-t [R"(t)- R '(t))- e-:t[R '(t) - R (t)) = e-~ [R"(t)- 2 R ' (t) + R (t)J 

Thus, the Coriolis acceleration (the sum of the "extra" terms not involving aa) is -2e-~ v.i + e-t R. 
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23. (a) r (t) = R coswt i + R sin wtj => v = r ' (t ) = -wR sinwt i + wR coswt j , so r = R(coswt i + sinwtj) and 

v = wR(- sinwti + cos wtj). v · r = wR 2
( - coswt sin wt + sinwtcoswt) = 0, so v ..L r . Since r points along a 

radius of the circle, and v ..L r , vis tangent to the circle. Because it is a velocity vector, v points in the direction of motion. 

(b) In (a), we wrote v in the form wR u, where u is the unit vector - sin wt i + cos wtj . Clearly I vi = wR lui = wR. At 

. I I I . d. 2 R,. . T 2·nR 27r speed wR , the part1c e camp etes one revo ut10n, a 1stance 1r m t1me = - R = - . 
w . w 

(c) a = dv = - w2 R coswt i - w2 Rsinwtj = - w2 R(coswt i + sinwt j ), so a = - w2 r. This shows that a is proportional 
dt 

to rand points in the opposite direction (toward the origin). Also, ja j = w2 jr j = w2 R . 

(d) By Newton's Second Law (see Section 13.4), F = ma, so jF j = m jaj = mRw2 = m (~R)
2 

= m ~~2 
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0 PROBLEMS PLUS 

1. (a) The projectile reaches maximum he~ght when 0 = ~~ = ! [(Vo sina)t- ~gt2] = vo sin a - gt; that is, when 

vosina .d ( . )(vosiiJ.a) 1 (vosina)
2 

t = ---an y = vosma --- - -g ---
g g 2 g 

2 ° 2 
Vo sm a Th' . h . 1 'gh . 

2 
. 1s IS t e max1mum 1e1 t attamed when g . 

the projecti le is fired with an angle of elevation a. This maximum height is largest when a = ~ . In that case, sin a = 1 

. . . vfi 
and the maximum he1ght IS-. 

2g 

(b) Let R = vfi /g. We are asked to consider the parabola x2 + 2Ry - R 2 = 0 which can be rewritten as y = - __!._ x2 + !!:. . 
2R 2 

The points on or inside this parabola are those for which - R ~ x ~ Rand 0 ~ y ~ ;~ x2 + ~. When the projectile is 

fired at angle of elevation a, the points ( x, y) along its path satisfy the relations x = ( v0 cos a) t and 

y = (v0 sina)t- tyt2
, whereO ~ t ~ (2v0 sin a)/g(as inExan1ple 13.4.5). Thus 

lxl ~ lvo cos a Cvo ;ina) I= I~ sin 2al ~ I~; I = IRI. This shows that -R ~ x ~ R. 

For t in the specified range, we also have y = t ( vo sin a - ~ gt ) = t gt Cvo ;in a - t) ;::: 0 and 

0 ( )2 , X 9 X g 2 
y = (vosma) --- -- - -- = (tana)x -

2 2 2 
x = 

vo cos a 2 vo cos a v0 cos a . 
1 2 

2R 2 x +(tan a) x. Thus 
cos a 

(
- 1 2 R) -1 2 1 2 ( R 

y- 2Rx + 2 = 2Rcos2 ax + 2Rx + tan a) x- 2 

= ~ ( 1 - _1_) + (tana)x _ R = x
2
(1- sec

2 
a) + 2R{tana) x - R

2 

2R cos2 a 2 2R 

_ -{tan2 a) x2 + 2R (tan a) x - R2 
·_ :- [{tana) x - R]2 

0 - 2R - . 2R ~ 

We have shown that every target that can be hit by the projecti le lies on or inside the parabola y = _ __!._ x 2 + R. 
2R 2 

Now let (a, b) be any point on or inside the parabola y = - 2~ x 2 + ~· Then·-R ~a~ Rand 0 ~ b ~ - 2~ a2 + ~-

We seek an angle a such that (a, b) lies in the path of the projectile; that is, we wish to find an angle a such that 

b = - 2~c~s2 a a
2 
+(tan a) a or equivalently b = ~ (tan2 a ~1- 1)a2 +(tan a) a . Rearranging this equation we get 

;~ tan
2 a- a tan a+(;~+ b) = 0 or a 2 (tana? - 2aR(tana) + (a2 + 2bR) = 0 (*) . This quadratic equation 

for tan a has real solutions exactly when the discriminant is nonnegative. N~w B 2 
- 4AC ;::: 0 <=> 
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(c) 

(-2aR?- 4a2 (a2 + 2bR);:::: 0 <=? 4a2 (R2
- a 2

- 2bR);:::: 0 <=? - a2 - 2bR+ R 2
;:::: 0 <=? 

b:::; 2~ (R2
- a2

) <=? b:::; ;~ a2 + ~- This C?ndition is satisfied since (a, b) is on or inside the parabola 

y ·= - 2~ x2 + ~- It follows that (a, b) lies in the path of the projecti le when tan a satisfies(*), that is, when 

2aR ± J4a2(R2 - a2 - 2bR) R ± ,jR2- 2bR- a2 
tan a = = ----''-------

D 

2a2 a 

If the gun is pointed at a target with height hat a distanceD downrange, then 

tan a = h/ D. When the projectile reaches a distanceD downrange (remember 

we are assuming that it do.esn' t hit the ground first), we have D = x = (vo cos a)t, 

D gD2 

sot= --- andy=(vosina)t-~gt2 = Dtana- 2 2 2 . 
~~Q ~~Q 

Meanwhile, the target, whose x-coprdinate is also D, has fallen from height h to height 

h- tge = D tan a -
2 

{D
2 

2 
. Thus the projectile hits the target. · 

v0 cos a . 

3.(a)a=-gj => v=vo-gt j =2 i -gtj => s=so + 2t i -~gt2j=3.5j +2t i- tgt2 j => 

s = 2t i + (3.5- tgt2
) j . Therefore y = 0 when t = J7l9 seconds. At that instant, the ball is 2 J7l9 r::::: 0.94 ft to the 

right of the table top. Its coordinates (relative to an ori'gin on the floor direct ly under the table's edge) are (0.94, 0). At 

impact, the velocity is v = 2 i - ,f7gj, so the speed is !v i= .J4+79 r::::: 15 ft./s. 

f!_ . dy dy jdt -gt -g J779 - ,j7g ,;rg 
(b) The slope ofthe curve when t = V g.'s dx = dxjdt = 2 = 2 = - 2-. Thus cot B = - 2-

and () r::::: 7.6°. 

(c) From (a), lvl = vl4+7g. So the ball rebounds with speed 0.8 .J4+79 r::::: 12.08 ft/s at angle of inclination 

2 . 2 
90°- () r::::: 82.3886°. By Example 13.4.5, the horizontal distance traveled between bounc~s is d = Vo sm a, where 

g 

v0 r::::: 12.08 ft./s and a~ 82.3886°. Therefore, d ~ 1.197 ft. So the ball strikes the floor at about 

2 J779 + 1.197 ~ 2.13 ft to the right of the table's edge. 

· 5. The trajectory oftbe projectile is given by r (t) = (vcosa)t i + [(v sin a)t- ~gt2] j , so 

v(t) = r '(t) = vcosa i + (vsina- gt) j and 

lv (t)i = J(v cosa)2 + (vsin a- gt)2 = Jv2 - (2vgsin a) t + g2t2 = g2 t 2 - - (sin a) t + -
( 

2v v
2

) 

g g2 

( )

2 2 2 v . v v . 2 
't - - sm a + - - - sm a = g g g2 g2 =g 

. 2 2 

( t- ~sino:) +~cos2 a 
9 g2 
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The projectile hits the ground when (v sina)t- ~gt2 = 0 => t = 2
; sin a, so the distance traveled by the projectile is 

1

(2v/g)sin o 1 (211/g)sin<> 

L(a) = lv(t)l dt = .9 
0 0 

( 
v )

2 
v2 t - - sin a + 2 cos2 a dt 

.9 9 

[

t - (v /g) sin o 
=g 2 

+ [(vl g) cosa]2 ln (t-~sino + 
2 g 

[using Formula 2 I in the Table of lntegrals] 

g [v . = 2 -gsma (~.rna)' + (~ oo.o )' + (~ '"'" )' m ( ~ •ina+ (~ •mo )' + (~=a Y) 
+~sino 

g (~ •ina )' + (~=o )'- (~oooo )' m( -~•ina+ (~•ina )' + (~=o Y)] 
= g_ [~sino · ~+ v

2 

cos2 aln(~ sino+~) +~ sino·~ - v
2 

cos2 a ln(-~ sino+~)] 
2 g g g2 g g g g g2 g g 

v
2 

. + v
2 

2 1n( (vl g)sin a+v/g) v
2 

. + v
2 

2 1 (1+sino) = - stno -cos a = -sma -cos an 
g 2f1 - (vI g) sin a +vI g g 2g 1 - sin a 

We want to maximize L( a) for 0 s; a s; 1r / 2. 

v2 
v

2 
[ 2 1 - sin a 2 cos a . ( 1 + sin a)] L'(a) =-coso+ -

2 
cos a · 

1 
. · . 2 - 2cosa smo ln . 

g g +sma (1-smo) . 1 -sm o 

v
2 

• v
2 

[ 2 . ( 1 + sin a)] = - cos a + -
2 

cos2 a · -- - 2 cos a sm a ln 
1 

. 
g g coso , -sma 

v
2 

v
2 

[ • (l+sina)] v
2 

[ . • (1+ sin a ) ] = - COSO!+- COSO! 1- SlDO! ln 
1 

. = - COSO! 2- SIDQ ln . 
9 g -SlDO! 9 1 -SJDO! , 

L( a ) has critical points for 0 < a < 1r 12 when L' (a) = 0 => 2 - sin a ln ( ~ + s~ a) = 0 [since cos a =1= 0]. 
- SIDQ 

Solving by graphing (or using a CAS) gives a~ 0.9855. Compare values at the critical point and the endpoints: 

L(O) = 0, L( 1r 12) = v2 I g, and £(0.9855) ~ 1.20v2 I g. Thus the distance traveled by the projectile is maximized 

for a ~ 0.9855 or ~ 56°. 

7. We can write the vector equation as r (t) = ·at2 + bt + c where a= (a1, a2 , a a}, b = (b1 , b2 , ba }, and c = (c1, c2, c3) . 

Then r ' (t) = 2t a+ b which says that each tangent vector is the sum of a scalar multiple of a and the vector b . Thus the 

tangent vectors are all parallel to the plane determined by a and b so the curve must be parallel to this plane. [Here we assume 

that a and bare nonparallel. Otherwise the tangent vectors are all parallel and the curve lies along a single line.] A normal 
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182 0 CHAPTER 13 PROBLEMS PLUS 

vector for the plane is a x b = (a2b3- a3~, a3b1 - a1b3, a1b2 - a2b1). The point (c1. c2, c3) lies on the plane (when 

t = 0), so an equation of the plane is 

(a2b3- a31h)(x- c1) + (a3b1 - a1 ~)(y - c2) + (al~ - a2bl)(z - c3) = 0 

or 

© 2012 Cengoge Learning. All Rights Reserved. May nol be sconncd, copied, or duplicated, or posted ton pub licly accessible wcbsilc, in whole or in p.vt. 



14 0 PARTIAL DERIVATIVES 

14.1 Functions of Several Variables 

1. (a) From Table 1, f( - 15, 40) = -27, which means that if the temperature is - 15°C and the wind speed is 40 km/ h, then the 

air would feel equivalent to approximately -27°C without wind. 

(b) The question is asking: when the temperature is -2!tC, what wind speed gives a wind-chill index of - 30°C? From 

Table 1, the speed is 20 km/h. 

(c) The question is asking: when the wind speed is 20 km/ h, what tem·perature gives a wind-chill index of -49°C? From 

Table I, the temperature is -35°C. 

(d) The function W = j( -5, v) means that we fix T at -5 and allow v to vary, resulting in a function of one variable. In 

other wor~s, the function gives wind-chill index values ~or different wind speeds when the temperature is -5° C. Fro111 

Table 1 (look at the row corresponding toT = - 5), the function decreases and appears to approach a constant value as v 

increases. 

(e)_The function W = j(T, 50) means that we fix vat 50 and allow T to vary, again giving a function of one variable. In 

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km/h . From 

Table 1 (look at the column corresponding to v = 50), the function increases almost linearly as T increases. 

3. P(120, 20) = 1.47(120)0
'
65 (20)0

·
35 ~ 94.2, so when the manufacturer invests $20 million in capital and 120,000 hours of 

labor are completed yearly, the monetary value of the production is about $94.2 million. 

5. (a) !(160, 70) = 0.1091(160)0
.4

25 (70)0
·
725 ~ 20.5, which means that the surface area of a person 70 inches (5 feet 10 

inches) tall who weighs 160 pounds is approximately 20.5 square feet. 

(b) Answers will vary depending on the height and weight of the reader. 

7. (a). According to Table 4, f( 4·0, 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours, 

it will create waves with estimated heights of25 feet. 

' 
(b) h = f(30, t) means we fix vat 30 and allow t to vary, resulting in a function of one variable: Thus here, h = f(30, t) 

gives the wave heights produced by 30-knot winds blowing for t.hours. From the table (look at the row corresponding to 

v = 30), the function increases but at a declining rate as t increases. In fact, the function values appear to be approaching a 

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet. 

(c) h = f(v , 30) means we fix tat 30, again giving a function of one variable. So, h = f(v, 30) gives the wave heights 

produced by winds of speed "! blowing for 30 hours. From the table (look at the column corresponding to t = 30), the 

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting 

30 hours) always create higher waves. 
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9. (a) g(2, - 1) = cos(2 + 2( - 1)) = cos(O) = 1 

(b) x + 2y is defined for all choices of values for x andy and the cosine function is defined for all input values, so the domain 

of g is JR2
. 

·(c) The range of the cosine function is [- 1, 1] and x + 2y generates all possible input values for the cosine function, so the 

range ofcos(x + 2y) is (-1, 1]. 

(b) ft, .,fij, vz are defined o~ly when x ~ 0, y ~ 0, z ~ 0, and ln(4 - x 2
- y2

- z 2
) is defined when 

4 - x 2 
- y 2 

- z2 > 0 <=} x2 + il + z 2 < 4, thus the domain is 

{ ( x, y, z) 1 x 2 + y2 + z 2 < 4, x ~ 0, y ~ 0, z ~ 0} , the portion of the interior of a sphere of radius 2, centered at the 

origin, that is in the first octant. 

13. ,.f2X=Y is defined only when 2x - y ~ O,or y::; 2x. 

So the domain off is { (x, y) I y ::; 2x }. 

17. J1 - x 2 is defined only when 1 - x2 ~ 0, or 

x2 
::; 1 ¢:} -1 ::; x ::; .1, and \./1 - y2 is defined 

only when 1 - y2 ~ 0, or y2 
::; 1 -¢* -1 ::; y::; 1. 

Thus the domain off is 

{(x,y)l-1::;x::;1, - 1 ::; y ::; 1}. 

y 

1 

-1 0 I X 

- I 

15. lll(9- x2
- 9y2

) is defined only when 

9- x 2
- 9y2 > 0, or ix2 + y 2 < 1. So the domain off 

is { (x, y) j ix2 + y2 < 1 }, the interior of an ellipse. 

y 

, ,.,~,..-- - - - ---.......... , 

-----,,~ X 

19. Jy - x 2 is defi~ed only when y - x 2 ~ 0, or y ~ x 2
. 

ln addition, f is not defined if 1 - x 2 = 0 <=} 

x = ±1. Thus the domain off is 

{(x, y) I y ~ x2
, x "I ±1}. 
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21 . We need 1 - x2 - y2 - z 2 ~ 0 or x 2 + y2 + z 2 ~ 1, 

soD= { (x, y , z) I x 2 + y 2 + z2 ~ 1} (the points inside 

or on the sphere of radius 1, center the origin). 

25. z = 10 - 4x - Sy or 4x + Sy + z = 10, a plane with 

intercepts 2.5, 2, and 10. 

(0, 0, 10) 

X 

29. z = 9 - x 2
- 9y2

, an ell iptic paraboloid opening 

downward with vertex at (0, 0, 9) . 

.r 

SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 0 185 

23. z = 1 + y, a plane which intersects the yz-plane in the 

line z = 1 + y, x = 0. The portion of this plane for 

x ~ 0, z ~ 0 is shown. 

X y 

27. z = y 2 + 1, a parabolic cylinder 

31. z = )4- 4x2 - y2 so 4x2 + y2 + z 2 = 4 or 

y2 z2 
x2 + 4 + 4 = 1 and z ~ 0, the top half of an 

ellipsoid . 

33. The point ( - 3, 3) lies between the level curves with z-values 50 and 60. Since the point is a little closer to the level curve with 

z = 60, we estimate that f( -3, 3) ~56. The point (3, -2) appears to be just about halfway between the level curves with 

z-values 30 and 40, so we estimate !(3, - 2) ~ 35. The graph rises as we approach the origin, gradually from above, steeply 

from below. 
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186 0 CHAPTER 14 PARTIAL DERIVATIVES 

35. The point (160, 10), corresponding to day 160 and a depth of 10m, lies between the isotherrnals with temperature values 

of8 and 12°C. Since the point appears to be located about three-fourths the distance from the 8°C isothermal to the l2°C 

isothermal, we estimate the temperature at. that p~int to be approximately 11° C. The point ( 180, 5) lies betwe~n the 16 and 

20°C isothermals, very close to the 20°C level curve, so we estimate the temperature there to be about 19.5°C. 

37. Near A, the level curves are very close together, indicating that the terrain is quite steep. At B, the level curves are much 

farther apart, so we would expect the terrain to be much tess steep than near A, perhaps almost flat. 

39. 

X 
y 

43. The level curves ~re (y - 2x) 2 = k or y = 2x ± ..Jk, 
k ~ 0, a fami ly of pairs of parallel lines. 

432 1 0 1234 

47. The level curves are ye~ = k or y = ke-x, a family of 

exponential curves. 

0 
X 

41. 
5 

X 

45. The level curves are vfx + y = k or y = -vlx + k, a' 

family of vertical translations of the graph of the root 

function y = -vx. 
y 

2 

0 

-1 

-2 

49. The level curves are J y2 - x 2 = k or y2 
- x2 = k2

, 

k ~ 0. When k = 0 the level curve is the pair of lines 

y = ±x. Fork > 0, the level curves are hyperbolas 

with axis the y-axis. 

@ 2012 Ccngnge Learning. All Rights Reserved. Mny not be scanned, copied, or duplicalcd, or posted to .o. publicly accessible website, in whole or in pan. 



SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 0 187 

51 . The contour map consists of the level curves k = x 2 + 9y2
, a family of 

ellipses with major axis. the x -axis. (Or, if k = 0, the origin.) 

The graph of f(x, y) is the surface z = x 2 + 9y2
, an elliptic paraboloid. 

X 

If we visualize lifting each eUipse k = x2 + 9y2 of the contour map to the plane 

z = k, we have horizontal traces that indicate the shape of the graph of f . 

53. The isothermals arc given by k = 100/(1 + x 2 + 2y2
) or 

x2 + 2y2 = (100- k)/k [0 < k ~ 100], a family of ellipses. 

55. f(x , y) = xy2
- x3 

X 

The traces parallel to the yz-plane (such as the left-front trace in the graph above) are parabolas; those parallel to the xz-plane 

(such as the right-front trace) are cubic curves . The surface is called a monkey saddle because a monkey sitting on the surface 

near the origin has places fo r both legs and tail to res~. 

-4 4 

X 
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59. z = sin(xy) (a) C (b) ll 

Reasons: This function is periodic in both x andy, and the function is the same when x is interchanged withy, so its graph is 

symmetric about the plane y = x. ln addition, the function is 0 along tl1e x- andy-axes. These conditions are satisfied only by 

Can~ II. 

61. z = sin(x- y) (a) F (b) 1 

Reasons: This function is periodic in both X andy but is constant along the lines y = X + k, a condition satisfied only 

by F and I . 

(a) B (b) VI 

Reasons: This function is 0 a long the lines x = ±1 andy = ±1. The only contour map in which this could occur is VI. Also 

note that the trace in the x z-plane is the parabola z = 1 - x 2 and the trace in the yz-plane is the parabola z = 1 - y2
, so the 

graph is B. 

65. k = x + 3y + 5z is a family of parallel plane$ with normal vector (1, 3, 5). 

67. Equations for the level surfaces are k = y2 + z 2
. For k > 0, we have a family of circular cyl inders with axis the x-axis and 

radius ,fk. When k = 0 the level surface is the x-axis. (fhere are no level surfaces fork < 0.) 

69. (a) The graph of g is 'the graph off shifted upward 2 units. 

(~)The graph of g is the graph off stretched vertically by a factor of2. 

(c) The graph of g i~ the graph off reflected about the xy-plane. 

(d) The graph of g(x, y) = - f(x , y) + 2 is the graph off reflected about the xy-plane and then shifted upward 2 units. 

71. f(x,y) = 3x - x4
- 4y2

- lOxy 

y 
Three-dimensional view 

20r-----------------. 

10 

0 

y 
Front view 

It does appear that tlle function bas a maximum value, at the higher of the two "hilltops." From the front view graph, the 

maximum value appears to be approximately 15. Bolli hilltop~ could be considered local maximum points, as the values off 

there are larger than at the neighboring points. There doe~ not appear to be any local minimum point; although tlle valley sh(\pe 

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values. 
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73. 10-------------
5 

0 

- 5 

y 

SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES D 189 

x+y f ( x, y) = - 2--2 • As both x and y become large, the function values 
X +y 

appear to approach 0, regardless of which direction is considered. As 

(x, y) approaches the ~rigin, the graph exhibits asymptotic behavior. 

From some directions, f(x , y)--+ oo, while in others f(x , y) --+ -oo. 

(These are the vertical spikes visible in the graph.) If the graph is 

examined carefully, however, one can see that f(x, y) approaches 0 

along the line y = - x. 

75. f(x, y) = ecx
2
+v

2
• First, if c = 0, the graph is the cylindrical surface 

z = eY
2 

(whose level curves are parallel lines). When c > 0, the vertical trace 

above they-axis remains fixed whi.le the sides of the surface in the x -direction 

"curl" upward, giving the graph a shape resembling an elliptic paraboloid. The 

level curves of the surface are ellipses centered at the origin. 

z 

For 0 < c < 1, the ellipses have major axis the x -axis and the eccentricity increases as c --+ 0. 

y 

c = 0.5 (level curves in increments of 1) 

For c = 1 the level curves are circles centered at the origin. 

c = 1 (level curves in increments of 1) 

-1.2 

-1.2 

c=O 
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When c > 1, the level curves are ellipses with major axis they-axis, and the eccentricity increases as c increases. 

-1.2 

c = 2 (level curves in increments of 4) 

For values of c < 0, the sides of the surface in the x-direction curl downward and approach the xy-plane (while the vertical 

trace x = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0, 0, 1). The level curves consist of 

a family of hyperbolas. As c decreases, the surface becomes flatter in the x -direction and the surface's approach to the curve in 

the trace x = 0 becomes steeper, as the graphs demonstrate. 

-1.2 

c = - 0.5 (level curves in increments of0.25) 

-1.2 

c = -2 (level curves in increments of0.25) 

77. z = x 2 + y 2 + =Y· When c < -2, the surface intersects the plane z = k I= 0 in a hyperbola. (See the following graph.) 

It intersects the plane x =yin the parabola z = (2 + c)x2 , and the plane x = - y in the parabola z = (2 - c)x2
. These 

parabolas open in opposite directions, so the surface is a hyperbolic paraboloid. 

When c = - 2 the surface is z = x 2 + y2
- 2xy = (x- y) 2

. So the surface is constant a long each line x- y = k . That 

is, the surface is a cylinder with axis x - y = 0, z = 0. The shape of the cylinder is determined by its intersection with the 

plane x + y = 0, where z = 4x2
, and hence the cylinder is parabolic with mini.ma ofO on the line y = x. 
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c = - 5, z = 2 c = - 10 c= - 2 

When -2 < c:::; 0, z ~ 0 for all x andy. Ifx andy have the same sign, then 

x2 + y2 + cxy ~ x 2 + 1i - 2xy = (x- y)2 ~ 0. IJthey have opposite signs, then cxy ~ 0. The intersection with the 

surface and the plane z = k > 0 is an ellipse (see graph below). The intersection with the s urface and the planes x = 0 and 

y = 0 are parabolas z = y 2 and z = x 2 respectively, so the surface is an elliptic paraboloid. 

When c > 0 the graphs have the same shape, but are reflected in the plane x = 0, because 

x2 + y 2 + cxy = ( - x)2 + y2 + (- c)( - x)y. That is, the value of z is the same for c at (x, y) as it is for-cat ( -x, y). 

c = -1, z = 2' c = O c = 10 

So the surface is an elliptic paraboloid for 0 < c < 2, a parabolic cylinder for c = 2, and a-hyperbolic paraboloid for c > 2. 

79. (a) P = bLo: K 1- o: =? p = bL"' J<- <> 
K 

p ( L ) "' ::} J( = bJ( 

ln : = lnb+ aln(~) 
(b) We list the values for ln(L/ K) and ln(P / K) for the years 1899-1922. (Historically, these values were rounded to 

2 decimal places.) 

Year x = ln(L( K ) y = ln(P/ I<.) Year X = ln(L/K) y = ln(P/ K) 

1899 0 0 19 11 - 0.38 -0.34 
1900 - 0.02 -0.06 1912 - 0.38 - 0.24 
1901 -0.04 - 0.02 19 13 - 0.41 - 0.25 
1902 -0.04 0 19 14 -0.47 - 0.37 
1903 -0.07 - 0.05 1915 -0.53 - 0.34 
1904 -0.13 - 0.12 1916 -0.49 - 0.28 
1905 - 0.18 - 0.04 1917 -0.53 - 0.39 
1906 - 0.20 - 0.07 1918 - 0.60 -0.50 
1907 -0.23 - 0.15 1919 - 0.68 -0.57 
1908 - 0.41 -0.38 1920 - 0.74 - 0.57 
1909 - 0.33 - 0.24 1921 - 1.05 - 0.85 
1910 -0.35 -0.27 1922 - 0.98 -0.59 
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After entering the (x, y) pairs into a calculator or CAS, the resulting least squares regression line through the points is 

approximately y = 0.75136x + 0.01053, which we round toy= 0. 75x + 0.01. 

(c) Comparing the regression line from part (b) to the equation y = ln b +ax with x = ln(L/ I<) andy= ln(P/ K), we have 

a= 0.75 and lnb = 0.01 => b = e0
·
0 1 ~ 1.01. Thus, the Cobb-Douglas production function is 

p = bL"' ](1-a = 1.01£0.75 ](0.25. 

14.2 Limits and Continuity 

1. In general, we can't say anything about /(3, 1) I lim f(x, y) = 6 means that the values of f(x, y) approach 6 as 
{x,y)-•(3,1) · 

(x, y) approaches, but is not equal to, (3, 1). Iff is continuous, we know that lim f(x, y) = f(a, b), so 
(x,y)--<(a,b) 

lim f(x, y) = f(3, 1) = 6. 
(x,y)-(3,1) . 

3. We make a table of values of 

x2y3 + x3y2 _ 5 
f(x,y) = 

2 
· fora set 

- xy 

of (x, y) points near the origin. 

l>z 
-0.2 

-0.1 

-0.05 

0 

0.05 

0.1 

0.2 

- 0.2 -0.1 

-2.551 -2.525 

-2.525 -2.513 

-2.513 -2.506 

-2.500 -2.500 

-2.488 - 2.494 

-2.475 - 2.488 

- 2.451 -2A75 

- 0.05 0 0.05 0.1 0.2 

-2.5 13 -2.500 -2.488 -2.475 -2.451 

- 2.506 -2.500 -2.494 -2.488 - 2.475 

-2.503 -2.500 -2.497 -2.494 -2.488 

- 2.500 -2.500 -2.500 - 2.500 

- 2.497 -2.500 -2.503 - 2.506 - 2.513 

- 2.494 -2.500 -2.506 -2.513 - 2.525 

-2.488 - 2.500 - 2.513 - 2.525 - 2.551 

As the table shows, the values off ( x, y) seem to approach - 2.5 as ( x, y) approaches the origin from a variety of different 

directions. This suggests that lim f(x, y) = -2.5. Since f is a rational function, it is continuous on its domain. f is 
(:t:,!J) - {0,0) 

fi d ( ) do b o o bl' I th l' !( ) 0203 + 0302 - 5 5 'fy' de ne at 0, 0 , so we can use 1rect su stltutwn to esta IS 1 at 1m x, y = 
2 0 0 

= --
2

, ven mg 
(:r. ,.y)-->{0,0) - 0 

our guess. 

5. f(x, y) = 5x3 - x2 y2 is a polynomial, and hence continuous, so ' lim f(x, y) = f(l, 2) = 5{1)3
- {1)2 (2)2 = 1. 

(x,y) -{1 ,2) 

7 f( ) . 4 - xy . . 1 .., . d h . . d . . x, y = 
2 2 

tS a ratwna ;unctiOn an encc contmuous on tts omam. 
X +3y . 

(2, 1) is in the domain off, so f is continuous there and lim f(x, y) = !(2, 1) = (~)~ (2~~~~ 2 {x,y) --< (2,1) + 
2 

7 

9. f(x, y) = (x4
- 4y2 )/(x2 + 2y2). First approach (0, 0) along the x-axis. Then.f(x, 0) = x4 /x2 = x2 for x =f. 0, so 

f(x, y) --+ 0. Now approach (0, 0) along they-axis. For y =f. 0, f(O, y) = -4y2 /2y2 = -2, so f(x , y)--+ -2. Since f has 

two different limits along two different lines, the limit does not exist. 
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11. j(x , y) = (y2 sin2 x)j(x4 + y4
). On the x -axis, f(x, 0) = 0 for x '# 0, so f(x, y) --+ 0 as (x, y) --+ (0, 0) along the 

. x
2

sin
2

x sin
2

x 1 ( sinx)
2 

x -axis. Approaching (0, 0) along the hne y = x, f(x, x) = x4 + x4 = 
2

x2 = 2 --;-- for x :/: 0 and 

lim sin x = 1, so f(x, y)--+ ~·Since f has two different limits along two different lines, the limit does not exist. 
:c- o x · · 

13. f(x, y) = ~· We can see that the limit along any line through (0, 0) is 0, as well as along other paths through 
xz +yz 

(0, O) such as x = y2 andy= x2
. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our 

assertion. 0 ~ I~~~ lxl since lvl ~ )x2 + y2
, and lxl --+ 0 as (x, y)--+ (0, 0). So lim f(x, y) = o: 

x2 + y2 . (x,y)-(o,o) 

x2yeY 
15. Let f(x, y) = 

4 2
. Then f(x, 0) = 0 for x '# 0, so f(x, y) --+ 0 as (x , y)--+ (0, 0) along the x -axis. Approaching 

X + 4y 

2 2 ::r2 4 ::c2 a:2 

(0, 0) along they-axis or the line y = x also gives a limit ofO. But f (x, x 2
) = x:: 4tx2 )2 = x

5
: 4 = T for x '# 0, so 

f(x , y) -+ e0 /5 = t as (x,y)--+ (0, 0) along theparabola y = x2 
. .Thus the limit doesn' t exist. 

19. eY
2 

is a composition of continuous functions and hence continuous. xz is a continl.!ous function and tan t is continuous for 

t '# ~ + mr (nan integer), so the composition tan(a<z ) is continuous for xz '# ~ + mr. Thus the product 

f(x , y, z ) = ev~ tan{xz) is a continuous function for x z '# ~ + m r. Ifx = 1r and z = i then xz :j: ~ + nw, so 

lim f(x, y, z ) = f (w, 0, 1/3) = e02 
tan(w · 1/ 3) = 1 · tan{w / 3) = .;3. 

(:r:,y ,z)- (,..,0 ,1/ 3) 

xy + yz2 + xz
2 

2 · 21. f(x, y, z) = 
2 2 4 

. Then f(x, 0, 0) = 0/x = 0 for x '# 0, so as (x, y, z) --+ {0, 0, 0) along the x-ax1s, 
x +y +z 

23. 

f(x, y, z) --+ 0. But f(x , x, 0) = x2 /(2x2
) = t for x '# 0, so as {x, y, z) --+ {0, 0, 0) along the line y = x, z = 0, 

f(x,y,z) --+ ~· Thus the limitdoesn'texist. 

0.5 

y 

From the ridges on the graph, we see that as (x, y) --+ (0, 0) along the 

lines under the two ridges, f(x, y) approaches different values. So the 

limit does not exist. 
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25. h(x , y) = g(f(x, y)) = (2x + 3y - 6)2 + y'2x + 3y - 6. Since f is a. polynomial, it is continuo~s on JR2 and g· is 

continuous on its domain { t I t ;::: 0}. Thus h is continuous on its domain. 

27. 

D = {(x, y) I 2x + 3y- 6;::: 0} = { (x, y) I y;::: -~x + 2}, which consists of all points on or above the line y = -~x + 2. 

3 

2 

z 1 

0 

-1 

2 

From the graph, it appears that f is discontinuous along the line y = x. 

If we consider f(x, y) = e 1/(a:-y) as a composition offun.ctions, 

g(x, y) = 1/(x- y) is a rational function and therefore continuous except 

where x- y = 0 =} y = x. Since the function h(t) = et is continuous 

everywhere, the composition h(g(x,y)) = e11(x-v) = f(x,y) is 

continuous except along the line y = x, as we suspected. 

29. The functions xy and 1 + ex-v are continuous everywhere, and 1 + ex- v is never zero, so F(x, y) = xy is continuous 
. 1 + ex-y 

on its domain JR2
. 

l +x2 +y2 
31. F(x, y) = 

2 2 
is a rational function and thus is continuous on its domain 

1 - x -y 

33. G(x, y) = ln(x2 + y2
- 4) = g(f(x, y)) where f(x, y) = x2 + y2

- 4, continuous on ]~_2, and g(t) = In t, continuous on its 

domain {t ['t > 0}. Thus G is continuous on its domain { (x,_y) I x2 + y2
- 4 > 0} = { (x , y ) I x2 + y2 > 4 }, the_ exterior 

ofthe circle x2 + y 2 = 4. 

35. f(x, y, z ) = h(g(x, y, z )) where g(x, y , z) = x2 + y2 + z2
, a polynomial that is continuous 

everywhere, and h(t) = arcsint, continuous on [- 1, 1). Thus f is continuous on its domain 

{(x,y, z) l-1 S x2 + y2 + z2 S 1} = {(x,y,z)! x 2 + y2 + z 2 S 1 }, so f is continuous on the unit ball. 

if (x , y) =I= (0, 0) 

if (x,y) = (0,0) 

The first piece off is a rational function defined everywhere except at the 

origin, so f is continu~us on JR2 except possibly at the origin. Since x 2 s 2x2 + y2
, we have jx2y3

/ (2x2 + y2
) I. s jy3 j. We 

. 2 3 

know that jy3 
\ --+ 0 as (x, y) --+ (0, 0). So, by the Squeeze Theorem, lim f(x, y) = lim 

2 
~ y 2 = 0. 

(a; ,y)-(0,0) (x ,y)- (0,0) X + Y 

But f(O, 0) = 1, so f is discontinuous at (0, 0). Therefore, f is continuous on the set { (x, y) I (x, y) =/= (0, 0) }. 

39 lim- x
3 + y3 

1. (r cos 8)3 + (1' sin8)3 lim ( 3 8 . 3 B) 
0 . - -- = tm = r· cos + rsm = 

( x ,y)-(0,0) X 2 -f- y2 r-->O+ 1'2 r~o+ 

. 41. lim 
(a;,y)--> (0,0) 

-x2 - y 2 1 e -
x2 +y2 

2 
lim e- r ( - 2r·) 

r - o+ 2r 

= lim - e- r
2 

= - e0 = - 1 
r·-o+ 

[using !'Hospital's Rule] 
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{ 

sin(xy) 

43. f( x, y) = 
1 

xy 
if (x, y) :f. (0, 0) 

if (x, y) = (0, 0) 

From the graph, it appears that f is continuous everywhere. We know 

xy is continuous on R2 .and sin t is continuous everywhere, so 

( ) 
. R2 d sin(:cy) . . R2 sin xy is contmuous on an --- IS contmuous on 

x y 

SECTION 14.3 PARTIAL DERIVATIVES 0 195 

-1 

except possibly where x y = 0. To show that f is continuous at those points, consider any point (a, b) in R2 where ab = 0. 

Because xy is continuous, xy --+ ab == 6 as {x, y ) --+ (a, b). If we lett= xy , then t--+ 0 as (x, y) --+ (a, b) and 

lim sin(xy). = Jim sin(t) = l by Equation 2.4.2 [ET 3.3.2). Thus lim f (x, y) = f(a , b) and f is continuous 
(x,y)-(a,b) x y t-o t (:z:,y)-(a,b) 

on R 2
• 

45. since Jx - aJ2 = lxl2 + Jal2
. - 2JxJ ial cos O ~ Jxl2 + Jal2 - 2Jx.JJal = (lxJ -Ial)2

, we have llxl - lall $ lx- aJ. Let 

t > 0 be given and set o = t. Then ifO < lx - al < o, llxJ- IaJI $ Jx - aJ < o = t . Hence limx-a Jxl = Jal and 

f (x) = Jxl is continuous on R". 

14.3 Partial Derivatives 

1. (a) 8T I 8x represents the rate of change ofT when we fix y and t and consider T as a function of the single variable x, which 

describes how quickly the temperature changes when longitude changes but latitude and time are constant. 8T 1 8y 

represents the rate of change of T when we fix x and t and consider T as a function of.y, which describes how quickly the 

temperature changes when latitude changes but longitude and time are constant. 8T I 8t represents the rate of change ofT 

when we fix x andy and consider T as a function oft , which describes how quickly the temperature changes over time for 

a constant longitude and latitude. 

(b) f .,(158, 21, 9t represents the rate of change of temperature at longitude 158°W, latitude 21 °N at 9:00AM when only 

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air 

temperature, so we would expect .f:r: (158, 21, 9) to be positive. / 11 (158, 21 , 9) represents the rate of change oftemperature 

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north, 

increasing latitude results in a decreased air temperature, so we would expect / 11 (158, 21, 9) to be negative. ft(158 , 21, 9) 

represents the rate of change of temperature at the same time and location when onJy time varies. Since typically air 

temperature increases from the morning to the afternoon as the sun warms it, we would expect f t(158, 21, 9) to be 

positive. 

() fini . 4 f ( 15 30) lim f(- 15 + h,30) - f(- 15,30) h' h . b 'd . h 3. a By De tlon , T - , = h , w 1c we can approx1mate y cons1 ermg = 5 
h-0 

and h = -5 and using the va lues given in the table: 
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!7'(-15 30) ~ f (-10, 30) - f (- 15, 30) = - 20 - (- 26) = ~ = 1 2 
' 5 5 5 . ' 

" f{ - 20, 30)- f (-15,30) - 33 - {- 26) - 7 
h( - 10, 30) ~ , _

5 
= _

5 
. = _

5 
= 1.4. Averaging these values, we estimate 

fr( -15, 30) to be approximately 1.3. Thus, when tl1e actual temperature is - 15°C and the wind speed is 30 km/ h, the 

apparent temperature rises by about 1.3°C for every degree iliat the actual temperature rises. 

S. .1 I f ( 15 30) 
1
. f ( - 15, 30 +h) - f( -15, 30) . . 

tml ar y, v - , = 1m h wh1ch we can approxunate by considering h = 10 
l• - 0 

and h = - lO: f .., (- 15, 30) ~ f (- 15,40) - f( - 15, 30) = - 27 - (-26) = -
10

1 = - 0.1, 
10 10 

f( -15 20)-f(- 15 30) - 24 - (-26) 2 . 
f v{-15, 30) ~ ' _

10 
' = _

10 
= _

10 
= - 0.2. Averaging these values, we estimate 

f ..,( - 15, 30) to be appr~ximately - 0.15. Thus, when the actual temperature is - 15°C and ilie wind speed is 30 km/ h, ilie 

apparent temperature decreases by about 0.15°C for every km/ h that the wind speed increases. 

(b) For a fixed wind speed v, the values of the wind-chill index W increase as temperature T increases (look at a column of 

the table), so a; is positive. For a fixed temperature 1', the values of W decrease (or remain constant) as v increases 

(look at a row of the table), so ~: is negative (or perhaps 0). 

(c) For fixed values ofT , the function values f (T , v) appear to become constant (or nearly constant) as v increases, so the 

corresponding rate of change is 0 or near 0 as v increases. This suggests that lim ( aw I ov) = 0. 
V-> 00 

5. (a) If we start at (1, 2) and mo~e in the positive x-direction, the graph off increases. Thus f ,(1, 2) is positive. 

(b) If we start at (1, 2) and move in the positive y-direction, tbe graph off decreases . Thus fv (1, 2) is negative. 

7. (a) f zx = g, (!,), so f xx is the rate of change of f , in tl1e x -direction. fx is negative at ( - 1, 2) and if we move in the 

positive x -direction, the surface becomes less steep. Thus the values of f., are increasing and !:ex( - 1, 2) is positive. 

(b) f 1111 is the rate of change of f 11 in tlle y-direction. / 11 is negative at ( - 1, 2) and if we move in the positive y-d.irection, the 

surface becomes steeper. Thus the values of f 11 are decreasing, and / 1111 ( - 1, 2) is negative. 

9. F irst of all, if we start at the point (3, - 3) and move in the positive y-direction, we see that both b and c decrease, while a 

increases. Both b and c have a low point at about (3, - 1.5), while a is 0 at this point. So a is defi nite ly the graph of j 11 , and 

one of b and c is the graph off . To see which is which, we start at the point ( - 3, - 1.5) and move in the positive x-direction. 

b traces out a line with negative s lope, while c traces out a parabola opening downward. This tells us that b is tlle x-derivative 

of c. Soc is the graph of f, b is the, graph of f ,, and a is tbe graph of f 11• 
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11. f(x, y) = 16 - 4x2
- y2 => f ,., (x , y) = - 8x and fv(x , y) = -2y => f ,., (1, 2) = - 8 and fv (1, 2) = - 4. The graph 

off is the paraboloid z = 16 - 4x2 
- y2 and the vertical plane y = 2 intersects it in the parabola z = 12 - 4x2 , y = 2 

(the curve C1 in the first figure). The slope of the tangent line 

to this parabola at (1, 2, 8) is f x(1, 2) = - 8. Similarly the 

plane x = 1 intersects the paraboloid in the parabola 

z ~ 12 - y 2
, X = 1 (the curve C2 in the second figure) and 

the slope of the tangent line at (1 , 2, 8) is f v(1, 2) = - 4. 
JC 

20 

0 

- 20 

X 

2 

2 

Note that traces off in planes parallel to·the xz-plane. are parabolas which open downwru:d for y < 0 and upward for y > O, 

and the traces of ! r:: in these p lanes are straight lines, which have negative slopes for y < 0 and positive slopes for y > 0. The 

traces off in planes parallel to the yz-plane are cubi_c curves, and the traces of fu in these planes are parabolas. 

15. f(x, y) = y 5 
...:.. 3xy => f x(x, y) = 0 - 3y = - 3y, / y(x, y) = 5y4

- 3x 

19. z = (2x + 3y)10 => aaz = 10{2a: + 3y)0 
0 2 = 20{2x + 3y)9 , aaz = 10(2x + 3y)0 

0 3 = 30(2x + 3y)0 
X y . 

21. f(x , y) = x f y = x y- 1 => fx( x, y ) = y - 1 = 1/ y, fv (x , y ) = -xy-2 = - x / y2 

ax+ by f - (x • ) = (ex + dy )(a) - (ax+ by)(c) = (ad ·- bc)y ' 23· f (x,y) = ex +dy => - , y (cx +dy)2 (ex + dy)2 

f (x 
1

) = (ex+ dy)(b} - (ax+ by)(d} = (be - ad)x 
Y ' Y (ex+ dy) 2 (ex + dy} 2 

© 201 2 Ccngnge Lcwning.. All Rights R(.SCn•..:U. M:ly not be scanned. copied. or duplic.olc:d. or posted to a publicly acc::t ssiblc website, in whole or in part. 



198 D CHAPTER 14 PARTIAL DERIVATIVES 

25. g(u,v) = (u2v- v3
)

5 =? gu(u,v) = 5(u2v - v3
)
4 

• 2uv = 10u·u(u2v - v3
)\ 

gu(u, v) = 5(u2v- v3 ) 4 (u2 - 3v2 ) = 5(u2
- 3v2 )(u2v- v3

)
4 

. ' 

29. F(x,y) = l " cos(et)dt =? Fx(x,y)= :xl" cos (e1
) dt=cos(e"' ) by theFundamentaiTheoremofCalculus, Partl; 

0 1"' . t 0 [ (
11 

. t ] 0 rv F11(x,y) = o·y 
11 

cos(e) dt = oy - I. cos(e) dt = - oy f .. cos(et) dt = - cos(e11
). 

33. w = ln(x + 2y + 3z) 
ow 1 ow 2 ow 3 

=> ox = x + 2y + 3z' oy = x + 2y + 3z' oz = x + 2y + 3z 

35. u = xysin-~(yz) => 

ou 1 xy2 

- = xy . (y) = --;:::.:=:::::::::==::: 
az J 1- (yz)2 J 1- y2z2 

37. h(x, y, z, t) = x2 y cos(z/t) => h.,(x; y, z, t) = 2xy cos(z/t), h11 (x, y, z, t) = x2 cos(z/t), 

hz(x, y, z, t) = -x2 y sin(z/t)(1/ t) = ( - x2 y/t) sin(z/t), ht(x, y, z, t) = -x2 y sin(z/t)( -zC2
) = (x2 yz/t2

) sin.(z/t) 

39 V 2 2 2 F h · 1 1 ( 2 2 2) -1/2 ( ) Xi . u = x1 + x2 + · · · + Xn· or eac t = , ... , n, u,, = 2 x 1 + X2 + · · · + Xn 2x; = . y X~ + X~ + · · · + x?, 

41. f(x, y) = 1n( x + Jx2 + y2) '* 

( ) _ 1 [ 1 ( 2 2) - 1/ 2( )] _ 1 ( X ) f., x,y - ~ 1+2 x +y 2x - ~ 1+ ~ , 
x + Y x2 + y2 x + Y x2 + y2 Y x2 + y2 

. 1 ( 3 ) . 
so 34= 1 =11 !!=l f.,(, ) 3 +~ + ...f32+42 s ( + s) s· . 

y l(x + y + z)- y(l ) x + z 
43. f(x,y , z) = x+y + z =? fv(x,y,z) = (x + y + z )2 = (x+y+ z )2' 

2+(-1) 1 
soj11(2,1, - 1) = (2 + 1 +(- 1))2 4· 

45. f(x, y) = x1l - x 3 y => 

f ( ) _ 
1
. f(x + h,y) - f(x,y) _ 

1
. (x +h)y2

- (x + h)3 y- (xy2
- x 3y) 

"' x, y - liD - liD ,. ..... o h h-0 h . 

h(y2 - 3x2 y - 3xyh- yh2
) 

= lim = lim (y2 
- 3x2y- 3xyh- yh2

) = y2 
- 3x2y ,. ..... o h h ..... o 

f ( ) _ li f(x, y + h) - f(x;y) _ U:U x(y + h)2
- x3 (y + h)- (xy2 

- x3 y) _ 1' h(2xy + xh- x 3
) 

11 x , y - h5 h - h ->0 h - "~ h 

· = lim {2xy + xh- x3
) = 2xy - x 3 

/a.-+0 . 
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8 8 
47. x2 + 2y2 + 3z2 = 1 =? - (x2 + 2y2 + 3z2) = - (1) 

ax ox 

8z - 2x x 8 ( 2 2 2) 8 ( ) -
8 

= - = - -
3 

, and -
8 

x + 2y + 3z = -
0 

1 
x 6z z y y 
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8z 8z 
2x + 0 + 6z ox = 0 =? 6z ax = - 2x =? 

8z 
0 + 4y + 6z 8y = 0 =? 

8z 
6z -

0 
= -4y =? 

y 

49. ez = xyz => 8z ( 8z ) ez '- = y X - + Z · 1 =? 
ax ax 

_ 8z 8z 
e- - - xy - = yz => OX ox 

• 8z 8z yz 
(e- - xy) -

8 
= yz, so -

8 
= -_--. 

x x e- - x:y 

=> 
• 8z 8z 

e· oy - xy oy = xz => ( - ) 8z e- - xy - = xz , so 
8y 

8z xz 
ay = e=- xy 

51 . (a) z = f(x ) + g(y) => ~: = /'(x), ~ = ,q'(y) 

. 8z df QU df I 1 

(b) z = f(x + y). Let u = x + y. Then ox = du ox = du (1) = f (u) = f (x + y) , 

. az = df au= df (1) = J'(u) = f'(x + y). 
8y du 8y du 

53. f(x , y) = x 3 y5 + 2x4y =? f,(x, y) = 3x2y5 + Bx3y , fu(x, y) = 5x3y4 + 2x4
. Then l rr::c (x, y) = 6xy5 + 24x2 y, 

f xu(x, y) = 15x 2y4 + 8x3
, fux(x , y) = 15x2 y4 + Bx3

, and f uu (x, y) = 20x3y3
• 

55. w = Ju2 + v2 

uv ( 1) ( 2 2) - 3/ 2 ( ) . uv 
(u2 + v2)3/ 2 ' W uu = v -2 u +v 2u = ( 2 I u + v2)3 2' . 

1 · ~- v · ~(u2 + v2
) -

112(2v) Juz + v1 - v 2 j .,Ju2 + v2 u 2 + v2 - v2 u 2 

Wuv = ( Ju2 + v2)2 ' = u2 + v2 = (u2 + v2)3/2 = (u2 + v2)3/2. 

x + y 
57. z = arctan-- =? 

1 - xy 

1 (1)(1-xy)-(x+y)(- y)_ l+y2 
_ 1+y2 

Zx = 1 + (..:.±1L..) 2 . (1 - x y)2 - (1 - x y)2 + (x +y)2 - 1 + x2 + y2 + x2y2 
1- xy 

1 + y2 1 
= (1 + x2)(1 + y2) = 1 + x2 ' 
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1 (1)(1-xy)-(x+y)(-x) _ 1+x2 1 +x2 1 
zu = 1 + ( x+u )2 . (1- xy)2 (1- xy)2 +(x + y)2 (1 + x2)(1 + y2) = 1 + y2 · 

1-xy 

2x 2 -2 
(1 + x 2 )2, Zxy = 0, Zyx = 0, Zyy = -(1 + y ) . 2y = 2y 

Thus U:cy = Uy:c. 

61. u = cos(x2 y) => U:c = -sin(x2y) · 2xy = -2xysin(x2y), 

Uxy = -2xy · cos(x2 y) · x2 +sin(x2y) · (-2x) = -2x3ycos(x2y)- 2xsin(x2 y) and 

uu = -sin(x2y) ·x2 = - x 2 sin(x2y), 1t11x = - x2 ·cos(x2y) ·2xy+sin(x2y) · (- 2x) = -2x3ycos(x2y) -2xsin(x2y). 

Thus Uxy = Uux. 

63. f(x, y) = x4 y2
- x3 y => fx = 4x3 y2

- 3x2 y, fxx = 12x2 y2
- 6xy, fxxx = 24xy2 

- 6y and ' 

f xv = 8x3y- 3x2
, fxvx = 24x2y- 6x. 

67. u=er8 sin(J => :~ . =er8 cosfJ+sinfJ·er8 (r)=e'.0 (cosO+rsinO), 

;

2

;
0 

= er8 (sinfJ) +(cosO+ rsinO) erO (0) = ero (sinO+ OcosB + rOsinO), 

{)~:~O = ero (0 sin 0) +(sinO+ 0 cosO+ rOsinO) · e''8 (0) = Oero (2sin0 + Ocos 0 + rO sinO). 

X OW 82w . 
69.w=y+2z=x(y+2z)-1 => ax=(y+2z) - I, 8yax = -(y+2z)-2(1)=-(y+2z)- 2

, 

83w . . 4 ow 
{)z{)y{)x = -(-2)(y + 2z)- 3 (2) = 4(y + 2z)-3 = (y + 2z)3 and {)y = x(-1)(y + 2z)-2 (1) = -x(y + 2z)-

2
, 

71. Assuming that the third partial derivatives off are continuous (easily verified), we can write fxzy = fyxz· Then 

f(x, y, z) = :J;y2 z3 + arCSin ( X vz) =? fu = 2xyz3 + 0, fvx = 2yz3
, and fyxz = 6yz2 = fxzy· 

73. By Definition 4, fx(3, 2) = lim !(3 + h, 
2l-!(3, 2) which we can approximate by considering h = 0.5 and h = -0.5: 

h -0 

f (3 2) ~ !(3.5, 2) - f(3, 2) _ 22.4 - 17.5 _ 9 8 f (3 2) ~ !(2.5, 2) - f(3, 2) _ 10.2- 17.5 _ 14 6 A . 
"' ' ~ 0.5 - 0.5 - · ' "' ' ~ -0.5 - -0.5 - · · veragmg 

these values, we estimate f,.(3, 2) to be approximately 12.2. Similarly, f x (3, 2.2) = lim !(3 + h , 
2
·
2
}- !(3

, 
2

·
2
) which 

_ h"""""+O L 
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· · · d I f (3 2 2) !(3.5, 2.2) - !(3, 2.2) 26.1- 15.9 
we can approximate by cons1denng h = 0.5 an 1 = - 0.5: "' , . :::::: 

0 5 
= = 20.4, 

. . ' . 0.5 

f(2.5, 2.2) - f(3, 2.2) 9.3 - 15.9 2 A . I I h f ( )' f x(3, 2.~) ~ _
0

_
5 

= _
0

_
5 

= 13. . veragmg t 1ese va ues, we ave "' 3, 2.2 ~ 16.8. 

To estimat~ f, 11 (3, 2), we first need an estimate for .fx(3, 1.8): 

( ) 
~ /(3.5, 1.8) - /(3, 1.8) - 20.0 - 18.1 - 3 8 f (3 1 8) ~ /(2:5, 1.8)- !(3, 1.8) - 12.5 - 18.1 -

.fx 3• 1.8 ~ 0.5 - 0.5 - . ' x ' . ~ -0.5 - - 0.5 - 11.2. 

. . a 
Averaging these values, we get f,(3, 1.8) ~ 7.5. Now fx 11 (x, y) = -;::;- [f.,(x, y)) and fx(x, y) is itself a function of two 

uy 

.. ()a[ ( )) li f,(x,y+h)-fx (x,y) 
variables, so Defimtton 4 says that fx 11 x, y = -;::;- fx x, Y = m I · => 

. uy h-o a 

( ) f x(3, 2 +h)- fx(3, 2) W . I · · 1 · · k · 1 1 f , 11 3, 2 = lim . e can estimate t liS va ue usmg our prev1ous wor Wit 1 a = 0.2 and h = -0.2: 
h- o h 

f ( 2) ~ j,(3, 2.2)- f x(3, 2) = 16.8- 12.2 = 23 f (3 2) ~ f x(3, 1.8)- J,(3, 2) = 7.5 - 12.2 = 
xy 

3• ~ 0.2 0.2 ' xy ' -0.2 -0.2 23·5· 

Av~raging these values, we estimate f, 11 (3, 2) to be appr~ximately 23.25. 

U:r:x = -(x2 + y2 + z2)- 3/2 - x( -~) (x2 + y2 + z2) - 5f2(2x) = 2x2 - y2- z2 . 
. l . (x2 + y2 + z2)5/ 2 

2y2 - x2 - z·2 2z 2 - x2 - y2 
By symmetry, u uu = .(x2 + y2 + z2 )5/2 and U ::z = (x2 + y2 + z2)5/2 . 

2x2 - y2 - z2 + 2y2 - x2 - z2 + 2z2 - x2 - y2 
Thus Uxo: ·+ u,,y + Uzz = ( 2 ? 2)"/2 = 0. 

. X +y- + Z " 

8[f(v) + g(w)] df(v) 8v dg(w) 8w · 
79. Let v = x +at, w = x - at. Then Ut = f)t = ~ ot +~7ft = af'(v) - ag'(w) and 

uu = o[af'(v) a~ ag'(w)J = a[af"(v) + ag"(w) ) = a2 [f"(v) + y"(w)). Similarly, by using the Chain Rule we have 

u, = f'(v) + g'(w) and Uxx = f"(v) + g"(w) . Thus Utt = a2
Ux:r.· 

8 z e"' 8z eY 8z 8z e" e·u e"' + eY 
81. z = in(e"' + e!l) => -'- = --- and - = --- , so - +- = - -- + --- = --- = 1. 

8x e"' + e!l 8y e"' + eY Dx 8y e"' + e11 e"' + eY e"' + eY 

D2z e"' (e"' + eY) .- e"'(e'") e"'+11 8 2 z 0 - e11 (e"') 
8x2 = (e +eY)2 = (e"' + e11 )2' 8x8y=(e"' + ev)2 = 

ex+y 

(e"' + eY)2' and 

82 z e11 (e"' + e11)- e11 (e11 ) 

8y2 (e"' + eY )2 ( ) 2
• Thus 

e" +eY 

e"'+Y )2 (e"'+u? (e"'+Y? 
(e"' + eu)2 = (e"' + eY)1 - (ex + eu )1 = 0 
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. 83. By the Chain Rule, taking the partial derivative of both sides with respect to R1 gives 

8R-1 8R 8[(1/Rl) + (1/R2) + (1/R3)] - 2 8R _2 8R R2 
8R 8R1 = 8R1 or -R 8R

1 
= - R1 . Thus 8R

1 
= _Rf' 

85. If we fix K = Ko , P.(L,-Ko) is a function of a single variable L, and ~~ =a I is a separable differentia; equation. Then 

dP dL J dP J dL p = aL =>- p = a L =>- In IPI = a In 1-41 + C (Ko), where G_(Ko) can depend on K 0 • Then 
- . 

IPI = e<> lniLI-f;C(Ko), andsinceP > 0 andL >0, we have P = ec:dnLeC(Ko) = eC(T<o)elnL"' = C1(Ko)L"' where 

C1 (Ko) = ~C(I<o) . 

( 
n

2
a) 1 ( n

2
a) 8T 1 V- nb 

87. P+ V2 (~ .:...nb) = nRT => T = nR P+ "'if'2 (V -nb),so 8p = nR (1)(V - nb) = ~-

_ n 2 a nRT nRT n2 a 2 We can also wnte P + V 2 = V _ nb =>- P = V _ nb - V2 = nRT(V - nb) - 1
- n av- 2

, so 

8P ( )_2 ( ) 2 _ 3 2n2 a nRT 
8v= - nRTV-_nb 1 +2naV = _V3 - (V-n'b)2' 

mRT 8P mR __.._ . V __ mRT d 8V __ mR 
89. By Exercise 88, PV = mRT =>- P = ----v-• so fJT = v· Also, PV = mRT --..- p an 8T p . 

. PV 8P 8V PV mR mR 
Smce T .= mR' we have T fJT fJT = mR · V · p = mR. 

8K · 1 2 8K 82 K 8K &2 K 1 2 
91. --;:;--- = 2v , -

8 
= mv, ~ = m. Thus -

8 
· -8 2 = 2v m = K. 

um v uv . m v 

93. f:x:(x, y) = x + 4y =>- f xv(x, y) = 4 and fv(x, y) = 3x- y =>- fvx(x, y) = 3. Since f xy and f vx are continuous 

everywhere but f:x:v(x, y) f- f 11.,(x, y), Clairaut's Theorem implies that such a function f(x, y) does not exist. 

95. By the geometry of partial derivatives, the slope of the tangent line is fx(l , 2). By implicit differentiation of 

4x2 + 2y2 + z2 = 16, we get8x + 2z (8zj8x) = 0 => 8zf8x = - 4x/z, so when x = 1 and z = 2 we have · 

8zj8x = -2. So the slope is fx(1, 2) = -2. Thus the tangent line is given by z - 2 = -2(x - 1), y = 2. Taking the 

parameter to bet = x - 1, we can write parametric equations for this line: x = 1 + t, y = 2, z = 2 - 2t. 

97. By Clairaut's Theorem, f xvv = (f:x:y) 11 = (/11x}y = fvxv = Uv).,'ll = Uv)yx = fvvx· 

99. Let g(x) = f(x, 0) = x(x2
)-

312 e0 = ·x ix J'- 3
• But we are using the point (1, 0), so near (1, 0), g(x) = x - 2

• Then 

g'(x) = - 2x-3 and g'(1) = -2, so using (l) we have fx(l, 0) = g'(l) = - 2. 

101. (a) (b) For (x, y) f- (0, 0), 

(3x2y- y3)(x2 + y2) - (x3y- xy3)(2x) 
f x(x,y) = (x2+y2)2 

x4y + 4x2y3 _ ys 
(x2 + y2)2 
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(c) f (0 0) = lim f(h, 0) - f(O, 0) = lim {O/ h2) - 0 = 0 and jy(O, 0) = lim j(O, h) - f(O, 0) = '0. 
"' ' J•-O h h- o h h-o h 

(d) B (3) f (0 0) = of, = lim f.,(O, h)- f , (O , O) = lim ( - h
5

- O) / h
4 

= -1 while by (2), 
Y ' "'Y ' oy h- o h h- o h 

f ,(0, 0) = ofy = lim jy(h, 0) - jy(O, 0) = lim h5/ h4 = 1. 
!I ox h ..... o h ,, ..... o h 

(e) For (x, ·y) i= (0, 0), we use a CAS to compute 

x6 + gx4y2 _ gx2y4 _ y6 · 
f xy(x, y)= (x2+y2)3 

Now as (x , y) -> (0, 0) along the x-axis, fxv(x, y)-> 1 while~ 

(x, y) -> (0, 0) along they-axis, fxy(X , y) -> - 1. Thus fx 11 isn't 

continuous at (0, 0) and Clairaut's Theorem doesn't apply, so there is 

no contradiction. The graphs of f, 11 and fyx are identical except at the 

origin, where we observe the discontinuity. 

14.4 Tangent Planes and Linear Approximations 

1. z = f(x, y) = 3y2 - 2x2 + x =? f ., (x, y) = -4x + 1, / 11 (x, y) = 6y, so f,(2, -1) = ~7, / y(2, -1) = -6. 

By Equation 2, an equation of the tangent plane is z - ( -3) = f , (2 , - 1)(x- 2) + f v(2, -1)[y- ( -:-1)] =:

z+ 3= - 7(x - 2)-6(y + 1) or z= - 7x - 6y + 5. 

3. z = f(x , y) = .,fXY => f,(x, y) = ~(xy)-112 · y = ~gx, fu(x , y) = ~(xy)-112 · x = ~.../XlY, so f.,(1 , 1) = ~ 

and fv(1 , 1) = ~-Thus an equation of the tangent plane is z - 1 = f ,(1, 1)(x- 1) + jy(1, 1)(y- 1) =? 

z- 1 = ~(x -1) + Hv - 1) or x + y- 2z = 0. 

5. z = f( x, y) = xsin(x + y) =? f , (x , y) = x · cos(x + y) + sin (x + y) · 1 = x cos(x + y) + sin(x + y), 

fv(x, y) = xcos(x + y), so f,( -1, 1) = ( -1) cosO+ sin 0 = - 1, / 11 ( -1, 1) = ( -1) cosO = - 1 and an equation of the 

tangent plane is z - 0 = ( -1) ( x + 1) + ( -1) (y - 1) or x + y + z = 0. 

7. z = f(x , y) = x2 + xy + 3y2, so f,.(x , y) = 2x + y => f,(1, 1) = 3, fv(x, y) = x + 6y =? fv(1, 1) = 7 and an 

equation of the tangent plane is z - 5 = 3(x- 1) + 1(y- 1) or z = 3x + 7y - 5. After zooming in, the surface and the 
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204 D CHAPTER 14 PARTIAL DERIVATIVES 

tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the 

surface and the tangent plane will appear to coincide. 

9 !( ) 
_ xy sin {X - y) 

· x,y - 2 2 
1+ x +y 

ACAS
. f ( ' ) ysin(x - y) + xycos(x-y) 2x2 ysin {x- y) d 

g1ves "' x,y = - an 
1 + x2 + y2 (1 + x2 + y2)2 

x sin ( x - y) - xy cos ( x - y) 2xy2 sin ( x - y) · 
fv(x, y) = 

1 2 2 - ( 2 . We use the CAS to evaluate these at (1 , 1), and then + x + y 1 + x2 + y2) 

substitute the results into Equation 2 to compute an equation oqhe tangent plane: z = tx - tY· The surface and tangent 

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable, 

as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the 

surface and the tangent plane will appear to coincide. 

z 0 

-1 

11. f(x, y) = 1 + x Jn(xy - 5) : The partlal derivatives are f , (x , y) = x · -
1
- (y) + Jn (xy - 5) · 1 = xy 

5 
+ln(xy- 5) 

. xy - 5 xy -

and fv(x, y) = x · -
1
- (x) = __£_

5
, so f x(2 , 3) = 6 and / 11 (2 , 3) = 4. Both f , and / 11 are continuous functions for 

x y-5 xy- , 

xy > 5, so by Theorem 8, f is differentiable at (2, 3). By Equation 3, the linearization off at (2, 3) is given· by 

L(x, y) = /(2, 3) + f x (2 , 3)(x- 2) + f v (2, 3)(y - 3) = 1 + 6(x - 2) + 4(y - 3) = 6x + 4y - 23. 

13. f(x, y) ~ _ x _ . The partial !;lerivatives are f x(x, y) = l(x t y) )~'t( 1) = y/ (x + y)2 and 
x + y x +y 

fv(x , y) = x ( -1){x + y)-2 
• 1 = -x/ (x + y)2

, so f x(2, 1) = ~and / 11 (2; 1) = -~. Both f, and j 11 are continuous 

functions for y =I - x , so f is differentiable at (2, 1) by Theorem 8. The linearization of f at (2, 1) is given by 

L(x, y) = !(2, 1) + f x(2 , 1)(x - 2) + / 11 (2;1)(y - 1) = 1 + ~ (x - 2) - ~(y - 1) = ~X - ~y + ~· 
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15. f(x , y) = e-"'11 cosy. The partial derivatives are f,.(x , y) = e-"'11 ( -y) cosy .= -ye-"'!1 cosy and 

J11 (x , y) = e- "'V(- siny) + (cosy)e-"'11 ( - x) = -e-"'11 (siny + xcosy), so f.,(1T, 0) = 0 and / 11 (1T, 0) = -1r. 

