Student Name: Section Number: Section Number: Instructor: Dr. Information: $g = 9.8 \text{ m/s}^2$, $k = 1/4\pi \varepsilon_0 = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$

- 1) Three point charges of -2.00 μ C, +4.00 μ C, and +6.00 μ C are placed along the x-axis as shown in the figure. What is the electric potential at point P (relative to infinity) due to these charges?
- (A)+307 kV (C) -154 kV
- B) -307 kV
- E) 0 kV
- D) +154 kV

- 2) If a = 60 cm, b = 80 cm, Q = -4 nC, and q = 1.5 nC, what is the magnitude of the electric field at point P?
 - A) 72 N/C
 - B) 68 N/C
 - (C) 77 N/C
 - D) 82 N/C
 - E) 0 N/C
- (621) + (45)

Which of the electric field vectors could represent the electric field at point P due to the charges (-Q) and (q)?

- E2 E3 E4 E5 eq
- $\sqrt{4}$) If the potential in a certain region is given by $V = x^2y + xy^2$, where x and y, are measured in meters and V is in volts. Find the magnitude of the electric force on a 2.0C charge located at the position (x,y) = (2,-3).
 - A) 34.2 N
- B) 25.6 N
- (C) 17.1 N
- D) 8.5 1
- E) 0
- A uniform linear charge density of 4nC/m is distributed along the entire x-axis. Determine the electric flux through a spherical surface (r = 5 cm) centered at the origin.
- A) 36
- **B**)45
- C) 54
- D) 63
- E) 13 . 4 405 x 10 405
- الله عمدي <u>حم</u> الم
- 6) A conducting sphere of radius 20.0 cm carries a net charge of +15.0 μC. The electric potential (relative to infinity) at a point 12.0 cm from its center is:
- A) 0
- (B)675 kV
- C) 1125 kV
- D) 3380 kV
- E) 9380 kV

7) Two charges, of equal magnitude and opposite sign (+Q and -Q), are placed on the x-axis as shown. In which of the three regions, A, B, and C, on the x-axis can the electric field be zero? A) Region A C) Region C B) Region B E) No regions (D) Regions A and C 8) A charge q of 1.0×10^{-12} C is located inside a sphere, R/2 from its center. What is the electric

- A) 0.23
- B) 8.9
- C) 0.023π

- (D)0.11
- E) The electric flux cannot be determined

- 9) Three infinite parallel plates carry equal uniform charge densities σ as shown in the figure. The electric field \bar{E} in region (1) is:
- $-\frac{3\sigma}{2\varepsilon_0}\hat{i} \qquad \text{B)} \quad -\frac{\sigma}{2\varepsilon_0}\hat{i} \qquad \text{C) zero} \qquad \text{D)} \quad \frac{\sigma}{2\varepsilon_0}\hat{i} \qquad \text{E)} \quad \frac{3\sigma}{2\varepsilon_0}\hat{i}$

10) Two equal charges Q are separated by a distance d. One of the charges is released and moves away from the other due to the force between them. When the moving charge is a distance 3d from the other charge, its kinetic energy is:

- $(B) \cdot \frac{k_e Q^2}{2 J}$
- C) $\frac{k_e Q^2}{4d}$ D) $\frac{3k_e Q^2}{4d}$

11) The figure shows a point charge (q) located at the center of a cylinder. If the electric flux leaving one end of the cylinder is 20% of the total flux leaving the cylinder, the portion (جزء) of the flux that leaves the curved surface of the cylinder is:

- A) 90%
- B) 70%
- C) 85%
- D) 60%

اعسامة الاشته = ١٥

A uniform linear charge of 2.0 nC/m is distributed along the x axis from x = 0 to x = 3 m. Which of the following integrals is correct for the magnitude of the y-component of the electric field at y = 2 m on the y axis?

- A) $\int_{0}^{3} \frac{18xdx}{(x^{2}+4)^{\frac{3}{2}}}$ B) $\int_{0}^{3} \frac{36dx}{(x^{2}+4)^{\frac{1}{2}}}$ C) $\int_{0}^{3} \frac{18xdx}{(x^{2}+4)^{\frac{1}{2}}}$
- $\mathbb{E}\int_{0}^{3} \frac{36dx}{(x^{2}+4)^{3/2}}$

List your final answers in this table. Only the answer in this table will be graded.

