$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$
Q1) A long straight wire carrying a 3.0 A current enters a room through a window 1.5 m high and 1.0 m wide.
A) $2.5 \times 10^{-7}$
B) $3.8 \times 10^{-6}$
C) $3.0 \times 10^{-7}$
D) 0.20
E) 4

Q2) Resistances of $2.0 \Omega, 4.0 \Omega$, and $6.0 \Omega$ and a $24-\mathrm{V} \mathrm{emf}$ device are all in series.
The potential difference (in $V$ ) across the $2.0-\Omega$ resistor is:
A) 8
B) 4
C) 12
D) 24
E) 48

Q3) A certain resistor dissipates 0.5 W when connected to a 3 V potential difference.
When c
B) 0.167
C) 15.0
D) 1.5
E) 0.056

Q4) A charged particle is moving with speed $v$ perpendicular to a uniform magnetic field. A second identical charged particle is moving with speed $2 v$ perpendicular to the same magnetic field. If the cyclotron frequency of the first particle is $\omega$, the cyclotron
frequency of the second particle is:
A) $2 \omega$
B) $\omega / 2$
C) $4 \omega$
D) $\omega$
E) $\omega / 4$

Q5) A certain capacitor, in series with a $720-\Omega$ resistor, is being charged. At the end of 10 ms its charge is half the final value. The capacitance is about:
A) $9.6 \mu \mathrm{~F}$
B) $14 \mu \mathrm{~F}$
C) $10 \mu \mathrm{~F}$
D) 7.2 F
E) 20 F

Q6) A cylindrical wire has a resistance $R$ and resistivity $\rho$. If its length and diameter are both cut in half, its resistivity will be:
A) $4 \rho$
B) $2 \rho$
C) $\rho / 4$
D) $\rho / 2$
E) $\rho$

Q7) A charged particle ( $m=5.0 \mathrm{~g}, q=-70 \mu \mathrm{C}$ ) moves horizontally at a constant speed of $30 \mathrm{~km} / \mathrm{s}$ in a region where the free fall gravitational acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward, the electric field is $700 \mathrm{~N} / \mathrm{C}$ upward, and the magnetic field is perpendicular to the velocity of the particle. The magnitude of the magnetic field (in mT ) in this region is:
A) 12
B) 0
C) 47
D) 35
E) 23

Q8) Solenoid 2 has twice the radiu solenoid 1. When equal currents are present in the the number of turns per unit length as magnetic field in the interior of 2 to
A) $1 / 3$
B) 1
hat in the interior of 1 is:

Q9) Two long straight current-carry parallel wires cross the $x$ axis and carry current $I$ and $3 I$ in the same direction, as shown. The value of $x$ at which the net magnetic field is zero is:
A) 3
B) 1
C) 5
D) 0
E) 7

Q10) When four identical resistors are connected to an ideal battery of voltage $V=10 \mathrm{~V}$ as shown in the figure, the current $I$ is equal to 0.20 A . The resistance $R($ in $\Omega)$ is:
A) 20
B) 50
C) 40
D) 30
E) 10


个31

Q11) A rigid circular loop has a radius of 0.20 m and is in the $x y$ plane. A clockwise current $I$ is carried by the loop, as shown. The magnitude of the magnetic moment of the loop is $0.75 \mathrm{~A} \cdot \mathrm{~m}^{2}$. A uniform external magnetic field, $B=0.20 \mathrm{~T}$ in the positive $x$-direction, is present. An external torque changes the orientation of the loop from one of lowest potential energy to one of
 highest potential energy. The work done (in J) by this external torque is closest to:
A) 0.30
B) 0.60
C) 0.40
D) 0.20
E) 0.50

Q12) The current density in a wire of radius $R$ is given by $J=k r, 0<r<R$, where $k$ is constant. The current in the wire is:
A) $3 \pi k R 3 / 2$
B) $2 \pi k R^{3 / 3}$
C) $k R 3 / 3$
D) $k \pi R^{2}$
E) $k \pi R 2 / 2$

The University of Jordan School of Science

Date: 11/4/2018
Department of Physics
Second Semester
Time: 4:00-5:00 pm
General Plysics II - PHYS. 0302102
Second Exam
Name (In Arabic):
Instructor: Student Number:

Section:
Constants: $k=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} ; \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} ; e=1.6 \times 10^{-19} \mathrm{C}$.
$m_{c}=9.11 \times 10^{-31} \mathrm{~kg} ; m_{p}=1.67 \times 10^{-27} \mathrm{~kg} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

- Choose only one closest correct answer and fill the Answer Table below (with an X).

| $Q ' S$ | $A$ | $B$ | $C$ | $D$ | $E$ | $Q '$ | $A$ | $B$ | $C$ | $D$ | $E$ | $Q '$ | $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  | $\checkmark$ |  |  | 5 |  | $\checkmark$ |  |  |  | 9 |  | $X$ |  | $V$ |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | $\checkmark$ |  |  |  |  | 6 |  |  | $\checkmark$ |  |  | 10 |  |  |  |  | $\checkmark$ |
| 4 |  | $\checkmark$ |  |  |  | 7 |  |  | $X$ | $\checkmark$ |  | 11 |  |  |  | $\checkmark$ |  |

(QI) An air-filled capacitor consists of two parallel plates, each with an area of $3.60 \mathrm{~cm}^{2}$, separated by a distance of 1.80 mm . A $20.0-\mathrm{V}$ potential difference is applied to these plates. The charge on cach plate (in pC ) is:
(A) 41.5 ;
(B) 74.7 ;
(C) 35.4 ;
(D) 22.6 ;
(E) 93.4 ;
(Q2) The dielcetric strength of Teflon insulating material equals $E_{\max }=6.0 \times 10^{7} \mathrm{~V} / \mathrm{m}$. Determine the maximum potential difference (in kV ) that can be applied to a Teflonfilled parallel-plate capacitor having a plate area $A=1.75 \mathrm{~cm}^{2}$ and plate separation of $d=$ 0.06 mm .
(4) 3.6 ;
(B) 6.6 ;
(C) 3.0 ;
(D) 1.6 ;
(E) 2.4 ;
(Q3) In the next figure given that: $C_{1}=25 \mu \mathrm{~F}, C_{2}=50 \mu \mathrm{~F}, C_{3}=25 \mu \mathrm{~F}$, and $V_{a}-V_{b}=28 \mathrm{~V}$, how much energy (in mJ ) is stored in the $50-\mu \mathrm{F}$ capacitor $\mathrm{C}_{2}$ ?

(A) 0.48 ;
(B) 0.78 ;
(C) 0.68 ;
(D) 0.58 ;
(E) 0.22 ;
(Q4) A cylindrical wire has a resistance R and resistivity $\rho$. If its length and diameter are both cut in half, what will be its resistance?
(A) 4R;
(B) R;
(C) R/2;
(D) $2 R$;
(E) R/4;
(Q5) An aluminum wire having a cross-sectional area of $4.0 \times 10^{-6} \mathrm{~m}^{2}$ carries a current of 7.0 A . The free charge carrier density in aluminum is $n=6.0 \times 10^{28}$ electron $/ \mathrm{m}^{3}$. Find the drift speed (in $\mathrm{mm} / \mathrm{s}$ ) of the electrons in the wire.
(A) 0.13 ;
(B) 0.18 ;
(C) 0.23 ;
(D) 0.26 ;
(E) 0.34 ;
(D5) An electric car is designed to run off a bank of $12.0 \mathrm{-V}$ batteries with total energy storage of $1.4 \times 10^{7} \mathrm{~J}$. If the electric motor draws 8.0 kW as the car moves at a steady speed of $20.0 \mathrm{~m} / \mathrm{s}$, how far (in km ) will the car travel before the batteries run out of
energy?
(A) 80.0 ;
(B) 20.0 ;
(C) 60.0 ;
(D) 50.0 ;
(E) 35.0 ;
(24) A series circuit consists of a 12 V source of emf (battery), a 2.0 mF capacitor, a 500 $\Omega$ resistor, and a switch connected in series. When the switch is closed, how long (in s ) does it take for the current to reach one-tenth $(1 / 10)$ its maximum value?
(A) 8.47 ;
(B) 4.60 ;
(C) 2.30 ;
(D) 1.84 ;
(E) 9.21 ;
(Q8) In the next figure, given the emf of the battery $\mathcal{E}=12 \mathrm{~V}$, and the resistances $R_{l}=5.0 \Omega, R_{2}=20.0 \Omega, R_{3}=10.0 \Omega, R_{4}=$ $10.0 \Omega, R_{5}=10.0 \Omega$. The magnitude of the potential difference (in V ) across $\mathrm{R}_{2}$ resistor is:

(A) 8.47 ;
(B) 6.35 ;
(C) 1.15 ;
(D) 5.05 ;
(E) 7.06 ;
(69) A current of 25 A is maintained in a square loop having sides of 50 cm length. An external magnetic field of 80 mT is directed such that the angle between the field and the plane of the loop is $35^{\circ}$. Determine the magnitude of the torque (in N.m) exerted on the loop by the magnetic forces acting on it.
(A) 0.33 ;
(B) 0.41 ;
(C) 0.25 ;
(D) 0.12 ;
(E) 0.54 ;
(Q10) A straight wire of length 70 cm carries a current of 50 A and makes an angle of $60^{\circ}$ with a uniform magnetic field. If the force on the wire is 1.7 N what is the magnitude of the magnetic field $\mathbf{B}$ (in mT )?
(A) 42.9 ;
(B) 46.2 ;
(C) 87.5 ;
(D) 33.0 ;
(E) 56.1 ;
(Q1I) An electron moving with velocity (1) $\hat{\imath}$ magnetic field that points out of the paper. After the electron enters this region, it will be:
$(A)$ deflected out of the plane of the paper;
$(B)$ deflected into the plane of the paper;
(C) deflected downward;
(D) deflected upward;
(E) undeflected in its motion;

(012) In the next electric circuit, given the emf of the batteries $\varepsilon_{1}=50 \mathrm{~V}, \varepsilon_{2}=60 \mathrm{~V}$, and the resistances $R_{l}=$ $10.0 \Omega, R_{2}=10.0 \Omega, R_{3}=20.0 \Omega$, the potential difference $V_{b}-V_{a}$ (in V ) is:
(A) -50 ;
(B) 50 ;
(D) -10 ;
(E) 20 ;


Good Luck


The Uwiversmy Of Jordent. Precis Dererivian
 Summer Semextre 20162017



1. A charge of $+28 \mu \mathrm{C}$ is placed on the $x$ arms a $x=0$. 8 second dares of 50 Cx Maced on the $x$ axis ate $=50$ ci, What is the magnets de of che pectrotaxc force in A) on a third charge of 59 y $C$ placed on the $x$ apis at $x=30 \mathrm{~cm}$ ?
a. 13
2. 77
c39
6.25
c. 5

2 A $115-x C$ point charge is places on the $x$ anis $a x-15 m$ and $a-20$ nc dare is placed on the $y$ axis at $y=-2.0 \mathrm{~m}$. What inge mazringle of the elastic $\operatorname{seld}(10 \mathrm{~N} / \mathrm{C})$ at the origin'
a. 105
b. 15
d. 45
$2 \pi$
3. A charge (un fores linear deming $-9 \Omega \cdot n$, $m$ ) is diruibutad along the $x$ axis from $x=010 x=3.9 \mathrm{~m}$. Determine the magnitude of the electric field (in $N / C$ ) at a point on the $x$ axis with $x=4.9 \mathrm{~m}$.
a. 81
b. 74
< 61
d. 88
e 20
A particle (mass $=5.0 \mathrm{~g}$, charge $=49 \mathrm{mC}$ ) moves in a region of space where the electric field is uniform and is given by $E_{x}=-23 \mathrm{~N} / C, E_{y}=E_{z}=0$. If the position and. velocity of the particle at $t=0$ are given by $x=y=z=0$ and $v_{z}=20 \mathrm{~m} / \mathrm{s}, 0_{z}=D_{y}=0$, $t_{2}=2$ what is the distance (in $m$ ) from the origin to the particle at $t=20$ s?
a. 60
b. 54
c 69
d. 78
e 3.2
5. The total electric flux through a closed oftindrical (length $=1.2 \mathrm{~m}$, diameter $=0.20 \mathrm{~m}$ ) surface is equal to $-5.0 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. Determine the net charge (in pC) within the cylinder.
b. -53
a. -62
d. 4
e. -16
6. Two infinite parallel surfaces carry uniform charge densities of $0.20 \mathrm{nC} / \mathrm{m}^{2}$ and $-0.60 \mathrm{nC} / \mathrm{m}^{2}$. What is the magnitude of the electric field (in $\mathrm{N} / \mathrm{C}$ ) at a point between the two surfaces?
c. 17
d. 45
a. 34
b. 23
7. Along nonconducting cyl throughout its volume. Determine the magnitude of the the cylinder.
$\left(5.0 \mathrm{mC} / \mathrm{m}^{3}\right)$ distributed the electric field (in $\mathrm{N} / \mathrm{C}$ ) 15 cm from the axis of the cylinder.
d. 12
a. 20

A spherical conductor (radius $=1.0 \mathrm{~cm}$ ) with a
hollow spherical -3.0 pC . What is the m
total change of - 3.0 these conductors?
$\begin{aligned} & \text { b. Zero } \\ & \text { from the center of }\end{aligned} 45$
e. 23 .

