
For the given circuit, the maximum power transferred to the load resistance (in mW) is:

__==

Select one:

- O a. 36.1
- O b. 16.9
- O c. 26.4
- @ d.70.3

A battery with emf of 20 volts and internal resistance of 5.0 Ω is connected in series with a load resistance of 100 Ω. The power (in Watts) dissipated in the load resistance is:

1.0×10²

3.8

2.0×10³

3.6

Clear my choice

Next page

In the Power Transfer experiment, A load resistance (R) is connected across the terminals of a 3V power supply of a 10 Ohms internal resistance. What is the proper magnitude of R (in Ohms) such that the power delivered to it is maximum?

a. 100
b. 30
c. 10
d. 3

Suppose a power supply has an emf of 60 Volt and an internal resistance of 20 Ohm. The maximum power (in Watt) that can be dissipated in a series resistance connected with it is:

- O a. 9
- O b. 90
- O c. 22.5
- o d. 45
- o e. 180

Clear my choice

Question 8

Not yet answered

Marked out of 2.5

F Flag question Suppose a power supply has an emf of 20 Volt and an internal resistance of 10 Ohm. The maximum power (in Watt) that can be dissipated in a series resistance connected with it is:

- O a. 10
- O b. 20
- O c. 25
- o d. 40
- O e. 5

Clear my choice

Finish attempt ...

Question 11

Not yet answered

Marked out of 4.00

Flag question

In the Power Transfer experiment, which of the following is true during the experiment?

- O a. The power dissipated by the load resistance is always greater than the power dissipated by the source.
- O b. We keep the potential difference across the load resistance constant.
- O c. The power dissipated by the source is constant.
- od. The current is constant.
- e. We vary the load resistance but keep the emf of the power supply constant.

Clear my choice