LAB REPORT FOR EXPERIMENT 3

Name:	Partner's Name:				
Registration No:					
Physics Section:	Registration No:				
	Instructor's Name:				
PHYSICS LAB EXPERIMENT 3: OHM'S LAW					
1. PURPOSE To determine 41.					
In series or as all	sistance when it connect				
In series or paralle					
II. DATA AND DATA ANALYSIS	carbonic resistor or				
	16.1				

1- Enter your data in Table 3.1

Table 3.1

R ₁ Wire resistance		R ₂ Carbon resistance		R_1 and R_2 in Series		R ₁ and R ₂ in Parallel	
V(Volt)	I(Amp.)	V(Volt)	I(Amp.)	V(Volt)	I(Amp.)	V(Volt)	I(Amp.)
5.9	0.84	4.6	-	5.8	0.52	2.8)
Fig	0.71	3.9	0.86	5.2	0.46	2.4	0.88
4.4	0.62	3.2	0.7	4.2	P38	20 . 2m	0.8
3,6	0.52	2.2	0.5	3	0.26	2	0.74
2.3	0.4	2	0.44	2.2	0.2	1.6	0.6

tot graphs of voltage \mathbf{V} as a dependent variable versus current \mathbf{I} .

y-intercept

Determine the values of R for each unknown resistance as well as for the series and parallel combinations by calculating the slopes of your graphs.

$$R_{1} = \frac{1.8}{0.2} = 9 - \Omega$$

$$R_{2} = \frac{1.8}{0.36} = 5 - \Omega$$

$$R_2 = \frac{1.8}{0.36} = 5 - 2$$

R equivalent of R_1 and R_2 in series = $\frac{5.6}{0.5} = 11.2$

R equivalent of R_1 and R_2 in parallel = $\frac{2}{2}$ $\frac{2.857}{2}$

From the graph of V versus I for R_1 , estimate the error ΔR_1 .

Using the value of R_1 obtained in (3) and the length and diameter of the 5wire used for R_1 , calculate the resistivity of the wire ρ . l = 1 m, l = 0.3

Compare the calculated values with the experimental values you obtained 6-

Combination of resistances in series:

- experimental value: ----11, 2
- calculated value: -----

Combination of resistances in parallel:

- experimental value: -2.857
- calculated value: ---- 3, 2-0

- se in je conductor Je current Je min bis aiske ا الشويعني فنوه جهد ؟ عند الشخل بنزله عند الله $=-\frac{9}{2}\left(-\frac{5}{5}\vec{E}\cdot d\vec{s}\right)$ لومم 2- اعتس المحسوب بعني - (- SE.ds) N 520 $U_{1-2} = -\beta E \cdot ds = -W_{1-2}$ independent of the path from $1 \rightarrow 2$ units of T=J *إذ الحرحة مع ال ع Motion in the same directions of E (To negative) drop in ck. potential 11 oppossite to E ____ increase on elec. potential / To positive KIN some Ohmic conductors it was found that there is a linear relation between E and the current density *Ohmis law (F=s) where is resistivity [-2.m] If E is uniform inside a conductor of length L and cross sectional area & the Above we qu

 $\frac{1}{2}R_{1}$ = $\frac{1}{2}R_{2}$ エ= エート $\frac{V}{RP} = \frac{V}{R_1} + \frac{V}{R_2} \qquad \therefore \left(\frac{1}{RP} = \frac{1}{R_1} + \frac{1}{R_2}\right)$ بنوط الدائرة وبناحد قيم ١١/ ١ ويترسم افل ١٥٩٥ *Illeals * المحقنات 4 meder [3 2) Anjejele VO 1+ moter [- eis Jeld Mang - [of la italiani lours] Footed [4 Ameter 11 + to power - suppley Resister I wind to Joseph - will in t Autor 2 power supplay 11- go Zi Wij Jesistar Je mo ce. DOSE Ameter 1 in series nic Resistance sistemas Junear tion 12. 3 120 3 - R. 4 - R. Julia 5. 51 insic الإسلاك فوقلع لفسىماهم

Esister on It was a les site of the series o

Resister II with the first of I paralled (3)

The alter of I R I was even I R A rimps

I'm as I'm, I'me of I was even I will be leven of liver of l

الشرح هنا صحيح لكن بالامتحان العملي لم يتم مطالبتنا بالحالتين.