A particle (charge $=$

$$
\begin{aligned}
& \text { A particle (charge }=50, \mathrm{C}) \text { moves in a region } \\
& \text { force. As the particle } \mathbf{m o v e s} \text {. } 25 \mathrm{~cm} \text { from point } \\
& \text { increases by } 1.5 \mathrm{~m} \text { ). Delectric pot the } \\
& \text { b. }-40
\end{aligned}
$$

A to point B, its ki
ntial difference,
d. -60

A charge per unit length given by $\lambda(x)=b x$, where $b=12 \mathrm{nc} / \mathrm{m}^{2}$, is distributed along infinity is taken to
potential 12 cm ?
 a. 5.4 b. 7.2

12 A charge of 4.0 nC is distributed uniformly
$x=+6 \mathrm{~m}$. Which of the origin?
to zero at infinity) at the
electric potential $P$ on the $y$ e. 16
a. $\int_{4}^{6} \frac{18 d x}{4-x}$
d. $\int_{4}^{6} \frac{36 d x}{6-x}$

Q2 Determine the energy (in m ) stored in $C_{1}$ when $\mathrm{C}_{1}=10 \mu \mathrm{~F}, \mathrm{C}_{2}=12 \mu \mathrm{~F}, \mathrm{C}_{3}=15 \mu \mathrm{~F}$, and $V_{0}=70 \mathrm{~V}$.
b. 5.1
a. 6.5
\&. 3.9
d. 8.0
e. 9.8

Q3. If a conducting solid sphere of radius $a$ carries a total positive charge Q . The magnitude of the electric field at a point $r$ inside the sphere is:
c. $\mathrm{pr} / 3 \varepsilon_{0}$
a. $\mathrm{KQr} \mathrm{r}^{3} / a$
b. Zero
from $x=+4 \mathrm{~m}$ to

Q1 equivalent capacitance
Q1. Determine the equbination shown when
$C=15 \mathrm{mF}$.
b. 16
a. 20
d. 24
e. 12

$$
\text { he point P or } 8.9 .9
$$

e. $4^{3}$
along the $x$ axis

$$
\text { c. } \int_{4}^{6} \frac{ \pm 8 d x}{x}
$$

e. 75
(1) $F$

$$
\begin{aligned}
F_{12} & =\frac{K Q_{1} Q_{2}}{r^{2}} \\
& =\frac{9 \times 10^{9} \times 80 \times 10^{-6} \times 4 \times 10^{-6}}{\left(30 \times 10^{-2}\right)^{2}}=32 . \\
F_{32} & =\frac{K Q_{2} Q_{3}}{r^{2}}=45
\end{aligned}
$$

Answer: B

$$
F=F_{12}+F_{32}=77
$$

(2)

$$
\begin{aligned}
& E_{10}=\frac{K Q_{1}}{R^{2}}=\frac{9 \times 10^{9} \times 15 \times 10^{-9}}{(.5)^{2}}=60 \\
& E_{20}=\frac{K Q_{2}}{R^{2}}=45 \\
& E_{0}=\sqrt{E_{10}^{2}+E_{20}^{2}}=75
\end{aligned}
$$

(3)

$$
\begin{aligned}
& E=\frac{K Q}{9(a+1)}=\frac{\lambda L K}{a(a+1)} \quad \lambda=9 n C l m \\
& =\frac{9 \times 10^{9} \times 9 \times 10^{-9} \times 3}{1(1+3)}=60.75 \approx 61
\end{aligned}
$$

Answer ${ }^{C}$
(4)

$$
\begin{aligned}
& F=m * a \\
& E_{*} q=m * a \\
& a=\frac{Q * E}{m}=\frac{40 \times 10^{-3}}{5 * 10^{-3}} *\langle-2,3,0,0\rangle \\
& \vec{a}=\langle-18,4,0,0\rangle \quad \frac{\partial V}{d t}=a=\langle-18,4,0,0\rangle \\
& V_{x}=V_{0 x}+a t \\
& \left.V_{x}=-18.4 t \quad V_{y}=0 \quad V_{z}=20 \quad V_{0}<-18.4 t, 0,20\right\rangle \\
& \left.\vec{V}=\frac{\partial(d)}{d t}=<-9.2 t^{2}, 0120 t\right\rangle \quad \begin{array}{l}
\text { Auswer, } B
\end{array} \\
& \text { when } t=2 \hat{d} d=\langle-36.8,0,40\rangle
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \phi=-5 \quad Q=? \quad L=1.2 \mathrm{~m} \quad d=.2 \mathrm{~m} \quad r=.1 \mathrm{~m} \\
& \phi=\frac{Q_{\text {in }}}{{ }_{0}} \Rightarrow Q_{\text {in }}=-5 \times 8.85 \times 10^{-12}=-44 \times 10^{-12} \mathrm{C}=-44 P C . \\
& \text { Answer: } D
\end{aligned}
$$

(6)

$$
\begin{aligned}
& E_{1}=\frac{\sigma_{1}}{2 \epsilon}=\frac{.2 \times 10^{-9}}{2 \times 8.85 \cdot 10^{-12}}=11.3 \quad \begin{array}{l}
\sigma_{1}=.2 \mathrm{nc} / \mathrm{m}^{2} \\
\sigma_{2}=-\left..6 \mathrm{ncm}^{2}\right|^{1} \\
E_{2}=\frac{\sigma_{2}}{2 \epsilon}=33.9 \\
E=E_{1}+E_{2}=33.9+11.3 \approx 45
\end{array}
\end{aligned}
$$

Answer: D


(8) $E=\frac{k Q}{r^{2}}$

$$
\begin{aligned}
& E=\frac{1}{4 \pi \varepsilon} \cdot \frac{2 \times 10^{-12}}{\left(2 * 10^{-2}\right)^{2}} \\
& E=\frac{2 * 10^{-12}}{4 \pi E \cdot\left(2 * 10^{-2}\right)^{2}}=45
\end{aligned}
$$

Answer:C

$$
\begin{aligned}
& \text { (7) nonconducting } \\
& E=\frac{P R^{2}}{2 E r} \\
& R=12 \mathrm{~cm} \\
& \rho=5 \times 10^{-9} \\
& r=15 \mathrm{~cm} \\
& E=\text { ? } \\
& =\frac{5 \times 10^{-9} \times\left(12 \times 10^{-2}\right)^{2}}{2 \times 8.85 \times 10^{-12} \times 15 \times 10^{-2}}=27 \\
& 8
\end{aligned}
$$

(9)

$$
\begin{array}{lc}
Q=50 \mu C & \\
U_{A \rightarrow B}=1.5 \times 10^{-3} \mathrm{j} & \stackrel{A}{2} \mathrm{~cm} B \\
\bigcup_{A \rightarrow B}=\Delta V_{A \rightarrow B} Q \rightarrow & \stackrel{\Delta}{A \rightarrow B}=\frac{1.5 \times 10^{-3}}{50 \times 10^{-6}}=30 \mathrm{~V} \\
& V_{A B A}=30 \mathrm{~V} \rightarrow V_{A A B}=-30 \mathrm{~V}
\end{array}
$$

Ansuav: A
(10)

$$
\begin{aligned}
& V=V_{1}+V_{2}+V_{3}+V_{4} \\
& V=4\left(\frac{K Q}{R}\right)=\frac{4 \times 9 \times 10^{9} \times 6 \times 10^{-9}}{5}=43
\end{aligned}
$$



Answer $z_{2} E$
(11)

$$
\begin{aligned}
& \lambda(x)=b x=12 \times 10^{9} x \\
& L=16-9=7 \mathrm{~cm}
\end{aligned}
$$

$$
r=\sqrt{y^{2}+x^{2}}
$$



$$
\partial q=\lambda d x
$$

$$
V=K \int_{16} \frac{d q}{r}=k \int_{9}^{16} \frac{\lambda d x}{\sqrt{(1)^{2}+x^{2}}}
$$



$$
\begin{aligned}
(12) V=\int_{4}^{6} \frac{k d q}{r}=\int_{4}^{6} \frac{k \lambda \partial x}{r}=\int_{4}^{6} \frac{k d^{2} d x}{2^{r} x} & =\int_{4}^{6} \frac{k q}{2}\left(\frac{d x}{x}\right) \\
& =\int_{4}^{6} \frac{9 \times 10 x 4 \lambda 0^{9}}{2} \frac{d x}{x}=\int_{4}^{\frac{88 \pi x}{x}}
\end{aligned}
$$

Answers C
(1)

$$
\begin{aligned}
& C_{2 c, c}=3 \mathrm{C} \\
& C_{C, c}=4 \mathrm{C} \\
& C_{q} \Rightarrow \frac{1}{C_{q}}=\frac{1}{4 C}+\frac{1}{1 c}=\frac{5}{4 C} \\
& C_{q}=\frac{4}{5} C \longrightarrow=\frac{4}{5} \times 15 \times 10^{-3}=12 \mathrm{mF}
\end{aligned}
$$

(2) $C_{1}=10 \mathrm{MF}, C_{2}=12 \mathrm{MF}, C_{3}=15 \mathrm{MF} \quad V_{\text {eq }}=70 \mathrm{~V}$

$$
C_{q} \Rightarrow \frac{1}{C_{q}}=\frac{1}{12}+\frac{1}{15}+\frac{1}{10}=\frac{1}{4}
$$

$C_{\text {eq }}=4 \mu \mathrm{~F}$

$$
\begin{gathered}
C_{e q}=4 \mu r \\
Q_{e q}=V_{q} \cdot C_{q}=4 \times 10^{-6} \times 708 \\
Q_{q}=280 \times 10^{-6}<q_{1}=q_{2}=q_{3}=280 \times 10^{-6} \\
\ldots U_{C_{1}}=\frac{1}{2} \frac{\left(q_{1}^{2}\right.}{C}=3.9 \mathrm{mi} \\
\text { Answers } C
\end{gathered}
$$

Answers $C$
(3) $E=$ ters $\rightarrow$ charge , redive
(4)

$$
\begin{aligned}
& \text { Q (2) } \\
& =\frac{\delta a^{3}}{3 E r^{2}}=\frac{q}{3 v_{\text {inee }} E r^{2}}=\frac{q}{3 \in \frac{4}{3} \pi a^{3} r^{2}}=\frac{k}{4 \pi \in r^{2}} \\
& =\frac{k q}{r^{2}}
\end{aligned}
$$

Answer: E

The University of Jordan School of Science

General Physics-2 (0302102)
Second Exam, 18/4/2017

** Solve the following questions and choose the one best answer. Fill in your answers in the Answer Table.


* Useful Constants: $k_{e}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

1. An electric device delivers a current of 5.0 A to a circuit. How many electrons flow through this circuit in 5 s ?
A) 30
B) 50
C) 25
D) $3.1 \times 10^{20}$
(E) $1.6 \times 10^{20}$
2. The emf and the internal resistance of a battery are as shown in the figure. If a current of 3.8 A is drawn from the battery when a resistor R is connected across the terminals ab of the battery, what is the power dissipated by the internal resistor (ie the $5 \Omega$ )?
A) 72 W
B) 361 W
C) 62 W
D) 530 W
E) 289 W
3. The figure shows three identical light bulbs connected to a battery having a constant voltage across its terminals. When the switch S is closed, the brightness of light bulb 1 will:
A) remain the same as before the switch is closed.
B) decrease.
(C) increase.