Question	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:	Q11:	Q12:
Final Answer	A	C	A	С	B	B	D	D	A	В	E	E
		n	-				F			C	T	

The University of Jordan School of Science Department of Physics

2nd Summer Semester 2017 General Physics-2 First Exam, August 9, 2017

Name (I	n Arabic) :
	Number:

Instructor: 3 Section: 3

 $k = 1/4\pi\varepsilon_0 = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; $e = 1.6 \times 10^{-19} \text{ C}$; $g = 9.8 \text{ m/s}^2$

Write the letter corresponding to the correct answer in the table

- 1) The magnitude of the electric field (in N/C) at a point that is 3.0 m away from a 1.0 μC point charge is
- a) 230
- b) 2300
- c) 2000
- d) .1000
- e) 4600
- 2) Two point charges, 1.5 μ C and 1.0 μ C, are separated by 1 cm. The magnitude of the force (in N) exerted by one charge on the other is
- (a)₁₃₅
- b) 315
- c) 225
- d) 405
- e) 495
- 3) The magnitude of the acceleration (in m/s²) of a proton ($m = 1.67 \times 10^{-27}$ kg) in a uniform electric field of magnitude 4 × 10⁴ N/C is
- 1.9×10^{12}
- b) 3.8×10^{12} c) 2.9×10^{12} d) 6.7×10^{12} e) 5.7×10^{12}

- 4) The local surface charge density at a point on the surface of an arbitrarily shaped conductor is 3 nC/m². The magnitude of the electric field at that point (in N/C) is
- E a) 113

- e) 1130
- 5) The figure shows a closed cubical surface with the charges 2Q and -Q inside the cube and the charges -2Qand Q outside the cube. If Q = 3 nC the net electric flux (in N.m²/C) through the surface of the cube is

- a) 282
- b) 0
- c) 678
- d) 339
- e) 565
- 6) A conducting spherical shell with inner radius a and outer radius b has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. The surface charge density on the inner surface of the conducting shell is

- b) $\frac{-3Q}{4\pi h^2}$ c) $\frac{-Q}{2\pi h^2}$ d) $\frac{3Q}{4\pi a^2}$

- 7) The electric field at a distance of 0.145 m from the surface of a solid insulating sphere with radius 0.355 m is 1750 N/C. Assuming the sphere's charge is uniformly distributed, the electric field (in N/C) inside the sphere at a distance of 0.100 m from the center is
- a) 0
- b) 1750
- c) 2940
- d) 1960

8) Three negative point charges lie along a line as shown in the figure. The magnitude of the electric field (in N/C) this combination of charges produces at point P, which lies 6.00 cm from the -2.00 μ C charge measured perpendicular to the line connecting the three charges is

- a) 1.0×10^5
- d) 2.4×10⁵
- e) 1.0×10⁷
- $(c) 0.5 \times 10^{6}$
- 9) A small sphere with mass 4.00×10^{-6} kg and charge 4.00×10^{-8} C hangs from a thread near a very large, charged insulating sheet. The charge density on the surface of the sheet is uniform and equal to -2.50×10^{-9} C/m2. The angle of the thread is

- a) 8.2°
- b) 12.2°
- c) 10.2°
- d) 9.2°
- 10) Positive charge Q is distributed uniformly along the x-axis from x = 0 to x = a. A positive point charge q is located on the positive x-axis at x = a + r, a distance r=a/2 to the right of the end of Q. The force (magnitude and direction) that the charge distribution Q exerts on q is

Q	1,	2	3	4,	5.	6.	7	8	9	10
Answer	d	a	b	d	d	a	e	6	Q	P

The University of Jordan / Department of Physics Second Semester 2016/2017 Physics 102/ First Exam

co+ 11- 29

Section number: 7

Lecturer name: 5 years 100 years 100

(بالعربية) Student name إبالعربية) Student number

Notes: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. You have sixty (60) minutes to complete your exam. Be sure to fill the box below with your final answers before the end of the exam.

Some helpful information: $p (pico) = 10^{-12}$; $n (nano) = 10^{-9}$; $\mu (micro) = 10^{-6}$; $k_e = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; $g = 9.8 \text{ m/s}^2$

1	2	3	4	55	6	7	8	9	10	
 Α	E,	(,)	·C/	B	13	E	0	Q	A	
1		0101	010	-10	J. h.					

- A solid conducting sphere has not positive charge and radius R = 0.3 m. At a point 1.2 m from the center of the sphere, the electric potential due to the charge on the sphere is 24 V. Assuming that V = 0 at an infinite distance from the sphere, what is the electric potential (in V) at the center of the sphere?
 - A) 96
- B) 47
- C) 39
- D) 36
- E) 72
- 2. A small object with electric dipole moment $\mathbf{p} = (2 \times 10^{-3} \, \mathbf{i} + 4 \times 10^{-3} \, \mathbf{j}) \, \text{C.m}$ is placed in a uniform electric field $\mathbf{E} = (-7.8 \times 10^{+3} \, \mathbf{i} + 4.9 \times 10^{+3} \, \mathbf{j}) \, \text{N/C}$. The torque acting on this object (in N.m) is:
 - A) -19.7 k
- B) +30.3 k
- C) -30.3 k
- D) -41 k

- 3. Negative charge -Q is distributed uniformly around a quarter-circle of radius a that lies in the first quadrant (الربع الأول) with the center of curvature at the origin, the x-component of the electric field at the origin is:
 - A) $Q/(4\pi \epsilon_0 a^2)$ D) $Q/(8 \epsilon_0 a^2)$
- B) $Q/(8 \pi^2 \epsilon_0 a^2)$ E) $Q/(4 \pi^2 \epsilon_0 a^2)$
- $(\hat{C})Q/(2\pi^2\epsilon_0a^2)$