UNIVERSITY OF JORDAN

PHYSICS DEPARTMENT FIRST SEMESTER (2020 – 2021)

PRACTICLE PHYSICS – II (0302112) (0302112) عملية – 2 (0302112)

EXPERIMENT 3 OHM'S LAW

Ohm's Law states that for many Materials, the ratio of the current density (I) to the electric field (E) is constant. This
electric field (E) is constant. This constant, σ (the electrical conductivity) is independent of the electric field producing the current.

- Previous statement of Ohm's Law is translated Mathematically into: $J = \sigma E$
- Ohm's Law is not a fundamental law of nature.
- It is an empirical relationship valid only for certain materials.
- In a conductor, the voltage applied (ΔV) across the ends of the conductor at constant temperature is proportional to the current (I) passing through the conductor.
- The proportionality constant is called the **Resistance** (R) of the conductor: $R = \frac{\Delta V}{I}$ this is another form or statement of Ohm's Law; Keep in mind that R does not depend on ΔV nor on I.
- Electric circuits usually use those elements called Resistors:
- Main purpose of using Resistors is to control the current level in parts of the circuit.
- Resistors can be wire-wound $(R_1 : Wire Resistance)$ or composite $(R_2 : Carbon)$.
- Most metals obey Ohm's Law. (almost 2/3 of the elements in the periodic table are metals).
- Hence, materials that obey Ohm's Law are said to be Ohmic.
- However, not all materials follow Ohm's Law.
- Materials that do not obey Ohm's Law are said to be *non-Ohmic*.

- For an *Ohmic* device (as in this experiment): ■ Resistance is constant over a wide range of voltages.
 - Relationship between current and voltage is linear.

 - Slope is related to the resistance

Slope = $\frac{1}{R}$

- For Non-Ohmic materials:
 - Resistance changes with voltage or current.
 - Current-Voltage relationship is nonlinear.
 - A diode is a common example of a *non-Ohmic* device.
- SI units of resistance are *Ohms* (Ω):
 - \square 1 Ω = 1 V / A
- Resistance in a circuit arises due to collisions between the electrons carrying the current with the fixed atoms inside the conductor.
- The inverse of the conductivity is the **resistivity**:
 - $\rho = 1/\sigma$
- **Resistivity** has SI units of Ohm-meters $(\Omega \cdot \mathbf{m})$.
- Resistance is also related to resistivity through the following equation: $R = \rho \frac{L}{A}$
 - Note that R depends only on the specifics of the electric wire including the materials it is made of with the wire's dimensions including its length L and cross
- To a good approximation, the resistivity of a conductor varies linearly with temperature according to the following equation over a limited temperature range: $\rho = \rho_0[1 + \alpha(T - T_0)]$

Where:
$$\rho = \rho_0 [1 + \alpha (T - \alpha)]$$

resistivity ρ_0 is taken at some reference temperature ($T_0 \sim 20^\circ$ C) and α is the temperature coefficient of resistivity with SI units = ${}^{\circ}C^{-1}$

Considering the resistance of a conductor with uniform cross sectional area is proportional to the resistivity, then the effect of temperature on resistance

Hint: Knowing that R changes with T, data must be taken at constant temperature if

When two resistors or more are connected end-to-end, they are said to be connected in

- For a series combination of resistors:
 - Currents are the same in all resistors
 - Potential difference will divide among the resistors such that the sum of the potential differences across the resistors is equal to the total potential difference across the combination.
 - Equivalent Resistance of a series combination of resistors is the algebraic sum of the individual resistances and is always greater than any individual resistance: $R_{eq,s} = R_1 + R_2 + R_3 + ...$

- For a parallel combination of resistors:
 - Potential difference is the same in all resistors
 - Current which enters a point must be equal to the total current leaving that point: $I = I_1 + I_2$
 - Equivalent Resistance of a parallel combination of resistors is always less than the smallest resistor in the group:

$$\frac{1}{R_{eq,p}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

- In today's first experiment, we will learn how to:
 - Build up simple electric ciruit using different circuit elements including:
 - Electric wires (considered as perfect conductors eventhough they tend to heat up during the experiment).
 - Power Supply to supply electric power to the electrical load or ciruit.
 - Two unknown different Resistors (The wire resistance R_1 and the Carbon resistance R_2).
 - **Voltmeter** to register the potential drop across the resistances, which is usually connected in parallel to the resistance.
 - Ammeter to register the current passing through the ciruit, which is usually connected in series with the resistances.