4. For the circuit shown in the figure, what is the current through resistor $R_{3}$ ?

5. What is the kinetic energy (in cV ) of an electron that passes undeviated through perpendicular electric and magnetic fields if $E=2.0 \mathrm{kV} / \mathrm{m}$ and $B=8.0 \mathrm{mT}$ ?
A) 0.71 eV
(B) 0.18 eV
C) 0.32 eV
D) 0.54 eV
E) 1.4 eV
6. For the circuit shown in the figure, the capacitors are all initially uncharged, the connecting leads have no resistance, the battery has no appreciable internal resistance, and the switch S is originally open. After the switch S has been closed for a very long time, what is the current in the $20.0-\Omega$ resistor?
(A) Zero
B) 1.67 A

C) 2.50 A
D) 3.33 A
E) 5.00 A

7. An electron moving with velocity $v$ to the left enters a region of uniform magnetic field that points out of the paper. After the electron enters this region, it will be:
A) deflected out of the plane of the paper.
B) deflected into the plane of the paper.
C) deflected upward.
(D) deflected downward.
E) undeflected in its motion.
8. A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A . It is placed in a magnetic field of 0.35 T , with the plane of the coil making an angle of $30^{\circ}$ with the magnetic field. What is magnitude of the magnetic torque on the coil?
A) $0.15 \mathrm{~N} . \mathrm{m}$
B) $0.076 \mathrm{~N} . \mathrm{m}$
C) $0.29 \mathrm{~N} . \mathrm{m}$
D) $0.044 \mathrm{~N} . \mathrm{m}$
E) $0.088 \mathrm{~N} . \mathrm{m}$
9. When the number of turns in a solenoid and its length are both doubled, the ratio of the magnitude of the new magnetic field inside to the magnitude of the original magnetic field inside is:
A) 0.25
B) 0.50
C) 1
D) 2
E) 4
$\frac{2 N}{20}$
10. The figure shows a cross section of three parallel wires each carrying a current of 20 A . The currents in wires A and $B$ are out of the paper, while that in wire $C$ is into the paper. If the distance $R=5.0 \mathrm{~mm}$, what is the magnitude of the force on a $1.0-\mathrm{m}$ length of wire A ?
A) 23 mN
B) 32 mN
D) 64 mN
E) 55 mN
(C) 16 mN

11. If $\mathrm{a}=1.0 \mathrm{~cm}, \mathrm{~b}=3.0 \mathrm{~cm}$, and $\mathrm{I}=10 \mathrm{~A}$, what is the magnitude of the magnetic field at point $P$ ?
A) 0.62 mT
B) 0.59 mT
D) 0.31 mT
(E) 0.10 mT
C) 0.35 mT

12. A long cylindrical wire (radius $=2.0 \mathrm{~cm}$ ) carries a current of 20 A that is uniformly distributed over a cross section of the wire. What is the magnitude of the magnetic field at a point which is 1.5 cm from the axis of the wire?
A) 0.53 mT
B) 28 mT
C) 0.30 mT
(D) 0.15 mT
E) 1.9 mT

# The University of Jordan <br> Faculty of Science <br> Department of Physics 

Summer Semester 2015
General Physies-2
Second Exam
Name (In Arabic) :
Student Number:

## Instructor:

Section:
$k_{\mathrm{c}}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \div \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2} ; \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} ; \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Write the letter corresponding to the correct answer in the table

| $Q$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Answer | $c$ | $d$ | $b$ | $a$ | $e$ | $a$ | $q^{2}$ | $e$ | $a$ | $c$ |

1) Determine the equivalent capacitance of the combination shown when $C=24 \mu \mathrm{~F}$,

2) What is the equivalent resistance between points $A$ and $B$ in the figure when $R=18 \Omega$ ?
a) $48 \Omega$
b) $64 \Omega$
d) $96 \Omega$
e) $110 \Omega$

- 

$-\log \int^{\frac{1}{4}} 80 \Omega$
a) $20 \mu \mathrm{~F}$
b) $36 \mu \mathrm{~F}$
d) $45 \mu \mathrm{n}$
e) $27 \mu \mathrm{~F}$
c) $16 \mu \mathrm{H}$
e) $110 \Omega$

3) Determine the charge stored by $C_{1}$ (in $m \mathrm{C}$ ) when $C_{1}=20 \mu \mathrm{~F}, \mathrm{C}_{2}=10 \mu \mathrm{~F}, \mathrm{C}_{3}=30 \mu \mathrm{~F}$, and $V_{0}=18 \mathrm{~V}$.
a) 0.36 mC
b) 0.24 mC
c) 932 mC
d) 0.40 mC
e) 0.50 mC

4) If $V_{A}-V_{B}=50 \mathrm{~V}$, how much energ)(in mJ ) is stored in the $54-\mu \mathrm{F}$ capacitor?
a) 13.3 mJ
b) 17.2 mJ
c) 28.1 mJ
d) 8.9 mJ
e) 50.3 mJ

5) A $30.0-\mathrm{m}$ long wire has a cross sectional area of $5.0 \mathrm{~mm}^{2}$ and a resistivity of $1.7 \times 10^{-8} \Omega . \mathrm{m}$. The resistance of the wire (in $\Omega$ ) is
a) 0.50
b) 0.17
c) 0.24
d) 0.34
6) What is the potential difference (in $V$ ) across $C_{2}$ when $\mathrm{C}_{1}=5.0 \mu \mathrm{~F}, \mathrm{C}_{2}=15 \mu \mathrm{~F}, \mathrm{C}_{3}=30 \mu \mathrm{~F}$, and $V_{0}=24 \mathrm{~V}$ ?
a) $21 \cdot \mathrm{~V}$
b) 19 V
c) 24 V
d) 16 V
e) 8.0 V


7
7) A capacitor in a single-loop $R C$ circuit is coorged to $85 \%$ of its final potential difference in 2.4 s . What is the time constant for this circuit?
a) 1.12 s
b) 1.27 s
c) 1.70 s .
d) 196 s
e) 2.93 s
8) A 4-A current flows through a $2 \Omega$ resistg. The power (in W) delivered to the resister is
a) 96
b) 64
d) 80
5 e) $\square$
9) What is the potential difference $V_{\mathrm{B}}-V_{\mathrm{A}}$ when $I=0.50 \mathrm{~A}$ in the circuit
10) Determine the resistance $R($ in $\Omega)$ when $L=1.5 \mathrm{~A}$.


15 V
e) +78 V

# THE UNIVERSITY OF JORDAN 

## Pysics Department

General Physics II (0302102)/SECOND EXAM / April $17^{\text {th }} 2016$
SECOND SEMESTER 2015/2016

$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}, k_{e}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mu \mathrm{C}=10^{-6} \mathrm{C}, \mathrm{nC}=10^{-9} \mathrm{C}$, $\mathrm{pC}=10^{-12} \mathrm{C}, \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}, \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}, \mathrm{\rho}$ (Copper) $=1.7 \times 10^{-8} \Omega . \mathrm{m}$,
$n_{e}($ Copper $)=8.456 \times 10^{28} \mathrm{e} / \mathrm{m}^{3}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

## Answer All The Following Questions

Q1. Consider the circuit. $\mathrm{C}_{1}=6.00 \mu \mathrm{~F}, \mathrm{C}_{2}=3.00 \mu \mathrm{~F}, \Delta \mathrm{~V}=20.0 \mathrm{~V}$. If $S_{1}$ is closed and $S_{2}$ is opened until $C_{1}$ is fully charged. Now open $S_{1}$ and close $S_{2}$ and find the final charge (in $\mu \mathrm{C}$ ) on $\mathrm{C}_{1}$.
A) 40.0
B) 120.0
C) 80.0
D) 11.5
E) 0.00


Q2. Find the equivalent capacitance, between $a$ and $b$, for the combination (in $\mu \mathrm{F}$ ).

| A) | 10.9 |
| :--- | :--- |
| B) | 12.9 |
| C) | 8.90 |
| D) | 14.9 |
| E) | 22.9 |



Q3. Given the drift velocity of free electrons in a copper wire $=5.58 \times 10^{-4} \mathrm{~m} / \mathrm{s}$, calculate the electric field in this
wire (in $\mathrm{V} / \mathrm{m}$ ).
A) 0.13
B) 0.95
C) 18.6
D) 4.7
E) 0.18

Q4. In the circuit shown, all the resistors are identical. What is the charge on the capacitor after a very long time?
A) $Q=C \varepsilon$
B) $Q=C \varepsilon / 2$
C) $Q=C \varepsilon / 3$
D) $Q=C \boldsymbol{\varepsilon} / 4$
E) $Q=2 C \varepsilon$


Q5. The SI unit of the quantity $\left(\frac{1}{2} \varepsilon_{0} E^{2}\right)$ is:
A) $\mathrm{J} / \mathrm{F}$
B) $\mathrm{J} / \mathrm{C}$
C) J
D) $\mathrm{J} / \mathrm{V}$
E) $\mathrm{J} / \mathrm{m}^{3}$

Q6. In the circuit given, the capacitors are initially uncharged. The switch $S$ is closed at time $t=0$. Calculate the potential difference across capacitor $\mathrm{C}_{1}$ at time $\mathrm{t}=2 \mathrm{~ms}$.
A) 4.83
B) 7.25
C) 40.0
D) 14.5
Е) 6.66


Q7. A charged particle is moving in a region of uniform steady magnetic field. Its kinetic energy:
A) Remains constant only if the path is circular.
B) Remains constant only if it is moving parallel to the field.
C) Remains constant only if the field is uniform.
D) Remains constant regardless of the path or the field.
E) Remains constant only if it is moving normal to the field.

Q8. A proton with a kinetic energy of 0.20 keV follows a circular path in a region where the magnetic field is uniform and has a magnitude of 60 mT . What is the radius (in cm ) of this path?
A) 4.8
B) 1.0
C) 3.4
D) 2.7
E) 0.18

Q9. The spherical capacitor shown in the figure is filled with a dielectric material of $\kappa=3.5$, and the radii are $a=2 \mathrm{~cm}$ and $\mathrm{b}=4 \mathrm{~cm}$. The capacitance (in pF ) of this capacitor is:
A) 13.3
B) 17.8
C) 8.88
D) 11.1
E) 15.6


Q10. A 2.0 -m wire carries a current of 15 A directed along the positive $x$-axis in a region where a uniform
magnetic field is given by $\boldsymbol{B}=(30 \mathbf{i}-40 \mathbf{j}) \mathrm{mT}$. The resulting magnetic force (in N$)$ on the wire is:
A) $(+1.2$ i)
B) $(-1.2 \mathbf{~ k})$
C) $(-1.5 \mathrm{j})$
D) $(-1.8 \mathrm{k})$
E) $(+0.90 \mathbf{k}+1.5 \mathbf{i})$

Q11. An electron moving in the positive $x$ direction experiences a magnetic force in the positive $z$ direction. If $B_{x}=0$, what is the direction of the magnetic field?
A) Negative $z$ direction
B) Positive $z$ direction
E) Negative $x$ direction
C) Negative $y$ direction
D) Positive $y$ direction

A) 5.11
B) 1.33
C) 0.67
C) 0.67
D) 0.89
E) 0

Q13. A Nichrome wire (temperature coefficient of the Nichrome $=0.4 \times 10^{-3}(\mathrm{C})^{-1}$ ) has a resistance of $200 \Omega$ at $20^{\circ} \mathrm{C}$. The resistance (in $\Omega$ ) of the wire at $100^{\circ} \mathrm{C}$ is:
A) 206.4
B) 209.6
C) 208
D) 212.8
E) 211.2

Q14. In the figure shown, if $\mathrm{V}_{\mathrm{ab}}=27 \mathrm{~V}$, the current which passes through the $6 \Omega$ resistor (in A) is:
A) 1.33
B) 2.00
C) 1.00
D) 0.50
E) 2.70


Q15. The power (in Watt) dissipated in a heating coil of $60 \Omega$ resistance designed to operate at 220 V is
A) 538
B) 605
C) 807
D) 968
(e) 691

Solution
Q.1:- $\quad Q_{\mathbf{O i}^{\prime}}=C_{1} \Delta V=(6 \mu f)(20 \mathrm{~V})=120 \mathrm{mE} \quad\left[s_{1}(\right.$ closed $), s_{2}$ (opened) $]$

Now $\rightarrow$ when $s_{1}$ (opened) \& $S_{2}$ (closed):-

$$
\begin{aligned}
& \text { * } Q_{1}^{\prime}+Q_{2}^{\prime}=120 \mu \epsilon \quad\left(Q_{i}{ }^{1}\right. \text { ال ip) } \\
& \rightarrow Q_{1}^{\prime}=120 \mathrm{\mu f}-Q_{2}^{\prime} \\
& \text { * } V_{1}^{\prime}=V_{2}^{\prime} \Rightarrow \frac{Q_{1}^{\prime}}{C_{1}}=\frac{Q_{2}^{\prime}}{C_{2}} \\
& \frac{120 \mu c-Q_{2}^{\prime}}{6 \mu f}=\frac{Q_{2}^{\prime}}{3 \mu f} \rightarrow Q_{2}^{\prime}=40 \mu \mathrm{C} \\
& \rightarrow \therefore Q_{1}^{\prime}=120 \mathrm{Mf}-40 \mathrm{mf}=80 \mathrm{~m} \mathrm{C}
\end{aligned}
$$

(C)
Q. 2 :-

$$
\begin{align*}
& \therefore \quad \frac{1}{5}+\frac{1}{7}=0.3428 \\
& \Rightarrow \frac{1}{0.3428}=2.9 \mu f \\
& \therefore C_{e q}=4 \mu f+2.9 \mu f+6 \mu f=12.9 \mu f \tag{B}
\end{align*}
$$