Both f., and fv are continuous func;tions, so I is differentiable at (1r, 0), and the linearization of I at (1r, 0) is 

L(x, y) = j(1r, 0) + /:r(1r, O)(x- 1r) + j 11 (1r, O)(y - 0) = 1 + O(x -1r) - 1r(y - 0) = 1 -1ry. 

2x + 3 2 . ( ) ( )( )( )_2 - 8x - 12 17.Letf(x,y) = --.Thenj.,(x,y)= -
4 1

andj11 x,y = 2x+3 -1 4y+1 (4)=(
4 1

)2 .Bothf.,andl11 4y + 1 y + y + 

are continuous functions for y =I= - ~. so by Theorem 8, f is differentiable at (0, 0) . We have f:,,(O, 0) = 2, f 11 (0, 0) = -12 

and the linear approximation off at (0, 0) is f(x , y) ~ f(O, 0) + f:,(O, O)(x - 0) + / 11 (0, O)(y - 0) = 3 + 2x- 12y. 

19. We can estimate /(2.2, 4.9) using a linear approximation off at (2, 5), given by. 

f(x, y) ~ /(2, 5) + f,.(2, 5)(x - 2) + / 11 (2, 5)(y - 5) = 6 + 1(x - 2) + ( -1)(y- 5) = x- y + 9. Thus 

!(2.2, 4.9) ~ 2.2- 4.9 + 9 = 6.3. 

21 .j(x,y,z)"=Jx2+y2+z2 => f.,(x,y,z)= J 2 +x 2 + 2,f11 (x,y,z)= J 2 y 2 2
,and 

X y Z X +y + Z 

f:(x, y, z) = z , so f.,(3, 2, 6) = ~. fv(3, 2, 6) = ~; f,(3, 2, 6) = ~·Then the linear approximation off 
,jx2 +y2 +z2 

at (3, 2, 6) is given by 

l(x, y, z) ~ /(3, 2, 6) + j .,(3, 2, 6)(x - 3) + / 11 (3, 2, 6) (y- 2) + f z(3, 2, 6)(z' - 6) 

= 7 + ~(x- 3) + ~(y- 2) + ¥<z - 6) = tx + ~y + ~z 

Thus J(3.02)2 + (1.97)2 + (5.99)2 = /(3.02, 1.97, 5.99) ~ ¥ (3.02) + ~ (1.97) + ¥ (5.99) ~ 6.9914. 

23. From the table, /(94, 80) = 127. To estimate /T(9~, 80) and /H(94, 80) we follow the procedure used in Section 14.3. Sine~ 

( ) li /(94 + h, 80) - /(94, 80) . . h" . . h h 2 d . . Jr 94, 80 = "~ . h , we approximate t IS quantity w1t = ± an use the values g1ven m the 

table: 

fr(94, 80) ~ /(96, 80) - /(94", 80) = 135- 127 = 4, fr(94, 80) :::::: /(92, 80) - /(94, 80) = 119- 127 = 4 
2 2 - 2 - 2 

Averaging these values gives /T(94, 80) ~ 4. Similarly, /J.I(94, 80) = lim /(
94

• 80 + h~- /(
94• 80), so we use h = ±5: 

h~o 

/H(94, 80) ~ /(94, 85) ~ /(94, 80) = 132 ~ 127 = 1, !u(94, BO) ~ /(94, 75)- /(94, 80) = 122- 127 = 1 
-5 - 5 

Averaging these values gives /H(94, 80) ~ 1. The linear approximation, then, is 

f(T, H) ~ /(94, 80) + fr(94, 80)(T - 94) + /H(94, 80)(H- 80) 

~ 127 + 4(T - 94) + 1(H- 80) [or 4T + H - 329] 
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Thus when T = 95 and H = 78, !(95, 78) ~ 127 + 4(95- 94) + 1(78 - 80) = 129, so we estimate the heat index to be 

approximately 129°F. 

25. z = e- 2
"' cos 27rt => 

az f)z -2 ( ) . -2 . 2 2 . dz = -a dx + -
0 

dt = e "' -2 cos 21rt dx + e "' (- sm2?rt)(27r) dt = -2e- "'cos 27rt dx- 21re- x sin 21rt dt 
. X t 

"3 am om 43 "2 27. m = p0 q · => dm = - dp + - dq = 5p q dp + 3pa q dq 
ap oq 

29. R = o:(32 cos 1 => aR oR oR 2 2 . 
dR = oo: do: + 

0 
(3 d(3 + O"f d"f = (3 cos '"Y do: + 2o:(3 cos 1 d(3 - o:(3 sm 1 d1 

• 2 2 
31. dx = ll.x = 0.05, dy = ll.y = 0.1, z = 5x + y , z., = lOx, Zy = 2y . . Thus when x. = 1 and y = 2, 

dz = zx(1, 2) dx + z11(1, 2) dy = (10)(0.05) + (4)(0.1) = 0.9 while 

ll.z = ! ,(1.05, 2.1)- /(1, 2) = 5(1.05? + (2.1)2
- 5 -4 = 0.9225. 

8A 8A . 
33. dA = ox dx + oy dy = y dx + x dy and Jll.xJ :::; 0.1, Jll.yJ :::; ~.1. We use dx = 0.1, dy = 0.1 w1th x = 30, y = 24; then 

the maximum error in the area is about dA = 24(0.1) + 30(0.1) = 5.4 cm2
• 

35. The volume of a can is V = 1rr2 h and ll. V ~ dV is an estimate of the amount of tin. Here dV = 27rr h dr + 1rr~ dh, so put . 

dr = 0.04, dh = 0.08 (0.04 on top, 0.04 on bottom) and then ll. V ~ dV = 27r( 48)(0.04) + 7r(16)(0.08) ~ 16.08 cm3
. 

Thus the amount of tin is about 16 cm3
. 

37. T = ";'gR 
2

, so the differential ofT is 
2r +R 

dT = aT dR 8T d = (2r
2 

+ R
2
)(mg) - mgR(2R) dR + (2r

2 
+R

2
)(0) - mgR(4r) d 

oR + or . r (2r2 + R 2 ) 2 (2r2 + R2)2 r 

mg(2r2
- R2

) 4mgRr 
= (2r2 + R2)2 dR- (2r2 + R2)2 dr 

Here we have ll.R = 0.1 and ll.r = 0.1, so we take dR = 0.1, dr = 0.1 with R = 3, r = 0.7. Then the change in the 

tension T is approximately 

mg [2(0.7?- (3)2 ] 4mg(3)(0.7) 
dT = (2(0.7)2 + (3) 2]2 (O.l) - (2(0.7) 2 + (3)2)2 (0.1) 

0.802mg 0.84mg 1.642 
(9.98)2 - (9.98) 2 = - 99.6004 mg ~ - 0.0165mg 

Because the change is negative, tension· decreases. 
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39. First we find :~ implicitly by taking partial derivatives of both sides with respect to R1 : 

oR . R2 

oR
1 

= Ri. Then by symmetry, 

oR R
2 

oR = R2
2 

. When RI = 25, R2 = 40 and Ra = 50, -R
1 

= 2
1
0
7
0 ¢::} R = 21°7° n. Since the possible error 

oR2 - ~· oR3 R3 

for each Ri is 0.5%, the maximum error of R is attained by setting t:J.R, = 0.005R.. So 

oR oR oR 2 ( 1 1 1 ) 1 !:l.R ~=:::: dR = oR
1 

!:l.R1 + oR
2 

!:l.R2 + oR
3 

!:l.R3 = (0.005)R R
1 

+ R2 + Ra = (0.005)R = l7 ~=:::: 0.059 st. 

~ l!:l.wl l!:l.hl . . . 41 . The errors in measurement are at ~ost 27o, so w $ 0 .. 02 and T $ 0.02. The relative error m the calculated surface 

area is 

!:l.S dS 0.1091(0.425w0·425
-

1 )h0·725 dw + 0.1091w0
.4

25 (0.725h0·725
-

1
} dh dw dh s 1':::: s= 0.1091w0.426h0.725 . = 0.425-:;:; + 0.725/i: 

To estimate the maximum relative error, we use : = I ~w I = 0.02 and ~~i = I ~hI = 0.02 => 

dS = 0.425 (0.02) + 0. 725 (0.02} = 0.023. Thus the max imum percentage error is approximately 2.3%. s 

43. !:l.z = f(a + !:l.x, b + !:l.y) - f(a, b) =(a+ !:l.x? + (b + !:l.y)2 - (a2 + b2
) 

= a2 + 2a!:l.x + (!:l.x)2 + b2 + 2b!:l.y + (!:l.y?- a2
- b2 = 2a !:l.x + (!:l.x? + 2b!:l.y + (!:l.y? 

But f,(a, b) = 2a and /y(a, b) = 2b and so !:l.z = f x(a, b) !:l.x + /y(a, b) !:l.y + !:l.x !:l.x + !:l.y !:l.y, which is Definition 7 

with e:1 = !:l.x and e:2 = !:l.y. Hence f is differentiable. 

45. To show that f is continuous at (a, b) we need to show that lim f(x, y) = f(a, b) or 
(z,y)~(a,b) 

equivalently lim f(a + !:l.x, b + !:l.y) = f(a , b). Since f is differentiable at (a, b), 
(6x ,6y)- (O,O) 

f(a + !:l.x, b + !:l.y) - f(a, b)= !:l.z = f,(a, b) 6-x + /y(a, b) !:l.y + e:1 !:l.x + e:2 !:l.y, where €1 and €2 ---+ 0 as 

(!:l.x, !:l.y} --> (0, 0). Thus f(a + !:l.x, b + !:l.y) = f(a, b)+ f,(a, b) !:l.x + / 11 (a, b) !:l.y + e:1 !:l.x + e:2 !:l.y. Taking the limit of 

both sides as (.C:..x, .C:..y) ___.. (0 , 0) gives lim f (a + .C:..x, b + .C:..y) = f (a , b). Thus f is continuous at (a, b). 
(6 x,61J)- (0 ,0) . 

14.5 The Chain Rule 

1. z = x? + y 2 + xy, x =sin t , y = et => ~ &~ &~ t 
-d =,.--d +,.- -d =(2x+ y}cost+(2y +x)e t uX t uy t 

3. z =· .J1 + x 2 + y 2 , x = In t, y = cost => 

dz oz dx 8z dy 1 2 2 -1/2 1 1 2 2 -1/ 2 . 1 (x . ) - =-- + --= 2(1+x + y) (2x)·- + 2 (1+x + y) (2y)(-smt) = - - ysmt 
dt ox dt 8y dt t · .J1 + x2 + y2 t 
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5. w=xevl=, x = t2, y = l-t, z=1+2t => 

dw = OW dx + ow dy + ow dz = ey/ z. 2t + xevl= (.!) . ( - 1) + xeYI= (-J!...) . 2 = evl= (2t - ~ - 2xy) 
dt ox dt /Jy dt oz dt z z2 z z2 

7. z = x2y3
, x = scost, y = ssint => 

az oz ax oz 8y 3 2 2 • 
!i"'" = !i"'"' <> + -a -a = 2xy cost+ 3x y sm t 
us uxus y s . 

az . 8z Ox az 8y 3 . 2 2 s . 2 
ot = ox at+ oy at = (2xy )(- ssmt) + (3x y )(scost) = -2sxy smt + 3sx

2
y cost 

9. z = sin() cos</>, () = st2
, ¢ = s2t => 

~; = ~; ~~ + ~~ ~! =(cos 8 cos q))(t~) + (- sinO sin q.,)(2st) = t 2 cosO cos¢ - 2stsin0 sin <P 

~; = ~; ~~ + ~~ -~~ =(cos() cos ¢>)(2st) + (-sinO sin </>)(s2
) = 2stcos0 cos¢- s

2 sinO sin <P 

11. z = er cos 0, r = st, 8 = J s2 + t 2 =? 

13. When t = 3, x = g(3) = 2 andy = h(3) = 7. By the Chain Rule (2), 

dz /Jf dx /Jf dy I I • 

dt = OX dt + oy dt = f ,., (2, 7)g (3) + fv(2, 7) h (3) = (6)(5) + ( - 8)( -4) = 62. 

' 
15. g(u, v) = f(x(u ,v) , y(u, v)) wherex = eu + sinv, y = eu + cosv => 

17. 

& u& 8y u8y · · ~ M& M8y 
au = e ' au = cos v, au = e ' av = -Sill v. By the Cham Rule (3), au = ox au + /Jy au. . Then 

Yu(O, 0) = f ,., (x(O, 0), y(O, 0)) Xu(O, 0} + fv(x(O, 0), y(O, 0)} y,.(O, 0) = / :c (1, 2)(e0
) + fv(l, 2)(~0 ) = 2(1) + 5_{1) = 7. 

. . ag a 1 ax a 1 av 
Similarly, OV = OX av + oy av . Then 

g..,(O, 0) = f ., (x(O, 0), y(O, 0)) x.,(O, 0) + fv (x(O, 0), y·(o, 0)) Yv (0, 0) = f,. (1, 2)(cos O) + fv(l, 2)(- sin 0) 

= 2(1} + 5(0) = 2 

II 

/~ 
u = f(x , y), x = x (r, s , t), y = y(r, s , t) => 

X y 

/ 1\ /1\ 
r s I r s I 
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w = f(r, s, t), r = r(x, y), s = s(x, y), t = t(x, y) => 

ow ow or ow as ow at aw aw ar aw as ow at 
fu = &ofu+asax+8tax·~=aroy+asay + Bt~ 

210 z = x4 + x2y, x = s + 2t - u, y = stu2 => 

oz = az ox+ az.ay = (4xa + 2xy)(1) + (x2)(tu2), 
OS OX OS ay as ' 0 

oz = oz ax+ az ay = (4x3 + 2xy)(2) + (x2)(su2) 
m &m ~m · 
oz = az ax+ az ay = (4x3 + 2xy)( - 1} + (x2)(2stu). 
au ax au ay a·u 

- When s = 4, t = 2, and u = 1 we have x = 7 and y = 8, 

so az = (1484)(1} + {49)(2} = 1582, aaz = {1484) (2) + (49){4) = 3164, aaz = (1484)(-1) + {49)(16} = -700. 
as t u 

23o w = xy + yz + zx, x = r cos 0, y = r sin 8, z = r8 => 

aw = awax + aawaay + aawaaz ~(y +z}(cos8} + (x+z)(sin8}+(y+x)(O), . 
ar axar yr zr 

aw = aw ax+ aaw aay + aaw aaz8 = (y + z)( - rsinO) + (~ + z )(rcosO) + (y + x}(r·)o 
ao ox o8 . y 8 z 

aw 
When ro = 2 and()= ?r/2 we have x = 0, y = 2, and z = 1r, so ar = (2 + rr}(O) + (0 + rr){1) + (2 + 0)(1r / 2) = 27r and 

~~ = (2 + 1r) ( - 2) + (0 + 1r)(O) + (2 + 0)(2) = -2rro 

.. 
25o N = p + q, p = u + vw, q = v + uw, r = w + uv =9 

p+r 

aN = aN ap + aN aq + aN ar . 
au ap au aq au 8r au 

= (p + r){1)- (p + q){1) (1) + (p + r)(1) - (p + q)(O) (w) + (p + r)(O) - (p + q)(1) (v) 
(p+r)2 (p + r)2 (p + r)2 

= 
(r- q) + (p+r)w - (p+q)v 

(p+r)2 

oN = aN ap + aN oq + aN or = r - q (w) + p + ro (1) + -(p + q) (u) = (r - q)w + (p + r} - (p + q)u ' 
av op ov 8q 8v or ov 0 (p+r)2 (p +r)2 . (p+1')2 (p+ r)2 

aN _ aN ap + 8N aq + 8N !!!.._ = ro - q (v) + p+r (u)+ -(p +q) (1) = (r- q)v +(p+r)u- (p + q) 
ow - ap ow aq ow or OW (p + r )2 (p + r) 2 (p + r) 2 (p + r )2 

· aN -1 + (24)(4) - (25)(3) 20 5 
When u = 2, v = 3, and w = 4 we have p = 14, q = 11, and r = ~0, so ou = . (24)2 . = 

576 
= 

144
, 

aN _ (-1)(4)+24-(25)(2) _ -30 __ ~ d 8N = ·(-1)(3) + (24)(2)-25 =~ = ~ 
av - (24)2 - 576 - 96' an aw (24)2 576 144 ° 
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210 0 CHAPTER 14 PARTIAL DERIVATIVES 

27. y cosx = x 2 + y2
, so let F(x, y) = ycosx - x2 - y 2 = 0. Then by Equation 6 

dy 
dx 

-y sin x - 2x 2x + y sin x = --:-----'"----
cos x - 2y cosx- 2y . 

and 
[2xy - (1 + y2

) (1 + x-iy2 )]/(1 + x 4 y2
) _ (1 + y2 )(1 + x 4 y2

) - 2xy 
(x2 - 2xy(1 + x4y2))/(1 + x4y2 ) - x2 - 2xy(1+ x4y2) 

- 1 + x4y2 + y2 + x4y4 - 2xy 
- x 2 - 2xy - 2x5y3 

31. x 2 + 2y2 + 3z2 = 1, so let F(x, y, z) = x 2 + 2y2 + 3z2 
- 1 = 0. Then by Equations 7 

f)z = .:_ Fx = _ 2x = -~ and oz = _ Fy = _ 4y = _ 2y 
ox Fz 6z 3z oy Fz QZ 3z . 

_ • oz F. . -yz yz 
33. e· = x yz, so let F(x, y , z) = e· - xyz = 0. Then~ = - -F = --.-- = --- and 

. ux 'z e· - xy ez - xy 

8z 
oy 

F11 - xz xz 
- Fz = --e=---x-y = -ez ___ x_y 

35. Since x andy are eac~ functions oft, T(x, y) is a function oft, so by the Chain Rule, ~ = ~: + ~~~;.After 

dx 1 
3 seconds, x = .Jl+t = .,;r+3 = 2, y = 2 + ~ t = 2 + H 3) = 3, -d = .J1+t 

t 2 1 + t 
1 -.!. and dy -.!. 

2 v'1 + 3 - 4, dt - 3 . 

Then~~ = Tx(2, 3) ~~ + Ty(2 , 3) ~; = 4(t) + 3(~ ) = 2. Thus the temperature is rising at a rate of2°C/ s. 

ac ac . 
37. C = 1449.2 + 4.6T- 0.055T 2 + 0.00029T 3 + 0.016D, so 8T = 4.6 - O.llT + 0.00087T2 and oD = 0.016. 

According to the graph, the diver is experiencing a temperature of approximately 12.5°C at t = 20 minutes, so 

. c:;, = 4.6 - 0.11 (12.5) + 0.00087(12.5)2 ~ 3.36. By sketching tangent lines_ at t = 20 to the graphs given, we est~ate 

dD 1 dT 1 . dC 80 dT 80 dD 1 1 . dt ~ '2 and (jj ~ -
10

. Then, by the Cham Rule, (jj = &T (jj + &Ddt ~ (3.36) (-Iii) + (0.016) ( 2) r::::: -0.33. 

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0.33 m/s per minute. 

39. (a) V = l!wh, so by the Chain Rule, 

dV = 8V dl! + 8V dw + oV dh = wh dl! + l!h dw + l!w dh = 2 . 2 . 2 + 1 . 2 . 2 + 1 . 2 . ( _ 3) = 6 m3/s. 
dt 81! dt aw dt &h dt dt dt dt 
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SECTION 14.5 THE CHAIN RULE D 211 

(b) S = 2(£w + £h + wh), so by the Chain Rule, 

~~ = ~~: + ~! :~ + ~~ ~~ = 2(w +h):+ 2(£ + h):~ + 2(£+ w) ~~ 
= 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)( - 3) = 10 m2fs 

(c) L2 = £2 + w2 + h
2 

::::? 2£ ~~ = 2f. ~ + 2w :~ + 2h ~: = 2(1)(2) + 2(2)(2) + 2(2)(-3) = 0 ::::? 

dL/ dt = 0 mjs. 

dP dT T dV 8.31 dT T dP 
41. dt = 0.05, dt = 0.15, V = 8.31? and dt = Pdt - 8.31 p 2 Yt· Thus when P = 20 andT = 320, 

dV = 8 31 [ 0.15 _ (0.05)(320)] ~ _ 0.27 Lf s. 
dt . 20 400 

43. Let x be the length of the first side of the triangle andy the lengtl1 of the second side. The area A of the triangle is given by 

A= ~xy sin B where 0 is the angle between the two sides. Thus A is a function of x, y, and (}, and x, y, and 0 are each in tum 

functions of timet. We are given that ~~ = 3, ~~ ·= -2, and because A is constant, :~ = 0. By the Chain Rule, 

dA 8A dx 8A dy 8A dO 
dt = ax dt + ay dt + ao dt 

dA 1 . 
0 

dx 1 . 
0 

dy 1 d8 
::::? dt = 2YSI.Il · dt + 2xsrn · dt + 2xycos(} · dt. When x = 20, y = 30, 

and 0 = 1r /6 we have 

0 = ~(30)(sin ~)(3) + ~(20)(sin ~)(-2) + ~(20)(30)(cos ~) ~~ · 

= 45 · l - 20 · l + 300 · vf3 · dO = ll + 150 '3 d(} 
2 2 2 dt 2 v,) dt 

S I . ., dO . dO - 25/2 1 h I be h ·d · d · f o vmg .or -d g1ves -d = ---;;; = -------:r.i· sot e ang e tween t e s1 es 1s ecreasmg at a rate o 
t t 150 v 3 . 12 v 3 

1/ (12 V3) ~ 0.048 radj s. 

45. (a) By the Chain Rule, : = ~= cos(} + ~; sin B, ~; = ~= ( - r sin B) + ~~ r cos 0. 

({Jz)2 
({)z )

2 
2 {)z {)z . ( {)z )

2 
• 2 

(b) or = ax cos 0 +.2 8x 8y cosO ~mO + By sm 0, 

( 8 z )
2 

1 (az )
2 

[(az )
2 

(az)
2

] 
2 

. 
2 (az )

2 

(oz )
2 

8r + r2 80 = 8x + 8y (cos 0 + sm 0) = 8x + 8y . 

8z dz 8u dz 8z dz 8z 8z 
47. Letu = x - y. Then -

8 
= d--

8 
= -d and -a = -d (-1). Thus -a + -

8 
= 0. 

X UX U y U X y 
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49. Let u =X + at, v =X - at. Then z = f(u) + g(v), so az jau ~ f'(u) and azjav ~ g1(v) . 

az f}z aU az av 1 1 

Thus at = au at + av at = af (u)- ag (v) and 

8
2
z = 2._ [/1( ) - I( )] = (df'(u) 8u - dg

1

(v ) au ) = 2/"( ) 2 " ( ) 
[)t2 a at u g v a du 8t dv 8t a u + a g v . 

S .. , 8z fl( ) I( ) 8
2
z !"( ) "( )' 8

2
z 2 8

2
z tmt arly .,-- = u + g v and <:12 = u + g v . Thus ";5'2 =a <:12· 

uX - uX ut ux 

8z az 8z 
51 . .,-- =-a 2s + .,-- 2r. Then 

uS X · vy 

. . . 8 2 z 82 z 82 z ( 2 2 ) a2
z 8z 

By the contmutty of the parttals, 
8 

"' = 4rs -
8 2 + 4rs -

8 2 + 4r + 4s -
8 

"' + 2-
8 

· 
rus , x y xuy y 

8z az az . [}z 8z ' 8z 
53. -

8 
= .,-- cos (} +-a sm9and {)(} = -.,-r smO +-a rcosB. Then 

r uX y vX y 

a2
z (82

z tPz . ) . (82
z . 8

2
z ) 

iJr2 = cos 0 8:r:2 cos (} + ay 8x sm () + sm () f):y2 sm (} + ax 8y cos () 

2 ~z . ~z . 2 ~z = cos (} 
8 2 

+ 2 cos 8 sm (J -
8 8 

+ sm 8 -a 2 X X y 1J 

and 

D2 z a.,. (a2z 82
z ) 

~ = - rcos(J "'- + (- rsinO) <:12 (-r sin(J) + ~a rcos9 
a(J uX uX uy X 

az (82
z 8

2
z ) -r s~ (J .,-- + r cos f) -a 2 r cos 8 + ~ ( -r sin 9) 

vy y uxuy · 

8z . 8z 2 . 2 82 z 2 . ~z 2 29 82z 
= -r cos (J .,-- - r sm (} .,-- + r sm f) -a 

2 
- 27· cos 8 sm (} ~ + r cos <:12 

v x uy , X v X vy uy 

Thus 

a2 
z 1 a2 z 1 fJz 2 . 2 a 2 z ( . 2 2 ) 8

2 z 
<>2 + 2 <:i2 + - .,-- = (cos 0 + sm 0) -

8 2 + sm (} + cos (J -
8 2 vr r 'v8 r v1· X y . 

-- cos(} - - - sm B - + - cos(} - + sm (J -1 {)z 1 . 8z 1 ( az . a z ) 
7' ax r ay r ax ay 

a2 z a2z . = -a 2 + -a 2 as destred. 
X 1J 

55. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and 

f(tx, ty) = (tx)2 (ty ) + 2(tx)(tv? + 5(ty)3 = t3x 2y + 2t3xy2 + 5t3 y3 = e(x2y + 2xy2 + 5y3
) = t3 f (x, y) . 

Thus, f is homogeneous of degree 3. 
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(b) Differentiating both sides of f(tx , ty) = t" f(x , y) with 'respect tot using the Chain Rule, we get 

8 a 
8

t f(tx , ty) = 
8

t [t" f(x,y) ] ¢:> 

8 8(tx) 8 8(ty) 8 a -1 

8
(tx) f(tx , ty) · {j't + 8(ty) f(tx, ty) · at = x a(tx ) f(tx, ty) + y 8 (ty) f(tx , ty) = nt" f(x , y). 

Setting t = 1: x 
8
8 

f(x , y) + y 
8
8 

f (x, y) = nf(x, y). 
X . y . 

57. Differentiating both sides of f(tx , ty) = tn f(x , y) with respect to x using the Chain Rule, we get 

8 8 
ax f(tx,ty) = 8x [t"'f(x , y)] ¢:> 

8 8(tx) 8 8(ty) n 8 
a (tx) f.(tx , ty) . a;;- + 8 (ty) f(tx , ty). a;:- = t 8x f(x, y) ¢:> tfx(tx, ty) = tn f,.(x, y). 

Thus f ,. (tx , ty) = t"·- 1 J,.(x , y) . 

59. Given a function defined implicitly by F(x, y) = 0, where F is differentiable and F11 =J: 0, we know that ~~ = - F,. . Let 
. ~ ~ 

G(x , y) = - F,. so ddy = G(x, y). Differentiating both sides with respect to x and using the Chain Rule gives 
Fy X 

d
2

y = 8G dx + 8G dy where 8G = ,E_ ( - Fx) = _ F11 Fxx - F,.F11., , 8G = ,E_ (-F.,) = 
dx2 8x dx ay dx 8x 8x Fy FJ ay 8y Fy 

T~us 

d
2
y = ( FuF:.,,. -

2 
F,.Fyx) (l) + (- FyFxll -

2 
FxF,m) (-Fa;) 

dx2 F11 F11 F11 

FxxF; - FyxFxFy - F,.uF11Fx + FyyF; 

FJ 

But F has continuous second derivatives, so by Clauraut's Theorem, F11, = F.,11 and we have 

d211 F.,.,F; - 2F.,11F, Fu + FuuF; d . ed 
dx2 = - F.3 as es1r . 

II 

14.6 Directional Derivatives and the Gradient Vector 

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change 

of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the 

left). In the direction ofS, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between 

these two points to be approximately 50 km (using the fact that U1e distance from K to S is 300 km). Then the rate of change of 

pressure in the direction given is approximately 996 
; 0

1000 = -0.08 millibar /km. 

3. Du /{ -20, 30) = 'V j { -20, 30) · U = /T{ -20, 30) ( 7z) + /v{ - 20, 30) ( ?z). 

/T( - 20, 30) ~ lim !( - 20 + h, 30)- !( - 20• 30), so we can approximate /T( -20, 30) by considering h = ±5 and 
h -+0 t 
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using the values given in the table·: h (-20, 30) ~ f ( - 15• 30) ~· f (- 20• 30) = - 26 -
5 

( - 33) = 1.4, 

!( -25 30) - f( -20 30) -39 - ( - 33) 
fr( -20, 30) ~ ' _

5 
' = _

5 
= 1.2. Averaging these values gives fr( - 20, 30) ~ 1.3. 

Similarly, f,( -20, 30) = lim /( - 20
• 
30 + h~- !( - 20

• JO), so we can approximate f,( --120, 30) with h = ±10: 
h-0 

f (-20 30) ~ !( - 20, 40) - J( - 20, 30) = -34 - ( - 33) = - 0 1 
1J , 10 10 . ' 

!( - 20 20) - J( -20 30) - 30- ( - 33) 
f,( - 20, 30) ~ ' _

10 
' = _

10 
= -0.3. Averaging these values gives f ,( -20, 30) ~ -0.2. 

Then Duf(- 20,30) ~ 1.3(-}z) + (-0.2>(-}z) ~ 0.778. 

5. f(x, y) = ye- "' :::> fx (x, y) = -ye_., and fu(x, y) = e-"'. If u is a unit vector in the direction of 8 = 21r / 3, then 

from Equation 6, Du /(0, 4) = f x (0, 4) co~ en + f v(O, 4) s in en = -4 · (- ~) + 1 · {1 = 2 + 4. 
7. f(x, y) = sin(2x + 3y). 

• I 

(a) 'il f (x, y) = .
8
81 i + ~! j = [cos(2x + 3y) · 2] i + [cos(2x + 3y) · 3]j = 2 cos {2x + 3y) i + 3 cos (2x + 3y)j 

X ~J • 

(b) 'il f( -6,4) = (2cos0) i + (3cosO)j = 2 i + 3j 

(c) By Equation 9, Du f( - 6, 4) = 'il f( -6, 4) · u = (2 i + 3j ) · H v'3 i - j ) = ~ (2v'3- 3) = v'3 - ~· 

9. f(x , y, z) = x2yz- xyz3 

(a) 'il f(x, y, z ) = (f,. (x, y , z), fv(x, y, z), f:(x, y, z)) = (2xyz - yz3
, x2 z- xz3

, x2 y - 3xyz2
) 

(b) 'il/(2, -1, 1) = (-4 + 1,4- 2,-4 + 6) = (-3, 2, 2) 

(c) By Equation 14, Duf(2, - 1, 1) = 'il /(2, - 1, 1) · u = (-3, 2, 2) · ( 0, ~. - ~) = 0 + ~ - ~ = ~· 

11. f(x , y) = e"' si.ny => 'il f(x, y) = (e"' s iny, e"' cosy}, '\1 f(O , Tr/3) = ( 4, ~ ),and a 

unit vector in the direction.ofv is u = J<-:>2 +82 (- 6, 8) = 1~ (-6, 8) = ( -i, V. so 

D f(o / 3) - '<"7f(O . / 3) _ (:.2 1) ( 3 4) _ M + il _ 4-313 u , Tr -v , 1r · U - 2 •2 · - 5•5 - -10 10- 10 · 

vector in the direction ofv is u = Vl;H
2 

(i + 3 j ) = 'ftu Ci + 3j), so 

Dug(.2, 1) = 'ilg(2, 1) · u = (28 i - 12j ) · ~(i + 3j) = ~ (28 - 36) = - ?to or- 4~. 

15. f(x, y, z) = xeV + ye= + ze"' :::> '\1 f(x, y, z) = (ell + ze"', xeV + e=, ye= + e"'), 'ilf (O, 0, 0) = (1, 1, 1), and a unit 

vector in the direction ofv is u = ..;2s.!.I+4 (5, 1, -2) = 7:io (5, 1, -2), so 

Du f(O, 0, 0) = "V/(0, 0,0) · u = (1, 1, 1) · ~ (5, 1, - 2) = ~· 
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17. h(r, s, t) = ln(37· + 6s + 9t) => 'ilh(r, s, t) = (3/(3r + 6s + 9t), 6/(3r + 6s + 9t), 9/(3r + 6s + 9t)), 

'ilh(1, 1, 1) = (k, ft, ~), and a unit vector in the direction ofv = 4 i + 12j + 6 k 

is u = .;16+;4 4+3& (4i + 12j + 6k) = ~ i .+ ~ j + ~ k, so 

( ) '<'7h( ) ( l 1 1 ) ( 2 6 3) - 1 + 2 + 3 - 23 Duh 1,1, 1 = v 1, 1, 1 · U = 6•3•2 · 7•7•7 - 21 7 14 -42' 

19. f(x, y) = VxY => 'il f(x , y) = (Hxy)-11
2 (y), Hxy)- 112(x)) = / yt=' ~)·so 'il !(2, 8) = (1, ~ ) . \2 yxy 2 yxy -- . . 

The unit vector in the direction of PQ = (5 - 2, 4 - 8) = (3, -4) is u = ( ~, - ~ ), so 

. ( 1 (3 " )- 2 Duf(2,8)='il/(2,8)· u= 1,4)· 5•-6 -5. 

21. f(~,y) = 4yy'X => 'ilf(x,y) = ( 4y · ~x-112,4v'x) = (2yjy'x,4.,fi).' 

· 'il f(4 , 1) = {1, 8) is.the direction of maximum rat~ ofch~ge, and the maximum rate is·/'il /(4, 1)/ = v'1 + 64 = v'65. 

23. J(x, y) = sin(xy) => 'il f(x, y) = (y cos(xy), x cos(xy)), 'il !(1 , 0) = (0, 1). Thus the maximum rate of change is 

/'il f(1, 0)/ = 1 in the direction {0, 1). 

25. f(x,y ,z) = Jx2 + y2 + .z2 => 

'il f(3, 6, -2) = ( -7,w. ~· ~) = ( ~. ¥, -¥ ). Th~s the maximum rate ofchange is 

27. (a) As in the proof of Theorem 15, Du f = /'il !I cos 0. Since the minimum value of cos(} is - 1 occurring when(} = 11', the 

minimum value of Du f is - /'il f/ occurring when(} = 11', that is when u is in the opposite direction of 'il f. 

(assuming \7 f "f 0). 

(b) f(x , y) = x 4y - x2 y3 => 'il f(x, y) = ( 4x3 y - 2xy3
, x4 

- 3x2 y2
), so f decreases fastest at the point (2, -3) in the 

direction- 'il /(2 , - 3) = - {12, -92) = ( -12, 92). 

29. The directionoffastestchange is 'ilf(x,y) = (2x- 2) i + (2y- 4) j , so we need to find all points (x,y) where 'ilf(x,y) is 

parallel to i + j ¢'> (2x - 2) i + (2y - 4)j = k (i + j) ¢'> k = 2x- 2 and k = 2y - 4. Then 2x- 2 = 2y- 4 => 

y = x + 1, so the direction of fastest change is i + j at all points on the line y = x + 1. 
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k k 
31. T = and 120 = T(1, 2, 2) = - so k = 360. Jx2 + y2 +z2 3 

( ) 
- (1, - 1, 1) 

au- v'3 , 

DuT(1, 2, 2) = 'VT(1, 2, 2) · u = [.:._360( x2 + y2 + z2) -S/
2 

(x, y, z)] . u = - .123 (1, 2, 2). -4.. (1, -1, 1) = -~ 
. . {1,2,2) v3 3v3 

(b) From (a), 'VT = -360(x2 + y2 + z 2
) - S/

2 
(x, y, z), and since (x, y, z) is the position vector of the point (x, y, z), the 

vector - (x, y, z), and thus 'VT, always points toward the origin. 

33. 'VV(x, Y •. z) = (lOx- 3y + yz, xz - 3x, xy), 'VV(3, 4, 5) = (38, 6, 12) 

{a) Du V(3,4,5) = {38, 6, 12} · ~(1, 1, -1} = '7a 
(b) 'VV(3, 4, 5) = (38, 6 , 12), or equivalently, (19, 3, 6). 

(c) IV'V(3, 4, 5)1 = v'382 + 62 + 122 = v'l624 = 2 v'406 

-----t -----t 

35. A unit vector in the direction o(AB is i and a unit vector in the direction of AC isj. Thus D_..... f(1, 3) = f.,(1, 3) ~ 3 and 
AB 

D- f(l, 3) = / y(1, 3) = 26. Therefore \7 /(1, 3) = (!.,(1, 3), /y(l , 3)) = (3, 26}, and by definition, 
AC 

-----t 

DAD f (1 , 3) = V' f · u where u is a unit vector in the direction of AD, which is (fa, H). Therefore, 

DAD f (1, 3) = (3, 26) . . ( 153, H) = 3. fa + 26. H = 312;. 

37 () '["7( b)=(o(au+bv) 8(au+bv)) =\ au bav au bav)= (au au; b\av au; . a v au + v ~ ' a a ~ + {) , a ~- + ~ a a , ~ + ~ ' a 
uX y ux X uy uy X uy ux y 

.= a 'Vu + b 'Vv 

(d) '["7 n - ( o(un) 8(u")) - ( n - 1 au n - 1 au) - n - 1 '["7 
v u - , - nu , nu · - nu v u 

ax oy ox {)y 

39. f(x, y) = x3 + 5x2y + y3 . "* 
Duf(x,y) = 'Vf(x , y) · u = (3x2 + lOxy, 5x2 + 3y2) · (~, ~) = ~x2 + 6xy+ 4x2 + ¥v2 = ~x2 + 6xy + ¥y2. Then 

D~.J(x,y) = Du (Duf(x ,y)] = \7 [Duf(x,y)] · u = (¥x + 6y, 6x + -\1Y) · (~, ~) 

= l;s4x + Jfy + ¥x + ~y = 2is4x + ~ar,oY 

and D~f(2 , 1) = 2iu4 (2) + 12866 (1) = 72754 . 
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41. Let F(x, y, z) = 2(x - 2)2 + (y - 1? + (z - 3)2
. Then 2(x - 2)2 + (y - 1f + (z - 3)2 = 10 is a level surface of F. 

F:.(x , y,z) = 4(x - ·2) =? F,(3, 3, 5) = 4, F11 (x,y,z) = 2(y- 1) =? F11 (3,3,5) = 4, and 

Fz(x,y, z) =2{z - 3) =? Fz{3,3, 5) = 4. 

(a) Equation 19 gives an equation of the tangent plane at {3, 3, 5) as 4{x - 3) + 4{y - 3) + 4{z- 5) = 0 <=> 

4x + 4y + 4z = 44 or equivalently x + y + z = 11. 

. I I' h . . x - 3 y - 3 z - 5 . I l (b) By EquatiOn 20, the norma me as symmetnc equat10ns -
4
- = -

4
- = -

4
- or eqUiva ent y 

x - 3 = y - 3 = z - 5. Corresponding parametric equations are x = 3 + t, y =; 3 + t, z = 5 + t. 

43. Let F(x, y, z ) = xyz2 • Then xyz2
· = 6 is a level surface ofF and 'V F(x, y, z ) = (yz2

, xz2 , 2xyz). 

(a) 'V F(3, 2, 1) ~ (2,3, 12) is a normal vector for the tangent plane at {3, 2, 1), so an equation of the tangent plane 

is 2(x - 3) + 3(y - 2) + 12(z - 1) = 0 or 2x + 3y + 12z = 24. 

(b) The normal line has direction (2, 3, 12), so parametric equations are x = 3 + 2t, y = 2 + 3t, z = 1 + 12t, and 

. . x-3 . y-2 z- 1 
symmetriC equations are -

2
- = -

3
- = l2. 

45. Let F (x , y, z) = x + y + z - e"'Yz. Then x + y + z = e"'11:; is the level surface F(x, y , z ) = 0, 

and 'V F(x, y, z) = (1 - yze"'Y:;, 1 - xze"'11"", 1 - x ye"'11z). 

(a) 'V F(O, 0, 1) = (1, 1, 1) is a normal vector for the tangent plane at {0, 0, 1), so an equation of the tangent plane 

is 1(x- 0) + 1{y - 0) + 1(z - 1) = 0 or x + y + z = 1. 

(b) The normal line has direction (1, 1, 1), so parametric equations are x = t, y = t, z = 1 + t, and symmetric equations are 

x = y =z- 1. 

47. F(x, y , z) = xy + yz + zx, 'V F (x, y, z) = (y + z , x + z, y + x), 'V F{1, 1, 1) = (2, 2, 2), so an equation of the tangent 

plane is 2:r; + 2y +2z = 6 or x + y + z = 3, and the normal line is given by x - 1 = y - 1 = z - 1 or x = y = z. To graph 

3 - xy 
the surface we solve for z : z = --- . 

- x+y 
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49. f(x, y) = xy => '\1 f(x , y) = (y, x}, '\1 !(3, 2) = (2, 3). '\1 !(3, 2) 

is perpendicular to the tangent line, so the tangent line has equation 

'\1](3, 2) · (x - 3, y- 2} = 0 => (2, 3) · (x- 3, x- 2) = 0 => 

2(x - 3) + 3(y - 2) = 0 or 2x + 3y = 12. 

I 2xo 2yo 2zo J . . 
51. '\1 F(xo, yo, zo) = \ (i2• 1)2• C2 . . Thus an equatiOn oflhe tangent plane at (x0 , y0 , zo) 1s 

2xo 2yo 2zo ( x5 y~ z~ ) ( ) . . . . . (i2 x + 1)2 Y + C2 z = 2 a2 + b2 + c2 = 2 1 = 2 smce (xo, yo, zo) IS a pomt on the elhps01d. Hence 

xo · Yo zo 1 . . fth 1 2 x + b2 y + 2 z = 1s an equation o e tangent p ane. 
a c 

( ) I 2xo 2yo - 1 J ' . . 2xo 2yo 1 2x5 2y5 zo 
53. '\1 F xo, yo, zo = \ (i2• 1)2, c , so an equatiOn of the tangent plane 1s (i2 x -1: 1)2 y - c z = (i2 + 1)2 - c 

2xo 2yo z ( x2 y2
) zo zo x2 y2 

. . 
or - 2 x + -b2 y =- + 2 -% + b~ - - . But - = -% + b~, so the equat1on can be written as 

a c a c c a 
I 

2xo 2yo z + zo 
- x+ - y = --. 
a2 b2 c 

55. The hyperboloid x 2 
- y 2 

- z2 = 1 is a level surface of F(x, y, z) = x2 
- y2 

- . z2 and '\1 F (x, y , z) = (2x, -2y, -2z) is a 

nonnal vector to the surface and hence a nonnal vector for the tangent plane at (x, y, z). The tangent plane is parallel to the 

plane z = x + y or x + y- z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (xo, yo, zo) 

on the hyperboloid wh~re (2xo, -2yo, - 2zo) = c (1, 1·, ....,-1) or equivalently (xo, - yo, -zo) = k (1, 1, -1) for some k ¥: 0. 

Then we must have xo = k , yo = - k , zo = k and substituting into the equation of the hyperboloid gives 

k2 
- ( -k)2 ~ k2 = 1 {:} - k2 = 1, an impossibil ity. Thus there is no such point on the hyperboloid. 

57. Let (xo, y0 , z0 ) be a point on the cone [other than {0, 0, 0)]. The cone is a level surface of F(x, y, z) = x 2 + y2 
- z2 and 

'\1 F(x, y, z) = (2;t, 2y, - 2z), so '\1 F(xo, yo, zo) = (2xo, 2yo, -2zo) is a nomial vector to the cone at this point and an 

equation of the tangent plane there is 2xo (x - xo) + 2yo (y - y0 ) - 2zo (z - zo) = 0 or xox + yoy - zoz = x~ + y5- z5. 

But x& + v5 = za so the tangent plane is given by xox + YOY - ZoZ = 0, a plane which always contains the origin. 

59. Let F(x, y , z) = x2 + y2
- z. Then the paraboloid is the level surface F (x, y, z) = 0 and '\1 F (x , y ; z) = (2x,2y, -1), so 

'\1 F(1, 1, 2) = '(2, 2,-1) is a nonnal vector to the surface. Thus the normal line at (1, 1, 2) is given by x = 1 + 2t, 

y = 1 + 2t, z = 2- t. Substitution into the equation of the paraboloid z = x 2 + y~ gives 2- t = {1 + 2t)2 + {1 + 2t? {:} 

2 - t = 2 + 8t + Bf {:} 8t2 + 9t = 0 {:} t(Bt + 9) = 0. Thus the line intersects the paraboloid when t = 0, 

corresponding to the given point (1, 1, 2), or when t = -~,corresponding to the point (-%, -~, ¥). 
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61. Let (xo, y0 , zo) be a point on the surface. Then an equation of the tangent plane at the point is 

X y Z JXO+Jy0+ /Zo r;. . · · -- + -- + r.;:: = . But JXo + ..;Yo + v'Zo = v c, so the equation IS 
2y'Xo 2..;Yo 2yZo 2 

-=-- + _]f_ + ~ = .;c. The x-, y-, and z-intercepts are foO, -ICYo and .jCZO respectively. (The X-intercept is found by 
y'Xo ..;Yo v zo 

setting y = z = 0 and solving the resulting equation for x, and they- and z-intercepts are found similarly.) So the sum of the 

intercepts is .jC ( JXo + ffo + v'Zo) = c, a constant. 

63. If f(x, y, z ) = z - x2
- y2 and g(x, y, z) = 4x2 + y 2 + z2

, then the tangent line is perpenoicular to both "il f and "ilg 

at ( - 1, 1, 2). The vector v = "il f x "ilg will therefore be parallel to the tangent line. 

We have "il f(x , y, z ) = ( - 2x, -2y, 1) =? "il f ( - 1, 1, 2) = (2, - 2, 1), and "il g(x, y , z ) = (8x, 2y, 2z) =? 

j k 

"Vg(- 1, 1, 2)= (-8, 2,4).Hencev="Vf x "Vg = 2 - 2 1 = - 10 i-16 j-12k. 

- 8 2 4 

Parametric equations are: x = -1 - lOt, y = 1 - 16t, z = 2 - 12t. 

65. (a) The direction of the normal line ofF is given by "il F, and that of G by "VG. Assuming that 

"il F -1= 0 -1= "VG, the two normal lines are perpendicular at P if "il F · "VG = 0 at P -¢:? 

(8Fj8x, 8F/8y,8F/8z) · (8G j8x, 8G/ 8y, 8G/ 8z) = 0 at P # F_..,G, + FvGv + FzGz = 0 at P. 

(b) Here F = x 2 + y 2
- z2 and G = x2 + y2 + z2

- r 2
, so 

"il F · "VG = (2x, 2y, - 2z) · (2x, 2y, 2z) = 4x2 + 4y2
- 4z 2 = 4F = 0, since the point (x , y, z ) lies on the graph of 

F = 0. To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and 

F = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin). At 

any point of intersection, the sphere's normal line (which passes through the origin) lies on the cone, and thus is 

perpendicular to tl1e cone's normal line. So the surfaces with equations F = 0 and G = 0 are everywhere orthogonal. 

67. Let u = (a , b) and v = (c, d). Then we know that at the given point, Du f = "il f · u = afx + bfv and 

Dv I = "il I · v = clx + dfv· But these are just two linear equations in the two unknowns fx and fv, and since u and v are 

not parallel, we can solve the equations to find "V f = (f., , f v) at the given point. In fact, 

"V f = I d Du f - b Dv f , a Dv f - c D u f ) . 
\ ad - be ad - be 
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14.7 Maximum and Minimum Values 

1. (a) First we compute D(1, 1) = f,x(1, 1) fvv(1, 1)- [f:cy(1, 1W = (4)(2) - (1? = 7. Since D(1, 1) > 0 and 

f o:x (1, 1) > 0, f has a local minimum at (1, 1) by the Second Derivatives Test. 

(b) D(1, 1) = f.xx (1, 1) fuy(1, 1)- [fxu(1, 1W = (4)(2)- (3)2 = - 1. Since D(1, 1) < 0, f has a saddle point.at (1, 1) by 
' 

the Second Derivatives Test. 

3. In the figure, a point at approximately (1 , 1) is enclosed by level curves wh'ich are oval in shape and indicate that as we move 

away from the point in any direc~ion the values off are increasing. Hence we would expect a local minimum at or near (1, 1) . 

The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values off increase in some 

directions and decrease in others, so we would expect to find a saddle point there. 

To verify our predictions, we have f(x, y) = 4 + x3 + y 3 
- 3xy => f x (x , y) = 3x2 

- 3y, f v (x, y) = 3y2 
- 3x. We 

have critical points where these partial derivatives are equal to 0: 3x2 
- 3y = 0, 3y2 

- 3x = 0. Substituting y = x 2 from the 

first equation into the second equation gives 3(x2
)

2
- 3x = 0 => 3x(x3 

- 1) = 0 => x = 0 or x = 1. Then we have 

two critical points, (0, 0) and (1, 1). The second partial derivatives are f xx (x, y) = 6x, fxu(x, y) = -3, and fvu(x, y) = 6y, 

' ' 2 2 
so D(x, y) = fxx(x , y) fuv(x, y)- [fxu(x, y)] = (6x)(6y)- (-3) = 36xy- 9. Then D(O, 0) = 36(0)(0) - 9 = - 9, 

and D (1, 1) = 36(1)(1) - 9 = 27. Since D(O, 0) < 0, f has a saddle point at (0, 0) by the Second Derivatives Test. Since 

D (1, 1) > 0 and fxx(1, 1) > 0, f has a local minimum at (1 , 1). 

5. f(x, y) = x2 + x y + y2 + y => f x = 2x + y, fv = x + 2y + 1, fxx = 2, fx 11 = 1, fvv = 2. Then fx = 0 implies 

y=-2x,andsubstitutionintofy=x + 2y + 1=0 gives x+2(~2x) +1=0 => -3x=-1 => x = i· 

Then y =-~and the only critical point is (t, -~). 

D(x, y) = fxxfvv - (fru)2 = (2)(2) - (1? = 3, and since_ 

D(~, -D = 3 > 0 and fxx(i, -~) = 2 > 0, !(~ , -~) = -~ is a local 

minimum by the Second Derivatives Test. 

7. f(x,y) = (x- y)(1- xy) = x -y- x2 y+ xy2 => f x = 1 - 2xy +y2
, fv = - 1- x2'+ 2xy, fx:n = -2y, 

f xv = - 2x + 2y, fvv = 2x. Then fx = 0 implies 1 - 2xy + y2 = 0 and / 11 = 0 implies -1 - x 2 + 2xy = 0. Adding the 

two equations gives 1 + y2 - 1- x 2 = 0 => y2 = x2 => y = ±x, but ify = -x then f x = 0 implies 
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1 '+ 2x2 + x 2 = 0 =} 3x2 = -1 which has no real solution. l fy = x 

then substitution into f, = 0 gives 1 - 2x2 + x2 = 0 =} x2 = 1 =} 

x = ±1, so the critical points are (1, 1) and ( -1, -1). Now 

D (1, 1) = ( - 2)(2) - 02 = - 4 < 0 and 

D( - 1, - 1) = (2)( -2)- 02 = -4 < 0, so (1, 1) and ( -1, - 1) are 

saddle points. 

9. f(x, y) = y 3 + 3x2y - 6x2
- 6y2 + 2 =} f ,. = 6xy - 12x, ! 11 = 3y2 + 3x2

- 12y, f x:t = 6y- 12, f xu = 6x, 

fw = 6y - 12. Then f z = 0 implies 6x(y- 2) = 0, sox = 0 or y = 2. If x = 0 then substitution into j y = 0 gives 

3y2 - 12y = 0 =} 3y(y- 4) = 0 =} y = 0 or y = 4, so we have critical points (0, 0) and (0, 4). If y = 2, 

substitution into jy = 0 gives 12 + 3x2 
- 24 = 0 =} x 2 = 4 =} 

x = ±2, so we have critical points (±2, 2). 

D(O, 0) = ( - 12)( -12) - 02 = 144 > 0 and fu(O, 0) = - 12 < o •. so 

f(O, 0) = 2 is a local maximum. D{O, 4) = (12){12) - 02 = 144 > 0 

and f xx(O, 4) = 12 > 0, so f(O , 4) = -30 is a local minimum. 

D(±2, 2) = {0)(0)- {±12)2 = -144 < 0, so (±2, 2) are saddle points. y 

11. f(x, y) = x3 - 12xy + _8y3 
=} fx = 3x 2

- 12y, f u = - 12x + 24y2
, fxx = 6x, fx11 = - 12,/1111 = 48 y . Then fx = 0 

implies x 2 ·= 4y and / 11 = 0 implies x = 2y2
• Substituting the second equation into the first gives {2y2

}2 = 4y =} 

4y4 = 4y =} 4y(y3 - 1) = 0 =} y = 0 or y = 1. lfy = 0 then 

x = 0 and if y = 1 then x = 2, so the critical points are (0, 0) and {2, 1). 

D(O, 0) = {0){0) - ( - 12)2 = - 144 < 0, so (0, 0) is a saddle point.· 

D(2, 1) = (12)(48)- ( -12? = 432 > 0 and fxx(2 , 1) = 12 > 0 so 

!(2, 1) = -8 is a local .minimum. 

13. f(x,y)=e"'cosy =} f x=e"'cosy, / 11 =-e"'siny. 

Now f a: = 0 implies cosy = 0 or y = f + mr for nan integer. 

But sin ( f + mr) =1- 0, so there are no critical points. 
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( 
2 2) 2 2 ( ) 2 2 2 2 . 2 2 l" = x + y e'~~ - :r - 2x + 2xe'~~ -:r = 2xe'~~ - :r (1 - x - y ), 

2 2 2 2 ( ( 2 2) 2 2) 2 2 fzx = 2xe'fl - o: ( - 2x) + (1- x - y ) 2x -2xe'~~ -:r + 2e'fl - :r = 2e'~~ -:r ((1- x 2 - y2 )(1 - 2x2 ) - 2x2 ), 

22 22 2 2 22 
f xv = 2xe'11 - o: (- 2y) + 2x(2y)eY -:r (1 - x - y ) = ~4xyeY - x (x2 + y2 ), 

f 11v = 2yeV - o: (2y) + (1 + x + y ) 2y 2yeV -:r + 2eY - :r = 2e71 - :r ((1 + x2 + y2 )(1 + 2y2 ) + 2y2). 2 2 2 2 ( ( 2 2) 2 2 ) 2 2 

fv = 0 implies y = 0, and substituting into fx = 0 gives 

2xe-"'
2 

(1 - x2
) = 0 ~ x = o. or x = ± 1. Thus the critical points are 

(0, 0) and (±1, 0). Now D(O, 0) = (2)(2) - 0 > 0 and f :r:x (O , 0) = 2 > 0, 

so f(O, 0) = 0 is a local minimum. D(±l, 0) = ( - 4e-1)(4e-1
)- 0 < 0 

so (±1, 0) are saddle points. 

17.f(x,y)=y2 - 2ycosx ~ j ; =2ysinx,fv=2y -2cosx, 

fxx = 2y cos x, f .,11 = 2 sin x, f v11 = 2. Then/:. = 0 implies y = 0 or 

sinx = 0 ~ x = 0, 1r, or 211" for -1 :-::; x :-::; 7. Substituting y = 0 into 

f v = 0 gives cosx = 0 ~ x = ~or 3
;, substituting x = 0 or x = 21r 

into f 71 = 0 gives y = 1, and substituting x = 1r into fv = 0 gives y = - 1. 

Thus the critical points are (0, 1), ( ~. 0) , (1r, -1), ( 3;, 0), and (21r, 1). 

D (~ , 0) = D e2"", 0) = -4 < 0 so (~, 0) and e;, 0) are saddle points. D(O, 1) = D(1r, -1) = D(21r, 1) = 4 > 0 and 

fa:x(O , 1) = fxx('Tr, - 1) = fxo:(27r, 1) = 2 > 0, so f(O, 1) = j(1r, -1) = f(27r, 1) = - 1 are local minima. 

19. f(x, y) = x2 + 4y2 - 4xy + 2 ~ fx = 2x- 4y, fv =By - 4x, f x:r: = 2, f, v = -4, / 1171 = 8. Then fx = 0 

and fv = 0 each implies y = ~x, so all points of the form (xo, ~xo) are critical points and for each ofth~se we have 

D(xo, ~xo) = (2)(8) - ( -4)2 = 0. The Second Derivatives Test gives no information, but 

f(x,y) = x2 +4y2 - 4xy + 2 = (x- 2y}2 + 2 ;:: 2 with equality if and only ify = ~x. Thus f(x0 , ~xo) = 2 are all local 

(and absolute) minima. 
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From the graphs, there appear to be local minimaofabout/(1, ±1) = f( - 1,±1) ~ 3 (and no local maxima or saddle 

points). f, = 2x - 2x- 3 y-2
, fv = 2y - 2x- 2 y-3

, f xx = 2 + 6x-4y- 2
, fx11 = 4x-3y- 3

, / 1111 = 2 + 6x- 2y-4 • Then 

2.5 

f, = 0 implies 2x4 y2
- 2 = 0 or x4 y 2 = 1 or y2 = x - 4

• Note that neither x nor y can be zero. Now f v = 0 implies 

2x2y4 - 2 = 0, and with y 2 = x-4 this implies 2x-6 
- 2 = 0 or x 6 = 1. Thus x = ±1 and if x = 1, y = ± 1; if x = - 1, · 

y = ±1. So the critical points are (1, 1), (1, - 1),( - 1, 1) and ( - 1, -1). Now D(1, ± 1) = D( -1, ±1) = 64 - 16 > 0 and 

fxx > 0 always, so f(1, ± 1) = f ( -1, ± 1) = 3 are local minima. 

23. f(x,y) = sin x +siny+sin(x +y), 0 :S: x :S: 2rr, 0 :S: y :S: 2rr 

y 

From the graphs it appears that f has a local maximum at about (1, 1) with value approximately 2.6, a local minimum 

at about (5, 5) with value approximately -2.6, and a saddle point at about (3, 3). 

f :z: = cos x + cos(x + y), fv = co:;y + cos(x + y), f xx = - sinx- sin(x + y ), / 11y = - siny- sin(x + y), 

f x y = - sin(x + 1J). Setting fx = 0 and / 11 = 0 and subtracting gives cos x - cos y = 0 or cos i = cos y. Thus x = y 

or x = 2rr - y. l fx = y, f , = 0 becomes cosx + cos 2x = 0 or 2 cos2 x + cosx - 1 = 0, a quadratic in cosx. Thus 

cos x = - 1 or ~ and x = rr, i , or r; , giving the critical points ( rr, rr ), ( i, i) and ( 5;, 5;) . Similarly if 

x = 2rr - y , f :z: = 0 becomes (cos x) + 1 = 0 and the resulting critical point is (rr, rr). Now 

D(x, y) = sin x sin y + sinx sin(x + y) +sin y sin(x + y) . So D(1r, 1r) = 0 and the Second Derivatives Test doesn't apply. 

However, along the line y = x we have f(x , x) = 2sin x + sin2x = 2 sinx + 2sin x cos x = 2sin x (1 + cosx), and 
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f(x , x) > 0 for 0 < x < 1r while f(x , x) < 0 for 1r < x < 21r. Thus every disk with center (1r, 1r) contains points where f is 

positive as well as points where f is negat~ve, so the graph crosses its tangent plane (z = 0) there and (1r , 1r) is a saddle point. 

D(~, ~) = * > 0 and fxx (~,·?f) < 0 so/(~,~) = .tf! is a local maximum while D( 5
3", 

6
;) = ~ > 0 and 

f xx ( 5;, 5;) > 0, so f ( 63" , 
6
;) = -¥ is a local minimum. 

4x(x2
- 2y) = 0, sox= 0 or x 2 = 2y. lfx = 0 then substitution into f 11 = 0 gives 4y3 = -2 :::::} • 1 

y = - 1i2, so 

( 0, - ~) is a critical point. Substituting x 2 = 2y into fv = 0 gives 4y3 
- 8y + 2 = 0. Using a graph, solutions are 

approximately y = - 1.526, 0.259, and 1.267. (Alternatively, we could have used a calculator or a CAS to find these roots.) 

We have x2 = 2y => x = ±.J2Y, soy = -1.526 gives no real-valued solution for x, but 

y = 0.259 => x ~ ± 0.720 andy = ,1.267 => x ~ ±1.592. Thus to three decimal places, the critical points are 

( 0, -~) ~ (0, - 0.794), (±0.720, 0.259), and (±1.592, 1.267). Now since f xx = 12x2 
- 8y, f .,11• = - 8x, f 1111 = 12y2

, 

and D = (12x2
- 8y)(12y2

)- 64x2
, we have D(O, -0.794) > 0, fxx(O, - 0.794) > 0, D(±0.720, 0.259) < 0, 

D(±1.592, 1.267) > 0, and f xx (± 1.592, 1.267) > 0. Therefore /(0, _-0.794) ~ - 1.191 and /(±1.592, 1.267) ~ - 1.310 

are local minima, and (± 0. 720, 0.259) are saddle points. There is no highest point on the graph, but the lowest points are 

approximately (±1.592, 1.267, -1.310). 

20 

10 

0 

-6 

y 

27. f(x , y) = x 4 +y3
- 3x2 +y2 +x - 2y + 1 => f x (x , y) = 4x 3

- 6x + 1 and f 11(x , y) = 3y2 + 2y- 2. From the 

graphs, we see thatto three decimal places, f ., = 0 when x ~ -1.301, 0.170, or 1.131, and / 11 = 0 when y ~ -1.215 or 

0.549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to 

find the solutions of / 11 = 0.) So, to three decimal places, f has critical points at ( - 1.301, - 1.215), ( - 1.301, 0.549), 

(0.170, -1.215), (0.170, 0.549), (1.131, - 1.215), and (1.131, 0.549). Now since / zz = 12x2
- 6, fx 11.= 0, f 11y = 6y + 2, 

and D = (12x2
- 6)(6y + 2), we have D( -1.301, -1.215) < 0, D( - 1.301, 0.549) > 0, f xx( -1.301, 0.549) > 0, 

D(0.170, - 1.215) > 0, f xx (0.170, - 1.215) < 0, D(0.170, 0.549) < 0, D(l.131, -1.215) < 0, D(l.131, 0.549) > 0, and 

/ xz (l.131, 0.549) > 0. Therefore, to three decimal places, f( -1.301, 0.549) ~ -3.145 and /(1.131, 0.549) ~ - 0.701 are 
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local minima, !(0.170, - 1.215) ::::: 3.197 is a local maximum, and ( -1.301, -1.215), (0.170, 0.549), and (1.131 , -1.215) 

are saddle points. There is no highest or lowest point on the graph. 

3 

z 

29. Since f is a polynomial it is contint,Jous on D, so an absolute maximum and minimum exist. Here f x = 2x- 2, jy = 2y, and 

setting fx = jy = 0 gives (1, 0) as the only critical point (which is inside D), where f (1, 0) = - 1. Along £ 1 : x = 0 and 

f(O, y) = y2 for -2 ~ y ::=:; 2, a quadratic function which attains its minimum at y = b, where f(O, 0) = 0, and its maximum 

·aty = ±2, wheref(0,±2) = 4. Along £2: y = x- 2 forO ::=:; x ~ 2, and f(x,x- 2) = 2x2 - 6x + 4 = 2 (x _ ~) 2 _ ~ . 

a quadratic which attains its minimum at x = £, where f ( ~, - ~) = - ~, and its maximum at x = 0, where f ( 0, - 2) = 4. 

Along £3: y = 2 - x for 0 ~ x ::::; 2, and 

f(x, 2- x) = 2x2
- 6x + 4 = 2(x- ~)2 - ~.a quadratic which attains 

its minimum at x =~~where f(~, ~) =-~,and its maximum at x = 0, 

where f (O, 2) = 4. Thus the absolute maximum off on D is f(O, ±2) = 4 

and the absolute minimum is !(1, 0) = -1. 

31. f x(x,y) = 2x +2xy, jy(x,y) = 2y +x2
, and setting f.,= f" = 0 

gives (0, 0) as the only critical point in D , with .f(O, 0) = 4. 

On £ 1: y = -1, j(x, - 1) = 5, a constant. 

On £2: x = 1, /(1, y) = y2 + 11 + 5, a quadratic in y which attains its 

maximum at (1, 1), /(1, 1) = 7 and its minimum at (1, -~) , f(1 , - t) =.!f . 

On £ 3: f(x , 1) = 2x2 + 5 which attains its maximum at ( -1, 1) and (1, 1) 

with f(±l , 1) = 7 and its minimum at (0, 1), f(O, 1) = 5. 

y 

(0,2) 

L, 

(0, - 2) 

(-1 , 1) 

L• 

(-1,-1) 

(2,0) 

X 

y 

L, (I, I) 

L2 
0 

L, (1,-1) 
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On .i4 : f( -1, y) = y2 + y + 5 with maximum at ( -1, 1 ), f( - 1, 1) = 7 and minimum at ( -1, -D. f( - 1, -~) = Jf. 
Thus the absolute maximum is attained at both (±1, 1) with /(±1, 1) = 7 and the absolute minimum on Dis attained at 

(0, 0) with f(O, 0) = 4. 

33. f(x , y) = x 4 +y4
- 4xy + 2 is a polynomial and hence continuous on D, so Y 

it has an absolute maximum and minimum on D. fx(x, y) = 4x3
- 4y and 

fv(x, y) = ·4y3
- 4x; then f x = 0 implies y = x3

, and substitution into 

(0, 2)+---L--'3'-------1(3, 2) . 

fv = 0 => x = y3 gives x9 - x = 0 => x(x8 - 1) = 0 => x = 0 

or x = ±1. Thus the critical points are -(0 , 0), (1, 1), and ( - 1, - 1), but only 

(1, 1) with f(1, 1) = 0 is inside D . On £1: y = 0, f(x, 0) = x 4 + 2, 

(0,0) (3,0) X 

0 ~ x ~ 3, a polynomial in x which attains its maximum at x = 3, !(3, 0) = 83, and its minimum at x = 0, f (O, 0) = 2. 

On £ 2 : x = 3, /(3, y) = y 4
- 12y + 83, 0 ~ y ~ 2, a polynomial in y which attains its minimum at y = {/3, 

/(3, {13) = 83- 9 .{/3 ~ 70.0, and its maximum at y = 0, ! (3, 0) = 83. 

