
The adjacent figure shows a sketch of Boyle's law apparatus similar to the one that was used in the lab. If the atmospheric pressure Pa = 760 mm.Hg, and knowing that the length of the gas column L = 5.7 cm and the height of mercury h = 11.4 cm, then the pressure (in mm.Hg) of the entrapped gas in the closed left-hand-side tube is:

- O a. 862.0
- O b. 770.2
- O c. 980.0
- d. 874.0
- O e. 784.5

Clear my choice

P = Pa + h

P = 760 mm Hg + 114 mm Hg

= 874 mm Hg

Question 20

Not yet answered

Marked out of 2.50

P Flag question One mole of entrapped (\sim) ideal gas has a temperature of 35 Degrees Celsius. If the temperature is held constant and the pressure is doubled ($P_f = 3P_i$), the ratio (V_f/V_i) is:

- O a. 1/2
- O b. 3/2
- O c.1/6
- O d.2
- e.1/3

Clear my choice

(2) P, U, = P2 V2 P, U, = 3P1 V2

 $\frac{V_2}{V_1} = \frac{1}{3}$