Q.3:-

$$
\begin{align*}
& J=\sigma E \quad\left\{\begin{array}{l}
* I=n e v_{d} A \rightarrow J=\frac{I}{A}=n e V_{d} \\
* \sigma=\frac{1}{\rho}
\end{array}\right. \\
& \begin{array}{l}
\quad \frac{J}{\sigma}=J \rho \quad E=n e v_{d} \rho=\left(8.456 * 10^{28}\right)\left(1.6 * 10^{-19}\right)\left(5.58 * 10^{-4}\right)\left(1.7 * 10^{-8}\right) \\
\\
\approx 0.13 \mathrm{v} / \mathrm{m}
\end{array}
\end{align*}
$$

Q.4:- after very long rime $(t=\infty) \rightarrow$ the capacitor is fully charged

$$
Q=c V=\frac{c \varepsilon}{2}
$$



$$
\begin{align*}
& I=\frac{\varepsilon}{2 R}  \tag{B}\\
& V=I R=\frac{\varepsilon}{2}
\end{align*}
$$

Q.5:- $\frac{1}{2} \epsilon_{0} E^{2} \equiv \frac{c^{2}}{N \cdot m^{2}} \cdot \frac{N^{2}}{C^{2}}=\frac{N}{m^{2}} \cdot \frac{m}{m}=\frac{N \cdot m}{m^{3}} \equiv \frac{\mathrm{~J}}{\mathrm{~m}^{3}}$
Q. 6: $Q(t)=c_{\text {eq }} \varepsilon\left(1-\mathrm{e}^{-t / R_{e_{2}} c_{c_{2}}}\right), t=2 \mathrm{~ms}$

$$
\begin{gather*}
\Rightarrow Q=21.75 \mu c=Q_{1}=Q_{2}  \tag{E}\\
V_{1}=\frac{Q_{1}}{C_{1}}=\frac{21.75 \mu c}{3 \mu f}=7.25 \mathrm{~V} \tag{B}
\end{gather*}
$$

Q.7:- $\quad W=\Delta K$; but the masnebic force does not do work $\rightarrow w=$ zero

$$
\begin{aligned}
\therefore \Delta K & =0 \\
K_{f} & =K_{i}
\end{aligned}
$$

$\rightarrow$ Remains Constant regardless of the path or the field
Q. 8 :-

$$
\begin{align*}
& r=\frac{m v}{q B} \quad ; K=\frac{1}{2} m v^{2}=0.2 \mathrm{kev} \longrightarrow \overrightarrow{20, N}  \tag{D}\\
& \begin{array}{l}
\therefore r=\frac{\left(1.67 * 10^{-27}\right)\left(19.58 * 10^{4}\right)}{\left(1.6 * 10^{-19}\right)\left(60 * 10^{-3}\right)} \quad\left\{\begin{aligned}
=200 * v * \frac{1.6 \times 10^{-19} \mathrm{~J}}{110 \sigma}
\end{aligned}\right. \\
\rightarrow r=3.4 \mathrm{~cm} \\
\frac{1}{2} m v^{2}=320 * 10^{-19^{4}} \\
v=19.58 * 10^{4} \mathrm{~m} / \mathrm{s}
\end{array}
\end{align*}
$$

Q. 9 :-

$$
\begin{aligned}
C & =k C_{0} \\
\therefore C= & (3.5)(4.44 \mathrm{Pf}) \\
& \approx 15.6 \mathrm{Pf}
\end{aligned}
$$

(E)
Q.10:- $\vec{F}_{B}=I \vec{L} \times \vec{B}$

$$
; \vec{L}=2 \hat{i}, \vec{B}=(30 \hat{i}-40 \hat{j}) m T
$$

$$
\begin{align*}
& \text {, }\left\{C_{a}=\frac{1}{k_{e}} \frac{a b}{(b-a)} \quad, \quad b>a\right. \text {, }  \tag{c}\\
& =\frac{1}{9 \times 10^{9}} \frac{8 \times 10^{-4}}{2 \times 10^{-2}}=0.444 \times 10^{-11} f \\
& =4.44 \% 10^{-12} f=4.44 \mathrm{Pf}
\end{align*}
$$

$$
\begin{align*}
\therefore \vec{F}_{B} & =15(-80) \times 10^{-3} \hat{r} \\
& =-1.2 \hat{k} \mathrm{~N} \tag{B}
\end{align*}
$$

Q. $\mathrm{H}:-\quad \vec{F}_{B}=2 \vec{v} \times \vec{B}$

$$
\hat{k}=-\hat{i} \times(-\hat{j})
$$

$\overrightarrow{\vec{F}_{B}} \rightarrow+\hat{k} \quad \& \quad \vec{v}=+\hat{i}$

* electron $\rightarrow$-ve

$\therefore$ the direction is $(-\hat{j})$ (c)
Q.12: : $\quad I_{1}+I_{2}=I_{3}$.

$$
\begin{align*}
& \text { Loop } \frac{1}{2} \rightarrow 20-15 I_{1}-15 I_{3}=0  \tag{1}\\
& \text { Loop } \underset{S}{3} \rightarrow 20-15 I_{2}-15 I_{3}=0 \\
& \therefore I_{3}=0.89 \mathrm{~A} /(D)
\end{align*}
$$


(2) $\rightarrow$ (1) + (2) $\left.\Rightarrow 40-15 \frac{\left(I_{1}+I_{2}\right.}{I_{3}}\right)-30 I_{3}=0$
Q.13:- $R=R_{0}\left(1+\alpha\left(T-T_{0}\right)\right)=200\left(1+0.4 * 10^{-3}(100-20)\right)=206.4 \mathrm{~V}(\mathrm{~A})$
Q. 14 :-


$$
\begin{aligned}
\rightarrow & I_{=} I_{1}+I_{2} \\
& R_{\text {eq }}=9 \Omega \rightarrow I=\frac{27}{9}=3 \mathrm{~A}
\end{aligned}
$$

nire $\rightarrow v_{a}-7 \times 3-6 I_{1}=V_{b}$

$$
v_{a b}-21=\sigma I_{1} \rightarrow \sigma=\sigma I_{1} \rightarrow I_{1}=1 A \cdot(\mathbb{A})
$$

Q.15:- $\quad P=\frac{Y^{2}}{R}=(220)^{2} / 60 \approx 807 \mathrm{~W} \quad$ (C)


Section number : Lecturer name: 5

Student name (بالْعبية):
Student number :
$\qquad$

Some helpful information:
$($ pico $)=10^{-12} ; n$ (nano $)=10^{-9} ; \mu($ micro $)=10^{-6} ;$ electron charge $=1.6 \times 10^{-19} \mathrm{C}$.
Notes: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. You have sixty (60) minutes to complete your exam. Be sure to fill the box below with your final answers before the end of the exam.

| $1 /$ | 2 | 3 | 4 | $E$ | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C$ | 8 | $D$ | $D$ |  | $C$ | $C$ | $Q$ | 4 | $B$ | $D$ | $C$ | $B$ |

1. A falychargec paralle-plate capacitor remains connected to a battery while you slide a dielectrid between the plates. The stored charge $(\mathrm{Q})$ will:
(A) Decrease
(B) Increase
(C) Stay the same
(D) Non of the above
2. Two capacitors give an equivalent capacitance of 10 pF when connected in parallel, and an equivalent capacitance of 1.6 pF when connected in series. The capacitance of the two capacitors (in pF ) are :
(A) 9,1
(B) 6,4
(C) 8, 2
(D) 7,3
3. A small rigid object carries positive and negative 4.0 nC charges. It is oriented so that the positive and negative charges have coordinates $(-1.2,1.1) \mathrm{mm}$ and $(1.4,-1.3) \mathrm{mm}$, respectively. The electric dipole moment of the object (in C.m) is:
(A) $12.4 \times 10^{-12}$
(B) $=10.6 \times 10^{-12}$
(C) $11.7 \times 10^{-12}$
(D) $14.2 \times 10^{-12}$
4. Two wires $A$ and $B$ are made of the same metal and have equal lengths, but the resistance of wire $A$ is three times greater than that of wire $B$. The ratio of the crosssectional area of $B$ to that of $A$ is:
(A) $\sqrt{3}$
(B) 3
(C) $1 / 3$
(D) $1 / \sqrt{3}$
5. A long wire 3 mm in diameter carries a steady current of 10 A . If the conductor is copper with a free charge density of $8.5 \times 10^{28}$ electrons per cubic meter. The drift speed of the free electrons (in $\mathrm{m} / \mathrm{s}$ ) is:
(A) $1.0 \times 10^{-4}$
(B) $1.2 \times 10^{-4}$
(C) $2.3 \times 10^{-4}$
(D) $9.4 \times 10^{-4}$
6. A device is rated at 1.3 kW when connected to a 120 V source. The equivalent resistance of this device (in $\Omega$ ) is:
(A) 18.3
(B) 12.0
(C) 11.1
(D) 14.4
7. An uncharged capacitor with $\mathrm{C}=5000 \mu \mathrm{~F}$, and a resistor with $\mathrm{R}=100 \Omega$ are connected to a source of $\varepsilon=120 \mathrm{~V}$. The current in the resistance 1 s after the switch is closed (in A) is:
(A) 0.24
(B) 0.20
(C) 0.10
(D) 0.16
8. A battery has an emf of 150 V . When the switch is closed, an external load resistance of $9.9 \Omega$ parries a current of 14 A . The internal resistance of the battery (in $\Omega$ ) is:

9. A proton moves with a velocity of $v=(i-j+2 k) \mathrm{m} / \mathrm{s}$ in a region in which the magnetic field is $B=(i-j-k) T$. What is the magnitude of the magnetic force this particle experiences (in $N$ )?
(A) $8.2 \times 10^{-19}$
(B) $1.0 \times 10^{-19}$
(C) $9.9 \times 10^{-19}$
(D) $6.8 \times 10^{-1}$
10. A conductor carrying a current $I=15 \mathrm{~A}$ is directed along the positive $x$-axis and perpendicular to a uniform magnetic field. A magnetic force per unit length of $0.12 \mathrm{~N} / \mathrm{m}$ acts on the conductor in the positive $y$ direction. The magnetic field in the region through which the current passes (in T) is:
(A) -0.002 k
(B) +0.002 k
(C) -0.008 k
(D) +0.008 k
11. A 30 turns circular coil of radius 5 cm is placed in a uniform magnetic field of 0.5 T . If the coil carries a current of 5 A , find the magnitude of the maximum possible torque exerted on the coil (in N.m).
(A) 0.59
(B) 0.98
(C) 0.20
(D) 0.42

TIE UNEDERSTY OF fIORIN

## The University Of Jordan <br> Physics Department <br> General Physics II, 0302102 (2 ${ }^{\text {nd }}$ EXAM)

First Semester 2014/2015 (December $2^{\text {nd }}, 2014$ )


1. A resistor has a uniform cross sectional area of $5.00 \mathrm{~mm}^{2}$ and resistivity $=3.5 \times 10^{-5} \Omega$. m . When a potential difference of 15.0 V is applied across the ends of the rod, the rod carries a current of $4.00 \times 10^{-3} \mathrm{~A}$. The rod's length (in m ) is:
a) 234
d) 635
b) 356
(e) 536
c) 423
2. A conductor of radius $r$, length $\ell$ and resistivity $\rho$ has resistance $R$. Its new resistance if it is stretched to 2 times its original length is (Note: No new material is added to the conductor):
a) $(1 / 4) R$
b)
(1/2) $R$
c) $\quad R$
d) $2 R$
(e) $4 R$
3. The equivalent resistance (in $\Omega$ ) between points $a$ and $b$ in the Figure is:
a) 13
b) 27
c) 23
(d) 17
e) 30


Consider a series $R C$ circuit for which $R=1.00 \mathrm{M} \Omega, C=5.00 \mu \mathrm{~F}$, and $\varepsilon=30.0 \mathrm{~V}$. The current (in $\mu \mathrm{A}$ ) in the resistor 10.0 s after the switch is closed is:
(a) 6.40
b) $\quad 4.06$
c) $\quad 2.62$
d) 5.23
e) $\quad 8.17$
5. In a series RC circuit, how many time constants must elapse if an initially uncharged capacitor is to reach $80 \%$ of its final potential difference?
a)
2.2
b) $\quad 1.6$
c)
5.0
(d) 3.0
e) $\quad 1.9$
6. In a parallel plate capacitor, if the plate separation is halved while the charge on each plate is kept constant,
 $3.0 \mathrm{~km} / \mathrm{s}$. It enters a magnetic field of $(2.0 \mathbf{i}+3.0 \mathbf{j}+4.0 \mathrm{k}) \mathrm{mT}$. The acceleration (in $\left.\mathrm{m} / \mathrm{s}^{2}\right)$ of the particle is:
a) $36 \mathrm{j}-27 \mathrm{k}$
b) $\quad-36 j+27 k$
d) $24 \mathrm{j}-18 \mathrm{k}$
(e) $\quad 24 \mathrm{j}-27 \mathrm{k}$
(c) $\quad-24 \mathbf{j}+18 \mathbf{k}$
9. If a potential difference of 23.0 V is applied across points $a$ and $b$, then the charge (in $\mu \mathrm{C}$ ) on the $2 \mu \mathrm{~F}$ capacitor is:
b)
66.8
e)
54.7
a) $\quad 20.0$
b) 40.0
(c) 16.0
d) $\quad 24.0$
e) $\quad 36.0$