- 4. A point charge $q_1 = 4.15$ nC is located on the x-axis at x = 1.15 m, and a second point charge $q_2 = -6.15$ nC is on the y-axis at y = 1.8 m. What is the total electric flux (in N.m²/C) due to these two point charges through a spherical surface centered at the origin with radius 1.4 m?
 - A) -8.12×10^{-2}
- B) -6.95×10^2
- (C) 4.69 × 10²
- D) -2.25×10^2
- E) 7.91×10^{-2}
- 5. Over a certain region of space, the electric potential is V = -5x-3xy 2yz (in V). The x-component of the electric field (in V/m) at the point P that has the coordinates (1, -1, 30) m is:
 - A)-2
- B)2
- C) -5
- D) 5
- E) 0

- 9. Consider a parallel plate capacitor in a free space. The electric field between the plates is 3.6×10^5 V/m. When the space between the plates is completely filled with dielectric material, the electric field becomes 2.5×10^5 V/m. What is the value of the dielectric constant?
 - A) 2.5 B) 3.0 C) 1.32 D) 1.44 E) 4.1
- 10. A solid nonconducting sphere of radius 12 cm has a charge of uniform density (19 nC/m³) distributed throughout its volume. The magnitude of the electric field (in N/C) 15 cm from the center of the sphere is:

A) 55 B) 20 C) 66 D) 78 E) 49

The end of the exam

THE UNIVERSITY OF JORDAN PYSICS DEPARTMENT

GENERAL PHYSICS II (0302102) / FIRST EXAM / MARCH 16th 2016 SECOND SEMESTER 2015/2016

			الرقم الج رقم الشع	1671	K	EY		م الطالب : م المدرس:		
Q1	D	Q2	B	Q3	E	Q4	A	Q5	C	
Q6	A	07	D	08	A	09	B	010	R	

Answer All The Following Questions

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$, $k_e = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$, $g = 10 \text{ m/s}^2$, $\mu\text{C} = 10^{-6}\text{C}$, $n\text{C} = 10^{-9}\text{C}$, $p\text{C} = 10^{-12}\text{C}$

Q1. Three charged particles lie on a straight line as shown below. Charges q_1 and q_2 are held fixed and charge q_3 is free to move. If q_3 is in equilibrium (no net electrostatic force acts on it), then q_1 in terms of q_2 (in magnitude) is:

(a)
$$q_1 = 2 q_2$$

(b)
$$q_1 = 1/2 q_2$$

(c)
$$q_1 = 1/4 q_2$$

(d)
$$q_1 = 4 q_2$$

(e)
$$q_1 = q_2$$

Q2. A charge of + 6 nC is placed on the x-axis at x = 3 m. A second charge of -8 nC is placed on the y-axis at y = 2 m. The resulting electric field (in N/C) at the origin is:

(a)
$$\vec{E} = 6\hat{i} + 18\hat{j}$$

(b)
$$\vec{E} = -6\hat{i} + 18\hat{j}$$
 (c) $\vec{E} = -6\hat{i} - 18\hat{j}$

(c)
$$\vec{E} = -6\hat{i} - 18\hat{j}$$

(d)
$$\vec{E} = 6\hat{i} - 18\hat{j}$$

(e)
$$\vec{E} = 18\hat{i} + 6\hat{j}$$

Q3. A particle with a mass of 1×10^{-8} kg and a charge of 3 μ C is released from rest in a uniform electric field E = 200 N/C. The speed (in m/s) of this particle 6 s after being released (b) 1.8×10^5 (c) 2.4×10^5 (d) 3×10^5 (e) 3.6×10^5

(a)
$$1.2 \times 10^5$$

(b)
$$1.8 \times 10^{-6}$$

(c)
$$2.4 \times 10^5$$

(d)
$$3 \times 10^5$$

(e)
$$3.6 \times 10^5$$

Q4. A uniform electric field $E = 3\hat{i} + 5\hat{j} + 6\hat{k}$ N/C intersects a surface of area 2 m². The flux (in N . m²/C) through this area if the surface lies in the yz-plane is:

50+Years of Excellence

Q5. A small non-conducting ball of mass m=1.0 mg and charge q=10 nC hangs from an insulating thread (حیل خفیف) that makes an angle $\theta=30^{\circ}$ with a vertical uniformly charged non-conducting sheet. Considering the gravitational force on the ball and assuming that the sheet extends far vertically, the surface charge density σ (in nC/m²) of the sheet is:

- (a) 4.1
- (b) 5.1
- (c) 10.2

- (d) 6.8
- (e) 3.4

Q6. An insulating solid sphere of radius 20 cm carries a uniform volume charge density $\rho = 35 \text{ nC/m}^3$. The electric field (in N/C) at 10 cm away from its center is:

- (a) 131.8
- (b) 169.6
- (c) 113
- (d) 188.3
- (e) 150.7

Q7. A charge $q_1 = 70$ nC lies on the x-axis at x = -3 m. At what distance (in m) on the x-axis one must put a second charge $q_2 = -20$ nC to make the electric potential (relative to infinity) at the origin equals 100 V?