On L3 : y = 2, f( x, 2) = x 4 - Bx + 18, 0 ~ x ~ 3, a polynomial in x which attains its minimum at x = q'2, 

f( q'2, 2) = is- 6 ij2 ~ 10.4, and its maximum at x = 3, /(3, 2) = 75. On £ 4: x = 0, f(O, y) = y4 + 2, 0 ~ y ~ 2, a 

polynomial in y which attains its maximum at y = 2, f(O , 2) = 18, and its minimum at y = 0, f(O, 0) = 2. Thus the absolute 

maximum off on Dis /(3, 0) = 83 and the absolute minimum is /(1, 1) = 0. 

35. f,(x, y) = 6x2 and fv(x, y) = 4y3
• And so f x = 0 and fv = 0 only occur when x = y = 0. Hence, the only critical point 

.inside the disk is at x = y :::o 0 where /(0, 0) = 0. Now on the circle x 2 + y2 = 1, y2 = 1 - x 2 so let 

g(x) = f(x, y) =·2x3 + (1- x2
)

2 = .x 4 + 2x3
- 2x2 + 1,-1 ~ x ~ 1. Then g'(x) = 4x3 + 6x2

- 4~ = 0 => x = 0, 

-2, or ~ - /(0,±1) = g(~) = 1, !(~, ±1) = g(~) = ~· and ,(-2,-3) is not in D. Checking the endpoints, we get 

.f( -1, 0) = g( -1) = -2 and f(1 , 0) = g(1) = 2. Thus the absolute maximum and minimum off on Dare /(1, 0) = 2 and 

f( - 1,0) = - 2. 

Another method: On the boundary x 2 + y2 = 1 we can write x = cos (;I, y = sin 8, so f (cos 8, sin 8) = 2 cos3 8 + sin 4 (;I, 

0 ~ () ~ 27T. 

37. f(x, y) = - (x2
- 1)2

- (x 2y- x - 1)2 => f,(x, y) = - 2(x2
- 1)(2x) - 2(x2y- x - 1)(2xy- 1) and 

jy(X, y) = -2(x2y- x - 1)x2
. Setting j y(x, y) = 0 gives either x = 0 or x2y - x- 1 = 0. 

There are no critical points for x = O,.since f:.,(O, y) = .:_2, so we set x 2y - x- 1 = 0 {:} y = x ~ 1 
[x =/= 0], 

X 

so f , ( x, x~ 1 ) = ·-2(x2 - 1){2x)- 2(x2 x ~ 1 - x - 1) (2x x ~ 1 
- 1) = -4x(x2 - 1). Therefore 

f,(x, y) = fv(x, y)- = 0 at the points (1, 2) and ( -1, 0). To classifY these critical points, we calculate 
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f :u:(x, y) = - 12x2
- 12x2y2 + 12xy + 4y + 2, f vv(x, y) = - 2x", 

and f zv(x , y) = -8x3y + 6x2 + 4x. In order to use the Second Derivatives Of-----1~ 

Test we calculate - I 

D(-1,0) = fxx(-1 , 0) / 7171 (-1,0) - [f:c71 (-1 , 0)]~ = 16 > 0, -2 

/ :r:c ( - 1, 0) = -10 < 0, D (1, 2) = 16 > 0, and f:r:c{1, 2) = -26 < 0, so 

both ( -1, 0) and (1, 2) give local maxima. X 

39. Let d be the distance fr~m {2, 0, -3) to any point (x, y, z ) on the plane x + y + z = 1, sod= J(x - 2)2 + y2 + (z + 3)2 

where z = 1- x- y, and we minimize d2 ~ f(x, y) = (x - 2)2 + y2 + {4 - x- y)2
• Then 

j;,(x,y) = 2(x- 2) + 2{4- x - y)( -1) = 4x + 2y -12, f 71 (x,y) = 2y + 2(4 - x- y){-1) = 2x + 4y - 8. Solving 

4x + 2y- 12 = 0 and 2x + 4y- 8 = 0 simultaneously gives x = ~. y = ~.so the only critical point is(~,~). An absolute 

minimum exists (since there is a minimum di.stance from the point to the plane) and it must occur at a critical point, so the 

shortest distance occurs for x = ~. y = ~ for which d = J (~ - 2)
2 + (j)

2 + (4 - ~ - ~)2 = ji = ~-

41. Let d be the distance from the point {4, 2, 0) to any point {x, y, z) on the cone, sod = ,j(x - 4)2 + (y- 2)2 + z2 where 

z2 = x 2 + y2
, and we minimize d2 = (x - 4)2 + (y - 2) 2 + x 2 + y2 = f(x, y). Then 

fz(x, y) = 2 (x - 4) + 2x = 4x - 8, f 71 (x , y) = 2 (y - 2) + 2y = 4y- 4, and the critical points occur when 

f., = 0 => x = 2, fu = 0 => y = 1. Thus the only critica l point is (2, 1). An absolute minimum exists (since there is a 

minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest 

to ( 4, 2, 0) are (2, 1, ±v'5). 

43. x + y + z = 100, so maximize f(x , y) = xy(l OO - x- y) . f x = 100y- 2xy- y2
, f 71 = 100x - x 2 - 2xy, 

f, :r. = - 2y, f vu = -2x, fxv = 100- 2x- 2y. Then J,r; = 0 implies y = 0 or y = 100- 2x. Substituting y = 0 into 

fv = 0 gives x = 0 or x = 100 and substi~ting y = 100 - 2x into fv = 0 gives 3x2 
- 100x = 0 sox = 0 or 1~ . 

Thus the critical points are (0, 0), (100, 0), (0, 100) and ( 1~0 , 1~0 ) . 

D(O, 0) = D{100, 0) = D {O, 100) = -10,000 while D(1~0 , 1~0 ) = 10·~00 and f xx (1~0 , 1 ~0 ) = - 2~ < 0. Thus (0, 0), 

(100, 0) and {0, 100) are saddle points whereas f( 1~0 , 1~0 ) is a local maximum. Thus the numbers are x = y = z = 1~0 . 

45. Center the sphere at the origin so that its equation is x2 + y 2 + z2 = 1·
2

, and orient the inscribed rectangular box so that its 

edges are parallel to the coordinate axes. Any vertex of the box satisfies x2 + y2 + z 2 = r 2
, so take (x, y, z) to be the vertex 

in the fi rst octant. Then the box has length 2x, width 2y, and he ight 2z = 2 ,jr2 - x 2 - y2 with volume given by 

V(x , y) = (2x)(2y)(2 Jr2 - x2 - y2 ) = 8xy Jr2 - x2 - y 2 forO < x < r, 0 < y < r. Then 

8y(r2 
- 2x 2

- y 2
) 8x(r2

- x2
- 2y2

) V., = (Bxy) . ~(r2- x2- y2)-1 f2( -2x) + ,jr2 - x2 - y2. By= . ·and Vv = . ,j r2 _ x2 _ y2 . J r2 _ x2 _ y2 

Setting Vx = 0 gives y = 0 or 2x2 + y 2 = r 2
, but y > 0 so only the latter solution applies. Similarly, V71 = 0 with x > 0 
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implies x2 + 2y2 = r 2
. Substituting, we have 2x 2 + y2 = x 2 + 2y2 ::::> x 2 = y2 ::::> y = x. Then x 2 + 2y2 = r 2 '* 

3x
2 

= r
2 

::::> x = .jr"i]3 = r I vf3 = y. Thus the oni,Y critical point is (r I vf3, r I ,/3 ). There must be a maximum 

volume and here it must occur at a critical point, so the maximum volume occurs when x = y = r 1 V3 and the maximum 

.47. Maximize f(x, y) = x; (6- x- 2y), then the maximum volume is V = xyz . 

f ., = i(6y ~ 2xy- y2
) = h(6- 2x- 2y) and fv = ~x (6 - x - 4y). Setting fx =:= 0 and j 11 = 0 gives the critical point 

(2, 1} which geometrically must give a maximum. Thus the volume of the largest such box is V = (2)(1) ( ~) = t · 

49. Let the dimensions be x, y, and z; then 4x + 4y + 4z = c and the volume is 

V = xyz = xv(ic- x - y) = ic:cy- x2 y - xy2
, x > 0, y > 0. Then V, = ~cy- 2xy- y2 and Vy = ~ex- x 2

- 2xy, 

so Vx = 0 = Vy when 2x + y = ic and x + 2y =~c. Solving, we get x =f-ie, y = 1
1
2 c and z = ic- x- y = f-ie. From 

the geometrical nature of the ·problem, this critical point must give an absolute maximum. Thus the box is a cube with edge 

length -f2c. 

51. Let the dimensions be x, y and z, then minimize xy + 2(xz + yz) if xyz = 32,000 cm3
• Then 

f(x,y) = xy + [64,000(x + y)fxy] = xy + 64,000(x- 1 + y- 1
), fx = y- 64,000x-2

, f v = x- 64,000y- 2
. 

And fx = 0 implies y = 64,000/x2
; substituting into / y = 0 implies x3 = 64,000 or x = 40 and then y = 40. Now 

D(x, y) = [(2)(64,000Wx - 3y-3 - 1 > 0 for ( 40, 40) and 'f.,, ( 40, 40) > 0 so this is indeed a minimum. Thus the 

dimensions of the box are x = y = 40 em, z = 20 em. 

53. Let x, y, z be the dimensions of the rectangular box. Then the volume of the box is xyz and ' 

L = J xz + y2 + z2 ::::> L 2 = x 2 + y 2 + z 2 ::::> z = J L 2 - x 2 - y 2 . 

Substituting, we have volume V(x,y) = xy JL2- x2 - y2 (x,y > 0). 

2 

Vy = xJL2 -x2 -y2 - xy . V., =Oimpliesy(L2 - x2 -y2 )=x2 y ::::> y(L2 -2x2 -y2 ) =0 ::::> JP - x2 - y2 

2x2 + y2 = L2 (since y > 0), and v;1 = o ·implies x(L2
- x 2

- y2
) = xy2 ::::> x(L2

- x2
- 2y2

) = 0 ::::> 

x 2 + 2y2 = L2 (since x > 0). Substituting y 2 = L2
- 2x2 into x 2 + 2y2 = L 2 gives x 2 + 2L2

- 4x2 = L 2 ::::> 

3x2 = L2 ::::> x = L/vf3 (since x > 0) f!nd then y = J L2- 2(L/vf3)
2 = L/vf3. 

So the only critical point is (Lf,/3, Llvf3 ) which, from th~ geometrical nature of the problem, must give an absolute 

maximum. Thus th~ maximum volume is V(LI,/3, Ll,/3) = (LI,/3)
2 j L2- (Livf3)

2
- (LI ,/3)

2 
= L3 I (3 ,/3) 

cubic units . 
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. n 
2 

n 

55. Note that here the variables are m and b, and f{m, b) = :L: [y,- (mxi +b)] . Then /m. = :L: - 2xi [Vi - (mxi + b)J = 0 
. i =l i=l 

n. · n n n · n 

implies :L: (x•Y•- mx; - bxi) = 0 or .:L: XiYi = m .:L: x~ + b .:L: Xi and fb = :L: -2[yi- (mxi +b)] = 0 implies 
i= l t. = l \= 1 •=1 1.=1 

n n n (n ) 
.~1 Yi = m i~l Xi + i~l b = m i~t Xi + nb. Thus we have the two desired equations. 

n n n . 

Now fmm = :L: 2x~, fbb = :L: 2 = 2n and fmb = :L: 2Xi. And fmm{m, b) > 0 always and 
i =l i = l i= l 

equations do indeed minimize f= d;. 
i = 1 

14.8 Lagrange Multipliers 

1. At the extreme val';les off, the level curves off just touch the curve g(x, y) = 8 with a common tangent line. (See Figure I 

and the accompanying discussion.) We can observe several such occurrenc~ on the contour map, but the level curve 

f(x , y) = c with the largest value of c which still intersects the curve g(x, y) = 8 is approximately c =59, and the smallest 

value of c corresponding to a level curve which intersects g(x, y) = 8 appears to be c = 30. Thus we estimate the maximum 

value off subject to the constraint g(x j y) = 8 to be about 59 and the minimum to be 30. 

3. f(x , y) = x2 + y2
, g(x, y) = xy = 1, and \1 f = >.. \lg => (2x, 2y) = (>..y, >..x), so 2x = >..y, 2y = >..x, and xy = 1. 

From the last equation, x =I= 0 andy =I= 0, so 2x = >.y => >.. = 2xjy. Substituting, we have 2y = (2xjy) x => 

y2 = x2 => y = ±x. But xy = 1, so X= y = ± 1 and the possible points for the extreme values off are {1, 1) and 

( -1, - 1). Here there is no maximum value, since the constraint xy = 1 allows x or y to become arbil:(arily large, and hence 

f(x , y) = x2 + y2 can be made arbitrarily large. The mi~imum value is !{1 , 1) = f( - 1, -1) = 2. 

5. f(x, y) = y2
- x2

, g(x, y) = tx2 + y 2 = 1, and \1 f = >.\lg => {-2x, 2y) = (t>..x, 2>..y) , so -2x = t>.x, 2y = 2>..y, 

and ix2 + y2 = 1. From the first equation we have x{ 4 + >..) = 0 => x = 0 or>. = - 4. If x = 0 then the third equation 

gives y = ±1. If), = - 4 then the second equation gives 2y = -8y => y = 0, and substituting into the third equation, 

we have x = ±2. Thus the possible extreme values off occur at the points (0, ± 1) and (± 2, 0). Evaluating fat these points, 

we see that the maximum value is f{O, ± 1) = 1 and the minimum is !{±2, 0) = -4. 

7. f(x, y, z) = 2x + 2y + z, g(x, y, z) = x 2 + y2 + z 2 = 9, and \1 f = >.. \1 g => (2, 2, 1) = (2>..x, 2>..y, 2>.z), so 2>.x = 2, 

2>.y = 2, 2)..z = 1, and x 2 + y2 + z 2 = 9. The first three equations imply x = l• y = ·l· and z = 
2
\ . ~ut substitution into 

the fourth equation gives (l)2 

+ ( l) 2 

+ ( 2\ )
2 

= 9 => 
9 

- 2 = 9 => ).. = ±t, so f has possible extreme values at 
4).. 
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the points (2, 2, 1) ~nd ( - 2, - 2, - 1). The maximum value off on x2 + y2 + z2 = 9 is f(2, 2, 1) = 9, and the minimum is 

J( -2, -2, - 1) = - 9. 

9. f(x, y, z) = xyz, g(x, y, z) = x2 + 2y2 '+ 3z2 = 6. V f = >. Vg =:. (yz, xz, x y) = .>. {2x, 4y, Gz). If any ofx, y, or z is 

zero then x = y = z = 0 which contradicts x2 + 2y2 + 3z2 = 6. Then.>.= (yz) /(,2x) = '(xz) / (4y) = (xy)/(6z ) or 

x2 = 2y2 and z2 = ~y2 . Thus x 2 + 2y2 + 3z2 = 6 implies 6y2 = 6 or y = ±1. Then the possible points are 

( .,/2, ±1, /j), ( .,/2, ±1, -/j), ( -.,/2, ± 1, /j), ( - .,/2,±1, -/j). The maximum valu~ off on the ellipsoid is 

-J:i, occurring when all coordinates are positive or exactly two are negative and the minimum is -7a occurring when 1 or 3 of 

the coordinates are negative. 

11. f(x ,y,z) = x 2 +y2 +z2
, g(x,y, z) = x~ +y4 + z4 = 1 =? Vf = (2x,2y,2z)~ >.Vg = (4>.x3 , 4>.y3 ,4>.z3

). 

Case 1: lf x f. 0, y f. 0 and z f. 0, then V f = >. Vg implies.>. = l /(2x2
) = 1/(2y2

) = l /(2z 2
) or x 2 = y2 = z2 and 

3x4 = 1 or x = ± - 1
- giving the points (±-L -L -L) (±-L _ _!_ -L) (±-L -L _ _!_) (±-L _ _!_ _ _!_) 

V3 VJ' VS' V3 ' · VJ' VS' V3 ' VS' VJ ' V3 ' VJ' W' V3 

all with an !-value of v'3. 

Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates are 

equal with common value ~ and corresponding f value of .,/2. 

Case 3: If exactly two of the variables are zero, then the third variable has value ± 1 with the corresponding f value ofl. Thus 

on x4 + y'1 + z4 = 1, the maximum value off is y'3 and the minimum value is 1. 

13. f(x, y, z, t) = X -1- y -1- Z -1- t, g(x, y, z, t) = x2 -1- y2 -1- z2 -1- e = 1 => (1, 1, 1, 1) = (2>.x, 2).y, 2).z , 2>.t), SO 

). = 1/(2x) = 1/(2y) = 1/(2z) = 1/(2t) and x = y ~ z = t. But x 2 -1- y2 -1- z 2 -1- t2 = 1, so the possible points are 

(±~ , ±~, ±~, ±~). Thus the maximum value off is f(~, ~~ ~~ t) = 2 and the minimum value is 

15. f(x,y, z) = x + 2y, g(x,y,z) = x +y + z = 1, h(x,y, z ) = y2 + z2 = 4 =:. Vf = (1,2,0), .>.Vg = (>.,>., >.) 

and p.Vh = (0, 2p.y, 2p.z). Then 1 = .>., 2 = .>. + 2p.y and 0 = >. + 2~tz so p.y = ~ = - p.z or y = 1/ (2p.), z = -1/ (2p.). 

Thus x + y + z = 1 implies x = 1 and y 2 + z2 = 4 implies p. =±~.Then the possible points are (1, ±.J2, =FV2) 

and the 'mfJ.Ximum value is f (1, .J2, -.J2) = 1 + 2 .J2 and the minimum value is f (1, - .,/2, .J2) = 1 - 2 .J2. 

17. f(x, y, z ) = yz + xy, g(x, y , z ) = xy = 1, h(x, y, z) = y2 + z2 = 1 =:. V f = (y, x + z, y), >.Vg = (.>.y, >.x, 0), 

p.Vh = (0, 2p.y, 2p.z). Then y = >.y implies>. = 1 [y f. 0 since g(x, y, z) = 1], x + z = .>.x + 2p.y andy= 2p.z. Thus 

p. = z/(2y) = y/(2y) or y2 = z 2
, and so y2 + z2 = 1 implies y = ±72, z = ±72. Then xy = 1 implies x = ±.J2 and 
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the possible points are ( ±-/2, ± 7:i , 72), ( ±V-2, ±~, - );) . Hence the maximum off subject to the constraints is 

f(±J2,±~,±jz) = ~ andtheminimumisf(±J2,±~, 'f72) = ~· 

Note: Since xy = 1 is one of the constraints we could have solved the problem by solving f (y, z) = yz + 1 subject to 

y2 + z2 = 1. 

19. f( x, y) = x2 + y2 + 4x - 4y. For the interior of the region, we find the critical points: fx = 2x + 4, f u = 2y - 4, so the 

only-critical point is ( - 2, 2) (which is inside the region) and f ( - 2, 2) = -8. For the boundary, we use Lagrange multipliers. 

g(x, y) = x 2 + y2 = 9, so "iJ f = >. "ilg =;. (2x + 4, 2y - 4) = (2>.x, 2>.y). Thus 2x + 4 = 2>.x and 2y - 4 = 2>.y. 

Adding the two equations gives 2x + 2y = 2>.x + 2>.y =:. x + y = >.(x + y) =:. (x + y) (>.- 1) = 0, so 

x + y = 0 =;. y = -x or>. - 1 = 0 =;. >. = 1. But >. = 1 leads to a contradition in 2x + 4 = 2>.x, soy = - x and 

x 2 + y2 = 9 implies 2y2 = 9 => y = ±12. We have f ( ~· -72) = 9 + 12-/2 ~ 25.97 and 

r( -12, ~) = 9- 12-/2 ~ - 7.97, so the maximum value off on the disk x 2 ~ y 2 :s: 9 is f ( 72· -12) = 9 + 12-/2 

and the minimum is f( - 2, 2) = -8. 

21. f(x , y) = e- xy . For the interior ofthe region, we find the critical points: f x = - ye-xu, / 11 = -xe-"'Y, so the only 

critical point is (0, 0), and f(O, 0) = 1. For the boundary, we use Lagrange multipliers. g(x, y) = x 2 + 4y2 = 1 =;. 

>. "iJ g = (2>.x, 8>.y), so setting "iJ f = >. "iJ g we get -ye-"'11 = 2>.x and -xe-"'11 = 8>.y. The first of these gives 

e- "' 11 = -2>.xjy, and then .the second gives - x( - 2>.xjy) = 8>.y => x2 = 4y2
• Solving this last equation with.the 

constraint x 2 + 4y2 = 1 gives X= ±72 and y=±~ . Now t( ±~, 'f2~) = e 114 ~ 1.284 and 

f ( ±~, ±;~) = e- 1
/

4 ~ 0.779. The former arc the maxima on the region and the latter are the min.ima. 

23. (a) f(x , y) = x , g(x,y) = y2 + x4
- x3 == 0 =;. "ilf = (1, 0) = >.Vg = >.(4x3 - 3x2,2y). Then 

1 = >.( 4x3 
- 3x 2

) (1) and 0 = 2>.y (2). We have >. i= 0 from (1), so (2) gives y = 0. Then, from the constraint equation, 

x 4 
- x 3 =. 0 =;. x3(3; - 1) = 0 =;. x = 0 or x = 1. But x = 0 contradicts (1), so the only possible extreme value 

subject to the constraint is /(1, 0) = 1. (The question remains whether this is indeed the minimum of f.) 

(b) The constraint is y2 + x4 
- x3 = 0 ¢} y2 = x3 - x4

. The left side is non-negative, so we must have x 3 - x4 :2: 0 

which is true only for 0 :S: x :S: 1. Therefore the minimum possible value for f(x, y) =x is 0 which occurs for x = y = 0. 

However,>. "iJ g(O, 0) = >. (0- 0, 0) = (0, 0) and "iJ f(O, 0) = (1, 0), so "iJ f(O, 0) # >. "iJ g(O, 0) for all values of>.. 

(c) Here "iJ g(O, 0) = 0 but the method of Lagrange multipliers requires that "iJ g # 0 everywhere on the constraint curve. 
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25. P(L,K)=bLo.Kl-o., g(L,K)=mL+nK=p '* 'VP=(abLo:- 1K 1- o.,(1-a)bL'""JC'""), >..'Vg=(>..m,>..n). 

Then ab(K/ L) 1-o. = >..m and (1- a)b(L/ K)"' =>..nand mL + nK = p, so ab(K/ L?-"'/m = (1 - a)b(L/ K) 0 /n or 

naj[m(1-a)]= (L/ K)"'(L/ K) 1
-"'. or L = Kno/[m{1- a)]. Substituting into mL + nK = p gives K = (1- a)pjn 

and L = apjm for the maximum production. 

27. Let the sides of the rectangle be x andy. Then f(x, y) = xy, g(x, y) = 2x + 2y = p '* 'V f(x, y) = (y, x)·, 

>.. 'Vg = (2>.., 2>..). Then A= ~y = ~x i~plies x = y and the rectangle with maximum area is a square with side length iP· 

29. The distance from {2,0, - 3) to a point (x,y,z) on the plane is d = .j(x- 2)2 + y2 + (z + 3)2 , so we seek to minimize 

d 2 = f(x, y, z) = (x- 2)2 + y 2 + (z + 3)2 subject to the constraint that (x, y, z) lies on the plane x + y + z = 1, that is, 

that g(x, y, z) = x + y + z = 1. Then 'V f =A 'Vg =* (2(x- 2), 2y, 2(z + 3)) = (A, .A, .A), sox= (A+ 4)/2, 

y = >./2, z = (>.. - 6)/2. Substituting into the constraint equation gives .A~ 4 
+ i + A; 

6 
= 1 '* 3A- 2 = 2 '* 

>.. = ~ . sox = ~. y = ~.and z = -i· This must correspond to a minimum, so the shortest distance is 

d = J ( ~ - 2) ~· + ( ~ )2 + (- i + 3) 2 = ..fi = ~-

31. Let f(x, y , z) = d2 = (x- 4) 2 + (y- 2)2 + z2
• Then we want to minimize f subject to the constraint 

g (x,y,z) = x2 +y2
- z2 = 0. 'Vf = )..'\Jg '* (2 (x --; 4) ,2(y- 2) ,2z) = (2>..x,2>..y, -2-Xz), sox- 4 = J..x, 

y - 2 = .Ay, and z = -J..z. From the last equation we have z + >..z = 0 '* z (1 +.A) = 0, so either z = 0 or>..= -1. 

But from the constraint equation we have z = 0 '* x2 + y2 = 0 '* x = y = 0 which is not possible from the first 

two equations. So ).. = - 1 and x - 4 = >..x '* x = 2, y - 2 = >..y '* y = 1, and x·2 + y 2 
- z 2 = 0 '* 

4 + 1 - z2 = 0 '* z = ±v'S. This must correspond to a minimum, so the points on the cone closest to ( 4, 2, 0) 

are (2, 1, ±v'S) . ' 

33. f(x,y,z) = xyz,g(x,y,z) = x +y + z = 100 =* 'Vf = (yz,xz, xy) = )..'\Jg =(>.., >..,>..). Then>.. = yz = xz = xy 

implies x = y = z = 1~0 . 

35. If the dimensions are 2x, 2y, and 2z, then maximize f(x, y, z) = (2x)(2y)(2z) = 8xyz subject to 

g(x, y, z) := x 2 + y2 + z 2 = r2 (x > 0, y > 0, z > 0). Then 'V f = .A 'V g '* (8yz , Bxz, 8xy) = .A (2x, 2y, 2z) =* 

41JZ 4xz 4xy . . 2 2 2 2 8yz = 2-Xx, Bxz = 2>.y, and 8xy = 2.Xz , so>.= - ·- = - = - .This gives x z = y z '* x = y (since z t= D) 
X Y Z 

' 
and xy2 = xz2 '* z 2 = y2

, so x2 = y2 = z2 '* x = y = z, and substituting into the constraint 

equation gives 3x2 = r 2 '* x = r/../3 = y = z. Thus the largest volume of such a box is 

. f ( ~, ~, ~) = 8 ( ~) ( 7J) ( ~) = 
3 
~ r 3

. 

' 
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37. f(x ,y,z) = xyz, g(x,y ,z) = x +2y + 3z = 6 => \lf = {yz,xz ,xy) = >..Vg = (>.., 2>. , 3>.). 

Then >. = yz = ~xz = ~xy implies x = 2y, z = %Y· But 2y + 2y + 2y = 6 soy = 1, x = 2, z = ~ and the volume 

is V = ~-

39. f(x, y, z) = xyz, g(x, y ,.z) = 4(x + y + z) = c => \7 f = (yz, xz, x y), >.Vg = (4>., 4>., 4>.). Thus 

4>. = yz = xz = xy or x = y = z = fie are the dimensions giving the maximum volume. 

41 . If the dimensions of the box are given by x, y, and z, then we need to find the maximum value of f(x, y, z ) = xyz 

[x, y, z > 0) subject to the constraint L = ..jx2 + y2 + z2 or g(x, y, z ) = x 2 + y2 + z2 = £ 2
. \7 f = ).. \lg => 

yz xz 
(yz , xz, xy ) = >. (2x, 2y, 2z ), so yz = 2>.x => >. = -

2 
, xz = 2>.y => >. = -

2 
, and xy = 2.Xz => 

X Y · 

Thus). = yz = xz .=> x2 = y 2 [since z =f. 0) => x = y and >.= y
2

z = x
2
y. => x = z [since y =f. 0]. 

~ ~ X Z 

Substituting into the constraint equation gives x2 + x2 + x2 = L 2 => x
2 = £ 2 / 3 · => x = L / V3 = y = z and the 

maximum volume is (L/V3) 3 
= £ 3 / (3 V3). 

43. We need to find the extreme values of f(x , y, z) = x 2 + y2 + z2 subject to the two constraints g(x, y , z) = x + y + 2z = 2 

and h(x, y, z) = x2 + y~ - z = 0. \lf = (~x, 2y, 2z}, >. \lg = (>. , >., 2>.) and ~\lh = (2J.Lx_, 2~y, -~). Thus we need 

2x = ). + 2J.LX (1), 2y = >. + 2~y (2), 2z = 2>.- f.t (3), x + y + 2z = 2 (4), and x2 + y2
- z = 0 (5). 

From (l) and (2), 2(x - y) = 2~(x - y), so if x =f. y, ~ = 1. Putting this in (3) give,s 2z = 2>.- 1 or >. = z +~. but p~1tting 

~ = 1 into (l) says>. = 0. Hence z + ~ = 0 or z = -~. Then (4) and (5) become x + y- 3 = 0 and x2 + y2 + ~ ~ 0. The · 

last equation cannot be true, so this case gives no solution. So we must have x = y. Then (4) and (5) become 2x + 2z = 2 and 

2x2
- z = 0 which imply z = 1 - x and z = 2x2

. Thus 2x2 = 1 - x or 2x2 + x - 1 = (2x - 1)(x + 1) = 0 so x= ~ or 

x = - 1. The two points to check are (t, ~ . ~)and ( - 1, - 1, 2): /(~. ~. ~) = ~and f(-1, -1, 2) = 6. Thus(~,~. ~) is 

the point on the ellipse nearest the origin and ( - 1, - 1, 2) is the one farthest from the origin. 

45. f( x, y , z) = yex-::, g(x, y, z) = 9x2 + 4y2 + 36z2 = 36, h(x, y , z) = xy + yz = 1. \7 f = >.Vg + J-L\lh => 

(yex-::, ex - z, - yex- z) = >.(18x, 8y, 72z) + i '(V, x + z, y), so yex-z = 18>.x + J.l.V, ex- z = 8>.y + ~(x + z ), 

- yex- :: = 72>.z + ~y. 9x2 + 4y2 + 36z 2 .= 36, x y + yz = 1. Using a CAS to solve these 5 equations s imultaneously for x, 

y, z , >., and ~ (in Maple, use the all values command), we get 4 real-yalued solutions: 

X~ 0.222444, y ~· -2.157012, z ~ - 0.686049, >. ~ - 0.200401, ~ ~ 2.108584 

X~ - 1.951921, y ~ - 0.545867, z ~ 0.119973, ). ~ 0.003141, ~ ~ - 0.076238 

X ~ 0.155142, y ~ 0.904622, z ~ 0.950293, >. ~ - 0.012447, f.' ~ 0.489938 

X~ 1.138731, y ~ 1.768057, . z ~ -0.573138, >. ~ 0.317141, f.' ~ 1.862675 

Subst ituting these values into f gives /(0.222444, -2.157012, - 0.686049) ~ -5.3506, 
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f( -1.951921, - 0.545867, 0.119973) ~ -0.0688, !(0.155142, 0.904622, 0.950293) ~ 0.4084, 

!(1.138731, 1.768057, -0.573138) ~ 9.7938. Thus the maximum is approximately 9.7938, and the minimum is 

approximately -5.3506. 

47. (a) We wish to maximize j(x1, x2, ... , xn) = ytx1x2 · · · Xn subject to 

g(x1,x2, .. . , Xn) = X1 +x2 + · · · +xn = c and X.;> 0. 

\1 f = ( ~ (X!X2 · .. Xn).; -l (X2 .. · Xn) , ~(X1X2 .. · Xn)'~-l (X!X3 · .. Xn), ... , ~(XtX2 · .. Xn) -!,-l (xl · .. Xn-1) ~ 

and >. V g = (>., >., ... , >.),so we need to solve the system of equations 

1/n 1/n 1/n , 
x 1 x 2 · · · Xn = nAx1 

1 ( ).l.-1( ;;: XtX2 · • • Xn " XtX3 • · • Xn) = A 1/n 1/n 1/n \ 
X1 X 2 · · · Xn = nAX2 

This implies n>.x1 = n>.x2 = · · · = n>.x ... Note >. =I 0, otherwise we can't have all x.; > 0. Thus X1 = x2 -= · · · = Xn. 

But X ! + X2 + · · · + Xn = c => nx1 = c => X1 = ~ = X2 = X3 = · · · = Xn - Then the only point where f can 
n 

have an extreme value is (~ , ~, ... , ~). Since we can choose yalues for ( Xt, x2, ... , Xn) that make f as close to 
n n n 

zero (but not equal) as we like, f has no minimum value. Thus the maximum value is 

t(;,;, .... ;) = \};-; ..... ;=;. 
(b) From part (a), ~ is the maximum value of f. Thus j(x1; x2, . .. , x n ) = ytx1x2 · · · Xn :::; ~- But 

n n 

,-,-,---,------~· -- X1 + X2 + · · • + Xn . . 
x 1 + x2 + · · · + Xn = c, so ytx1X2 · · · Xn :::; . These two means are equal when f attams 1ts 

n 

maximum value ~' but this can occur only at the point(;,*' . .. , * ) we found in part (a). So the means are equal only 

- c 
when Xt = X2 = X3 = · · · = Xn = -. - n 

14 Review 
CONCEPT CHECK 

1. (a) A function f of two variables is a rule that assigns to each ordered pair (x , y) of real numbers in its domain a unique real 

number denoted by f(x, y). 

(b) One way to visualize a function of two variables is by graphing it, resulting in the surface z = f(x, y). Another method for 

visualizing a function of two variables is a contour map. The contour map consists of level curves ofthe function which are 

horizontal traces of the graph of the function projected onto the xy-plane. Also, we can use an arrow diagram such as 

Figure I in Section 14.1. 
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2. A function f of three variables is a rule that assigns to each ordered triple (x, y, z) in its domain a unique real number 

f(x, y , z). We can visualize a function of three variables by examining its level surfaces f(x, y, z) = k, where k is a constant. 

3. lim f(x , y) = L means the values of f(x, y) approach the nwnber Las the point (x, y) approaches the point (a, b) 
(:z: ,11)-+{a ,b) 

along any path that is within the domain of f. We can show that a limit at a point does not exist by finding two different paths 

approaching the point along which f( x, y) has different limits. 

4. (a) See Definition 14.2.4. 

(b) Iff is continuous on JR2
, its graph will appear as a surface without holes or breaks. 

5. (a) See (2) and (3) in Sect ion 14.3. 

(b) See "Interpretations of Partial Derivatives" on page 927 [ET 903]. 

(c) To find f ., regard 1J as a constant and diffe~entiate f(x, y) with respect to x. To find / y, regard x as a constant and 

differentiate f(x, y) with respect toy. 

6. See the statement of Clairaut's Theorem on page 931 [ET 907]. 

7. (a) See (2) in Section 14.4. 

(b) See (19) and the preceding discussion in Section 14.6. 

8. See (3) and (4) and the accompanying discussion in Section 14.4. We can interpret the linearization off at (a, b) geometrically 

as the linear function whose graph is the tangent plane tothe graph off at (a, b) . Thus it is the linear function which best 

approximates f near (a, b). 

9. (a) See Definition 14.4.7. 

(b) Use Theorem 14.4.8. 

10. See (10) and the associated discussion in Section 14.4. 

11. See (2) and (3) in Section 14.5. 

12. See (7) and the preceding discussion in Section 14.5. 

13. (a) See Definition 14.6 .2. We can interpret it as the rate of change off at ( Xo, yo) in the direction of u . Geometrically, if P is 

the point (xo, yo , f(xo, Yo)) on the graph off and C is the curve of intersection of the graph off with the vertical plane 

that passes through P in the direction u , the directional derivative off at (xo, Yo) in the direction ofu is the ·slope of the 

tangent line to Cat P. (See Figure 5 in Section 14.6.) 

(b) See Theorem 14.6.3. 

14. (a) See (8) and (13) in Section 14.6. 

(b) Du f(x , y) = "\7 f (x, y) · u or Du f(x, y, z) = "\7 f(x, y, z) · u 
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(c) The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph of the 

function, the gradient points in the direction of steepest ascent. 

15. (a) f has a local maximum at {a, b) if f(x, y) :5 f(a, b) when {x, y) is near {a, b). 

(b) f has an absolute maximum at {a, b) if f(x, y) :5 f(a , b) tor all points (x, y) in the domain of f . 

(c) f has a local minimum at (a, b) if f(x, y) ~ f (a, b) when (x, y) is near (a, b). 

(d) f has an absolute minimum at (a, b) if f(x , y) ~ f(a, b) for aU points (x, y) in the domain of f. 

(e) f has a saddle point at (a, b) if f(a, b) is a local maximum in one direction but a local minimum in another. 

16. (a) By Theorem 14.7.2, iff has a local maximum at (a, b) and the first-order partial derivatives of j exist there, then 

/ :r(a, b) = 0 and / 11 (a, b)= 0. 

(b) A critical point off is a point (a, b) such that [.(a, b) = 0 and j 11(a, b) = 0 or one of these partial derivatives does 

not exist. 

17. See (3) in Section 14.7. 

18. (a) See Figure II and the accompanying discussion in Section 14.7. 

(b) See Theorem 14.7.8. 

(c) See the procedure outlined in (9) in Section 14.7. 

19. See the discussion beginning on page 981 [ET 957]; see "Two Constraints" on page 985 [ET 961]. 

TRUE-FALSE QUIZ 

1. True. f v(a, b) = lim f(a, b +h) - f(a, b) from Equation 14.3.3. Let h = ·y- b. Ash~ 0, y --+ b. Then by substituting, 
h~o h , 

f ( b) li 
f(a , y)-f(a,b) 

we get 11 a, = m b . 
u~b y-

5. False. See Example 14.2.3. 

7. Tru~. If f has a local minimum and f is differentiable at (a, b) then by Theorem 14.7.2, f x(a, b) = 0 and fu (a, b) = 0, so 

V f(a,b) = (f,(a,b),fv(a,b)) = (0,0} = 0 . 

9. False. V f(x , y) = (0, 1/ y). 

11 . True. V f = (cosx, cosy), so IV / I = v'cos2 x + cos2 y . But lcosBI :5 1, so IV !I :5 .J?.. Now 

Du f(x, y) = V f · u = IV f l l.u l cos{:}, but u is a unit vector, so IDu f (x, y) l :5 .J2 · 1 · 1 = ./2. 
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EXERCISES 

', y 
1. ln(x + y + 1) is defined only when x + y + 1 > 0 ~ y > - x - 1, 

so the domain off is {(x, y) I y > - x - 1}, all those points above the 

line y = -x - 1. 

' ' ' ' ' ' ' 

3. z = f(x , y) = 1 - y2
, a parabolic cylinder 5. The level curves are J 4x2 + y2 = k or 4x 2 + y2 = k2, 

k ::2::: 0 , a family of e ll ipses. 

y 

X 

7. y 9. f is a rational function, so it is continuous on its domain. 

2 

(©J (©J 
I 

(©J (©J 

Since f is defined at (1, 1), we use direct substitution to 

1 th I" . lim 2x y 2(1)(1) 2 
eva uate e 1m1t: 2 2 2 = 12 + 

2
(
1

)2 = -
3

. 
(z,v)- (1 ,1) X + y 

0 I 2 X 

11 . (a) T.,(6 , 4) = lim T(B + h, 4~ - T (B,
4
), so we can approximateT:c (6, 4) by considering h = ± 2 and 

h- o 

using the values given in the table: Tx(6, 4) ~ T(8, 4) ; T (6 , 4) = 86 ; 80 = 3, 

. T.,(6, 4) ~ T(
4

, 
4

) ~2 T(B, 
4

) = 
72 ~2 80 

= 4. Averaging these values, we estimate Tx(6, 4) to ~e approximately 

3.'5°C/ m . Similarly, Tv (6, 4} = lim T(B, 4 + h~ - T (6, 4) , which we can approximate with h = ±2: 
h - 0 

,.., (B 
4

) _ T(6, 6} - T(6, 4) _ 75 - 80 _ _ 
2 5 

,.,., (
6 4

) _ T(6, 2) - T(6, 4) _ 87- 80 _ 
3 5 

A . th 
.Lv ' - 2 - - -2- - · ' .L v , - _ 2 - ~-- .. veragmg ese 

values, we estimate Tv(6, 4) to be approximately - 3.0°C/ m. 
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(b) Here u = ( 12• )?. ). so by Equation 14.6.9, Du T(6,4) = VT(6,4) · u = T, (6,4) ~ + Tv(6,4) ~·Using our 

estimates from part (a), we have Du T(6, 4) l':;j (3.5) ~ + ( -3.0) ~ = ~ l':;j 0.35. This means that as we move 

through the point (6, 4) in the direction of u , the temperature increases at a rate of approximately 0.35°C/m. 

. r(6+h~,4+h~)-T(6,4) 
Alternatively, we can use Definition 14.6.2: Du T( 6, 4) = lim , 

h-o h 

which ·we can estimate with h = ± 2 ,;2. Then Du T(6, 4) ~ T(8, 6) ~T(6 , 4) = 80 - ~O = 0, 
2 2 2v2 

D T(6 4) 
T(4, 2) - T(6,4) 74-80 3 . ( ) 3 0 I 

u , ~ tn = ~ = tn' Averagmg these values, we have D u T 6, 4 ~ 27z ~ 1.1 C m. 
- 2v2 -2v2 v2 

() T. ( ) 
_ !_ [T. ( )] - lim T,('x , y +h) - T:r. (x,y) T. (

6 4) _lim T., (6,4 +h) - T.,(6, 4) 1. h 
C :V!/ X 1 y - a x X 1 y - h , SO xy 1 - h W liC We Can 

. y h-o , h-o 

estimate with h = ±2. We have Tx (6, 4) ~ 3.5 from part (a), but we will also need values for T., (6 , 6) and T,(6, 2). If we 

use h = ±2 and the values given in the table, we have 

T,(6, 6) l':;j T(8, 6) - T(6, 6) = 80 - 75 = 2.5, T, (6, 6) ~ T(4, 6)- T (6, 6) = 68 - 75 = 3.5. 
2 2 -2 -2 

Averaging these values, we estimate T., (6, 6) ~ 3.0. Similarly, 

Tx(6, 2) l':;j T(8, 2) ~ Tx(6, 2) = 90 ; 87 = l.S, T., (6, 2) ~ T(4, 2) ~2T(6, 2) = 74 ~ 87 = 6.5. 

Averaging these values, we estimate T, (6, 2) ~ 4.0. Finally, we esti~ate T., 11 (6, 4): 

T. (6 4) 
~ T.,(6, 6)- T., (6, 4) _ 3.0 - 3.5 _ _ 

0 25 
T. (

6 4
) ~ T.,(6, 2)- T.,(6, 4) _ 4.0 - 3.5 __ 

0 25 :vy ! ~ 2 - 2 - • > X)J 1 ~ -2 - -2 - • • 

Averaging these values, we have Txy (6, 4) ~ -0.25. 

13. f(x , y) = (5y3 + 2x2y) 8 => f .,= 8(5y3 + 2x2·yf(4xy) = 32xy(5y3 + 2x2y)7
, 

fv = 8(5y3 + 2x2yf (15y2 + 2x2) = (16x2 + 120y2)(5y3 + 2x2 y)7 

17. S(u,v,w) = uarctan(vyfw) 
1 ufo 

S,. = arctan(vy'W), Su = u · 
1 
+ (vfo)2 (fo) = 1 +v2w' 

S w = u · 1 + (:JW)2 (v · ~w-1 12 ) = 2Vw (~: v2w) 

19. f(x,y) = 4x3 - x y2 => f x = 12x2
- y2

, f v = -2xy, f .,., = 24x, fv 11 = -2_:~:, fxv = fvx = -2y 
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21. f(x, y , z) = xky1z'" => f x = kxk-lylzm., !11 = lxky1
-

1 z m, fz = mxky1z""'-1
, f:"x = k(k- 1)xk-2 y1z"", 

f vv = l(l- 1)xky1- 2 zm, f zz = m(m -1)xky1z"'- 2
, f xv = f vcx: = klx k- 1y1

-
1z"', ! ex::= f ::;r; = kmx"- 1y1zm- t, 

f vz = f ::v = lmxkyl-1 zm-1 

23. z = x y + xe111"' => 

25. (a) zx = 6x + 2 => zx (l , -2) = 8 and z 11 = - 2y => zv(1, -2) = 4, so an equation of the tangent plane is 

z - 1 = 8(x - 1) + 4(y + 2) or z = 8x + 4y + 1. 

(b) A normal vector to the tangent plane (imd the surface) at (1, - 2, 1) is (8, 4, - 1). Then parametric equations for the normal 

· 
2 4 1 · d . . x-1 y + 2 z- 1 

I me there are x = 1 + 8t, y = - + t, z = - t, an symmetnc equations are -
8
- = -

4
- = --=t· 

27. (a) Let F(x , y ,z) = x2 + 2y2
- 3z2

• Then F.,= 2x, Fy = 4y, Fz = - 6z, so F,.,(2, - 1, 1) = 4, F11 (2, - 1, 1) = - 4, 

F: (2, - 1, 1) = - 6. From Equation 14.6.1 9, an equation of thetangent planeis 4(x - 2)- 4(y + 1) - 6(z - 1) = 0 

or, equivalently, 2x - 2y - 3z = 3. 

· 14620 · · fi h II' X- 2 Y + 1 z- 1 
(b) From Equatwns . . , symmetnc equatwns or t e norma 1~e are -

4
- = --=4 = --=fl· 

29. (a) Let F (x, y , z ) = x + 2y + 3z- sin(xyz ) .. Then F,., = 1- yz cos(xyz ), Fv = 2 - xz cos(xyz), F: = 3 - x y cos(xyz) , 

so F:z: (2, -1, 0) = 1, Fy{2, - 1, 0) = 2,·F: (2, - 1, 0) = 5. From Equation 14.6.19, an equation of the tangent plane is 

1(x - 2) + 2(y + 1) + 5(z - 0) = 0 or x + 2y + 5z = 0. 

' . 14 6 20 . . <". h II ' X- 2 y + 1 z 2 y + 1 z (b) From Equatwns . . , symmetriC equatiOns .or t e norma me are --= -
2
- = - or x- = - - = - . 

. 1 5 2 5 

Parametric equations are x = 2 + t , y = - 1 + 2t, z = St. 

31. The hyperboloid is a level surface of the function F (x, y , z) = x2 + 4y2 
- z2

, so a normal vector to the surface at (x0 ,y0 , zo) 

is \1 F(x0 ,y0 , zo) = (2xo, 8yo, - 2zo). A normal vector for the plane 2x + 2y + z = 5 is (2, 2, 1}. For the planes to be 

parallel, we need the nonnal vectors to be parallel, so (2xo , 8yo, - 2zo} = k (2, 2, 1), or xo = k, yo = t k, and z0 = - tk. 
I 

But x5 + 4y5 - z~ = 4 => k2 + i k2 
- ik2 = 4 => k2 = 4 => k = ±2. So there are two such points: 

(2, ~, -1) and (-2, - t , I) . 

yx3 zx3 

33. f (x , y , z) = x3 .jy2 + z2 => f x(x,'y, z ) = 3x2 .jy2 + z2
, f v(x, y, z) = ~· f , (x , Y.> z) = ~· 

y2 +z2 

so f(2 , 3, 4) = 8(5) = 40, f x(2 , 3, 4) = 3(4) J25 = 60, f v(2, 3, 4). = ~ = 2
: , and /.:: (2, 3, 4) = ~ = ~ . Then the 
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linear approximation off at (2, 3, 4) is 

f(x ;y,z) ~ /(2,3,4) + J.,(2,3,4)(x ~ 2) + fv(2,3,4)(y - 3) + /z(2,3, 4)(z - 4) 

= 40 +60(x- 2) + ¥CY - 3) + 3
5
2 (z- 4) = 60x+ 2

5
4y+ 3

5
2 z - 120 

Then (1.98)3 J(3.01)2 + (3.97)2 = /(1.98,3.01, 3.97) ~ 60(1.98) + ¥(3.01) + ¥(3.97) -120 = 38.656. 

du au dx au dy au dz 3 2 2 3 
35. -d = ,---d +-;;--d +-;;- -d =2xy (1+6p) + 3x y (per>+er>)+4z (pcosp+sinp) 

p uX p uy p u z p 

. az az ax az ay 
37. By the Cham Rule, as = ax as + ay as. When s = 1 and t = 2, X = g(l, 2) =;:: 3 andy = h(1, 2) = 6, so 

& . . & &~ &~ 
as = f,(3, 6)gs(1, 2) + fv (3, 6) h. (1, 2) = (7)( - 1) + (8)( -5) = - 47. Stmiiarly, Bt = ax 8t + ay at, so 

az 
at = f,(3, 6)gt(1, 2) + fv (3, 6) ht(1, 2) = (7)(4) + (8)(10) = 108. 

az !'( 2 2) az !'( 2 2) [ h !' df ] 39. ax = 2x X - y ' ay = 1 - 2y X - y w ere = d( x2 - y2) . Then 

az az 2 2 I 2 2 
Y Bx + x {)y = 2xyf'(x - y ) + x - 2xyf (x - y ) = x. 

az az az - y 
41. -a = -a v+ -a 2 and 

X U V X 

a
2
z a (az). 2y az - y a (az) 2y az (a

2
z 8

2
z - y) - y (a

2
z - y a

2
z ) 

ax2 = Yax au +xa8v + ~ax av =xaav+Y au2 ~ + 8v8u~ +~ 8v2 ~+auavY 

2y az 2 82z 2y2 a2z y2 82z 
= x3 8v + Y &u2 - X2 &uav + x4 av2 

Thus 

. uv 2 
smcey = xv = - ory = uv. 

y 
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45. j(x, y) = x2 e-11 => 'V f = (2xe- 11 , - x2 e- 11 ), 'V f( -2, 0) = (-4, -4). The direction is given by (4, - 3), so 

u = 1 (4,-3} = { (4,-3) and Duf(-2,0} = 'Vf{-2,0} · u = (-4, -4) · t (4, -3) = t(-16 + 12} = -~. 
yf42+(-3)2 ... ... 

47. 'V f = (2x y,x2 + 1/(2JY)), I'Vf(2, 1)1 = 1(4, ~) I · Thus the maximum rate of change off at (2, 1} is o/ in the 

direction ( 4·, ! ) . 

49. First we draw a line passing through Homestea'd and the eye of the hurricane. We can approximate the directional derivative at 

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where 

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes 

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of 

wind speed in the direction given is approximately 50 8 45 = i = 0.625 knot/ mi . 

51 . f(x,y)=x2 - xy+y2 + 9x -6y+10 => f, = ·2x-y+9, 

j 11 = - x + 2y- 6, f xx = 2 = / 1111, f xv = - 1. Then f x = 0 and ! 11 = 0 imply 

y = 1, x = -4. Thus the only critical point is ( - 4, 1} and fx:r:( -4, 1) > 0, 

D(- 4, 1) = 3 > 0, so f( - 4, 1) = -11 is a local minimum. 

53. f(x, y) = 3xy - x2y- xy2 => fx = 3y - 2xy - y2
, / 11 = 3x- x 2

- 2xy, 

f ,, = - 2y, fv·u = - 2x, f xv = 3- 2x- 2y. Then f, = 0 implies 

y(3- 2x- y) = 0 soy= 0 or y = 3 - 2x. Substituting into / 11 = 0 implies 

x(3 - x) = 0 or 3x( - 1 + x )' = 0. Hence the critical points are (0, 0), (3, 0}, 

(0, 3) and (1, 1). D(O, 0} = D(3, 0} = D(O, 3) = ·-9 < 0 so (0, 0), (3, 0), and 

(0, 3) are saddle points. D(1, 1) = 3 > 0 and f xx (1, 1} = - 2 < 0, so 

!(1, 1) = 1 is a local maximum. 

55. First solve inside D. Here f ., = 4y2 
- 2xy2 

- y3
, f 11 = 8xy - 2x2y - 3xy2

• y 

Then f, =·o implies y = 0 or y = 4- 2x, but y = 0 isn't inside D. Substituting (O, 6) 

y = 4- 2x into / 11 = 0 implies x = 0, x = 2 or x = 1, but x = 0 isn't inside -D, 

and when x = 2, y = 0 but (2, 0} isn't inside D. Thus the only critical point inside 

D is (1, 2) and f (l , 2) = 4. Secondly we consider the boundary of D. 

On L1: f(x, 0) = 0 and so f = 0 on L 1. On L2 : x = -y + 6 and 

f( - y + 6, y) = y2 (6 - y)( - 2) = -2{6y2 
- y3 ) which has critical points 

(6 ,0) 

.t 

at y = 0 and y = 4. Then !{6, 0) = 0 while !(2, 4) = -64. On La: f(O , y) = 0, so f = 0 on £ 3. Thus on D the absolute 

maximum off is !{1, 2} = 4 while the absolute minimum is /{2, 4) = - 64. 
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57. f(x, y) = x3 - 3x + y4 - 2y2 

2 

z 0 l\ "''<--1-l-1 

-1 0 
y 

From the graphs, it appears that f has a local maximum f( -1 , 0} ~ 2, local minima !(1, ±1} ~ - 3, and saddle points at 

(-1, ±1} and (1,0}. 

To find the exact quantities, we calculate fx = 3x2 
- 3 = 0 <=> x = ± 1 and fu = 4y3 

- 4y = 0 <=> 

y = 0, ±1, giving the critical points estimated above. Also fzx = 6x, fxu = 0, f uy = 12y2
- 4,-so using the Second 

Derivatives Test, D ( -1, 0} = 24 > 0 and f xx( -1, 0) = - 6 <. 0 indicating a local maximum / ( -1, 0) = 2; 

D (1, ± 1) = 48 > 0 and / u(1, ±1} = 6 > 0 indicating local minima / (1, ± 1) = - 3; and D ( -1, ± 1) = - 48 and 

D(1, 0) = - 24, indicating saddle points. 

59. f(x,y) = x 2y, g(x,y) = x2 +y2 = 1 ~ 'ilf = (2xy,x2
) = )..'iJg = (2>.x,2>.y). Then 2xy = 2)..x impliesx = Oor 

y = >.. If x = 0 then x 2 + y2 = 1 gives y = ±1 and we have possible points (0, ±1) where f (0, ± 1) = 0. lfy =).. then 

x2 = 2)..y implies x2 = 2y2 and substitution into x2 + y2 = 1 gives 3y2 = 1 ~ y = ± 7:J and x = ±jf. The 

corresponding possible points are ( ±jf, ±7:J). The absolute maximum is f ( ± jf, -Ja) = ~ while the absolute 

61. f(x , y, z) = xyz, g(x,y,z) = ~2 + y2 + z2 = 3. 'ilf = )..'iJg ~ (yz,xz,xy) = >.(2x, 2y,2z). lfany ofx, y, or z is 

zero, then x = y = z = 0 which contradicts x2 + y2 + z2 = 3. Then ).. = 
2
YZ ·=x 

2
z = xy ~ 2y2z = 2x2z ~ 

x y 2z 
. . 

y2 = x2
, and similarly 2yz2 = 2x2 y ~ z2 = x2

• Substituting into the constraint equation gives x 2 + x 2 + x2 = 3 ~ 
I 

x2 = 1 = y2 = z 2
. Thus the possible points are (1, 1, ± 1), (1, -1, ± 1), ( - 1, 1, ±1), ( - 1, -1, ±1). The absolute maximum 

is / (1, 1, 1) = /(1, -1, - 1) = f( -1 , 1, -1) = f( - 1, - 1, 1) = 1 and the absolute 

minimum is /(1, 1, -1) = /(1, ....:.1, 1) = f( -1,1, 1) = f( - 1, - 1, - 1) = - 1. 

63. f(x,y,z) = x2 +y2 +z2
, .g(x,y,z) = xy2z3 = 2 ~ 'ilf = (2x, 2y,2z) = X'ilg = (>.y2 z3 , 2>.xyz3 ,3)..xy2 z2

). 

Since xy2 z3 = 2, x =I 0, y =I 0 and z =I 0, so 2x = )..y2 z 3 (I), 1 = )..xz3 (2), 2 = 3>.xy2 z (3~ . Then (2) and (3) imply 

~ = -
3 

2 
2 or y2 = f z 2 soy = ±z q. Similarly (1) and (3) imply ~x 

3 
= -

3 
2

? or 3x2 = z2 sox = ±-jsz. But 
xz xy z V 3 y z xy-z 
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xy2 z 3 = 2 so x and z must have the same sign, that is, x = ~z. Thus g(x, y, z ) = 2 implies ~zGz2)z3 = 2 or 

z = ±31/ 4 and the possible points are (±3- 1
/

4
, 3-1

/
4 y'2, ±3114

), (±3-1
/

4
, --,-3...:.1 ;

4 ._/2, ±3114
) . However at each of these 

points f takes on the same value, 2 J3. But (2, 1, 1) also satisfies g(x, y , z) = 2 and / (2, 1, 1) = 6 > 2 v'3. Thus. f has an 

absolute minimum value of 2 J3 and no absolute maximum subject to the constraint xy2 z3 = 2. · 

( ) 
2 3 2 . I ' ., 2 . . . f( ) 2 2 2 .I Alternate solution: g x , y, z = xy z = tmp tes y- = - 3 , so mmtmtze x, z = x + - 3 + z . T 1en 

xz xz 

fx = 2x -
2

2 
3

, f~ = - --;. + 2z, fxx = 2 + 3

4 
3 , f ~~ = 

24
5 + 2 and fr~ = 2

6 
4 • Now f x = 0 implies 

X Z XZ X Z' X Z X Z 

2x3 z 3 - 2 = 0 or z = 1/x. Substituting into / 11 = 0 implies -6x3 + 2x-1 = 0 or x .= ~·so the two criti<;al points are 

( ± ~, ± yt3) . Then D ( ± ~, ± V'3) = (2 + 4)( 2 + 
2
3
4

) - ( 7J r > 0 and f xa: ( ± ~, ± V'3) = 6 > 0, so each point 

is a minimum. Finally, y2 = _2_3 , so the four points closest to the origin are (± 4~ , .:fl, ± :y'3), (±+ , -~, ± V'3). = · v3" V3 V3 

b 

c 

The area of the triangle is ~ca sinO and the area of the rectangle is be. Thus, 

the area of the whole object is f(a , b, c)= ~ca sinO+ be. The perimeter of 

the object is g( a, b, c) = 2a + 2b + e = P. To simplifY s in 0 in terms of a, b, 

· and e notice that a2 sin2 o + ( ~e) 2 = a 2 => sino= ..!. v4a2 - c2. 
- 2a 

c . ' 
Thus f(a, b, c)= 4 J4a2 - c2 +be. (Instead of using 0, we could just have 

used the Py1hagorean Theorem.) As a result, by Lagrange's method, we must find a, b, c, and A by solving "il f = A "il g which 

gives the following equations: ca(4a2 
- c2

) -
112 = 2A (1), c = 2A (2), * ( 4a2 

- c2
)

112 
- i c2 (4a 2 

- c2 ) - 112 + b = A 

(3),and2a+2b +c = P (4). From(2),A= t candso(l)producesca(4a2 - c2
) ....:112 =c => (4a 2 - c2 ) 112 = a => 

2 

4a2
- e2 = a2 => · c = v'3 a (5). Similarly, since {4a2

- c2)
112 = a and A= tc, (3) gives ~ - !:__ + b = ~ . so from 

4 4a 2 

(5), ~ - 3
4
a + b = .;;a => -~ - v;a = -b => b =% (1 + vf3) (6). Substituting (5) and (6) into (4) we get: 

2a + a(l + v'3) + v'3a=P => 3a + 2v'3a=P => a = p = 2 J3 - 3 P and thus 
3+ 2 J3 3 

b = ·(2 J3- 3~ (1 + J3) p = 3 - 6 J3 p and c = (2- V3)P. 
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D PROBLEMS PLUS 

1. The areas of the smaller rectangles are A1 = xy, A2 = (L - x)y, 

A 3 = (L- x)(W -y), A 4 = x(W - y). ForO :::;: x :::;: L,O :::;: y:::;: W, let 

f(x, y) = Ai +A~+ A~ +A~ 

= x2y 2 + (L - x?y2 + (L- x)2(W - v? + x 2(W- y)
2 

= [x2 + (L- x?JIY2 + (W - y)2] 

Then we need to find the maximum and minimum values of f(x , y) . Here 

y 

W-y 

f,(x, y) = [2x - 2(L- x)Jiy2 + (W - y)2
] = 0 => 4x '-- 2L = 0 or x = ~L, and 

X 

· j 11 (x , y) = [x2 + (L - x)2JI2y- 2(W- y)] = 0 => 4y- 2W = 0 or y = W / 2. Also 

f :tx = 4[y2 + (W - u?J, f v11 = 4(x2 + (L- x?J, and fxv = (4x- 2L)(4y- 2W). Then. 

L 

T 
w 

1 
L-x 

D = 16(y2 + (W - y)2J!x2 + (L- x)2
)- (4x- 2L)2 (4y- 2W)2

. Thus when x =~Landy= ~W, D > 0 and 

f x:r: = 2W2 > 0. Thus a minimum off occurs at (~L, %W) and this ·minimum value is f(~L, ~W) = ~L2W2 . 

There are no other critical points, so the maximum must occur on the boundary. Now along the width ofthe rectangle let 

g(y) = j(O, y) = f(L , y) = L2 [y2 + (W- Y?]. 0 :::;: y:::;: W . Then g'(y) = L2[2y - 2(W- y)) = 0 ~ y = ~W. 

And g(%) = ~L2W2 . Checking the endpoints, we get g(O) = g(W) = L 2 W2
• Along the length of the rectangle let 

h (x) = f(x, 0) = f(x , W) = W 2[x2 + (L- x?]. 0 :::;: x :::;: L. By symmetry h'(x) = 0 ~ x = ~Land 

h( ~L) = %L2 W 2
• At the endpoints we have.h(O) = h(L) = L2 W2

• Therefore L 2W 2 is the maximum value of f . 

This maximum value off occurs when the "cutting" lines correspond to sides of the rectangle. 

3. (a) The area of a trapezoid is ~ h(b1 + b2), where his the height (the distance between the two parallel sides) and b1 , ~ are 

the Ieng!hs of the bases (the parallel sides). From the figure in the text, we see that h = x sinO, b1 = w - 2x, and 

b2 = w - 2x + 2x cos 8. Therefore the cross-sectional area of the rain gutter is 

~(x, 8) = ~xsin 0 [(w - 2x) + (w- 2x + 2xcos 8)) = (x sinO)(w - 2x + xcos8) 

= wx sine - 2x2 sin B + x 2 sin B cos e. 0 < X ::; ~w. 0 < B :::;: i 

We look for the critical points of A : oAf ax = w sin B - 4x sin B + 2x sin B cos B and 

EJAfEJO = wxcos B- 2x2 cosB + x 2 (cos2 8 - sin2 8), so {)Aj ax= 0 ~ sinO (w - 4x + 2x cosO) = 0 ~ 

cos B = 
4
x - w = 2 -

2
w (0 < 8 :::;: ~ => sin 8 > 0). If, in addition, oAf EJB = 0, then 

2x x 

0 = wxcosB - 2x2 cosO+ x2 (2cos2 8 - 1) 

= wx ( 2.- ~) - 2x
2 

( 2 - ~) + x 2 
[ 2 ( 2 - ~) 

2 

- 1] 

= 2wx - ~w2 
- 4x2 + wx + x2 

[ 8 - 4: + ~: - 1] = -wx + 3x2 = x(3x - w) 
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Since x > 0, we must have x = ~w, in which case cosO=~. soB = f, sinO=~. k = '{!w, b1 = ~w,ln = ~w. 

and A= {!:w2
• As in Example 14.7.6, we can argue from the physical nature of this problem that we have found a local 

maximum of A. Now checking the boundary of A, let 

g( B) = A( w /2, B) = ~ w 2 sin B - ~w2 sin B + iw2 sin B cos 6 = i w2 sin 26, 0 < B ::; ~. Clearly g is maximized when 

sin2B = 1 in which case A= iw2
. Also along the line B = ~. let h(x) = A(x, ~) = wx- 2x2

, 0 < x < ~w . => 

h'(x) = w- 4x = 0 *? x = i w, and h(~w) = w(~w) - 2(tw)
2 = iw2

. Since -kw2 < "If w2
, we conclude that 

the local maximum found earlier was an absolute maximum. 

2 2 

(b) If the metal were bent into a semi-circular gutter of radius r, we would have w = 1rr and A= ~11'r2 = ~1r(~) = ~7r. 

S. w
2 

../3 w
2 

• ld b b be d th l · ' th · · I . mce - > --
2
-, 1t wou e etter to n e meta mto a gutter WI a sem1c1rcu ar cross-section. 

211' 1 

5. Letg(x,y) = xf(~) · Theng,.(:,y) = !(~) +xf'(~) ( - : 2 ) = !(~ ) - ~ f'(~;) and 

gy ( x, y) = xf' ( ~) (;) = f' ( ~ ). Thus the tange?t plane at ( x0 , y0 , zo) on the surface has equation 

[t ( ;~ ) - y0 x0
1 !' ( ~~ )] x + [r ( ~~ )] y - z = 0. But any plane whose equation is of the form ax+ by+ cz = 0 

passes through the origin. Thus the origin is the ~ommon point of intersection. 

7. Since we are minimizing the area of the ellipse, and the circle lies above the x -axis, 

the ellipse will intersect the circle for only one value ofy. This y-value must 

satisfY both the equation of the circle and the equation of the ellipse. Now 

2 2 2 
x

2 
+ Y

2 
= 1 => x 2 = a

2 
(b2 -y2

). Substitutingintotheequationofthe 
a b b 

2 

circle gives ~2 (b2
- y2

) + y 2
- 2y = 0 => 

y 

In order for there to be orlly one solution to this quadratic equation, the discrirninant must be 0, so 4- 4a2 b
2 

~ a
2 

= 0 => 

b2 - a 2 b2 + a 4 = 0. The area of the ellipse is A(a, b) = 1rab, and we minimize this function subject to the constraint · 

g(a, b) = b2 
- a2b2 + a4 = 0. 

-rrb 
2) (1), 2a(2a2 - b 

.>. = 2b(l7r~ a 2 ) (2), b2 
- a2b2 + a4 

= 0 (3). Comparing (1) and (2) gives 2a(2; b _ b2). 

21rb2 = 47ra4 -:=:> a 2 = ~ b. Substitute this into (3) to get b = ~ => a = jf. 
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15 D MULTIPLE INTEGRALS 

15.1 Double Integrals over Rectangles 

1. (a) The subrectangles are shown in the figure. 