10. The power delivered to the $10 \Omega$ resistor is:

| a) | 0.9 |
| :--- | :--- |
| (b) | 1.1 |
| c) | 2.2 |
| d) | 3.3 |
| e) | 4.4 |


11. A $3 \mu \mathrm{~F}$ capacitor is connected to a 10 V battery. The energy stored in the capacitor (in Joules) is:
(a) $3.6 \times 10^{-5}$
b) $1.1 \times 10^{-10}$
c) $1.5 \times 10^{-4}$
d) $2.16 \times 10^{-4}$
e) $4.32 \times 10^{-4}$

## For the circuit shown, answer questions 12 and 13.

12. Assuming that the batteries have negligible internal resistance, the potential difference (in V ) between points $a$ and $b$ is:
a) 12
b) $\quad 1.55$
c) $\quad 9.33$
d) $\quad 3.99$
(c) 7.65
13. The current passing through the $4 \Omega$ resistor (in A ) is:

c)

1.09
e)

-14. The capacitor in the circuit shown was gharged to $5 \mu \mathrm{C}$. After halfa second of closing the/switch $S$, the charge on the capacitor (in $\mu \mathrm{C}$ ) will be:
a) 3.03
b) 36.9
c) 0.68
(e) $\begin{aligned} & 1.84 \\ & \text { Zero }\end{aligned}$

14. For the circuit shown, the current (in A ) that passes through the $6 \Omega$ resistor is:
a) $\quad 2.75$
(b) 0.88
c) $\quad 3.8$
d) $\quad 1.58$
e) $\quad 2.00$


Good Luck


Name (in Arabic): -

- Instructor:

Registration No.: -

- Section: $\qquad$
- Choose the closest correct answer and fill the Answer Table.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $e$ | $c$ | $b$ | $b$ | $e$ | $d$ | $a$ | $d$ | $c$ | $d$ | $e$ | $a$ | $c$ | $a$ |

1. A $4.0 \Omega$ resistor has a current of 4.0 A for 5.0 min . How many electrons pass through the resistor during phis time interval? $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$
a. $7.5 \times 10^{21} \sim b, 3.8 \times 10^{21}$
c. $8.4 \times 10^{21}$
d. $2.1 \times 10^{21}$
e. $5.6 \times 10^{21}$
2. A conductor of radius $r$, length/ and resistivity $\rho$ has resistance $R$. It is melted down and formed into a neweenductors also cylindrical, with one fourth the length of the original conductor. The resistance of tic new conductor is
a. $\frac{1}{4} R$
b. 16 R.
c. $R$
d. $4 R$
e. $\frac{1}{16} R$
3. The circuit shown contains three resistors, $\mathrm{A}, \mathrm{B}$, and C , which all have equal resistances. The emf $\varepsilon=110 \mathrm{~V}$. Which resistor generates the most thermal energy after the switch is closed?
a. A
b. B
c. C
d. A and B
e. All three generate equal amounts of thermal energy.
4. If a piece of conducting wire is used to connect points $b$ and $c$ in the circuit shown, the brightness ( $\tau \wedge, \mathcal{)}$ ) of the light bulb $R_{1}$ will
a. decrease.
b. increase.
c. remain the same.
 $R_{\text {, decrease }} I$ increase. Ti
5. Determine the magnitude and direction of the current in the $10 \Omega$ resistor when $I=1.9 \mathrm{~A}$.
a. 1.6 A, left to right.
b. 1.8 A , right to left.
c. 1.2 A , right to left.
d. 1.2 A , left to right.
e. 1.8 A , left to right.


6. An electron moves in a circular path in a region of space filled with a uniform magnetic field $\mathrm{B}=$ 0.2 T . To double the radius of the electron's path, the magnitude of the magnetic field must become:
a. 0.8 T .
b. 0.2 T .
c. zero.
d. 0.3 T
c. 0.1 T.

$$
\begin{aligned}
& \text { Lo increase or decease } B \\
& \uparrow r=\frac{m v}{\sqrt{(B) Z}}
\end{aligned}
$$

$$
v 1 .-4-2+9-v a=0
$$

7. If $R=4.0 \mathrm{k} \Omega \Omega, C=3.0 \mathrm{mF}, \varepsilon=9 \mathrm{~V}, Q=12 \mathrm{mC}$, and $I=2.0 \mathrm{~mA}$, what is the potential difference $V_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}$ in the circuit segment shown?
a. +8 V
b. -19 V
c. -3.0 V
d. +3 v )
e. 8 V
8. What is the equivalent resistance between points $A$ and $B$ in the figure when $K=25 \Omega$ ?
a. $25 \Omega$
b. $10 \Omega$
c. $20 \Omega$
d. $15 \Omega$
e. $3.2 \Omega$

9. Two resistors ( $R_{1}$ and $R_{2}$ ) are connected in series across a potential difference. $R_{1}$ has twice the $f_{2}$ resistance of $R_{2}$. If the current carried by $R_{1}$ is $I$, then the current carried by $R_{2}$ is:
a. $I / 2$.
b. 4 I.
c. 21.
d. I.)
e. I/4.
10. Consider the circuit in the figure shown and assume that the battery has no internal resistance. If the switch is closed for a very long time, the current in the battery is
a. zero
b. $\varepsilon / 2 R$
(IR
d. $2 \varepsilon / R$
e. impossible to determine
11. Which of the following statements is a characteristic of both electric and magnetic forces?
a. The force/exerted on a stationary charged object is nonzero.
b. The force exerted on a stationary charged object is zero.
c. The force exerted on a charged object is proportional to its speed. $x$
e. None of the above.
12. An'ecectron) moves in the plane of this paper toward the top of the page. A magnetic field is also in the plane of the page and directed to the right. The direction of the magnetic force on the electron is
a. toward the top of the page.
b: toward the bottom of the page.
c. toward the left edge of the page.
d. into the page.
c. put of the page.
13. A velocity selector consists of electric and magnetic fields described by the expressions $\vec{E}=E \hat{k}$ and $\vec{B}=B \hat{j}$, with $B=20 \mathrm{mT}$. Find the value of $E$ such that a $1.6 \times 10^{7} \mathrm{~m} / \mathrm{s}$ electron moving in the negative $x$ direction is undeflected.
a. $320 \mathrm{kV} / \mathrm{mi}$
b. $160 \mathrm{kV} / \mathrm{m}$
c. $420 \mathrm{kV} / \mathrm{m}$
c. $240 \mathrm{kV} / \mathrm{m}$
d. $120 \mathrm{kV} / \mathrm{m}$
14. A wire is bent into a semicircle of radius $R$ as shown. The wire carries a current (I) and lies in the xy-plane in a region of uniform magnetic field $\vec{B}=B \hat{j}$. Find the magnetic force acting on the wire. $I=H \quad J \sin \hat{\sigma}$
a. $\pi R I B \hat{k} \quad \chi_{b}-\pi R I B \hat{k}$
c. 2 RIB in is parallel to the field as shown. The torque on the loop is zero in

By position 1.
d. positions 2 and 3.
d. $-2 R I B \hat{k}$ If $\int\left\{\begin{array}{l}\text { set } \\ \text { e. zero }\end{array}\right.$

15. A current loop and a uniform magnetic field are oriented in three different positions. In position 1 the plane of the loop is perpendicular to the field lines. In positions 2 and 3 the plane of the loo
b. position 2. c. position 3.
e. all three positions.

- ALL THE BEST -



2


## Physics Department/The University of Jordan

Second Exam/20April/2015 (3:30-4:30)

Student's Name:
KEY
Section Number:

Student's Number:
Lecturer's Name:
$e=-1.6 \times 10^{-19} \mathrm{C}, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Q1) The quantity of charge (in Coulombs) that has passed through a surface area of $2.0 \mathrm{~cm}^{2}$ varies with time as $q=4 t^{3}+5 t+6$ where $t$ is in seconds. The instantaneous current (in A) through the surface at $t=1.0 \mathrm{~s}$ is
a) 15
b) 23
c) 0
d) 17
e) 10

Q2) A light bulb is rated at 30 W when operated at 120 V . How much charge (in Coulombs) passes through this bulb in 1.0 min ?
a) 17
b) 15
c) 14
d) 13
e) 60

Q3) A conductor of radius $r$, length $L$ and resistivity $\rho$ has resistance $R$. What is the new resistance if it is stretched to 4 times its original length keeping its volume constant?
a) $R / 4$
b) $R / 16$
c) $R$
d) $4 R$
e) $16 R$

Q4) What is the rate at which thermal energy is generated in the $30 \Omega$ resistor shown?
a) 20 W
b) 27 W
c) 60
d) 13 W
e) 30 W


Q5) In the figure shown, if $I=0.50 \mathrm{~A}$ and $2 \Omega$ determine (in Volt).
a) 12
b) 24
c) 30
d) 15 V
e) 6.0


Q6) In the figure, if $I=1.5 \mathrm{~A}$ in the circuit segment shown, what is the potential difference $V_{\mathrm{B}}-V_{\mathrm{A}}($ in volt)?
a) +22
b) -38
c) -22
d) +38
e) +2.0

Q7) In the figure, if $R=12 \Omega$, what is the equivalent resistance between points a and b
a) 16
b) 20
c) 24
d) 28
e) 6.0

8) An $R C$ circuit consists of uncharged capacitor, 30 V battery and a $5 \Omega$ resistor. When the switch is closed the initial current (in A ) in the circuit is
a) 0.6
b) 15
c) 6.0
d) 3.0
e) 5.0

Q9) An electron has a velocity of $J^{6}$ magnetic field has the components, 3
$\mathrm{m} / \mathrm{s}$ in the positive $x$ direction at a point where the magnitude of the magnetic force acting on the electron (in N )?
a)
b)
c) 3
d)
e)

Q10) A straight wire is bent into the shape shown. Determine the net magnetic force on the wire.
a) $2 I B L$ into the page
b) 2 IBL out of the page
c) $4 I B L$ out of the page
d) $4 I B L$ into the page
e) zero


Q11) A circular loop (radius $=0.50 \mathrm{~m}$ ) carries a current of 3.0 A and has unit normal vector of $(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) / 3$. What is the $x$ component of the torque (in N.m) on this loop when it is placed in a uniform magnetic field of $(2 \mathbf{i}-6 \mathbf{j}) \mathrm{T}$ ?
a) 4.7
b) 3.1
c) 19
d) 9.4
e) 12 N

Q12) A horizontal wire (mass $=50 \mathrm{~g}$, length $=40 \mathrm{~cm}$ ) is suspended by two massless vertical wires which conduct a current $I=8.0 \mathrm{~A}$, as shown in the figure. The horizontal wire is subjected to a magnetic field of magnitude 60 mT into the paper. What is the value of the tension (in N ) in each of the vertical wires?
a) 0.34
b) 0.68
c) 0.30
d) 0.15
e) 0.10


Answers

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | B | E | D | B | C | A | C | A | B | D | A |

## اردئلة رנرنوات

Past Papers
إعכاد :


بالتعاون. . كضضي..


