Physics Department The University of Jordan

1) Three point charges of $-2.00 \mu \mathrm{C},+4.00 \mu \mathrm{C}$, and $+6.00 \mu \mathrm{C}$ are placed along the x-axis as shown in the figure. What is the electric potential at point P (relative to infinity) due to these charges?
(A) +307 kV
B) -307 kV
C) -154 kV
D) +154 kV

2) If $a=60 \mathrm{~cm}, b=80 \mathrm{~cm}, Q=-4 n C$, and $q=1.5 n C$, what is the magnitude of the electric field at point P ?
A) $72 \mathrm{~N} / \mathrm{C}$
B) $68 \mathrm{~N} / \mathrm{C}$
C) $77 \mathrm{~N} / \mathrm{C}$
D) $82 \mathrm{~N} / \mathrm{C}$
E) $0 \mathrm{~N} / \mathrm{C}$
$E=22.5 \hat{\jmath}-45 \hat{\imath}$
$\sqrt{(22)^{2}+(48)^{2}}$

b) Which of the electric field vectors could represent the electric field at point P due to the charges $(-Q)$ and (q) ?
(A) E_{2}
B) ES
(C) E !
D) E 4
E) E 5

3) If the potential in a certain region is given by $V=x^{2} y+x y^{2}$, where x and y, are measured in meters and V is in volts. Find the magnitude of the electric force on a 2.0 C charge located at the position $(x, y)=(2,-3)$.
A) 34.2 N
B) 25.6 N
(C) 17.1 N
D) 8.5 N
E) 0
4) A uniform linear charge density of $4 \mathrm{nC/m}$ is distributed along the entire x-axis. Determine the electric flux through a spherical surface ($\mathrm{r}=5 \mathrm{~cm}$) centered at the origin.
A) 36
(B) 45
C) 54
D) 63
E) 13

5) A conducting sphere of radius 20.0 cm carries a net charge of $+15.0 \mu \mathrm{C}$. The electric potential (relative to infinity) at a point 12.0 cm from its center is:
A) 0
B) 675 kV
C) 1125 kV
D) 3380 kV
E) 9380 kV
6) Two charges, of equal magnitude and opposite sign ($+Q$ and $-Q$), are placed on the x-axis as shown. In which of the three regions, \mathbf{A}, \mathbf{B}, and \mathbf{C}, on the x-axis can the electric field be zero?
A) Region \mathbf{A}
(D) Regions \mathbf{A} and \mathbf{C}
B) Region B
C) Region \mathbf{C}
E) No regions

7) A charge q of $1.0 \times 10^{-12} \mathrm{C}$ is located inside a sphere, $R / 2$ from its center. What is the electric flux $\left(\Phi_{\mathrm{E}}\right)$ in $\left(\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}\right)$ through the sphere due to this charge?
A) 0.23
B) 8.9
C) 0.023π
(D) 0.11
E) The electric flux cannot be determined

8) Three infinite parallel plates carry equal uniform charge densities σ as shown in the figure. The electric field \vec{E} in region (1) is:
(A) $-\frac{3 \sigma}{2 \varepsilon_{0}} \hat{i}$
B) $-\frac{\sigma}{2 \varepsilon_{0}} \hat{i}$
C) zero
D) $\frac{\sigma}{2 \varepsilon_{0}} \hat{i}$
E) $\frac{3 \sigma}{2 \varepsilon_{0}} \hat{i}$
```
a
```


10) Two equal charges Q are separated by a distance d. One of the charges is released and moves away from the \checkmark other due to the force between them. When the moving charge is a distance $3 d$ from the other charge, its kinetic energy is:
$k E=-q \Delta V$
$=-q\left[\frac{k}{r}-\frac{k}{i}\right.$
A) $\frac{k_{e} Q^{2}}{3 \dot{d}}$.
(B) $\frac{k_{c} Q^{2}}{2 d}$
C) $\frac{k_{e} Q^{2}}{4 d}$
D) $\frac{3 k_{e} Q^{2}}{4 d}$
(E) $\begin{aligned} \frac{2 k_{e} Q^{2}}{3 d} & =-9^{2} k\left[\frac{1}{3 d}-\frac{1}{i}\right. \\ 3 d & =a^{2} k \frac{-3}{3 d}\end{aligned}$
11) The figure shows a point charge (q) located at the center of a cylinder. If the electric flux leaving one end of the cylinder is 20% of the total flux leaving the cylinder, the portion (جز) of the flux that leaves the curved surface of the cylinder is:
A) 90%
B) 70%
C) 85%
D) 60%
E) 80%

$\mathbb{S}=\boldsymbol{H}$
v in =
$=0$

12) A uniform linear charge of $2.0 \mathrm{nC} / \mathrm{m}$ is distributed along the x axis from $\mathrm{x}=0$ to $\mathrm{x}=3 \mathrm{~m}$. Which of the following integrals is correct for the magnitude of the \boldsymbol{y}-component of the electric field at $\mathrm{y}=2 \mathrm{~m}$ on the y axis?
A) $\int_{0}^{3} \frac{18 x d x}{\left(x^{2}+4\right)^{3 / 2}}$
B) $\int_{0}^{3} \frac{36 d x}{\left(x^{2}+4\right)^{1 / 2}}$
C) $\int_{0}^{3} \frac{18 x d x}{\left(x^{2}+4\right)^{1 / 2}}$
D) 0
(E) $\int_{0}^{3} \frac{36 d x}{\left(x^{2}+4\right)^{3 / 2}}$

List your final answers in this table. Only the answer in this table will be graded.

Question	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:	Q11:	Q12:
Final Answer	A	C	A	C	B	B	D	D	A	B	E	E

$$
B C \quad E \quad E D
$$

Write the letter corresponding to the correct answer in the table

1) The magnitude of the electric field (in N / C) at a point that is 3.0 m away from a $1.0 \mu \mathrm{C}$ point charge is
a) 230
b) 2300
c) 2000
d) 1000
e) 4600
2) Two point charges, $1.5 \mu \mathrm{C}$ and $1.0 \mu \mathrm{C}$, are separated by 1 cm . The magnitude of the force (in N) exerted by one charge on the other is
a) 135
b) 315
c) 225
d) 405
e) 495
3) The magnitude of the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of a proton ($m=1.67 \times 10^{-27} \mathrm{~kg}$) in a uniform electric field of magnitude $4 \times 10^{4} \mathrm{~N} / \mathrm{C}$ is
a) 1.9×10^{12}
(b) 3.8×10^{12}
c) 2.9×10^{12}
d) 6.7×10^{12}
e) 5.7×10^{12}
4) The local surface charge density at a point on the surface of an arbitrarily shaped conductor is $3 \mathrm{nC} / \mathrm{m}^{2}$. The magnitude of the electric field at that point (in N / C) is
a) 113
b) 452
c) 678
$E=?$
d) 340
e) 1130
5) The figure shows a closed cubical surface with the charges $2 Q$ and $-Q$ inside the cube and the charges $-2 Q$ and Q outside the cube. If $Q=3 \mathrm{nC}$ the net electric flux (in $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$) through the surface of the cube is

a) 282
b) 0
c) 678
(d) 339
e) 565
6) A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is $-3 Q$, and it is insulated from its surroundings. The surface charge density on the inner surface of the conducting shell. is