The surface is the graph of f(x , y) = xy and 6.A = 4, so we estimate 

3 2 
v~ I: I: f(x;,y1)6.A 

i =l j=l 

= j(2, 2) 6.A + !(2, 4) 6.A + f(4 , 2) 6.A + /(4,4) 6.A + !(6, 2) LU + !(6, 4) 6.A 

= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288 

3 2 

y 

4 

2 

0 2 4 6 X 

(b) V ~ ,L: ,L: j (x.:, v1) 6.A = /(1, 1) 6.A + f(1, 3) 6.A + !(3, 1) 6.A + !(3, 3) 6.A + !(5, 1) LU + !(5, 3) 6.A 
i=lj=l 

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144 

3. (a) The subrectangles are shown in the figure. Since 6.A = 1 · ~ = ~.we estimate 
2 2 

J fn. xe-"'11 dA ~ I: I: f ( x;1, Yi;) 6.A 
i=l j = l 

= /(1, ~) 6.A + /(1, 1) 6.A + /(2, ~) 6.A + /(2, 1) 6.A 

= e-112 (~ ) +e-1 (~) +2e-1 (~) + 2e-2 (~) ~ 0.990 

. 2 2 
(b) ffn xe-"'11 dA ~ I: I: f(x;, v1) 6.A 

. i=l j =l 

= !(~, t) 6.A + !(~ , ~) 6.A + f(~, t) 6.A + ! (~. ~) 6.A 

= ~e-l/8a) + ~e-318(~) + ~e-318(~) + ~e-9/sa) ~ u 51 

5. (a) Each subrectangle and its midpoint are shown in the figure. 

The area of each subrectangle is 6.A = 2, so we evaluate f 
at each midpoint and estimate 

2 2 
.ffn.f(x ,y)dA ~ I: I: f(x.: ,y1) 6.A 

i = lj = l 

= /(1, 2.5) 6.A + /(1, 3.5) AA 

+ /(3, 2.5) AA + /(3, 3.5) AA 

= - 2(2) + ( -1)(2) + 2(2) + 3(2) = 4 

y 

I 

I 
2 

0 1 2 X 

y 

1 . . 
I 
2 . . 
0 1 2 X 

y 
4 . . 
3 . . 
2 

0 2 4 X 
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(b) The subrectangles are shown in the figure. 

In each subrectangle, the sample point closest to the origin 

is the lower left comer, and the area of each subrectangle is .6.A = ~. 
Thus we estimate 

4 4 
ffnf(x ,y) dA ~ L:: L:: f(xii,Yii) .6.A 

i= l j = l . 

= f (O, 2) .6.A + f(O , 2.5) .6.A + f(O , 3) . .6.A + f(O, 3.5) .6.A 

+ /(1, 2) .6.A + f(1, 2.5) .6.A + /(1, 3) .6.A + /(1, 3.5) .6.A 

+ / (2, 2) .6.A + /(2, 2.5) .6.A + /(2, 3) .6.A + /(2, 3.5) .6.A 

+ / (3, 2) .6.A + /(3, 2.5) .6.A + /(3, 3) .6.A + !(3, 3.5) .6.A 

y 
4 

3 

2 

0 I 2 

= -3(~) + < -5) G) + < - 6) (~) + < -4)(~) + < - 1) (~) + < - 2){ ~) + < -3)(~) + < -1)G) 

+ 1G) + o(~) + (-1){~) + 1 (~) + 2(~) + 2G) ·;~- 1 (~) + 3G) 

= - 8 

3 4 X 

7. The val~es off ( x, y) = .j52 - x2 - y2 get smaller as we move farther from the origin, so on any of the subrectangles in the 

problem, the function will have its largest value at the lower left comer of the subrectangle and its smallest value at the upper 

right comer, and any otl).er value will lie between these two. So using these subrectangles we have U < V < L . (Note that this 

is true no matter how R is divided into subrectangles.) 

9. (a) With m = n = 2, we h~ve .6.A = 4. Using the contolir map to estimate the value off at the center of each subrectangle, 

we have 

2 2 
ffn f(x, y) dA ~ L:; L:; J(xi, Yi) .6.A = .6.A[f(1 , 1) + /(1, 3) -t /(3, 1) + /(3, 3)] i'::j 4(27 + 4 + 14 + 17) = 248 

i = lj=l 

(b) /ave= Aln) ffn f(x, y) dA i'::j ft(248) = 15.5 

11. z = 3 > 0; so we can interpret the integral as the volume of the solid S that lies below the plane z = 3 and above the 

rectangle [- 2, 2] x [1, 6]. Sis a rectangular solid, thus ffn 3 dA = 4 · 5 · 3 = 60. 

13. z = f(x , y) = 4- 2y :2: 0 for 0 :::; y :5 1. Thus the integral represents the volume of that 

part ofthe rectangular.solid [0, 1] x [0, 1] x (0, 4] which lies below the plane z = 4 - 2y. 

So 

ffn (4 - 2y) dA = (1)(1)(2) + H 1)(1)(2) = 3 

X 
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15. To calculate the estimates using a programmable calculator; we can use an algorithm 

similar to that of Exercise 4.1.9 [ET 5.1.9). In Maple, we cari define the function 

f( x, y) = v'1 + xe 11 (calling it f), load the student package, and then use the 

command 

middlesum(middlesum(f , x=0 . . 1 ,m), 

y=O .. 1 , m); 

to get the estimate with n = m2 squares of equal size. Mathematica has no special 

Riemann sum command, but we can define f and then use nested Sum commands to 

calculate the estimates. 

,. 
n estimate 

' 1 1.141606 

4 1.143191 

16 1.143535 

64 1.143617 

256 1.143637 

1024 1.143642 

17. If we divideR into mn subrectangles, ffn k dA:::::: .f _t f (xi; . Yi;) ~A for any choice of sample points (xi;, Yi;). 
<=13=1 

m n 

But f(xi;. Yi;) = k always and L: L: ~A= area of R = (b- a)(d- c). Thus, no matter how we choose the sample 
i=1j=l 

m n " " n 
points, L: L: f(xt;, Yii) ~A = k L · L: ~A= k(b - a)(d - c) and so 

i=1j=l i = lj=1 

nt n. m n 

ffnkdA= lim L L: f(xi;.Yi;) ~A = lim k L L ~A= lim k(b-a) (d -c)=k(b-a)(d- c). 
m ,n --+ooi = lj= l rn,n--+oo i= l j=l Tn,n---+oo 

15.2 Iterated Integrals 

3. f1
4 J0

2 
(6x2y- 2x) dy dx = f 1

4 
[3x2

y
2 

- 2xy] ~=~ dx = f1
4

(12x2 
- 4x) dx = [4x3 

- 2x2
] ~ = (256 - 32) - ( 4 - 2) = 222 

5. J~ J0
4 

y3 e2
"' d.yd:c = J0

2 
e2

"' dx .r: y 3 dy [as in ExampleS] = [t e2"']~ ( h 4
]: = t(e4

- 1)(64 - O) = 32(e4
·- 1) 

7. J~3 J;12 (y+y2 cosx) dxdy = J23 [xy+y
2 sin xJ::~12 dy 

= J~3 ( ~y + y2) dy = [~y2 + h3] ~3 

= (9
411' + 9 - (~; - 9)] = 18 

/,4 /,2 (X ? ) /,4 [ 1 1 ] y=

2 l4 ( 3 ) 9. -+JL dydx= x lnlvl+-·-2·y
2 

dx = x ln 2+---: dx = [~x2 ln 2+~ ln lxlf 
1 1 Y X 1 X y=l . 1 2x 1 

= 8ln2 + ~ ln4 - ~ ln 2 = lf ln2 +3ln41
/

2 = ¥ ln 2 

11. f0
1 J0

1 
v(u + v2)4 dudv = J0

1 
[iv(u + v2 )5]~=~ dv = t j~1 v ((1 + v2)5

- (0 + v2)5
] dv 

= t fo1 (v(1 + v2)5- vn] dv = Ht. i(l + v2)6 - J:\vl2]~ 

[substitute t = 1 + v 2 ==:> dt = 2v dv in the first term] 

= to [(26
- 1) - (1 - 0)] = to (63- 1) = ¥o 
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13. J~ f 01f r sin2 8 d8 dr = f~ r dr J; sin2 8 d8 [as in Example 5] = J
0

2 
r dr J

0
1f t (1 - cos 28) d8 

= [tr2)~· ~ [0- ~ sin28)~ = (2 - 0) · ~ [(1r- ~ sin 27r) - (0- ~sinO)] 

= 2. ~[(7r- 0)- (0 - 0)] = 7r 

. 15. ffn sin(x - y) dA = Io1f12 Iorr~2 sin(x- y) dyd:r: = I;12 [cos(x - y)]~~~l2 dx = Iorrl2 
[cos(x - ~)- cosx] dx 

[ ] 
1f 12 . 

= sin(x-~)-si?x 
0 

= sinO-sin~-,- (sin(-~) - sinO] 

=0-1-(-1-0) = 0 

17.ffn X:~ 1 dA = 11 /_33 X:: 1 dydx = 11 :r;2: 1 dx ;_: y2 dy = [t ln(x2 + 1)]: [h3] ~3 
= ~ (In 2 -In 1) . t(27 + 27) = 91n 2 

19. Io1riG j~1rl3 x sin(x + y) dy dx 

= IorriG [-xcos(x + y)]~=~13 dx = J;16 [x cosx- xcos(x +f)] dx 

= x (sin x - sin ( x + f))~ 16 - J01f 
16 [sin x - sin ( x + f)] dx [by integrating by parts separately for each term] 

= i [~- 1)- (-cosx + cos(x + f)]~16 = - -&- [ -~ + 0 - (-1 + ~)] = -q- 1 
- f2 

21. IInye-:z:il dA =I: I: ye-"'11 dxdy = J0
3 (-e-"'11J ::~ dy = I:(-e- 2

il + 1) dy = [~e-2Y + y]~ 

= ~e-6 + 3 - ( ~ + 0) = t~-6 + ~ 

23. z = f(x, y) = 4- x - 2y ~ 0 for 0 ~ x ~ 1 and 0 ~ y ~ 1. So the solid 

is the region in the first octant which lies below the plane z = 4 - x - 2y 

and above [0, 1] x {0, 1]. 

X 

25. The solid lies under the plane 4x + 6y - 2z + 15 = 0 or z = 2x + 3y + 1/ so 

V = fin(2x + 3y + 1;)'dA = I~1 I~ 1 (2x + 3y + Jf) dxdy = j~1 [x2 + 3xy + ¥xJ::~1 dy 

= j~1 ((19 + 6y) - ( - 1
2
3 

- 3y)) dy = I~1 (¥' + 9y) dy = [Yf y + ¥Y2)~ 1 = 30- ( -21) = 51 

27. V = I~2 f~1 (1 - tx2 
- h 2

) dx dy = 4 J; I0
1 

(1 - ix2 
- ~y2 ) dx dy 

4 f2 [ 1 3 1 2 ] :z; = 1 d 4 f2 ( 11 1 2) d [ 11 l 3] 2 83 166 = Jo X- fiX - iiY X :z:=O y = Jo i2- iiY y = 4 i2Y - vY 0 = 4. 54= 27 

29. Here we need the volume of the solid lying under the surface z = x sec2 y and above the rectangle R = (0, 2] ~ [0, 1r / 4] in 

the xy-plane. 

V = I: Iorr 
14 

x sec
2 

y dy dx = I: x dx Io" 
14 

sec2 y dy = [ ~ x2
] ~ [tan y] ~ 14 

= (2- O)(tan f - tan 0) = 2(1 - 0) = 2 
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31. The solid lies below the surface z = 2 + x 2 + (y- 2? and above the plane z = 1 for -1 ~ x ~ 1, 0 ~ y ~ 4. The volume 

of the solid is the difference in volumes between the solid that lies under z = 2 +x2 + (y- 2)2 over the rectangle 

R = (-1, 1] x (0, 4) and the solid that lies under z = 1 over R. 

V = J; J~ 1 (2 + x 2 + (y :._ 2?J dxdy- f0
4 f~1 (1) dxdy = f0

4 
[2x + 4x3 + x(y - 2?J:: ~1 dy- t 1 dx J;dy 

= J; [(2 + ~ + (y - 2)2
)- ( -2- ~- (y- 2)2

)] dy- [x]~ 1 (y]~ 

= f0
4 (lf + 2(y- 2)2

) dy- (1 - (-1)][4- OJ = (1
3
4 y + t(Y- 2?)~- (2)(4) 

= [e; + ¥)- (o - 1nJ -8 = ¥-8 = ¥ 
33. In Maple, we can calculate the integral by defining the integrand as f 

and then using the command int ( int ( f, x=O .. 1) , y=O . . 1) ; . 

In Mathematics, we can use the command 

Int egrate[f,{x,0,1}, {y,0,1} ] 

We find that J J n x5 y3 e<IJY dA = 21e - 57 R:: 0.0839. We can use plot3d 

(in Maple) or Plot 3D (in Mathematics) to graph the function. 

35. R is the rectangle (-1, 1] x (0, 5]. Thus, A(R) = 2 · 5 = 10 and 

f, 1 f' r !( ) dA 1 r5Jt 2 d d _ 1 rs [ 1 3 ]"' = 1 d _ 1 rs 2 d 1 (1 2] s 5 
•"• = A(R) Jn x,y =wJo -lxy. x Y - wJo 3xv.,= - t Y -w Jo3Y Y= to 3Y o = e· 

!1 xy 11 11 xy 11 
x 11 · . x 37. --4 dA= -

1 4 dydx = -
1 

.4 dx ydy [byEquatJOnS] butj(x) = - -
4 

is anqdd 
R 1 + X -1 0 +X - 1 +X 0 1 +X 

function so 11 

f(x) dx = 0 by (6) in Section 4.5 [ET (7) in Section 5.5]. Thus/" { xy 
4 

dA = 0. {
1 

y dy = 0. 
- 1 ln 1 + x lo 

39. Let f(x, y) = ( x - )
3

• Then a CAS gives J; f0
1 f(x, y) dydx = t and f0

1 f0
1 f(x, y) dx dy = -t. 

x+y 

To explain the seeming violation of Fubini's Theorem, note that f has an infinite discontinuity at (0, 0) and thus does not 

satisfy the conditions ofFubini's Theorem. In fact, both iterated integrals involve improper integrals which diverge at their 

lower limits of integration. 

15.3 Double Integrals-over General Regions 

3. J; J:2 (1 + 2y)dy dx = f0
1 

[y + y2J ~::2 dx = .r; [x + x2- x2
- (x2

)
2

) dx 

= fo1(x - x4)dx = [tx2 - !xs)~ = t- i - 0+0 = fo 
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7. IIv y2 dA = I~t I~~-2 Y2 dx dy = I~t (xy2J ::~v-2 dy = I~l y2 [y - ( - y- 2)] dy 

= J1 (2y3 + 2y2)dy = [ly4 + 1y3J 1 = 1 + 1 - l + 1 = :!. 
- 1 2 3 - 1 2 3 2 3 3 

9. ffv x dA = f " ro•ln"' x dy dx = ~" [xy]Y:'"oin "' dx = f" x sin x dx [ . integrate by parts ] 
· .lo J t Jo Y- Jo wtth v.=x, rlv = sm x dx 

= [ - x cos x + sin x J ~ = -1r cos 1r + sin 1r + 0 - sin 0 = 1r 

11. (a) At the right we sketch an example of a region D that can be described as lying 

betw~en the graphs of two continuous functions of X (a type I region) but not as 

lying between graphs of two continuous functions ofy (a type IJ region). The 

regions shown in Figures 6 and 8 in the text are additional examples. 

y 

13. 

15. 

0 

(b) Now we sketch an example of a region D that can be described as lying between 

the graphs of two continuous functions ofy but not as lying between graphs of two 

continuous functions of x. The first region shown in Figure 7 is another example. 

y 

0 

y As a type I region, D lies between the lower boundary y = 0 and the upper 
(1, 1) 

boundary y = x for 0 ::; x ::; 1, soD= {(x, y) I 0 $ x $ 1, 0 $ y $ x}. lfwe 

x =l 
describeD as a type ll region, D lies between the left boundary x = y and the 

right boundary x = 1 for 0 ::; y ::; 1, soD = {(x, y) I 0 ::; y::; 1, y ::; x::; 1}. 

X 

Thus IIv xdA =I; IC: xdydx = I0
1 [xy] ~ =~ dx = I0

1 
x

2 dx = !x3]~ = !(1 - 0) = ~or 

.rf'v x dA = f0
1 I: xdxdy = I0

1 (tx2J : : ~ dy = t J;(1 - y 2
) dy = t[y - h3] ~ = t((1- !) - 0] = ~ -

y The curves y = x - 2 or x = y + 2 and x = y 2 intersect when y + 2 = y2 ~ 

X 

X 

y2 - y- 2 =0 ~ (y-2)(y+ 1)=0 ~ y = -1, y =2,so thepoints .of 

intersection arc (1 , - 1) and (4, 2) . Tf we de~cribe D as a type I region, the upper 

boundary curve is y = ..fii but the lower boundary curve consists of two parts, 

y = -vx for 0 ::; x ::; 1 andy = x - 2 for 1 ::; x ::; 4. 

Thus D = {(x, y) I 0::; X::; 1, - vx::; y::; vx} u {(x, y) 11 ::; X::; 4, X- 2::; y::; vx} and 

I I 0 y dA = Io1 I!5z y dy dx + f1
4 f.,~ y dy dx. If we describe D as a type II region, D is enclosed by the left boundary 

x = y 2 and the right boundary x = y + 2 for -1 ::; y ::; 2, so D = { ( x, y) I - 1 ::; y ::; 2, y2 
::; x ::; y + 2} and . . . 
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21. 

23. 

25. 
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J J 
0 

y dA = f~ 
1 
J:/2 y dx dy. In either case, the resulting iterated integrals are not difficult to evaluate but the region D is 

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter 

integral: 

-2 

y 

0 y 

0 

ffo ydA = f~tf:/2 ydxdy = f~t (xyJ ::~~2 dy = J~1 (y + 2- y2)ydy = f~t (y2 + 2y - ya) dy 

= [jy3+y2- h4]~1 = (! +4-4) - (-~ +1 - i) = ~ 

0 X 

y 

X 

X 

= [§.y3
- y4

]
2 = .§1 - 16- ~ + 1- ll 3 1 3 3 - 3 

!2 !~ 
- 2 -~ 

(2x - y) dydx 

- /
2

[ 12] !1=~ - 2xy - 2Y r.--;; dx 
- 2 y=-y4- x 2 

= }~2 [2x v'4 - x2 :- H4 - x 2
) + 2x v'4- x2 + H4 - x2)] dx 

=J~24xv'4-x2dx= -H4-x2)3/2]2 = 0 
-2 

[Or, note that 4x v'4 - x2 is an odd function, so J~2 4x v'4- x2 dx = 0.] 

f1 J1-a:
2 

( ) f1 [ 2] y-l-x2 
V= 10 1_., 1- x+2y dydx= 10 y-xy + y !1;:1_., dx 

= 11 

[ ((1- x
2

) - x(1- x2
) + (1 - x2?) 

- ((1- x)- x(1- x) + (1- x)2
)] dx 

= J0
1 

[(x4 + x3
- 3x2

- x + 2)- (2x2
- 4x + 2)] dx 

J2J7- 3y J2 [ 1 2 ] "' = 7- 3y V = 1 1 xy dx dy = 1 2 x y ., = 1 dy 
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27. 

29. 

31. 

33. 

y 

(0,3) 

y 

X 

V = f0
2 f~ - ~ "' (6- 3x - 2y)dydx 

r2( 2] v=3- 1x = Jo 6y - 3xy - y v = o 2 dx 

= J; (6(3 - ~x)- 3x(3 - ~x) - (3 - ~ x)2] dx 

= J; (~x2 - 9x + 9) dx = [~x3 - ~x2 + 9x] ~ = 6 -0 = 6 

11 1~ 11 [ 2 ] Y=~ V = y dy dx = 1L . dx 
0 0 0 2 y= O 

{
1 

1 - X
2 

1 1 3 1 1 = Jo -2- dx = 2 [x - 3·-c Jo = 3 

From the graph, it appears that the two curves intersect at x = 0 and 

at x ~ 1.213. Thus the desired integral is 

Jf dA ~ rl .213J3x- x
2 d .J. - fl. 213 [ ] y = 

3
"'- "'

2 
d 

D X ~ Jo x•l X y u.'C - Jo xy X 
y = x4. 

r L213(3 2 3 6) d [ 3 1 4 1 G] 1.213 = Jo X -X - X X= X - 4X - aX O 

~ 0.713 

35. The two bounding curves y = 1 - x2 and y = x 2 
- 1 intersect at (±1, 0) with 1 - x2 ~ x2 

- 1 on (-1, 1]. Within this 

region, the plan~ z = 2x·+ 2y + 10 is above the plane z = 2 - x - y, so 

J1 •r1-x
2( ) rl Ji-~2 ( ) V = _1 J,.2 _

1 
2x+2y + 10 dydx -, _ 1 .,2 _

1 
2-x-y dydx 

J•l J1-x
2 

( ' ( )) • = _1 .,2_1 2x + 2y + 10- 2- x - y dy dx 

j •l fl -:c2 1 [ 3 2 J y = l - :c2 = _1 , 2 _ 1 (3x + 3y + 8) dy dx = f_ 1 3xy + 2Y + 8y y=z
2

_
1 

dx 

= J~1 [3x(l- x 2
) + ~(1 - x2

)
2 + 8(1- x 2

) - 3x(x2 
- 1) - ~(x2 - 1)2

- 8(x2
- 1)] dx 

1 "3 1 = J (-6x - 16x2 + 6x + 16) dx = [-.:!x4 
- .l&x3 + 3x2 + 16x] - 1 2 3 -1 

= -~ - ~6 + 3 + 16 + ~ - ¥ - 3 + 16 = 6
3
4 
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37. The solid lies below the plane z = 1 - x - y 

or x + y + z = 1 and above the region 
y 

D={(x,y)IO~x~l,O~y~ 1 -x} 

in the xy-plane. The solid is a tetrahedron. 

X , 

X 

39. The two bounding curves y = x 3 
- x andy = x2 + x intersect at the origin and at x = 2, with x2 + x > x 3 - x on (0, 2). 

· Using a CAS, we find that the volume is 

V 121x2 +x d d '121:r:2 +:r:( 3 4 ,+ 2) d d 13,984,7:'!5,616 
= Z y X= X y . XY y -X= " 

o x3- x 0 xa - :z: 14,549,<>35 

41 . The two surfaces intersect in the circle x 2 + y2 = 1, z = 0 and the region of integration is the disk D : x2 + y2 ~ 1. 

43. 

45. 

47. 

49. 

!In 111~ Using a CAS, the volume is (1- x 2
- y2

) dA = . (1 - x 2
- y2

) dydx = ~. 
' D - 1 -Vl-x2 2 

y 

In 2 

y 

(3, 1) 

X 

Because the region of integration is 

D = {(x,y) I 0 ~ x ~ y, 0 ~ y ~ 1} = {(x , y) I x ~ y ~ 1, 0 ~ x ~ 1} 

we have f0
1 J~ f(x, y) dx dy = ffv f(x, y) dA = f0

1 J: f(x, y) dy dx. 

Because the region of integration is 

we have 

D = {(x,y) I 0 ~ y ~ cosx,O ~ x ~ 1rj2} 

= {(x,y) I 0 ~ x ~ cos- 1 y, O ~ y ~ 1} 

foTr/2 focou f(x,y)dydx = ffv f(x , y)dA = fol f ocos-lv f(x,y)dx dy. 

Because tlie reg_ion of integration is -

D = {(x , y) I 0 ~ y ~'Inx, 1 ~ x ~ 2} = {(x,y) J e11 ~ x ~ 2, 0 ~ y ~ ln2} 

we have 

/,211" x ~~ 11n 2[2 f(x,y).dydx = f(x,y)dA = f(x,y) dxdy 
l 0 D 0 cV 

1
113 

2 131:r./3 2 13 [ 2 ]u=x/3 
ex dxdy = ex dydx = ex y dx 

o 3u o o o u=O 
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51. y 

53. y 
y = sinx or 
x= arcsiny 

\ 

X 

1111</2 
. cosx )1 + cos2 xdxdy 

0 arcsmy 

= f 01f 
12 J;1

""' cos x ~:os2 x dy dx 

= J;12 
COSX Vl + COS2 X [y ]~=~in:c dx 

= f.o7r /2 COS X Vl + COS2 X sin X dx. [Let u = cos x, du ,;, - sin X dx, ] 
dx = du/(- sinx) 

0 ~ 2 3/ 2] 0 
=J1 -uvl+u2 du = -Hl+u) 

1 

=Hv'B-1)=H2v'2- 1) 

55. D = {(x, y) I 0 $ x $ 1, - x + 1 $ y $ 1} U {(x, y) I - 1 $ x $ 0, x + 1 $ y $ 1} 

U{(x,y) I O$x$1, - 1 $y$x-1}U {(x,y) l -1 ::;x::; o, -1::;y::; -x- 1}, alltypel. 

x2 dA = x2 
dydx + x 2 dydx + x 2 dydx + x2 dydx fir 111,1 1011 11J•x-1 10 1-x-1 

D 0 1-x - 1 x+1 0 - 1 -1 -1 

=4 {
1 

{

1 

x2 dydx 
f o l1 -"' 

[by symmetry of the regions and because f(x, y) = x 2 ~ 0] 

e-1116
:::; e-<x

2
+t?l

2 
$ e0 = 1 s ince et is art increasing fun~tion. We have A(Q) = ~1r (~)2 = fG, so by Property II, 

e-1116 A(Q) :::; J,h e-(x
2+112

)
2 
dA:::; 1 · A(Q) ~ {Ge-1116 :::; JJQ e-(x

2+112
)
2 
dA:::; {G or we can say 

. 2 2 2 
0.1844 < JJQ e- <x +v l dA < 0.1964. (We have rounded the lower bound down and the upper bound up to preserve the 

' . 

inequalities.) 

59. The average value of a function f of two variables defined on a rectangle R was 

defined in Section 15. I as !ave = AlR) ffn f(x, y)dA. Extending this definition 

to general regions D, we have fnvc = A(
1
D) ffv f(x, y)dA. 

Here D = {(x, y) I 0$ x $ 1,0$ y $ 3x}, so A(D) = ~(1)(3) = ~and 

f .... = A(
1
D) ffv f(x,y)dA = ~ fo1 fo3

x xydydx 

= 1 fl [lxy2] v=3x dx = 1 f1gx3 dx = lx4]1 - 1 
3 Jo 2 v=O 3 Jo 4 o - 4 

y 

(1,3) 
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61 . Since m :S j(x, y) :S M, ffD mdA ~ ffD j(x, y) dA ~ ffD M dA by (8) => 

63. 

mjf
0 

ldA ~ fj~ j(x,y)dA ~ lVI .ffD ldA by(?) => mA(D) ~ ffDJ(x,y)dA ~ MA(D) by (10). 

y 

- 3 X 

First we' can write JJ0 (x + 2) dA = JJD xdA + JJ0 2dA. But f(x, y ) =xis 

an odd function with respect to x [that is, f( -x, y) = - f(x , y)] and Dis 

symmetric with respect to x. Consequently, the volume above D and below the 

graph off is the same as the voiume below D and above the graph off, so 

JJD x dA = 0. Also, .f.fD 2 dA = 2 ·A( D) = 2 · ~7r(3)2 = 97r5ince Dis a half 

disk of radius 3. Thus JJD(x + 2) dA = 0 + 97r = 97r. 

65. We can write J J 0 (2x + 3y) dA = J J 0 2x dA + J J D 3y dA. J J 0 2x dA represents the volume of the solid lying under the 

plane z = 2x and above the rectangle D . This solid region is a triangular cylinder with length band whose cross-section is a 

triangle with width a and height 2a. (See the first figure.) 

(a,0,2a) (O,b, 3b) 

z= 3y 

y X 

Thus its volume is~· a· 2a · b = a2 b. Similarly, JJ0 3ydA represents the volume of a triangular cylinder with length a, 

triangular cross-section with width band height 3b, and volume t · b · 3b · a ~ ~ab2 • (Sec the second figure.) T~us 

JJ0 (2x + 3y) dA = a2b + ~ab2 

67. ff0 (ax3 + In/+ va2 - x2
) dA = ff0 ax3 dA + JJ0 by3 dA + JJ'a Ja2 - x2 dA. Now ax3 is odd with respect 

to x and by3 is odd witb respect to y , and the region of integration is symmetric with respect to both x and y, 

so ffD ax3 dA = ffD'by3 dA = 0. 

JJ'v J a 2 - x2 dA represents the volume of the solid region under the 

graph of z = Ja2 - x 2 and above the rectangle p, namely a half circular 

cylinder with radius a and length 2b (see the figure) whose volume is 

t · 1rr2 h = ~7ra2 (2b) = 1ra2 b. Th~s 

JJD (ax3 + by3 + Ja2 - x2 ) dA = 0 + 0 + 1ra2 b = 1ra2 b. 
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15.4 Double Integrals in Polar Coordinates 

1. The'region R is more easily described by polar coordinates: R = { (r, B) I 0 $ r::; 4, 0::; B::; 3; }. 

Thus JJR f~x, y) dA = J:'~~'12 f 0
4 f(r cos fJ, r sinO) r dr dB. 

3. The region R is more easily described by rectangular coordinates: R = { ( x, y) I -1 :=:; x :=:; 1, 0 :=:; y :=:; ~ x + ~}. 

Thus JJRf(x,y) dA = J~1 J0
("'+1

)/
2 f(x,y) dydx. 

5. The integral J:;t J1
2 r dr dB represents the area of the region . 

R = {(r,B) 11::; r::; 2, 7r/4 $ '0::; 37r/4}, the top quarter portion of a 

ring (annulus): 

J:; t j 1
2 

r dr dO = ( J:; t d()) ( f1
2 

r dr) 

= [B]3'11'/4 [!r2]2 = {3.,. _ .!!.) . 1 (4 _ 1) = 1!.. i! = 3'11' 
'II' /4 2 - 1 4 4 2 2 2 4 

0=31T 
4 

y 

7. The half disk D can be described in polar coordinates as D = { ( r, B) I 0 ::; r ::; 5, 0 ::; B ::; 1r}. Then 

ffv · x2 y dA = J0" J; (r cos B)2 (r sin B) r dr dB= (J0.,. cos2 Osin B dB) ( J~ r 4 dr) 

= [-% cos3 OJ~ [ir5]~ = -%(-1-1) · 625 = 12i 0 

9. JJR sin(x2 + y2
) dA = JJ:/

2 
J{ sin(r2

) r dr dB= (!0.,.12 dO) (J1
3 r sin(r2

) dr) 

= [0]~12 [-~ cos(r2 )]~ 

= (:~) [-~(cos9- cos 1)] = -;f(cos 1 - cos9) 

11 f·r _ ,2_ u2 dA- J'll' / 2 f2 -r2 d dB- J"'/2 dB r2 -r2 d 
. Jn e - -'11'/2 Jo e r r - -'11'/2 Jo re r 

, = [B]"'/2 [-le-r
2

)
2 

= 1r{-l)(e-4 - e0 ) = 1!.(1- e-4 ) 
-'11'/2 2 0 2 2 

13. R is the region shown in the figure, and can be described 

by R = {(r,fJ) I 0::; B ::; rr/4, 1$ r::; 2}. Thus 

JJR ~ctan(y/x) dA = f0'~~' 14 f1
2 

arctan( tan B) r dr dO since yjx =tan 0. 

Also, arctan( tan B) = B for 0 ::; B ::; 1r /4, so the integral becomes 

. f":r/4 f20 d -'"- f'11' / 4"d(} f2 d - [!02)"'/4 [l 2]2 - .,-2. ~- _1_ 2 
.lo 1 r r uu - Jo u 1 r r - 2 o 2 r 1 - 32 2 - a.t7r · 

15. One loop is given by the region 

D = {(r,O) 1-rr/6 S 0 $ rr/6, 0 S r $ cos30}, so the area is 

11 ! 7r /61cos SO . ~.,. /6 [ 1 2] r=coo 30 _ 
dA = rdrdO = 2r dO 

D -'11'/6 0 -'11'/6 r=O 

= {"'
16 

_! cos2 30 dfJ = 2 f"
16 

_! ( 1 +cos 60 ) dO 
}_71:16 2 }0 2 2 

1[ 1 ]"'/
6 

= 2 0 + G sin 60 
0 

= ;; 

y y=x 
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES 0 259 

17. In polar coordinates the circle (x- 1}2 + y2 = 1 ¢} x2 + y 2 = 2x is r 2 = 2r cos 0 ~ 1' = 2 cos 0, 

and the circle x2 + y2 = 1 is r = 1. The curves intersect in the first quadrant when 

2 cos 0 = 1 ~ cos 0 = ~ · .~ 0 = 7r / 3, so the portion of the region in the first quadrant is given by 

D = {(r, 0} 11 ~ r ~ 2 cos 0, 0 ~ 0 ~ 7r /2}. By symmetry, the total area 

is twice the area of D: 

2A(D} = 2ffvdA = 2Ja"/3 j l2coao rdrdO = 2fo"/3 ar2)~~~coao dO 

= J;/3 (4cos2 0- 1) d(} = J;/3 [4 · ~(1 +cos 20}- 1] dO 

= J0"
13 (1 + 2 cos 20} dO= [0 + s~n20]~;a = f + ~ 

O= Tr/3 

,/ r=2oos(J 

21. The hyperboloid of two sheets - x2 - y2 + z2 = 1 intersects the plane z = 2 when -x2
- y2 + 4 = 1 or x2 + y2 = 3. So tlie 

solid region lies above the surface z = )1 + x2 + y 2 and below the plane z = 2 for x2 + y 2 :::; 3, and its volume is 

23. By symmetry, 

V = I I ( 2 - ) 1 + x2 + y2
) dA = la

2
" 1av"J ( 2 - ) 1 + r2) r dr dO 

:r:2 +y2 ~3 

= f~" dO f ov"J (2r- rv'f+'Ti) dr = [ 0] ~.,.. [r2 
- t {1 + r2?12

] : 

= 27r (3- i- 0 + 1) = ~7r 

V = 2 // Ja2 - x2 - y 2 dA = 21a
2
"1aa )a2- r 2 rdrdO = 21az... dO loa r Ja2 - r2 dr 

~+~~~ . 

26. The cone z = Jx2 + y2 intersects the sphere x2 + y2 + z2 = 1 when x2 + y2 + ( Jx2 + y2 ) 
2 

= 1 or x 2 + y2 = ~· ~0 

V = /1 ( )1- x2- y2- )x2 +y2) dA = la27r lal/-/2 ( ) 1 - r2 - r )rdrdO 

.,2 + y2 ~ 1/ 2 

= f~1r dO f0
11V2 (r Jl-T2 - r 2

) dr = [ 0]~7r [ -~(1 - r 2
)

312
- ~r3) :/-.12 = 271'( -~) ( ?z - 1) = f(2 - V2) 

27. The given solid is the region inside the cylinder x 2 + y 2 = 4 between the surfaces z = J64 - 4x2 - 4y2 

and z = - )64- 4x2 - 4y2 • So 

V = I I [ J 64 - 4x2 - 4y2 - ( --: J 64 - 4x2 
- 4y2 ) ] dA = J J 2 J 64 - 4x2 - 4y2 dA 

x2 + 112 s 4 +2 +112 ~ 4 

= 4J~.,.. J~ ~ rdrdO = 4J:.,.. dO J: r v'16 - r 2 dr = 4 [ OJ~". [-1(16- r 2
)

312J: 
= 8Tr( -~)(12312 -162

'
3

) = 8; .(64 - 24 v'3) 
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260 D CHAPTER 15 MULTIPLE INTEGRALS 

29. 

-3 0 3 X 

31. 
y 

/

3 {~ sin(x2 + y 2 )dy dx = {" r sin e) r dr dB 
-3lo · Jo Jo 

= fo" dB J; r sin (r2
) dr = [B)~ [-~cos (r2 )J~ 

= 1r (-~) (cos9 -1) = ~ (1 - cos9) 

f0" 
14 fov'2 (r cos B + r sin fJ) r dr dB == f0" 

14 (cos B + sin B) dB f0v'2 1·
2 dr 

== [sin(}- cosB)~/4 [i r3]~ 

= ( ¥ - ¥-O+ 1] . i(2v'2- o) = ¥ 

33. D = {( r-, B) [ 0::; r ::; 1, 0 ::; 8::; 271' }, so 

ff D e<x
2
+1h 2 

dA = 1~ ... J; e<r
2

)
2 

r dr dB = J:" dB f
0

1 rer
4 

dr = 271' J
0
1 r er

4 
dr. Using a calculator, we estimate 

f l ,,.1 d 27r Jo re r ~ 4.5951. 

35. The surface of the water in the pool is a circular disk D with radius 20ft. If we placeD on coord inate axes with the origin at 

the center of D and define f(x, y) to be the depth of the water at (x, y), then the volume ofwater·in the pool is the volume of 

the solid that lies above D = { ( x, y) I x2 + y2 
::; 400} and below the graph off ( x, y). We can associate north with the 

positive y-direction, so we are given that the depth is constant in the x -direction and the depth increases linearly in the 

y-direction from f(O, -20) = 2 to f(O , 20) = 7. The trace in the yz-plane is a line segment from (0, - 20, 2) to (0, 20, 7). 

The slope of this line is 20 ~(_?20) ~ t. ~o an equation of the line is z- 7 = t(y- 20) =? z = ty + ~· Since f(x, y) is 

independent ofx, f(x, y) = ty +~·Thus the volume is given by ffv f(x, y) dA, which is most conveniently evaluated 

using polar coordinates. Then D = { ( r, fJ) I 0 ::; r ::; 20, 0 ::; B ::; 271'} and substituting x = r cos B, y = r sin B ~he integral 

becomes 

J; ... 1~20 ( tr sin (J + ~) r dr dB = 1~ ... [i4r3 sin B + ~r2] ;:: ~0 dB = g•· ( 10~0 s in O+ 900) dB 

= (- 1~0 cos B + 9008] ~" = 180071' 

Thus the pool contains 18007r ~ 5655 ft3 of water. 

37. As in Exercise 15.3.59, f,, .• = A(~J ffv f(x, y)dA. Here D = {(r, fJ) I a::; r::; b, 0::; ()::; 271'}, 

so A(D) = 1rb 2 -1ra2 = 1r(b 2
- a 2

) and 

1 !1 1 1 12
" lb 1 1 12" ;·b !ave= A(D) ~dA = (b 2 2 ) o; rdrdB = (b 2 2 ) dB dr 

D y x 2 + y2 7r - a 0 . a V r·2 7r - a 0 a 

_ 1 [e]2rr (]b 1 (2 )(b ) 2(b-a) 2 
-7r(b2 - a2) o , rn=11'(b2 - a2) 7r -a = (b+a)(b - a) = a+b 
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·Y 

= r r r3 cos 8 sinfJdrd8= .!:.... cos8sin8 d() 
?r/4 2 1rr/4 [ 4 ] r=2 

Jo J 1 o 4 r = 1 

151rr/4 
. 15 [sin2 

()] .,.;
4 

15 
= - sm8 cos9d(J = - -- = -

4 0 4 2 0 16 

• . 2 2 

41. (a) We integrate by parts with u = x and dv =·xe-x dx. Then du = dx and v = -~e-x , so 

f "" x 2e- "'
2 

dx = lim rt x2 e-"'
2 

dx = lim ( - l xe- "'
2 )t + rt l e- "'2 

dx) 
Jo t-+oo Jo t-+oo 2 0 Jo 2 

= lim _.!.te-t + .!. roo e-x dx = 0 + .!. roo e- "' dx ( 2) 2 2 
t-+oo 2 2 Jo 2 Jo [by !'Hospital's Rule] 

1 f "" _.,2 d = 4 -oo e X 
2 

[since e-"' is an even function] 

[by Exercise 40(c)] 

(b) Let u = ..JX. Then u2 = x .::? dx = 2udu .::? 

f.000 .../Xe- "'dx = lim I; .../Xe-"'dx = lim I0,/f.ue-"
2
2u du = 2I0

00 u2e- u
2 

du = 2 U.J7T) [by part(a)] = ~ft. 
· t-oo # t-oo 

15.5 Applications of Double Integrals 

1. Q = IIv O"(x, y) dA = I~ I: (2x + 4y) dydx =I~ [2xy + 2y2] ~=~ dx 

= I~ (lOx + 50- 4x- 8) dx = J~ (6x + 42) dx = [3x2 + 42x]~ = 75 + 210 = 285 C 

3. m = IIv p(x, y) dA = I1
3 I1

4 
ky2 dydx = k I1

3 dx .{1
4 

y 2 dy = . k [xJ~ [h3]~ = k(2)(21) = 42k, 

x = ~ IIv xp(x,y) dA = 4~k I : I1
4 

kxy
2 

dydx = 4
1
2 I1

3 
xdx I 1

4 
y2 dy = f2 [tx2]~ [ky3]~ = 4\(4)(21) = 2, 

- 1 ff ( )dA - 1 f a f 4k a d dx- 1 f sdx r4 ad _ 1 [ ]3 [1 4] 4 - 1 ( 2)( 211:;) 85 Y = m D yp x , Y - 42k 1 . 1 Y y - 42 1 Jt y y - 42 X 1 4Y 1 - 42 -4- = 28 

Hence m = 42k, (x, Y) = (2, ~) . 

r2f3-x( ) r2 [ 1 2]v=3-:z: dx r2 [ ( a ) 1 (3 )2 1 2] 5. m= Jo .,12 x+y dydx = Jo xy+2Y v=x/2 =J~ x 3- 2x + 2 - x - 8x dx 

= J0

2 (-~x2 + ~) dx = [- ~(tx3 ) + ~x] ~ = 5, 

. r2J·3-x( 2 )d dx r2 ( 2 1 2]11=8- :z: dx r2 (9 9 3) d 9 lvfv = Jo :r:/2 x + xy y = Jo x y + 2xy 1l=x/2 = Jo 2x - gX x = 2• 

f2J3-v( 2)d d r2.[1 2 1 3)11=3-x d r 2 (g 9 )dx 9 lvfx = Jo .,12 xy + y y x = Jo 2xy + 3Y 11=,12 x = Jo - 2x = . 

(--) (lvfy Mx) (3 3) Hencem = 6, x_, y = m '--;:; = 4' 2 . 

7. m = J~1 J~ -"'
2 

kydydx = k f~1 [~y2]~=~-"'
2 

dx = ~k f~1 (1 - x 2? dx = ~k f~1 (1 - 2x2 + x 4
) dx 

= ~k [x- ix3 + %x5
] ~1 = ~k (1 - i + -k + 1- % + %) = 1

8
5 k , 
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262 D CHAPTER 15 MULTIPLE INTEGRALS 

Mv ·= .f~1 ,{01 -:r
2 

kxydydx = kf~1 axy2]~=~-:r
2 

dx = ~kf~1 x(1 - x 2
)

2 dx = ~kf~1 (x- 2x3 + x5 )dx 

- lk(lx2 - lx4 + lx6]
1 

- l k (1- l + l - l + l _ l) - 0 - 2 2 2 6 -1 - 2 2 . 2 6 2 2 6 - ' 

M x = J1 r1 -"'~ ky2 dydx = kf1 (1y3] v=l-x
2 

dx = lk f 1 (1 - x2 ) 3 dx = lk {1 (1 '- 3x2 + 3x4 - x6 )dx 
- 1 Jo -1 3 v=o s -1 3 . - 1 

H _ 8 k (- -) _ (o 32k/105) _ (o 4) encem - 15 , x , y - , · Bkf l ~ - •7 · 

9. Note thatsin(7Tx/ L) ~ 0 for 0 ::::; x::::; L. 

m = J:' J;in(rrxfL) ydydx = g t sin2 (7Tx/L) dx =tax- 4~ sin(27rx/L)j~ = ~L, 

M. _ j 'L j·sin(7rx/L) . d dx _ .! rL · 2( jL) dx y - o o X Y Y - 2 Jo X SID 11'X [ 
integrate by parts with ] 

u = x , dv = sin2 (7rx/ L) dx 

= t · x(tx - 4r;, sin(27Tx/L)) ] ~ - ~ J0L [tx - 4~ sin(27Tx/ L)] dx 

= l£2- l [.!x2 + L2 cos(211'xj L)]L = .!£2 - l (.!£2 + L2 - L2) = l£2 
4 2 4 41f2' 0 4 2 4 41f2' 41f2' 8 ' 

M:z: = J 0L J;in("'x f L ) y · y dy dx = f0L ~ sin3(7Tx/ L ) dx = ~ f0L [1 - .cos2 (7Tx/ L )] sin(7Tx/ L ) dx 

[substituteu =cos(7Tx/L)) ::} du= -fsin(7Tx/L)) 

= t(- ~)[cos(7Tx/L) - 1 cos3 (7Tx/L)]~ = - 3~ (- 1 + ~ -1 + i) = 9~L. 

L _ _ (L2 /8 4£/ (911')) (L 16) 
Hencem = 4' (x,y) = L/ 4 ' L /4 = 2 ' 971' . 

11 . p(x, y) = ky = kr sin O, m = )~,.12 J; kr2 sinO dr dB= ik )~.,.12 sin O dtl = ik [- cosB]~12 = ftk, 
Mv = J0,.

12 J; kr3 sinB cos BdrdB = i k f0"
12 sinB cosB dB= ~k [- cos 28] ~12 = lk, 

13. 

M x = J0,.
12 J0

1 kr3 sin2 B dr dB = ik f0"'
12 sin2 B dB = lk [B + sin 28] ~12 = fak . 

Hence (x, y) = (i, ~~) . 

y p(x, y) = k jx2 +y2 = kr, 

m = ffo p(x, y)dA = f0"' f1
2 

kr · r dr dB 

= k f0"' dB f1
2 r2 dr = k(11') [ir3]~ = ~11'k, 

= k [sinO]"' [ .! r 4]2 = k(O) (.!&) = O . [this istobe expectedastheregionanddensity 
0 4 1 4 function are symmetric about they-axis] 

M:r = ffo yp(x, y)dA = fo,. t <r sin B)(kr) r dr dB = k J0"' sinBdB f1
2 

r 3 dr 

= k [-cosO] ~ (tr4] ~ = k(1 + 1) ( ~5 ) = lfk. 

H (- - ) _ (o 15k/ 2) _ (o ~) ence x, y - ' 7-rrk/ :J - ' 14,. . 
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15. Placing the vertex opposite the hypotenuse at (0, 0), p(x, y) = k(x2 + y2
). Then 

m = J; foa-"' k (x2 + y2
) dy dx = k foa [ax2

- x 3 + 4 (a - x)3
] dx = k[~ax3 - tx4

- 1
1
2 (a - x) 4]~ = ~ka4 • 

By symmetry, 

Hence (x, y) = (~a, ~a). 

17. I :r: = JJ
0 

y2 p(x, y)dA = .{~ 1 J; -x2 
y2 

· ky dy dx = k j~1 [h4J~:~-x
2 

dx = tk f~ 1 (1 - :t2
)

4 dx · 

- l kf1 (x8 -4x6 +6x4
- 4x2 + l)dx = l k [lx9

- ix7 + !!x5
- :!x3 + x]

1 = .M..k - 4 -1 4 9 7 5 3. - 1 315 ' 

Iy = fio x2 p(x, y) dA = }~1 j~-"'2 kx~ydydx = k I~1 [~x2y2J ~:~-"'
2 

dx = ~k t 1 x
2(1- x 2? dx 

1 k It < 2 2 4 6) d 1 k [ 1 3 2 s 1 1] 1 _ 8 k = 2 • - 1 X - X +X X= 2 aX - s X + "'fX - 1 - 105 ' 

and Io = I, + Iv = 36~k + t~sk = 38t8sk. 

19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0, 0) and the equal sides along the positive axes. 

Ix = I~'I;-xy2k(x2 +y2)dydx = k.fo" .fo"- "'(x2y2 +y4)dydx = k.fo"[~x2y3 + h5J~:~-x dx 

= k f'a [lx2 (a- x)3 + l(a - x)5
] dx = k [l (la3x3 - 1a2x4 + !l.ax5 

- lx6 ) - l (a- x)6 ] a = - 1-ka6 
. 0 3 5 3 3 4 5 6 30 0 180 ' 

Iv = I; I;-x x2k(x2 +y2
) dydx = k J0a.f;-"'(x4 +x2 y2)dydx = k .f0a[x4 y + ~x2y3J::~-x dx 

- k j ·a [x4 (a - x) + l x2 (a - x)3) dx = k [lax5 - lx0 + l (l a3x3 - !l.a2x 4 + !!ax5 - lx0 ) ) a - - 1- ka6 
- 0 3 5 6. 3 3 4 5 6 0 - 180 ' 

21. I,. = IIo y2p(x, y)dA = Io" I~ py
2 dx dy =pI: dx I~' y2 dy = p[ x ]~ [~y3]~ = pb(th3

) = tpbh3
, 

Iv = IIo x 2p(x, y)dA = Io" I~ px2 dxdy =pI: x2 dx I~' dy = P[ tx3 ]~ (y)~ = ipb3h, 

l l b3 h b2 

and m = p (area of rectangle) = pbh since the lamina is homogeneous. Hence ¥2 = ...JL = L_ = -
m pbh 3 

= 2 I :r: tpbh3 h2 

andy = - = -- = -
m pbh 3 

=> 

23. In polar coordinates, the region is D = { (r, 8) I 0 ~ r ~ a, 0 ~ 8 ~ ~},so 

! 11 = .{[0 x2 pdA = f0""
12J; p(r cos 8)2 r dr d/J = p I0""

12 cos2 dB .f0o. r 3 dr 

= p(t8 + t sin 28)~12 (tr4)~ =~Of) (ta4
) = ftPa

4
rr, 

.l...pa4rr a2 
and m = p · A(D) = p · trra2 since the lamina is homogeneous. Hence ¥ 2 = y2 

= ~ = - => x = y = ~2 . 
4pa 1r 4 
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25. The right loop of the curve is given by D = {(r, 0) I 0 ~ r :::; cos 20, - r./4 ~ () ~ 71'/ 4}. Using a CAS, we 

find m = f fo p(x,y) dA = ff0 (x
2 + y 2

) dA = r:~;4 f oco"
20 

r 2 rdrd9 = ::. Then 

1 i'!r 64 j "'/4 [ os20 64 ~Tr/4 1cos20 16384J2 ·x= - xp(x,y)dA= -
3 

(rcos9)r 2 rdrd8= - r 4 cos9dr d8= and 
m o 7r -Tr/4 o 371' - Tr/4 0 1039571' 

1 /lr 64 ~rr/4 1cos28 64 j "'/4
1

cos20 y =- yp(x, y) dA = -
3 

. (rsin 9) r 2 rdrd(J = -
3 

r4 sin 9dr d0 = 0, so 
m D 7r -rr/4 o 7r -Tr/4 o 

(- _ ) ( 16384v'2 o) 
x, y = 1039571' ' . 

The moments of inertia are 

I _ [J 2 ( )dA -' J "/4 rcos20( . (})2 2 d dB - J"/4 j ·cos20 s . 2(J d d(J- 571' 4 
:r -. D y p x, y - -Tr/ 4 Jo r sm r r r - - 7r/4 o r sm r - 384 - 105, 

ly = JJ0 x
2

p(x, y) dA = J~~;4 J; 0

"

28 
(Hos0)2 

r
2 

r dr dO = J~~~4 J0c"" 20 
r 5 cos2 0 drdO = :~ + 1~5 , and 

571' 
Io = I , + Iy = 192 

27. (a) f(x, y) is a joint density function, so we know JfR2 j(x, y) dA = 1. Since f(x, Y) .= 0 outside the 

rectangle [0, 1) x [0, 2], we can say 

J JR2 f(x,y)dA = f~oo f~oo f(x,y)dy 'dx .= f0
1 J; Cx(1 + y ) dy dx 

= C f
1 x [y + ly2]v=2 

dx = c' f
1 4xdx ~ C (2x 2

]
1 = 2C Jo 2 v=;O Jo o 

Then 2C = 1 => C = t. 

(b) P (X :::; 1, Y ~ 1) = f~oo f~oo f(x, y) dy dx = J0
1 J; tx(1 + y) dy dx 

r l 1 [ 1 2] Y = 1 d r1 1 ( 3) dx 3 [ 1 2 ] 1 3 0 375· = Jo 2x Y + 2Y v=O x = Jo 2x 2 = 4 2x o = 8 or · 

(c) P (X+ Y :::; 1) = P ((X , Y) ED) where Dis the triangular region shown in Y 

the figure. Thus 

· If 1 12: 1 P(X+Y :s; 1)= 0 f(x , y)dA = f
0

f
0

- 2x(1+y)dydx 

= t 1 lx [y + ly2] v=l-:~: dx = f 1 lx(lx2 - 2x + ~) dx Jo 2 2 11 = o Jo 2 2 2 D 

1 3 2 [ •I 3 2] 1 = l 1 (x - 4x + 3x) dx = l L - 4L + 3L 40 44 3 2() 0 

= 4~ ~ 0.1042 

1 X 

. 29. (a) f(x, y) ;;::: 0, so f is a joint density function if Jf'it2 f(x, y) dA = 1. Here, f(x, y) = 0 outside the fi rst quadrant, so 

JJR2 f(x,y)dA= f ooo fo":'0.1e-(o.ox+?·211) dydx = 0.1 J~oc f ooo e-0.5:re-0.2y dy dx = O.l fooo e-o.sx dx f ooo e-0.2y dy 

= 0.1 lim r t e- 0·5"' dx lim rt e- 0·2 Y dy = O.l. lim (- 2e-0·5"'] t lim [- se-0·211] t 
L--+oo Jo t-oo Jo t.--+eo 0 t --+oo 0 

= 0.1lim [- 2(e-0
·
5

t - 1)] lim [- 5(e- 0·2 t - 1)] = (0.1). (-2)(0 - 1) · (-5)(0 - 1) = 1 
t --+oo t --+oo 

Thus f(x, y) is a joint density function. 
. ' 
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(b) (i) No restriction is placed on X, so 

P(Y ~ 1) = f~oo I
1
00 f (x,y) dy dx = Iooo Jt 0°1e-(OoSx+0.2y) dydx 

= o ."1 roo e-0 ·5"' dx f 00 e-0·211 dy = oo1 tim rt e - o.s., dx lim It e- 0·211 dv 
Jo 1 t-+oo Jo t-oo 1 

= 001 lim [-2e- 0 ·5"']t lim [-5e- 0·211]t = 001 lim [- 2(e- 0·5 ' - 1)] lim [- 5(e-0 ·2 ' - e- 0 ·2 )] 
t-oo 0 t-oo 1 t-+oo t-oo 

(0.1) 0 ( -2)(0- 1) 0 ( - 5)(0 - e- 0·2 ) = e-0
·
2 ~ 008187 

(ii) P(X $2, Y $ 4) = I~oo I~oo f (x,y) dyd.x = I0
2J0

4 
Oo1e-<0·5"'+0·2Y) dydx 

= 001 1~2 e- o.sx dx 1~4 e-0
·
2

ll dy = 0.1 [ -2e- 0
·
5

"'] ~ [.-5e-0 · 211]~ 

= (0.1) · (-2)(e- 1 -1) · (- 5)(e- 0·8 -1) 

= (e-1 - 1)(e-0 ·8 - 1) = 1 + e-J.B - e- o.s - e-1 ~ 0.3481 

(c) The expected value of X is given by 

Mt = IIR2 x f(x, y) dA = 1~00 1~00 :z; [oo1e-(o.sx,+o.2v)J dydx 

= 0.1 ];00 xe-O.ux dx ];00 e- 002!1 dy = 001 lim ];t xe-005"' dx lim rt e-0 ·2 Y dy 
0 0 t~oo o t-oo ./o 

To evaluate the first inteirat, we integrate by parts with u. = x and dv = e-0·5"' dx (or we can use Formula 96 

in the Table of integrals): I xe- 0
·
5

"' dx = - 2xe-0·5"'- J - 2e-0·5"' do'l = -2xe-0·5"' - 4e- 0
·
5

"' = - 2(x + 2)e- 0 ·5"'0 

Thus 

JJ.1 = 0°1 lim [-2(x + 2)e-0·5 "'] '· lim [- 5e- 0·2ll] t 
t -+oo 0 t -+oo 0 

= 001 lim ( -2) [ (t + 2)e- 0 ·5 t - 2] lim ( - 5) [e- 0·2 t - 1] 
t -...oo t-+oo 

= 0.1(-2)(lim t +.
2

- 2)(- 5)(- 1) = 2 [by !'Hospital's Rule] 
t -+oo eO.at 

The expected value ofY is g iven by 

J1.2 = Ifa2 y f(x , y) dA = Io00 fa"" v [oo1e-(0.5+0.2y)] dy dx 

= 001 ];00 e-0 ·5"' dx {;00 ye- 0 ·211 dy = 001 lim {;t e-o.sx dx lim rt ye-0 · 2Y dy 
0 . 0 t-oo. o t-oo _Jo 

To evaluate the second integral, we integrate by parts with u = y and dv = e - 0·2 !1 dy (or again we can use Formula 96 in 

the Table oflntegrals) which gives I ye-0
·211 dy = - 5ye- 0

·
2
ll + .r se-0·211 dy = -5(y + 5)e-0 ·2U 0 Then 

JJ.2 = 0.1 lim [- 2e- 0
·
0·"] t lim [ - 5(y + 5)e- 0 ·2 Y] ' 

t-oo 0 t -+oo 0 

= Oollim [- 2(e-o.st _ 1)] lim (- 5[(t + 5)e-0 ·2t- 5]) 
t-+ oo t -oo 

( 

0 t+5 ) =Oo1(- 2)(- 1)o (-5) lim - 0 .,t - 5 = 5 
t- oo e .... [Py )'Hospital 's Rule] 

310 (a) The random variables X and Y are normally distributed with JJ.1 = 45, JJ.2 = 20, 0'1 = 005, and a 2 = Ool. 

The individual density functions for X and Y, then, are !J (x) = ~ e- <:r-<11>)
2
1°·5 and 

0.5 27r 

h (y) = ~ c- <Y- 20)
2

/
0·02 0 Since X and Yare independent, the joint density function is the product 

001 211' . 
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f(x, y) = /I(x)/2(y) = 1 e-(x-45)
2
/0.s 1 e-(y-20)

2
/0.02 = lQe-2(x-45)2-so(v-2~)2. 

0.5 ..,l2ir 0.1 ..,f2ir " . 

Then P(40 <X< 50 20 < y < 25) = rso r2s f(x y) dy dx = !.!!. fso f25 e - 2(x-45)2-so(y-2o)2 dy dx 
- - • - - J 4o J2o . ' .,. . 40 J 2o · 

Using a CAS or calculator to evaluate the integral, we get P( 40 $ X ~ 50, 20 $ Y $ 25) ~ 0.500. 

(b) P(4(X- 45)2 + lOO(Y- 20? $ 2) =· ffv ~e-2<"'-45)2 -so(v-20)2 dA, where Dis the region enclosed by the ellipse 

4(x- 45)2 + 100(y- 20)2 = 2. Solving for y gives y = 20 ±to J2- 4(x- 45)2, the upper and lower halves of the 

ellipse, and these two halves meet where y = 20 [since the ellipse is c•~ntered at (45, 20)] ~ 4(x- 45)2 = 2 ~ 

x = 4? ±' ~. Thus 

lQe-2(x - 45) -so(y- 20) dA = lQ . e-2(:.;-45)2 -so(y-20)2 dydi. !l 2 2 l45+1/v'2 .

1
2D+tn/2- 4(x-45)2 

D " " 45-1/.,/2 20-ftp,/2- 4(x-45)2 

Using a CAS or calculator to evaluate the integral, we get P( 4(X - 45? + 100(Y - 20)2 $ 2) ~ 0.632. 

33. (a) If f(P, A) is the probability that an individual at A will be infected by <m individual at P, and k dA is the number of 

infected individuals in an element of area dA, then f(P, A)k dAis the number of infections that should result from 

exposure of the individual at A to infected people in the element of area dA. Integration over D gives the number of 

infections of the person at A due to all the infected people in D. In rectangular coordinates (with the origin at the city's 

center), the exposure of a person at A is 

E = JL kf(P,A)dA = k JL fo [20 - d(P,A)] dA = k j L (1- -foJ(x- xo)2 + (y- YoF] dA 

(b) If A = (0, 0), then 

E = k j L [ 1 - 2
1
0 Jx2 + y2 J dA 

r = 20cos0 

1271'1 10 ' 10 
= k (1- i0 r) rdrd() = 27T'k[~r2 - 6

1
0 r 3

] 0 
0 0 ' 

= 27T'k(50- sn = 2~0 1T'k ~ 209k 

For A at the edge of the city, it is convenient to use a polar coordinate system centered at A. Then the polar equation for 

the circular boundary of the city becomes 1· = 20 cos() instead of r = 10, and the distance from A to a point P in the city 

is again r (see the figure). So 

= k J::~~2 (200 cos
2 8 - 4~0 cos

3 8) dO = 200k J::~~2 [ ~ + ~ cos 20 - ~ ( 1 - sin
2 0) cos OJ dO 

= 200k [ ~ 8 + t sin 2() - ~ sin 0 + ~ · ~ sin 3 0] =~212 = 200k [ :f + 0 - ~ + ~ + :f + 0 - ~ + ~) 

= 200k(i - ~) ~ 136k 

Therefore the risk of infection is much lower ·at the edge of the city than in the middle, so it is better to live at the edge. 
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15.6 Surface Area 

1. Here z = f(x , y) = 2 + 3x + 4y and Dis the rectangle [0 , 5) x [I , 4), so by Formula 2 the area of the surface is 

A(S) = ffD J[f,(x,y)] 2 + [!11 (x,y)]2 + I dA= ffo -../32 +42 +IdA= ../26ffDdA 

= ../26 A( D) = ../26 (5)(3) = I5 ../26 

3. z = f(x, y) = 6- 3x - 2y which intersects the xy-plane in the line 3x + 2y = 6, 'soD is the triangular region given by 

{(x,y) I 0:5 x :5 2,0:5 y :53- ~x}. Thus 

A(S) = JJD J( -3)2 + ( -2)2 +IdA= .JI4 ffo dA = JI4 A( D ) = JI4 (~ · 2 · 3) = 3 .JI4 

5. y2 + z2 = 9 =* z = ~· fx = 0, fv = -y(9 - y2
) -

112 =* 

A(S) = h412 Jo2 + [- y(9- y2)-1/2)2 + 1 dy dx = h4 h 2 J 9 ~2y2 + I dy dx 

= t {
2 3 

dydx = 3 t [sin- 1 IL]11
=

2 
dx = 3 [(sin- 1 (~))x]~ = I 2sin-1 (~) lo lo J9 - y 2 lo · 3 v=O 

7. z = f(x, y) = y2 - x2 with I ::; x 2 + y2 ::; 4. Then 

A( S) = J f D J 1 + 4x2 + 4y2 dA = .{0
2

" f1
2 Vf+"4r2 r dr dO = J:.,. dO J

1

2 r -../I + 4r2 dr 

= (0]~" u2(I + 4r
2
)

312J: = {f(17vT7 - 5v'5) 

9. z = f(x, y) = xy with x 2 + y2 :5 1, so / ex = y, f v =X =* 

A(S) = JJ Jy2 + x2 + 1dA = t" r1 -../r2 +I r dr dO= J;2" [l(1·2 + 1)312] r=l dO 
. D 0 J o 0 3 r=O 

= I:'lr H2-../2 - I) dO= 2I(2-../2 - 1) 

A(S) = !L x2 +y2 
2 2 2+ IdA a - x - y 

/_
"/2 1 acos6 / r2 

= --+ 1rdrd0 
- 1r/2 o a2 - r2 

/_

'lr f2

1
a coso ar 

= drdO 
- .r/2 o · Va2 - r 2 

= /_"/2 [-a Ja2...:. r2 ] r=acose dO 
- 1rj2 r=O 

/_

1r/2 1 -rr/2 
= -a( J a2 - a2 cos2 0- a) dO = 2a2 

(I - Vl - cos2 0) dO 
-1r/2 0 
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268 0 CHAPTER 15 MULTIPLE INTEGRALS 

2 2 2 2 2 2 
13. z = f(x, y) =e-x - v , f.,= -2xe-x - v , fv = -2ye-x - v . Then 

A(S)= II v(- 2xe- xLv2 )2+(- 2ye- x2-v2 )2+ 1dA = If .j4(x2-t-y2)e- 2(x2+v2l-t- ldA. 
x2+y2_54 x2+1125-1 

Converting to polar coordinates we have 

A(S) = J:" .{
0

2 J 4r2e-'2r
2 + 1 r dr d(J = ;;11: dl1 .{

0

2 
r V 4T2e-2''

2 + 1 dr 

= 27!' .r; r V 4r2 e-2r
2 + 1 dr ~ 13.9783 using a calculator. 

15. (a) The midpoints of the four squares are (i 1 i ), (i 1 %) , ( %, ~)~and ( i 1 ~). Here f(x 1 y) = x2 + y2
, so the Midpoint Rule 

gives 

A(S) = JJD .j[fx(X 1 y)F + [fv(x, y)J2 + 1 dA = jjD .j(2x)2 + (2y)2 + 1 dA 

~ ~ ( J[2(~)J 2 + (2(iW + 1 + V[2(~)J 2 + [2(t~] 2 
+ 1 

+ V[2(~)] 2 
+ [2(i)]

2 
+ 1 + V[2(%W + [2(~)] 2 

+ 1) 

= ~ ( .ft + 2 JJ + /¥) ~ 1.8279 

(b) A CAS estimates the integral to be A(S) = J[D .)1 + (2x )2 + (2y )2 dA = .1; J0

1 
.)1 + 4x2 + 4y2 dy dx ~ 1.8616. 

This agrees with the Midpoint estimate only in the first decimal place. 

17. z = 1 + 2x + 3y -t--4y2
, so 

·A(S) = 11 1 + (~~r + (~~r dA = 14 .f v 1 +4+(3 + 8y)2dydx = 14 11 

V 14+48y+64y2dydx. 
\ 

Using a CAS, we have J1
4 I~ .)14 + 48y + 64y2 dy dx = ¥ .Jl4 + ~ ln(ll J5 + 3 .Jl4J5) - t~ ln(3 J5 + v'i4 J5) 

45 'P4 15 ln 11 J5 + 3 v'70 or- V J. '% + -
8 16 3 J5 +. v'70 . 

19: f(x, y) = 1 + x 2 y2 => f, = 2xy2
, fv = 2x 2y. We use a CAS (with precision reduced to five significant digits, to speed 

up the calculation) to estimate the integral 

1!1~ 1!1~ ' A(S) = V fi + F~ + 1 dy dx = ..j 4x2 y4 + 4x4 y2 + 1 dy dx, and find that A(S) ~ 3.3213. 
- 1 - vh-x.2 . - 1 -~ · 

21. Here z = f(x , y) = ax+ fnJ + c, f.,(x 1 y) =a, / 11 (x, y) = b, so 
I 

A(S) = JJD ,Ja2 + bz + 1 dA = ,ja2 + b2 + 1JJD dA = ,Ja2 + b2 + 1 A( D). 