Pfysics2
Second
Student's Name (In Arabic):
Instructor's Name:
Useful Information:

$$
\begin{aligned}
& |q|(\equiv \text { Absolute Charge on Electron or Proton })=1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}(\equiv \text { Mass of Electron })=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}(\equiv \text { Mass of Proton })=1.67 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{k}_{\mathrm{e}}(\equiv \text { Coulomb's Constant })=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2} \\
& \varepsilon_{0}(\equiv \text { Permittivity of free space })=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \\
& \text { Some of the results are rounded. }
\end{aligned}
$$

| $Q 1$ | $a$ | $b$ | $c$ | d | $e$ | $Q 7$ | $a$ | $b$ | $c$ | $d$ | $(C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q 2$ | $a$ | $b$ | $c$ | $d$ | $e$ | $Q 8$ | $a$ | $(b)$ | $c$ | $d$ | $e$ |
| $Q 3$ | $a$ | $b$ | $c$ | $d$ | $e$ | $Q 9$ | $a$ | $b$ | $c$ | $(d)$ | $e$ |
| $Q 4$ | $a)$ | $b$ | $c$ | $d$ | $e$ | $Q 10$ | $a$ | $(b)$ | $c$ | $d$ | $e$ |
| $Q 5$ | $a$ | $b$ | $c$ | $d$ | $e$ | $Q 11$ | $a$ | $b$ | $c$ | $d$ | $d$ |
| $Q 6$ | $a$ | b | $c$ | $d$ | $e$ | $Q 12$ | $a$ | $b$ | $c$ | $d$ | $e$ |

1. Points $A$ [at $(2,3) \mathrm{m}]$ and $\mathrm{B}[$ at $(5,7) \mathrm{m}]$ are in a region where the electric field is uniform and given by $\mathbf{E}$ $=(4 i+3 j) N / C$. The potential difference $V_{A}-V_{B}$ (volts) is:
a) 33
b) $\quad 27$
e) 11
c) 30
-d) 24
11
2. A non-uniform linear charge distribution given by $\lambda(x)=b x$, where $b$ is a constant, is distributed along the $x$ axis from $x=0$ to $x=+L$. If $b=40 \mathrm{nC} / \mathrm{m}^{2}$ and $L=0.20 \mathrm{~m}$, the electric potential (in volts) (relative to a potential of zero at infinity) at the point $y=2 L$ on the $y$ axis is:
a) 19
d) 23
b) 17
c) 21
e)
14
3. A non-conducting sphere of radius 10 cm is charged uniformly with a density of $100 \mathrm{nC} / \mathrm{m}^{3}$. The magnitude of the potential difference (in volts) between the center and a point 4.0 cm away is:
a) 12
b) 6.8

- c) 3.0
d) 4.7
e) $\quad 2.2$
$\qquad$

4. The number of electrons that pass through a $20 \Omega$ resistor in 10 min if there is a potential drop of 30 volts across it is:

- a) $5.6 \times 10^{21}$
b) $\quad 7.5 \times 10^{21}$
c) $\quad 9.4 \times 10^{21}$
d) $1.1 \times 10^{21}$
e) $3.8 \times 10^{21}$
$\square$

5. A conductor of radius $r$, length $\ell$ and resistivity $\rho$ has resistance $R$. Its new resistance if it is stretched to 4 times its original length is:
(a) $(1 / 16) R$
b)
(1/4) R
c) $\quad R$
d) $4 R$
e) $\quad 16 R$
6. The resistance $R($ in $\Omega)$ when $I=1.5 \mathrm{~A}$ is:
a) 40
,b) 8,0
c) 85
d) 28
e) 32

7. The following is not a capacitance: (Hint: K is a dielectric constant)
a) $a b / k_{e}(b-a)$
d) $\ell / 2 k_{\mathrm{e}} \ln (\mathrm{b} / a)$
b) $\quad k \varepsilon_{0} A / d$
${ }^{\text {e) }}$
$k_{\mathrm{e}} \varepsilon_{0} \mathrm{~A} / \mathrm{d}$
c) $\quad \varepsilon_{0} A / d$
8. A small bulb is rated at 7.5 W when operated at 125 V . The tungsten filament has a temperature coefficient of resistivity $\alpha=4.5 \times 10^{-3} /{ }^{\circ} \mathrm{C}$. When the filament is hot and glowing, its temperature is seven times room temperature $\left(20^{\circ} \mathrm{C}\right)$. What is the resistance of thefilament (in $\Omega$ ) at room temperature?
a) $\mathbf{1 2 8 0}$
d) 4530
-b) 1352
e) 5630
c)
1532
9. The energy stored (in mJ ) in $\mathrm{C}_{2}$ when
$C_{1}=15 \mu \mathrm{~F}, C_{2}=10 \mu \mathrm{~F}, \mathrm{C}_{3}=20 \mu \mathrm{~F}$, and
$V_{0}=18 \mathrm{~V}$ is:
a) 0.72
b) 0.36
c) 0.50
.d) 0.18

10. A capacitor in a single loop $R C$ circuit is charged to $85 \%$ of its final potential difference in 2.4 s . The time constant (in s) for this circuit is:
a) 1.5
b) ${ }^{n}$
1.3
d) 2.3
e) $\quad 2.9$
c) $\quad 1.7$
11. The time (in ms ) it will take a charged $80 \mu \mathrm{~F}$ capacitor to lose $20 \%$ of its initial energy when it is allowed to discharge through a $45 \Omega$ resistor is:
a) 0.92
b) $\quad 0.64$
e) $\quad 0.80$

- c) 0.40
d) 0.19
0.40

12. A typical toaster oven can generate 1200 watts in its heating element, when driven by 120 volts. The heating element is a thin Nichrome wire of length 4 meters and cross sectional area $0.33 \mathrm{~mm}^{2}$. The resistivity $\rho$ of the Nichrome wire (in $\Omega . m$ ) is:

- a) $9.9 \times 10^{-7}$
d) 12
b) $\quad 6.6 \times 10^{-7}$
e) $\quad 1.46 \times 10^{8}$
c) $\quad 0.99$


## d

# هكتبة العمـاره والف:نون 

## Archi Arts

اسـئلة ســـوات سـابقـة ما فيـزيـاء 102 الاهتانان الثانيـ


7. What is the magnitude of the current in the $20-\Omega$ resistor shown?

b. 1.00 A
c. 0.25 A
0.75 A
e. e. 0.00 A

$$
10-I 10-I, 20=0
$$


$I_{2} I_{1}-I_{2}$

$$
\begin{aligned}
& -15-10 I_{2}-20 I_{1}=0+10 I_{2}+15+20 I_{1}=-1.5+2 I_{1}=I_{2} \\
& 10-\left(I_{1} 1.5+2 I_{1} 1-20 I_{1}=0\right. \\
& 10-\left(3 I_{1} 5_{1} 15-20 I_{1}\right)=0 \quad \Rightarrow-17 I_{1}-8.5=0
\end{aligned}
$$

8. In the figure, if $R=3.0 \mathrm{k} \Omega, C=6.0 \mathrm{nF}, \varepsilon_{1}=10.0 \mathrm{~V}, Q=18 \mathrm{nC}, \varepsilon_{2}=6.0 \mathrm{~V}$, and $I=5.0 \mathrm{~mA}$, what is the potential difference $V_{\mathrm{b}}-V_{\mathrm{a}}$ ?

$$
\sqrt{2} \frac{L}{c}=3
$$

$$
\operatorname{son} \left\lvert\, \begin{aligned}
& \text { a. }-13 \mathrm{~V} \\
& \mathrm{c}-28 \mathrm{~V} \\
& 13 \mathrm{~V}
\end{aligned}\right.
$$

(ब) $28 \mathrm{~V} \times$
e. +2.0 V


$$
-10-15-3-6=y_{a}-v_{b}
$$

9. In an RC circuit, how many time-constants must elapse if an initially uncharged capacitor $\qquad$ is to reach $80 \%$ of its final potential difference?

$$
\mathcal{L}=J_{0}\left(1-e^{t / \gamma c}\right)
$$

b. 3.0
c. 2.2
$\begin{aligned} & \text { c. } 1.9 \\ & \text { d. } 5.0-80 \\ & \text { e. } \\ & \text { e } 1-e^{-6}(R C \\ & 100\end{aligned} 1,6=\frac{-t}{R C}$

$$
\frac{80}{100} e 1-e^{-61 R C}=1,6=\frac{-t}{R C}
$$

$\qquad$
$\qquad$相
园

$\qquad$ 3
$\qquad$ $\square+\square$
$\qquad$
$\qquad$
$\qquad$
-
$6 \cup \sqrt{ } .6 j_{0}\left(1-e^{-t / \delta c}\right)$
 (
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
c_{0}=\sigma_{0}+
$$

$$
\therefore \frac{5.3 \times 4 \times 10^{-4}}{-1 \times-3}
$$

10. The square plates of a 6 nF capacitor measure 30 mm by 30 mm and are separated by a $-4$ dielectric which is 0.1 mm thick. The dielectric constant of the dielectric is closest to:

$$
\text { loses to: }=8.4
$$

a. 65

$$
C_{d} e C_{0} k
$$

b. 55
c. 45
d. 85

k

$$
8 \times 10^{-4}=6 \times 10^{-9} \mathrm{~K}
$$

$$
0
$$


11. The current in a wire varies with time according to the relation $I=20+3 t^{2}$, where $I$ is in Amperes and $t$ is in seconds. How many Coulombs are transported by the wire between $t=0$ and $t=10 \mathrm{~s}$ ?
a. 1000
(1.) 1200
c. 1100
d. 1300
e. zero

$$
\begin{aligned}
& \Rightarrow Q=\int_{0}^{10} I d t \\
& =\left[20 t-t^{3}\right]_{0}^{10} \\
& (200+1000)-
\end{aligned}
$$

12. A toaster with a Nichrome heating element has a resistance of $80 \Omega$ at $20^{\circ} \mathrm{C}$ and an initial current of 1.5 A . When the heating element reaches its final temperature, the current is 1.3A. What is the fetal temperature of the heating element in $C$ ? $\left(a=0.0004 \mathrm{C}^{-1}\right)$.
a. 420
(1) 405
c. 400
d. 600
e. 1000

$$
\begin{gathered}
I=I_{0}\left[1+d\left(T-T_{0}\right)\right] \\
1.3=1.5(1+0.0004(T-20) \\
1+0.0004 T-8 \times 10^{-3} \\
1+6 \times+0^{-4} T-0.012 \\
1.3=6 . \times 10^{-4}-1.5
\end{gathered}
$$

GOOD LUCK


## FACULTY OF SCIENCE

 PHYSICS DEPARTMENT
## General Physics 102


$\leqq \Rightarrow$ 을
Note: $k=\frac{1}{4 \pi e_{0}}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} ; \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$
The mass of a proton is, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.

1. A capacitor is connected to a battery as shown. When a dielectric is inserted between its plates,
A) only the capacitance changes;
B) only the-voltage across the capacitor changes;
C) only the charge on the capacitor changes;
(D) both the capacitance and the charge change.
E) both the capacitance and the voltage change;
2. By what percentage does the resistance of a copper wire ( $\alpha=3.9 \times 10^{-3} / \mathrm{K}$ )
 increase when its temperature increases from $40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ ?
A) $11 \%$;
B) $14 \%$;
(5) $23 \%$;
D) $31 \%$;
E) $57 \%$.
*3. A conducting plate of thickness $d$ is inserted into a large area parallel plate capacitor of area A and separation 2d as shown in figure (consider the field to be uniform all over the area). If the conductor fills half the capacitor, the effective capacitance of the combination is:
A) $(5 / 4)\left(\varepsilon_{0} A / d\right)$
B) $(1 / 4)\left(\varepsilon_{0} A / d\right)$
C) $(1 / 2)\left(\varepsilon_{0} A / d\right)$
D) $\left(\varepsilon_{0} A / d\right)$

3. Four parallel plate capacitors are connected to a battery as shown below.

The charge on the capacitor $C_{1}$ is:
A) Smaller than the charge on $\mathrm{C}_{2}$
B) Smatler than the charge on $\mathrm{C}_{4}$
C. Larger than the charge on $\mathrm{C}_{3}$
D) Equal to the charge on $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ ? ${ }_{3}$
E) Equal to the charge on $\mathrm{C}_{3}$ and $\mathrm{C}_{4}$

$$
q_{1}=60 \mu i
$$

$q_{2}=\frac{130}{3} \mu \mathrm{C}$

A typical toaster oven can generate 1200 watts in its heating element, when driven by 120 volts. The heating element is a thin Nichrome wire of length 4 meters and cross sectional area $0.33 \mathrm{~mm}^{2}$. The resistivity $\rho$ of the Nichrome wire (in Ohm.m) is:
A) $9.9 \times 10^{-4}$
(B) $9.9 \times 10^{-7}$
C) 0.99
D) 12
E) $1.46 \times 10^{8}$
6. If a current of 2.0 A is flowing from point a to point
b, the potential difference between $V_{(E)}$ - $V_{( }($in $V$ ) is:
A) 6
B) 8
$\mathrm{SH}^{2} 6$
D) -8
E) 22

7. In the circuit shown, the switch has been opened for a long time so that the capacitor is uncharged. the charge on the capacitor after the switch has been
closed for a long time is
A) $V C$
B) $2 \mathrm{CV} / 3$
(C) CH3
D) 2 CV
E) $3 C V$
8... When two identical resistors are connected in parallel across the terminals of a
 battery, the power delivered by the battery is 10 watts. If these resistors are instead connected in series across the terminals of the same battery, then the power delivered by the battery (in W) is:
A) 40
B). 5
C) 20
D) 10

The following text is for question 9 and 10: Four wires and three batteries are connected as shown here.
9.) The potential difference between the points marked $A$ and $B, V_{A B}=$
$V_{(B)}=V_{(4)}$ (in $V$ ) is:
A) 20
C) 10
D) -10
E) can not be found
40. The current passing through $R_{2}$ (in $A$ ) is:
$\begin{array}{lll}\text { A) } 0.25 & \text { B) } 0.5 & \text { C) } 0.75\end{array}$
$\begin{array}{lll}\text { A) } 0.25 & \text { B) } 0.5 & \text { C) } 0.75\end{array}$
$\begin{array}{lll}\text { A) } 0.25 & \text { B) } 0.5 & \text { C) } 0.75\end{array}$
c5 5
E) 1.25