b) $\frac{-3 Q}{4 \pi b^{2}}$
c) $\frac{-Q}{2 \pi b^{2}}$
d) $\frac{3 Q}{4 \pi a^{2}}$
e) $\frac{-Q}{4 \pi a^{2}}$
7) The electric field at a distance of 0.145 m from the surface of a solid insulating sphere with radius 0.355 m is $1750 \mathrm{~N} / \mathrm{C}$. Assuming the sphere's charge is uniformly distributed, the electric lield (in N/C) inside the sphere at a distance of 0.100 m from the center is
a) 0
b) 1750
c) 2940
c) 980
d) 1960
8) Three negative point charges lie along a line as shown in the figure. The magnitude of the electrike field (in N/C) this combination of charges produces at point P, which lies 6.00 cm from the $-2.00 \mu \mathrm{C}$ charge measured perpendicular to the line connecting the three charges is

a) 1.0×10^{5}
b) 2.0×10^{7}
c) 0.5×10^{7}
d) 2.4×10^{5}
e) 1.0×10^{7}
9) A small sphere with mass $4.00 \times 10^{-6} \mathrm{~kg}$ and charge $4.00 \times 10^{-8} \mathrm{C}$ hangs from a thread near a very large, charged insulating sheet. The charge density on the surface of the sheet is uniform and equal to $-2.50 \times 10^{-9} \mathrm{C} / \mathrm{m} 2$. The angle of the thread is
a) 8.2°
b) 12.2°
c) 10.2°
d) 9.2°
e) 14.2°
10) Positive charge Q is distributed uniformly along the x axis from $x=0$ to $x=a$. A positive point charge q is located on the positive x-axis at $x=a+r$, a distance $r=a / 2$ to the right of the end of Q. The force (magnitude and direction) that the charge distribution
 Q exerts on q is
a) $\frac{q Q}{3 \pi \varepsilon_{0} a^{2}}(-\bar{i})$
b) $\frac{q Q}{3 \pi \varepsilon_{0} a^{2}} \hat{i}$
c) $\frac{4 q Q}{5 \pi \varepsilon_{0} a^{2}}(-\hat{i})$
d) $\frac{4 q Q}{5 \pi \varepsilon_{0} a^{2}} \hat{i} \quad$ e) $\frac{q Q}{4 \pi \varepsilon_{0} a^{2}} \hat{i}$

Section number : \qquad Student name (بـلعربية) Student number

Notes: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. You have sixty ($\mathbf{6 0} \mathbf{0}$ minutes to complete your exam.
Be sure to fill the box below with your final answers before the end of the exam.

```
* Some helpful information:
```



```
    g= 9.8 m/s}\mp@subsup{}{}{2
```


1. A solid conducting sphere has net positive charge and radius $R=0.3 \mathrm{~m}$. At a point 1.2 m from the center of the sphere, the electric potential due to the charge on the sphere is 24 V . Assuming that $\mathrm{V}=0$ at an infinite distance from the sphere, what is the electric potential (in V) at the center of the sphere?
A) 96
B) 47
C) 39
D) 36
E) 72
2. A small object with electric dipole moment $\mathbf{p}=\left(2 \times 10^{-3} \mathbf{i}+4 \times 10^{-3} \mathbf{j}\right)$ C.m is placed in a uniform electric field $\mathbf{E}=\left(-7.8 \times 10^{+3} \mathbf{i}+4.9 \times 10^{+3} \mathbf{j}\right) \mathrm{N} / \mathrm{C}$. The torque acting on this object (in N.m) is:
A) -19.7 k
B) +30.3 k
C) -30.3 k
D) -41 k
E) +41 k
3. Negative charge $-Q$ is distributed uniformly around a quarter-circle of radius a that lies in the first quadrant (الربع الأول) with the center of curvature at the origin, the x-component of the electric field at the origin is:
A) $Q /\left(4 \pi \varepsilon_{0} a^{2}\right)$
B) $Q /\left(8 \pi^{2} \varepsilon_{0} a^{2}\right)$
D) $Q /\left(8 \varepsilon_{0} a^{2}\right)$
E) $Q /\left(4 \pi^{2} \varepsilon_{0} a^{2}\right)$

4. A point charge $q_{1}=4.15 \mathrm{nC}$ is located on the x-axis at $x=1.15 \mathrm{~m}$, and a second point charge $q_{2}=-6.15 \mathrm{nC}$ is on the y-axis at $y=1.8 \mathrm{~m}$. What is the total electric flux (in $\mathrm{N} . \mathrm{m}^{2} / \mathrm{C}$) due to these two point charges through a spherical surface centered at the origin with radius 1.4 m ?
A) -8.12×10^{-2}
B) -6.95×10^{2}
C) 4.69×10^{2}
D) -2.25×10^{2}
E) 7.91×10^{-2}
5. Over a certain region of space, the electric potential is $\mathrm{V}=-5 x-3 x y-2 y z$ (in V). The x-component of the electric field (in V / m) at the point P that has the coordinates $(1,-1,30) \mathrm{m}$ is:
A) -2
(B) 27
C) -5
D) 5
E) 0
6. Consider the following assembly of charges.
How much work (in J) do you need to bring a charge of 9.3 nC from far away to the center?
A) 10
B) 0
C) 30
D) 45.5
E) 125

7. A small metal ball of mass 4 grams is charged with $-10 \mu \mathrm{C}$. A constant uniform electric field is generated in order to suspend (يعنق) the ball in air. What is the minimum field required to achieve this suspension (in N/C)?
A) $\mathbf{3 0 5 0}(+\mathbf{j})$
B) $2940(+\mathrm{j})$
C) $3920(+\mathrm{j})$
D) $2940(-\mathrm{j})$
E) $3920(-\mathbf{j})$
8. What is the equivalent capacitance $C_{e q}$ of this circuit (in terms of C_{0})?
A) $C_{e q}=4 C_{0}$
B) $C_{e q}=4 C_{0} / 3$
C) $C_{e q}=C_{0} / 4$
D) $C_{e q}=3 C_{0} / 4$
E) $C_{e 4}=C_{0}$

9. Consider a parallel plate capacitor in a free space. The electric field between the plates is $3.6 \times 10^{5} \mathrm{~V} / \mathrm{m}$. When the space between the plates is completely filled with dielectric material, the electric field becomes $2.5 \times 10^{5} \mathrm{~V} / \mathrm{m}$. What is the value of the dielectric constant?
A) 2.5
B) 3.0
C) 1.32
D) 1.44
E) 4.1
10. A solid nonconducting sphere of radius 12 cm has a charge of uniform density ($\left(19 \mathrm{nC} / \mathrm{m}^{3}\right)$ distributed throughout its volume. The magnitude of the electric field (in N/C) 15 cm from the center of the sphere is:
A) 55
B) 20
C) 66
D) 78
E) 49 Years of Excellence

THE UNIVERSITY OF JOPDAN

The University Of Jordan Pysics Department
 General Physics II (0302102) / First EXAM / March $16^{\text {th }} 2016$
 SECOND SEMESTER 2015/2016