- (a) x = 1.06
- (b) x = 1.20
- (c) x = 2
- (d) x = 1.64
- (e) x = 1.38

Q8. The work (in J) needed to move a charge $q = 10 \mu C$ in a uniform electric field of strength $4 \times 10^6 \text{ N/C}$ a distance of 4 cm is:

- (a) 1.6
- (b) 2

- (c) 2.4
- (d) 2.8
- (e) 3.2

Q9. Three equal positive charges (each of charge Q) are at the corners of an equilateral triangle (مثلث متساوي الأضلاع) of side a, the potential energy stored in this system is:

- (a) $3k_eQ^2/a^2$
- (b) $3k_eQ^2/a$
- (c) $k_e Q^2/a$
- (d) $2k_eQ^2/a$
- (e) $3k_eQ^2/2a$

Q10. A charge Q is distributed uniformly on a ring of radius 10 cm. If the electric potential (relative to infinity) at the center of this ring is 180 V, then the magnitude of Q (in nC) is:

- (a) 1.5
- (b) 2

- (c) 2.5
- (d)3

(e) 3.5

Q.5:
$$T = \frac{3}{2} = mg \rightarrow T = \frac{2}{73}mg$$

$$T = 0.011 V$$

$$F_{e} = 2E = \frac{T}{2} = 5.5 \times 10^{3}$$

$$E = \frac{5.5 \times 10^{3}}{25 \times 10^{9}} = 0.22 \times 10^{6} = 22 \times 10^{4} \text{ N/C}$$

$$E = \frac{5}{26} = 22 \times 10^{4} \rightarrow 6 = 446 \times 10^{4}$$

$$= 3$$

Q.6:
$$E = K_e \frac{Q r}{R^3}$$
 $= 9*lo^9 (60\pi R^2 *lo^9) (10*lo^2)$
 $\Rightarrow E = 169.6 \ N/c$

(b)

Q.7: $f_1 = 70 \ nc$; $f_2 = 3m / f_2 = -20 \ nc$; $f_3 = 70 \ nc$; $f_4 = 70 \ nc$

Q.10: - ring => r = 10 cm,
$$V = 270 \text{ V}$$
 (at the center)

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

$$\Rightarrow Q = \frac{V \text{ r}}{Y_{\text{Le}}} = \frac{270 \text{ (10 \times 10}^2)}{9 \times 10^9}$$

University of Jordan Faculty of Science Department of Physics

Second Semester 2014/2015

Date: 18/3/2015 Time: 3:30-4:30

General Physics II (0302102) First Exam

	oer: ictor: nts: ε ₀ =	S. Island	0 ⁻¹² C ² /	N.m ² ,	e = 1.602	×10 ⁻¹⁹ C	$m_e = 9$	9.11×10°	³¹ kg,	
				An	swer S	heet				
ist your f	inal ans	wer in	this tab	le. Onl	y the an	swer in	this tal	ole will	be grad	led.
uestion	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
nswer	a	C	2	b	2	6	C	6	e	C
mag	placed a	t the ver	rtices of	an equ	ilateral to e on the i	riangle negative	(30 cm of charge	on a side?	e). What	is the
	f uniform +3.0 m. x axis?	m densit What is	ty 4.0 no	C/m is gnitude	distribute of the el	ed along ectric fi	the x axield at the	xis from ne point	x = -2 $x = +5.0$.0 m to
(a)	49 N/C	(b)	66 N/C	(c) 13 N/C	(d)	16 N/C	(e)	19 N/C	
	at is the	potentia	l differe	ence be	charged tween tween tweets	o points				
(a)	28 V	(b)	66 V	. (c) 57 V	(6	DOV	(e)	85 V	

4. Over a certain region of space, the electric potential is $V = 2xy - x^2z + z^3y^2$.

What is the magnitude of the electric field at the point P that has coordinates of (1.0, 2.0, -1.0) m?

- (a) 49 N/C
- (b) 13 N/C
- (c) 19 N/C
- (d) 66 N/C
- (e) 22 N/C
- 5. A charge of uniform volume density (40 nC/m³) fills a cube with 8.0 cm edges. What is the total electric flux (in units of N.m²/C) through the surface of this cube?
 - (a) 4.6
- (b) 1.1
- (c) 5.7
- (d) 2.3
- (e) 3.5
- 6. A long straight metal rod has a radius of 2.0 mm and a surface charge of density 0.40 nC/m². Determine the magnitude of the electric field 3.0 mm from the axis.
 - (a) 45 N/C
- (b) 30 N/C
- (c) 15 N/C
- (d) 75 N/C
- (e) 60 N/C
- 7. The electric field (in N/C) of a point charge q = 8.0 nC at a point located 2.0 m from the charge is:
 - (a) 27
- (b) 72
- (c) 18
- (d) 36
- (e) 68
- 8. If $V_A V_B = 50 \text{ V}$, how much energy is stored in the 54 μF capacitor?