- 1.25


$$
C_{0}=E_{0} \quad-9.03 \times 5^{5} \times 4 \times 10^{-4}
$$

10. The square plates of a 6 nF capacitor measure 30 mm by 30 mm and are separated by a dielectric which is 0.1 mm thick. The dielectric constant of the dielectric is closest to:
a. 65


Cd $e C_{0} k$

$$
=6 \times 10^{-4}
$$

b. 55
c. 45
d. 85

$$
8 \times 10^{-4}=6 \times 10^{-9} 16
$$

11. The current in a wire varies with time according to the relation $\mathrm{I}=20+3 t^{2}$, where I is in Amperes and $t$ is in seconds. How many Coulombs are transported by the wire between. $t=0$ and $t=10 \mathrm{~s}$ ?
a. 1000
(空) 1200
C. 1100
d. 1300
e. zero

$$
\begin{aligned}
I=\frac{Q}{t} & \Rightarrow G=\int_{0}^{10} I d t \\
& =\left[20 t-t^{3}\right]_{0}^{10} \\
& (200+1000)-
\end{aligned}
$$

12. A toaster with a Nichrome heating element has a resistance of $80 \Omega$ at $20^{\circ} \mathrm{C}$ and an initial current of 1.5 A . When the heating element reaches its final temperature, the current is


Date:9/5/2002
Time: 5:00-6:0)

## Second Exam



1. An air filled parallel plate capacitor of capacitance $C_{0}$ has plates of area A with separation d between them. When it is connected to a battery of voltage $V_{0}$, it has charge of magnitude $Q_{0}$ on its plates. It is then disconnected from the battery and the plate separation is decreased to $1 / 2 \mathrm{~d}$. After the plates are $1 / 2 \mathrm{~d}$ apart, the magnitude of the charge on the plates and the potential difference between them are:
a) $\mathrm{Q}_{0}, 1 / 2 \mathrm{~V}_{0}$
b) $1 / 2 Q_{0}, V_{0}$
c) $\mathrm{Qo}_{0} \mathrm{Vo}$
d) $\mathrm{Qo}_{0}, 2 \mathrm{~V}_{0}$
e) $2 \mathrm{Qo}_{0} \cdot 2 \mathrm{Vo}$
2. An air filled parallel plate capacitor of capacitance $C_{0}$ stores energy $U_{0}$ when it is connected. to a battery of voltage $V_{0}$. While it is connected to the battery the space between the plates is filled with a material of dielectric constant $3 / 2$ : After the dielectric is added, the energy stored in the capacitor is: '
a) $1 / 3 \mathrm{U}_{0}$
b) $U_{0}$
c) $3 U_{0}$
d) $3 / 2 \mathrm{U}_{0}$
e) $2 / 3 \mathrm{U}_{0}$
3. Light bulb $A$ is fated at 60 W and light bulb $B$ is rated at 100 W . Both are designed to operate at 110 V . Which statement is correct?
a) The 60 W bulb has a greater resistance and greater current than the 100 W bulb.
b) The 60 W bulb has a smaller resistance and smaller current than the 100 W bulb.
c) The 60 W bulb has a greater resistance and smaller current than the 100 W bulb.
d) The 60 W bulb has a smaller resistance and greater current than the 100 W bulb.
e) We need to know the resistivities of the filaments to answer this question.
4. The current density through a copper wire of length 1.80 m is $6.00 \times 10^{8} \mathrm{~A} . \mathrm{m}^{-2}$. If the resistivity of copper at $20^{\circ} \mathrm{C}$ is $1.5 \times 10^{-8} \Omega$. m , the voltage ( V ) across the wire is:-
a) 7.5
b) 5.0
c) 16.2
(d) 10.8
e) 21.6
5. A resistor of unknown resistance and a $30-\Omega$ resistor are connected across a $20-\mathrm{V}$ emf in such a way that a 2.0 A current is observed in the emf. The value of the unknown resistance $(\Omega)$ is:
a) 75
b) 12
c) 7.5
d) 30
e) 15
6. In the figure shown, if $I=30 \mathrm{~mA}$. the magnitude and sense (direction) of the current in the $500-\Omega$ resistor is:
a) 56 mA right to left
b) .56 mA left to right
c) 48 mA left to right
d) 48 mA right to left.
e) 26 mA left to right


## 

7. In the circuit shown in this figure, let $R=4.0 \mathrm{k} \Omega$. $C_{1}=10 \mu \mathrm{~F}, C_{2}=5.0 \mu \mathrm{~F}$ and $\varepsilon=10 \mathrm{~V}$. When the switch $S$ is closed, the charge ( $\mu \mathrm{i}$. .) on the capacitor $\mathrm{C}_{2}$
a) 150
b) 11
c) 12
d) 8.0
e) 4.0
8. In the figure shown, if $\mathrm{I}=1.0 \mathrm{~A}$
and $R=12 \Omega$, then the emf. $E(V)$ is:
a) 12 V
b) 24 V
c) 30 V
d) 48 V
e) 19 V

9. In the circuit shown in this figure,
$\varepsilon=12.0 \mathrm{~V}, C_{1}=3.00 \mu \mathrm{~F}, \mathrm{C}_{2}=\mathrm{C}_{3}=4.00 \mu \mathrm{~F}$. The energy ( $\mu \mathrm{J}$ ) stored in each of the $4.00 \mu \mathrm{~F}$ capracitor is:
a) $72: 0$
b) 144
c) 36.0
d) 180
e) 24.0

10. In the circuit shown in this figure, let $\varepsilon=50 \mathrm{~V}$, $\mathrm{R}_{1}=30 \mathrm{k} \Omega, \mathrm{R}_{2}=20 \mathrm{k} \Omega$ and $\mathrm{C}=5.0 \mu \mathrm{~F}$. If the switches closed for a long time and is then opened, the current (mA) through the $20 \mathrm{k} \Omega$ resisiance after 80 mos is:
a) 1.5
b) 0.61
c) 2.5
d.) 1.1
e) 0.45

Answer Table

| No, | $a$ | $b$ | $c$ | $d$ | $e$ | No. | $a$ | $b$ | $c$ | $d$ | $e$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  | 6 |  |  |  |  |  |
| 2 |  |  |  |  |  | 7 |  |  |  |  |  |
| 3 |  |  |  |  |  | 8 |  |  |  |  |  |
| 4 |  |  |  |  |  | 9 |  |  |  |  |  |
| 5 |  |  |  |  |  | 10 |  |  |  |  |  |

## (3)


W. $2 n d$ exam 102 , 9.5 .2002 . (answots)
Q. $1 \quad C, V_{0}, Q_{0}, d^{\prime}=\frac{d}{2}$
 Lor, $Q=C V$,

$$
C=\frac{E A}{d} \Rightarrow C^{\prime}=\frac{E A}{d^{\prime}}=\frac{E A}{d^{\prime}}=\frac{E_{0} A}{\frac{1}{2} d}=2 \frac{E^{A} A}{d}=2 C_{0}
$$

3 and 0.5

$$
V_{0}=\frac{Q}{C_{0}^{\prime}} \Rightarrow V^{\prime}-\frac{Q}{C^{\prime}}=\frac{Q}{2 C_{0}}=\frac{1}{2} \frac{Q}{C_{0}}=\frac{1}{2} V_{0} \Rightarrow Q_{a,} V_{0} \rightarrow Q_{0}, \frac{1}{2} V_{0}
$$

answeris. a
Q. $2 . V_{0}, V, V=1.5$

Jif i
 $U_{0}=\frac{1}{2} C_{0} V^{2}$ and with $C=K C_{0}=1.5 C_{0}$

$$
\begin{aligned}
& \Rightarrow \quad U=\frac{1}{2} k C_{0} V^{2}=k\left(\frac{1}{2} C_{0} v^{2}\right)=k U^{\prime}=1.5 U_{0}
\end{aligned}
$$

Q. 3


$$
P=I^{2} R=\frac{V^{2}}{R}
$$



- ك ك

Q. $4 \quad j=6 \times 10^{8} \mathrm{~A} / \mathrm{m}^{2}, \quad \ell=1.8 \mathrm{~m}, \rho=1.5 * 10^{-8} 52 \mathrm{~m}$

$$
E=\rho j \Rightarrow V=E+l=\rho j l=15 \times 10^{-8} * 6 \times 10^{8}+1.8=16.2 V
$$

or $j=\frac{i}{A} \Rightarrow i=j A$ and $R=\frac{P l}{A} \Rightarrow V=i R=j A * \frac{P l}{A}=j \rho l=16 \cdot 2 V$
Q. $5 R_{1}=R_{g} R_{2}=30 \Omega, V=20 \mathrm{~V}, i=2 \mathrm{~A}$


Parrllal ampection $\Rightarrow \frac{1}{R_{\text {qq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow R_{\text {o }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \Rightarrow \frac{30 R}{3 \delta+R}=10 \Rightarrow R=15 \Omega$
answer is (e)





-



$$
500 i=40-400\left(30 * 10^{-3}\right) \Rightarrow i=\frac{40-12}{500}=56 \mathrm{~mA}
$$

(laf) To right)
(answer is. (b)
Q.7. $R=4 \mathrm{k} \Omega, C_{1}=10 \mu \mathrm{~F}, C_{2}=5 \mu \mathrm{~F}, \quad G=10 \mathrm{~V}, t=5 \mathrm{~ms}$.

$$
c_{e_{q}}=c_{1}+c_{2}=c=15 \mu \mathrm{~F}
$$





$$
\begin{aligned}
q(5 \mathrm{~ms}) & =10 * 15 * 10^{-6}\left[1-\exp \left(-\frac{5 * 10^{-3}}{4 * 10^{3} \times 15 * 10^{-6}}\right)\right] \\
& =12 * 16^{-5}=12 \mu \mathrm{c}
\end{aligned}
$$

$$
=12 * \cdot 16^{-5}=12 \mu c
$$


 d


$$
\begin{align*}
& E=(2 I)(2 R)=4 * 12 * 1=48 \mathrm{~V} \\
& \text { Ginswer is (d) } \\
& I=\frac{\varepsilon}{R}, \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \quad \text { Lus } r, I \\
& \left.-I=\frac{\left(R_{1} R_{2}+R_{1} R+R_{2} R_{5}\right)}{R_{1} R_{2} R_{5}}\right) \tag{5}
\end{align*}
$$

$$
\begin{aligned}
& \frac{q_{1}}{c_{1}}=\frac{q_{2}}{c_{2}} \Rightarrow q=\frac{c_{1}}{c_{2}} q_{2}^{\prime}=(1)=\text { and } q_{1}+q_{2}=q=12 \mu c-\cdots(2) \\
& \Rightarrow c_{1} q_{2}+q_{2}=12 \mu c \Rightarrow 2 q_{2}+q_{2}=12 \mu c \Rightarrow q_{2}=4 \mu \mathrm{c} \quad \text { ansmes is }(\mathrm{e} \\
& \text { Q. } 8 \quad R=12 \Omega=I=1 A
\end{aligned}
$$

## 

University of Jordan General Physics (0302102) Second: Sem.2000/200L:

Physics of Dept. Second Exam Date: $12 / 5 / 2001$ Time: 70 minutes


Use $\mathrm{k}=9 * 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} ; 1 \mu \mathrm{~F}=10^{-6} \mathrm{~F} ; 1 \mathrm{nC}=10^{-9} \mathrm{C}$

1- Two spherical conductors of radii $r_{1}=0.30 \mathrm{~m}$ and $r_{2}=0.60 \mathrm{~m}$ are very far apart. Initially the larger sphere is uncharged and the electric field at the surface of smaller sphere is $1.8 \times 10^{3} \mathrm{~N} / \mathrm{C}$. If the spheres are then connected by a very long thin conducting wire, the final charge (in $n C$ ) on the larger sphere is:
a) 54
b) 12
c) 6.0
d) 36 .
e) 15

2- The electric field in a region of space is given by $\bar{E}(V / m)=-6.0 * 10^{2} \cdot x(m) \cdot \hat{i}$. If points $A$ and B have locations $\bar{r}_{A}(m)=2.0 \hat{i}$ and $\vec{r}_{B}(m)=3.0 \hat{i}+2.0 \bar{j}$, the potential difference $V_{B}-V_{A}$ (i) V) is:
a) $6.0 \times 10^{2} \mathrm{~V}$
b) $6.3 \times 10^{3}$
c) zero
d) $1.5 \times 10^{3}$
e) $3.0 \times 10^{3}$