Q1	D	Q2	B	Q3	E	Q4	A	Q5	C
Q6	A	Q7	D	Q8	A	Q9	B	Q10	B

Answer All The Following Questions

$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}, k_{e}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mu \mathrm{C}=10^{-6} \mathrm{C}, \mathrm{nC}=10^{-9} \mathrm{C}, \mathrm{pC}=10^{-12} \mathrm{C}$
Q1. Three charged particles lie on a straight line as shown below. Charges q_{1} and q_{2} are held fixed and charge q_{3} is free to move. If q_{3} is in equilibrium (no net electrostatic force acts on it), then q_{1} in terms of q_{2} (in magnitude) is:
(a) $q_{1}=2 q_{2}$
(b) $\quad q_{1}=1 / 2 q_{2}$
(c) $\quad q_{1}=1 / 4 q_{2}$
(d) $\quad q_{1}=4 q_{2}$

(e) $\quad q_{1}=q_{2}$

Q2. A charge of +6 nC is placed on the x -axis at $\mathrm{x}=3 \mathrm{~m}$. A second charge of -8 nC is placed on the y-axis at $y=2 \mathrm{~m}$. The resulting electric field (in N / C) at the origin is:
(a) $\vec{E}=6 \hat{i}+18 \hat{j}$
(b) $\vec{E}=-6 \hat{i}+18 \hat{j}$
(c) $\vec{E}=-6 \hat{i}-18 \hat{j}$
(d) $\vec{E}=6 \hat{i}-18 \hat{j}$
(e) $\vec{E}=18 \hat{i}+6 \hat{j}$

Q3. A particle with a mass of $1 \times 10^{-8} \mathrm{~kg}$ and a charge of $3 \mu \mathrm{C}$ is released from rest in a uniform electric field $E=200 \mathrm{~N} / \mathrm{C}$. The speed (in m / s) of this particle 6 s after being released is:
(a) 1.2×10^{5}
(b) 1.8×10^{5}
(c) 2.4×10^{5}
(d) 3×10^{5}
(e) 3.6×10^{5}

Q4. A uniform electric field $\vec{E}=3 \hat{i}+5 \hat{j}+6 \hat{k} \mathrm{~N} / \mathrm{C}$ intersects a surface of area $2 \mathrm{~m}^{2}$. The flux (in $\mathrm{N} . \mathrm{m}^{2} / \mathrm{C}$) through this area if the surface lies in the yz-plane is:
(a) 6
(b) 10
(c) 12
(d) 18
(e) 30

$0+1$ Years of Excellence

Q5. A small non-conducting ball of mass $m=1.0 \mathrm{mg}$ and charge $q=$ 10 nC hangs from an insulating thread (حبل خفيف) that makes an angle $\theta=30^{\circ}$ with a vertical uniformly charged non-conducting sheet. Considering the gravitational force on the ball and assuming that the sheet extends far vertically, the surface charge density σ (in $\mathrm{nC} / \mathrm{m}^{2}$) of the sheet is:
(a) 4.1
(b) 5.1
(c) 10.2

Q6. An insulating solid sphere of radius 20 cm carries a uniform volume charge density $\rho=35 \mathrm{nC} / \mathrm{m}^{3}$. The electric field (in N / C) at 10 cm away from its center is:
(a) 131.8
(b) 169.6
(c) 113
(d) 188.3
(e) 150.7

Q7. A charge $q_{1}=70 \mathrm{nC}$ lies on the x -axis at $\mathrm{x}=-3 \mathrm{~m}$. At what distance (in m) on the x -axis one must put a second charge $q_{2}=-20 \mathrm{nC}$ to make the electric potential (relative to infinity) at the origin equals 100 V ?
(a) $\mathrm{x}=1.06$
(b) $x=1.20$
(c) $x=2$
(d) $x=1.64$
(e) $x=1.38$

Q8. The work (in J) needed to move a charge $q=10 \mu \mathrm{C}$ in a uniform electric field of strength $4 \times 10^{6} \mathrm{~N} / \mathrm{C}$ a distance of 4 cm is:
(a) 1.6
(b) 2
(c) 2.4
(d) 2.8
(e) 3.2

Q9. Three equal positive charges (each of charge Q) are at the corners of an equilateral triangle (منات منساوي الاضضلاع) of side a, the potential energy stored in this system is:
(a) $3 k_{e} \mathrm{Q}^{2} / a^{2}$
(b) $3 k_{e} \mathrm{Q}^{2} / a$
(c) $k_{e} \mathrm{Q}^{2} / a$
(d) $2 k_{e} \mathrm{Q}^{2 / a}$
(e) $3 k_{e} \mathrm{Q}^{2 / 2 a}$

Q10. A charge Q is distributed uniformly on a ring of radius 10 cm . If the electric potential (relative to infinity) at the center of this ring is 180 V , then the magnitude of Q (in nC) is:
(a) 1.5
(b) 2
(c) 2.5
(d) 3
(e) 3.5

Solution
Q.1:-

at $q_{3} \rightarrow$ "equilibrium point"

$$
\hookrightarrow \quad \sum F=0
$$

$$
\Rightarrow F_{1}=F_{2} \quad\left(\text { acts on } z_{3}\right)
$$

$$
\frac{q_{1}}{4 d^{2}}=\frac{q_{2}}{d^{2}} \rightarrow q_{1}=4 q_{2}
$$

ك

$$
\mathscr{K}_{3} E_{1}=\mathscr{K}_{3} E_{2} \rightarrow K_{e} \frac{q_{1}}{(2 d)^{2}}=K_{e} \frac{q_{2}}{d^{2}}
$$

$$
\begin{align*}
& \Rightarrow \begin{aligned}
\overrightarrow{E_{\text {net }}} & =\vec{E}_{1}+\vec{E}_{2} \\
& * E_{1}=k_{e} \frac{q_{1}}{(3)^{2}}=\frac{9 * 0^{*}\left(6 * 0^{9}\right)}{9}=6 \rightarrow \vec{E}_{1}=6(+\hat{i}) \\
& * E_{2}=x_{e} \frac{z_{1}}{(2)^{2}}=\frac{9 * 10^{2}\left(8 \times 10^{2}\right)}{4}=18 \rightarrow \vec{E}_{2}=18(-\hat{j})
\end{aligned} \\
& \therefore \vec{E}_{\text {net }}=6 \hat{i}=18 \hat{j} \quad \text { (d) }
\end{align*}
$$

Q.3:- $m=1 * 10^{-8} \mathrm{~kg} ; 7=3 * 10^{-6} \mathrm{c} ;$ from rest $\rightarrow V_{0}=0$
$E=200 \mathrm{~N} / \mathrm{C} \rightarrow$ find v_{f} after $t=3 \mathrm{~s}$

$$
\begin{aligned}
\Rightarrow \quad v_{f}=\dot{y}_{0}^{2}+a t & =a t \rightarrow \quad a=\frac{2 E}{m}=\cdots=6 * 10^{4} \mathrm{~m} / \mathrm{s}^{2} \\
\therefore v_{f} & =\left(6 * 10^{4}\right) \times 3
\end{aligned}
$$