- (a) 1.6 mJ
- (b) 13 mJ
- (c) 8.9 mJ
- (d) 19 mJ
- (e) 23 mJ
- 9. Which of the following is not a capacitance? (K is the dielectric constant)

- (a) $\frac{\varepsilon_0 A}{d}$ (b) $\frac{\kappa \varepsilon_0 A}{d}$ (c) $\frac{ab}{k_s (b-a)}$ (d) $\frac{\ell}{2k_s \ln(b/a)}$ (e) $\frac{k_s \varepsilon_0 A}{d}$
- 10. How much charge is on each plate of a 4.00 μF capacitor when it is connected to a 12.0 V battery?
 - (a) 20µC

- (b) 77μ C (c) 48μ C (d) 68μ C
- (e) 32µC

Q.2:
$$-\frac{1}{2m} = \frac{1}{2m} + \frac{1}{2m} \times -axis$$

$$E = K_e \frac{Q}{a(1+a)} = K_e \frac{\lambda L}{a(1+a)} = \frac{(9*18)(4*18)(5)}{2(7)}$$

$$= 12.86 \approx 13 \text{ N/C}$$

=> potential is constant between the center of sphere & its surface

:. potential difference -{Zero)

نشتق ثم نعوض النقطة

* Ex=- 2y = - (2y - 2x Z) => Ex=-6 F

* Ez = - 0 = - (-x2+322y2) => Ez = -11V

$$E = \sqrt{E_x^2 + E_y^2 + E_z^2} = \sqrt{36 + 4 + 121} = \sqrt{161} \approx 13 \,\text{M/c}$$

$$Cube \rightarrow edge = 8 cm$$

$$\Rightarrow Q = \frac{hin}{E_0} \qquad \frac{20.5 \times 10^{-12}}{(40 \times 10^{-9})(8 \times 10^{-2})^3} = \frac{20.5 \times 10^{-12}}{(3.35 \times 10^{-12})} = 2.3$$

$$\frac{20.5 \times 10^{-12}}{(3.35 \times 10^{-12})} = 2.3$$

$$E(2KrK) = \sigma(2KRK)$$

$$\Rightarrow E = \frac{\sigma R}{E_0 \times 10^{-9}} = \frac{\pi^2 In}{E_0 \times 10^{-9}} =$$

Q.8 :-

PHYSICS DEPARTMENT

PHYSICS 102 (1st Exam) 1) 2013/2014 (NOVEMBER 6th, 2013)

