

Wheatstone Bridge Experiment:

In the circuit shown if the wire AB has a length of one meter, the galvanometer G reads zero at point C. along the wire, the value of unknown resistor Rx (ohm) is:

- a) 6
- b) 4
- c) 1.5
- d) 2
- e) None.

Select one:

A non-Ohmic resistance R₁ is connected in series with an Ohmic resistance R₂ between points A and B in a conducting circuit.

The current in R₂ is I₂. Then the potential difference between A and B:

- O a. Depends non-linearly on the current in R₁.
- O b. is non-linearly related to the current in R2.
- c. is equal to l₂ (R₁+R₂) for any value of l₂.
- d. Depends linearly on the current in the equivalent resistance of R₁ and R₂ between A and B.
- e. Depends on the current in R₁ non-linearly and linearly on I₂.

Not yet answered

Marked out of 2.5

♥ Flag
 question

An unknown resistance R_x and a known resistance R_s are connected in the Wheatstone Bridge, using a power supply with a certain emf and a wire of length 1.00 m, and the lengths L₁ and L₂ were determined. Using the same R_x in the circuit, which of the following would change the position of the balance point along the wire?

- oa. Using a wire with a different thickness.
- b. Reversing the polarity of the power supply.
- Oc. Changing the length of the wire or using a power supply with a different emf.
- o d. Using a different R_s or a changing the length of the wire.
- O e. Using a wire made from a different Ohmic material.

Not yet answered

Marked out of 4.00

 In the Wheatstone Bridge experiment, suppose we found the balance point for a given R_s and the ratio L2/L1 is found. When the known resistance is doubled and the balance point is found again, then the new L2/L1 value:

- O a. is half the original value.
- O b. stays the same.
- o c. is twice the original value.
- O d. cannot be known without measurement.
- O e. Not enough information is provided.

Not yet answered

Marked out of 4.00

Flag question

If two resistors R₁ and R₂ are connected in series between points A and B in a conducting circuit, and you're told R₁ is Ohmic but R₂ is not. The current in R₁ is I₁. The potential difference between A and B:

- O a. Depends linearly on the current in R₂.
- O b. is linearly related to the current in R₁.
- \odot c. is equal to I_1 (R_1+R_2) for any value of R_1 or R_2 .
- O d. Depends linearly on the current in the equivalent resistance of R₁ and R₂ between A and B.
- \bigcirc e. Depends on the current in R_2 non-linearly and linearly on I_1 .

Not yet answered

Marked out of 4.00

F Flag question During the Wheatstone Bridge experiment, which of the following is true?

- a. We vary both the known and unknown resistances.
- O b. We vary the known resistance and as a result the total current in the circuit changes.
- O c. We assume the currents in the wire and the unknown resistance are the same.
- O d. It is important to keep the current in the wire constant.
- O e. We vary the unknown resistance and as a result the current in the unknown resistance changes.