Q.4:- $\vec{E}=3 \hat{i}+5 \hat{j}+6 \hat{k}, A=3 \mathrm{~m}^{2}$ (the surface lies in the $x y$-plane) $\therefore \vec{A}=3 \hat{k} / \perp$ on the surface

$$
\begin{equation*}
\Rightarrow \varnothing_{E}=\vec{E} \cdot \vec{A}=(3 \hat{i}+5 \hat{j}+6 \hat{k}) \cdot(3 \hat{k})=18 \tag{d}
\end{equation*}
$$

Q.5:- $T \frac{\sqrt{3}}{2}=m g \rightarrow T=\frac{2}{\sqrt{3}} m g$

$$
\begin{aligned}
& \Rightarrow F_{e}=2 E=\frac{T}{2}=5.5 * 10^{-3} \\
& \therefore E=\frac{5.5 * 10^{-3}}{25 * 10^{-9}}=0.22 * 10^{6}=22 \times 10^{4} \mathrm{~N} / \mathrm{C} \\
& E=\frac{\sigma}{2 e_{0}}=22 * 10^{4} \rightarrow \sigma=44 \epsilon_{0} * 10^{4} \\
& =3
\end{aligned}
$$

University of Jordan
Faculty of Science
Department of Physics

Second Semester 2014/2015
Date: 18/3/2015
Time: 3:30-4:30

General Physics II (0302102) First Exam

Constants: $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}, \mathrm{e}=1.602 \times 10^{-19} \mathbf{C}, \mathbf{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$, $\mathbf{k}_{\mathrm{e}}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

Answer Sheet

List your final answer in this table. Only the answer in this table will be graded.

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Answer	a	c	d	b	d	b	c	b	e	c

1. Three point charges, two positive and one negative, each having a magnitude of $20 \mu \mathrm{C}$ are placed at the vertices of an equilateral triangle (30 cm on a side). What is the magnitude of the electrostatic force on the negative charge?
(a) 69 N
(b) 39 N
(c) 25 N
(d) 58 N
(e) 85 N
2. Charge of uniform density $4.0 \mathrm{nC} / \mathrm{m}$ is distributed along the x axis from $x=-2.0 \mathrm{~m}$ to $x=+3.0 \mathrm{~m}$. What is the magnitude of the electric field at the point $x=+5.0 \mathrm{~m}$ on
\% the x axis?
(a) $49 \mathrm{~N} / \mathrm{C}$
(b) $66 \mathrm{~N} / \mathrm{C}$
(c) $13 \mathrm{~N} / \mathrm{C}$
(d) $16 \mathrm{~N} / \mathrm{C}$
(e) $19 \mathrm{~N} / \mathrm{C}$
3. A conducting sphere of radius 10 cm is charged with a total positive charge 100 nC . What is the potential difference between two points, one located 3.0 cm away from the center and the other at the surface?
(a) 28 V
(b) 66 V
(c) 57 V
(d) 0 V
(e) 85 V
4. Over a certain region of space, the electric potential is $V=2 x y-x^{2} z+z^{3} y^{2}$.

What is the magnitude of the electric field at the point P that has coordinates of (1.0, 2.0, -1.0) m?
(a) $49 \mathrm{~N} / \mathrm{C}$
(b) $13 \mathrm{~N} / \mathrm{C}$
(c) $19 \mathrm{~N} / \mathrm{C}$
(d) $66 \mathrm{~N} / \mathrm{C}$
(e) $22 \mathrm{~N} / \mathrm{C}$
5. A charge of uniform volume density $\left(40 \mathrm{nC} / \mathrm{m}^{3}\right)$ fills a cube with 8.0 cm edges. What is the total electric flux (in units of $\mathrm{N} . \mathrm{m}^{2} / \mathrm{C}$) through the surface of this cube?
(a) 4.6
(b) 1.1
(c) 5.7
(d) 2.3
(e) 3.5
6. A long straight metal rod has a radius of 2.0 mm and a surface charge of density $0.40 \mathrm{nC} / \mathrm{m}^{2}$. Determine the magnitude of the electric field 3.0 mm from the axis.
(a) $45 \mathrm{~N} / \mathrm{C}$
(b) $30 \mathrm{~N} / \mathrm{C}$
(c) $15 \mathrm{~N} / \mathrm{C}$
(d) $75 \mathrm{~N} / \mathrm{C}$
(e) $60 \mathrm{~N} / \mathrm{C}$
7. The electric field (in N/C) of a point charge $\mathrm{q}=8.0 \mathrm{nC}$ at a point located 2.0 m from the charge is:
(a) 27
(b) 72
(c) 18
(d) 36
(e) 68
8. If $V_{\mathrm{A}}-V_{\mathrm{B}}=50 \mathrm{~V}$, how much energy is stored in the $54 \mu \mathrm{~F}$ capacitor?

*
(a) 1.6 mJ
(b) 13 mJ
(c) 8.9 mJ
(d) 19 mJ
(e) 23 mJ
9. Which of the following is not a capacitance? (K is the dielectric constant)
(a) $\frac{\varepsilon_{0} A}{d}$
(b) $\frac{\kappa \varepsilon_{0} A}{d}$
(c) $\frac{a b}{k_{e}(b-a)}$
(d) $\frac{\boldsymbol{l}}{2 k_{e} \ln (b / a)}$
(e) $\frac{k_{\varepsilon} \varepsilon_{0} A}{d}$
10. How much charge is on each plate of a $4.00 \mu \mathrm{~F}$ capacitor when it is connected to a 12.0 V battery?
(a) $20 \mu \mathrm{C}$
(b) $77 \mu \mathrm{C}$
(c) $48 \mu \mathrm{C}$
(d) $68 \mu \mathrm{C}$
(e) $32 \mu \mathrm{C}$

$$
Q=20 \mu \mathrm{C}
$$

the net force $\Rightarrow F=F_{1} \cos 30+F_{2} \cos 30$

ن

$$
\begin{aligned}
F=K_{e} \frac{Q Q}{r^{2}} & =K_{e} \frac{Q^{2}}{r^{2}}=9 * 10^{9} \frac{\left(400 * 10^{-12}\right)}{900 * 10^{-4}} \\
& =40 \mathrm{~N}
\end{aligned}
$$

<
\Rightarrow the net force $\rightarrow F=\sqrt{3}(40)^{\prime}$

$$
\approx 69 \mathrm{~N}
$$

Q.2 :-

$$
\begin{aligned}
E=K_{e} \frac{Q}{a(L+a)}=K_{e} \frac{\lambda L}{a(L+a)} & =\frac{(9 * 18)\left(4 * * 6^{-8}\right)(5)}{2(7)} \\
& =12.86 \approx 13 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Q.3:- (Conducting sphere) \longrightarrow

$$
R=10 \mathrm{~cm}
$$

\Rightarrow potential is constant between the center of sphere $\&$ its surface
 sphere
\therefore potembial difference \rightarrow Zero (Δv)
Q.4:- $\quad V=2 x y-x^{2} z+z^{3} y^{2} \quad, \quad\left(1, \frac{y}{x},-1\right)$

$$
\begin{aligned}
& * E_{x}=-\frac{\partial v}{\partial x}=-(2 y-2 x z) \Rightarrow E_{x}=-6 \\
& * E_{y}=-\frac{\partial v}{\partial y}=-\left(2 x+2 y z^{3}\right) \Rightarrow E_{y}=2 \mathrm{~V} \\
& * E_{z}=-\frac{\partial v}{\partial z}=-\left(-x^{2}+3 z^{2} y^{2}\right) \Rightarrow E_{z}=-11 \mathrm{~V} \\
& \therefore E=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}=\sqrt{36+4+121}=\sqrt{161} \approx 13 \mathrm{~N} / \mathrm{c}
\end{aligned}
$$