23. If we project the surface onto the xz-plane, then the surface lies "above" the,' disk x2 + z2 ~ 25 in the x z-plane. 

We have y = f(x, z) = x 2 + z 2 and, adapting Formula 2, the area of the surface is 

A(S) = J{ .j(f,. (x ,z)]2+[fz(x,z)]2+1dA = JJ ,J4x2 +4z2 +1dA 
,;2 +z2 .$25 ,2 +=2 .$25 
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Converting to polar coordinates x = r cos fJ; z = r sin fJ we have 

15.7 Triple Integrals 

If, r 2 ri r3 J2 2 d d dx ri r3 [ 1 2 2] v=2 d d · ri r3 3 2 d d 1. JB xy~ dV = Jo Jo _1 xyz y z = Jo Jo 2xy z v=- 1 z x = Jo Jo 2 x z z x 

= r1 (lxz3]==3 dx = fl TI xdx = 27 x2] 1 = TI Jo 2 ==O Jo 2 4 o 4 

2 "2 ru- · . r2 r·2 
[ 2 ] x=y- z r2 r=2 [( 2 ] 3. J0 J; Jo "(2 x - y)cJ:J: dydz=Jo J; x - xy x=O dydz =Jo Jo y- z) - (y-z)y dydz 

= J; J0"

2 

(z
2

- yz) dydz = J~2 [yz
2

- h2z] ~=~
2 

dz = J0
2 (z4

- %z5
) dz 

5 ! 2 r2= r tn x - y d dxd = !2 r2= [- -v] v=ln:r; d d = !2 r2z ( - - ln x + 0) dxd 
. 1 Jo Jo x e y z 1 Jo x e v=O x z 1 Jo xe xe z 

= Jt J:= (-i + x) dxdz = g [-x + %x2J::~= dz 

· = f1
2 

(- 2z + 2z2
) dz = [- z2 + ~ z3

] ~ = - 4 + 1
3
6 + 1 - ~ = ~ 

7. J0.,.
12 J~ J0"' cos(x+y+z)dzdxdy = j~rr/2 g [sin(x+y +z)J::~ dxdy 

= f0.,.
12 J~ (sin(2x + y) - sin(x + y)J dx dy 

= j~,./2 [- % cos(2x + y) + cos(x + y)J::~ dy 

= f0,. 
12 [- ~ cos 3y + cos 2y + ~ cos y - cos y] dy 

[ 
1. . 3 1 . 2 1 . ] .,. /2 1 1 1 

= -6 SID y + 2 S Ln y - 2 sm y 0 = G. - 2 = -S 

9. JJJE ydV = J; fa"' J;::: ydzdydx = J; J; [yz]~==~~ dydx = f0
3 f0"' 2y2 

dydx 

- r3 (1y3] y = x dx - r3 1x3 dx - lx4] 3 - 81 = ll 
- Jo 3 11=o - Jo 3 - G o - 6 2 

11. / " ( ( - 2- z- 2 dV = 1414 1= ~ dx dz dy = 1414 

[z · .! tan -l ~] x = z dz dy 
} } E X + Z 1 71 0 X + Z 1 71 Z Z x =O 

= f 1
4 f11

4 
(tan- 1 (1)- tan- 1 (o)] dzdy = f1

4 I:(~- o) dz' dy = ~ f 1
4 [zJ::: dy 

= ~ f1

4
(4-y)dv= ~ [4v - h2]~ · = ~ (16-8 - 4+~) = 9

; 

13. Here E = {(x,y,z) I 0 :::; x:::; 1, 0 :::; y:::; -fo, O :::; z :::; 1 +x +y}, so 

JJJE 6xydV = f0
1 fov'X J;+.,+u 6xydzdydx = J~ fov'X [6xyzJ ::~+"'+11 dydx 

= f~ fov'X 6xy(1 + x + y) dy dx = / 0
1 (3xy2 + 3x2y2 + 2x~3)~=~ dx 

= t (3x2 + 3x3 + 2x5f2) ·dx = [x3 + ~x·l + :!x7f 2] 1 = 65 
0 4 7 0 28 

© 20 12 Ccogogc !.coming. All Rights Rcsc"'Cd. Moy not be scanned, copied, or duplicuted, or posted ton publicly ncccssible website, in whole or in pan. 



270 D CHAPTER 15 MULTIPLE INTEGRALS 

15. 

17. 

X 

HereT = {(x, y,z) I 0 $ x $ 1, 0 $ y $ 1 - x, O $ z $ 1- x - y}, so 

Jffr x2 dV ::::: fot J;-a: fot -a:-y x2 dz dydx = fot fot-x x2(1- x- y) dy dx 

= J; fot -a:(x2- ~3 - x2y) dy dx = fot [x2y.- xay - tX2y2J::~-a: dx 

= J; [x2(1 - x)- x3 (1 - x) - t x2(1- x?] dx 

= j '1 (lx4
- x3 + lx2

) dx = [...!. x5
- l x4 + l x3

)
1 

0 2 2 10 4 . 6 0 

- 1 1 1 1 - w - 4+ s = oo 

The projection of E on the yz-plane is the disk y2 + z2 $ 1. Using polar 

coordinates y = r cos 8 and z = r sin 8, we get 

f.ffe x dV = ffv [J4~2 +4:2 x d.x] dA = ~ ffv [42 
- (4y2 + 4z2

)
2

) dA 

= 8 J;"" J:(1- r 4
) 1·drd8 = 8 J~2" dB J0\ r - r 5 ) dr 

_ 8(211") [lr2 _ lr6] I _ 16rr 
- 2 6 0- 3 

19. The plane 2x + y + z = 4 intersects' the xy-plane when 

2x + y + 0 = 4 => y = 4 - 2x, so 
4 

E = {(x, y, z) I 0 $ x $ 2, 0 $ y $ 4- 2x, 0 $ z $ 4 - 2x - y} and 

V = fo2 J~l -2a: fo4-2x-v dz dy dx = fo2 fo4- 2:r. ( 4 - 2x - y) dy dx 

r2 [4 2 1 2] y =4.- 2x dx = Jo y - xy - 2 Y v= O 

= J; [4(4 - 2x)- 2x(4 - 2x) - t(4 - 2x?] dx 

= J; (2x2
- 8x + 8) dx = [~x3 - 4x2 + 8x]~ ='¥ 

21. The plane y + z = 1 intersects the xy-plane in the line y = 1, so 

E = { (x, y, z) I. - 1 $ x $ 1, x2 $ y $ 1, 0 $ z $ 1 - y} and 

V = JJJ ~ dV = .C1 J:2 f01- 11 dz dy dx = f~1 f:.2 (1 - y) dy dx 

! 1 [ 1 2] v=1 d }'1 (1 '.! 1 ") d = -1 y- 2Y y=x2 X = - 1 2 - X + 2X X 

_ [ 1 1 3 + 1 5 ] 1 1 1 1 l 1 1 _ R 
- 2X - .3 X lOX· - 1 = 2 - 3 + 10 + 2 - J + lO - 15 

X 
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23. (a) The wedge can be described as the region 

D = {(x,y,z) I y2 + z 2
::; 1, 0 ::; x::; 1, 0 ::; y ::; x} 

= { (x, y , z) I 0 ::; x ::; 1, 0 ::; y ::; x, 0 ::; z ::; } 1 - .Y2 } 

So the integral expressing the volume of the wedge is 

JffodV=fo1 fo"'J/1 -v2 dz dydx. 

(b) C S . r l f"' n /l.- vz d d d " l A A gives Jo Jo Jo z y x = 4 - 3· 

(Or use Formulas 30 and 87 from the Table of Integrals.) 

25. Here f(x, y, z) = cos(xyz) and~ V = ~ · t · ~ = ~,so the Midpoint Rule gives 

1 [!(1 1 1) J(l 1 3) !(1 3 l) f(l 3 3) = s 4 • 4•4 + 4•4• 4 + 4•4 • 4 + 4 • 4 •4 

+ !(~ , t. t) + !(~ , t. ~) + !(~, ~, t) + ! (~, ~. ~) ] 

= ~ [cos -l4 +cos ~ +cos 6~ +cos f4: +cos 6~ +cos i4 +cos f4: + cos~~ ) ~ 0.985 

27. E = {(x , y, z) I 0 ::; x::; 1, 0::; z::; 1- x, 0 ::; y::; 2- 2z }, 

the solid bounde~ by the three coordinate planes and the planes 

z = 1 - x, y = 2 - 2z. 

29. 

X 

If D1 , D2 , D3 are th~ projections of Eon the xy-, yz-, and xz-planes, then 

X 

y 

4 

I 

---~"--x' + 4z
1 

= 4 

.t 

- I 

D 1 = { (x, y) I - 2::; X::; 2, 0 ::; y::; 4 - x 2
} = { (x, y) I 0 ::; y::; 4, - v4 - y::; X::; .J4=Y } 

I . 

D2 = {(y,z) 1 o ::; v ::; 4, - ~v4- y::; z::; ~v4- v} = {(y,z) 1-1 ::; z::; 1, o::; v ::; 4 - 4z2 } 

DJ = { (x,z) I x2 +4z2
::; 4} 

[continued] 
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31 . 

Therefore 

Then 

E = { (x y z) 1 -2 < x < 2 0 < y < 4 ·_ x2 - 1 yl 4 - :z;2 - y < z < 1 yl 4 - :z;Z - y } , , - -'-- , 2 - - 2 

= { (x , y,z) I 0:::; y:::; 4, - y'4""='1j:::; x:::; y'4""='1j, - h/4 - x2 - y:::; z ~ ~yf4- x2 - y} 
= { (x,y,z) I -1 $ z 5: 1, 0 5: y 5:4 - 4z2

, - yf4 - y- 4z2 :::; x:::; yf4 - y - 4z2 } 

= { (x, y, z) I 0 5: y 5: 4, - ty'4""='1j $ z $ ty'4""='1j, - j4- y- 4z2 :::; x:::; yf4 - y- 4z2 } 

= { ( x, y, z) I - 2 5: x 5: 2, - ~ J 4 - x2 :::; z :::; t J 4 - x~, 0 :::; y :::; 4 - :z:2 
- 4z2

} 

= { (x, y, z) I -1 5: z 5: 1, - .J4 - 4z2 :::; x:::; .J4- 4z2, 0:::; y:::; 4- x2 
- 4z2

} 

Iff ( ) ! 2 r4-x2 JJ4-x2-yf2 ( ) r4 f-14-ii JJ4-:z:2-y j 2 ( ) sf x,y,z dV = _2 ; 0 -~/2 / x,y,z dzdydx=:Jo --14-ii -~12 ! x,y,z dzdxdy 

I I f4 - 4z2 JV4-y-4z2 ( ) , f4 f-/4-!i/2 J V4-y-4z2 ( 
= - tJo -.J

4
_

11
_

4
z 2 f x, y, z dx dy dz = Jo --14-ii/2 - J

4
_

11
_

4
: 2 f x, y, z) dx dz dy 

f 2 J~/2 r4-x2 -4:2' . ) fl J J4- 4:;2 r4-o:2 -4:2 
( ) = _2 r;--:; Jo f(x ,y,z dydzdx= _1 ~Jo f x,y,z dydxdz 

-y4- :z:2/2 -y4-4z2 

y 

(- 2,4,0; 

JC 

X 

(2,4,0) 

4 y - 2 2 JC 

If D1, Dz, and Da are the projections of Eon the xy-, yz-, and xz-planes, then 

D1 = { (x, y) I -2 $ x 5: 2, :z:2 ~ y 5: 4} = { (x, y) I 0 :::; y :::; 4, -y'Y $ x:::; vY }, 
D2 = { (y,z) I 0 :::; y $ ,4, 0 :::; z 5: 2- ~y} = { (y,'z) I 0:::; z 5: 2,0 ~ y:::; 4 - 2z}, and 

Ds = { (x, z) I - 2 $ x :::; 2, 0 5: z ~ 2 - ~~2 } = { (x, z) I 0 :::; i ~ 2, - .J4- 2z :::;. x $ v'4 - 2z} 
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E = { (x, y, z) I -2 ~ X~ 2, x2 ~ y ~ 4, o' ~ z ~ 2- h} 
= { (x,y,z) I 0 ~ y ~ 4, -Jv ~ x ~ V"Y. 0 ~ z ~ 2 - tv} 
= {(x,y,z)I O ~y~4,0 ~z~ 2-ty, -vv~ x~ JY} 
= { (x, y, z) I 0 ~ z ~ 2, 0 ~ y ~ 4- 2z, - VY ~ x ~ vY} 
= { (x,y,z) l-2 ~ x ~ 2, 0 ~ z ~ 2 - tx2

, x2 ~ y ~ 4 - 2z} 

= { (x, y, z) I 0 ~ z ~ 2, - v'4 - 2z ~ x ~ y'4- 2z, x2 ~ y ~ 4 - 2z } 

Then 1JJ~ f(x, y, z ) dV = I~2 I:2 I~-1112 f(x,y,z) dzdydx = I0
4 I~ I0

2
-v12 f (x, y, z) dz dxdy 

= 1~4 J~-v/2 1~f(x,y,z) dxdz dy =I~ Io4
-

2
" J~f(x,y,z)dxdydz 

J2 f 2 - %2 / 2 !4- 2:: J( ) d d d r2 Jv'4=2z f4 - 2z ( ) . = -2 Jo z2 x , y,z y z ·X= Jo - "'4 - 2z z2 I x ,y , z dydxdz 

33. y 

35. 

The diagrams show the projections 

of Eon the xy-, yz -, and xz-planes. 

Therefore 
-~------+--+ 

0 I X 

Io
1 I{z 1~l - v f (x, y, z ) dz dydx =I: I/ I:-rJ f(x, y, z) dzdx dy = f0

1 Iol-,z It f(x, y, z) dx dy dz . 

rt rt- u1'tJ
2 J( ) d d rt rt-../XJ1- z ( = JoJo 0 x,y,z x zdy= Jo Jo ..;x f x,y,z)dydzdx 

fl / ·( l - z)
2
Jl-z ( ) = J o. 0 ..;x f x,y,z dydxdz 

y z 

X 

I: I:Icf f(x,y, ~)dzdxdy = IIIE f(x , y ,z)dV where E = {(x,y,z) I 0 ~ z ~ y, y ~ x ~ 1, 0 ~ y ~ 1}. 

If D 1, D2, and D3 are the projections of Eon the xy-, yz- and xz-planes then 

Dt = [(x , y) I 0 ~ y ~ 1,, y ~ x ~ 1} = {(x , y) I 0 ~ x ~ 1, 0 ~ y ~ x}, 

D2 = [(y,z) I 0 ~ y ~ 1, 0 ~ z ~ y} = {(y,z) I 0 ~ z ~ 1, z ~ y ~ 1}, an~ 

D3 = [(x,z) I 0 ~ x ~ 1, 0 ~ z ~ x} = { (x, z ) I 0 ~ z ~ 1, z ~ x ~ 1}. 
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Thus we also have 

Then 

E = {(x, y, z) I 0 ::::; x::::; 1, 0::::; y ::::; X, 0 ::::; z::::; y} = {(x, y , z) I 0 ::::; y::::; 1, 0::::; z.::::; y, y ::::; x ::::; 1} 

= {(x,y,z) I 0 ::::; z::::; 1, z::::; y::::; 1, y::::; x ::::; 1} = {(x,y,z) I 0 ::::; x $ 1,0::::; z ::::; x , z::::; y ::::; x} 

= {(x,y, z) I 0::::; z::::; 1, z::::; x::::; 1, z::::; y::::; x}. 

J; fv
1 f~ f(x,y , z) dzdx_dy = f0

1 J; f~ f(x,y ,z) dz dydz = f0
1 g 1: f(x,y, z ) dxdz dy 

{=]; J; I: f(x,y,z) dxdyd~ = J; J; f:'" f(x,y , z) dydzdx 
"~--

= f0
1 f~1 [;"' f(x, y, z) dy dx dz 

37. The region Cis the solid bounded by a circular cylinder of radius 2 with axis the z -axis for -2 ::::; z $ 2. We can write 

fff0 (4 + 5x2yz2) dV = fffc 4dV + fffc 5x2yz2 dV, but f(x ,y,z) = 5x2yz2 is an odd function with 

. respect toy. Since Cis symmetrical about the xz-plane, we have fffc 5x2yz 2 dV = 0. Thus 

39. m = JJJE p(x, y,z) dV = f0
1 fofi fol+x+v 2dz dydx = J: J0fi 2(1 + x + y) dydx. 

= rl (2y + 2xy + y2] y=fi dx = rl (2 v'x + 2x3/ 2 + x) dx = [ix3/ 2 + ix5/2 + lx2] 
1 

= 79 Jo y=D Jo 3 s 2 0 so 
' 

My: = fffE xp(x, y, z ) dV = f 0
1 fofi J~+o:+v 2x dz dy dx = J; fofi 2x(1 + x + y) dydx 

, = r1 [2xy + 2x2y + xy2]v=fi dx = r1(2xs12 + 2xsf2 + x2) dx = [ixo/2 + ix7/2 + J.x3] 
1 = 179 

J o v=D J o . s 1 3 0 105 

Mx~ = JJJE yp(x,y,z)dV = f0
1 fofi J;+x+v 2ydzdydx = J0

1 f0fi2y(1 +x+y)dydx 

= r1 [y2 + xy2 + 1y3] v=fi dx = r1 (x + x2 + 1x3/2) dx = [lx2 + lx3 + ~x:>/2) 1 
= 11 Jo 3 v=O Jo 3 2 3 15 0 10 

. fff ( ) dV r l r fi r1+:r+v 2 d d .d J·l J·./i. [ 2] ~=l+:r+v d. d r1 r./i. (1 )2 d d lvlxv = E zp x , y, z = Jo Jo Jo z z y x = 0 0 z ==D y x = Jo Jo + x + y y x 

= J0
1 J/"(1 + 2x + 2y + 2xy + x2 + y2) dydx = J; [y + 2xy + y2 + xy2 + x2y .+ ty3J::f dx 

_ r1 ( 'x + 1x3/2 + x + x2 + x5/2) dx _ ['lx3/2 + llx5/ 2 + l x2 + lx3 + 'lx7/2) 
1 

_ 571 - Jo v"' 3 - 3 1s 2 · 3 7 
0 

- 2 10 

. 79 . (- __ ) (My= M:r= Mxv ) (358 33 571) 
Thus the mass IS 30 and the Center Of mass IS X, Y, Z = --:;;:;:-- , --:;;:;:-- , m = 553 ' 79 > 553 · 

Mv: = J; f 0a f 0a [x3 + x(y2 + z2
)] dxdydz = J; J; [ta4 + ~a2 (y2 + z2

) ] dydz 

_ ru (.1 s 1 s 1 a 2) d 1 6 1 6 1 6 M M b fE d ( ) - Jo 4a + 0a + 2a Z Z = 4a + 3a = na = :z:z = xy y symmetry 0 an p X, y, Z 

H (---) (1 7 ' 7) ence x,y,z = 12 a, 12a, 12a. 
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43. I,. = foL foL foL k(y2 + z2)dz.dydx = k foL foL (Ly2 + ~L3) dydx = k foL ~L4 dx = ~kLs. 

By symmetry, l x = 111 =I.= ~k£5• 

45. 1::: = JJJE(x2 + y
2

) p(x, y, z) dV = JJ [J;• k(x2 + y2
) dz] dA = JJ k(x2 + y 2 )hdA 

z2+y2:5a2 :z:2+y2:5a.2 

(b) (x,y, z) wherex = "* f~1 !:2 f0
1
- 11 x Jx2 + y2 dzdyd$, y = "* f 1 J:z f0

1
-v y Jx2 + y 2 dz dy dx, and 

~ = ~ t 1 J:2 J; - v z Jx2 + y 2 dzdydx. 

) f 1 r~ f"(1 ) d d d 3"" 11 49. (a m = Jo Jo Jo + x + y + z z y x = 32 + 24 

(b) {X, y, z) = ( m-1 J; fo~ f~ x(1 + x + y + z) dzdydx, 

m-1 f0
1 f0~ J~ y(1 + x + y + z) dzdydx, 

m - 1 f0
1 fo~ j~ z(1 + x + y +z)dzdydx) 

(
. 28 307r + 128 457r + 208 ) 

= 9n + 44 ' 45n + 220 ' 135n + 660 

t {~ {" . 68 + 1571' 
(c) 1::: = fo f o fo (x2 + y2)(1 + x + y + z) dz dy dx = 240 

51. (a) f(x, y, z) is a joint density function, so we know JJJR3 f(x, y , z) dV = 1. Here we have 

JJJR3 f(x,y ,z) dV = f~oo f~oo }:"
00 

f(x,y, z) dzdydx = f0
2 J: J: Cxyzdzdydx 

= C J: xdx f0
2

ydy f0
2 

zdz = C[~x2)~ [h2)~ [~z2)~ = 8C 

Then we must have 8G = 1 => C - 1 
- 8' 

' 
1 rt d r1 d rl d 1 [ 1 2]1 [ 1 2] 1 [ 1 2] 1 1 ( 1 )3 1 = ii Jo x X Jo 11 Y Jo z z = ii 2x o 2Y o 2z o = 8 2 = 1M 

(c) P(X + Y + Z::; 1) = P((X, Y, Z) E E) where E is the solid regio·n ·in the first octant bounded by the coordinate planes 

and the plane x + y + z = 1. The plane x + y + z = 1 meets the xy-plane in the line x + y = 1, so we have 

P(X.+ Y + Z::; 1) = fff Ef(x, y, z) dV = j~1 j~ -x j 0
1-:z:-y kxyz dz dy dx 

= k J; fot - :z: xy[~z2 J ;:~-:z:-y dydx = fs fo1 fol -z xy(l - x - y)2 dydx 

= 1~ f0
1 f0

1
- "'[(x3

- 2x2 + x)y + (2x2
- 2x)y2 + xy3 ] dydx 

= 110 fo1 [(x3 - 2x2 + xHy2 + (2x2- 2x)h3 + x(fy'')J::- :r: dx 

- 1 f1( 4 2 6 3 . 4 4 + 5) d - 1 ( 1 ) - 1 - 192 Jo X- X + X . - X X X - 192 30 - 57iii) 
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1 L2 L2 L2 La 
£ 3·222 = 8 

55. (a) The triple integral wi ll attain its maximum when the integrand 1 - x2 
- 2y2 

- 3z2 is posit ive in the region E and negative 

everywhere e lse. For if E contains some region F where the integrand is negative, the integral could be increased by 

excluding F from E, and if E fails to contain some part G of the region where the integrand is positive, the integral could 

be increased by including Gin E. So we require that x 2 + 2y2 + 3z2 $ 1. This describes the region bounded by the 

e llipsoid x2 + 2y2 + 3z2 = 1. 

(b) The maximwn value of JjJE (1 - x2- 2y2 
- 3z2

) dV occurs when E is the solid region bounded by the ellipsoid 

x 2 + 2y2 + 3z2 = 1. The projection of E on the xy-plane is the plaf1ar region bounded by the e llipse x 2 + 2y2 = i, so 

and 

us ing a CAS. 

15.8 Triple Integrals in Cylindrical Coordinates 

.1. (a) From Equations I, x = r cos 9 = 4 cos i = 4 · ~ = 2, 

(b) 

X 

(2.-¥. 1) 

X 

I 
- 2 • 

I 

l (4, 3. -2) 

y '= rsinfJ = 4sin ~ = 4 · ~ = 2.J3, z = ~2, so the point is 
3 

Y · (2 , 2.J3, -2) in rectangular coordinates .. 

x = 2cos(-~) = 0, y = 2sin(- ~l) = - 2, 

and z == 1, so the po int is (0, - 2 , 1) in rectangular coordinates. 
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3. (a) From Equations 2 we have r 2 = ( - 1)2 + 12 = 2 so r = v'2; tan{;/= _:1 = -1 and the point ( -1, 1) is in the second 

quadrant of the xy-plane, so 8 = s; + 2mr; z = 1. Thus, one set of cylindrical coordinates is ( v'2, 34'~~' , 1). 

(b) r 2 = ( -2)2 + (2J3)2 = i6 so r = 4; tanB = ~ = - v'3 and the point ( - 2, 2v'3) is in the second quadrant of the 

xy-plane, so (} = 2
; + 2mr; z = 3. Thus, one set of cylindrical coordinates is ( 4, 2

; , 3). 

5. Since (;I = f but r and z may vary, the surface is a vertical half-plane i~cluding the z -axis and intersecting the xy-plane in the 

half-line y = x, x ~ 0. 

1. z = 4- r 2 = 4 - (x2 + y 2
) or 4 - x2 

- y2
, SQ the surface is a circular paraboloid with vertex (0, 0, 4), axis the z-axis, and 

opening downward. 

9. (a) Substituting x 2 + y 2 = r 2 and x = r cos 8, the equation x2 
- x + y 2 + z 2 = 1 becomes r 2 

- r cos 8 + z 2 = 1 or 

z2 = 1 + r cos 8 - r 2
. 

11. 

(b) Substituting x = r cosO andy = r sinO, the equation z = x 2 
- y 2 becomes 

z = (rcos8)2
- (rsinB? = r 2 (cos2 8- sin2 B) or z = r 2 cos 28. 1 

0 ~ r ~ 2 and 0 ~ :z ~ 1 describe a solid circular cylinder with 

radius 2, axis the z -axis, and height 1, but - 11' /2 ~ 8 ~ 11' /2 restricts 

the solid to the first and fourth quadrants of the xy-plane, so we have 

a half-cylinder. 

13. We can position the cylindrical shell vertically so that its axis coincides with the z-axis and its base lies in the xy-plane. If we 

use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shell as 6 ~ r ~ 7, 

15. 

o ~ o ~ 211', o .~ z ~ 20. 

The region of integration is given in cylindrical coordinates by 

E = {(r,B,z) 1- 11'/2 ~ 8 ~ 11'/2, 0 ~ r ~ 2, 0 ~ z ~ r 2
} . This 

represents the solid region above quadrants I and IV of the xy-plane enclosed 

by the circular cylinder r = 2, bounded above by the circular paraboloid 

z = r 2 (z = x2 + y 2
), and bounded below by the xy-plane (z = 0). 

I T< / 2 j '2 rr2 
d d(} I" / 2 f 2 [ ] z = r

2 
d dB I 'll' / 2 f 2 3 (} 

-71'/2 0 Jo rdz r = - -rr/2 Jo rz z=O r = -71'/2 Jo r drd 

= I 1f12 dB f
2 r3 dr = toJr.12 (lr4

]
2 

c- 'lf/2 Jo - 71'/2 4 o 

= 11'(4- 0) = 411' 
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17. In cylindrical coordinates, E is given by {(r, B, z} I 0 ~ B ~ 21r, 0 ~ r ~ 4, - 5 ~ z ~ 4}. So 

19. The paraboloid z = 4 - x 2 
- y 2 = 4 - r 2 intersects the xy-plane in the circle x 2 + y2 = 4 or r 2 = 4 =? r = 2, so in 

cylindrical co~rdinates, E is given by { (1·, B, z} I 0 ~ (} ~ 1r / 2, 0 ~ r ~ 2, 0 ~ z ~ 4- r 2 
}. Thus · 

JJJE (x + y + z) dV = Io"12 I; I04-r
2 

(rcos{J + r sin(}+ z) r dzdr d(} = I0"12 I; [r2 (cos 0 + sin O) z + ~7·z2]~=~-r
2 

dr d{J 

= Io"/2 J; [(4r2 
- r 4 )(cos 0 + sin 9) + ~r(4- r·2?] dr d{J 

= f '1r / 2 [(1r3 - l r 5 ) (cos(} +sin 0) - .1.. (4 - r2 ) 3] r = Z d9 .Jo 3 5 12 r=O 

= I0"
12 [~~(cosO + sin 0) + Jf] dO= [~(sin 0 - cos B)+ JfB] ; 12 

= lfi(1 - 0) + ¥. ~ - ~(0 - 1)- 0 = ~7r + \2
5
8 

21 . In cylindrical coordinates, E is bounded by the cylinder,. = 1, the plane z = 0, and the cone z = 2r. So 

E = {(r, 0, z) I 0 ~ 8 ~ 27r, 0 ~ r ~ 1, 0 ~ z ~ 2r} and 

I I IE x2 dV = J;'T( f0
1 J;r r 2 cos2 9 r dz dr dO = I0

2
1f J0

1 [r3 cos2 0 z ] ::~·· dr d9 = I;" Io1 
2r4 

cos
2 8 dr dO 

= I0
2'T( [%r5 cos2 B]~=~ dO= % I0

2
" cos2 0 d(} = ~I;"~ (1 +cos 28) dO,;, t [B + t sin 28] ~1f = 2

; 

23. In cylindrical coordinates, E is bounded below by the cone z = r and above by the sphere r 2 + z2 = 2 or z = v'2 - r 2 . The 

con~ and the sphere ·intersect when 2r2 = 2 =? r = 1, so E = { (r, 8, z) I 0 ~ 0 ~ 21r, 0 ~ r ~ 1, r ~ z ~ v'2 - r 2
} 

and the volume is 

IIIE dV = J;" I01 .fr~ rdzdrdO =I;" I; [rzJ~::P drdO = I0
2

" J0
1 (r~- r2

) drd(} 

= J0
2

1f dO Io1 
(rv'2 - r 2 - r 2

) dr = 21r [-~(2- r 2
)

312
- ~r3J: 

= 27r (-~) (1 + 1- 2312
) = - j7r (2- 2V2) = ~7r (V2 - 1) 

25. (a) The paraboloids intersect when x2 + y2 = 36 - 3x2 
- 3y2 =? x2 + y2 = 9, so the region of integration 

is D = {(x,y) I x 2 + y2 ::; 9}. Then, in cylindrical coordinates, 

. E = {( r, B, z) I r2 ~ z ~ 36 - 3r2
, 0 ~ r ~ 3, 0 ~ (} ~ 27r} and 

V = g" I; fr326 -
3r2 

r dz dr d(} = J;" I; (36r - 4r3
) dr dB = J;" [18r2 

- r 4
] ::~dB= J0

2
" 81 dO= 16271". 

(b) For constant density K , m = J(V = 1627rJ( from part (a). Since the region is homogeneous and symmetric, 

Nfyz = Mxz = 0 and 
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M xv = I~1f I: I:26
-

3r
2 
(zK) r dz dr d() = J( I~1f I: r [ ~ z2

) ;:~~-3,.
2 

dr d() 

=if I
0
2

" I: r((36- 3r2
)
2

- r 4
) dr d() = if I~-:r d8 I0

3
(8r5

- 216r3 + 1296r) dr 

- K (27r) [.!!.r6 - 216 r4 + 1296 r2] 3 = 11" !((2430) = 243011" J( 
-2 6 4 ~ 0 . 

(- __ ) ( M 11z Mxz M:xv ) (O O 2430rr I<) (0 0 15) Thus x, y, z = --, --, -- . = , ,~ = , , . 
m m m 

27. The paraboloid z = 4x2 + 4y2 intersects the plane z = a when a = 4x2 + 4y2 or x2 + y2 = ia. So, in cylindrical 

coordinates, E = { (r, 8, z) I 0 $ r $ h!ci, 0 $ 8 $ 21r, 4r 2 $ z $a}. Thus 

12"1Va/21a 12"1Va/2 m = K r dz dr d8 = J( (ar - 4r 3
) dr d8 

0 0 4r2 0 0 

- }( 1211" [l 2 - 4] r=,fi/2 d() - T.( 12" ...!.. 2 d() - l 2 }( - 2 ar r r=O - .1· 16 a - 8 a 1r 
0 . 0 

Since the region is homogeneous and symmetric, lvfvz = Mxz = 0 and 

Hence (x, y, z ) = (0, 0, ~a). 

29. The region of integration is the region above the cone z = Jx2 + y2 , or z = r, and.below the plane z = 2. Also, we have 

-2 :::; y $ 2 with -/4 - y2 $ x $ )4 - y2 which describes a circle of radius 2 in the xy-plane centered at (0, 0). Thus, 

1
2 1~ ! 2 

xzdzdxdy= r1f {
212 

(rcos8)zrdzd;d0 = {
2

1f {

21.2

r 2 (cos O)z dzdrd() 
- 2 -~ ..jz2+v2 Jo Jo r Jo Jo ,. • 

= J~1f I~ r 2 (cos 8) [~z2] ::~ dr d() = ~ Io2Tf I~ r 2 (cos 0) ( 4- r 2
) dr d8 

= ~ I~" cos 8 d() I~ ( 4r2 - r 4
) dr = ~ [sin 8]~" [~r3 - ir5

] ~ = 0 

31. (a) The mountain comprises a solid conical region C. The work don~ in lifting a small volume of material !:. V with density 

g(P) to a height h(P) above sea level is h(P)g(P) t:.V. Summing over the whole mountain-we get 

W = IIIc h(P)g(P) dV. 

(b) Here C is a solid right circular cone with radius R = 62,000 ft, height H = 12,400 ft, 

and density g(P) = 200 Ibj ft3 at all points Pin C. We use cylindrical coordinates: 

W = I~" IoH IoR(l- z/ H) Z • 200r dr dz d8 = 211" foH 200z ar2J~::(l-z/ H) dz 

= 4007r 1fl z ~
2 

( 1- ·~ r dz = 2001rR
2 1fl ( z :-

2~
2 

+ ~
3

2 ) d7 

= 2001rR2 
- - - + -- = 2001rR2 

- - -- + -[
z2 2z3 z

4 ]H (H2 
2H

2 H2) 
2 3H 4H2 

0 2 3 4 

= ¥-1rR2 H 2 = ¥11"(62,000) 2 (12,"400? ~ 3.1 x 1019 ft- lb 

!:._ = H -z = 1 _ .=_ 
R H H 
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15.9 Triple Integrals in Spherical Coordinates 

1. (a) 

X 

(b) 

X 

(6.¥. f) 
If 

I I 
1 I 

I I 
'1r I I 

7i / 6 : 
I 
I 
I 
I 
I 

y 

From Equat!ons 1, x = psin¢cos9 = 6 sin 2J cos i = 6 · ~ · ~ = !. 
y = p sin rP sin 9 = 6 sin ~ sin ~ == 6 · ~ · :1/- = ~, and 

z = pcos¢' = 6cos 2J = 6 · :1/- = 3VJ, so the point is(~ . ~,3../3) in 

rectangular coordinates. 

x = 3 sin 3_; cos ~ = 3 · ~ · 0 = 0, 

y = 3 sin 3; sin ~ = 3 · ~ · 1 = ¥, and 

z= 3cos 3
; = 3 (-~) = ·~¥. so thepointis (o.¥,-¥) in 

·rectangular coordinates. 

. . z 0 71' 
3. (a) From Equations 1 and 2, p = .jx2 + y2 + z2 = ../02 + (-2)2 + 02 = 2, cos¢ = p = '2 = 0 => ¢' = 2'' and 

cos 9 = p s: rP = 2 sin~ 71' / 2) = 0 => 9 = 
3
; [since y < 0). Thus spherical coordinates are ( 2, 

3
; , -i). 

z - J2 371' 
(b) p =. v'1 + 1 + 2 = 2, cos¢ = P = -

2
- ::::} </> = 4 , and 

X - 1 
cos 9 = -- = ::-:--:-::---:-:7 

• psin ¢ 2sin(311'/4) 
- 1 1 371' 

-,..-::::--:- - -- => 9 = -
4 

[since y > 0). Thus spherical coordinates 
2 (J2/2) - J2 

( 
371' 37!') are 2, 4 ,4 . 

5. Since ¢ = ~, the surface is the top half of the right circular cone with vertex at the origin and axis the positive z -axis. 

x2 + (y - ~) 2 + z 2 = ~ . Therefore, the surface is a sphere of radius ~ centered at ( 0, ~, 0) . 

9. (a) x = psin¢>cos8, y = psin ¢>sinO, and z = pcos ¢,so the equation z2 = x2 + y 2 becomes 

(p cos¢ )2 = (p sin </> cos 8)2 + (p sin ¢> sin 8)2 or p2 cos2 ¢J = p2 sin2 ¢'. If p ;f 0, this becomes co~2 </> = sin2 rp. (p = 0 

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates, 

such as tan2 ¢ = 1, 2 cos2 ¢' = 1, cos 2¢ = 0, or even rP = ~. ¢' = :~4,.. 

(b) x2 + z2 = 9 <* (psin </>cos 8)2 + (pcos ¢')2 = 9 <* p2 sin2 ¢>cos2 9 + p2 cos2 ¢> = 9 or 

p2 (sin2 ¢cos2 8 + cos2 ¢) = 9. 
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11. 2 :S p :S 4 represents the solid region between and including the spheres of 

radii 2 and 4, centered at the origin. 0 :S ¢> :S f restricts the solid to that 

portion on or above the cone ¢> = f, and 0 :S 8 :S 1r further restricts the 

solid to that portion on or to the right of the xz-plane. 

13. p :::; 1 represents the solid sphere of radius I centered at the origin. 

3; :S ¢> :S 1r restricts the solid to that portion on or below the cone ¢> = ~;. 

15. z 2': Jx2 + y2 because the solid lies above the cone. Squaring both sides ofthis inequality gives z2 2': x 2 + y2 · :::? 

17. 

2z2 2:_ x2 + y 2 + z2 = p2 
:::? z 2 = p2 cos2 ¢> 2': ~p2 

:::? cos2 ¢> 2': ~· The cone opens upward so that the inequality is 

cos¢> 2': ~, or equivalently 0 :S ¢> :S *. In spherical coordinates the sphere z = x2 +. y2 + z2 is p cos lp = p2 :::? 

p = cos¢. 0 :S p :S cos¢> because the solid lies below the sphere. The solid can therefore be described as the region in 

spherical coordinates satisfYing 0 :S p :S cos ¢>, 0 :S ¢> :S *. 

X 

The region of integration is given in spherical coordinates by 

E = {(p, 8, ¢>) I 0 :S p :S 3, 0 :S 8 :S 7r / 2, 0 :S ¢> :S 1r / 6}. This represents the solid 

region in the fi rst octant bounded above by the sphere p = 3 and below by the cone 

¢> = 1T/6. 

J0" 16 J0" 
12 .1; p2 sin ¢> dp dB d4> = ./~" 16 s in 4> d¢> f0" 

12 dB J: p2 dp 

= [-cos¢>] ~16 ( 8]~12 [~Pa]~ 

= (1- ~) G)(9) = 
9; (2- v'3) 

19. The solid E is most conveniently described if we use cylindrical coordinates: 

E = {(r,B,z) I 0 :s e :s i. O :s r :s 3,0 :s z :s 2}. Then 

JJJE f(x , y, z) dV = f0"
12 .1; ./~ f(r cos f)_ , rsinB, z) 1' dz d1·d8. 
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21. In spherical coordinates, B is represented by {(p, 0, 4>) I 0 ~ p ~ 5, 0 ~ 0 ~ 27r, 0 ~ cf> ~ 1r}. Thus 

JJJ8 (x2 + y 2 + z2
)

2 dV = J; f0
2

"' J:(p2
)
2 p2 

sin cf>dpdO dl/> = Io"' sin 1/>dl/> J~"' dB I~ p6 dp 

= [- coscf>]~ [0]~" [tp7]~ = (2)(27r)(1s.~211) 

= 312tJ07r ~ 140,249.7 

23. In spherical coordinates, E is represented by {(p, 0, ¢) 12 ~ p ~ 3, 0 ~ 0 ~ 27r, 0 ~ cf> ~ 1f} and 

IIIs(:c2 + y2
) dV = ]~"' g•r I 2

3 (p2 s in2 4>) p2 sin cf>dpdO dcf> = Io" sin3 cf>dcf> I~"' dO I: p4 dp 

= I
0
"'(1- cos2 1/>) sinl/>dl/> [ 0]~,. [ip5)~ = [-coscf>+ ~ cos3 4>]~ (27r) : i(243 - 32) 

= (1 - ~ + 1 - U (27r) Cil) = 16~:" 

25. In spherical coordinates, E is represented by { (p, 0, 4>) I 0 ~ p ~ 1, 0 ~ 8 ~ "i· 0 ~ 4> ~ ~}.Thus 

JJJE xe"'2+112 +z
2 

dV = J
0
"/

2 J
0
Tr12 I:(psin cf>cosO)eP

2 
p2 sin </l dpd(} dcf> = Io"'12 sin2 1/>d¢ J;12 

cos(} d(} j 0
1 

p3eP
2 

dp 

.= fo" 12 H 1 - cos 2¢>) d¢ IoTr 12 
cos(} d(} ( ~ p2 

eP
2 J: -I: peP

2 

dp) 

[integrate by parts with u = p2
, dv = peP

2 
dp] 

= a¢- i sin 2¢]~/Z [sin(})~/2 [ ~p2eP2 - ~eP2J: = (i- 0) (1- 0) (0 + ~) = i 

27. The solid region is given byE= { (p, 0, cf>) I 0 ~ p ~ a, 0 ~ 0 ~ 21r, ~ ~ cf> ~ ~}and its volume is 

V = ffis dV = I:/6
3 J~"' I; p2 sin cf>dpd(}drjJ = I:/: sincf>dl/> I~11' dO I; p

2 
dp 

. = [-coscf>J;~: [0) ~11' [~p3)~ = ( -~ + 4) (27r) (ta3
) = '\-

1
7ra

3 

29. (a) Since p = 4 cos 4> implies p2 = 4p cos 1/>, the equation is that of a sphere of radius 2 with center at (0, 0, 2). Thus 

(b) By the symmetry of the problem Mv= = M x= = 0. Then 

M,11 = I:" I; 13 I0
4 

co• 4> p3 cos cf> sin cf> dp d¢ d(} = J~" I; 13 cos cf> sin r/> ( 64 cos4 rjJ) dcf> dO 

- f 2"' 64 [-1 () -•] </>=71' 13 dO - f 2
71' .ll dO - 21 - Jo 6 cos '~' ¢=0 - Jo 2 - 7r 

Hence (x,y,z) = (0,0, 2.1). 
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31. (a) By the symmetry of the region, My: = 0 and Mx: = 0. Assuming constant density K, 

m = fffE K dV = K fffE dV = iJ< (from Example 4). Then · 

M .,y = Jjj~ z K dV = K J; ,. }~,.14 j~o• ¢>(pcos ¢) p2 sin r/J dp drpd8 = K J;" J0,.14 sin ¢cos¢ [tP4] ==~os¢ d¢ d8 

=if< J:w f0"'
14 sin¢cos¢ (cos4 ifJ) .d(j)d(} = iK J:" d(} J;14 cos5 {j}sin (j)d¢ 

= iK (8]~" [ -i cos
6 t/>] ~14 = iK(27r)( -i) [ c~r - 1] = -fiK ( -~) = ;~ K 

.. (- __ ) (My: !vfu M.,u) ( 77rK/96 ) ( 7) 
Thusthecentro1d1s x,y,z = m'm'm = 0, 0, 1rf(jB = 0,0, 12. 

(b)' As in Exercise 23, x2 + y 2 = p2 sin2 ¢ and 

I: ~ JJJE (x2 + y2) J( dV = K J;" fo" /4 focos¢ (p2 sin2 ifJ) p2 sin¢ dpd¢d8 = K J:.,.. fo"' /4 sin3 t/> [kPsJ::~os ¢ d¢d8 

= iK J:" J; 14 sin3 ¢cos"' ¢d¢d8 =if< .r:w d(} j~w/4 cos5 ¢ (1 - cos2 ¢) sin¢d¢ 

= tK [8]~"' [- t cos6 ¢ + ~-cos8 ¢]~14 

= 1J<(27r) [-1 (:ii) 6 
+ 1 (:ii) 8 

+ 1 - 1] = b!.]( (..ll.) - u w K 5 6 2 8 2 6 8 5 384 - 960 

33. (a) The density function is p(x, y, z) = K, a constant, and by the symmetry of the problem M .,z = My: = 0. Then 

M.,11 = J:"' f0"
12 J; Kp3 

sin ¢ cos ¢ dpdrjJd8 = !1rKa4 J;12 
sin¢ cos ¢ d¢ = t1rKa4

• But the mass is K(volume of 

the hemisphere)= ~1rKa3 , so the centroid is (0, 0, ~a). 

(b) Place the center of the base at (0, 0, 0); the density function is p(x, y , z) = K. By symmetry, the moments of inertia about 

any two such diameters will be equal, so we just need to find I.,: 

I., = J:" I; '2 
I ;(Kp2 sin ¢) p2 (sin2 ¢ sin2 

(} + cos2 ¢) dpd¢d8 

= K I:.,.. J0"
12 (sin3 rjJ sin2 8 + sin r,b cos2 ¢) (ka5

) d¢ d8 

= iKa5 I0
2

" [sin
2 8 (- cos¢+ t cos

3 
¢) + ( - t cos

3 ¢)] ::~12 d(} = i Ka5 j~" [~ sin2 8 + i) dO 

= lKa5 [1(18- l sin28) + 18] 2
" = 1Ka5 [1(7r - 0) + 1(27r- 0)] = ..i.J(a57r 5 3 2 4 3 0 5 3 3 15 

35. In spherical coordinates z = ..jx2 + y 2 becomes cos¢ = s in ¢ or¢ = 'i· Then 

V = J:" f0"14 f0
1 

p2 sin ¢ dpd¢d8 = .r:r. dO f0.,..14 sin t/>dr/J .{0
1 

p2 dp = 27r ( -4 + 1) (t) = %1r(2 - v'2), 

M.,11 = I:"' J;14I: p3 sin¢cos ¢ dpd¢ d8 = 27r[--! cos2¢] ~14 {t) = t and by symmetry My: = M x: = 0. 

Hence (x,y,z) = (o,o, 
8

(
2 
~ v'2)). 

37. In cylindrical coordinates the paraboloid is given by z = r 2 and the plane by z = 2r sili Band they intersect in the circle 

r = 2 sin 8. Then JJJE z dV = g f
0
2

s in o.r:;•inO rzdz dr dO = 5ti' [using a CAS]. 
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39. The region E of integration is the region above the cone z = .J x 2 + y2 and below the sphere x2 + y2 + z2 = 2 in the first 

octant. Because E is in the first octant we have 0 ~ B ~ %. The cone has equation 1/> = "i (as in Example 4), so 0 ~ 1/> ~ .;f, 

and 0 ~ p ~ ../2. So Ute integral becomes 

f0rr 
14 .fa"'' 12 fov"i (p sin¢ cos B) (p sin c/> sin t1) p2 sin¢ dp dB d¢ · 

= J~-r/4 sin3 1/>d¢ J
0
rr/

2 sinB cost1dB .J0v"i p4 dp = (Jorr/ 4. (1 - cos2 1/>) sin 1/> dl/>) [~ sin2 B]~12 [ip5
]: 

- [1 cos3 A .. - cos A..] rr/4.. 1. l ( '2)5 
- [~ - ~ - ( l - 1) ] . M - 4 fl-5 

- 3 '~' '~' o 2 5 V"' - 12 2 a 5 ~ 15 

41 . The.region of integration is the solid sphere x2 + y2 + (z - 2? ~ 4 or equivalently 

p2 sin2 c/> + (pcos lj> - 2)2 = p2 - 4pcos</> + 4 ~ 4 => p ~ 4cos¢, so 0 ~ 8 ~ 211', 0 ~ c/> ~ %• and 

0:::; p ~ 4cos ¢.Also (x2 + y2 + z2)312 = (p2)312 = p3
, so the integral becomes 

J0"
12 J:" J04. cos<P (p3) p2 sin ¢dpdB d¢ = J0

1112 J~11 
sin ¢ '[~lJ :~ cos,P dBd¢ = i J0"

12 f0
2

" sin c/> (4096 cos6 ¢) dOd¢ 

= i(4096)J0"
12

cos0 ¢sin ifJdifJ J0
2
" dB = 20

3
48 (- ~cos7 ¢]~12 [ B ]~" 

= 20
3
48 ( ~) (211') = 40i~rr 

43. In ·cylindrical coordinates, the equation of the cylinder is r = 3, 0 ~ z ~ 10. 

The hemisphere is the upper part of the sphere radius 3, center (0, 0, 10), equation 

1·
2 + (z - 10)2 = 32, z ~ 10. In Maple, we can use Ute coords=cylindrical option 

in a regular plot3d command. In Mathematica, we can use Parametri c Plot 3D. 

45. If E is the solid enclosed by the surface p = 1 + t sin 60 sin 5¢, it can be described in spherical coordinates as 

E = { (p, 8, ¢) I 0 ~ p ~ 1 + t sin 68 sin 5¢, 0 ~ 8 ~ 211', 0 ~ ¢ ~ ,1f}. Its volume is given by 

V(E) = fJ{s dV = fo" fo2 rr J~l+(sin60sin5r/>)/u P2 sin cf>dpd(Jd¢ = 1~~" [using a CAS). 

47. (a) From the diagram, z = r cot ¢ 0 to z = ~. r = 0 

to r= asin ¢ 0 (or use a 2 - r 2 = r 2 cot2 ¢ 0 ). Thus 

V = r2" ra sin <Po r v'o.2 - r2 rdzdrdB 
Jo Jo J rcotr/>0 

= 2:r [- (a2 - a2 sin2 c/Jo)3/2 - a3 sin3 ¢o cot¢o + a3] 

;, ~7ra3 [1 - ( cos3 c/>0 + sin2 ¢ 0 cos 1/>0 )] = lrra3(1 - cos ¢ 0 ) 

z = rcot r/>0 

y 
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(b) The wedge in question is the shaded area rotated from B = 81 to B = 82. 

Letting 

V.i = volume of the region bounded by the sphere of radius P; 

and the cone with angle ¢; (B = 81 to 82) 

and letting V be the volume of the wedge, we have 

V = (1122- 1l21)- (V12 - Vn) 

· = 1(82 - B1)[pg(1- cos¢2 ) - p~(l - cos¢1)- p~(1- cos¢2 ) + p~(1- cos¢1) ] 

y 

= 1(82- 81) [(P~- p~)(1- cos ¢ 2 ) - (P~- pi) (1- cos ¢1)] = i(B2 - (Jt)[(p~- pi) (cos ¢ 1 - cos¢2 )] 

1021P2 s in <l>2 1 r cot ¢ 1 

Or: Show that V = r dz dr dB. 
01 p 1 s in 4>1 r cot 4>2 

(c) By the Mean Value Theorem with f(p) = p3 there exists some p with p1 ~ p ~ p2 such that 

f(p2 ) - f(p1 ) = !' (p)(p2 - p1 ) or p~ - p~ = 3Ji D.p. Similarly there exists¢ with ¢1 ~ ~ ~ ¢ 2 

such that cos ¢ 2 - cos ¢ 1 ·= (-sin¢) D.¢. Substituting into the result from (b) gives 

D. V = (p2 D.p)(B2- B1)(sin¢) D.¢ = p2 sin¢> D.pD.¢ D.B. 

15.10 Change of Variables in Multiple Integrals 

1. x = 5u- v, y = u + 3v. 

a(x 1) l8xf8u 8x f8v I 

1

5 -l l TheJacobianis ~( ,y) = = =5(3) -(-1)(1) =16. 
v u , v 8y f8u oyfav 1 3 

3. x = e-r sinB, y :;= er cos B. 

8(x,y) 18xf8r 8xj8fJ I ~ -e-''sinB e-rcosBI · · 
-- - - r . = e-•·er sin2 B- e-re'· cos2 B = sin2 fJ- cos2 ()or- cos 2() 
8(r, B) - ayj8r ayjaB - er cos() -e smfJ . . 

5. x = ufv, y = vfw, z = wfu. 

oxfou 8xfav 8x/8w 1/ v - u /v2 0 
a(x,y,z) - ayfau ayf8v 8yf8w 0 1/w -vjw2 
a(u,v,w)-

azjou 8z/8v 8z/8w - wfu2 0 1/u 

= .!_11/w - vjw
2

! ( u) I 0 -vjw
2

! I 0 1/w I 
v 0 1/u - - V

2 .:..wfu2 1/ u + 0 
-wfu2 0 

=.!. (...!_ -o) + ~ (o-~) + o = -
1
- - -

1
- = o 

v uw v2 u2 w uvw uvw 

1. The transformation maps the boundary of S to the boundary of the imageR, so we first look at side 8 1 in the uv-plane. S1 is 

described by v = 0, 0.::; u.::; 3, sox = 2u + 3v = 2u andy = u- v = u. Eliminating u, we have.x = 2y, 0 _::; x ~ 6. 8 2 is 
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the line segment u = 3, 0:::; v :::; 2, sox= 6 + 3v andy = 3 - v. Then v = 3- y =? x = 6 + 3(3- y) = 15- 3y, 

6 :::; x :::; 12. S3 is the line segment v = 2, 0 :::; u :::; 3, sox = 2u + 6 andy = u- 2, giving u = y + 2 =? x = 2y + 10, 

6 $ X $ 12. Finally, S4 is the segment U = 0, 0 $ V $ 2, SO X = 3v and y = -V :=} X = -3y, 0 $ X $ 6. The image of 

set S is the region R shown in the xy-plane, a parallelogram bounded by these four segments. 

IJ y 
sl 

(0, 2) (3,2) (6, 3) 

s. s sl T - (12,1) 

0 s, (3, 0) II 0 X 

(6,- 2) 

9. sl is the line segment u = v, 0$ u ~ 1, soy= v = 'U and X = u 2 = y2
• Since 0 ~ u ~ 1, the image is the portion of the 

parabola X = y2
' 0 :::; y :::; 1. s2 is the segment v = 1, 0 :::; u ~ 1, thus y = v = 1 and X = u2' so 0 :::; X :::; 1. The image is 

the l.ine segment y = 1, 0 $ X $ 1. 83 is the segment U = 0, 0 $ V $ 1, SO X = u 2 = 0 and y = V :=} 0 $ y $ 1. The 

image is the segment x = 0, 0 :::; y :::; 1. Thus, the image of S is the region R in the first quadrant bounded by the parabola 

x = y 2
, they-axis, and the line y = 1. 

y 

T -
u 0 X 

11. R is a parallelogram enclosed by the parallel lines y = 2x- 1, y = 2x + 1 and the parallel lines y = 1- x, y = 3 - x. The 

first pair of equations can be written as y - 2x = -1, y - 2x = 1. If we let u = y - 2x then these lines are mapped to the 
' 

vertical lines u = - 1, u = 1 in the uv-plane. Similarly, the second pair of equations can be written as x + y = 1, x + y = 3, 

and setting v = x + y maps these lines to the horizontal lines v = 1, v = 3 in the uv-plane. Boundary curves are mapped to 

boundary curves under a !ransformation, so here the equations u = y- 2x, v = x + y define a transformation r - 1 that 

maps R in the xy-plane to the square S enclosed by the lines u = -1, u = 1, v = 1, v = 3 in the uv-plane. To find the 

transformation T that maps S to R we solve u = y - 2x, v = x + y for x, y: Subtracting the fi_rst equation from the second 

gives v - u = 3x =? x = ~ ( v - u) and adding twice the second equation to the first gives u + 2v = 3y =? 

y = Hu + 2v). Thus one possible transformation T (there are many) is given by x = Hv- u),y = ~('u + 2v). 

3 v=3 

u '=-1 s u = 1 

T 
--+-

1 y=2t-1 
1 v - 1 

- I 0 u '',f' : • 
X 

<D 2012 C.ngoge l.eorning. i\11 Righls Reserved. Moy n<ll be sconnctl , copic<l, or <lupl ieott<l, or posted to a publicly occessible website, in whole or in port. 



SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 0 287 

13. R is a portion of an annular region (see the figure) that is easily described in polar coordinates as 

R = { ( r , 8) 11 ::; r ::; ../2, 0 ::; (} ::; 7T / 2}. If we converted a double integral over R to polar coordinates the resulting region 

of integration is a rectangle (in the rO-plane), so we can create a transformation T here by letting u play the role of rand v the 

role of 0. Thus T is defined by x = u cos v , y = u sin v and T maps the rectangle S = { ( u, v) I 1 ::; u ::; ../2, 0 ::; v. ::; 7T / 2} 

in the uv-plane to R in the xy-plane. 

v 

E. 
2 

0 

s 

II 

y 

T -
X 

15 B(x, y) = 1
2 1

1 = 3 and x - 3y = (2u + v) - 3(u + 2v) = -u- 5v. To find the regionS in the uv-plane that 
· 8(u, v) 1 2 · 

corresponds toR we first find the corresponding boundary under the given transformation. The line through {0, 0) and (2, 1) is 

y = ~x which is the image of u + 2v = ~(2u + v) => v = 0; the line through (2, 1) and (1, 2) is x + y = 3 which is the 

image of (2u + v) + (u + 2v) = 3 => u + v = 1; the line through (0, 0) and (1, 2) is y = 2x which is the image of 

u + 2v = 2(2u + v) => u = 0. Thus S is the triangle 0 ::; v ::; 1 - u, 0 ~ u ::; 1 in the uv-plane and 

jj~ (x - 3y) dA = j 0
1 j 0

1
-u ( -u - 5v) 131 dv du = -3 f0

1 [uv + ~v2J::~-u du . 

= - 3 j; (u - u
2 + ~{1 - u?) du = -3[~u2 - iu3

- ~(1- u?]~ = -3(~ - ~ + ~) = - 3 

17 B(x, y) = 1
2 0 I = 6, x2 = 4u2 and the planar ellipse 9x2 + 4y2 

::; 36 is the image ~fthe disk u2 + v2 < 1. Thus 
. 8( u, v) 0 3 . -

ffn x2 dA = JJ (4u2 )(6) dudv = f0
2

"' f0
1
(24r2 cos2 8)rdrd8 = 24J;.,.. cos2 8d8 J

0
1 r 3 dr 

u2+v2~1 

= 24[~ x +~sin 2x]~"' ar4] ~ = 24(7r)(i) = 67!' 

19. 8(x, y) = ,
1
/v - ufv

2

' = .!., xy = u, y =xis the image of the parabola v2 = u, y == 3x is the image of the parabola 
8(u, v) o 1 v 

v2 = 3u, and the hyperbolas xy = 1, xy =a are the images of the lines u = 1 and u = 3 respectively. Thus 

j L x y dA = 131: u ( ; ) dv du = 13 

u (In v3u - ln vfu) du = J: u In J3 du = 4ln J3 = 2 ln 3. 

a 0 0 

21 . (a) :ix, y, z~ = 0 b 0 = abc and since u = ~. v = J!.b' w = ~the solid enclosed by the ell ipsoid is the image of the 
u,v,w a c 

0 0 c 

JJJE dV = JJJ abcdudvdw = (abc)(volumeof tlie ball) = ~1rabc 
u2+v2+w2 :S 1 
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2 2 2 
(b) If we approximate the surface. of the earth by the ellipsoid 

6
;.,

82 
+ 

6
i

782 
+ 

6
;

562
_ = 1, then we can estimate 

the volume of the earth by finding the volume of the solid E enclosed by the ellipsoid. From part (a), this is 

fffE dV = ~11"(6378)(6378)(6356) ~ 1.083 X 1012 km3
• 

(c) The moment ofintertia about the z -axis is I% = JJJE (x2 + y 2) p(x, y, z) dV, where E is the solid enclosed by 

xz yz zz 18(x y z) I 2 + b2 + 2 = 1. As in part (a), we use the transformation x = au, y = bv, z = cw, so 
8

( ' ' ) = abc and 
a . c u,v,w 

I , = JJJE (x2 + y2) kdV = f.(.[ k(a2u2 + b2·u2)(abc) dudv dw 
u2+ v2+w2 ~ 1 

= abck f0" f 0
2

" J0
1 

( a 2 p2 s in2 ¢ cos2 
() + b2 p2 sin2 ¢ sin2 8) p2 sin ¢ dp d8 drjJ 

= abck [a2 f0,.. f~,.. f0
1 (p2 sin2 rP cos2 B) p2 sin 1/> dp d() dlj> + b2 f0" f~,.. f

0
1 (p2 sin2 rjJ sin2 B) p2 sin rP dp dB dr!>] 

=. a3bck J0" sin3 rjJ drjJ f0
2

" cos2 B dB J; p4 dp + ab3ck fo.,.. sin3 rjJdrjJ f~" sin2 B dB J; p4 dp 

= a3 bck [ ~ cos3 ¢-cos I/>] ~ [~B + i sin2B]~" [iP5] ~ + ab3 ck [t cos3 rjJ- cosr/J]~ [~B- i sin 28] ~" [tP5]~ 

= a3 bck (t) (1r) ( t) + ab3ck (1) (1r) (i) = rt7r (a2 + b2
) abck 

23. Letting u = x - 2y and v = 3x - y, we have x = f.(2v- u) and y = f(v- 3u). Then 
8
8

((x, y)) = ~ -1/5 215
1 = .!. 

0 0 u,v -3/5 1/5 5 

and R is the image of the rectangle enclosed by the lines u = 0, u = 4, v = 1, and v = 8. Thus 

8(xy) 1.:...1/2 1/ 21 1 
25. Letting u = y- x, v = y + x, we nave y = !(u + v), x = Hv - u). Then 

8
(u: v) = 

1
i

2 112 
= - 2 and R is the 

image of the trapezoidal region with vertices ( - 1, 1), ( -2, 2), {2, 2), and {1, 1). Thus 

!h y -x 121" u I 11 112 [ u]u=v 112 cos-- dA-= cos - - -
2 

du dv = -
2 

v sin- dv = -
2 

2v sin{1) dv = ~sin 1 
R Y +X '1 -v V 1 V u= -v 1 

.. 
27. Letu =x+y andv=-x+y.Thenu+v = 2y => v=Hu+v) andu - v=2x => X=~(u-v). 

8(x y) 11/2 -1/ 2! 1 -8( ') = =-2 .Now[u[= [x+y[< [x[+[y[<1 => - l<u<l,and 
u, v 1/ 2 1/2 . - - - -

[v [ = [-x + y[ ~ [x [ + [y[ ~ 1 => - 1 ~ v ~ 1. R is the image ofthe square 

region with vertices {1, 1), (1, -1), ( - 1, -1), and ( -1, 1). 

So ffn e"+" dA = ~ f~1 f~1 e" dudv = He"t1 [ v t 1 = e - e -
1

. 

y 
1 
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15 Review 
CONCEPT CHECK 

m n 
1. (a) A double Riemann sum off is ,L ,L f (xi;, Yi;) b.A, where b. A is the area of each subrectangle and (xi; , Yi;) is a 

i=lj = l 

S3J!lple point in each subrectangle. If j(x, y) ;::: 0, this sum represents an approximation to the volume of the solid that lies 

above the. rectangle R and be low the graph off. 

(b) ffn. f(x, y) dA = lim f f= f(xi;. Yi;) b.A 
m,n-+oo i = 1 j = 1 

(c) If f(x, y) ;::: 0, ffn f(x, y) dA represents the volume of the solid that lies above the rectangle Rand below the surface 

z = f(x, y). Iff takes on both positive and negative values, ffn j(x, y) dA is the difference of the volume above R but 

below the surface z = f(x , y) and the volume below R but above the surface z = f(x, y). 

(d) We usually evaluate ffn. j(x, y) dA as an iterated integral according to Fubini's Theorem (see Theorem 15.2.4). 

(e) The Midpoint Rule for Double Integrals says that we approximate the double integral JJR f(x, y) dA by the double 

Riemann sum f f: f(xi, fi;) b.A where the sample points (:x,, fi;) are the centers of the subrectangles. 
i=lj= l 

(f) fnvc = A ~R) I In f(x, y) dA where A (R) is the area of R. 

2. (a) See ( I) and (2) and the accompanying discussion in Section 15.3. 

(b) See (3) and the accompanying discussion in Section 15.3. 

(c) See (5) and the preceding discussion in Section 15.3. 

(d) See (6) - (1 I) in Section 15.3 . 

3. We may want to change from re~tangular to polar coord ina tes in a double integral if the region R of integration is more easi ly 

described in polar coordinates. To accomplish this, we use ffn f(x, y) dA = J: J: f (rcosB, rsin 9) r dr d(} where R is 

given by 0 ::::; a ::::; r ::::; b, a ::::; B ::::; {3. 

4. (a) m = JJD p(x, y) dA 

(b) M , = ffv yp(x, y) dA, M 11 = ffv xp(x, y) dA 

(c) The center of mass is (x, y) where x == M" and y= lvfx . 
m m 

(d) I , = ffv y2 p(x, y) dA I v = ffv x2 p(x, y) dA, Io = ffv (x2 + y2 )p(x, y) dA 

5. (a) P(a ::::; X::::; b, c:=; Y::::; d)= 1: J: j(x, y)dydx 

(b) f(x , y) ;::: 0 and JJ~~ f(x, y) dA = 1. 

· (c) The expected value of X is JJ.1 = ffR2 xf(x, y) dA; the expected value ofY is p..z = JJT:/.2 yf(x, y) dA. 
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290 0 CHAPTER 15 MULTIPLE INTEGRALS 

6. A(S) = JJ0 J [f., (x, y))2 + [f11 (x, y))2 + 1 dA 

(b) We usually evaluate f[JB f(x, y , z) dV as an iterated integral according to Fubini's Theorem for Triple Integrals 

(see Theorem 15.7.4). 

(c) See the paragraph following Example 15.7.1. 

(d) See (5) and (6) and the accompanying discussion in Section 15.7. 

(e) See (10) and the accompanying discussion in Section 15.7. 

(f) See (11) and the preceding discussion in Section 15.7. 

8. (a) m = JJJE p(x, y, z) dV 

. (b) M 71z = JJJE xp(x, y, z) dV, Mxz = JJJE yp(x, y, z) dV, Mxy = JJJE zp(x, y, z) dV. 

( ) Th t f · (- - - ) J - Myz _ M xz d _ lvfx11 c e cen er o mass ts x, y, z w 1ere x = --, y = --,an z = --. 
m m m 

9. (a) See Formula 15.8.4 and the accompanying discussion. 

(b) See Formula 15.9.3 and the accompanying discussion. 

(c) We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region E of 

integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using 

cylindrical or spherical coordinates. 

a (x, y) I ax;au ax;av I ax ay ax By 10
· (a) a (u, v) = ay;au ayjav = au av - av au 

(b) See (9) and the accompanying discussion in Section 15.10. 

(c) See (13) and the accompanying discussion in Section 15.10. 

TRUE-FALSE QUIZ 

1': This is true by Fubini's Theorem. 