Ct. J. d. Name (In		ALL) 2013/		Par	gistration	, H. C	137	007	
Student's Name (111	Arabic): 2005	عال عبد الفادر	ند عبد ا	- Sec	The state of the s	2:12			
Instructor's Name:		solute Charge o	- Electron				50 1	417	
Useful Information:	q (≡ Ab	solute Charge or ass of Electron) =	n Electron	07 Proton) -	1.0 × 10			/	1
	m _e (≡ Ma	ass of Proton) =	$1.67 \times 10^{-}$	27 kg.				1	1
	m _p (≡ Ma	llomb's Constan	$(1.07 \times 10^{-10}) = 9 \times 10^{-10}$	$^{9} \text{ N m}^{2}/C^{2}$				1	/
	K _e (≡ Cot	mittivity of free	cnace) = 8	85 × 10 ⁻¹² C	$^{2}/Nm^{2}$				
	ε ₀ (≡ Pen	the results are re	nunded	1.05 A 10 C				-	
Place your answer in the		C M	eel/s	a c		a data	C	b	
Q.#	1 2	3 4	. 5	6 7	8	9	10	Bonus	
Answer	1 1/	7 1	1	-1 0	1	11	1	A	
Answer	de gx	8 8	of !	0x 182	b/	01/	dy	-	
	-1-5					V.	W.		
. The work t	hat must be don	e to charge a sp	herical she	ell of radius I	? to a tot	al charge	O is:		0
. THE WORK	nat must be don	ic to charge a sp						1 0 1 m ²	
· a) k	Q/R $Q/2R^2$	(0)	kQ^2/R $kQ^2/2$			c)		kQ/R^2	36
d) k	$Q/2R^2$	(e)	k Q 12	R	6/3				
just above t	he middle of th	et of charge has e sheet is:						254	19.7 H. 44.
a) 80	The state of the s		b)	580		C	1	204	
(1) 50			(1)						
50	8		e) :	850					
50	8		e) :						
		square base, 6.0	e) :	850	l a heigh				ertical
A pyramid v	with horizontal	square base, 6.0	e) 00 m on eac flux (in	850 ach side, and	l a heigh	t of 4.00	m is p	laced in a ve	ertical surfaces
A pyramid v	with horizontal	square base, 6.0	c flux (in	ach side, and kN · m ² /C) t	hrough t	at of 4.00 the pyram	m is p	placed in a vo	ertical surfaces
A pyramid velectric field is: a) 0.83	with horizontal	square base, 6.0	c flux (in	ach side, and kN · m ² /C) t	hrough t	at of 4.00 the pyram	m is p	laced in a ve	ertical surfaces
A pyramid v electric field is:	with horizontal	square base, 6.0	c flux (in	ach side, and kN · m ² /C) t	hrough t	at of 4.00 the pyram	m is p	placed in a vo	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99	with horizontal I of 52.0 N/C. T	The total electric	b)	850 ach side, and kN · m²/C) t 1.25 7.49	hrough t	t of 4.00 the pyram	m is p	placed in a vo	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic	with horizontal of 52.0 N/C. The second charges quite the second charge	The total electric	b) tices of a	ach side, and kN · m²/C) t 1.25 7.49 an equilater	hrough t	t of 4.00 the pyram	m is p	placed in a vo	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic	with horizontal of 52.0 N/C. The second charges que potential energy	The total electric	b) tices of a	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is	hrough t	t of 4.00 the pyram	m is p nid's for c) de a.	olaced in a vocum slanted s	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic a) 6kq²/a	with horizontal of 52.0 N/C. The second charges que potential energy	The total electric	b) tices of a	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is $3kq^2/a$	hrough t	t of 4.00 he pyram	m is p	placed in a vo	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic	with horizontal I of 52.0 N/C. The second charges que potential energy	The total electric	b) tices of a	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is	hrough t	t of 4.00 he pyram	m is p nid's for c) de a.	olaced in a vocum slanted s	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostation a) $6kq^2/a$ d) kq^2/a	with horizontal of 52.0 N/C. The second charges que potential energy	The total electric	b) tices of a the syste	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is $3kq^2/a$ Zero	ral trian	t of 4.00 he pyram	m is p nid's for c) de a.	olaced in a vocum slanted s	ertical surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic a) $6kq^2/a$ d) kq^2/a The following	with horizontal of 52.0 N/C. The second charges question of a capacity is not a capacity is not a capacity.	are at the ver	tices of a the system by e)	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is 3kq²/a Zero llomb's con	ral trian	t of 4.00 the pyram	m is p nid's for de a.	1.87 the total	surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostation a) $6kq^2/a$ The following $k_e \varepsilon_0 A/a$	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity d	are at the ver	tices of a the syste e) $k_{\rm e}$ is Coub)	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is $3kq^2/a$ Zero 10mb's con	ral trian	t of 4.00 the pyram gle of si	m is p nid's for c) de a.	olaced in a vocum slanted s	surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic a) $6kq^2/a$ d) kq^2/a The following	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity d	are at the ver	tices of a the syste e) $k_{\rm e}$ is Coub)	ach side, and kN · m²/C) t 1.25 7.49 an equilater em is 3kq²/a Zero llomb's con	ral trian	t of 4.00 the pyram gle of si	m is p nid's for de a.	1.87 the total	surfaces
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic a) $6kq^2/a$ d) kq^2/a The following $k_e \varepsilon_0 A/d$	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity depth of the second charges and the second charges are potential energy in the second charges are potential en	are at the verergy stored in	tices of a the syste e) k_e is Coub)	ach side, and kN · m²/C) to 1.25 7.49 an equilater em is $3kq^2/a$ Zero slomb's con $\epsilon_0 A / d$ $a b / k_e$ (left)	ral trian stant)	t of 4.00 he pyram gle of si	m is p nid's for c) de a. c)	blaced in a vector slanted strain $\frac{1.87}{2kq^2/a}$	a a
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostation a) $6kq^2/a$ d) kq^2/a The following $k_e \varepsilon_0 A/d$ $\ell/2 k_e$ When a potent	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity of the second charges and the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges and the second charges are second charges are second charges and the second charges are second charges are second charges and the second charges are second charges are second charges are second charges and the second charges are second c	are at the verergy stored in of 150 V is ap	tices of a the syste b ke is Couble b	ach side, and kN \cdot m ² /C) to 1.25 7.49 an equilater em is $3kq^2/a$ Zero allomb's con $\epsilon_0 A / d$ a b/ k_e (he plates of	ral trian stant) f a paral	gle of si	m is paid's force. c) de a. c)	blaced in a vector slanted strain $\frac{1.87}{2kq^2/a}$	a a
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic a) $6kq^2/a$ d) kq^2/a The following $k_e \varepsilon_0 A/d$	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity of the second charges and the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges and the second charges are second charges are second charges and the second charges are second charges are second charges and the second charges are second charges are second charges are second charges and the second charges are second c	are at the verergy stored in of 150 V is ap 0,0 nC/cm ² . The	tices of a the syste b ke is Couble b	ach side, and kN \cdot m ² /C) to 1.25 7.49 an equilater em is $3kq^2/a$ Zero allomb's con $\epsilon_0 A / d$ a b/ k_e (he plates of	ral trian stant) f a paral	gle of si	m is paid's force. c) de a. c)	blaced in a vector slanted strain $\frac{1.87}{2kq^2/a}$	a a
A pyramid velectric field is: a) 0.83 d) 4.99 Three identic electrostatic a) $6kq^2/a$ d) kq^2/a The following $k_e \varepsilon_0 A/d$ $\ell/2 k_e$ When a potent surface charge	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity of the second charges and the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges and the second charges are second charges are second charges and the second charges are second charges are second charges and the second charges are second charges are second charges are second charges and the second charges are second c	are at the verergy stored in of 150 V is ap	tices of a the system by e) k _e is Couble e) plied to the spacing	ach side, and kN \cdot m ² /C) to 1.25 7.49 an equilater em is $3kq^2/a$ Zero alomb's con $\epsilon_0 A / d$ a b/ k_e (to the plates of the between the side of the side of the plates of the	ral trian stant) f a paral	gle of si	m is paid's force. c) de a. c)	blaced in a vector slanted so 1.87 the total $2kq^2/a$ A $\pi \epsilon_0$	a ates carry a
A pyramid we electric field is: a) 0.83 d) 4.99 Three identicle electrostation a) $6kq^2/a$ d) kq^2/a The following $k_e \varepsilon_0 A/d$ $\ell/2 k_e$ When a potent	with horizontal of 52.0 N/C. The second charges que potential energy is not a capacity of the second charges and the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges que potential energy is not a capacity of the second charges and the second charges are second charges are second charges and the second charges are second charges are second charges and the second charges are second charges are second charges are second charges and the second charges are second c	are at the verergy stored in of 150 V is ap 0,0 nC/cm ² . The	tices of a the syste b ke is Couble b	ach side, and kN \cdot m ² /C) to 1.25 7.49 an equilater em is $3kq^2/a$ Zero allomb's con $\epsilon_0 A / d$ a b/ k_e (he plates of	ral trian stant) f a paral	gle of si	m is paid's force. c) de a. c)	blaced in a vector slanted strain $\frac{1.87}{2kq^2/a}$	a a