Q.5:- $\quad \rho=40 \mathrm{nc} / \mathrm{m}^{3}$

Cube \rightarrow edge $=8 \mathrm{~cm}$

$$
\begin{aligned}
\Rightarrow \phi_{E} & =\frac{q_{\text {in }}}{\epsilon_{0}} \\
& =\frac{20.5 \times 10^{-12}}{8.85 \times 10^{-12}}=2.3
\end{aligned}
$$

$$
g_{\text {in }}=\rho V
$$

$$
\begin{aligned}
& \text { in }\left(40 * 10^{-9}\right)\left(8 * 10^{-2}\right)^{3}
\end{aligned}
$$

$$
=20.5 \times 10^{-12} \mathrm{c}
$$

Q.6:- $\quad R=2 \mathrm{~mm}, \sigma=0.4 \mathrm{nc} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \therefore E(2 \pi r \downarrow)=\frac{\sigma(2 \times R L)}{\epsilon_{0}} \\
&\left.\Rightarrow E=\frac{\sigma R}{\epsilon_{0} r}\right) \\
& \rightarrow E=\frac{\left(0.4 * 10^{-9}\right)(2 \mathrm{man})}{\left(8.85 \times 10^{-12}\right)(3 \mathrm{mk})} \\
&=30 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Q-7:- $\quad E=K_{e} \frac{q}{r^{2}}=9 \times 11^{g} \frac{\left(8 \times 10^{-9}\right)}{4}=18 \mathrm{~N} / \mathrm{C}$
Q. 8 :-

\rightarrow eqn (1): $\frac{c_{4}}{c_{1}} v_{4}+v_{4}=50 \rightarrow v_{4}=22.22 v$

$$
\Rightarrow V_{4}=V_{2}=V_{3}=22.22 v \quad \Rightarrow U_{E}=\frac{1}{2} c V^{2}=\frac{1}{2}(54 \mathrm{Mf})(22.22)^{2}
$$

$$
=13 \mathrm{~mJ}
$$

$* \frac{\epsilon_{0} A}{d} \rightarrow \frac{c^{2}}{N \cdot m} \cdot \frac{m^{2}}{m}=\frac{c^{2}}{N \cdot m}$	$* \frac{L}{2 K_{e} m(b / a)} \Rightarrow \frac{c^{2}}{N \cdot m} m=\frac{C^{2}}{N \cdot m}$
$* \frac{K \epsilon_{0} A}{d} \rightarrow \frac{c^{2}}{N \cdot m}$	
$* \frac{a b}{N \cdot m} \rightarrow \frac{c^{2}}{N \cdot m} \cdot \frac{m^{2}}{m}$	$* K_{e} \frac{\epsilon_{0} A}{d}-\frac{N m^{2}}{c^{2}} \frac{c^{2}}{N \cdot m^{2}} \frac{m^{2}}{m}=m$

(e)
Q. 10:- $Q=C V=(4 \mu f)(12 V)=48 \mu \mathrm{C}$

Physics Department
 Physics 102 ($1^{\text {st }}$ Exam)

FIrst (FALL) 2013/2014 (NoVEMBER $6^{\text {th }}, 2013$)
Student's Name (In Arabic) Instructor's Name:
Useful Information:
$|\mathrm{q}|\left(\equiv\right.$ Absolute Charge on Electron or Proton) $=1.6 \times 10^{-19} \mathrm{C}$ $\mathrm{m}_{\mathrm{e}}(\equiv$ Mass of Electron $)=9.11 \times 10^{-31} \mathrm{~kg}$
$\mathrm{m}_{\mathrm{p}}(\equiv$ Mass of Proton $)=1.67 \times 10^{-27} \mathrm{~kg}$.
k_{e} (\equiv Coulomb's Constant $)=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$
ε_{0} (\equiv Permittivity of free space) $=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
Some of the results are rounded.

Q.\#	1	2	3	4	5	6	7	8	9	10	$B o n u s$
Answer	d	d	Q	0	α	O	e	b	d	d	C

1. The work that must be done to charge a spherical shell of radius R to a total charge Q is:
a) $\quad k Q / R$
d) $\quad k Q / 2 \mathrm{R}^{2}$
(9) $k Q^{2} / \mathrm{R}$
e) $k Q^{2} / 2 \mathrm{R}$
c) $\quad k Q / R^{2}$

A large flat horizontal sheet of charge has a charge per unit area of $9.00 \mu \mathrm{C} / \mathrm{m}^{2}$. The electric field (in kN / C) just above the middle of the sheet is:.
(ब) $\quad 805$
b) $\because 580$
c) 254
e) $\quad \therefore 850$
3. A pyramid with horizontal square base, 6.00 m on each side, and a height of 4.00 m is placed in a vertical electric field of $52.0 \mathrm{~N} / \mathrm{C}$. The total electric flux (in $\mathrm{kN} . \mathrm{m}^{2} / \mathrm{C}$) through the pyramid's four slanted surfaces
is:
a) 0.83
b) $\quad 1.25$
c) $\quad 1.87$
d) 4.99
(e) $\therefore 7.49$
d)
Wक Lists it
.
4. Three identical charges q are at the vertices of an equilateral triangle of side a. the total electrostatic potential energy stored in the system is
a) $6 \mathrm{kq}^{2} / a$
b) $3 \mathrm{~kg}^{2} \cdot / \mathrm{a}$
c) $2 k q^{2} / a$
d) kq^{2} / a
e) Zero
5. The following is not a capacitance: (Note: k_{e} is Coulomb's constant)
(a) $k_{e} \varepsilon_{0} \mathrm{~A} / \mathrm{d}$
b) $\quad \varepsilon_{0} A / d$
c) $4 \pi \varepsilon_{0} a$
d) $\ell / 2 k_{e} \ln (\mathrm{~b} / a)$
e) $\quad a b / k_{e}(b-a)$
6. When a potential difference of 150 V is applied to the plates of a parallel plate capacitor, the plates carry a surface charge density of $30.0 \mathrm{nC} / \mathrm{cm}^{2}$. The spacing between the plates (in $\mu \mathrm{m}$) is:
(a) 4.42
b) $\quad 2.34$
c) 1.11
d) 1.34
e) $\quad 3.42$
7. The equivalent capacitance (in $\mu \mathrm{F}$) between points a and b for the group of capacitors connected as shown. Let $C_{1}=5.00 \mu \mathrm{~F}, C_{2}=10.0 \mu \mathrm{~F}$, and $C_{3}=2.00 \mu \mathrm{~F}$.