3. True by Equation 15.2.5. 

5. True. ~y Equation 15.2.5 we can write J~ f01 f(x) f(y) dy dx = I~ f (x) dx I~ f(y) dy. But J~ f(y) dy = J~ f(x) dx so 

this becomes I; f(x) dx .{0
1 f(x) dx = [J; f(x) dxf. 

7. True: J J 0 J 4 - x2 - y2 dA = the volume under the surface x 2 + y2 + z2 = 4 and above the xy-plane 

= ~ (the volume ofthe sphere x 2 + y2 + z 2 = 4) = ~ · t1r(2)3 = 1
3
6 1r 
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9. The volume enclosed by the cone z = ...jx2 + y2 and the plane z = 2 is, in cylindrical coordinates, 

V = J~" J~ J: r dz dr dO i= f0
2

" J~ J: dz dr dO, so the assertion is false. 

EXERCISES 

1. As shown in the_contour map, we divideR into 9 equally sized subsquares, each with area b.A = 1. Then we approximate 

ffn f(x, y) dA by a Riemann sum with m = n = 3 and the sample points the upper right comers of each square, so 

3 3 

ffnf(x,y)dA>:::J L: L: f(x i, yj)b.A 
i =lj=l 

= b.A [!(1, 1) + /(1, 2) + /(1, 3) + !(2, 1) + !(2, 2) + f(2, 3) + !(3, 1) + !(3, 2) + !(3, 3)] 

Using the contour lines to estimate the function values, we have 

ffnf(x,y) dA >:::! 1(2.7 + 4.7 + 8.0 + 4.7 + 6.7 + 10.0 + 6.7 + 8.6 + 11.9] ~ 64.0 

3. f1
2 J~ (y + 2xeY) dx dy = J? [xy + x2 e11] ::~ dy = f1

2 
(2y + 4eY) dy = [y2 + 4eY] ~ 

= 4 + 4e2 
- 1 - 4e = 4e2 - 4e + 3 

7. J; J; J0~ ysinx.dzdy dx = f0" J; [(ysinx)zJ::F dydx·= f0" f0
1 

y ...jl- y 2 sinxdydx 

= f 0" [- ~ (1- y2
)

312 sin x)·u:l dx = f0" ~ sin x dx = -~ cosx]~ = ~ 
. . y~ 

9. The regi?n R is more easily d~scribed by polar coordinates: R = { ( r, 0) I 2 s; r s; 4, 0 s; 8. s; 71"}. Thus 

ffn f(x, y) dA = fo" f2
4 f (rcosO, r sinO) rdrdO. 

11. 

13. 

X 

Th . h . . b fTr / 2 r•in 20 d dO . e reg1on w ose area IS g.tven y Jo Jo r r IS 

· { ( r, 0) I 0 s; 0 s; %, 0 s; r s; sill 20}, which is th~ region contained in the 

loop in the first quadrant of the four-leaved rose r =sin 28 . 

./~1 J: cos(y2
) dy dx = J; g cos(y2

) dx dy 

= f0

1 cos(y2
) [ x] ::~ dy = J0

1 
y cos(y2

) dy 
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17. y 

0 X 

19. 

21 . y 

!. r y 11 r..rx , . 11 1 2 y-..rx 
1 D 1 + x2 dA = o 1 o 1 : x2 dy dx = o 1 + x2 [ h ) y:o dx 

1
1 

X 1 = l -- dx = [! In(1 + x2
)) = ! In 2 2 0 1 + x2 ·I o 4 

fj, f2J,B-y~ 
0 ydA = J o 112 ydxdy 

= fo2 y[x] ::~~v2 dy = J; y(8 ~ y2- y2) dy 

= f0
2 

(8y - 2y3) dy = [4y2
- tY4]~ = 8 

/L (xz + y2)3/ 2 dA = 17r/313 (r2)3/2r drd0 

= 11r/3 dO 13 r4dr = [0)~/3 [ir:;)~ 

1f 35 811f 
=35=5 

23. fffe xy dV = .1: j~x J;+v xy dz dy dx = .{0
3 .fox xy [ z J::~+v dy dx = J; ./~"' xy(x + y) dy dx 

= ]~3 J;(x2 y + xy2
) dydx = .r; [tx2

y
2 + ~x1lJ;;:~ dx = J; (tx4 + tx4

) dx 

6 / '3 4 d [ 1 5] 3 81 40 5 = 6, 0 X X = GX 0 = 2 = . ' 

25. Iff v2 z2 d\l=f1 J~ ]'1 -v
2

- z
2

y2z 2 dxdzdv=t rv'~-~~2 y2z2 (1-v2 - z2 ) dz dv 
E - 1 -~ 0 - 1 · -Vl -y2 

= J;1r J; (r2 cos2 O)(r2 sin2 O)(l - 1·2 )rdrd() = J
0
2

Tr Jd ;t sin2 2(J(r5 - r7
) drdO 

r2rr 1 (1 40) [ 1 6 1 8 ] r = 1 d() 1 [0 1 . 49] 2,- 2Tr " = Jo S - COS 6r - ii1' r=O = TIJ2 - 4 SID 0 = 192 = 96 

= ll f " sin 3 
() dO = lll [- cos 0 + i- cos3 OJ " = !11 s Jo 5 3 . o 15 

29 V _ r 2 r4 ( 2 2) d d _ 1.2 [ 2 4 3J u=4 d . _ r2 (3 2 8 ) d . _ . - J o JJ X + 4y y X - 0 X y + 3 y u= l , X - Jo X + 4 :r. - 176 

31: 
V = f

2 j '11 r<2- ul/2 dzdxdy = rz rv (1-ly) dxdy Jo o .lo .Jo .lo 2 

y 

X 
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33. Using the wedge above the plane z = 0 and below the plane z = mx and noting that we have the same volume for .m < 0 as 

for m > 0 (so use m > 0), we have 

V = 2 foa /3 J/a2-9y2 mx.dxdy = 2 foal~ tm(a2 - 9y2) dy = m[a2y - 3y3)~/3 = m(ia3 - ia3) = ~ma3 . 

35. (a) m = fo1 fo1 - v2 ydxdy = J~1 (y - y3) dy = ~- ~ = ~ 

rl rl- v2 d d ri 1 ( 2)2 d 1 ( 1 2)3) 1 1 (b) Mv = Jo Jo xy x Y = .Jo 2Y 1 - Y Y = -u - 'y o = 12' 

r l r1 - v
2 

2 d d r1 c 2 4) d. 2 H c- -) ( 1 s ) M, = Jo Jo y x y = 10 y - y y = 15. ence x, y = _3 , 15 . 

r1 r1-v2 
3 J·1 ( 3 s) 1 (c)lx=JoJo y dxdy= 0 y - y dy=u, 

r1 rl - v
2 

2 d d _ r1 1 ( 2)3 d _ 1 ( 1 2)4] 1 _ 1 ly = Jo Jo yx x Y - Jo 3Y 1 - Y Y- -24 - Y o - 24' 

.l _ I I _ 1 =2 _ .!.L_g _ 1 = _ 1 d = 2 _ 1/24 _ 1 = 1 o - "'+ v- 8• Y - 1/ 4 - 3 =? Y - 73• an x - 1/ 4 - 6 =? x = ?s· 

37. (a) The equation of the cone with the suggested orientation is ( h - z) = ~ .j x2 + y 2, 0 $ z $ h. Then V = ~ 1ra 2 h is the 

volume of one frustum of a cone; by symmetry M 11:: = !vfx:: = 0; and 

• !! 11•-(11/a),jx2+y2 12,.1a1(hfa)(a-r) 1a. h2 ; 
M;r;y = z dz dA = rzdzdrd/J = 1r r 2 (a- r) dr 

o ooo o· a 
;r;2+y2~112 · 

1rh
2 1a 2 2 3 1rh

2 
(a

4 
2a

4 
a

4
) 1rh

2
a

2 

= - (a r- 2ar + r ) dr = - - - - + - = --
a2 0 a2 2 3 4 12 

Hence the centroid is (x,y,z) = (0,0, ~h). 

1
2"1"1(/•/.a)(a-r) 3 1" h 3 4 27rh (a5 a5) 7ra4 h 

(b) I , = r. dz dr d() = 27r - (ar - r ) dr = - - - - = - -
0 o o 0 a a 4 5 10 

39. Let D represent the given triangle; then D can be described as the area enclosed by the x- and y-axes and the line y = 2 - 2x, 

or equivalently D = { (x , y) I 0 $ x $ 1; 0 $ y $ 2 - 2x }. We wantto find the surface area of the part of the graph of 

z = x 2 + y that lies over D, so using Equation 15.6.3 we have 

A(S)= Jfv 1+ (~;y + (~~Y dA = Jfv v 1+(2x)2+(1)2dA= 1112

-

2

;r; )2 + 4x2dydx 

= .r; .../2 + 4x2 [y J~:~-2;r; dx = J;(2 - 2x) .../2 + 4x2 dx = · J0
1 2 J2 + 4x2 dx- JC: 2x J2 + 4x2 dx 

Using Formula 21 in the Table oflntegrals with a = J2. u. = 2x, and du = 2 dx, we have 

J 2 J2 + 4x2 dx = x J2 + 4x2 + ln(2x + J2 + 4x2 ). lfwe substitute u = 2 + 4x2 in the second integral, then 

du = Bx dx and J 2x ,J2 + 4x2 dx = ~ J .JU du = i · tu312 = i (2 + 4x2? 12
. Thus 

. 1 

A(S) = [xJ2 + 4x2 + 1n(2x + J2 + 4x2) - t{2 + 4x2
)

312Jo 

= J6 + ln (2 + JB) - ~(6)312 - ln J2 + 4- = ln 2t# + {1 

= ln( J2 + v'3) + 4- ~ 1.6176 
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41. 
f

3 rJ9
- x

2 

(x3 + xy2 )dydx = {
3 {~ x(x2 +y2 )dydx 

1o 1 -J9-x2 1o 1 -~ 
= J::~~2 f~ (r cos O)(r2

) r dr dO 

= J::~~2 cos 0 dO J; r 4 dr 

= (sino] :::/2 (ir5] ~ = 2 ·. i (243) = 4
:

6 = 97.2 

43. From the graph, it appears that 1 - x2 = e"' at x ~ - 0.71 and at 

x = 0, with 1 - x2 > e"' on ( -0.71, 0). So the desired integral is 

JJ"n y2dA ~ f~o.n J.1.,-x2 y2 dydx 

= l Jo [(1 - x2)3 - e3"'] dx 
3 -0.71 

=-o.25 

45. {a) f(x , y) is a joint density function, so we know that JJR2 f( x, y) dA = 1. Since f(x , y) = 0 outside the rectangle 

(0, B) x (0, 2], we can say 

47. 

JJR2 f (x,y) dA = f~oo f~oo f(x ,y) dydx = J: J: C(x + y) dydx 

= C .r; [xy + h2J ~:~ dx = C J0
3
(2x + 2) dx = C[x

2 + 2x)~ = 15C 

Then 15C = 1 :::? C = ft. 

(c) P(X + Y ~ 1) = P ((X, Y) E D) where Dis the triangular regiol} shown in y 

X 

the figure. Thus 

P(X +Y ~ 1) = JJ0f(x,y) dA = f0
1J;-x -ft (x+y)dydx 

=· ..1.. rl [ + 1 2]u=1
-"' dx 

15 Jo xy 2Y u=O 

= fs f; [x(1 - x) + ~ ( 1 - x?] dx 

- 1 f1(1 .2)d - 1 [ 1 3]1 1 
- 30 Jo - X X - 30 X- 3X 0 = 45 

0 I X 

. z Jl j'l j '1- IJ ( ) J.l r.1-=Jv"ii ! ( ) d d d _ 1 .,2 0 fx,y , zdzdydx= 0 . 0 - v"ii x,y,z xyz 
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49. Since u = x- y and v = x + y, x = t(u + v) andy= ~(v- u). 

Thus --'- = = - and -- dA = - - du dv = - - = -In 2 8(x y) I 1/2 1/2 1 1 fl x- y 14
/ .o u (1) £4 dv 

8(u,v) -1/2 ·1/2 2 Rx+y 2 _ 2 v 2 , 2 v · 

51 . Let U = y - X and V = y +X SO X = y :... U = ( V - X) - U =:> X = ~ ( V - U) and y = V - ~ ( V - U) = ~ ( V + u). 

I~~::~~ I = I ~:~ -. ~~~~I = 1-~ ( ~) - ~(~)I = J -'~I = ~. · R is the image under this transformation .of the square 

with vertices (u, v) = (0, 0), ( -2, 0), (0, 2), and ( -2, 2). So 

This result could have been anticipated by symmetry, since the integrand is an odd function of y and R is symmetric about 

the x-axis. 

53. For each r such that Dr lies within the domain, A(Dr) = 71'1'
2

, and by the Mean Value Theorem for Double Integrals there 

exists (xr, Yr) in D,. such that f (xr, Yr) = ~ j' { f(x, y) dA. But lim (xr, Yr ) = (a, b), 
7TT lv,. r-o+ 

so lim ~ j' { f (x, y) dA = lim f(xr, y,.) = f(a, b) by the continuity of f. 
r-o+ 1fT } Dr r--+O+ 
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D PROBLEMS PLUS 
1. y 

5 

4 

3 

2 

0 

x + y = 5 

2 3 X 

Let R, = u; = 1 Ri, where 

R , = { (x , y) I x+ y ~ i + 2, x +y < i+3, 1 ~ x ~ 3, 2 ~ y ~ 5}. 

5 5 

ffn[x+y) dA = I: f fn .[x+y)dA= L: [x+ylffn . dA, since 
i =1 1. i= l ' 

[x + y] = constant = ~+ 2 for (x, y) E R; . Therefore 

Jfn[x + y) dA = E?=1 (i + 2) [A(R;)] 

= 3A{RI) + 4A(R2) + 5A(R3) + 6A(&) + 7 A(Rs) 

= 3(4) + 4(~) + 5{2) + 6(~) + 7(~) = 30 

I rb I t [ t ? ] 3. f ,, .• = b _ala f (x)dx = I- 0 Jo J. cos(t-)dt dx 

= J; J: cos(t2) dt dx = ,{0
1 J; cos(t 2

) dx dt [changing the ordeqlf intcsrntion] 
x = t 

0 

5. Since lxvl < 1, except at (1, 1), the formula for the sum of a geometric series gives -I-
1
- = f (xy)", so 

. - ~ n~ 

00 00 "' 1 1 "' 1 1 1 1 "'"" 1 = L.., n+1 ' n+1 = L.., (n+ 1)2 = 1!! + 21 + 32" + · · · = L..,n = 1 ~ 
n=O n= O 

7. (a) Since ixyz i < 1 except at (I , I , I) , the formula for the sum of a geometric se;ies gives - -
1
- = E (xyz )n, so 

1- X 1JZ n=O 

111111 1 11lll1 00 00 11111·1 - _-- d:r;dydz= I: (xyztdxdy dz = I: (xyztdx dydz 
o o o 1 xyz o . o o n =O n = O 0 o 0 

00 

[ 1 ] [ 1 ] [ f 1 ] 
00 

1 1 1 = I: .f0 x" dx ,[0 y"' dy Jo z" dz = I: - -
1 

· - -
1 

· - -
1 n = O . n =O n + n + n + 

00 1 1 1 1 . 00 1 
= ... ~o (n + 1)3 = 13 + 23 + 33 + . . . = n~1 n 3 

(b) Since 1-xyzl < 1, except at (1, 1, I ), the formula for the sum of a geometric series gives 
1 = f= ( - x yz)" , so 

1 +xyz n = O 

111111 1 111·11·1 00 00 11.1111 
1 

dx dy dz = I: ( -xyz)" dx dy dz = 2: ( -xyz)" dx dy dz · 
o o o + xyz o o o n=O n=O o o o 

= f (-1)". (1~1 x" dx] [J; y"dy] [J; z" dz] = f (-1)"-
1
-- -

1
- . -

1
-

n=o n=O n + 1 n + 1 n + 1 

00 (-1)" 1 1 1 00 (-1)" - 1 

= n~o (n + 1)3 = 13 - 23 + :P - . . . = n~o n 3 
[continued] 
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To evaluate this sum, we first write out a few tenns: s = 1 - ;
3 

+ ; 3 - ; 3 + ;~ - ; 3 ~ 0.8998. Notice that 

a1 = \ < 0.003. By the Alternating Series Estimation Theorem from Section 11.5, we have Is- s61 ~ a1 < 0.003. . 7 . 

This error of0.003 :-viii not affectlhe second decimal place, so we have s .~ 0.90. 

. au. 8u ox au ay au az au au. . 
9. (a)x=rcosO, y =rsiDO, z=z. Then or= axar + ayar + ozor =ox cosO+ oysmOand 

S. .1 I ou ou . (} 8u (} d 
lffil ary {)(} =-ax TSID + oy rcos an 

8 2u a2u '2 . 2 0 
82 u. 2 2 8 2u 2 . au 8u . 

ao2 = 8x2 r SID + 8y2 r cos (} - 2 oy ax r SID 0 cos (} - OX r cos (} - {}y r SID 0. So 

82 u lau 1 8 2u _ 82 u a2 u 2 82 u . 2 a2v. . au cosO 8u sinO 
!:i:2 + - -a + 2 <>o2 + !i'2 = !i"2 cos 0 + !i'2 sm 0 + 2 .<~. . <> cos 0 sm 0 + -;:;----- + -;:;-----
vr' r r r u uz ux uy vyuX uX r uy r 

82u . 2 82u 2 82v. . (} (} + ~sm O + ~cos 0 - 2~a sm cos 
ux. uy uy X 

8ucos9 8usin9 8 2u 
- ox - r - - oy -r- + 8z2 

82u 82 u 821~ =-+-+ -. 8x2 {)y2 {)z2 

(b) x = psinrf>cosO, y = psin ¢>sin0, z ·= pcos¢>. Then 

au au~ 8u8v && &. & .. au . 
op = ox op + oy op + oz ap = OX sm¢> cosO+ {}y sm¢> sm9 + {)z cos rf>, and 

S. .1 I 8u 8u -~.. 9 8u -~.. . (} ou 
1m1ar y Br/> = &xp.cos'l'cos + oypc~'l'sm - azpsinrj>,and 
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d au au . A. • f) au . A. () h'l 
An afJ = - ax psm.I' Slll + ay pSID'I'COS , W I e 

a2u a2u · a2u · 
-2 = -2 -a a p2 sin2 if> cos() sin 0 + -a 2 p2 sin

2 ¢ sin
2 

() 
afJ y X X 

+ a
2
u 2 . 2 A. 2 0 au . A. 0 au . A. • 0 

a 2 p sm 'l'cos --a psm'l' cos - -a p sm 'l' sm 
y X y 

Therefore 

a2u 2 au cot¢> au 1 82u 1 a2u - + -- + --- + --+ ~--;:o-ap2 pap p2 a¢ p2 aq? p2 sin2 if> aB2 

= ::~ [ (sin
2 ¢> cos2 B) + ( cos2 ¢> cos

2 B) + sin
2 

B) 

+ ~~ [ (sin2 ¢> s in2 0) + ( cos2 ¢> sin2 0) + cos2 OJ + ~~ [cos2 ¢> .+ sin2 ¢) 

+ au [ 2 sin
2 if> cos()+ cos

2 
¢> c~ 0 - sin

2 ¢> cos 0 - cos 0] 
ax psm¢> 

+ au [ 2sin2 ¢> sinB + cos
2 ¢> s~n()- sin

2 
¢> sin()- sinO ] 

ay psm¢> 

But 2 sin2 ¢>cos 0 + cos2 if> cos 0 - sin2 ¢>cos 0 - cos 0 = (sin2 if>+ cos2 if> - 1) cos 0 = 0 and similarly the coefficient of 

aujay is 0. Also sin2 ¢co?>2 0 + cos2 if>cos2 0 + sin2 e = cos2 fJ (sin2 ¢ + cos2 ¢) + s in2 
() = 1, and simi larly the 

coefficient of a2uj 8y2 is 1. So Laplace's Equation in spherical coordinates is as stated. 

11. Io"'I~ Io" f(t)dtdz dy = IIIE f(t)dV, where. y 

· E = {(t, z, y) I 0 ~ t ~ z, 0 ~ z ~ y, 0 ~ y ~ x}. t =z 

If we let. D be the projection of Eon the yt-plane then 

D = {(y, t) I 0 S t S x, t S y S x}. And we see from the diagram 

that E = { (t, z , y) I t ~ z ~ y, t ~ y ~ x, 0 ~ t ~ x }. So 

}~"'I~ I; f(t) dt dz dy = Io"' I /' .ftv f (t ) dz dy dt = Io"' [ft"' (y- t) f(t) dy] dt 

= J-;' [(h 2
- ty)f(t) J~:; dt = Io"' [~x2 - tx- ~t2 + t 2]f(t) dt 

= Io"' [~x2 - tx + tt2
] f(t) dt = I o"' ax2

- 2tx + t 2 )f(t) dt 

= ~ I;(x - t)2 f(t) dt 
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13. The volume is V = Jff R dV where R is the solid region given. From Exercise 15.10.2 l(a), the transformation x =au, 

y = bv, z = cw maps the unit ball u 2 + v 2 + w 2 
:::; 1 to the solid ellipsoid 

x2 y2 z2 i o(x y z) 
2 + -b 2 + 2 :::; with o( ' ' ) = abc. The same transformation maps the 
a c u,v,w 

X y z . T. h tl . R. plane u + v + w = 1 to - + - + - = 1. us 1e regton 111 xyz-space 
a b c 

corresponds to the regionS in uvw-space consisting of the smaller piece of the 

. unit ball cut offby the plane u + v + w = 1, a "cap of a sphere" (see the figure). 

We will need to compute the volume of S, but first consider the general case 

where a horizontal plane slices the upper portion of a sphere of radius r to produce 

a cap of height h. We use spherical coordinates. From tile figure, a line through tile 

origin at angle ¢ from tile z-axis intersects the pl_ane when cos¢ = ( r - h)/ a =:> 

a = (r· - h)/ cos¢, and the line passes through the outer rim of the cap when 

a = r =:> cos¢ = (r.- h)/r =:> ¢ = cos- 1 ((r- h)/r). Thus the cap 

is described by { (p, 8, ¢) I (r- h)/ cos¢:::; p:::; r, 0:::; (}:::; 21r, 0:::; ¢:::; cos-1 ((r- h)/ r)} and its volume is 

v = f27r rcos -
1
((r-h)/r) rr 2 sinA.d dd.d(} 

Jo .J o J(r-h)/ cos 4> P "~' P 'I' 

= f27r f COS - l ((r-h)/r) [l 3 sin¢] P=•· d¢ d(} 
Jo Jo 3P p = (•·-h)/cos¢ 

112" 1cos-1
((r-h)/r) [ (r _ h? ] 

= - r 3 sin¢ -
3 

¢ sin rjJ d¢ dO 
3 0 0 · cos 

_ 1 f27r [- 3 A._ 1 ( _ h)3 - 2 ,;.] ¢=cos-
1 
((r- h)/•·) d() 

- 3 .I 0 r cos 'I' 2 r cos ~- ¢ =O . 

1 r7f' [ 3 (r-h) 1 3 (r- h)-2 3 1 ( 3] = 3 ./o -r - r - - 2(r-h) - r- +r + 2 r -h) d() 

(This volume can also be computed by treating the cap as a solid of revolution and using the single variable disk method; 

see Exercise 5.2.49 [ET 6.2.49].) 

To determine the height h ofthe cap cut from tl1e unit ball by the plane 

u + v + w = 1, note that the line u = ·u = w passes through the origin with 

direction vector (1, 1, 1) which is perpendicular to the plane. Therefore this line 

coincides with a radius of tile sphere that passes through the center of the cap and 

h is measured along this line. The line intersects the plane at ( t, t, t) and the 

sphere at ( '7a, '7a, '7a). (See the figure.) 

plane u + u + w = I 
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The distance between these points is h = V 3 ( -jg - t Y = v'3 ( -jg - t) = 1 - 73. Thus the volume of R is 

V= IlL dV= Ills 1:(~:~:~~ ~ dV = abc Ills dV = abcV(S) 

= abc· 1rh
2
(r - th) = abc· 1r ( 1 - 7-J Y [ 1 - i _( 1- 73)] 

= abC7r ( ~ - "7a) ( j + aTa) = abC7r ( ~ - ~) ~ 0.482abc 
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16.1 Vector Fields 

1. F (x, y) = 0.3 i - 0.4j 

All vectors in this field are identical, w ith length 0.5 and 

parallel to (3, -:-4) . 

3. F(x,y) = -~ i + (y - x) j 

The length of the vector - ~ i + (y - x) j is 

vt. + (y - x)2 . Vectors along the line y =X are 

horizontal with length ~. 

5 F ( ) - y i + x j 
. x,y - Jx2 +y2 

The length of the vector ~ is 1. 
x2 + y2 

7. F (x, y , z) = k 

All vectors in this fie ld are parallel to the z-axis and have 

length 1. 

9. F(x,y,z) = x k 

At each point (x, y, z), F (x, y, z) is a vector of length lxl. 
For x > 0, all point in the direction of the positive z-axis, 

while for x < 0, a ll are in the direction of the negative 

z-axis. In each plane x = k, all the vectors are identical. 

y 

,, 
X 

]j 
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304 0 CHAPTER 16 VECTOR CALCULUS 

11. F(x, y) ·= {x, -y) corresponds to graph IV. In the first quadrant all the vectors have positive x-components and negative 

y-components, in the second quadrant all vectors have negative x- and y-components, in the third quadrant all vectors have 

negative x -components and positive y-components, and in the fourth quadrant all vectors have ~ositive x - and y-compdnents. 

In addition, the vectors get shorter as we approach the origin. 

13. F (x, y) = (y, y + 2) corresponds to graph I. As in Exercise 12, aJI vectors in quadrants I and II have positive x~components 

while all vectors in quadrants III and IV have negative x-components.Vectors along the line y = -2 are horizontal, and the 

vectors are independent of x (vectors along horizontal lines are identical). 

15. F(x, y, z) = i + 2j + 3 k corresponds to graph IV, since all vectors have identical length and direction.' 

17. F(x, y, z)' =·xi+ y j + 3 k corresponds to graph III; the projection of each vector onto the xy-plane is x i + y j , which points 

away from the origin, and the vectors point generally upward because their z-components are all 3. 

19. 4.5' 

1~ \ ' 
' ~ I I 

I I . 
- 4.5 1 I . 

I l . 
I I 

' ' 
I . 
I ' 

-4.5 

. 
' 
' 

' I . I . I 
I I 

' \ 
\ \ 

I 

I 

I 

I 
I 
I 
I 
~ 

t 

4.5 

The vector field seems to have very short vectors near the line y = 2x. 

For F(x, y) = (0, o'} we must have y2
- 2xy = 0 and 3xy- 6x2 = 0. 

The first equation holds if y = 0 or y = 2x, and the second holds if 

x = 0 or y = 2x. So both equations hold [and thus F ( x, y) = 0] along 

the line y = 2x. 

21. f(x, y) = xe"'Y => 

'i7 f(x , y) = f:,(x, y) i + jy (x, y) j = (xe'"Y · y + e'"Y) i + (xe"'Y. x) j = (xy + l )e"'Y i + x2e'"!l j 

23. 'ilf(x,y, z) =f:z:(x,y,z)i+fy(x,y,z) j +f::(x,y, z ) k =..) 
2 

x 
2 2 

i +.J 
2 

y 
2 2

j +..) 
2 

z 
2 

~ k 
x +y +z x +y +z x +y +z 

25. f(x,y) = x 2 - y => 'il f(x,y) = 2xi - j . 

The length ofV' f(x, y) is ..)4x2 + 1. When x =I= 0, the vectors point away 

from they-axis in a slightly downward direction with length that increases 

as the distance from the y -axis increases. 

2x 4y 
27.Wegraph\lf(x, y)= 

2 22 i +
1 2 22

jalongwith 
l +x+ y +x+ y 

a contour map off. 

The graph shows that the gradient vectors arc perpendicular to the 

level curves. Also, the gradient vectors point in the direction in 

which f is increasing and are longer where the level curves are closer 

together. 
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29. f ( x , y) = x 2 + y2 => V f( x, y ) = 2x i + 2y j . Thus, each vector V f ( x, y ) lias the same direction and twice the length of 

the position vector of the point (x, y), so the vectors all point directly away from the origin and their lengths increase as we 

move away from the origin. Hence, V f is graph III. 

31 . f (x, y) = (x + y)2 => V f (x , y) = 2(x + y) i + 2(x + y) j. The x- andy-components of each vector are equal, so all 

vectors are parallel to the line y = x . The vectors are 0 along the line y = --:x and their l~ngth increases as the distance from 

this line increases. Thus, V f is graph II. 

33. At t = 3 the particle is at (2, 1) so its velocity is V (2, 1) = (4, 3). After 0.01 units of time, the particle's change in 

location should be approximately 0.01 V(2, 1) = 0.01 (4, 3) = (0.04, 0.0~) . so the particle should be approximately at the 

point (2.04, 1.03) . 

35. (a) We sketch the vector field F(x; y ) = x i - y j along with 

several approximate flow lines. The flow lines appear to 

be hyperbolas with shape similar to the graph of 

y = ±11x, so we might guess that the flow lines have 

equations y = C / x. 

(b) If x = x(t) andy = y(t) are parametric equations of a Aow line, then the velocity vector of the flow line at the 

point (x , y) is x' (t) i + y' (t) j . Since the velocity vectors coincide with the vectors in the vector field, we have 

x ' ( t) i + y' ( t) j = x i - y j => dx Nt = x, dy I dt = - y . To solve these differential equations, we kno~ 

dxldt = x => dx/ x = dt => In lxl = t +. C => x = ±~t + c = Aet for some cons~nt A, and 

dy I dt = - y => dy / y = -dt => In I vi = - t + I< => y = ±e- t + K = B e- t for some constant B. Therefore 

xy = A et B~-t = AB = constant. If the flow line passes through (1, 1) then (1) (1) = constant= 1 => xy = 1 => 

y = 1l x, x > 0. 

16.2 Line Integrals 

1. x = t 3 andy = t, 0 :::; t :::; 2, so by Formula 3 

.Ia y3 
ds ~ 1\3 

( ~~ Y + ( ~~ Y dt = 12 

t
3 

y'(3t
2 )2 + (1)2 dt = 1\a yf9t 4 + 1 dt 

= ..l. . 1 (9t4 + 1) 
3

/
2
) 

2 
= ..l. (145312 

- 1) or ..l. (145 v'I45- 1) :ill 3 O G4 54 

3. Parametric equations for C are x = 4 cos t , y = 4 sin t, - ~ :::; t :::; ~ . Then 

fc xy4 ds = J:~~2 (4 cos t) (4sin t)4 y'( -4sin t )2 + (4cos t)2 dt = J:~~2 45 cost sin4 t yf16(sin2 t + cos2 t ) dt 

= 45 Jrr/2 (sin4 t cos t )(4) dt = (4)6 [l sinG t) Tr/
2 = 2 · 

40 = 1638.4 
- -rr/ 2 5 - Tr/ 2 5 
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308 0 CHAPTER 16 VECTOR CALCULUS 

5. If we choose x as the parameter, parametric equations for Care x = x, y = v'xfor 1:::; x:::; 4 and 

7. 
y 

Then 

(2, 1) 

fc ( x2y3- v'x) dy = J;' [xz. (Vx)3 - v'x] 2 ~ dx = 4 J14 (x3- 1) dx 

= 1 [1 x ·1 - x] 4 - ! (64 - 4 - 1 + 1) - ill 2 4 1- 2 4 - 8 

On cl: X = x, y = ~X => dy = ~ dx, 0 :::; X :::; 2. 

On Cz: x = x, y = 3 - :v => dy = -dx, 2 :::; x:::; 3. 

f0 (x + 2y) dx + x2 dy = fc
1 
(x + 2y} dx + x2 dy +.J

02
(x + 2y} dx + x2 dy 

=J: [x+2(~x)+x2 (~)]dx+J: [x+2(3-x}+x2 (-1}]dx 

= f0
2 

(2x + ~x2) dx + J2
3 

(6 - x- x2
) dx 

9. x = 2sint, y = t , z = -2cos t, 0:::; t:::; 7T. Then by Formula 9, 

fc xyz ds = J07T (2 sin t)(t)( - 2 cos th/ (!!fd + { !fltf + C¥tf dt 

= J; -4t sin t cost .J(2 cos t)2 + 11)2 + (2 sin t)2 dt = J07T - 2tsin 2t .J 4(cos2 t + sin2 t) + 1 dt 

= -2 y'5 j~'ff t sin2tdt = -2 y'5 [-~t cos 2t +'i sin2t] ~ 

= -2¥'5(-~ - 0) = J57T 

11 . Parametric equations for Care x = t , y = 2t, z = 3t, 0 :::; t :::; l. Then 

15. Parametric equations for Care x = 1 + 3t, y = t , z = 2t, 0 :::; t :5. 1. Then 

[ 
integrate by parts with ] 

u = t , dv = s in 2t dt 

fc z2 dx + x2 dy + y2 dz = J;(2t? · 3 dt + (1 + 3t}~ dt + t 2 
· 2 dt = J; (23t2 + 6t + 1) dt 

= [¥tl + 3t2 + t]~ = ¥ + 3 + 1 = ¥ 

17. (a) Along the line x = - 3, the vectors ofF have positive y-components, so since the path goes upward, the integrand F ·Tis 

always positive. Therefore f.e F · dr = f.e F · T ds is positive. 
l 1 . 
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(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the 

direction to the path. So F · Tis negative, and therefore fc
2 

F · dr = fc
2 

F · T ds is negative. 

19. r(t) = llt 4 i + t 3 j ,, so F (r (t)) = ( llt4 )(t3
) i + 3(t3

)
2 j = llt7 i + 3t6 j and r' (t) =· 44t3 i + 3t2 j . Then 

fc F · dr = J; F(r(t)) · r '(t)dt = J;(ne · 44e + 3t6 
· 3t

2
)dt = J; (484t10 + 9t8 )dt = [44t11 +t9)~ = 45. 

21 . fc F · dr = J; (sin t\ cos( -t2
), t 4

) · (3t2
, - 2t, 1) dt 

= J;(3t2 sint3
- 2tcose + t 4

) dt = [- cost3
- sint2 + tt5)~ =~-cos 1- sinl 

fc ~ · d~ = i 2 

F (r (t )) · r '(t)dt = i 2 

[et-t
2
et :rsm(e-t

2
) . ( - '2te- t

2
) ] dt 

= i 2 

[ e2t- t
2 

- 2te - t
2 

sin ( e - t
2

) J dt ::::J 1.9633 

25. x = t 2 , y = t 3
, z = t4 so by Formula 9, 

fc xsin(y + z) ds = J;(e) sin(t3 + t4 )vf(2t)2 + (3t2)2 + {4t3 )2 dt 

= f0
5 t 2 sin(t3 + t4

) J4t2 + 9t4 + 16t6 dt ::::: 15.0074 

27. We graph F ( x, y) = ( x - y) i + x y j and the curve C. We see that most of\he vectors starting on C poi~t in roughly the same 

direction as C, so for these portions of C the tangential compon~nt F · T is positive. Although some vectors in the third 

quadrant which start on C point in roughly the opposite direction, and hence give negative tangential components, it seems 

reasonable that the effect of these portions of C is outweighed by the positive tangential components. Thus, we would expect 

fc F · dr = fc F · T ds to be positive. 

To verifY, we evaluate fc F · dr: The curve C can be represented by r (t) = 2 cost i + 2 sin t j , 0 $ t $ 3;, 

so F (r(t)) = (2 cost- 2 sin t) i + 4 cos tsin t j and r ' (t) = - 2 sin t i + 2 cos t j . Then 

fc F · dr = ./;"12 F (r (t)) · r ' (t) dt 

= J;"12[-2 sin t(2 cost - 2 sin t) + 2 cos t(4cos t sin t )) dt 

= 4J
0
3
,.

12 (sin2 t- s in tcost + 2sin tcos2 t) dt 

[using a CAS) 
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(b) r (O) = 0, F(r(O)) = (e- 1
, 0); 2.1 

F(r(ll)/ 

( 
1 ) _ (l 1 ) F( ( 1 )) _ / -1/2 1 )· r 72 - 2' 272' , .r 72 - \ e ' 4,72 ' 

r(1) = (1, 1), F (r(1)) = (1, 1). 

In order to generate the graph with Maple, we usc the 1 ine command in 

the plot t ools package to define each of the vectors. For example, 
0 ~--....:.....:....c!..._ _ __ +i 2. 1 

-0.2 
vl : =line ( [0 , 0),. [exp(-1), 0 ] ): 

generates the vector from the vector field at the point (0, 0) (but without an arrowhead) and gives it the name vl. To show 

everything on the same screen, we use the display command. In Mathematica, we use List Plot (with the 

Plot Joined - > True option) to generate the vectors, and then Show to show everything on the same screen. 

31. x = e-t cos4t, y = e-t sin4t, z = e-t, 0 ~ t :::; 2rr . 

Then:= e-1(-sin4t}(4) - e-tcos4t = - e-1(4sin4t+cos4t), 

dy = e- 1(cos4t)(4)- e-t sin4t = -e- t( - 4cos4t + sin4t), and dd.z = - e- L, so 
dt t 

( ~~ y + ( ~; y + ( ~: y = v(-e- 1)2((4sin 4t + cos4t)2 + ( - 4cos4t + sin4t)2 + 1] 

= e-t J16(sin2 4t + cos2 4t) + sin2 4_t + cos2 4t + 1 = 3 ..f2 e-t 

Therefore J~ x31/ z ds = J
0
211" (e-t cos4t)3 (e-t sin 4t)2 (e-1

) (3 ..f2 e-t) dt 

- r2-.r3.,J2e- 7tcos3 4t sin2 4tdt- 172·704 ..f2(1 - e-14-.r) - Jo - 5,632,706 

33. We use the parametrization x = 2 cost, y = 2 sin t, - ~ :::; t :::; 'i. Then 

ds = (',~n2 + (~~)2dt = v(-2sin t)2 + (2cost)2dt = 2dt, som = J~ kds = 2kJ::~~2 dt ~ 2k(7r), 

Hence (x,·il) = · (~, 0). 

35. (a) x = ..!._ { xp(x , y , z) ds, y = ..!._ ; · yp(x , y, z) ds, z = ..!._ { zp(x, y, z) ds where m = ./~ p(x , y, z) ds. 
m}c m c m }c 

(b) m = fc kds = k J~-.r V4sin2 t + 4cos2 t + 9 dt = k vTIJ;"" dt = 2rrkJI3, 

1 1 211" i 1 2-.r x = JI3 2kVlJ sintdt = 0, y = M 2k v'i3 costdt = 0, 
27rk 13 0 27rk 13 0 

z = 
1M {

2

-.r (k Vi3) (3t) dt = 
2
3 

(2rr2
) = 3rr. Hence (x, y, z) = (0, 0, 37r). 

27rk 13 /o 7r 
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37. From Example 3, p(x,y) = k(1- y), x = cost, y = sint, and ds = dt, 0 :S t :S 1r ::::} 

1:. = Icy2 p(x,y) ds = IoT< sin2 t [k(1- sint)]dt = ki0" (sin2 t- sin3 t) dt 

= ~k I
0
.,. (1- cos2t) dt- k Io"(1- cos2 t)sintdt 

= k[~ + I1- 1 (1-u2)du] =k(~ - ~) 

[
Let u = cost, du = - sin t dt ] 

in the second integral 

lv = Icx2 p(x, y)ds = ki0.,. cos2 t(1 - sint)dt = ~ I 0.,.(1 +cos2t)dt- kio" cos2 tsintdt 

= k(~- i), using t?e same substitution as above. · 

39. W = Ic F · dr = I;.,. (t- sint,3 - cost)· (1 - cost,sint) dt 

= I; .,. ( t - t cost - sin t + sin t cos t + 3 sin t - sin t cos t) dt 

=I;,. (t- tcost + 2sin t) dt = [~t2 - (tsin t + cost) - 2 cos t)~,.. 

41. r (t) = (2t, t , 1 - t), 0 :::; t :::; 1. 

[
integrate by .parts ] 

in the second term 

W = Ic F · dr = Io1 (2t- t 2
, t- (1 - t? , 1 - t- (2t)2

) · (2,1, - 1) dt 

= Io
1 
(4t- 2t2 + t- 1 + 2t - t 2

- 1 + t + 4t2
) dt =I; (t2 + 8t - 2) dt = [lt3 + 4t2 - 2t)~ = ~ 

43. (a) r (t) = at2 i + bt3 j ::::} v (t) = r' (t) = 2at i + 3bt2 j ::::} a(t) = v' (t) = 2a i + 6btj, and force is mass times 

acceleration: F(t) = ma(t) = 2mai + 6mbtj. 

(b) W = f c F · dr = J0
1
(2mai + 6mbtj) · (2at i + 3bt2 j) dt = I0

1 
(4ma2t + 18mb2t3

) dt 

= [2ma2t 2 + ~mb2t4)~ = 2ma2 + ~mb2 

45. Let F = 185 k. To parametrize the staircase, let x = 20 cost, y = 20 sin t, z = ~~ t = 1!-t, 0 :::; t :::; 61r ::::} 

W = f c F · dr =I:.,. (0, 0, 185) · ( -20 sin t, 20 cost, ~) dt = (185) ~ J:.,.. dt = (185)(90) :::::: 1.67 x 104 ft-lb 

47. (a) r (t) = (cost, sin t}, 0 :S t:::; 271", and let F =(a, b). Then 

W = Ic F · dr = I;" (a, b) · (- sin t,cost) dt = I~'lf(-asint + bcost) dt = [a cost + bsin t)~.,. 

=a +O - a+ O=O 

(b) Yes. F (x, y) = k x = (kx, ky) and 

W = Ic F · d r =I;,. (k cost, k s~ t} · (-sin t , cost} dt = J;" ( - k sin t cost+ k sin t cost) dt = I~.,.. 0 dt = 0. 

49. Let r(t) = (x(t), y(t), z(t)) and v = (v1, v2, va). Then 

Ic v · dr = I: (v1, v2, va) · (x' (t ), y' (t) , z' (t)) dt = I: [v1 x' (t} + v2 y' (t) + va z' (t)] dt 

= [v1 x(t) + v2 y(t) + va z(t)) : = [v1 x (?) + V2 y(b) + va z(b)J - [v1 x(a) + V2 y(a) + vs z(a)] 

= v1 [x(b)- x(a)J + v2 [y(b)- y(a)] + va [z (b) - z(a)] 

=: (v1, v2, va) · (x(b)- x(a), y(b) - y(a) , z(b)- z(a)) 

= (v1, v2, va) · [(x(b) , y(b) , z(b)}- (x(a), y(a), z (a))] = v · (r(b)- r (a)] 
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51. The work done in moving the object is fc F · dr = fc F · T ds. We can approximate this integral by dividing C. into 

7 segments of equal length t:.s = 2 and approximating F · T , that is, the tangential component of force, at a point (xi , yi) on 

each segment. Since C is composed of straight line segments, F · T is the scalar projection of each force vector onto C. 

If we choose (xi, yi) to be the point on the segment closest to the origin, then the work done is . 

7 

fc F · T d.s ~ E (F (xi, yi) · T(xi, yi)] t:.s = (2 + 2 + 2 + 2+ 1 + 1 + 1)(2) = 22. Thus, we estimate the work done to 
i=l . 

be approximately 22 J. 

16.3 The Fundamental Theorem for Line Integrals 

1. C appears to be a smooth curve, and since \J f is continuous, we know f is differentiable. Then Theorem 2 says that the value 

of fc \J f · dr is simply the difference of the values off at the terminal and initial points of C. From the graph, this is 

50- 10 = 40. 

3. 8(2x- 3y) j8y = - 3 = 8( -3x + 4y- 8)j8x and the domain ofF is IR2 which is open and simply-connected, so by 

Theorem 6 F is conservative. Thus, there exists a function f such that \J f = F , that is, f:r:(x, y) = 2x - 3y and 

f 11 (x, y) = -3x + 4y - 8. But f,.(x, y) = 2x - 3y implies f(x, y) = x 2
- 3xy + g(y) and differentiating both sides of this 

equation with respect to y gives f 11 ( x, y) = - 3x + g' (y). Thus - 3x + 4y - 8 = -3:~.: + g' (y) so g' (y ) = 4y - 8 and 

g(y) = 2y2 - By+ [(where I< is a constant. Hence f(x, y) = x 2
- 3xy + 2y2

- 8y +I< is a potential function for F . 

5. 8(e"' cosy)j8y := - e"' sin y, 8(e"' siny)f8x = e" sin y. Since these are not equal, F is not conservative. 

7. o(ye"' + sin y)j8y =ex+ cosy= o(e"' + X cosy)f8x and the domain ofF is IR2
• Hence F is conservative so there 

exists a function f such that \J f =F. Then fx (x, y) = ye" +sin y implies f(x, y) = ye" + x sin y + g(y) and 

f v(x, y) = e"' + xcos y + g'(y). But f 11 (x, y) = e"' + x cosy so g(y) = K and f(x, y) = ye" + xsin y + K is a potential 

function for F. 

9. 8(lny + 2xy3)j8y = 1/y + 6xy2 = 8(3x2y2 + xfy)j8x and the domain ofF is {(x, y) I y> 0} which is open and simply 

connected. Hence F is conservative so there exists a function f such that \J f = F . Then f:z:(x, y) =In y + 2xy3 implies 

f(x,y) = xlny + x2 y3 + g(y) and ! 11 (x ,y) = xfy + 3x2y2 + g'(y). But f 11 (x,y) = 3x 2y2 + xjy so g'(y) = 0 =} 

g(y) = [(and f( x, y) = xlny + x 2 y 3 + [(is a potentia l function for F . 

11. (a) F has continuous first-order partial derivatives and 
8
8 

2xy = 2x = 
8
8 

(x2
) on JR2

, which is open and simply-connected. y X . 

Thus, F is conservative by Theorem 6. Then we know that the line integral ofF is independent of path; in particular, the 

value of fc F · dr depends only on the endpoints of C. Sin.ce all three curves have the same initial and terminal points, 

J~ F · dr will have the same value for each curve. 
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(b) We first find a potential function f, so that \l f = F. We know ! :r:(x, y) = 2xy and jy(x, y) = x2
• Integrating 

fx(x , y) with respect to x, we have f(x , y) = x 2y + g(y). Differentiating both sides with respect toy gives 

· J11 (x, y) = x2 + g'(y), so we must have x2 + g'(y) = x2 =? g'(y) = 0 => g(y) = K, a constant. 

Thus f(x, y) = x2 y + K. All three curves start at (1, 2) and end at (3, 2), so by Theorem 2, 

fe F · dr = !(3, 2) - !(1, 2) = 18 - 2 = 16 for each curve. 

13. (a) f r(x , y) = xy2 implies J(x, y) = ~x2y2 + g(y) and fy (x, y) = x2 y + g'(y). But /y(x , y) = x2 y so g'(y) = 0 => 

g(y) = K, a constant. We can take K = 0, so f(x, y) = ~x2y2 . 

(b) The initial point of C is r (O) = (0, 1) and the terminal point is r(1) = (2, _1), so 

fe F · dr = /(2, 1) - f(O, 1) = 2 - 0 = 2. 

15. (a) f x(x , y, z ) = yz implies f(x , y, z) = xyz + g(y, z) and so jy(x, y , z) = xz + g11 (y, z). But jy(x, y, z) = xz so 

gy(y, z ) = 0 => g(y, z) = h(z) . Thus f(x, y, z) = xyz + h(z) and f:(x , y, z) = X'!f + h'(z). But 

f :(x, y, z) = xy + 2z, so h'(z) = 2z => h(z ) = z2 + K.. Hence f(x, y, z) = xyz + z2 (taking J( = 0). 

(b) fe F · dr = !(4,6,3)- !(1, 0, - 2) = 81 - 4 = 77. 

17. (a) f :r:(x, y, z) = yze"'= implies f(x, y, z) = ye"'= + g(y, z) and so fv(x, y, z) = e"'= + gy(y, z) . But jy(x, y, z ) = e"'= so. 

gy{y,z) = 0 =? g(y,z) = h(z). Thus f( x,y,z)·= ye"'= + h(z) and f z (x , y,z) = xyex= + h'(z). But 

f:.:(x,y,z) = xyex=, so h'(z) = 0 =? h(z ) = K. Hence f(x,y ,z) = ye"'= (taking!(= 0). 

(b) r (O) = (1, -1, 0), r(2) = (5, 3, 0) so fe F · dr = /(5, 3, 0) - /(1, - 1, 0) = 3e0 + e0 = 4. 

19. The functions 2xe-Y and 2y - x2 e- v have continuous first-order derivatives on JR2 and 

~ (2xe-v) = -2xe- Y = ~ (2y- x 2e:-v), so F(x, y) = 2xe-Y i + (2y- x2 e-Y) j is a conservative vector field by 
Ulj vx . . 

Theor~m 6 and hence the line integral is independent of path. Thus a potential function f exists, and fx(x , y) = 2xe-v 

implies f(x, y) = x2e-11 + g(y) and fv(x, y) = - x2 e-Y + g'(y). But fv(x, y) = 2y- x2 e-v so 

g'(y) = 2y =? g(y) = y2 + K. We can take K = 0, so f(x,y) = x2 e- 11 + y2
• Then 

.fe 2xe-v dx + (2y - x2 e- v) dy = /(2, 1) - f(l , 0) = 4e-1 + 1 - 1 = 4/e. 

21. IfF is conservative, then fe F · dr is independent of path. This means that the work done along all piecewise-smooth curves 

that have the described initial and terminal points is the same. Your reply: It doesn't matter which curve is chosen. 

23. F (x, y) = 2y312 i + 3x Jyj , W = .fe F · dr. Since 8(2y312 )/8y = 3 y'Y = 8(3x Jy )/ ax, there exists a function f 

suchthat\lf=F.Infact,fx(x, y)='2y312 => f(x,y)=2xy312 +g(y) => fv(x,y)=3xy112 +g'(y). But 

/y (x, y) = 3x y'Y so g'(y) = 0 or g(y) = K. We can take I< = 0 =? f(x, y) = 2xy3 12
• Thus 

W = fe F · dr = j(2, 4) :.... j(I,·l) = 2(2)(8)- 2(1) .= 30. 
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25. We know that if the vector field (call it F) is conservative, then around any closed path C, fc F · dr = 0. But take G to be a 

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on G are roughly in the direction of 

motion along C, so the integral around G will be positive. Therefore the field is not conservative. 

27. r1 I I ' 
' .. 
1 I ' I \ 

t f r r I 

' ' ' ' ' 
I I I 

l I I ' 
-2'11' 

\ ' 
t 1 I I I ' 
r I I , 

' 
U I I ' 

' I \ : ! l \ 

' I I . I I I 

' ' r 1 r t . I ' 
, 1 i 

' ' I I 
' I I 

' I : ~ ~ 
' I 

From the graph, it appears that F is conservative, since around all closed 

paths, the number and size of the field vectors pointing in directions similar 

to that of the path seem to be roughly the same as the number and size of the 

vectors pointing in the opposite direction. To check, we calculate . . 

a
o (sin y) = cos y = 

0
° ( ~ + x cos y). Thus F is conservative, by 

y X 

Theorem 6. 

29. Since F is conservative, there exists a function f such that F = \1 f, that is, P = /z, Q = !11 , and R = f= · Since P , 

Q, and R have continuous first order partial derivatives, Clairaut's Theorem says that 8P / EJy = fx11 = fvx = EJQf EJx, 

EJP/8z = fxz = /zx = 8R /.8x, and 8Q/8z = fyz = f zv = 8Rf8y. 

31. D = {(x , y) I 0 < y < 3} consists of those points between, but not 

on, the horizontal lines y = 0 andy = 3. 

(a) Since D does not include any of its boundary points, it is open. More 

formally, at any point in D there is a disk centered at that point that 

lies entirely in D. 

'(b) Any two points chosen in D can always be joined by a path that lies 

entirely in D , so D is com1ected. (D consists of just one "piece.") 

y 

3 
----------- -----------

---------·--.: 0 X 

(c) Dis connected and it has no holes, so it's simply-connected. (Every simple closed curve in D encloses only points that are 

in D.) 

33. D = { (x, y) II ::; x2 + y2 ::; 4, y 2: 0} is the semiannular region 

in the upper half-plane between circles centered at the origin of radii 

l and 2 (including all boundary points). 

(a) D includes boundary points, so it is not open. [Note that at any 

boundary point, (1, 0) for instance, any disk centered there cannot lie 

entirely in D .] 

(b) .The region consists of one piece, so it's connected. 

(c) D is connected and has no holes, so it's simply-connected. 

y 

y 8P y2 
- x2 x 8Q y 2 

- x2 8P 8Q 
35. (a)P= - x2 +y2, .A..= 2 and Q=--- -- = 2 .Thus -

8 
=,.-. 

VIJ (x2 + y2) x2 +y2' OX (x2 +y2) y UX 

(b) G 1: X = cost, y = sin t, 0 ::; t ::; ;rr' c 2: X = cost, y = sin t , t = 21!' to t = 1l'. Then 

{ F ·dr = ("'(- sin t)(-s~n t)+.(~ost)(cost)dt= ("' dt = 7rand { F· dr = ("' dt= - 1!' 
Jc, }0 cos t + sm t ./0 lc2 J 21r 
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Since these aren' t equal, the line integral ofF isn't independent of path. (Or notice that J~3 F · dr = f
0
2

1r dt = 21r where . 

Cs is the circle x2 + y2 = 1, and apply the contrapositive of Theorem 3.) This doesn't contradict Theorem 6, since the 

domain ofF , which is IR2 except the origin, isn' t simply-connected. 

16.4 Green's Theorem 

1. (a) Parametric equations for C are x = 2 cos t, y = 2 s in t, 0 :::; t :::; 27r. Then 

f c(x - y) dx + (x + y) dy = J;" [(2 cost- 2sin t )( -2 sin t) + (2 cos t+ 2 sin t)(2 cost)] dt 

= J;"(4sin2 t+ 4 cos2 t)dt = J~" 4dt = 4t]~"' = 81r 

(b) Note that Cas given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green's Theorem, 

f c(x - y)dx + (x + y) dy= ffv [: ., (x+y) - :
11 

(x - y)] dA = ffv [1- (-1)] dA = 2ffvdA 

= 2A(D) = 27r(2)2 = 81r 

3. (a) y 
(1,2) 

Ct: x = t => dx = dt, y = D => dy = Ddt, D :::; t :::; 1. 

C2: x = 1 => dx =Ddt, y = t => dy = dt, D:::; t $ 2. 

5. 

C3: x= 1 -t => dx = -dt, y=2-2t => dy = - 2dt, D$ t$ 1. 

o c1 (I,OJ X 

Thus fcxydx + x2 y3 dy = f xydx+x2 y3 dy 
C1 + C2 + C3 

= f0
1 

Ddt + f0
2 

t3 dt + J; [-(1- t)(2 - 2t)- 2(1- t?(2 - 2t)3 ] dt 

= D + [~t4]~ + [t(1 - t? + ~(1- t) 6]~ = 4- ¥ = ~ 

(b) f c xydx +x2y3 dy = ffv [:x (x2 y3
) - /J~ (xy)] dA = f0

1 J02~(2xy3 - x)dydx 

y 

4 (2,4) 

rt [ 1 4 ] y=2z d rt ( s 2 2) d 4 2 2 = Jo 2xy - xy y=O X= Jo 8x - X X = f - 3 = 3' 

The region D enclosed by Cis given by {(x, y) I D :::; x:::; 2, x :::; y $ 2x }, so 

f c xy2 dx + 2x2 ydy = ffv [ :, (2xiy) - :
11 

(xy2
)] dA 

~ I: I:"' ( 4xy - 2xy) dy dx 

= r2 [xl 2] y=2x d~ 
J o Y y= x "" 

= f
2 3x3 dx = !!.x4 ]

2 = 12 J o 4 o 

7. fc (v + e-fi) dx+ (2x +cosy2) dy = Jfv [:x (2x + cosy2
) - :v· (v + e-fi )] dA 

= fol Jyfi (2 - 1) dx dy = fol (yl/2 - y2) dy = ~ 

@ 2012 Ccngage Learning.. AU Rights Reserved. May nor be sc:a.nncd, copied, or dupliCDtctl, or posted to n publicly .:JCC("SSiblc website. in whole or in JUrt. 



314 0 CHAPTER 16 VECTOR CALCULUS 

9. fc y3 dx- x3 dy = ffv [ :., ( -x3
)- :U (y3

) ] dA = ff0 (- 3x2
- 3y2

) dA = J:"" J:(-3r2
) rdrdO 

= - 3 J:" dO . .r: r 3 dr = -3(27!)(4) = - 2471" 

11. F (x, y) = (y cosx - xysinx, xy + xcos x) and the region D enclosed by Cis given by 

{(x, y) I 0 ~ x ~ 2, 0 ~ y ~ 4- 2x}. Cis traversed clockwise, so-C gives the positive orientation. 

f c F · dr = - J_0 (ycosx- xys.inx)dx + (x~ + xcosx) dy = - ffv [ :., (xy + xcosx) - :Y (ycosx- xysinx)] dA 

=- ffv(Y - xsin x + cosx -: cosx + xsin x)dA = - J0
2 

.{0
4

-
2
:r ydydx 

=- f
2 [ ly2 ] v=

4
-

2
"' dx =- f

2 1(4 - 2x)2 dx - - f
2(B - Bx + 2x2) dx- - (Bx- 4x2 + ~x3) 2 Jo 2 v=O Jo 2 - Jo - a o 

= - (16 - 16 + 1: - o) = - 1
3
6 

13. F (x, y) = (y- cosy, x sin y) and the region D enclosed by Cis the disk with radius 2 centered at (3, -4). 

C is traversed clockwise, so -C gives the positive orientation . 

.f0 F · dr = - J_ 0 (y - cosy)dx + (xsiny) dy = - JJ0 [ :., (xsiny)- :u (y- cosy)] dA 

= - ffv(siny - 1 - sin y) dA = ffv dA = area of D .= 7r(2? = 47r 

15. Here C = C1 + C2 where 

01 can be parametrized as X = t , y = 1, - 1 ~ t ~ 1, and 

C2 isgivenby x=-t, y=2 - t 2, -1 ~t~ l. 

Then the line integral is 

. 1 f y 2 e"' dx + x2ev dy = J_ 1 [1 · et + t2 e · 0] dt 
~~ . 

+ J~1 [(2- t2? e-t( - 1) + ( - t)2e2- t· ( - 2t)] dt 

= J~1 [et - (2 - t 2 ) 2e- t - 2t3 e2
-t

2
] dt =-Be+ 4Be-1 

according to a CAS. The double integral is 

y 

-I 0 

!. r (aQ aP ) ; ·1 r2_,2 . . J D ax - 8y dA = - 111 (2xeY - 2ye"') dy dx = - Be + 4Be- 1' verifying Green's Theorem in this case. 

X 

17. By Green's Theorem, W = f c F · dr = f c x(x + y) dx + xy2 dy = J(0 (y2
- x) dA where C is the path described in the 

question and D is the triangle hounded by C . So 

W = J0
1J;-"'(y2 - x) dy dx = f0

1 [ty3
- xy]~ = ~-"' dx = J; (i(1 - x)3

- x(1 - x)) dx 

• = [- f.I ( 1 - x) 4 
- ~ x 2 + ~ x 3

] ~ = (- ~ + ft ) - (- f2) = - 1
1
2 

19. Let C1 be the arch of the cycloid from (0, 0) to (27r, 0), which corresponds to 0 ~ t ~ 271", and let C2 be the segment from 

(271", 0) to (0, 0), so 02 is given by X = 271"..:. t, y = 0, 0 ~ t :::; 271". Then c = cl u 02 is traversed clockwise, so - C is 

oriented positively. Thus -C encloses the area under one arch of the cycloid and from (5) we have 

A = - f_0 y dx = .{0 1 y dx + f0 2. y dx = f~" (1 -cos t )(l - cost) dt + f~" 0 ( - dt) 

= J~" (1 - 2 cost+ cos2 t) dt + 0 = (t- 2 sin t + ~t + ~sin 2t] ~" = 371" 
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21. (a) Using Equation 16.2.8, we write parametric equations of the lin_e segment as x = (1 - t)x1 + tx2, y = (1- t)y1 + ty2 , 

0 ~ t ~ 1. Then dx = (x2- xl) dt and dy = (y2- yl) dt, so 

f c x dy- y dx = f0
1 [(1 - t)x1 + tx2](y2- Yl) dt + [(1 - t)y1 + ty2](x2- x1) dt 

= J; (x1(Y2 - Yl) - y1(x2- xl) + t((y2- Y1)(x2- x1)-:- (x2 - x1)(y2- Y1)]) dt 

= f0
1 (x1y2- x2yl) dt = x~y2- X2Y1 

(b) We apply Green 's Theorem to the path C = C1 U C2 U · · · U Cn, where Ci is the line segment that joins (xi , Yi) to 

(xi+l,Yi+l) fori= 1, 2, ... , n -1, and Gn is the linesegmentthatjoins (x,.,yn) to (xl,Yl). From (5), 

~ J~ x dy - y dx = JJ 0 dA, where D is tite polygon bounded by C. Therefore 

area of polygon= A( D)= ffv dA = ~ J~ xdy- ydx 

= ~ (J~1 x dy- ydx + f c
2 

xdy - ydx + .... + J~n-l xdy- ydx +fen xdy- ydx) 

To evaluate these integrals we use the formula from (a) to get 

A(D) = ~[(x1y2- X2Yl) + (X2Y3 - XaY2) + ' · · + (Xn-;-lYn- XnYn- 1) + (XnYl - XlYn)]. 

(c) A = ~ [(0 · 1 - 2 · 0) + (2 · 3 - 1 · 1) + (1 · 2 - 0 · 3) + (0 · 1 - ( -1) · 2) + ( ~ 1 · 0- 0 · 1)] 

= Ho+5+2+2) = ~ 

23. We orient the quarter-circular region as shown in the figure. 

A = {7ra
2 

sox = 1l'a! /2 fc x 2 
dy and y = - 1ra! 

12 
fc y2

dx. 

Here c = c l + c2 + Cs where cl: X = t, y = 0, 0 ~ ·t ~ a; 

C2: x = a cos t , y =a sin t, 0 ~ t.~ ~;and 

c3: X = 0, y = a - t, 0 ~ t ~ a. Then 

y 

a 

c. 

fcx2 dy = fc, x 2 dy + f c
2 

x
2 dy +.fc

3 
x

2 dy = foa Odt + J0"
12

(acost)2(acost) dt + J; Odt 

= J~"/2 a3cos3 tdt = a3 J0"/\1- sin2t) costdt = a3 [sin t -.i sin3 t];12 = ~a~ 

_ 1 J 2 4a 
so x = 7ra2 /2 Jc x dy = 311'. 

fcy2 dx = fc, y2 dx + )~2 Y2 dx + fc
3 

Y2 dx = foa 0 dt + f0"
12(a sin t)2( - a sin t) dt + J0a 0 dt 

a 

= J0" 12
( - a 3 sin3 t) dt = - a3 J0"

1\ 1 - cos2 t) sin tdt = -a3 [~ cos3 t- cos t];12 = -~a3 , 

so 'ii = - 1l'a!/2£y2
dx = ~;.Thus (x,y) = ( ::. :: )· 

25. By Green's Theorem, -~pfcy3 dx = - kp J.f'v( - 3y2
) dA = ffv y2 pdA = I ., and 

tPfcx3 dy = ~p ff0 (3x2
) dA = ffv x 2 pdA = Iu . 

X 

27. As in Example 5, let C' be a counterclockwise-oriented circle with center the origin and radius a, where a is chosen to 

be small enough so that C' lies inside C, and D the region bounded by C and C'. Here 

=> EJP = 2x(x
2 

+ y
2
)

2
. - 2xy · 2(x

2 
+ y

2
) · 2y = 2x3

- 6x~2 and 
oy (x2 + y2)4 (x2 + y2)3 
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{)Q -2x(x2 + y2? - (y2 - .x2
) • 2(x2 + y2

) · 2x 2:~;3 - 6xy2 
. '* -{) = ( 2 2 ) 4 = a . Thus, as m the example, 

.. X X + y (x2 + y2) 

L P dx + Q dy + j_c, P dx + Q dy = I L ( ~~ -~:) dA = I L 0 dA = 0 

and J c F · dr = .fc, F · dr. We parametrize C' as r (t) =a cost i +a :sin t j , 0:::; t:::; 21r. Then 

1 1 d 1
2

" 2(acost)(asint)i+ (a
2

sin. 
2

t - a
2

cos
2

t) j ( . . ·) 
F · dr = F · r = 2 · - a sm t 1 + a cost J dt 

c C' o (a2 cos2 t + a2 sin2 t) 

. 1 l2~ 1 l 2" = - (-cost sin2 t - cos3 t) dt = - (-cost sin2 t- cost (1 - sin2 t)) dt 
a o a o 

112~ 1 ] 
2

" = -- costdt = - - sint = 0 
a o a o 

.29. Since C is a simple closed path which doesn' t pass through or enclose the origin, there exists an open region that doesn't 

contain the origin but does contain D. Thus P = -y/(x2 + y2
) and Q = xj(x2 + y2

) have continuous partial derivatives on 

this open region containing D and we can apply Green's Theorem. But by Exercise 16.3.35(a), aPjay = aQj8x, so 

fc F · dr = ffv OdA ~ 0. 

. . & M 
31. Usmg the first part of(S), we have that I In dx dy = A(R) = Ion X dy. But X = g(u, v), and dy = au du + 8v dv, 

and we orient as by taking the positive direction to be that which corresponds, under the mapping, to the positive direction 

alongaR, so 

{ X dy = { g(u, ·u) (
8ah du + {)ah dv) = r g(u, v) {)ah du + g(u, v) Bah dv 

i on l as u v .los u v 

= ± .ffs [ :v. (g(u, v) g~) - :v (g(u, v) ~~) ) dA [using Green's Theorem in the uv-plane] 

= ± ff (!L9.. !ll! + g(u v) 
0 2

" - !l.!l 81
' - g(u v) 

82
" ) dA S Uu Dv > l:lul:lv l:l ·v Vv. > 8vUu [using the Chain Rule] 

= ± .ffs (~~ ~- Z~ ~) dA _[by the equality of mixed partials] = ± Jj~ ~~::~\ dudv 

The sign is chosen to be positive if the orientation that we gave to 8S corresponds to-the usual positive orientation, and it is 

negative othe~ise. In either case, since A(R) is positive, the s ign chosen must be the same as the sign of ~i:: ~?. 