_	The equivalent capacitance (in µF) between points
7.	
	a and b for the group of capacitors capacitors and $C_3 = 2.00 \mu\text{F}$. shown. Let $C_1 = 5.00 \mu\text{F}$, $C_2 = 10.0 \mu\text{F}$, and $C_3 = 2.00 \mu\text{F}$.

Ci	a C
6	2 5
C ₂	-C3 C2
	.6

A spherical conductor has a radius of 14.0 cm and charge of 26.0 μ C. The electric potential (in MV) 8. at r = 10.0 cm from the center is: c)

a) 0.84

2.34 d)

(39)	1.67
e)	1.95

Zero

Points A [at (2, 3) m] and B [at (5, 7) m] are in a region where the electric field is uniform and given by E 9. = (4i + 3j) N/C. The potential difference $V_A - V_B$ (volts) is: 30

a) 24

11 e)

c)

A non-conducting sphere of radius 10 cm is charged uniformly with a density of 100 nC/m3. The magnitude of the potential difference (in volts) between the center and a point 4.0 cm away is: 10.

12

2.2

3.0 c)

4.7 (1)

Bonus. A non-uniform linear charge distribution given by $\lambda(x) = ax$, where "a" is a constant, is distributed along the x axis from x = 0 to x = +L. If a = 40 nC/m² and L = 0.20 m, the electric potential (in volts) (relative to a potential of zero at infinity) at the point y = 2L on the y axis is:

19 a)

23 d)

17 (b) 14 e)

21 0

-2MC 0.2 m +4MC 0.2m+ 6MC $V = \frac{1}{1}$ $V = \frac{1}{1}$ V = 307.3 KV 2) $\vec{E} = -\frac{kQ}{b^2} \hat{i} + \frac{kQ}{Q^2} \hat{j}$ => E = (-56.25î + 37.5Ĵ) N/C -11 = 67.6 ~68 MCC 3) E2 0 F=?? 9=200 (xiy) (3) $4) \quad V = \chi^2 y + \chi y^2$ $E_{x} = -\frac{\partial V}{\partial x} = -\frac{(2xy + y^{2})}{(2xy + y^{2})}$, $E_{y} = -\frac{(x^{2} + 2xy)}{(2xy + y^{2})}$, $E_{y} = -\frac{(x^{2} + 2xy)}{(2xy + y^{2})}$ F= & = 17.1A)

$$Q_1 = Q_2 = 20\%$$
 $Q_3 = 60\%$
 $Q_3 = 60\%$
 $Q_4 = Q_2 = 20\%$
 $Q_5 = 60\%$

12)
$$\frac{2}{2}\sqrt{r}$$
 $\cos \theta = \frac{2}{2}$ $r = \sqrt{x^2 + 4}$ $r =$

$$2) F = \frac{(4.4)^2}{V^2} = 1*35 N = 135 N$$

$$3) = \frac{1}{2} = ma^{2} \rightarrow a = \frac{1}{2}$$

$$3 = 3.8 \times 10^{12} \, \text{m/s}^2$$

4)
$$E = \frac{6}{60}$$
 cmy conductor $E = 338.98 \text{ M} = 340\text{M}$ conductor $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1$