a)	9.50
b)	0.12
c)	8.67
d)	32.0
c)	4.29

8. A spherical conductor has a radius of 14.0 cm and charge of $26.0 \mu \mathrm{C}$. The electric potential (in MV)
8. at $r=10.0 \mathrm{~cm}$ from the center is:
c) Zero
a) 0.84
d) 2.34
,
1.67
e) $\quad 1.67$
e) $\quad 1.95$
-
,
9. Points $\mathrm{A}[$ at $(2,3) \mathrm{m}]$ and $\mathrm{B}[a t(5,7) \mathrm{m}]$ are in a region where the electric field is uniform and given by \mathbf{E} $=(4 i+3 j)$ N/C. The potential difference $V_{A}-V_{B}$ (volts) is:
a) 33
b)
e)
27
c) $\quad 11$
c) $\quad 30$
10. A non-conducting sphere of radius 10 cm is charged uniformly with a density of $100 \mathrm{nC} / \mathrm{m}^{3}$. The magnitude of the potential difference (in volts) between the center and a point 4.0 cm away is:
a) 12
b) $\quad 6.8$
d) 4.7
e) $\quad 2.2$

Bonus. A non-uniform linear charge distribution given by $\lambda(x)=a x$, where " a " is a constant, is distributed along the x axis from $x=0$ to $x=+L$. If $a=40 \mathrm{nC} / \mathrm{m}^{2}$ and $L=0.20 \mathrm{~m}$, the electric potential (in volts) (relative to a potential of zero at infinity) at the point $y=2 L$ on the y axis is:
(b) is 17
e) 14
a) 19
d) 23

$$
\begin{aligned}
& V=? ? \\
& V=K \sum \frac{q_{i}}{r_{i}}=K\left[\frac{-2 \times 10^{-6}}{\left(\frac{\sqrt{2}}{5}\right)}+\frac{6 \times 10^{-6}}{\left(\frac{\sqrt{2}}{5}\right)}+\frac{4 \times 10^{-6}}{6.2}\right) \\
& V=307.3 \mathrm{KV}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } \vec{E}=-\frac{k c}{b^{2}} \hat{i}+\frac{k q}{a^{2}} \hat{j} \\
& \Rightarrow \vec{E}=(-56.25 \hat{i}+37.5 \hat{j}) \mathrm{N} / \mathrm{C} \\
& \rightarrow|\vec{E}|=67.6 \approx 68 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

3) E

4)

$$
\begin{aligned}
& \text { 4) } v=x^{2} y+x y^{2} \\
& \begin{array}{lll}
F=? ? & q=2 c & (x, y)=\left(t^{3}\right) \\
& A=2 c & (x, y)=(2,-3)
\end{array} \\
& \varepsilon_{y}=-\left(x^{2}+2 x y\right), E=\sqrt{\varepsilon^{2}+F_{y}} \\
& \nabla_{8.54} \\
& F=q E=17 \cdot 1 / N
\end{aligned}
$$

5)

$$
\begin{aligned}
& \lambda=+4 \mathrm{nc} / \mathrm{m} \\
& \phi=? ? \quad r=5 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \oint \overrightarrow{E \cdot} \overrightarrow{\partial A}=\frac{q_{0}}{\varepsilon_{0}} \rightarrow E A=\frac{q}{\varepsilon_{0}} \rightarrow \phi=\frac{q}{\varepsilon_{0}} \\
& q=\lambda L \rightarrow \quad L=2 r=10 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& q=\frac{4 n c}{m} *(5+5) \mathrm{cm} \\
& q=4 \times 10^{-9}\left(10 \times 10^{-2}\right)=4 \times 10^{-10} \mathrm{c} \\
& \rightarrow \alpha=\frac{4}{80}=45.2 \frac{\mathrm{Nm}^{2}}{\mathrm{c}}
\end{aligned}
$$

6) in a conducting pere conducting sphere the

$$
R=20 \mathrm{~cm}
$$

$$
q=+15 m
$$

net (\vec{E}) inside it

$$
r=12 \mathrm{~cm}
$$

$$
\begin{aligned}
& E=0 \text { when } r<R \rightarrow Y E=F=0 \\
& \rightarrow w=\vec{F} \cdot \vec{r} \rightarrow W=0 \rightarrow \quad W=U \rightarrow U=q \Delta V
\end{aligned}
$$

$$
\begin{array}{ll}
\rightarrow & w=F \cdot V \\
\rightarrow D V=0 \rightarrow & \Delta V=\left(V_{A}-V_{B}\right)=0 A, B \quad \text { any aribtsary } \\
\text { points indio } \\
\text { the shh }
\end{array}
$$ points inside

$$
\Rightarrow V_{A}=V_{B} \rightarrow V_{A}=V_{\text {surface }}
$$

$$
V=\frac{k Q}{R}=675 \mathrm{KV}
$$

7) No rigons

the Electric
 Field can't be zero in any region $\stackrel{\beta}{\longrightarrow}$
8) $\phi=\frac{q_{\text {enclosed }}}{\varepsilon_{0}}$ $q=1 \times 10^{-12} c$

$$
\phi=\frac{1 \times 10^{-12}}{8.85 \times 10^{12}}=0.11 \frac{\mathrm{Nm}^{2}}{\mathrm{C}} \quad \begin{aligned}
& r=R / 2 \\
& Q=? ?
\end{aligned}
$$

9) $E=-\frac{\sigma_{1}}{2 \varepsilon_{0}}+\frac{-\sigma_{2}}{2 \varepsilon_{0}}$

$$
\begin{aligned}
& \hat{\sigma}_{1}^{\sigma}=\sigma_{2}=\sigma_{3} t \frac{-\sigma_{3}}{2 \varepsilon_{0}} \\
& \longrightarrow E=-\left(\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon \sigma}+\frac{\sigma}{2 \varepsilon \sigma}\right) \\
& E=\frac{-3 \sigma}{2 \varepsilon \sigma} \hat{i}
\end{aligned}
$$

$v_{1}+H_{1} z_{0}^{0}=v_{2}+k_{2}$

$$
\frac{k a^{2}}{\alpha}=\frac{k a^{2}}{3 \alpha}+k k_{2} \rightarrow k_{2}=\frac{3 k a^{2}}{3 d}-\frac{k a^{2}}{3 \alpha}=\frac{2 k a^{2}}{3 \alpha}
$$

11)

$$
\begin{aligned}
& Q_{1}=Q_{2}=20 \% \\
& Q_{3}=60 \%
\end{aligned}
$$

$$
(100 \%)-(20 \% \quad \Phi)-(20 \% \quad Q)=60 \%
$$

12) $\int_{2}^{2} \int_{2 r}^{2} \cos \theta=\frac{2}{\sqrt{x^{2}+4}} r=\sqrt{x^{2}+4}$

$$
\begin{aligned}
& \vec{E}=k \int \frac{\partial 2}{r^{2}} \tilde{r}=k \int \frac{\lambda \partial r}{r^{2}} \hat{r} \\
& E_{y}=k \lambda \int \frac{\partial x}{\left(\sqrt{x^{2}+4}\right)^{2}} \cos 6 \\
& E_{y}=k \lambda \int \frac{\partial x}{\left(x^{2}+4\right)} \frac{2}{\sqrt{x^{2}+4}}=9 * 2 * 2 \int_{0}^{3} \frac{2 \alpha}{\left(x^{2}+4\right)^{3 / 2}} \\
& E_{y}=36 \int_{0}^{3} \frac{\partial x}{\left(x^{2}+4\right)^{3 / 2}}
\end{aligned}
$$