ThereforeA(R) = ll dxdy= lfsl~~::~~ ~dudv. 

16.5 Curl and Divergence 

j k 

1. (a) curlF = 'il x F = 8j 8x 8 / 8y 8 /8z 

x + yz y + xz z + xy 

= [:Y(z + xy) ...:. :z(y + xz)] i - [:x(z + xy)- :z(x + yz)] j + [:x (y ~ xz) - :y (x + yz)] k 

= (x- x) i- (y - y) j + (z- z) k = 0 
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SECTION 16.5 CURL AND DIVERGENCE D 317 

8 8 8 
(b)cliv F = 'V · iF=-

0 
(x+yz) + -

0 
(y+xz)+ -0 (z + xy)=1 + 1+1 =3 

X y Z 

j k 

3. (a) curlF = \1 x F = 8/8x 8/8y 8/8z = (ze"- 0) i- (yze"' - xye• )j + (0 - xe") k 

xyez 0 yze"' 

= ze"' i + (xye" - yze"' ) j - xez k 

8 8 8 . 
(b) clivF = 'V · F =ox (xye") + oy (0) + oz (yze'" ) = ye• + 0 + ye"' = y(e• + e"' ) 

5. (a) curlF = \1 x F = 

j 

8/8y 

k 

8/ 8z 8/8x 
X y z 

.jx2 + y2 + z2 .jx2 + y2 + z2 

= ( 
2 

?l 
2

) 312 [(- yz+ yz) i -(-xz +xz)j + (- xy+xy) k ]=O 
X +y- + Z 

(b) div F = \1. F = ..E._ ( x ) + ~ ( Y ) +..E._ ( Z ) 
ox .j x2 + y2 + z 2 8y .j x2 + y2 + z2 az .j x2 + y2 + z2 

x2 + y2 + z2 _ x2 x2 + y2 + z2 _ y2 x2 + y2 + z2 _ z 2 2x2 + 2y2 + 2z2 2 
= (x2 + y2 + z2)3/ 2 + (x2 + y2 + z2)3/ 2 + (x2 + y2 + z2)3/ 2 = (x2 + y2 + z 2)3/ 2 = -..jr-x=;2;=+=y:;:=2 =+=z=;;:2 

j k 

7. (a) curlF = \1 x F = 8/ ax 8/8y 8/ 8z = {0 - eV cos z) i - (e"' cosx - O)j + (0- e'" cosy) k 

e"' sin y eY sin z ez sin x 

= (-e11 cosz, - e" cosx, -e"' cosy) 

(b) cliv F = \1 · F = ! ( e"' sin y) + ~ ( eV sin z) + ! ( e" sin x) = e'" sin y + eY sin z + e" sin x 

9. If the vector field is F = .Pi+ Q j + Rk, then we know R = 0. ln addition, the x -component of each vector ofF is 0, so 

8P 8P aP 8R 8R aR . . 8Q · 
P = 0, hence -

0 
= -a = -a = -

0 
= -

0 
= -a = 0. Q decreases as y mcreases, so -

0 
< 0, but Q doesn't change 

X y Z X y Z y 

. h d' . . oQ oQ 0 
In t eX- Or Z · 1rectJons, SO ax = az = . 

. 8P 8Q 8R 8Q 
(a)cliv F = -

0 
+-

8 
+-a =0 + -

0 
+ O< O 

X y Z y 

(b) curlF =(. oR - aQ) i + (oP- oR) j + (oQ - ap) k = (0 -O) i+ (0 - O)j + (0 - O)k = 0 
8y 8z az OX ax ay 

11. If the vector field is F = Pi + Q j + R k,' then we know R = 0. ln addition, the y-component of each vector ofF is 0, so 

8Q 8Q 8Q 8R aR 8R . . 8P . 
Q = 0, hence ox = 8y = az = ox = oy = az = 0. P mcreases as y mcreases, so oy > 0, but P doesn't change m 

. th d' . ap ap O 
e X- or Z - lreCtiOns, SO ax = az = . 

. ap aQ aR 
(a) d1v F = - + - + - = 0 + 0 + 0 = 0 ax 8y 8z 
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318 0 CHAPTER 16 VECTOR CALCULUS 

(b) curlF = ({)R - {)Q) i + ({)P - {)R) j + ({)Q - {)p) k = (0- 0) i -t (0 - O) j + (o- {)P) k =- {)P k 
8y .{)z {)z 8x ax 8y 8y 8y 

S: fJP 0 8P k . . . . th . d" . mce -;:;- > , - .q,, IS a vector porntmg m e negative z- 1rect1on. 
uy vy • · 

j 

13. curiF = "il x F = 8f8x 8f8y 

k 

8f8z = (6xyz2
- 6xyz2

) i - (~y2 z2
- 3y2z2)j + (2yz3 

- 2yz3
) k = 0 

and F is defined on all oflR3 with component functions which have continuous partial derivatives, so by Theorem 4, 

F is conservativ~. Thus, there exists a· function f such that F = "il f. Then f., ( x, y , z) = y2 z 3 implies 

f(x,y,z) = xy2 z3 + g(y,z) and f 11(x,y,z) = 2xyz3 + g11 (y,z). But f 11(x,y,z) = 2xyz3 ,sog(y,z) = h(z) and 

f(x, y,z) = xy2 z3 + h(z) . Thus fz(x, y, z) = 3xy2z2 + h'(z) but f:(x, y, z) = 3xy2z 2 so· h(z) = K, a constant. 

Hence a potential function for F is f (x, y, z) = xy2z3 + K. 

j k 

15. curl F = "il X F = 8f8x 8f8y 8f8z 

3xy2 z2 2x2 yz3 3x2 y2z2 

= (6x2 yz2
- 6x2yz2

) i - (6xy2 z2
- 6xy2z) j .+ (4xyz3 - 6xyz 2

) k 

= 6xy2 z(I- z) j + 2xyz2(2z- 3) k =1- 0 

so F is not conservative. 

j k 

17. cur!F = "il x F = 8f8x 8f8y 8f8z 

F is defined on all oflll3 , and the partial derivatives of the component functi~ns are continuous,'so F is conservative. Thus 

there exists a function f such that "il f =F. Then f,(x, y, z) = e11= implies f(x, y, z) = xe11= + g(y, z) => 

fu(x, y, z) = xzev= + g11 (y, z). But / 11{x, y, z) = xze11=, so g(y, z ) = h(z) and f(x, y, z) = xe11z + h(z). 

Thus f:(x, y, z) = xye11z + h'(z) but f:(x, y, z) = xye11= so h(z) =Kanda potential function for F is 

f(x , y, z) = xe11= + K . 

. 19. No. Assume there is such a G. Then div(curl G ) ='! (x sin y) + ~ (cosy) + ~ (z - xy) =sin y- siny + 1 f 0, 
uX uy uz 

which contradicts Theorem 11 . 

j k 

21 . curlF = 8f8x 8f8y 8f8z = {0- 0) i + {0- O)j + {0 - 0) k = 0. Hence F = f(x) i + g(y) j + h(z) k 

f(x) g(y) h(z) 

is irrotational. 
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SECTION 16.5 CURL AND DIVERGENCE 0 319 

ForExercises23-29, 1etF(x,y,z) = P1 i+ Qd + R1 ~and G(x,y,z) = P2 i + Q2j + R2 k. 

23. div(F +G)= div(Pt + P2 , Q1 + Qz,R1 + R2 ) = o(P1
0
+ P2) + o(Q1

0
+ Qz )" + o(R1/ R2

) 
• X y Z 

= oP1 + oPz + oQ1 + oQ2 + oR1 + oR2 = (oP1 + oQ1 + oR1) + ( oP2 + oQ2 + oR2) 
ox ox oy oy o z o z ox oy o z ox oy o z 

= div(P1 ,,Q1, R1) + div(Pz , Qz , Rz ) = div F + div G 

27. div(F X G) ='iJ · (F x G)= 

= [Q
1 

oR2 + R
2 

oQ1 _ Q2 oR1 _ R1 oQ2] _ [p
1 

oRz + Rz oP1 _ Pz oR1 _ R
1 

oPz] 
ox ox ox ox .oy oy ay ay 

+ [Pt oQ2 + Q2 oP1 _ p2 oQ1. _ Q1 oP2 ] 
oz oz . oz oz 

= [p2(oR1 _ oQ1) +Q2 (oP1 _ oR1) +Rz(oQ1 _ 8P1 )] 
oy oz oz ox OX ay 

_ [p1 (oRz _ oQz) -f_ Q1 (oP2 _ oRz) + R1 (oQz ~ aP2 )] 
oy az az ox ox 8y 

= G · curl F - F · curl G 

j 

29. curl{ curl F) = 'iJ x ('iJ x F) = ajax a;ay 

Now let's consider grad(div F ) - 'iJ2 F and compare with the above. 

(Note that 'iJ2F is defined 'on page J J 19 [ET I 095).) 

k 

a;az 
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320 0 CHAPTER 16 VECTOR CALCULUS 

d(d. F) n 2p-[(EPH+fiQ1+fiR1)· +(8
2
P1 +8

2Ch 8
2
R1)· (82

P1. 8
2
Q1 8

2
R1)k] 

gra IV - V - OX2 OXOY OXOZ 1 
oyox oy2 + [)y[)z J + , OZOX + Ozoy + OZ2 

_ [(8
2

P1 + 8
2
P1 + B

2
P1) i + (8

2
Q1 + 8

2
Q1 + 8

2
Q1) j 

8x2 8y2 8z2 8x2 8y2 8z2 

Then applying Clairaut's Theorem to reverse the order of differentiation in the second partial derivatives as needed and 

comparing, we have curl curl F = grad div F - \l2F as desired. 

31. (a)\lr =V.Jx2+y2 + z2= x i + y j + z k = xi + yj+zk =~ 
. .Jx2+y2+z2 .Jx2+y2+z2 .Jx2+y2+z2 .Jx2+y2 + z2 r 

j k 

(b)\lxr= :x :V :z =l:V(z) - !(v)]i + [:z(x) - :x(z)]j + [:x(y)-:V(x)]k = O 

X y Z 

(c) \l (.!) = \l ( 1 ) . 
r .J x2 + y2 + z2 · 

-
1 

(2x) · 
1 

(2y) 
1 

(2z) 
2 .J x2 + y2 + z2 . 2 .J x2 + y2 + z2 . 2 V x2 + y2 + z2 

--~~~~~---1 - J - k 
x2 + y2 + z2 x2 + y2 + z2 x2 + y2 + z~ 

x i+ y j +z k r 
(x2 + y2 + z2)3/2 =- r3 

(d) \lin r = \lln(x2 + y2 + z2)1/2 = ~ \lln(x2 + y2 + z2) 

x . y • z k x i + y j +z k r 
--::----::-----::- 1 + J + = = -x2 + y2 + z2 x2 + y2 + z2 x2 + y2 + z2 x2 + y2 + z2 7.2 

33. By (13), fc f(\lg) · n ds = ffv div(f\lg) dA = JJ'o!f div(\lg) + \lg · \l f] dA by Exercise 25. But div(\lg) = \l2 g. 

Hence ffv f\l 2gdA = fc f(Vg) · nds - ffv \lg · \lf dA. 

35. Let f(x, y) = 1. Then V f = 0 and Green's first identity (see Exercise 33) says 

ffv \l2gdA = f c (Vg) · n ds - ffv 0 · \lgdA => ffv \l2gdA = J~ \lg · n ds. But g is harmonic on D, so 

V 2g = 0 => fc\lg· nds = OandfcDngds = fc(\lg· n)ds =O. 

37. (a) We know thatw = vjd, and from the diagram sin (;I= d/r => v = d!JJ = (sinO)rw = lw x rl. But vis perpendicular 

to both wand r, so that v = w x r. 
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SECTION 16.6 PARAMETRIC SURFACES AND THE;IR AREAS 0 321 

j k 

(b) From(a), v=w x r= 0 0 w =(O ·z -wy)i + (wx~ O ·z)j+ (O · y -x· O) k=-wyi+ wxj 

X y Z 

j k 

(c) cur] v = "il X v = ajax a jay ajaz 

-wy wx 0 

= [~ (0) - ~ (wx)] i + [~ (- wy) - ~ (o)] j + [~ (wx )- ~ (-wy)] k 
ay az az ax ax ay 

= [w - (- w)] k = 2wk = 2w 

39. For any continuous function f on iR3 , define a vector field G ( x , y, z) = (g(x , y , z) , 0, 0) where g( x, y, z ) = f ox f ( t, y, z) dt. 

a a a a x 
Then div G = -a (g(x ,.y, z)) +-a (0) +-a (0) = ~ f0 f (t , y , z) dt = f (x, y, z) by the Fundamental Theorem of 

X y Z v X . 

Calculus. Thus every continuous function f on R3 is the divergence of some vector field. 

16.6 Parametric Surfaces and Their Areas 

1. P (7, 10, 4) lies on the parametric surface r ( u , v) = (2u + 3v , 1 + 5u - v , 2 + u + v) if and only if there are values for u 

and v where 2u + 3v = 7, 1 + 5u - v = 10, and 2 + u + v = 4. But solving the first two equations simultaneously gives 

u = 2, v = 1 and t~ese values do not satisfy the third equation, so P does not He on the surface. 

Q(5, 22, 5) lies on the surface if2u + 3v = 5, 1 + 5u- v = 22, and 2 + u + v = 5 for some values ofu and v. Solving the 

first two equations simultaneously gives u = 4, v = - 1 and these values satisfy the third equation, so Q lies on the surface. 

3. r(u , v) = (u + v ) i + (3 - v) j + (1 + 4u + 5v) k = (0,3, 1} + u (1,0, 4) + v(1, -1, 5). From Example 3, we recognize 

this as a vector equation of a pl.ane through the point (0, 3, 1) and containing vectors a = {1, 0, 4) and b = (1, - 1, 5). If we 

j k 

wish to find a more conventional equation for the plane, a normal vector to the plane is ~ X b = 1 0 4 =4 i - j-k 

1 - 1 5 

and an equation of the plane is 4(x- 0)- (y- 3) :._ (z- 1) = 0 or 4x- y- z = - 4. 

5. r(s, t ) = (s, t , e - s2
) , so the corresponding parametric equations for the surface are X = s, y = t , z = t 2

- s2
. For any 

point (x , y , z) on the surface, we have z = y 2
- x2

. With no restrictions on the parameters, the surface is z = y 2 - x2 , which 

we recognize as a hyperbolic paraboloid. 
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322 0 CHAPTER 16 VECTOR CALCULUS 

The surf~e has parametric equations x = u 2
, y = v2

, z = u + v, --; 1 ~ u ~ 1, -1 ~ v ~ 1. 

In Maple, the surface can be graphed by entering 

pl ot3d([u"2,v"2,u+v) ,u=-l .. l,v=-l .. l);. 

In Mathematica we use the Parametr icPlot3D command. 

If we keep u constant at u0 , x = uij, a constant, so the 

corresponding grid curves must be the curves parallel to the 

yz-plane. If vis constant, we have y = vij, a constant, so these 

grid curves are the curves parallel to the xz-plane. 

9. r (u,v) = (ucosv,usinv,u5
). 

The surface has pararnetrid equations x = u cos v, y = u sin v, 

z = u 5
, -1 ~ u ~ 1, 0 ~ v ~ 21r. Note that ifu = u 0 is constant 

then z· = u8 is constant and x = uo cos v, y = Uo sin v describe a 

circle in x, y of radius luo 1. so the corresponding grid curves are 

circles parallel to the xy-plane. If v = vo, a constant, the parametric 

equations become x = u cos vo, y = u sin vo, z = u 5. Then 

y = (tan v0 )x, so these are the grid curves we see that lie in vertical 

planes y = kx through the z-axis. 

11. x = sin v, y = cosusin4v, z = sin2usin4v, 0 ~ u ::; 21!', -~ ::; v::; ~ -

Note that if v = vo is constant, then x = sin vo is constant, so the 

corresponding grid curves must be parallel to the yz-plane. These 

are the vertically oriented grid curves we see, each shaped like a 

"figure-eight." When u = uo is held constant, the parametric 

equations become x = sin v, y = cos u0 sin 4v, 

z = sin 2u0 sin 4v. Since z is'a constant multiple of y, the 

corresponding grid curves are the curves contained in planes 

z = ky that pass through the x-axis. 

vconstant 

13. r( '1.1;• v) = u cos v i + u sin v j + v k. The parametric equations for the surface are x = u cos v, y = u sin v, z = v. We look at 

the grid curves first; if we fix v, then x andy parametrize a straight line in the plane z = v which intersects the z-axis. Ifu is 

held constant, the projection onto the xy-plane is circular; with z = v, each grid curve is a helix. The surface is a spiraling 

ramp, graph IV. 
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 0 323 

15. r ( u., v) = sin v i+ cos U. sin 2v j +sin u. sin 2v k. Parametric equations for the surface are x = sin v, y = cos u. sin 2v, 

z = s in u. s in 2v. lfv = vo is fixed, then x = sin vo is constant, andy= {sin 2vo) cosu and z = (s in 2v0 ) sin u. describe a 

c ircle of radius !s in 2vol, so each-corresponding grid curve is a circle contained in the vertical plane x =sin v0 parallel to the 

yz-plane. The only possible surface is graph II. The grid curves we see running lengthwise along the surface correspond to 

holding u constant, in which casey = (cosu.o) sin 2v, z =(sin uo) sin 2v ~ z =(tan uo)y, so each grid curve lies in a 

plane z = ky that includes the x-axis. 

17. x = cos3 u cos3 v, y ·= sin3 u cos3 v, z = sin3 v. lf v = vo is held constant then z = sin3 v0 is constant, so the 

corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this 

surface are neither circles nor straight lines, so graph Ill is the only possibility. (ln fact, the horizontal grid curves here are 

members of the family x = acos3 u, y = asin3 u. and are called astroids.) The vertical grid curves we see on the surface 

correspond to u = uo held constant, as then we have x = cos3 uo cos3 v, y = sin3 u.o cos3 v so the corresponding grid curve 

lies in the vertical plane y = (tan3 uo)x through the z-axis. 

19. From Example 3, parametric equations for the plane through the point (0, 0, 0) that contains the vectors a = (1 , -1, O) and 

b = (0, 1, -1) are x = 0 + u(1) + v(O) = u., y = 0 + u.( - 1) + v(1) = v - u., z = 0 + u.(O) + v( - 1) = - v. 

21. Solving the equation for x gives x 2 = 1 + y 2 + -!z2 ~ x = J1 + y2 + tz2 • (We choose the positive root since we want 

the part of the hyperboloid that corresponds to x ~ 0.) lfwc let y and z be the parameters, parametric equations are y = y, 

z=z, x= J1+y2 +i·z2 • 

23. Since the cone intersects the sphere in the circle x2 + y2 = 2, z = .../2 and we want the portion of the sphere above this, we 

can parametrize the surface as x = x, y = y, z = v' 4 - x 2 - y2 where x2 + y2 ~ 2. 

Alternate solution: Using spherical coordinates, X = 2 sin ¢ cos e, y = 2 s in ¢ sine, z = 2 cos¢ where 0 s; <P s; f and 

o s; e s; 21r. 

25. Parametric equations are x = x, y = 4cos8, z = 4sin0, 0 s; x s; 5, 0 :5 () :5 21r. 

27. The surface appears to be a portion of a c ircular cylinder of radius 3 with axis the x -axis. An equation of the cylinder is 

. y2 + z 2 = 9, and we can impose the restrictions 0 :5 x :5 5, y :5 0 to obtain the portion shown. To graph the surface on a 

CAS, we can usc parametric equations x = u, y = 3 cos v , z = 3 s in v w ith the parameter domajn 0 ~ u ~ 5, ~ ~ v :5 3;. 

Alternatively, we can regard x and z as parameters. Then parametric equations are x = x, z = z , y = -.J9=?, where 

0 s; x s; 5 and -3 s; z s; 3. 

29. Using Equation.s 3, we have the parametrization X = X, y = e-:r. cos e, 

z = e-"' sin8, 0 s; x s; 3, 0 s; 8 s; 27r. 
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324 0 CHAPTER 16 VECTOR CALCULUS 

31. (a) Replacing cos u. by sin u. and sin u. by cos u. gives parametric equations 

x = (2 + sin v ) sin u., y = (2 +sin v) cos u., z = u. +cos v. From the graph, it 

appears that the direction of the spiral is reversed. We can verify this observation by 

noting that the projection of the spiral grid curves onto the xy-plane, given by 

x = (2 + sin v) sin u., y = (2 + sin v) cos u., z = 0, draws a circle in the clockwise 

direction for each value of v. The original equations, on the other hand, give circular 

projections drawn in the counterclockwise direction. The equation for z is identical in 

both surfaces, so as z increases, these grid curves spiral up in opposite directions for 

the two surfaces. 

(b) Replacing cos u. by cos 2u. and sin u. by sin 2u. gives parametric equations 

x = (2 + sin v) cos 2u., y = (2 +sin v) sin 2u., z = u. + cos v. From the graph, it 

appears that the number of coils in the surface. doubles within the same parametric 

domain. We can verify this observation by noting that the projection of the spiral grid 

curves onto the xy-plane, given by x = (2 +sin v) cos 2u., y = (2 + sin v) sin 2u, 

z = 0 (where v is constant), complete circular revolutions for 0 ~ u. ~ 1r while the 

original surface requires 0 ~ u. ~ 21r for a complete revolution. Thus, the new 

surface winds around twice as fast as the original surface, and since the equation for z 

is identical in both surfaces, we observe twice as many circular coils in the same 

z-interval. 

33. r ( u., v) = ( u. + v) i + 3u.2 j + ( u. - v) k. 

r u = i + 6u.j + k and r , = i - k, so r ,. x r , = - 6u. i + 2 j - 6u k. Since the point (2, 3, 0) corresponds to u. = 1, v = 1, a 

normal vector to the surface at (2, 3, 0) is -6 i + 2 j - 6 k , and an equation of the tangent plane is -6x + 2y- 6z = - 6 or 

3x- y + 3z = 3. 

35. r (u.,v)=u.cosv i +u.sinv j +v k => r(1, ~) = (~.4. i)· 

r u = cos v i + sin v j and r , = -u sin v i + u. cos v j + k , so a normal vector to the surface at the point ( ~ , 4 , ~) is 
r u ( 1, f) x r , ( 1, i') = ( ~ i + 4 j) x (-4 i + ~ j + k) = 4 i - ~ j + k. Thus an equation of the ta~gent plane at 

(t.4,f)is4(x·- t) - ~(y-4) + 1 (z -~)=0 or ~x - h +z =~ . 

37. r (u,v)=u2 i +2u.sinv j +ucos v k => r (1,0)=(1,0, 1). 

r u = 2u. i + 2sinv j + cosv k and r , = 2u.cosv j - usinv k , 2 

so a normal vector to the surface at the. point (1 , 0, 1) is 

r u(1, 0) X r ,(1, 0) = (2 i + k ) X (2j) = - 2 i + 4 k. 

Thus an equation of the tangent plane at (1, 0 , 1) is 

- 2(x- 1) + O(y- 0) + 4(z - 1) = 0 or -x + 2z = 1. 
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39. The surfaceS is given by z = f(x , y) = 6- 3x - 2y which intersects the xy-plane in the line 3x + 2y = 6, soD is the 

triangular region given by { (x, y ) I 0:::; x:::; 2, 0 :::; v $ 3 - ~x }. By Formula 9, the surface area of S is 
I 

A (S)= !fv 1+ (~Y + (~Y dA 

= ffv J1 + ( - 3)2 + (-2)~ dA = Ji4J.(v dA = v'I4A(D ) = v'I4 (~ · 2 · 3) = 3 y'l4. 

41 . Here we can write z = f(x, y) = i --:- i x- jy and Dis the disk x 2 + y2 $ 3, so by Fonnula 9 the area of the surface is 

A(S) = 1~v 1 + (:~r + (:~r dA = 1~v J1 + (-t/ + (- ~)2 
dA = -41 1~v dA 

= :lP A(D) = fl · 1r(y'3)2 
= ViA1r 

43. z = f (x, y) = ~(x312 + y312
) and D = {(x , y) I 0 $ x $ 1, 0 $ y $ 1 }. Then f, = x 112

, f v = y 112 and 

A(S) = ffv J1 + (..fi)
2 + (.jfj)2 

dA = f0

1 J; y'1 + x + ydydx 

= fo1 [tCx + y + 1)312J::: dx = j f0
1 

[(x+ 2)312
- (x + 1)3

1
2
] dx 

= j [Hx + 2)5/2 _ ~(x + 1)5/ 2]: = Ji(35/2 _ 2s; 2 _ 2s~2 + 1) = A-(31>/2 _ 2112 + 1) 

45. z = J(x, y) = xy with x 2 + y2 $ 1, so f , = y, fu = x => 

A(S ) = ffv Jl + Y2 + X 2 dA = J;"' J; -.fr2TI rdrd(} = J:"' [ ~ (r2 + I?' 2J::: d(} 

= J;"' i(2 V2 - 1) d8 = 2; (2 .j2 - 1) 

47. A parametric representation of the surface is x = x, y = 4x + z 2
, z = z with 0 :::; x :::; 1: 0 :::; z :::; 1. 

Hence r :x: x r : = (i + 4 j ) X (2z j + k) = 4 i - j + 2z k. 

Note: In general, ify = f(x , z ) then r , ~ r : = :~ i- j + ¥z k and A (S) = JL 1 + ( :~y + ( ~~y dA. Then 

A(S) = J; J; ) 17 + 4z2 dxdz = J0
1 ) 17 + 4z2 dz 

= %(z ) 17 + 4z2 + ¥ lni2z + v'4z2 + 17 I)] ~ = 4I + 1,t(ln(2 + v'2I) - ln v'I7] 

49. r ., = (2u, v , 0), r , = (0, u, v), and r u x r ,. = (v2 , - 2uv, 2u2 ). Then 

A(S) = ffv lr u x r vl dA = J0
1 J; .../v4 + 4u2 v2 + 4u4 dv du = J; J; J(v2 + 2u2)2 dv du 

= J0
1 J; (v2 + 2u2

) dv du = J; (tv3 + 2u2vJ ::~ du = J0
1 (J + 4u2

) du = [~u + ~u3]~ = 4 

51. From Equation 9 we have A(S) = ffv J l + (1, )2 + Uu)2 dA. But if Jf, J :::; 1 and If vi :::; 1 then 0 :::; (f.,? :::; 1, 

0 $ U u)2 $ 1 => 1 $ 1 + U:~Y + Cfu)2 $ 3 => 1 $ J 1 + (!:,)2 + Uu)2 $ v'3. By Property 15.3 .1 1, 

ffv1dA $ ffvJl+(f,.)2+(f11 )2 dA $ ffv ../3dA => A(D) $ A(S)$../3A(D) => . 

1rR2 $ A(S) $ ../31rR2
• 
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326 D CHAPTER 16 VECTOR CALCULUS 

53. z = f(x , y) = e- "'
2
-"

2 
with x2 + y 2 :=:; 4. 

A(S) = IIo J 1 + ( -2xe->=
2

-Y
2

)
2 

+ ( - 2ye-"'2 - v2
)

2 dA = IIo y'1 + 4(x2 + y2)e-2(>=2 +u2 > dA 

= I:1< I: v'1 + 4r2 e - 2 r2 r dr dB = I:" dB I: r y'1 + 4r2e- 2r2 dr = 27r I: r V1 + 4r2e- 2r2 dr ~ 13.9783 

4x2 + 4y2 

1 + (1 2 2)4 dydx. +x +y 

4x2 + 4y2 

1 + (
1 2 2 ) 4 , m = 3, n = 2 we have . +x +Y 

Using the Midpoint Rule with f(x, y) = 

3 2 
A(S) ~ 2: 2: f(xi , 'il; ) ~A = 4 (!(1, 1) + /(1, 3) + /(3, 1) + / (3, 3) + /(5, 1) + / (5, 3)] ~ 24.2055 

i = lj = l 

(b) Using a CAS we have A(S) = 1614 

to the first decimal place. 

57. z = 1 + 2x + 3y + 4y2
, so 

Us ing a CAS, we have 

or !!! v'I4 + ll Jn n ~+ V'J! 8 16 3 0 + 70 . 

1 + (l 
4

x
2

: 
4
Y:)4 dy dx ~ 24.2476. This agrees with the estimate in part (a) +x +y . -

59. (a) x = a sin u cosv, y = bsin u sin v, z = ccos u => (b) ~~ 

and s ince the ranges of u and v ~ suffic ient to generate the entire graph, 

the parametric equations represent an ellipsoid. 

(c) From the parametric equations (with a = 1, b = 2, and c = 3), 

we calculate r u = cosucosv i + 2cos usinvj - 3sin u k and 

2 

z 0 

- 2 

- 2 

IZfi 

71. 

'lii! 
0 

y 

~ -
r, =- s in usin v i + 2sin ucos v j. So r ,. x r, = 6 sin 2 t ! cos v i + 3 sin2 'usin vj + 2 sin u cos u k , and the surface 

61. To find the region D : z = x2 + y2 implies z + z2 = 4z or z2 - 3z = 0. Thus z = 0 or z = 3 are the planes where the 

surfaces intersect. But x 2 + y2 + z2 = 4z implies x 2 + y2 + (z - 2)2 = 4. so 'z = 3 intersects the upper hemisphere. 

Thus (z - 2)2 = 4 - x 2 - y2 or z = 2 + J 4 - x 2 - y2 • Therefore D is the region inside the c~cle x2 + y2 + (3 - 2)2 = 4, 
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that is, D = { ( x, y) I x2 + y2 :<:; 3}. 

A(S) = J l .)1 + ((- x)(4 - :z;2- y2)-l/2j2 + [(-y)(4 _ x2 _ y2)-1/ 2]2 dA 

1
2""1,(3 J ~2 12

" 1 ..f:i 2r dr 12
" [ 2 1 2 ) r = ..f:i = 1+ - - 2 rdrd8= ~dB= - 2(4 - r ) I d8 

o o 4 - r o o 4 - r 2 o r=O 

= f
2" (-2+4)d8 = 28]

2
" =411" Jo . o 

63. Let A(Si) be the surface area of that portion of the surface which lies a9ove the plane z = 0. Then A(S) = 2A(Si). 

Following Example 10, a parametric representation of sl is X = asin <,bcosO, y = asin ¢ sin8, 

z = a cos ¢ and Jrq. x ro.l = a2 sin¢. ForD, 0 :<:; <,b :<:; ~and for each fixed ¢, (x- ~a)2 
+ y2 5 (~a) 2 

or 

[asin ¢ cos0 - ~a] 2 
+ a2sin2 <,bsin2 0 :<:; (a/ 2)2 implies a2sin2¢ - a2sin ¢ cos8 :<:; Oor 

sin <,b (sin <,b - cos 8)' 5 0. But 0 5 <,b 5 ~. so cos 0 ~ sin¢ or sin(~ + 0) ~ sin <,b or <,b- ~ 5 0 5 ~ - <,b. 

Hence D = { (¢, 0) I 0 5 <,b 5 ~. <,b - ~ 58 5 ~ - <,b }. Then 

A(Si) = f0.,.
12 J~"'}~l;;j a2 sin <,b dO d<,b = a2 f0"

12 (1r- 2¢ ) sin <,b d¢ 

= a2 [(- 1r cos¢)- 2( - ¢ cos¢+ sin¢)]~12 = a 2 (1r - 2) 

Thus A(S) = 2a2(7r- 2). 

Alternate solution: Working on 81 we could parametrize the portion of the sphere by x = x, y = y, z = J a2 - :z;2 - y2. 

Then Jrz X r11 l = a and Ja2 - x2 - y2 

!! a j "/21acoa8 a 
A(S1) = dA = r dr dO 

Ja2-:z;2-y2 _ .,./2 o ~ 
0 ~ (x- (a/2))2 + y2 ~ {a/ 2)2 

= f-rr /2 -a(a2 - r2 ) 112]r=acoso dO= J"12 a 2 [1- (1- cos2 8?12] dO 
-1f/ 2 r= O - 71'/2 

= f~~~2 a 2(1 - lsin OI) dO = 2a2 J0..-
12(1 - sinO) d8 = 2~2 (~- 1) 

Thus A(S) = 4a2 (~ - 1) = 2a2(1r- 2). 

Notes: 

(1) Perhaps working in spherical coordinates is the most obvious approach here. However, you must be careful 

in setting up D. 

(2) In the alternate solution, you can avoid having to use I sin 81 by working in the first octant and then

multiplying by 4. However, if you set up S1 as above and arrived at A(S1) = a21r, you now see your error. 
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328 0 CHAPTER 16 VECTOR CALCULUS 

16.7 Surface Integrals 

1. The faces of the box in the planes x = 0 and x = 2 have surface area 24 and centers (0, 2, 3), (2, 2, 3)0 The faces in y = 0 and 

y = 4 have surface area 12 and centers (1, 0, 3), (1, 4, 3), and the faces in z = 0 and z = 6 have area 8 and centers (1, 2, 0), 

(1, 2, 6)0 For each face we take the point P;j to beth~ center of the face and f(x , y, z) = e -ool (x+u+z), so by Definition I, 

ffs f(x, y, z) dS ~ [f(O, 2, 3)](24) + [!(2, 2, 3)](24) + [f(l, b, 3)](12) 

+ [f(l, 4, 3)](12) + [f(l , 2, 0)](8) + [f(l, 2, 6)](8) 

0
30 We can use the xz- and yz-planes to divide H into four patches of equal size, each with surface area equal to ~ the surface 

area of a sphere with radius VSO, so D.S = H4)7r( v'50) 2 = 257l'. Then (±3, ±4, 5) are sample points in the four patches, 

and using a Riemann sum as in Definition l , we have 

ffH f(x , y , z) dS ~ j(3, 4, 5) D.S + f(3, -4, 5) !:!.S + !( -3, 4, 5) !:!.S + f( -3, -4, 5) D.S 

= (7 + 8 + 9 + 12}(257!') = 9007l' ~ 2827 

So r( u, v) = ( u + v) i + ( u - v) j + (1 + 2u + v) k, 0 ~ u ~ 2, 0 ~ v ~ 1 and 

r ,. x r 11 = (i + j + 2k) X (i -j + k) = 3i+j - 2k ==? iru X rvl =
0 
y'32 + 12 + (- 2)2 = -1140 Then by Formula2, 

ff
8

(x + y + z) dS = ffv(u + v + u- v +1 + 2u + v) lru x r vl dA = f0
1 f~(4u + v + 1) 0 -/I4dudv 

= .;I4 J; [2u2 + uv + u] ::~ dv = .;I4 J; (2v + 10} dv = .;I4 [v2 + lOv] ~ = 11 v'l4 

7o r (u,v) = (ucosv,usinov,v), 0 ~ u ~ 1, 0 ~ v ~ 7l' and 

ru X rv = (cosv,sinv, O) X (-'-usinv,ucosv, 1) = (sin v, - cosv,u ) · =? 

!ru X rv! = Vsin2 v + cos2 v + u 2 = ..)u2 + 1. Then 

ffsoY dS = ffv (usin v) lru x r vl dA = J; j~" (usinv) 0 vu2 + 1 dv du = J; u..Ju2 + 1 du J0" sin v dv 

= [ t(u2 + 1?/ 2
] : [- cosv]~ = t(23

/
2

- 1) 0 2 = H2v'2 - 1) 

8z 8z 
0 

9. z = 1 + 2x + 3y so ox = 2 and oy = 30 Then by Fonnula 4, 

= -/14 J:j J;(x2y + 2X3?i + 3x2y2) dy dx = -/14 J; [~x2y2 + x3y2 + x2y3]~=~ dx 

= v'l4 J;(10x2 + 4x3
) dx = v'l4 [ 4fx3 + x4

] ~ = 171 v'f.1 

110 An equation of the plane through the points (1, 0, 0), (0, -2, 0), and (0, 0, 4) is 4x- 2y + z = 4, so Sis the region in the 

plane z = 4 - 4x + 2y over D = {(x, y) I 0 ~ x ~ 1,2x- 2 ~ y ~ 0}. Thus by Formula4, 

ffs X dS = ffv x y'( - 4)2 + (2)2 + 1 dA = ...J2f J; J2°x_2 x dy dx = v'2f f0
1 [xy]~~~x-2 dx 

= v'2f J0
1 (- 2x2 + 2x) dx = v'2f [-ix3 + x2]~ = v'2f ( - i + 1) = 4J. 
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13. S is the portion of the cone z2 = x2 + y2 for 1 $ z $ 3, or equivalently, Sis the part of the surface z = ...jx2 + y2 over the 

region D = { (x, y) Jl $ x 2 + y2 $ 9 }. Thus 
r---------~----------~--

· Jfs x2z2dS= Jfv x
2
(x

2
+y

2
) (~Y +(~Y + l dA 

15. Using x and z as parameters, we have r (x, z) = x i+ (x2 + z2 )j + z k1 x
2 + z2 :::; 4. Then 

r x x r : = (i + 2xj ) X (2zj + k) = 2x i - j +2z kand Jr, X r , J = J4x2 + 1 + 4z2 = ) 1 +4(x2 +z2). Thus 

ffs ydS = JJ (x2 + z2))1 + 4(x2 + z2) dA = J;,. J; r 2 J 1 + 4r2 rdrdO = J;,. dB J; r 2 v'1 + 4r2 r dr 
x2+z2~~ · . 

[let u = 1 + 47'
2 => 7'

2 = t(u- 1) and idu = 1' dr] 

= 27T J:7 t(u- l )JU. id·u = ft1T f t17 (u3/2 ...:. ul/2) du 

= ...!.. 7T (1u5/2 - 1u3/2)17 = ...!..7T(1(17)5 /2- 1(17? /2 - 1 + 1) = 2:.. (391 Jl7 + 1) 
16. 5 3 1 16 :; 3 5 3 60 

17. Using spherical coordinates and Example 16.6.1 0 we have r ( ¢,B) = 2 sin 4> cos B i + 2 sin 4> sin B j + 2 cos 4> k and 

Jrq, x r~l = 4 sin¢. Then ffs(x2 z + y 2z) dS = .{0
2
" J; 12(4sin2 1p)(2 cos¢)( 4 sin 4>) d¢ dB = 167T sin4 ¢] ~12 = 167T. 

19. S is given by r (u,v) = ui + co~vj + sinv k, 0 $ u $ 3, 0 $ v $ 1Tj2. Then 

r u X rv = i X (- sin v j +cosv k ) = - cosv j- sin v kand Jr,. X rvl = ) cos2 v +sin2 v = 1, so 

.[[5 (z + x 2y) dS = J;12 J;(sinv + u 2 co~v)(l) dudv = f~.,.12 (3sin v + 9 cos v) dv 

= [- 3cosv + 9sin v]~/2 = 0 + 9 + 3-0 = 12 

21. From Exercise 5, r (u, v) = (u + v) i + (u - ·u) j + (1 + 2u + v) k, 0 $ u $ 2, 0 $ v $ 1, and r u x r ., = 3 i + j - 2 k. 

Then 
F (r (u, v)) = (1 + 2u + v)e<u+v)(u- v) i- 3(1 + 2u + v)e<u+u)(u- v) j + (u + v)(u- v) k 

= (1 + 2u + v)e"
2
-"

2 
i - 3(1 + 2u + v)e"

2
-

112 
j + (u2 - v2

) k 

Because the z-component ofru x r v is negative we use - (r ,. x r v) in Formula 9 for the upward orientation: 

ffs F · dS = J/~ F · ( -(r .. X r u)) dA = J; J; [ -3(1 + 2u + v)e"2 -~2 + 3(1 + 2u + v)e"'
2

- "
2 

+ 2(u2 - v2)) d·1~ dv 

= ./~1 f0
2 

2(u2 - v2
) dudv = 2 .{0

1 [tu3
- uv2J:::~ dv = 2 J; (~- 2v2) dv 

= 2 [~v - ~v3] ~ = 2 (! - j) = 4 

23. F (x, y, z) = xy i + yz j + zx k, z = g(x, y) = 4 - x2
- y2, and Dis the square [0, 1) x [0, 1], so by Equation 10 

Jfs F · dS = ff0 [-xy( -2.7J) - yz( - 2y) + zx] dA = .{0
1 

J; [2x2 y + 2y2 (4- x2 
- y2~ + ~(4 - x2

- y2
)] dy dx 

= J; ( t x2 + 1} x - x3 + ~~) dx = i~~ 
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25. F(x, y, z) =xi - z j + y k , z = g(x, y) = .j4- x2 - y2 and Dis the quarter disk 

{ (x , y) I 0 ~ x ~ 2, 0 ~ y ~ v'4 - x2 }. 8 has downward orientation, so by Fonnula 10, 

= - - v' 4 - x2 - y2 · + y dA !1( x2 y ) 
D v' 4 - x2 - y2 . v' 4 - x2 - y2 

= - IIv x2(4- (x2 +y2
))-

112 dA = - I0..,.
12 I

0
2 (r cos B?(4- r 2

)-
112 rdr dB 

·= - .[0..,.12 cos2 B d8 I~ r 3(4- r·2)-
112 dr [let u = 4- r 2 =? r 2 = 4 - u and-~ du = rdr] 

= - I0..,.
12 (~ + t cos 28) d8 I~ -~(4 - u)(u)- 112 du 

= - [~8 + t sin28]~12 (-~) [8v'U - iu312
]: = -t(-~)(-16 + ¥) = -~1!' 

27. Let 81 be the paraboloid y = x2 + z2
, 0 ~ y ~ 1 and 82 the disk x2 + z2 ~ 1, y = 1. Since 8 is a closed 

surface, we use the outward orientation. 

On S1 : F (r (x, z)) = (x2 + z2
) j - z k and r , x r = = 2x i - j + 2z k (si~ce the j-component must be negative on S1). Then 

fis
1 

F · dS = II [-(x2 .+ z2
)- 2z2

] dA = -I~..,. I;(r2 + 2r2 sin2 8) r dr d8 
o;2 +=2 $1 

= -I~..,. I; r 3 (1 + 2sin2 8) dr d() = - ]~..,. (1 + 1- cos 28) dB-I0
1 r 3 dr 

= - [28- t sin 28]~..,. [~r·4 ]~ = - 41!' . ~ = -1r 

OnS2: F(r(x, z))= j -zkandr.., x r , =j. Thenifs F · dS= JI (1)dA=1r. 
2 .,2 + ;:2 $ 1 

Hence'Jis F · dS = - 1r + 1r = 0. 

29. Here 8 consists of the six faces of the cube as labeled in the figure. On 81: 

F = i + 2yj + 3z k, rv x rz = i and IIs
1 

F · dS = I~1 }~ 1 dydz = 4; 

82: F =xi + 2j + 3z k, r= x r, = j and IIs
2 

F · dS = I~ 1 I~1 2dxdz = 8; 

8s: F = x i +2yj + 3k, r , x r v ·= kand fis
3 

F · dS = I~1 I~ 1 3dxdy = 12; 

84 : F = -i +2yj +3zk,r: x r v = -i and IIs
4 

F · dS = 4; 

85: F = x i- 2j+3zk, r., x r: ~ - j andiJ~5 F · dS = 8; 

86: F =x i+ 2yj- 3k, r 11 x r ., = -k and J/~0 F · dS = J~1 j~ 1 3dxdy = 12. 

6 
Hence ffs F · dS = I: Jfs. F · dS = 48. 

i=l 1. 

31. HereS consists of four surfaces: S1 , the top surface (a portion ofth~ circular cylinder y 2 + z2 = 1); S2, the bottom surface 

(a portion of the xy-plane); Ss, the front half-disk in the plane X= 2, and s 4 . the back half-disk in the plane X = 0. 
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On 8 1 : The surface is z = J1 - y2 for 0 S x S 2, - 1 S y S 1 with upward orientation, so 

!" f F . dS = 1~ ! 1 [-x2 
(0) - y

2 
( - h) + z2

] dy dx = 12 

/

1 

( h + 1 - y
2

) dy dx ls1 o -1 1 -y2 
. · o - 1 1-y2 

. 

On 82 : The surface is z = 0 with downward orientation, so 

On 83 : The surface is x = 2 for - 1 S y S 1, O.S z S yf1- y2 , oriented in the positive x-direction. Regarding y and z as 

parameters, we have r11 x r .., = i and 

On 8 4 : The surface is x = 0 for -1 :::; y :::; 1, 0 $ z $ yf1 - y2 , oriented in the negative x-direction. Regarding y and z as 

parameters, we use - (r 11 x r z) = -i and 

ff54 F · dS = f~1 fo~ x2 dzdy = f~1 fo~ (0) dz dy = 0 

Thus ffs F · dS = 1 + 0 + 211" + 0 = 211" + ~· 

33. z = xeY => 8zj8x = e11 , 8zj8y = xe11 , so by Formula 4, a CAS gives 

JJ
5

(x2 +y2 +z2 )d8 = J0
1f0

1 (x2 +y2 +x2 e211 )Je2Y +x2 e2v + 1dxdy ~ 4.5822. 

35. We use Formula 4 with z = 3- 2x2 
- y2 => 8zj8x = ·- 4x, 8z j8y = -2y. The boundaries of the region 

3- 2x2 
- y2 ~ 0 are -/i $ X s ji and -J3 - 2x2 $ y $ J3 - 2.7:2 • so we use a CAS (with precision reduced to 

seven or fewer digits; otherwise the calculation may take a long time) to calculate 

37. If 8 is given byy = h(x,z), then 8 is also the level surface f(x,y,z) = y - h(x,z) = 0. 

Vf(x,y,z) - h., i+j-h: k d . h · 1 h · h 1ft N · n = I~/( )I = , an - n IS t e umt norma t at pomts tot e e . ow we proceed as m the 
v x,y,z y'h~+l+h~ 

derivation of (1 0), using Formula 4 to evaluate 

where D is the projection of 8 onto the xz-plane. Therefore I Is F · dS = I i ( P ~~ - Q + R ~~) dA. 
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39. m =· ffs }( dS = }( · 47r(~a2) = 21ra 2 K; by symmetry M xz = lvf11z = 0, and 

M:cv = Jj~ z }( dS = }( f~" f01f
12 (a cos ¢)(a2 sin ¢) d¢ d() = 2711< a 3 [-~cos 2¢] ~12 = 1r }( a 3 • 

Hence (x,y,z) = (0,0, ~ a). 

I 

(b) 1:: = ffs(x2 + y2)(10- Jx2 +y2 ) dS = ff (x2 + y2)(10- jx2 +y2 ) ../2dA 
. 1 s :r2 + v2 s 16 • 

43. The rate of flow through the cylinder is the flux JJ~ pv · n dS = ffs pv · dS . We use the parametric representation 

r (u,v) = 2cosu i + 2 sinuj + v k for S, where 0 $ u $ 27r, 0 $ v $ 1, so r ,. = - 2sinu i + 2cosuj, r v = k , and the . 

outward orientation is given by ru x r v = 2 cos u i + 2 sin u j . Then 

ffs pv · dS = p ]~" f0

1 (vi+ 4sin2 u j + 4 cos2 u k) · (2cosu i+ 2sinu j ) dvdu 

= p f0
2

" . J: (2v casu+ 8sin3 u) dv du = p J~" (casu+ 8 sin3 u) du 

= p[sin u + 8(-i)(2 + sin2 u) casu] ~" = 0 kg/s 

45. S consists of the hemisphere 8 1 given by z = ja2 - x2 - y2 and the disk 8 2 given by 0 $ x2 + y2 $ a 2
, z = 0. 

On 81: E = asin¢ cosB i +a sin ¢ sinBj + 2acos¢ k , 

T q, x To = a 2 sin2 ¢ cosB i +a2 sin2 </> sinl'.lj +a2 sin ¢ costpk. Thus 

ffs1 E · dS = .r;" f0"1\a3 sin3 q) + 2a3 sin <J; cos2 ¢) dq) dB 

= J:" J~-rf2 (a3 sin ¢+ a3 sin ¢ cos2 
<P) d¢d8 = (27r)a3 (1 + i) = ~1ra3 . . 

On S2: E =X i + y j , and r y X r x = -k so Jfs2 E . dS = 0. Hence the total charge is q = co ffs E . dS = ~7ra3co. 

47. IC9u = 6.5(4yj + 4z k) . S is given by r (x, 1'.1) = x i + y'6 cos(} j + v'6 sin 8 k and since we want the inward heat flow, we 

use rx x ro = - v'6 cos 0 j - v'6 sin(} k. Then the rate of heat flow inward is given by 

ffs ( -K \i'u) · dS = f0
2
"' f0

4 - (6.5)( - 24) dx d() = (27r)(l56)(4) = 12487r. 

49. LetS be a sphere of radius a centered at the origin. Then ir l =~and F (r ) = cr / lrl3 = (c/a3
) (x i + y j + z k). A 

parametric representation for S is r( ¢, 0) = a sin¢ cos 0 i +a sin¢ sin 0 j + a cos <P k~O $ <P $ 1r, 0 $ 0 $ 27r. Then 

r .p = a CDS</> CDS 0 i + a cos <P sin(} j - a sin ¢ k, r o = -a sin ¢ sin () i + a sin ¢ cos 0 j , and the outward orientation is given 

by r 4> x ro = a2 sin2 ¢ cos 0 i + a2 sin2 ¢ sinO j + a2 sin <P cos </J k. The flux ofF across Sis 

ffs F · dS = g Jt'~ c
3 

(asin </J cosO i +a sin ¢ sin Oj + acos¢k) 
a 

·. (a2 s in2 <P cosO i + a2 sin2 ¢> sin8 j +a2 s in </J cosif> k) dOd¢ 

= :
3 
f0"' .{0

2
" a3 

( sin3 ¢J + sin </> cos2 ¢) dOd¢ = c .{0" f021r sin <P dOd¢ = 47rc 

Thus the flux does not d.epend on the radius a. 
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16 .. 8 Stokes' Theorem 

1. Both Hand Pare oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve x 2 + y2 = 4, 

z = 0 (which we can take to be oriented positively for both surfaces). Then Hand P satisfy the hypotheses of Stokes' 

Theorem, so by (3) we know JJ H curl F · dS = fc F · dr = J j~ curl F · dS (where Cis the boundary curve). 

3. The paraboloid z = x2 + y2 intersects the cylinder x2 + y 2 = 4 in the circle x2 + y2 = 4, z = 4. This boundary curve C 

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C is 

r (t) = 2 cost i + 2sin t j + 4k, 0 ~ t ~ 271". Then r '(t) = -2 sin t i + 2 cos tj, 

F (r (t)) = (4cos2 t)(16) i + (4 sin2 t)(16) j + (2 cos t)(2 sin t)(4) k = 64 cos2 t i + 64sin2 t j + 16 sin t cost k , 

and by Stokes' Theorem, 

Jf5 cur1F · dS = fc F · dr = J:"lr F (r (t)) · r '(t) dt = J:"(-128cos2 t sint + 128sin2 t qost + O)dt 

= 128 [~ cos3 t + t sin3 t] ~,. = 0 

5. C is the square in the plane z = -1. Rather than evaluating a line integral around C we can use Equation 3: 

J fs, curl F · dS = fc F · dr = jf52 curl F · dS where 81 is the original cube without the bottom and 82 is the bottom face 

of the cube. curlF = x2 z i + (xy- 2xyz) j + (y- xz) k. For 82, we choose n = k so that C has the same orientation for 

both surfaces. Then curl F · n = y - xz = x +yon 82, where z = - 1. Thus ff
52 

curl F · dS = f~1 .C1 
(x + y) dx dy = 0 

so ffs, curlF · dS = 0. 

7. curl F = - 2z i- 2xj- 2y k and we take the surfa<;e 8 to be the planar region encfosed by C, so 8 is the portion of the plane 

x + y + z = 1 over D = { ( x, y) I 0 ~ x ~ 1, 0 ~ y ~ 1 - x}. Since C is oriented counterclockwise, we orient 8 upward. 

Using Equation 16.7.10, we have z = g(x, y) = 1- x - y, P = -2z, Q = - 2x, R = -2y, and 

fc F · dr = ffs curlF · dS = JJ'v [-( - 2z)( - 1) - ( -2x) ( -1) + ( - 2y)] dA 

= f0
1 J0

1- x( -2) dydx = -2 J;(1 - x) dx = - 1 

9. curl F = (xex11 - 2x) i - (ye"'11 - y) j + (2z- z) k and we take 8 to be the disk x 2 + y 2 ~ 16, z = 5. Since C is oriented 

counterclockwise (ftom above), we orientS upward. Then n = k and curl F · n = 2z - z on S , where z = 5. Thus 

fc F · dr = ffs curlF · n d8= Jj~ (2z- z) d8 = Jj~(10- 5) dS = 5(area of S) = 5(7r · 42
) = 801r 

11. (a) The curve of intersection is an ell ipse in the plane x + y + z = 1 with unit normal n = ~ (i + j + k ), 

curlF = x2 j + y 2 k , and curlF · n = ~(x2 + y2
). Then 

fc F · dr = ffs -ja (x2 + Y2
) dS = JJ~2 + v2 ~ 9 (x

2 + y 2
) dx dy = J0

2
7r J; r 3 dr df) = 21r(!!]-) = 8~7< 
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(b) (c) One possible parametrization is x = 3 cost, y = 3 sin t, 

z = 1 - 3 cos t - 3 sin t, 0 ~ t ~ 271'. 

2 

-2 

13. The boundary curve Cis the circle x2 + y2 = 16, z = 4 oriented in the clockwise direction as viewed from above (since Sis 

oriented downward). We can parametrize C by r(t) = 4cost i - 4sintj + 4k, 0 ~ t ~ 21r, and then 

r '(t) = - 4sint i- 4costj. Thus F (r(t)) = 4sint i + 4cos t j - 2 k , F (r (t)) · r ' (t) = -16sin2 t- 16cos2 t = -16, and 

fcF · dr = J; .,. F(r(t)) · r '(t ) dt = J;"(-16) dt = -16 (27r) = -327!' 

Now curl F = 2 k, and the projection D of Son the xy-plane is the disk x2 + y2 ~ 16, so by Equation 16.7.10 with 

z = g(x, y) = .Jx2 + y2 [and multiplying by - 1 for the downward orientation] we have 

ffs curl F · dS = - ffv( -0 - 0 + 2) dA = -2 · A(D) = -2 · 7r(42
) = - 327!' 

15. The boundary curve C is the circle x2 + z2 = 1, y = 0 oriented in the counterclockwise direction as viewed from the positive 

y-axis. Then C can be described by r(t) = cost i - sin t k, 0 ~ t ~ 21r, and r' (t) = -sin t i- cost k. Thus 

F (r (t)) = -sin t j +costk, F (r (t )) · r ' (t) = - cos2 t, and .fc F · dr = J;"(-cos2 t).dt = -~t- ~ sin2t]~.,. = -1r. 

Now curl F = -i- j - k , and S can be parametrized (see Example 16.6.1 0) by 

r (rfJ, 9) = sin rfJ cos9 i+ sin rfJ sinBj + cosq'> k,O ~ B ~ 7!',0 ~ rp ~ 7!'. Then 

r .p x ro = sin2 4> cos B i + sin2 4> sin B j +sin 1p cos rp k and 

JJ5 curlF·dS= JJ cur!F·(r,.;x ro)dA=f0" J0" (-sin2 ¢cosB - sin2 ¢sinB - sin¢cos¢)dBd¢ 
~+~Sl . 

17. lt is 'easier to use Stokes' Theorem than to compute the work directly. LetS be the planar region enclosed by the path of the 

particle, so Sis the portion of the plane z = h for 0 ~ x ~ 1, 0 ~ y ~ 2, with upward orientation. 

curl F =By i + 2z j + 2y k and 

fcF · dr = ff5 curlF · dS = ff0 [-By (0) - 2z (~ ) + 2y] dA = J0
1 J0

2 
(2y- h) dydx 

= f0
1 J; ~Y dy dx = J; [1Y2]~=~ dx = f0

1 
3 dx = 3 

19. Assume S is centered at the origin with radius a and let Ht and H 2 be the upper and lower hemispheres, respectively, of S. 
I 

Then .ff5 curlF · dS = JJH1 curlF · dS + JJH2 curlF · dS = J~1 F · dr + J~2F · dr by Stokes' Theorem. But C1 is the 

circle x2 + y2 = a2 oriented in the counterclockwise direction while C2 is the same circle oriented in the clockwise direction. 

Hence fc
2 
F · dr = - fc

1 
F · dr so f fs curl F · dS = 0 as desired. 
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16.9 The Divergence Theorem 

1. div F = 3 + x + 2x = 3 + 3x, so 

J I IE div F dV = J: J: f0
1 
(3x + 3) dx dy dz = ~ (notice the triple integral is 

three times the volume of the cube plus three times X). 

To compute Jfs F · dS , on 

S1 : n = i, F = 3 i +y j + 2z k, and Jf51 F · dS = ffsi 3 dS = 3; 

s2: F = 3x i + X j + 2xz k , n = j and I fs2 F 0 dS = I f s2 X dS = ~; 

S3: F = 3x i + xy j + 2x k, n = k and f f
53 

F · dS = fj
53 

2xdS = 1; 

X 

S4 : F = 0 , ffs,, F · dS = 0; S:;: F = 3x i +2x k , n = - j and ff
56 

F · dS = f fs
5 

OdS = 0; 

S 6 : F = 3x i + xy j , n = - kand JJ56 F · dS = JJ56 OdS = 0. Thus ff5 F · dS = ~ -

3. div F = 0 + 1 + 0 = 1, so JJJ E div F dV = JJJ E l dV = V(E) = ~ 7T · 43 = 2~6 7T. S is a sphere of radius 4 centered at 

the origin which can be parametrized by r (¢>, 0) = (4sin ¢>cos 0, 4 sin </>sin 0, 4 cos¢>), 0 $ ¢ $ 1r, 0 $ 0 $ 27T (similar to 

Example 16.6.10). Then 

r .p x r 9 = (4 cos ¢>cos 0, 4 cos </>sin e, - 4sin </>) x ( - 4sin <f>sin8,4 sin </>cos 0, 0) 

= (16sin2 ¢>cos 0, 16 sin2 ¢sin 0, 16 cos ¢>sin¢) 

and F (r (¢,0)) = (4cos¢,4sin ¢sin 0,4sin</>cos0). Thus 

F · (r .p x r o) = 64 cos ¢sin2 </> cos 0 + 64sin3 ¢sin2 B + 64cos ¢sin2 ¢>cos() = 128 cos ¢sin2 q> cos () + 64 sin3 ¢> sin 2 () 

and ' 
f fs F · dS = JJ.; F · {r ,p x r o) dA = J~" J; (128cos ¢sin2 ¢>cosO + 64sin3 <f>sin2 8) d<f>dB 

= J~" [ 1~8 sin3 ¢cos0+64(-~{2+sin2 <f>)cos¢)sin2 8J !:~ dO 

- f27r 256 ° 2 0 d() = ill (l. () - l 0 28] 2" - ill - Jo 3 Sill 3 2 4 Sill 0 - 3 7T 

5. div F = /}., (xye") + !Ju (xy2 
z 3

) + //:: ( - ye" ) = ye" + 2xyz3 
- ye" = 2xyz3

, so by the Divergence Theorem, 

Jfs F · dS = JJJ E div F dV = f0
3 j0

2 f0
12xyz3 dzdydx = 2 J~ xdx J0

2 ydy J0
1 z 3 dz 

= 2 (~x2]~ [h2]~ (tz"]~ = 2 (~) (2) {i) = ¥ 
7. div F = 3y2 + 0 + 3z2

, so using cylindrical coordinates with y = r cos B; z = r sin B, x = x we have 

ffs F · dS = J/J E(3y2 + 3z2
) dV = J~" J: f~1 {3r2 cas2 B + 3r2 sin2 B) r dx dr dB 

~ 3 f0
2

" dB ] 0
1 

r 3 dr f~1 dx = 3{27r) (i) (3) = 9
2" 

9. div F = 2x s in y - x sin y - x s in y = 0, so by the Divergence Th~orem, J f s F · dS = J J J EO dV = 0. 

11. div F = y 2 + 0 + x 2 = x 2 + y2 so 

Jj~ F · dS = JJJ E(x
2 + y 2

) dV = J;" f~ .J;~ r 2 
• r dz dr d(J ~ J~" .[0

2 
r 3 (4- r 2

) dr dB 

= J~" dB J~ (4r 3 - r 5
) dr = 27r [r 4

- 'kr6) ~ = ~7T 
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13. F ( x, y , z) = x J x2 + y2 + z2 i + yJ x2 + y2 + z2 j + z J x 2 + y2 + z2 k , so 

div F = x. ~(x2 + y2 + z2)-112(2x) + (x2 + y2 + z2)112 + y. t(x2 + y2 + z2)-112(2y) + (x2 + y2 + z2)1/2 

+ z . ~(x2 + y2 + z2) - 112(2z) + (x2 + y2 + z2)1/2 

= (x2 + y2 + z2)-112 [x2 + (x2 + y2 !- z2) + y2 + (x2 + y2 + z2) + z2 + (x2 + y2 + z2)] 

4(x2 + y2 + z2) = = 4Jx2+y2+z2. 
Jx2 +y2 +z2 

Then 

!!L j·Tr/7:12,-11 = 4J.x2 + y2 + z2 dV = 4.J(li . p2 sin¢ dp dB d¢ 
• E 0 0 0 

= f01r12sin¢d¢J;"' d1J J;4p3 dp = [-cos¢]~12 [B]~Tr (p4) ~ = (1) (27r) (1) = 21r 

' 4 4 ) 
15. [J F ·dS=JJJ -/3-x2 dV=J

1 J1 
f
2
-"' -u· v'3-x2dzdydx = 341 .J2+lllsin-1(:4 . s E - 1 - 1 Jo ao 20 a 

17. For 81 we haven = - k, so F · n = F · ( -k) = - x2 z- y2 = -y2 (since z = 0 on 81). So if Dis the unit disk, we get . 

.f Is
1 

F · dS = .ff
51 

F · n dS = I J'v ( -y2
) dA = - f0

21r It r·2 
( s in2 fJ) r dr dB = - {1r. Now since Sz is closed, we can use 

the Divergence Theorem. Since div F = :., ( z2 x) + tu ( iv3 + tan z) + tz ( x2 z + y2
) = z 2 + y2 + x2

, we use spherical 

coordinates to g~t JJ52 F · dS = I.JJ E divF dV = J0
21r Io1r!2 I: p2 

· p2 sin</>dpd<{>dO =~'IT. Finally 

19. The vectors that end near P1 are longer than the vectors that start near P1, so the net flow is inward near Pt and div F(Pl) is 

21. 

negative. The vectors that end near P2 are shorter than the vectors that start near P2, so the net flow is outward near P2 and 

div F(P2) is positiye. 

5 ,,,,,,,,,/ 
' ' ' \ 1 I f I I / 

-5~-----+------45 

I \ ' ' ' 

/ ~ I I I \ \ \ ' 

/'/If \\\'\ 
-5 

From the graph it appears that for points above the x-axis, vectors starting near a 

particular point are longer than vectors ending there, so divergence is positive. 

The opposite is true at points below the x-axis, where divergence is negative. 

F(x,y) = (xy, x +y2
) =} divF = : , (xy)+ :Y (x+y2

) =y+2y =Jy. 

Thus div F > 0 for y > 0, and div F < 0 for y < 0. 

. X x i+yj+ z k 8 ( X ) (x2 +y2 +z2)-3x2 
. . . . 

23. Smcc - 3 = ( 2 2 2 ) 312 and -
8 

( 2 2 2)31., = ( 2 ., 2 ) 512 With Similar expressiOns lxl X + y + Z X X + y + Z - X + y- + Z 

for ..!!_ ( y ) and ..!!_ ( z ) , we have 
8y (x2 + y2 + z2)3/2 8z (x2 + y2 + z2)3/2 

( 
x ) 3(x2 + y2 + z2)- 3{x2 + y2 + z2) . 

div -
1 

l3 = .. 12 · = 0, except at {0, 0, 0) where it is undefined. 
x (x2+y2+z2)" 

25 . .f Is a · n dS = J I IE diva dV = 0 since div a = 0. 
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27. JI5 curlF · dS =III Ediv(curlF) dV = 0 by Theorem 16.5. 11. 

29. ff5(f'Vg) · n dS = JJJ E div(f'Vg) dV = fff E(f'V2g + 'Vg · 'V f) dV by Exercise 16.5.25. 

, 31. If c = c1 i + c2 j + C3 k is an arbitrary constant vector, we define F = fc = fc1 i + fc2 j + fc3 k. Then 

. . af af af . · . 
dtv F = dtv fc = ax Ct + f)y C2 + f)z C3 = 'V f 0 c and the Divergence Theorem says .ffs F 0 dS = f f f E dJV F dV => 

Ifs F · n dS = IIJ E 'V f · cdV. In particular, ifc = i then Jfs f i · n dS = JJJ E 'Vf · i dV => 

Jfs fn 1 d~ = jj L :~ dV (where n ~ n 1 i + n2 j + n3 k). Similarly, ifc =j we have Jfs fn2 dS = JJL :~ dV, 

and c = k gives /Is f na dS = j J L :~ dV. Then 

.fJ~ f n dS = (ff8 /n1 dS) i + (Jf8 fn2 dS) j + (ff5 jn3 dS) k 

= (/I L :~ dV) i + (/I L ~; dV) j + (/I L ~~ dV) k = I I L ( :~ i + ~ j + ~~ k) dV 
= JJJ E 'V f dV as desired. 

16 Review 
CONCEPT CHECK 

1. See Definitions 1 and 2 in Section 16.1. A vector field can represent, for example, the wind velocity at any location in space, 

the speed and direction of the ocean current at any location, or the force vectors of Earth's gravitational field at a location in 

space. 

2. (a) A conservative vector field F Is a vector field which is the gradient of some scalar function f. 

(b) The function f in part (a) is called a potential function for F , that is, F = 'V f . 

3. (a) See Definition 16.2.2. 

(b) We normally evaluate the line integral us ing Formula 16:2.3. 

(c) The mass ism = fc p (x, y) ds, and the center of mass is (x, Y) where x = ~ fc xp (x, y) ds, y = ~ fc yp (x, y) ds. 

(d) See (5) and (6) in Section 16.2 for plane curves; we have similar definitions when 0 is a space curve 

· [see the equation preceding (10) in Section 16.2). 

(e) For plane curves, see Equations '16.2.7. We have similar results for space curves 

[see the equation preceding (10) in Section 16.2 ). 

4. (a) See Definit ion 16.2. 13. 

(b) If F is a force field, J~ F · dr represents ti1e work done by Fin moving a particle along the curve 0 . . 