5)
$$Q = \frac{q_{\text{neb}} \cdot \text{enclosed}}{\epsilon_0} = \frac{(2Q) + (-Q)}{\epsilon_0}$$

$$\Delta = \frac{Q}{86} = 338.98 = 339 \frac{Nm^2}{C}$$

6)
$$\frac{2}{\sqrt{2}}$$
 $\frac{2}{\sqrt{2}}$ $\frac{2}{\sqrt{2}}$

8)
$$E_{2} = \frac{5318}{5339} E_{1} \sin \theta$$

$$E_{3} = \frac{104 \times 10^{7} \text{ M/C}}{5339} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{3} = 0 \Rightarrow E_{4} = 104 \times 10^{7} \text{ M/C}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{5} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{7} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{8} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{8} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{8} = \frac{104 \times 10^{7} \text{ M/C}}{104 \times 10^{7} \text{ M/C}}$$

$$E_{8} = \frac{104 \times 10^{7} \text{ M/$$

$$4E = mgbano$$

$$\frac{4E = mgbano}{2Eb} = mgbano \Rightarrow \frac{4Eg}{2mEo} = fon$$

$$fano = \frac{4E}{mg} \Rightarrow 6 = fan'(\frac{4E}{mg}) = 8.2$$

$$E = k \int_{\mathbb{R}} \frac{d^{2}}{d^{2}} f$$

$$E = k \int_{\mathbb{R}} \frac{d^{2}}{d^{2}} f$$

$$E = k \int_{\mathbb{R}} \frac{d^{2}}{d^{2}} f$$

$$\int_{\mathbb{R}} \frac{d^{2}}{d^{2}}$$

Is the same & every point inside the surface the same & every point inside the state the same the surface the surface sphere which is equal to the potential at the surface

$$= \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}$$

2)
$$\vec{p} = 2 \times 10^{3} \hat{n}$$
 + $4 \times 10^{3} \hat{j}$ cm $7 = 7.7$?
$$\vec{E} = -7.8 \times 10^{3} \hat{n}$$
 + $4.9 \times 10^{3} \hat{j}$ \vec{C}

$$\gamma = \vec{p} \times \vec{E} = \begin{vmatrix} i & j & | K \\ 2 & 4 & 0 \end{vmatrix} = 0 + 0 + K \begin{vmatrix} 2 & 4 \\ -7.8 & 4.9 & 0 \end{vmatrix}$$

E = ?? = Y0 = 90 = Y0 / = 0 L Ex = Treo oso E = K J 29 F $\frac{1}{4\pi\epsilon_0} \frac{\gamma}{r^2} \int dl \cos \theta = \frac{1}{4\pi\epsilon_0} \left(\frac{2q}{r}\right) \left(\frac{1}{r^2}\right) \int rosed\theta$ $\frac{1}{4\pi\epsilon_0} \left(\frac{2\ell}{\pi r^3}\right) + \int_{\epsilon}^{\pi/2} \cos \theta d\theta$ 50 1 (ZQ) [sino] [1/2] $\frac{Q}{2\pi^{2}80} r^{2} \left[1-0\right] = \frac{Q}{2\pi^{2}r^{2}\xi_{0}}$ 91=4.15hc 92=-6-18 ncf Lengosed E0 Q = 4.15 x 10 = 468 - 92 Nm3 11= 4.15×1090 12 = -6015X109 E Q = 4.69 x 102 NM2

9)
$$C = \frac{AE}{J}$$
, $E = RE$
 $\Rightarrow \frac{4}{EJ} = \frac{AE}{J} \Rightarrow 4 = AEE$
 $\Rightarrow 4$

K&EL = ATT&EZ 3/K= EZ 1.44

caprator

E-K& 5 55 M/C Report J 2 1.378x10 C 1=15 cm 198167 1 D=19m/m3 レニサイト

remember the graph of the "ptential" is distance

for a conductor

=> The potential
inside the sphere
is the same as
the sarface

$$V = \frac{RQ}{R}$$

$$V = 1.67 MV$$

9) . A (2,3)
$$B(5,7)$$
 , $\vec{E}^0 = (4\hat{1}+5\hat{1})^{\frac{1}{2}}Me$
 $V_A - V_B$
 $V_A - V_B = (\vec{E} \cdot \vec{B}A^0)$
 $V_A - V_B = (4\hat{1}+5\hat{1}) \cdot (-3\hat{1}-4\hat{1})$
 $V_A - V_B = (-12-12)(-1) = +24V$
 $V_A - V_B = 24V$
 $V_A - V_B = 2$