1) $E=\frac{k^{G} t}{r^{2}}=1000 N / C$

$$
\begin{aligned}
& \text { 2) } F=\frac{k q_{1} q_{2}}{r^{2}}=1435 \mathrm{~N}=135 \mathrm{~N} \\
& F=135 \mathrm{~N} \\
& \text { 3) } \Sigma \vec{F}=m \vec{a} \longrightarrow q \vec{\varepsilon}=m \vec{a} \rightarrow a=\frac{2 \overrightarrow{b^{2}}}{\mathrm{~m}} \\
& \rightarrow a=3.3 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

5) $\phi=\frac{a_{\text {net enclosed }}}{\varepsilon_{0}}=\frac{(2 Q)+(-Q)}{\varepsilon_{0}}$

$$
\alpha=\frac{Q}{\varepsilon 0}=336.98=339 \frac{\mathrm{Nm}^{2}}{\mathrm{c}}
$$

6) (aid) $\quad-3 q \quad \frac{a_{\text {inner }}}{A_{\text {inner }}}=\frac{-q}{4 \pi a^{2}}$

7 R

$$
\Phi E\left(4 \pi r^{2}\right)=\frac{\rho\left(\frac{4}{3} \pi r^{3}\right)}{\varepsilon \sigma} \rightarrow E=\frac{\rho r}{3 \varepsilon 0} \text { Qr<R }
$$

(2) $E=\frac{k a}{r^{2}} \quad r>R \rightarrow \quad k=\frac{E r^{2}}{k_{2}}=4.86 \times 10^{-8} \mathrm{C}$ outside

$$
\begin{array}{ll}
\rightarrow(3) Q E=\frac{\rho h}{3 \varepsilon 0} \text { inside } & \rho=\frac{Q}{V}=\frac{Q}{\frac{4}{3} \pi R^{3}} \\
\rightarrow E=976.78 \approx 980 \frac{\mathrm{~N}}{\mathrm{~s}} \quad \rho=2.6 \times 10^{-7} \frac{\mathrm{c}}{\mathrm{~ms}}
\end{array}
$$

8)

$$
\begin{aligned}
& E_{x}=\frac{k q_{1}}{r_{1}^{2}}+\frac{2 k q_{2} 2 \cos \theta}{r_{2}^{2}} \quad E_{2}= \\
& E_{y}=0 \rightarrow \sqrt{E_{x}=1 \cdot d x b^{7} \mathrm{~N} / \mathrm{C}}
\end{aligned}
$$

1)

$$
q E=T \sin \theta
$$

$$
q E=m g \tan \theta
$$

$\rightarrow \frac{q \sigma}{2 \varepsilon \sigma}=m g \tan \theta \rightarrow \frac{1-\frac{\sigma g}{2 m^{2 \varepsilon 0}}=\mathrm{tan}}{\theta}$

$$
\tan \theta=\frac{q E}{\ln g} \rightarrow 6=\tan ^{-1}\left(\frac{4 E}{m g}\right)=8 \cdot 2^{0}
$$

10) $E=k \int \frac{2 q}{r^{2}} \hat{r} \quad d q-\lambda d x$

$$
E=k^{2} \hat{\int_{0}^{a}} \frac{2 x}{\left(x^{2}+\frac{a}{2}\right)^{2}}
$$

$$
\int \frac{1}{\left.(x+)^{2}\right)^{2}}
$$

by sursituation $z=x+\frac{9}{2}$

$$
\begin{aligned}
& \partial z=\alpha x \\
& \Rightarrow E=k a \int_{a}^{\frac{3 a}{2}} \frac{2 z}{z^{2}}=k^{\lambda}\left\{-\frac{1}{z}\right]_{\frac{a}{2}}^{\frac{3}{2} q} \\
& =k \lambda \hat{i}\left[\frac{1}{z}\right]_{\frac{3}{2} a}^{\frac{a}{2}}=k \lambda \hat{i}\left[\frac{1}{\frac{a}{2}}-\frac{1}{\frac{3}{2} a}\right] \\
& =k \lambda \hat{i}\left[\frac{2}{9}-\frac{2}{3 a}\right]=k \lambda \hat{i}\left[\frac{4}{39}\right] \\
& \hat{\lambda}=\frac{a}{a} \Rightarrow \quad E=\frac{k a}{a}\left[\frac{4}{39}\right] \hat{i} \\
& \vec{E}=\frac{4 k a}{3 a^{2}} \hat{i} \quad \vec{E}=-\frac{9}{3}\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \frac{a}{a^{2}} \hat{i} \\
& \vec{E}=\frac{Q}{3 \pi \varepsilon 0 a^{2}} \rightarrow F=q \vec{E}=\frac{Q q}{3 \pi \varepsilon 0 a^{2}}
\end{aligned}
$$

J) $V=\frac{k a}{R}$
sphere conducting

$$
R=0.3 \mathrm{~m}
$$

$$
e r=1.2 m
$$

$$
-V=24 \mathrm{~V}
$$

\rightarrow since ib's a conducting surface
\rightarrow @the
tue potential inside the sphere center@ is the same e every point inside the sphere which is equal to the potential at the surface

$$
\begin{array}{ll}
\Rightarrow v=\frac{k a}{r}, & q=\frac{v r}{k}=\frac{24 \times 1.2}{9 \times 109} \\
v_{Q}=96 \mathrm{~V} \\
\text { center }
\end{array}, \quad q=3.2 \times 10^{-9} \mathrm{C}
$$

$$
\begin{aligned}
& \text { 2) } \vec{p}=2 \times 10^{-3 \hat{i}}+4 \times 10^{-3} \hat{j} \mathrm{~cm} \quad \tau=2 \text { ? } \\
& \vec{E}=-7.8 \times 10^{3} \hat{i}+4.9 \times 10^{3} \hat{j} \frac{\mathrm{~N}}{\mathrm{C}} \\
& \tilde{T} \overrightarrow{p \times \vec{E}}=\left|\begin{array}{ccc}
i & j & k \\
2 & 4 & 0 \\
-7.8 & 4.9 & 6
\end{array}\right|=0+0 b \hat{k}\left(\begin{array}{cc}
2 & 4 \\
-7.8 & 4.9
\end{array}\right) \\
& Y=[(2 * 4.5)-(-7 \cdot 8 * 4)] \hat{\not}=4 I \hat{\pi}
\end{aligned}
$$

$$
\begin{array}{lc}
\vec{E}=? ? & \lambda=\frac{\theta}{L} \\
L=\gamma \theta=9 \theta=\gamma \theta & \lambda=\frac{0}{\pi} r \\
\hline a r a &
\end{array}
$$

$$
\begin{aligned}
& \vec{E}=k \int \frac{\partial q}{r^{2}} \hat{r}=E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\lambda l=r \partial \theta=a \partial \theta}{r^{2}} \cos \theta \\
& E_{x}=\frac{1}{4 \pi \varepsilon 0} \frac{\lambda}{r^{2}} \int \partial l \cos \theta=\frac{1}{4 \pi \varepsilon}\left(\frac{2 Q}{\pi r}\right)\left(\frac{1}{r^{2}}\right) \int r \operatorname{cosed} \theta \\
& \pi / 2
\end{aligned}
$$

or

$$
=\frac{1}{4 \pi \varepsilon 0}\left(\frac{2 Q}{\pi r^{3}}\right) r \int_{0}^{\pi / 2} \cos \theta d \theta
$$

$$
\begin{array}{lll}
=\frac{1}{4 \pi \varepsilon 0} & \pi r^{3} & \frac{1}{2} \\
=\frac{1}{4 \pi \varepsilon} \theta & \left(\frac{\pi}{\pi r^{2}}\right) & {[\sin \theta]_{0}^{\pi / 2}} \\
\frac{a}{2 \pi 2}
\end{array}
$$

$$
=\frac{2}{=} \frac{a}{2 \pi^{2} \varepsilon_{0} r^{2}}[1-0]=\frac{a}{2 \pi^{2} r^{2} \varepsilon_{0}}=\sqrt{\frac{a}{2 \pi^{2} \varepsilon_{0} a^{2}}}
$$

