LAB REPORT FOR EXPERIMENT 5

Date: -----

Name:	Partner's Name
Registration N	Registration No:
Physics Section:	Instructor's Name:
PHYSICS LAB EXPERIMENT 5: THE	WHEATSTONE BRIDGE
1. PURPOSE	ridge to determine
the value of p	n unknown resistance
The wheatstone 1	oridge used for the
	arade comparison of
II. DATA AND DATA ANALYSIS:	resistances.
1. Show that $\frac{Rs}{R_x} = \frac{L_1}{L_2}$	R'3/2R2
4-14-T	1 1 (G) 473
Voc - Von IR =	1 /24
- b - oh	FRU FRU
A A	- L. 30
R TR	2 63
	RA R2
	(6)
	· a / c
	1 = 1
75.	

cord your data in Table (5.1) below:

الخطأ عدم تطبيق

القانون على

يمين الورقة

بشكل صحيح.

Table 5.1

	Table 5.1							
Reading	R_1	L_1	L_2	R _x	$\Delta R_x / R_x$			
	(Ω)	(cm)	(cm)	(Ω)				
1	10	15	84	52.5	1.0			
2	20	27	73	54.07	0.97			
3	30	36.5	63.5	52.19	1,01			
4	40	435	57	53	0.99			
5	50	48	52	54-16	0197			
6	60	53	47	53.2	0.99			
7	70	57	43	52.8	1.0			
8	30	60	40	53.3	0.99			
9	90	63.5	36.5	817	1.02			
10	100	66	34.	马人马	1.02			
$\overline{R}_{x} = 52.243 \Omega$								

Rs = L, Rr - L2

3. Using the equation derived in (1), calculate the value of the unknown resistance R_x. Repeat for the different values of R₁ and enter your calculation in table 5.1 above.

Example for one calculation:

4. Calculate the relative error $\Delta R_x / R_x$ for the different values of R_1 using the equation:

$$\frac{\Delta R_{x}}{R_{x}} = \left[\left(\frac{\Delta L_{1}}{L_{1}} \right)^{2} + \left(\frac{\Delta L_{2}}{L_{2}} \right)^{2} \right]^{\frac{1}{2}}$$

Example for one calculation:

Lample	or one	calculatio	n:	11(165)
		3.18	*10-3	V
			/ .	

76

Is it essential that the battery supplies a constant current to the wire? Explain your answer.

in our calculation

From the table, determine the values of L_1 and L_2 for which the error $\Delta R_x / R_x$ is a minimum.

$$L_2 = 52$$

Stone Bridge اله في موهد بسيم نفعه ResPL stall ب نا بنعث وشعة الدي e e is current JI e is on 27 = Rx (3) e is our rent (3) エーエーエ - السيال هو 3 حين نعسب المعاومة العجولة x Cres = b red lalisa C sb ru current بمابانومانيه مشتركة بينعم الله -I2 Rs - - I, Rqc Uac = - I, Rac L1+L2=100cm -IzPx=-IRed - I2 R = - I Rac ه بدی اجرالنقطه اللی $R_{SC} = \frac{L_2}{L_1} \cdot R_S$

CS CamScanner

Ps (-2) L, (cm) L2(cm) Rx(-2) DRx Leszer A dister 42 - resistral x Rx= L1 Rs | Salita Rx SRs Lines السوكسارية " Sylamiz" wire any I zero II > Suppley II + II 100 Mire Mire 11 To power 11 -م بير صل المتعاومة المعقولة مع العقمة اللي عنه الر 100 مباسرة "ووكها" والحقة المثامية مع المتاومة المحلومة ه يوصل المقاومة المعلومة (عليها -654.0) انوام بوحس رفية مع الرمون الي كال الي كال المونة مع الرمونة مع الرمونة

UNIVERSITY OF JORDAN

PHYSICS DEPARTMENT SECOND SEMESTER (2020 – 2021) PRACTICLE PHYSICS - II (0302112) (0302112) 2 – الفيزياء العملية – 2 (0302112)

