A student performed the experiment of the specific charge of copper ions and found that k = 3.03 x 10⁶ C/Kg In order to accumulate I gram of copper ions in the cathode, the student adjusted the rheostat to give a current of 5A. For how long did the current flow in the circuit (in minute)?

Select one:

- O a. 5
- b.10
- O c. 50
- O d. 20.5

Clear my choice

If the specific charge (K) of copper ions in this experiment was 1.50×10⁶ C/kg and the current was 0.50 A, then the time needed (in seconds) to change the cathode mass by 0.50 gram is:

1.0×10³
2.61×10⁶
1.6×10⁻¹⁹
3.03×10³
1.50×10³
Clear my choice

The Specific Charge of Copper Ions Experiment:

The rate of deposition of copper (mass deposited per unit time) on the cathode depends on:

- a) The surface area of the anode.
- b) The surface area of the cathode
- c) The current flowing in the cell.
- d) The spacing of the electrodes in the cell
- e) None of the above

Select one:

a.a

) b. b

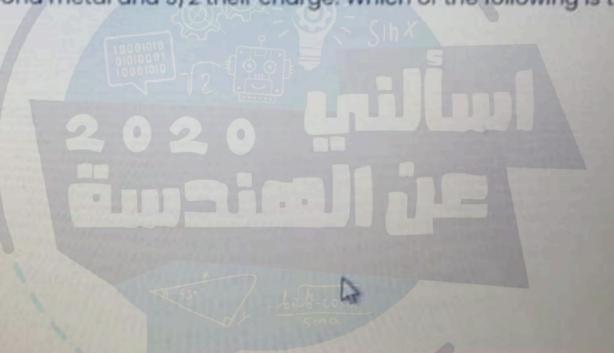
O.C

The Specific Charge of Copper Ions Experiment If the specific charge (K) of copper ions in this experiment was 1.5×10^6 C/kg and the current was 0.50 A, then the time needed (in seconds) to change the cathode mass by 0.50 gram is:

- a) 1.0×10^3
- b) 3.03×10^3
- c) 1.50×10^3
- d) 1.6 × 10-19
- e) 2.61×10^6

Select one:

- a.a
- 6 b.b
- · c. c


Consider two metals with specific charges k₁ and k₂, respectively. The ions of the first metal have 4/3 the mass of the ions of the second metal and 3/2 their charge. Which of the following is true?

$$0 b. k_2 = 4/3 k_1$$

$$c. k_2 = (9/8) k_1$$

Clear my choice

Question 2

Not yet answered

Marked out of 2.5

▼ Flag

question

One metal has a certain specific charge given by k_1 . The ions of a second metal have twice the charge of the ions of the first metal and 3/2 the mass of the first metal. Which of the following is true, where k_2 is the specific charge of the second metal?

- \bigcirc a. $k_1 = (4/3) k_2$
- \bullet b. $k_2 = (4/3) k_1$
- \bigcirc c. $k_1 = 3 k_2$
- \bigcirc d. $k_2 = (3/4) k_1$
- \bigcirc e. $k_2 = 3 k_1$

Clear my choice