(c) Ic F ·dr=J0 Pdx+Qdy+Rdz 

5. See Theorem 16.3.2. 

, 0 
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6. (a) fc F · dr is independent of path if the line integral has the same value for any two curves that have the same initial and 

tenninal points. 

(b) See Theorem 16.3.4. 

7. See the statement of Green's Theorem on page.ll08 [ET 1084]. 

8. See Equations 16.4.5. 

(
8R 8Q) . ( 8P 8R) . ( 8Q 8P) . 9. (a)curlF= --- •+ - - - J + - - - k=V x F 
8y 8z 8z 8x ax 8y . 

(c) For curl F , see the discussion accompanying Figure 1 on page 1118 [ET 1094] as well as Figure 6 and the accompanying 

discussion on page 1150 [ET 1126]. For div F, see the discuss ion following Example 5 on page 1119 [ET 1095] as well as 

the discussion preceding (8) on page 1157 [ET 1133]. 

10. See Theorem 16.3.6; see Theorem 16.5.4. 

11. (a) See (I) and (2) and the accompanying discussion in Section 16.6; See Figure 4 and· the accompanying discussion on 

page 1124 [ET 1100]. 

(b) See Definition 16.6.6. 

(c) See Equation 16.6.9. 

12. (a) See (1) in Section 16.7. 

(b) We normally evaluate the surface integral using Fonnula 16.7.2. 

(c) See Formula 16.7.4. 

(d) The mass ism = Jf5 p(x,y,z)dS and the center of mass is (x,y,z) wherex = ~ JJ8 xp(x,y,z) dS, 

y = ~ Ifs yp(x, y, z ) dS, z = ~ .ffs zp(x, y , z) dS. 

13. (a) See Figures 6 and 7 and the accompanying discussion in Section 16.7. A Mtibius strip is a nonorientable surface; see 

Figures 4 and 5 and the accompanying discussion on page 1139 [ET 1115]. 

(b) See Definition 16.7.8. 

(c) See Formula 16.7.9. 

(d) SeeFonnula 16.7.10. 

14. See the statement of Stokes' Theorem on page 1146 [ET I J 22]. 

15. See the statement of the Divergence Theorem on page 11 53 [ET J 129]. 

16. In each theorem, we have an integral of a "derivative" over a region on the left side, while the right side involves the values of 

the original function only on the boundary of the region. 
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TRUE-FALSE QUIZ 

1. False; div F is a scalar fie ld. 

3. True, by Theorem 16.5.3 and the fact that div 0 = 0. 

5. False. See Exercise 16.3.35. (But the assertion is true if D is simply-connected; see Theorem 16.3.6.) 

7. False. For example, div(y i) = 0 = div(xj) but y i =I x j. 

9. True. See Exercise 16.5.24. 

11. True. Apply the Divergence Theorem and use the fact that div F = 0. . . . 

EXERCISES 

1. (a) Vectors starting on C point in roughly the direction opposite to C, so the tangential component F · T is negative. 

Thus J c F · dr = j~ F · T ds is negative. 

(b) The vectors that end near Pare shorter than the vectors that start near P, so the net flow is outward near P and· 

div F(P) is positive. 

3. fc y zcosx ds = J071' (3cos t) (3sin t) cost .j(1)2 + ( -3sint)2 + (3cos t)2 dt = J0rr (9cos2 t sin t)v'IO dt 

= 9 JlO ( - t cos3 t)]~ = - 3 VfO ( -2) = 6 VfO 

5. f c y3 dx + x2 dy = J~1 [y3( -2y) + (1 - y2)2] dy = J~1 (-y4 - 2!/+ 1) dy 

= [- !y5 - l y3 + y] 1 = _ ! - 1 + 1-! - 1 + 1 = ~ 
5 3 - 1 5 3 5 3 15 

7.C:x=1+2t => dx=2dt,y = 4t => dy = 4dt,z=-1+3t => dz = 3dt,O~t~l. 

fc xydx + y2 dy + yzdz = f0
1
[(1 + 2t)(4t)(2) + (4t)2 (4) + (4t)(-1 + 3t)(3)] dt 

9. F (r(t)) = e- t i + t 2
( -t) j + (t2 + t 3

) k, r '(t) = 2t i + 3e j - k and 

f. F · dr = rt (2te-t - 3t5 - (t2 + t 3) ) dt = [-2te-t - 2e-t - !t6 - !t3 - !t4] 
1 = ll - 1 c Jo 2 3 4 o 12 c · 

11. :
11 

[(1 + xy)e"'"] = 2xe"'11 + x 2 ye"'11 = :, [e" + x 2 e"'11 ] and the domain ofF is JR?, so F is conservative. Thus there 

exists a function f sue~ that F = 'V f. Then fu(x, y) = e11 + x 2 e"'11 implies f(x , y) = e11 + xe"'ll + g(x) and then 

f ,(x, y) = xye"'11 + e"'11 + g'(x) = (1 + xy)e"'ll + g'(x). But J,(x, y) = (1 + xy)e"'11 , so g'(x) = 0 => g(x) = K. 

Thus f (x, y) = e11 + xe"'" + [(is a potential function for F . 

13. Since tu (4x3y 2
- 2xy3) = Bx3y- 6xy2 = :, (2x4y- 3x2 y2 + 4y3) and the domain ofF is IR?, F is conse~ative. 

Furthermore f(x, y) = x4 y2
- x 2 y 3 + y 4 is a potential function for F . t = 0 corresponds to the point (0, 1) and t = 1 

corresponds to (1, 1), so f c F · dr = /(1 , 1) - /(0,.1) = 1 - 1 = 0. 
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340 0 CHAPTER 16 VECTOR CALCULUS 

15. C1: r(t)=t i +t2 j, -l ~t~ l; 

C2: r (t) = :-ti + j , - 1 ~ t ~ 1. 

Then 

Ic xl dx- x2ydy = f 1 (t
5

- 2t5 )dt + J~1 tdt 

~ [-.!t6)1 + [.!t2]1 = 0 
6 -1 2 -1 ' 

Using Green's Theorem, we have 

y 

cl 
. (-l , l ) ot--~~+---..., (1 . 1 ) 

X 

j~ xy
2 

dx - x
2
ydy = Ji [ :x (-x

2
y) - :y (xy

2
) ] dA = Ji (-2xy- 2xy) dA = /_

1

1
1: - 4xydydx 

= I~1 (-2xy2J~::2 dx = I~ 1 (2x5
- 2x)dx = [~x6 - x2t 1 = 0 

17. Ic x2 ydx- xy2 dy. = II [ tfx ( -xy2
)- %v (x 2y)] dA = .f[ ( - y 2

- x2
) dA = - I;" I; r 3 dr dB= -81r 

:r2 + y2 ~ 4 :z:2 + y2 ~ 4 

19. If we assume there is such a vector field G, then div( curl G) = 2 + 3z - 2xz. But div( curl F) = 0 for all vector fields F. 

Thus such a G cannot exist. 

.21. For any piecewise-smooth simple closed plane curve C bounding a region D, we can apply Green's Theorem to 

F(x, y) = f(x) i + g~y) j to get Ic f(x) dx + g(y) dy = IIo [ /!"' g(y) - /!11 f(x)] dA = Jj0 0 dA = 0. 
. ' 

23. \72 f = 0 means that~:{ + ~:; = 0. Now ifF= f v i- f x j and C is any closed path in D , then applying Green's 

Theorem, we get 

Ic F · dr= Ic fvdx- f x dY = IIo [:x (-fx)- /!11 Uv)] dA 

= -.f[0 (fxx + f.uv) dA = - IJ'v 0 dA = 0 

Therefore the line integral is independent of path, by Theorem 16.3.3. 

25. z = f (x, y) = x2 + 2y with 0 ~ x ~ 1, 0 ~ y ~ 2x. Thus 

27. z = f(x, y) = x2 + y2 with 0 ~ x2 + y2 ~ 4 so r ., x r 11 = -2x i - 2y j + k (using upward orientation). Then 

II5 z dS= II (x2 +y2 )J4x2 +4y2 +ldA 
;r2 + y2 ~ 4 

(Substitute u = 1 + 4r2 and use tables.) 

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and 

IIsF · dS =III E divFdV = f.[f E(z- 2) dV = I.ff Ez dV- 2III EdV 

= O [odd fu~ction in =. ] _ 2 . V(E) = _ 2 . h(2? = _Q17r' 
and E os symmctnc 3 3 
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Alternate solution: F(r(¢,B)) = 4sin¢ cosB cos¢ i - 4 sin¢ sinBj + 6sin ¢ cosB k, 

r q, x r o = 4sin2 ¢ cos .B i + 4sin2 <P sin Bj + 4sin¢ cos ¢ k, and 

F . (r q, x r o) = 16sin3 ¢ cos2 B cos¢ - 16sin3 ¢ sin2 B + 24sin2 ¢ cosq> cos B. Then 

CHAPTER 16 REVIEW D 341 

J fs F · dS = f0
2

" f 0" (16 sin3 ¢ cos¢ cos2 B - 16 sin3 ¢ sin2 B + 24 sin2 ¢ cos¢ cos B) d¢ dB 

= J:" ~(-16sin2 B) dB = - 6
3
4 1r 

31. Since curlF = 0 , JJ8 (curlF) · dS = 0. We parametrize C: r (t) = costi +sin t j , 0::; t::; 21r and 

f c F · dr = J:" (- cos2 t sin t + sin2 t cost) dt = 1 cos3 t + t sin3 t] ~,. = 0. 

33. The surface. is given by x + y + z = 1 or z = 1 - x- y, 0 ::; x::; 1, 0 ::; y::; 1- x and r, x r11 = i + j + k. Then 

fcF · dr = ffs curlF · dS = ffv(- y i - z j - x k ) · (i + j + k) dA = ffv(-1)dA =-(area of D) =-~. 

35. JJJ E divFdV = JJJ 3dV = 3(volume of sphere)= 47r. Then 
,2 + 112 + z2.,; 1 

F (r(¢, B)) · (r .p x r o) = sin3 
</J cos2 B + sin3 ¢ sin2 B + sin <P cos2 

</J = sin </J and 

ffs F · dS = J:" J; sin ¢d¢ dB = (27r)(2) = 47r. 

37. Because curl F = 0, F is conservative, so there exists a function f such that \1 f = F . Then f,(x, y, z) = 3x2yz - 3y 

implies f(x , y, z) = x3 yz - 3xy + g(y, z) => / 11 (x, y , z) = x 3 z - 3x + g11(y, z). But f 11 (x, y, z) = x3 z- 3x, so 

g(y, z) = h(z) and f(x, y , z) = x 3yz - 3xy + h(z). Then fz(x, y, z) = x3 y + h' (z) but fz(x, y, z) = x 3y + 2z, 

so h(z) = z2 + Kanda potential funct ion for F is f (x, y , z ) = x3yz - 3xy + z2 . Hence 

f c F · d~ = f c 'V f · dr = f(O, 3, 0) - f(O, 0, 2) = 0 - 4 = - 4. 

39. By the Divergence Theorem, J f s F · n dS = J J J ~ div F dV = 3( volume ?f E) = 3(8 - 1) = 21. 

and ffs 2a · dS = ffs curlF · dS = f c F · dr = f c(a x r) · dr by Stokes' Theorem. 
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-0 PROBLEMS PLUS 

1. Let 81 be the portion ofD(8) between 8(a) and 8, and let 881 be its boundary. Also let 8L be the lateral surface of 81 [that 

is, the surface of 8 1 except 8 and 8(a)]. Applying the Divergence Theorem we have/" { r ·
3
n d8 = { { { \l. r

3 
dV. 

J 8S1 r J J J s 1 r 

But 

"il · :3 = \ :x 1 :y ' !) · \ (x2 + y2x+ z2)3/2' (x2, + y2y + z2)3/2' (x2 + y./+ z2//2) 

(x2 + 1/ + z2 - 3x2) + (x2 + y2 + z2- 3y2) + (~2 + y2 + z2 - 3z2) - - o - (x2 + y2 + z2)5/2 -

=> j" { r '
3
° d8 = !" { { 0 dV = 0. On 'the other hand, notice that for the surfaces of 881 other than S(a) and 8, 

l os , r J l s, 

r · n = O => 

0 = !" { r ·3n dS = !" { r ·3n dS + !" { r ·an d8 + !" { r ·sn d8 = !" { r ·3n d8 + !" { r ·3n d8 => 
l os, r Js r Js(a) r JsL r i s r Js(a) r 

!Is r · n !"1 r · n r r - .
3
- d8 = - - 3- d8. Notice that on S(a), r =a => n = - - =-- and r · r = r 2 = a 2 , so 

s 1 S(a) r r a . 

that - / " r r ·3n d8 = !" r r ·4r d8 = !" r a: d8 = ~ !" r dS = area of2S (a) = ID(8) 1. 
J s(a) r . Js(a) a Js(a) a a Js(a) a 

!"{ r · n 
Therefore ID(S) I = Js ~ dS. 

3. The given line integral ~ .{0 (bz - CIJ) dx +(ex- az ) dy + (ay - bx) dz can be expressed as fc F · dr if we define the vector 

fie ld F by F (x, y, z) =Pi + Q j + R k = ~(bz- CIJ) i + Hex- az) j + ~(ay- bx) k. Then define 8 to be the planar 

interior ofC, so Sis an oriented, smooth surface. Stokes' Theorem says .fc F · dr = .ffs curl F · dS = JJ~ curl F . n d8. 

Now 

curl F = ( ~: - ~~) i + (a:; - ~=) j + ( ~~ - ~:) k 

= (~a+ ~a) i + (~b+ tb) j + (~c+ tc) k = a i +bj + ck = n 

so curlF · n = n · n = lnl2 
= 1, hence Jfs curl F · n dS = Jfs dS w hich is simply the su rface area of S. Thus, 

J~ F · dr = ~ j~(bz- cy) dx +(ex- az) dy + (ay .- bx) dz is the plane area.enclosed by C. 

5. (F ·\l) G= (p~:.rc+Ql:y+Rl !)cP2 i +Q2j+R2 k) 

= (p1 8P2 + Q1 8P2 + R1 8P2) i + (PI 8Q2 + Q1 8Q2 + R 1 8Q2) j 
ax By 8z OX 8y az 

= (F · \JP2) i + (F · \JQ2) j + (F · \JR2) k. 
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Similarly, (G · V) F = (G · V Pt) i + (G · VQt)j + (G · V Rl) k. Then 

k 

F xcurlG = 

8R2j8y - 8Q2/8z 8P2/Bz - 8R2/8x 8Q2j8x- 8P2/8y 

= (Q
1 

8Q2 _ Q
1 

8P2 _ Rt 8P2 + R t BR2) i + (R
1 

BR2 _ Rt 8Q2 _ Pt 8Q2 + Pt BP2) j 
ax By Bz Bx By Bz Bx By 

+ (p
1 

8P2 _ Pt 8R2 _ Q
1 

BR2 + Q
1 

BQ2 ) k 
8z ox By Bz 

and 

Then 

and 

Hence 

(F · V) G + F x curl G + ( G · V) F + G x curl F 

= [(p1 8P2 + p2 BPt ) + (Q1 BQ2 +Q2 BQt) + (Rt BR2 + R2 BRt)] i 
~ ~ ~ ~ ~ ~ 
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17 D SECOND-ORDER DIFFERENTIAL EQUATIONS 

17.1 Second-Order Linear Equations 

1. The auxiliary equation is r 2
- r- 6 = 0 => (r- 3)(r + 2) = 0 => r = 3, r = -2. Then by {8) the general s?lution 

isy = c1e3"' +cze-2
"'. 

3. The auxiliary equation is r 2 + 16 = 0 => r = ± 4i. Then by ( 11 ) the general solution is 

y = e0"'(c1 cos4x + cz sin4x) = c1 cos4x + c2 sin4~. 

5. The auxiliary equation is 9r2
- 12r· + 4 = 0 => (3r- 2)2 = 0 => r = ~·Then by (10), the general solution is 

_1· The auxiliary equation is 2r·2 - r = r(2r - 1) = 0 => r = 0, r = t, soy = c1e0
"' + cze"/2 = c1 + c2 e"'12 . 

4± v'-36 . 
9. The auxiliary equation is r 2 

- 4r + 13 = 0 => r = 
2 

~ 2 ± 3t, soy = e2
"' ( c1 cos 3x + c2 sin 3x ). 

11. The auxil iary equation is 2r2 + 2r - 1 = 0 => r = -
2 ~ v'I2 = -~ ± v;, so 

y = c1e( - l/2+VJ/2)t + cze( - l /2 - VJ/2)t. 

- 200 ± V - 400 1 . 
13. The auxiliary equation is 100r 2 + 200r + 101 = 0 => r = 

200 
::;= -1 ± Tiit, so 

P = e-t (c1 cos ( iot) + c2 sin U0 t)] . 

15. The auxiliary equation is 5r2
- 2r- 3 = (5r + 3)(r - 1) = 0 => r = _ 1 5, 

r = 1, so the general solution is y = c1 e-3x/S + c2e"' . We graph the basic 

solutions f(x) = e- S:r/5 , g(x) = e"' as well as y = e-3x/S + 2e"', 

y = e- 3x /f> - e"', and.y = - 2e- 3
"'/

5
- e"'. Each solution consists of a single 

continuous curve that approaches either 0 or ±oo as x _, ± oo. 

10 

17. r 2
- 6r + 8 = (r - 4)(r- 2) = 0, so r = 4, r· = 2 and the general solution is y = c1e4

"' + c2 e2
"'. Then 

·y' = 4c1e4
"' + 2cze2

"', so y(O) = 2 => c1 + cz = 2 and y'(O) = 2 => 4cl + 2cz = 2, giving c1 = - 1 and c2 = 3. 

Thus the solution to the initial-value problem is y = 3e2
"' - e4

"'. 

19. 9r2 + 12r + 4 = (3r + 2? = 0 => r =-~and the general solution is y = c1e- 2
"'/

3 + c2 xe-2"'13 . Then y(O) = 1 => 

c1 = 1 and, since y' = - fr cle- 2
"'

13 + Cz (1 - ~x) e-2"'13, y'(O) = 0 => -~c1 + cz = 0, so c2 = t and the solution to 

the initial-value problem is y = e- 2"'13 + ~xe-2"'/3. 
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3.c6 0 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS 

21. r 2 - 6r + 10 = 0 => r = 3 ± i and the_ general solution is y = e3"'(c1 cosx + c2 sinx). Then 2 = y(O)·= c1 and 

3 = y' (0) = c2 + 3ct => c2 = -3 and the solution to the initial-value problem is y = e3
"' (2 cos x - 3 sin x ). 

23. r 2
- r- 12 = (r- 4)(r + 3) = 0 => r = 4, r = - 3 and the general solution is y = c1e4

"' + c2e- 3"'. Then 

0 = y(1) = c1e4 + c2e-3 and 1 = y' (1) = 4cte4 
- 3c2e-3 so Ct = te- 4

, c2 = -te3 and the solution to the initial-value 

25. r 2 + 4 = 0 => r = ±2i and the general solution is y = c1 cos 2x + c2 sin 2x. Then 5 = y(O) = c1 and 3 = y(1r / 4) = c2, 

so the solution of the boundary-value problem is y = 5 cos 2x + 3 sin 2x. 

27. r 2 + 4r + 4 = (r + 2)2 = 0 => r = -2 and the general solution is y = c1e-2"' + c2xe-2"' . Then 2 = y(O) = c1 and 

0 = y(1) = c1e- 2 + c2e- 2 so c2 = -2, and the solution of the boundary-value problem is y = 2e- 2"' - 2xe-2"'. 

29. r 2 - 7' := r(r- 1) = 0 => r = 0, r = 1 and the general solution is y = c1 + c2e"' . Then 1 = y(O) = c1 + c2 

e -2 1 e-2 ~ 
and 2 = y(1) = Ct + c2e so c1 = --, c2 = --. The solution of the boundary-value problem is y = -- + --. 

e-1 e - 1 . e-1 e- 1 

31. r 2 + 4T + 20 = 0 => r = - 2 ± 4i and the general solution is y = e- 2"' (ct cos4x + c2 sin 4x). But 1 = y(O) = c1 and 

2 = y( 1r) = c1 e _2,. => Ct = 2e2,., so there is no solution. 

33. (a) Case 1 (A = 0): y" + AY = 0 => y" = 0 which has an auxiliary equation r 2 = 9 => r = 0 => y = Ct + c2x 

where y(O) = 0 and y(L) = 0. Thus, 0 = y(O) = Ct and 0 = y(L) = c2L => Ct = c2 = 0. Thus y = 0. 

Case 2 (A< 0): y" + Ay = 0 has auxiliary equation r 2 = ->.. => r = ±..J=X [distinct and real since A< 0] => 

y = c1e.;::x"' + c2e- ..r-x"' where y(O) = 0 and y(L) = 0. Thus 0 = y(O) = Ct + c2 (*)and 

0 = y(L) = Cte.;=xL + c2e- .,..CXL {t). 

Multiplying(*) b~ e.;=xL and subtracting (t) gives c2 ( e.,..CXL - e- ..r-xL) ·= 0 => c2 = 0 and thus Ct = 0 from(*). 

Thus y = 0 for the cases >.. = 0 and A < 0. 

(b) y" + A 'I/ = 0 has an auxiliary equation r 2. + A = 0 => r = ±i ,;>.. => y = c1 cos ,;>.. x + c:2 sin,;>.. x where 

y(O) = 0 and y(L) = 0. Thus, 0 = y(O) = Ct and 0 = y(L) = c2 s in JXL since Ct = 0. Since we cannot have a trivial 

solution, c2 i' 0 and thus sin,;>.. L = 0 => ,;>.. L = n1r where n is an integer => A = n 2
1r

2 J L2 and 

y = c2 sin( n1rx / L) where n is an integer. 

35. (a) r 2 - 2r + 2 = 0 => r = 1 ± i and the general solution is y = e"' (c1 cosx + c2 sin x). lfy(a) = c and y(b) = d then 

ea. (c1 cos a+ c2 sin a) = c => Ct cos a+ c2 sin a= ce-a and eb (c1 cosb + c2 sin b)= d => 

Ct cosb + c2 sin b = de- b. This gives a linear system in c1 and c2 which has a unique solution if the lines are not parallel. 

If the lines are not vertical or horizontal, we have parallel lines if cos a = .k cos band sin a = k sin b for some nonzero 
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cos a sin a 
constant k or --b = k = ---:--b 

'cos SID 
=> 

sina sinb => tan a = tan b => b - a = mr, n any integer. (Note that 
cosa cosb 

none of cos a, cos b, sin a, sin b are zero.) If the lines are both horizontal then cos a = cos b = 0 ::::? b - a = mr, and 

similarly vertical lines means sin a = sin b = 0 => b- a = mr. Thus the systerit has a unique solution if b - a t= mr. 

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if 

b - a = mr. If the lines are not horizontal, they are identical if ce-a = kde-b ::::? ce-a =k=~ 
de-b cosb => 

c b cos a . sin a . 
- = ea- --b. (If d = 0 then c = 0 also.) If they are honzontal then cos b = 0, but k = ---:--b also (and SID b t= 0) so 
d ~ ~ 

. c a bsina h th h I . 'fb d c ..J. a- bcosa . we reqmre -d = e - ---:--b. T us . e system as no so ullon 1 - a = n1r an -d r e --b unless cos b = 0, m 
SID COS ' 

h. h c _J. a- bsin a 
w IC case d r e sin b . 

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs 

b d. c a-bcosa ni b 0 0 hi h c a- bsina when - a = n1r an -d = e --b u ess cos = , m w c case -d = e ---:--b. 
cos sm 

17.2 Nonhomogeneous Linear Equations 

1. The auxiliary equation is r2 
- 2r - 3 = (r- 3)(r + 1) = 0 ::::? r = 3, r = - 1, so the complementary solution is 

Yc(x) = c1e3"' + c2e-"'. We try the particular sc;>lution yp(x) = Acos2x + Bsin2x, so 

y~ = - 2A sin 2x + 2B cos 2x andy~ = - 4A cos 2x - 4B sin 2x. Substitution into the differential equation gives 

( -4Acos 2x - 4Bsin2x)- 2( -2Asin2x + 2B~os2x)- 3(Acos2x + Bsin2x) = cos2x => 

(-7A- 4B) cos2x + (4A -7B) sin2x = cos2x. Then -7A - 4B = 1 and 4A - 7B = 0 => A =- :,., and 

B = - 6~. Thus the general solution is y( x) = Yc( x) + YP ( x) = c1 e3
"' + c2e - x - 6

7
5 cos 2x - 6; sin 2x. 

3. The auxi liary equation is r 2 + 9 = 0 with roots r = ± 3i, so the complementary solution is Yc(x) = c1 cos 3x + c2 sin 3x. 

Try the particular solution yp(x) = Ae-2
"', soy~= - 2Ae-2

"' andy~ = 4Ae- 2
"' . Substitution into the differential equation 

gives 4Ae- 2
"' + 9(Ae- 2

"') = e- 2
"' or 13Ae- 2

"' = e-2
"'. Thus 13A = 1 ;> A= f3 and the general solution is 

5. The auxiliary equation is r 2 
- 4r + 5 = 0 with roots r = 2 ± i , so the complementary ·solution is 

Yc(x) = e2"'(c1 cosx + c2 sin x). Try yp (x) = Ae-"' , soy~= - Ae-"' andy~ = Ae-"'. Substitution gives 

Ae-:r- 4( -Ae-"') + 5(Ae-x) = e-"' => lOAe-"' = e-"' ::::? A = 
1
1
0

• Thus the general solution is 
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7. The a~xiliary equation is r 2 + 1 = 0 with roots 1' = ±i, so the complementary solution is Yc(x) = C1 cosx + c2 sinx. 

For y"-+: y = e"' try yp1 (x) = Ae"'. Then y~1 = y;1 = Ae"' and substitution gives Ae"' +'Ae"' = e"' => A=~. 

so yp1 (x) = ~ e"'. For y" + y = x 3 try y 112 (x) = Ax 3 + Bx2 + Cx + D. Then y~2 = 3Ax2 + 2Bx + f:! and 

y;2 = 6Ax + 2B. Substituting, we have 6Ax + 2B + Ax 3 + Bx2 + Cx + D = x 3
, so A = 1, B = 0, 

6A + C.= 0 => C = - 6, and 2B + D = 0 => D = 0. Thus Yv2 ( x) = x 3 
- 6x and the general solution is 

y(x) = Yc(x) + Yp1 (x) + YP2 (x) = c1 cosx + C2 sin x + ~e"' + x3
- 6x. But 2 = y(O) = c1 + 4 => 

c1 = ~ and 0 = y' (0) = c2 + ~ - 6 => c2 .= ¥. Th11s the solution to the initial-value problem is 

y(x) = ~ cosx + ¥ sinx + %e"' + x3
- 6x. 

9. The auxiliary equation is r 2 
- r = 0 with roots r = 0, r = 1 so the complementary solution is Yc(x) = c1 + c2 e"'. 

Try yp(x) = x(Ax + B)e"' so that no term in YP is a solution of the complementary equation. Then 

y~ = (Ax2 + (2A + B)x + B)e"' andy;= (Ax2 + (4A + B )x + (2A + 2B))e"'. Substitution into the differential equation 

gives (Ax 2 + (4A + B)x + (2A + 2B))e"'- (Ax2 + (2A + B )x + B)e"' = xe"' => (2Ax + (2A + B))c"' = xe"' => 

A =~. B = -1. Thus yp(x) = (!x2
- x)e"' and ~he general solution is y(x) = c1 + c2e"' + Gx2 - x)e"'. But 

2 = y(O) = c1 + c2 and 1 = y' (0) = c2 - 1, so c2 = 2 and c1 = 0. The solution to the initial-value problem is 

y(x) = 2e"' + (~x2 - x)e"' = e"'(!x2
- x + 2)'. 

11. The auxiliary equation is r 2 + 3r + 2 = (r + 1)(r + 2) = 0, so r = - 1, r = - 2 and Yc(x) = c1e- "' + c2e-2"'. 

Try YP = A cos x + B sin x => y~ = - A sin x + B cos x, y; = - A cos x - B sin x . Substituting into the differential 

equation gives (- A cosx - B sin x) + 3( - A sin x + B cos x) + 2(Acosx + B sin x) = cosx or 

(A + 3B) cos x + ( -3A + B) sin x = cos x. Then solving the equations 

A + 3B ·= 1, - 3A + B = 0 gives A = 1
1
0 , B = fo and the general 

solution is y(x ) = c1e-"' -j- c2e-2"' + 1
1
0 cos x + fo sinx. The graph 

shows yp and several other solutions. Notice that all solutions are 

asymptotic to YP as x -+ oo. Except for y 11 , all solutions approach either oo 

or -oo as x -+ - oo. 

-3 ~~~7-?~~~~~ s 

Yp 

- 3 

13. Here Yc(x) = cre2"' + c2e-"', and a trial solution is 1h•(x) = (Ax+ B)e"' cosx + (Cx + D )e"' sin x. 

15. Here Yc(x) = c1e2"' + c2e"'. For y"- 3y' + 2y = e"' try y1,1 (x) = Axe"' (since y = Ae"' is a solution of the complementary 

equation) and fo~ i/' - 3y' + 2y = sin x try yp2 (x) = B cos x + C sin x. Thus a trial solution is 

Yp (x) = Yv1 (x) + Yp2 (x) =Axe"' + B cosx + Csin x. 

17. Since Yc(x) = e- x (c1 cos 3x + c2 s in 3x) we try Yv(x) = x(Ax2 + Bx +C) e- x cos 3x + x(Dx2 +Ex+ F) e-x sin 3x 

(so that no term ofyp is a solution of the complementary equation). 
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.Note: Solving Equations (7) and (9) in The Mettiod of Variation of Parameters gives 

and 

We will use these equations rather than resolving the system in each of the remaining exercises in this section. 

19. (a) Here4r2 + 1 = 0 => r = ±tiand Yc(x) = Clcos(tx) + czsin(~x). Wetryaparticularsolution ofthe form 

Yv(x) = Acosx + Bsinx => y~ = -Asinx + Bcosx and v;: = - Acosx - Bsin x. Then the equatio~ 

4y" + y = cosx becomes 4( - Acosx- Bsinx) + (Acosx + Bsinx) = cosx or 

-3Acosx- 3Bsinx = cosx => A= - 1, B = 0. Thus, Yv(x) = - % cosx and the general solution is 

(b) From (a) we know that Yc(x) = c1 cos~+ cz sin~· Setting Yl =cos~. Yz = sin~, we have 

I cosxcos~ 1 "' "'1 ·2x "' andu2 = 1 = 2 cos (2 · 2 )cos 2 = 2 (1 -2sill 2 )cos 2 . Then 
4 ·2 

( ) J (} • X 2 X • "') dx X + 2 3 Z d U 1 X = 2 Sill 2 - COS 2 Sill 2 = - COS 2 'j COS 2 an 

() J( l x · 2x x) d · :r. 2 · 3x Tl U2 X = 2 COS 2 - Sill 2 COS 2 X = SID 2 - ~ SID 2 . lUS 

yp(x) = (-cos~ + ~ cos3 ~)cos~ + (sin~ - i sin3 ~)sin~ = - ( cos2 ~ - sin2 ~) + j ( cos4 ~ - sin4 ~) 

= - cos {2 · ~) + i ( cos2 ~ + sin2 ~) ( cos2 ~ - sin2 ~) = -cos x + j cos x = - i cos x 

and the general solution is y(x) = Yc(x) + y1,(x) = c1 cos~. + Cz sin~- t cos x. 

21. (a) r 2 - 2r + 1 = (r -1)2 = 0 => r· = 1, S? the complementary solution is Yc(x) = c1e'" + czxex. A particular solution 

is of the form Yv(x) = Ae2
"'. Thus 4Ae2

"'- 4Ae2
"' + Ae2

"' = e2
"' => Ae2"' = e2:r: => A= 1 => Yv(x) = e2"'. 

So a general solution is y(x) = Yc(x) + Yv(x) = c1ex + c2xe"' + e2"'. 

(b) From (a), Yc(x) = c1e"' + czxex, so set Yl = ex, Yz = xex. Then, Y1Y~ - YzY~ = e2"' (1 + x) - xe2"' = e2"' and so 

u~ = - xe"' => u1 (x) = - J xe:r: dx = - (x - 1)e"' [by parts] and u~ = e"' => u2(x) = J e"' dx = e"' . Hence 

yp (x ) = (1- x)e2
"' + xe2

"' = e2
"' and the general solution is y(x) = Yc.(x) + yp(x) = c 1 e "' + czxe"' + e 2 "'. 

23. As in Example 5, Yc(x) = c1 sin x + cz cosx, so set Y1 = sinx, Yz = cos x . Then Y1Y~ - YzYi =- sin2 x- cos2 x = - 1, 

so ui = 
sec2 x cosx 

_
1 

= secx => ul(x) = J sccxdx =ln(secx + tan x)for. O <x<~ , 

d 1 sec2 x sin x 
an u2 = _

1 
= -secx tanx => uz(x) = - secx. Hence 

Yv(x) = ln(sec x +tan x) · sin x - sec x · cos x = sin x ln(sec x + tan x) - 1 and the general solution is 

y(x) = c1 sin x + Cz cosx +sin x ln(secx + tan x)- 1. 
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o: 2o: 1 1 3x 1 -e
2

x 
25. Yt = e , Y2 = e and Yt Y2 - Y2Y1 = e . So Ut = (

1 
) 3 = · +e- o: e"' 

e- x . 
--- and 
1 + e-x 

U2 (x) = I 3 ex 2 dx = m(e"' + 
1

) -e-o: = ln(1 + e - "') - e-x. Hence 
e"'+e"' ex 

yp(x) =ex 1nn .+e-x) + e2"'[ln(1 +e-x)- e-"'J and the general solution is 

y(x) = (c1 + ln(1 + e - "' )]e"' + [c2 - e- x + ln(1 + e- ")]e2"'. 

27. r2 - 2r + 1 = (r -1)2 = 0 => r = 1 so Yc(x) = Ct e"' + c2xe"'. Thus Yt =ex, Y2 = xe"' and 

xe'c · e"' /(1 + x2 ) x 
YIY~- y2y~ = e"'(x + 1)ex- xe"'e"' = e2

"'. Sou~=- 2 = - -
1
--2 ~ ex + x 

I x 1 ( 2 ) 1 e"' · e"' /(1 + x
2
) 1 I 1 d -I d 

Ut = - 1 + x 2 dx = - 2 In 1 + x , u2 = e2"' = 1 + x2 ~ U2 = 1 + x2 x = tan x an 

yp(x) = - 4e"' ln(1 +x2) +xe"'tan-1 x. Hence the general solution isy(x) = e"' [c1 + c2x- ~ ln(1 + x2) +xtan-1 x]. 

17.3 Applications of Second-Order Differential Equations 

1. By Hooke's Law k(0.25) = 25 so k = 100 is the spring constant and the differential equation is 5x" + 100x = 0. 

The auxiliary equation is 5r2 + 100 = 0 with roots r = ±2 J5 i , so the general solution to the differential equation is 

x(t) = c1 cos(2 V5 t) + c2 sin(2 V5 t). We are given that x(O) = 0.35 ~ c1 = 0.35 and x1(0) = 0 ~ 

2 J5 c2 = 0 => c2 = 0, so the position of the mass after t seconds is x(t) = 0.35 cos(2 J5 t). 

3. k(0.5) = 6 or k = 12 is the ·spring constant, so the initial-value problem is 2x" + 14x1 + 12x = 0, x(O) = 1, x 1 (0) = 0. 

The general solution is x(t ) = c1e-Gt + c2e-t. But 1 = x(O) = c1 + c2 and 0 = x1 (0) = -6c1 - c2. Thus the position is 

given by :i:(t) = -~e-6t + ~e-t. 

5. For critical damping we need c2 
- 4mk = 0 or m = c2 /(4k) = ·142 /(4 · 12) = ~ kg. 

2 . d 
7. We are given m = 1, k = 100, x(O) = -0.1 and x1 (0) = 0. From (3), the differential equation is ~t~ + c d; + 100x = 0 

with auxiliary equation r 2 + cr + 100 = 0. 

If c = 10, we have two complex roots r = - 5 ± 5 v'3 i, so the motion is underdamped and the solution is 

x =e-st [ct cos(5 v'3t) + c2 sin(5 v'3 t)J. Then -0.1 = x(O) = c1 and 0 = x1 (0) = 5 v'3c2 - 5ct 

sox=e-st [--;0.1cos(5v'3t)- 10J:isin(5v'3t)]. 

. - - 1 
~ C2 - "i:ii"7s , 
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If c = 15, we again have underdamping since the auxi liary equation has roots r = - lf ± fL:{f-i. The general solution is 

x = e- 15
t/'2 [c1 cos(fL:{f-t) + c2 sin( 2flt) ], so - 0.1 = x (O) = c1 and 0 = x'(O) = fL:{f-c2 - lf c1 => c2 = - 10

3
77 . 

Thus x - e-lSt/2 [-o 1 cos( 5 .fit) -~ sin(!b(J_t)] - · 2 10 v7 2 · 

For c = 20, we have equal roots r 1 = r2 = -10, so the oscillation is critically damped and the solution is 

x = (c1 + c2t)e-10
t_ Then -0.1 = x(O) = c1 and 0 = x'(O) = -10c1 + c2 => c2 = -1, sox= ( -0.1- t)e-101 . 

If c = 25 the auxiliary equation has roots r1 = --,-5, r2 = ...:.20, so we have overdamping and the solution is 

X= c1e-st + C2e- 20t. Then -0.1 = x(O) = Cl + C2 and 0 = x'(O) = -5cl- 20c2 => C1 =- {5 and C2 = fo• 

If c = 30 we have roots r = -15 ± 5 v's, so the motion is 

overdamped and the solution is x = c1 e( -IS+ 5 v'5 )t + c2e( - 15
-

5 v'5 )t. 

Then -0.1 = x(O) = C1 + c2 and 

O=x'(O) = (-15+5v's)c1+(-15-5v's)c2 => 

-5 - 3 y'5 d -5 + 3 v'5 c1 = 100 an c2 = 100 , so 

_ ( - s- 3 fi) ( - 15+ s v'S)t + ( -s ± 3 v'5) e< -1s - & fi)t x- wo e 100 · · 

0.02 

-0.11 

c = 10 
c = 15 

9. The differential equation is mx" + kx = Fo coswot and wo "1- w = .jkfm. Here the auxil iary equation is mr2 + k = 0 

with roots ±.jklmi = ±wi so Xc(t) = c1 coswt + C2 sinwt. Since wo "1- w, try x1,(t) = Acoswot + B sinwot. 

Then we need (m) ( -w5) (A coswot + B sinwot) + k(Acoswot + Bsinwot) = Fo coswot or A(k- mw~) = Fo and 

B(k - ~w5) = 0. Hence B = 0 and A = k Fo 2 = ( ;"0 
2) since w2 = k. Thus the motion of the mass is given · - mw0 m w - w0 m 

11. From Equation 6, x(t) = f(t) + g(t) where f(t) = c1 coswt + c2 sinwt and g(t) = ( ;o 2) cosw0 t. Then f 
mw - w0 

is periodic, with period :.:r, and if w "1- wo, g is periodic with period :,~. If :'
0 

is a rational number, then we can say 

~ = !..
1
' => a = bw where a and b are non-zero integers. Then 

wo J wo 

'x(t +a·:;-)= f(t +a· 2
;) + g(t +a· :.:r) = f(t) + g(t + :~ · :.:r) = f(t) + g(t + b - :,~) = j(t) + g(t) = x(t) 

so x(t) is periodic. 

13. Here the initial-value problem for the charge is Q" + 20Q' + 500Q = 12, Q(O) = Q' (0) = 0. Then 

Qc(t) = e- lOt(c1 cos 20t + c2 sin 20t) and try Qp (t) = A => 500A = 12 or A = 1~5 . 

The general solution is Q(t) = e -IOt(c1 cos 20t + c2 sin 20t) + 1~5 • But 0 = Q(O) = c1 + 1~6 and 
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Q' (t) = I (t) = e-lot[( -10c1 + 20c2) cos 20t + ( - lOc2- 20ct) sin 20t) but 0 = Q'(O) = - 10c1 + 20c~. Thus the charge 

is Q(t) = - 2~0 e- tot(6 cos 20t + 3 sin 20t) + 1~5 and the current is J(t) = e-lOt (~)sin 20t. 

15. As in Exercise 13, Qc(t) = e-tot(ci. cos 20t + c2 sin20t) but E(t) = 12sin lOt so try 

Qp(t) = A cos lOt+ B sin lOt. Substituting into the differential equation gives 

(-lOOA + 200B + 500A)cos lOt+ (-lOOB- 200A + 500B) sin lOt = ·12sin lOt => 

400A + 200B = 0 and 400B - 200A = 12. Thus A= -2~0 , B = 1~5 and the general solution is 

Q(t) = e- lOt(c1 cos 20t + c2 sin 20t) - 2~0 cos lOt+ 1~5 sin lOt. But 0 = Q(O) = c1 - 2~0 so c1 = 2~0 . 

Also Q' (t) = fs sin lOt+ 2
6
5 cos lOt+ e-lOt[( - lOc1 + 20c2) cos 20t + ( -lOcz - 20ct) sin 20t] and 

0 = Q' (0) = fg - lOc1 + 20c2 so c2 = - 5~0 . Hence the charge is given by 

Q(t) = e-wt ( 2~0 cos 20t- 5~0 sin 20t] - 2~0 cos lOt + 1~5 sin lOt. 

11. x(t)=Acos(wt +8) ¢:? x(t)=A[coswtcos8-sinwtsin5] ¢:? x(t)=A(~coswt+~sinwt)where 

cos 8 = c1 / A and sin 8 = -c2/ A ¢:? x(t) = c1 cos wt + c2 sin wt. [Note that cos2 8 + sin2 8 = 1 => c~ + c~ = A 2 
.) 

17.4 Series Solutions 

00 00 

1. Let y(x) = 2: C,:.x" . Then y'(x) = 2: nenx"-1 and the given equation, y' - y = 0, becomes 
n=O · n=l 

00 00 00 00 

2: nenxn-l- 2: CnX" = 0. Replacing n by n + 1 in the first sum gives 2: (n + l)cn+tX"- L enx" = 0, so 
n=l n=O n=O n=O 

00 

2: [(n + l)Cn+I- en]x" = 0. Equating coefficients gives (n + l )cn+l - en= 0, so the recursion relation is 
n=O 

oo oo · oon 

in general, en= ~.Thus, the solution is y(x) = 2: cnx'' = 2: c~ x" = eo 2: ; = eoe"' . 
n. n=O n=O n. n=O n. 

00 00 00 

3. Assuming y(x) = 2: enx", we have y'(x) = 2: ncnx"-1 = 2: (n + l)Cn+tx" and 
n = O n =l n=O 

~ 00 00 00 

-x2y =- I:: Cnx"+2 =- I:: Cn- 2x". Hence, the equation y' = x 2y becomes I:: (n + l )cn+tx"- 2: Cn- 2x" = 0 
n=O n=2 n=O n=2 

or Ct + 2c2x + f: [(n + l)cn+I - Cn-2) x" = 0. Equating coefficients gives Ct = c2 = 0 and Cn+t = Cn-2
1 n=2 n+ 

for n = 2, 3, ... . But c1 = 0, so C<1 = 0 and C7 = 0 and in general C3n+l = 0. Similarly C2 = 0 so C3n+2. = 0. Finally 

Co C3 CO CO . C6 Co Co Co . 
C3 = 3' C6 = ·5 = 6 . 3 = 32 . 21 , cg = 9 = 9 . 6 . 3 = 33 . 31 , ... , and C3n = 3n . n!. Thus, the solution 

00 00 00 c 00 x3n 00 (x3/3) n 3 

isy(x) = L CnXn = 2: C3nX3
n = 2:::: -

3 
O 1x

3" =Co L -
3 

I = Co L - - 1- = coe'" 13. 
n=O n=,O n=O n. n . n=O nn. n = O n. 
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~ ~ ~ 

5. Let y (x) = I: c.,x" '* y' (x) = I: nenx"-1 and y" (x) = I: (n + 2){n + l)cn+2X". The differential equation 
n= O n=l n =O 

00 . 00 00 00 

becomes L: (n + 2){n + 1)cn+2x" + x I: nc.,.x"- 1 + L.: CnX
11 = 0 or L.: [(n + 2){n + 1)cn+2 + nen + en]x" = 0 

n=O n=l n= O n=O 

[since n~1 nenx" = n~O ncnx"] . Equating coefficients gives (n + 2)(n + 1)Cn+2 + (n + 1)Cn = 0, thus the 

. I . . - (n + l )c,. Cn 0 1 2 Th th 
recurs1onreat1ontscn+2= (n+ 2)(n+l) =--n-+- 2 ,n=,, , .... en eeven 

ffi . . b Co C2 co C4 Co d . 1 coe ctents are gtven y c2 = - 2 , C4 = - 4 = 
2

. 
4

, co= -6 =-~,an m genera, 

n Co ( - 1)"Co . C1 C3 C1 C5 C1 
c2n = (-1) 

2 
= 

2 1 • Theoddcoeffi.ctents are C3 = - -
3

, cs = - - = -
3 

, c7 = - - = - --- , 
2 · 4 · · · · · n n n. 5 · 5 7 3 · 5 · 7 

d . I ( l )n Cl . (-2)nn!ct Th I . . 
an m genera, C2n+l = -

3 5 7 (Z ) = (2 l )l . e so utton IS 
· · ····· n+ 1 n+ . 

00 (-1)" ~ 00 {-2)n n l 
1 {x) = c "' - - x-" + c "' · x2"+1 
y 0 L- 211 ' 

1 
L- {2 + 1)1 n=O n. n =O n · 

00 00 00 00 

7. Let y (x) = L.: CnX" :::} y' (x) = I.: ncnx"-1 = I.: (n + l)Cn+lx" .and y" (x) = L.: (n + 2){n + l )c,+2xn. Then 
n=O n=l n=O n=O 

00 00 00 00 

(x -1)y"(x) = L (n+2){n+ l )Cn+2Xn+l _ L.: (n+2)(n+l)cn+2X" = L n(n+1)Cn+1x"- I.: (n+2) (n+ l )cr•+2x". 
n = O n=O n =l n =O 

DO 00 

Since L.: n(n + 1)cn+1x" = L.: n(n + 1)Cn+J.'t", the differential equation becomes 
n = l n=O 

DO 00 00 

L n(n + l)Cn+lX"- L.: (n + 2)(n + 1)Cn+2X" + 2: (n + 1)Cn+!X" = 0 :::} 
n=O n=O n =D 

00 00 

L: [n(n + 1)Cn+l - (n + 2)(n + l )Cn+2 + (n + 1)cn+1]x" = 0 or 2: [(n + 1)2cn+I - (n + 2)(n + 1)Cn+2]x" = 0. 
u=O n=O 

Equating coefficients gives (n + 1)2c,,+I - (n + 2)(n + 1)cn+2 = 0 for n = 0, 1 , 2, .... Then the recursion relation is 

in general en = Ct , n = 1, 2, 3, .... Thus the solution is y(x) =Co + c1 f xn. Note that the solution can be expressed as 
n n =1 n 

co- c1 ln{l - x) for JxJ < 1. 

00 00 

9. Let y(x) = 2::.: c .. x".-Then -xy'(x) = - x L.: nc,.xn- I 
~ ~ 

2: nc.,x" =- L.: ncnx", 
n=O n=l n= l n =O 

~ 

y"(x) = L.: (n + 2){n + l )cn+2X" , and the equation y"- xy' - y = 0 becomes 
n = O 

00 

L: [(n + 2)(n + 1)Cn+2- nen - en]x" = 0. Thus, the recursio11 relation is 
n = O 

© 2012 Cengage L<nrnlng. All Rights Rcscrv<-d. Muy not be scunned, copied, or duplicnu:d, or posted 10 n publicly accessible website. in whole or in pan. 



354 0 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS 

nc,.. + Cn c,..(n + 1) . Cn ~ 0 1 2 ·o fth · d' · · {0) 1 8 
Cn+2=(n+ 2)(n + 1)=(n+ 2){n+ 1)=n+ 2 .orn =, , , .. . . neo eg•vencon•tlons •sy =. ut 

y(O) = n~o c,..(O)" = ~ + 0 + 0 + .. · =eo •. so Co= 1. Hence, C2 = ~ = ~· C4 = ~ = / 4 , C6 = ~ = 2 . ~ . 6 , ... , 

/ 

C2n = 
2
! 

1
• The other given condition is y' (0) = 0. But y' {0) = f ncn(O)n-l = c1 + 0 + 0 + · · · = C1, so C1 = 0. 

n. n=l 
I 

By the recursion relation, ca = ~ = 0~ cs = 0, .. . '. C2n+l = 0 for n = 0, 1, 2, . . .. Thus, the solution to the initial-value 

00 00 00 x2n 00 (x2/2)n 2 

problem is y(x) = L; c,..xn = L; C2nX2n = L; -
2

,.. 
1 

= L; - -
1
- = e"' / 2. 

n =O . n=O n=O n. n = O n. 

00 00 00 00 00 

11. Assuming that y(x) = L; cnx", we have xy = x L; c,..xn = L; c,..xn+l, x2y' = x 2 L; nc,,xn- l = L; ncnxn+t, 
n=O n=O n=O n= l n=O 

y"(x)= f: n(n-1)c,..x"-2 = f: (n+3){n + 2)Cn+ax"+1 [replace n with n + 3] 
n=2 n=- 1 

= 2c2 + f (n + 3){n + 2)Cn+ax"+l, 
n =O 

00 

and the equation y" + x2 y' + xy = 0 becomes 2c2 + L; [(n + 3)(n + 2)Cn+a + ncn + c,..J xn+l = 0. So c2 = 0 and the 
n =O 

(n + l)c,.. 
( )( ) , n = 0, 1, 2, .. . . But Co = y(O) = 0 = c2 and by the 
n+3 n+2 

recursion relation, Can = can+2 ~ 0 for n = 0, 1, 2, .... Also, c1 = y' (0) = 1, so C4 = - :~~ = -
4 
~ 

3
, 

17 Review 
CONCEPT CHECK 

1. (a) ay" +by' + cy = 0 where a, b, and care constants. 

(c) If the auxiliary equation has two distinct real roots r 1 and r·2, the solution is y = c1 ert"' + c2er2 "'. If the roots are real and 

equal, the solution is'!/ = c1 er"' + c2xer"' where r is the common root. If the roots are complex, we can write r1 = a+. i/3 

and r2 = a- i/3, and the solution is y = ea"'(c1 cos/3x + c2 sin/3x). 

2. (a) An initial-va lue problem consists of finding a solution y of a second-order differential equation that a lso satisfies given 

conditions y(xo) =Yo andy' (xo) = '!/I. where yo and '!/1 are constants. 
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(b) A boundary-value problem consists. of finding a solution y of a second-order differential equation that al~o satisfies given 

boundary conditions y(xo) =Yo and y(x1) = Yl· 

3. (a) ay" +In/ + CIJ = G{x) where a, b, and care constan ts and G is a continuous function. 

(b) The complementary equation is the related homogeneous equation ay" +by'+ cy = 0. If we find the general solution Yc 

of the complementary equation and YP is any particular solution of the original differential equation, then the general 

solution of the original differential equation is y(x) = Yr> (x) + Yc(x). 

(c) See Examples 1-5 and the associated discussion in Section 17.2. 

(d) See the discussion on pages 11 77- 1179 [ ET 1153-11 55]. 

4. Second-order linear differential equations can be used to describe the motion of a vibrating spring or to analyze an electric 

circuit; see the discussion in Section 17 .3. 

5. See Example I and the preceding discus.sion in Section 17 .4 .. 

TRUE-FALSE QUIZ 

1. True. See Theorem 17.1.3. 

3. True. cosh x and sinh x are linearly independent solutions of this linear homogeneous equation. 

EXERCISES 

·1. The auxi liary equation is 4r2
- 1 = 0 => (2r + 1}(2r - 1) = 0 => r = ±t. Then the general solution 

3. The auxiliary equation is r 2 + 3 = 0 => r = ±J3 i . Then the general solution is y = c1 cos ( J3 x) + c2 sin ( J3 x). 

5. r 2 
- 4r + 5 = 0 => r = 2 ± i , so Yc (x) = e2

"'{c 1 cosx + c 2 sin x ). Try YP (x) = Ae2
"' => y~ = 2Ae2"' 

and y~ = 4Ae2
"' . Substitution into the differential equation gives 4Ae 2

"' - 8Ae2
"' + 5Ae2

"' =-e2
"' => A = 1 and 

the general solution is y( x) = e2
"' ( c1 cos x + c2 sin x) + e2

"' . 

7. r 2 -21·+ l=O => r =landyc(x) = cle"' + c2xe"'. Tryy1,(x)=(Ax +B)cosx + (Cx+D) sin x => 

y~ = (C- Ax- B) sinx +(A+ Cx +D) cos x andy~= (2C - B- Ax)-cosx + ( -2A- D- Cx) sinx. Substitution 

gives (-2Cx + 2C- 2A- 2D)cosx + (2Ax - 2A + 2B - 2C}sin x =xcosx => A= 0, B = C = D = - t. 
The general solution is y( x) = c1 e"' + c2 xe"' - ! cos x - !(x + 1) s in x. 

9. r 2
- r- 6 = 0 . => r = -2, r = 3 and Yc(x) = c 1e __:_

2
"' + C2 e

3
"' . For y" - y'- 6y = 1, try Yr>t (x) = A. Then 

y~1 (x) = y~1 (x) = 0 and substitution into the differential equation gives A= -i- For y"- y'- 6y = e-2 :r try 
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yp2 (x) = Bxe- zx [since y = B e- 2x satisfies the complementary equation). Then y~ = (B- 2Bx)e-2"' and 

y~ = (4Bx- 4B)e-2x, and substitution gives - 5Be- 2
"' = e-2

"' '* · B = -k· The general solution then is 

y(x) = c1e-2x + Cze3
"' + yp1 (x) + yp2 (x) = c1e- 2x + cze3x - ~- ixe-2"'. 

11. The auxiliary equation is r 2 + 6r = 0 and the general solution is y(x) = c1 + c2e-6
x = k1 + k2 e- 6<z- l ). But 

3 = y(l) = k1 + kz and 12 = y'(l) = -6k2
. Thus k2 = - 2, k1 = 5 and the solution is y(x) = 5- 2e- G(:z:-l) . 

. 13. The auxiliary equation is r 2 
- 5r + 4 = 0 and the general solution is y(~1;) = c1e'" + c2 e4'". But 0 = y(O) = c1 + c2 

and 1 = y'(O) = C1 + 4c2, so the solution is y(x) = ~(e4"' - c"' ). 

15. r 2 + 47' + 29 = 0 ::::? r = - 2 ± 5i and the general solution is y = e-2x(c1 cos 5x + c2 sin 5x). But 1 = y(O) = c1 and 

- 1 = y( 1r) = -c1 e - 2" '* c1 = e2" , so there i~ n~ solution. 

~ = = 
17. Let y(x) = E CnXn. Then y" (x) = 2.: n(n- l )enx"-2 = .E (n + 2)(n + 1)Cn+2Xn and the differentia l equation 

n=O n=O n=O 

00 

becomes E [(n + 2)(n + l )cn+2 + (n + l )en)xn = 0. Thus the recurs ion relation is Cn+2 = -c,.f(n + 2) 
n=O 

( 

• 1 • 1 (- 1? 
for n = 0, 1,2, .... But eo = y 0) = 0, soc2" = Oforn = 0,1, 2, .... Also c1 = y (0) = 1, so C3 = - 3, C5 = ""3-5' 

(- 1)3 (-1)3233! · (- 1t2nnl . . .. 
C7 = 

3
. 
5

. 
7 

= 71 , ... , C2n+l = (
2

n + l) ! for n = 0, 1, 2, .... Thus the solut10n to the m1t1al-value problem 

~ 00 (- 1)"2nnl 
is y(x) = E CnXn = E · x 2n+l. 

n =O n = O (2n + 1)! 

19. Here the initial-value problem is 2Q" + 40Q' + 400Q = 12, Q (0) = O.Dl, Q' (0) = 0. Then 

Qc(t) = e- 101 (c1 cos lOt + cz sin lOt) and we try Qp(t) = A. Thus the general solution is 

Q(t) = e -lOt(c1 cos lOt+ cz sin lOt)+ 1~0 . But 0.01 = Q'(O) = c1 + 0.03 and 0 = Q"(O) = - lOc1 + lOcz, 

so c1 = - 0.02 = c2 • Hence the charge is given by Q(t) = - 0.02e-10t (cos lOt + sin lOt) +0.03. 

21. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density pas follows: 

massofearth M If V.. th I fth . f h h h' h i ' . h' d ' J: h P = 
1 

f 
1 

= ~· r IS e vo ume o e portJon o t e eart w 1c 1es WJt m a Jstancc r 01 t e 
vo ume o cart 1 31rR 

. 4 3 Mr3 . Gl\IJ,.rn GMm 
center, then Vr = 31rr and M r = pV,. = R3 . Thus Fr = - -r-2- = -----w-r. 

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton's Second Law of Motion, 

d2y · GMrn 11 2 2 GM GMm 
m dt2 = F11 = -----w- y, soy (t) = - k y (t) wh~re k = R3 • At the surface, - mg = Fn = --w, so 

GM 2 •g 
g = R2 . Therefore k = R.' 
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(c) The differential equation y 11 + k2 y = 0 has auxiliary equation r2 + k2 = 0. (This is the r of Section 17.1, 

not the r measuring distance from the earth's center.) The roots of the auxiliary equation are ±ik, so by ( II ) in 

Section 17.1' the general solution of our differential equation for t is y( t) := Cl cos kt + C2 sin kt. It follows that 

y' (t) = -c1k sin kt + c2k cos kt. Now y (0) = Randy' (0) = 0, so c1 = Rand c2k = 0. Thus y(t) = Rcos kt and 

y'(t) = - kRsinkt. This is simple harmonic motion (see Section 17.3) with amplitude R, frequency~. and phase angle 0. 

The period is T = 21r j k. R Rj 3960 mi = 3960 · 5280 ft and g = 32 ft/s2
, so k = v'i(R Rj 1.24 x 10- 3 s-1 and 

T = 27r/k Rj 5079 s Rj 85 min. 

(d) y(t) = O # coskt = O # kt = !+1rnfor someintegern => y'(t) = - kRsin(f+7rn)=±kR.Thusthe 

particle passes through the center of the earth with ~peed kR Rj 4.899 mi/s Rj 17,600 mi/ h. 
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0 APPENDIX 

Appendix H Complex Numbers 

1. (5- 6i) + (3 + 2i) = (5 + 3) + ( -6 + 2)i = 8 + ( -4)i = 8 - 4i 

3. (2 + 5i)(4- i) = 2(4) +2(-i) + {5i)(4) + (5i)(- i) = 8 - 2i + 20i - 5i2 = 8 + 18i- 5(-1) 

= 8 + 18i + 5 = 13 + 18i 

5. 12 + 7i = 12 - 7i 

1+ 4i 1 +4i 3 - 2i 3 - 2i+ 12i-8(-1) 11 + 10i 11 10 . 
7· 3 + 2i = 3 + 2i . 3 - 2i = 32 + 22 = 13 = 13 + 13 ~ 

1 1 1-i 1 -i 1- i 1 1 . 
9 -- = -- . - - = = -- = - - - t 
. 1 +i 1+i 1- i 1 -(-1) 2 2 2 

11 . i 3 = i2 . i = ( - 1 )i = -i 

13. yC25 = J25 i = 5i 

15. 12 - 5i = 12 + 15i and 112- 15il = J122 + ( -5)2 = )144 + 25 = Jl69 = 13 

17. - 4i = 0 - 4i = 0 + 4i = 4i and l-4il = J02 + ( -4)2 = VW = 4 

19. 4x2 + 9 = 0 # 4x2 = - 9 # X 2- _Q 
- 4 

- 2 ± J22 - 4(1)(5) -2 ± v'-16 -2 ± 4i . 
21. By the quadratic formula, x2 + 2x + 5 = 0 # x = 2(

1
) = 

2 
= 

2 
= -1 ± 2t. 

· · -1 ± y'12 - 4(1)(2) - 1 ±A 1 · v'7 
23. By the quadratic formula, z2 + z + 2 = 0 # z = 2(1) = 2 = - 2 ± 2i. 

25. For z = -3 + 3i, r = J( -3)2 + 32 = 3 V2 and tan 8 = ! 3 = -1 => 8 = 3
; (since z lies in the second quadrant). 

Therefore, - 3 + 3i = 3 J2 (cos 3
4,. + i sin 3;). 

27. For z = 3 + 4i, r = )32 + 42 = 5 and tan 8 = ~ => 9 = tan - l ( ~) (since z lies in the first quadrant). Therefore, 

3 +4i = 5[cos(tan-1 ~) +isin(tan- 1 1)]. 

29. For z = .J3 -H, r = J ( v'3) 
2 

+ 12 = 2 and tan 9 = -ja => 8 = % => z = 2 (cos -if + i sin -if). 

Forw=l+v'3i, r=2andtanB=v'3 => 8 =~ => -w =2(cosi + isin~). 

Therefore, zw = 2 · 2 [cos ( ~ + ~) + i sin ( i + ~)] = 4 (cos i + i sin i), 

z / w = H cos ( i - i) + i sin (% - i)] = cos (- %) + i sin (-f), and 1 = 1 + Oi = 1 (cos 0 + i sin 0) => 
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1/ z = ~ [cos(O- ~) + i si~(O- ~ )] = ~[cos(- i) + i sin(-~) ] . For 1/z; we could al~o use the fonnula that precedes 

Example 5 to obtain 1/ z = H cos "if - i sin i). 

31. For z = 2¥'3- 2i, r = J(2 v'3) 2 
+ (-2)2 

= 4 and tan6 = '27a = -~ => 6 = -~ => 

z = 4(cos( --jr} + isin( -i)J. Forw = - 1 + i, r = -/2, tanB = ! 1 = -1 => 6 = 3
; => 

w = ..J2 (cos 3
4" + isin 3;) . Therefore, zw = 4 V2 [cos( -{f + 3

;) + i sin(-~+ 3;)] = 4 ..J2 (cos i; + isin i;), 

z/w- 4 [cos(-2I- 3")+isin(-2I - 371' )] - 4 [cos(- 1171')+isin(- 1171' )] - 2 f2(cos 13"+isin 13
") and - 72 6 4 6 4 - 72 12 12 - v ~ 12 . . 12 ' 

1/z = i(cos(-{f) - isin(-{f)] = Hcos "if+ isin"lf). 

33. For z = 1 + i, r = ..j2 and tan B = t = 1 => B = "i => z = ..j2 (cos "i + isin f). So by De Moivre's Tlworem, 

(1 +_i)20 
= [..J2 (cos "i +isinf)J

20 = (2112?0 (cos 20~71' + isin 20~") = 210(cos51l' + isin51l') 

= 210 [-1 +i(O)] = -210 = - 1024 

So by De Moivre's Theorem, 

(2 v'3 + 2i)
5 = [4(cos "if+ isin ~)) 5 

= 45 (cos 5
6"+ i sin ~G11') = 1024[ -4 + ~i] = -512 v'3 + 512i. 

37. 1 = 1 + Oi = 1 (cosO+ isinG). Using Equation 3 with 7' = 1, n = 8, and 6 = 0, we have 

- 1/8 [ (0+2k1l') .. (0+2k1l')J- k1l' .. k1l' · -Wk- 1 cos 
8 

+ ~sm 
8 

-cos 
4 

+ ~sm 4 , where k- 0, 1, 2, ... , 7. 

w 0 = 1(cosO+isinO) = 1, w1 = 1(cosf +isinf) = "7z + 72i, 

w2 = 1 (cos ~ + i sin ~) = i, w 3 = 1 (cos 3
; + i sin a;.) = - "7z + 72 i, 

w4 = 1(cos1l'+isinir) = -1, w5 = 1(cos 5; +isin 5;) = -72 -72i, 

w6 = 1(cos a;+ isin a;) = ...:i, w7 = 1(cos 7
; + isin 7

;) = 72 - 72i 

39. i = 0 + i = 1 (cos~ + i sin~). Using Equation 3 with r = 1, n = 3, and 6 = %, we have 

[ ( 
J!. + 2k1l') ( ~ + 2k1l')] ' Wk = 11

/
3 

COS 
2 

3 
+ i sin - q , where k = 0, 1, 2. 

wo = (cos i + i sin i) = 4 + ~i 

WI = (cos· r,,. + i sin 5") - - v'3 + l i 6 6 - 2 2 

w2 = ,(cos 0
6" + i sin 9

;) == - i 

41 . Using Euler'sfonnula (6) withy=~. we have ei71'/2 =cos~+ isin ~ = 0 + 1i = i. 

• 

• 

• 

1m 

0 

1m 

0 

-i 

• 

• 

• 
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43. Using Euler's formula (6) with y= i· we have ei"/3 = cos i + isin i = ~ + '!] i. 

47. Taker = 1 and n = 3 in De Moivre'sTheorem to get 

(l (cos (} + i sin IJ)] 3 = 13 (cos 39 + i sin 31J) 

(cos IJ + isin 0)3 = cos 31J + i sin30 

cos3 
(} + 3(cos2 fJ)(i sin 0) + 3(cos IJ)(isln 1J? + (i sin IJ) 3 =cos 38 + i s_in3fJ 

cos3 1J + (3 cos2 f) sin fJ)·i - 3 cos IJ sin2 
()- (sin3 fJ)i =cos 31J + i sin 31J 

( cos3 1J - 3 sin2 f) cos IJ) + (3 sin f) cos2 f) - sin3 1J)i = cos 30 + i ~in 3(} 

Equating real and imaginary parts gives cos 30 = cos~ fJ - 3 sin2 
() cos IJ and sin 3B = 3 sin IJ cos2 

(} - sin3 e. 

49. F (x) = er:r: = e<n+IJi)x = e""'+l»:i = e""' (cos bx + isin bx) = e'"'' cos bx + i(e'"" sin bx) => 

F'(x) = (eax cosbx)' + i(e<t:t sinbx)' 

= ( aea"' cos bx - be""' sin bx) + i( ac""' sin bx + be"~ cos bx) 

= a (e""'(cosbx + isinbx)] + b(e""'( - sin bx + icosbx)] 

= ae''"' + b(e""'(i2 sinbx + icosbx)] 

= aerx + bi(e""' (cos bx + i sin bx )] = aerx + bier% = (a + bi )erx = rerx 
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