EXPERIMENT 5 THE WHEATSTONE BRIDGE

- In the Wheatstone Bridge experiment, the circuit configuration will allow for Quick and Accurate determination of the value of an Unknown Resistance.
- This Unknown Resistance, termed R_X , will be compared to other Resistances of known values (Resistance Box $R_S = (10 100) \Omega$ and Meter Bridge Wire Resistance).
- During the experiment and at each value of <u>Rs</u>, the <u>Balance Point</u> will be <u>Checked</u> and <u>Located</u>. At the Balance Point, the <u>Galvanometer</u> will read <u>Zero</u>.
- The Galvanometer is a device that can Register or Read either the Current or the Voltage depending on the way it is connected to the circuit:
 - If connected in Series, it will read Voltage.
 - If connected in Parralel, it will read the Current.
 - Note that it is connected in Opposite Manner with respect to connection way of the Ammeter and Voltmeter.
 - In the Wheatstone Bridge experiment, it will read current.
- When the ciruit is closed, a total current I will flow from the power supply towards point a, and then part of it, I_1 , will flow through R_S and the other part I_2 , will flow through I_3 : satisfying the Junction Rule of Kirchhoff's Rules:
 - The Junction Rule: At any junction, the sum of the currents must equal Zero

$$\sum_{Junction} I = 0$$

Hence, at Junction a, $I = I_1 + I_2$

- When the <u>Balance Point</u> is located for a particular value of R_S , the <u>Galvanometer</u> will read Zero, and both the <u>Junction and Loop Rules</u> of <u>Kirchhoff's Rules</u> will be satisfied:
 - The Loop Rule: The sum of the potential difference across all elements around any closed circuit loop must be Zero:

hkj

$$\sum_{Junction} \Delta V = 0$$

Where the closed loops could be loop abca and loop bdcb.

Hence, at that momoent:

- Same Current, I_1 , will pass through R_S and R_X , (Series combination).
- Same Current, I_2 , will pass through R_1 and R_2 , (Series combination).
- Where at junctions:
 - $a: I = I_1 + I_2$, and at
 - $\bullet \quad b: I_1 + I_2 = I$
- where $\Delta V_{ab} = \Delta V_{ac} \longrightarrow I_1 \times R_S = I_2 \times R_1$ and $\Delta V_{ab} = I_1 \times R_S$ (Ohm's Law) $\Delta V_{bd} = I_2 \times R_1 = I_2 \times (\frac{\rho}{A}) L_1$ (Wire Resistance) Hence, $I_1 \times R_S = I_2 \times (\frac{\rho}{A}) L_1$ (equation I)

Also,

- where $\Delta V_{bd} = \Delta V_{cd} \longrightarrow I_1 \times R_X = I_2 \times R_2$ and $\Delta V_{bd} = I_1 \times R_X$ (Ohm's Law) $\Delta V_{cd} = I_2 \times R_2 = I_2 \times (\frac{\rho}{A}) L_2$ (Wire Resistance) Hence, $I_1 \times R_X = I_2 \times (\frac{\rho}{A}) L_2$ (equation II)
- Now by dividing the two equations I and II by each other and canceling the common terms, one reaches to the following equation that can be used to determine the value of the unknown resistor, R_X :

- Using equation III, R_X can be determined per each value of R_X and the average value of $\overline{R_X}$ will easily be calculated.
- In order to solve for the relative error, remember that the error in reading the meter stick, ΔL is equivelant to $\pm \frac{1}{2}$ the smallest digit. (i.e. $\Delta L_1 = \Delta L_2 = \pm 0.5$ mm)

THE WHEATSTONE BRIDGE CONFIGURATION

equip ment

- In today's experiment, we want to:
 - Build up simple electric circuit using different circuit elements including:
 - Electric wires (considered as perfect conductors eventhough they tend to heat up during the experiment, hence, their power dessipation is ignored).
 - DC Power Supply (3.0 Volts).
 - Three different Resistors:
 - R_S : Resistance Box $(1-100 \Omega)$.
 - Unknown resistance R_X . \longrightarrow عن نشال
 - Meter Bridge (wire resistance).
 - Galvanometer to be connected in parallel (in order to work as an Ammeter).
 - Calculate the average value of the unknown resistor R_X .
 - Determine the relative error in the $\Delta R_X / R_X$.