$5)$

$$
\begin{aligned}
& V=-5 x-3 x y-2 y z \\
& E_{x} @ p=(1,-1,30)
\end{aligned}
$$

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x}=-(-5-3 y-0)=5+3 y \\
& E_{x}=5+3(-1)=2 \mathrm{~N} / \mathrm{C} \rightarrow E_{x}=2 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

 $w=? ?$
$w=v=q \Delta V$, $\Delta V e$ the center $=0$

$$
\begin{aligned}
& D V=\left(\frac{k a_{1}}{r} \frac{k a_{2}^{2}}{r}\right)^{0}+\left(\frac{k q_{3}}{r} \frac{k q_{1}}{r}\right)^{q_{3}=q_{4}}+0 \\
& \Rightarrow v=q \Delta V=0 \rightarrow w=0
\end{aligned}
$$

7)

$$
m=4 \times 10^{-3} \mathrm{~kg}
$$

$$
\begin{aligned}
& m=9 \times 10 \times \vec{F}=0 \\
& l=-10 N L C
\end{aligned}
$$

E is downward cause the charge is negative

8)

$\xrightarrow{\text { 悦 }}$

$\mathrm{C}^{2} \mathrm{C}_{0}+\mathrm{Co}_{0}+\mathrm{CO}_{0}=3 \mathrm{Co}_{0} \longrightarrow$

$$
\begin{aligned}
& \frac{1}{c_{e q}}=\frac{1}{3 c_{0}}+\frac{1}{c_{0}}=\frac{4}{3 c_{0}} \\
& \rightarrow c_{e q}=\left(\frac{4}{3} c_{0}\right)^{-1}=\frac{3 c_{0}}{4}=\frac{3}{4} c_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { g) } \\
& C=\frac{A \varepsilon}{\partial}, \quad \varepsilon=r \varepsilon \varepsilon_{0} \\
& c=\frac{q}{\Delta V} \quad, \Delta V=E_{Q} \\
& \rightarrow \frac{q}{E \not E}=\frac{A \varepsilon}{\alpha} \rightarrow q=A \varepsilon E \\
& c=\frac{V}{E J} \\
& \rightarrow q_{1}=A \varepsilon_{0} E_{1} \quad, q_{2}=A R \varepsilon_{0} \varepsilon_{2} \\
& q_{1}=q_{2} \text { = const } \\
& \text { same } \\
& A \varepsilon_{0} E_{L}=A K \varepsilon_{0} E_{2} \rightarrow \sqrt{K=\frac{E_{1}}{E_{2}}=1.44}
\end{aligned}
$$

$$
U=q \Delta v, v=w
$$

$\rightarrow \quad w=q \Delta v$, but
charging

$$
\begin{aligned}
& \partial w=v \partial q \rightarrow w=\int v \partial q \rightarrow w=\frac{k}{R} \int q d q \\
& w=\frac{k q^{2}}{2 R}
\end{aligned}
$$

2) $E=\frac{\sigma}{280}=508.47 \times 10^{3} \mathrm{~N} / \mathrm{C}=508^{\mathrm{k} N} / \mathrm{C}$
3)

$$
\phi=E A=E\left(s^{2}\right)=E\left(b^{2}\right)=36 * 52=1.87 \frac{\mathrm{kNm}}{\mathrm{C}}
$$

4)

$$
v=\frac{k q^{2}}{q}+\frac{k q^{2}}{q}+\frac{k q^{2}}{q}=\frac{3 k q^{2}}{q}
$$

54) \square b) 8 A parelel prabe
is not acapacibo
d) $1 / 2<\ln (b / a)$ \square cylindrical capacito
c) $4 \pi \varepsilon_{0} 9$
e) $\frac{a b}{k(b-a)}$ (6) Hollow sphore capacitor
answer (a) $\frac{k \varepsilon_{0} A}{d}$ is wot a capacibance for any capacibor
55) 9

$$
\text { 6) al } \begin{aligned}
& \Delta V=150 \mathrm{~V} \\
& \sigma=30 \times 10^{-9} \mathrm{c} / \mathrm{cm}^{2} \\
& d=? ? \\
& \rightarrow \partial=\frac{D V}{E}=4.425 \times 10^{-6} \mathrm{~m} \\
& \partial=4.425 \mathrm{Mm}
\end{aligned}
$$

7)

$$
\begin{aligned}
& c_{1}=5 \mathrm{MF} \\
& c_{2}=104 \mathrm{~F} \\
& c_{3}=2 \mu \mathrm{~F} \\
& c_{e_{4}}=? ?
\end{aligned}
$$

$c_{e q} c_{2}\left(\frac{1}{c_{1}}+\frac{1}{c_{2}}\right)^{-3}+c_{3}=2\left(\frac{1}{16}+\frac{1}{5}\right)^{-1}+2$
$c_{3}=8$.
8)

$R=14 \mathrm{~cm}$
, $r=10 \mathrm{~cm} \quad q=26 \mathrm{MC}$
$-V=$?? $\quad-r$ er
spherical conductor
Remember the graph of the "potential" vs distance for a conductor
\Rightarrow The potential inside the sphere is the same as the surface
9)

$$
\begin{array}{rlrl}
& V_{A}-V_{B}=-(\vec{E} \cdot \overrightarrow{B A}) & \overrightarrow{B A} & =\vec{A}-\vec{B} \\
& =-3 \hat{j}-4 j \\
V_{A}-v_{B}-[(4 \hat{i}+3 \hat{j}) \cdot(-3 \hat{i}-4 \hat{j})] & \\
=(-12-12)(-I)=+24 \mathrm{~V} \rightarrow V_{A}-V_{B}=24 \mathrm{~V}
\end{array}
$$

10)

From quass Lan we know that $E=\frac{\rho r}{3 \varepsilon_{0}}$

$$
\begin{aligned}
& \rightarrow V=\int_{a}^{b} \vec{E} \cdot \overrightarrow{d r}=\frac{\rho}{3 \varepsilon 0} \int_{T=0}^{r=3} r \partial r=\frac{\rho r^{2}}{6 \varepsilon \theta}\left[r^{2}\right]_{0}^{3} \\
& r=3.013 v \approx 3 v \rightarrow e_{e_{r=3}-v_{\text {er } 20}=3 v}
\end{aligned}
$$

