

According to Kirchhoff's rules, the reading of a voltmeter (in V) across R_3 in the circuit shown to the right is:

Select one:

- a. 2
- b. 4
- c. 3
- d. 1

If a section of an electric circuit is as shown, then applying Kirchhoff's first law gives:

- \bigcirc $I_1 + I_3 + I_5 = I_2 + I_4$
- \bigcirc $I_1 + I_3 + I_4 = I_2 + I_5$
- \bigcirc $I_1 = I_2 + I_3 + I_4 + I_5$

Clear my choice

In the circuit shown, to measure the current through R2

- \bigcirc J₁ is removed, J₂ is plugged in, and J₃ is replaced by an ammeter.
- $^{\bigcirc}$ J₁ is plugged in, J₃ is removed and J₂ is replaced by an ammeter.
- $^{\circ}$ J₁ and J₂ are plugged in and J₃ is replaced by an ammeter.
- J₁ and J₃ are removed and J₂ is replaced by an ammeter.
- J₁ and J₃ are plugged in and J₂ is replaced by an ammeter.

Question 1 Not yet answered

Marked out of 4.00

 In the circuit below, $V_1 = 10 \text{ V}$, $V_2 = 4 \text{ V}$, and the potential drop across R_1 is measured to be 4 V. The difference (in V) as you go from point c to point a in the circuit is:

Question 2

Not yet answered

Marked out of 4.00

 In Kirchoff's Rules experiment, suppose you removed jumper J₁ in order to measure the current in resistance R₁. During the time when J₁ is disconnected and the ammeter is not connected yet, which of the following is true?

- \bigcirc a. All the currents I_1 , I_2 , and I_3 have the same values as before disconnecting J_1 .
- b. The potential drops across resistors R₂ and R₃ do not change as a result of disconnecting J₁.
- O c. There is no current in R₁ and the currents I₂ and I₃ are different from their values before disconnecting J₁.
- \bigcirc d. The currents I_2 and I_3 are not affected by disconnecting J_1 .
- e. I₁ has the same value as before disconnecting J₁ but I₂ and I₃ are different from their values before
 disconnecting J₁.

Clear my choice