3- If $q_{1}=q_{2}=Q$ and $q_{3}=-Q$ in the charge configuration shown in the figure, the electrostatic potential energy: of this system is:
a) $-\left(k Q^{2}\right) / \sqrt{2} R$
b) $-\left(4 \mathrm{k} \mathrm{Q}^{2}\right) / \sqrt{2} \mathrm{R}$
c) $\left(k Q^{2} / R\right) \cdot(2-1 / \sqrt{2})$
d) zero
e) $\left(k Q^{2} / R\right) \cdot(2+1 / \sqrt{2})$

4- The capacitance of a parallel-plate capacitor is $24 \mu \mathrm{~F}$ with the space between its plates is filled with a material of dielectric constant $\kappa=2.0$. If this dielectric material is being replaced by air and then the separation between the plates is tripled, the final capacitance (in $\mu \mathrm{F}$ ) is:
a) 15
b) 5,0
c) 4.0
d) 12
e) 16
$\therefore$ When a $15-\mu \mathrm{F}$ capacitor is combined with a capacitor of unknown capacitance $C$. the equivalent capacitance of the combination is $5.0 \mu \mathrm{~F}$. The value of C (in $\mu \mathrm{F}$ ) is:
a) 2.5
b) 5.0
c) 8.6
d) 30
e) 7.5

6- If the $5.0-\Omega$ resistor in the circuit shown in the figure shown is dissipating energy at a rate of 20 W , the e.m.f $\varepsilon($ in $V)$ of the battery is:
a) 20
b) 10
c.) 30
d) 40
e) 50



##  <br> 为 <br> (7)

7- A resistor $R$, a battery of e.m.f $\varepsilon$, and a charged capacitor - are connected in series so that the polarity of the capacitor is as shown in the figure. If the magnitude of the potential different across $C$ is $2 \varepsilon$ immediately after the switch S is closed, the current

a) $(4 \varepsilon / R) e^{-t / R C}$
b) $(\varepsilon / R) e^{-1 / R c}$
c) $\varepsilon e^{-1 / R C}$
d) Zero
e) $(3 \varepsilon / R) e^{-t / R C}$

8- Two capacitors having capacitances in air $C_{1}(20 \mu F)$ and $C_{2}(40 \mu F)$ are connected in series. The space region between the plates of $C_{2}$ is thein filled with a dielectric material $(\kappa=1.5)$ while the potential difference across the combination is held constant at 80 V . The final energy (in m.l) stored in $\mathrm{C}_{2}$ is:
a) 48
b) 10
c) 12
d) 51
e) 36

9- In the circuit shown in the figure, the current (in A) through the resistor $R_{3}$ is:
a) 0.50
b) 1.5 m
c) 0.13
d) zero
e) 1.2

10. The capacitors in the circuit shown are initially uncharged. If $\varepsilon=30 \mathrm{~V}$, the final charge (in $\mu \mathrm{C}$ ) on each capacitor after the switch $S$ is closed is:
a) 530
b) 150 ,
ㄷ. c$) 880$
d) 250
e) 360


Answer Table

| No. | A | b | c | d | e | No | a | b | c | d | e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  | 6 |  |  |  |  |  |
| 2 |  |  |  |  |  | 7 |  |  |  |  |  |
| 3 |  |  |  |  |  | 8 |  |  |  |  |  |
| 4 |  |  |  |  |  | 9 |  |  |  |  |  |
| 5 |  |  |  |  |  | 10 |  |  |  |  |  |

Q. $1 \quad r_{1}=0.3 \mathrm{~m}, r_{2}=0.6 \mathrm{~m}, E_{1}=1.8 \times 10^{3} \mathrm{~N} / \mathrm{c}$
 bsest 6

$$
E_{1}=\frac{K Q_{1}}{r_{1}^{2}} \Rightarrow Q_{1}=\frac{E_{1} r_{1}^{2}}{K}=\frac{18 \times 11^{3}(0.3)^{2}}{9 \times 10^{9}}=1 q_{\mathrm{m}}
$$





$$
\begin{equation*}
v_{1}=v_{2} \Rightarrow \frac{k Q_{1}}{r_{1}} \Rightarrow \frac{K Q_{2}}{r_{2}} \Rightarrow \frac{Q_{1}}{Q_{2}}=\frac{r_{1}}{r_{2}} \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
Q_{1}+Q_{2}=18 \mathrm{nc} \tag{2}
\end{equation*}
$$

$$
\Rightarrow \quad \operatorname{frmm}(1) \quad Q_{2}=\frac{r_{2}}{r_{1}} Q_{1}=2 Q_{1}
$$

put in (2) $\Rightarrow Q_{1}+2 Q_{1}^{r_{1}}=18 n c \Rightarrow Q_{1}=6 n c, Q_{2}=12 n c$
Q. $2 \vec{E}=-5 \times 10^{2} \gamma(\hat{i}) \Rightarrow E_{x}=-600 x, \vec{r}_{A}=2 \hat{i}, \vec{r}_{B}=3 \hat{i}+2 \hat{j}$.

$$
\begin{aligned}
& V_{B}-V_{A}=\int_{r_{A}}^{r_{B}} E_{r}=-\int_{x_{A}}^{x_{B}} d x \quad, y \operatorname{sjlik}-x_{x}, j_{y} \quad E_{y} \\
& \left.=+\int_{2}^{3} 600 x d x=600 \frac{x^{2}}{2}\right]_{2}^{3}=300(9-4)=1500 \mathrm{~V} \\
& \text { answers (d) }
\end{aligned}
$$

Q. $3 \quad q_{1}=q_{2}=Q \quad q_{3}=-Q$

$$
\begin{aligned}
& U=U_{k}+U_{3}+U_{23}=K\left[\frac{q_{1} q_{2}}{R}+\frac{q_{1} q_{3}+q_{2} q_{3}}{\sqrt{2 R}}\right] \\
& \left.=k\left[\frac{Q^{2}}{R}-\frac{Q^{2}}{\sqrt{2} R}-\frac{Q^{2}}{R}\right]=-\frac{k Q^{2}}{\sqrt{2} R}\right]
\end{aligned}
$$


Q. 4

$$
\begin{align*}
& C=K C_{0} \Rightarrow C_{0}=\frac{C}{K}=\frac{2 \mu}{2}=12 \mu F \\
& C_{0}=\frac{\epsilon_{A} A}{d} \Rightarrow a s d^{\prime} \rightarrow 3 d \Rightarrow C^{\prime}=\frac{\epsilon_{0} A}{d^{\prime}}=\frac{\epsilon_{0} A}{3 d} \\
& \Rightarrow C^{\prime}=\frac{C_{0}}{3}=4 \mu F \tag{ansmerisc}
\end{align*}
$$

1. 

Q. $5 \quad C_{1}=15 \mu F, C_{2}=C, \quad C_{e q}=5 \mu F$

F'
 :ijlys,

$$
\begin{aligned}
& C_{\text {eq }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \Rightarrow 5 \\
& \Rightarrow 15+C=3 C
\end{aligned}
$$

Q.G $\quad P_{1}=$ sow but $P_{1}=I_{1}^{2} R_{1}$

$$
\begin{aligned}
& \Rightarrow I_{1}=\frac{\varepsilon}{R_{e q}} \Rightarrow R_{e q}=5+\frac{10 * 10}{10+10}=10 \Omega \\
& I_{1}=\frac{\varepsilon}{10} \Rightarrow P_{1}=\left(\frac{\varepsilon}{10}\right)^{2} * 5=20 \\
& \Rightarrow\left(\frac{\varepsilon}{10}\right)^{2}=4 \Rightarrow \varepsilon^{2}=400 \Rightarrow \varepsilon=20 \mathrm{VoHs}
\end{aligned}
$$


0.7



$$
i=i e^{-t / R C}=\frac{3 \varepsilon}{R} e^{-t / R C}
$$




Q. $8 \quad C_{1}=20 \mu F, C_{2}=40 \mu F, \quad k_{2}=1.5 \mathrm{~V}, V=80 \mathrm{~V}$

$$
c_{2}^{\prime}=k_{0} c_{2}=15+40=60 \mu F
$$

$\Rightarrow q=c^{\prime} v=15 \times 80=1200 \mu c$ in $c_{i}^{\prime}$, the enem stref is $U_{2}^{\prime}=\frac{1}{2} \frac{q^{2}}{C^{2}}=\frac{1}{2} \frac{\left(1200 * 10^{-6}\right)^{2}}{60 \times 10^{-6}}=12 \mathrm{~mJ}$







 ( 6
-



$$
\left.\begin{array}{l}
\text { (I) }-6 i_{1}+10-2 i_{4}-6+i_{2}=0 \\
\text { (II) }-4-4 i_{3}-i_{2}+6=0 \\
\text { (J) }-i_{1}+i_{2}-i_{3}=0
\end{array}\right\} \Rightarrow \begin{aligned}
& \left(1,-i_{3}=4\right. \\
& i_{2}+4 i_{3}=2 \\
& i_{3}=i_{1}+i_{2}
\end{aligned}
$$




 $i=\frac{30}{50}=0.6 \mathrm{~A} \Rightarrow V a t=25 \times 0.6=15 V$ $Y$ U $=25 \times 0.6=15 V$
$\Rightarrow q_{1}=C_{1} V_{0}=10+15=150 \mu C \quad$ and $q_{2}=C_{2} V_{0}=10-k+5=150 \mu$ ansere is


General Physics（0302102）
First Semester：99／2000
Date：23／12／2000

Q1：－ACharge－$Q$ is uniformly distributed on a circular arc of statius $R$ and a subtended central angle of $120^{\circ}$ ．With $y=0$ at infinity，the electric potential（in V ）at point P ，the center of curvature of the rod is：
（哏）$=3 \mathrm{Q} / 2 \pi \varepsilon_{0} \mathrm{R}$
B） $3 Q / 2 \pi \varepsilon_{0} R^{2}$
C）$=Q / 4 \pi \varepsilon_{0} R$
D）$-Q / \pi \varepsilon_{0} R$
E）zero
 $1.6 \times 10^{-7} \mathrm{C}$ is：－
$\begin{array}{llll}1 & \cdots(2)-0.12 & \text { B）} 0.37 & \text { C）zero }\end{array}$

Q3：A conducting sphere of radius $\frac{1}{2}=15 \mathrm{~cm}$ ．carries a charge $Q$ ．If $V=0$ at infinity and the potential of the sphere is 1500 V ，the value of $\mathrm{Q}(\mathrm{in} n \mathrm{C})$ is：
A）can no jbée delermined
（1） 3.8
C） 2500
D）zero
E） 25
Q4：A capacitor of capacitance $C$ is connected with a battery of constant e．m．f．If a dielectric slat is slipped completely between the plates of the capacitor while the battery remains connected．Which of the following is correct：
副）Both the capacitance $C$ and the charge $Q_{c}$ of the capacitor will increase
B）Both the charge $Q_{c}$ and potential across capacitor $V_{c}$ will change
C）Only the charge $Q_{c}$ on the capacitor will increase
D）The capacitance $C$ will increase but the charge on the capacitor $Q_{c}$ will decrease by the same amount
E）The capacitance $C$ ，potential $V_{C}$ and charge $Q_{C}$ of the capacitor all remain unchanged
Q5：A spherical drop of mercury（assumed to be conducting）of radius R has a capacitance given by $\mathrm{C}=4 \pi \in$ ， R ．If two such drops combine to form a single large drop，the capacitance or this large drop is：
A）Zero
3） $8.0 \pi \in 0 \mathrm{R}$
C） $5,65 \pi \in O R$
（ ） $4 \pi \in \circ \mathrm{R}$
E） $5.04 \pi \in 0 \mathrm{R}$

Q6：One capacitor is charged until its stored energy is 4.0 J ．A second waged capacitor is then connected to it．If the： charge distributes equally between the two capacitors，the total energy（in J）stored in the capacitors is：
A） 4.0
B） 1.0
（3） 2.0
D）zero
E）can not be determined

Q7：Find the equivalent capacitance（ $\mathrm{f} \cdot \mu \mathrm{F}$ ）between A and B for the combination shown in Figure below．Take $C_{1}=10.0 \mu \mathrm{~F}, \mathrm{C}_{2}=5.00 \mu \mathrm{~F}$ ，and $\mathrm{C}_{3}^{\prime}=4.00 \mu \mathrm{~F}$ ．
A） 19
B） 1.82
C） 7.33
3.16
E） 14.00
（101 102，105）（b lay
077－424590


Q8：＂An unknown resistor of resistance $R$ ．is connected between the terminals of a $3.00-\mathrm{V}$ battery and the power dissipated in the resistor is $P_{1}=0.540$ ．W．If the same resistor is then connected between the terminals of a $1.50-\mathrm{V}$ battery，the power $\mathrm{P}_{2}$（in W）dissipated in the resistor is：
（4） 0.270
B） 0.135
C）zero
D） 0.068
E）$R$ must be given to find $P_{2}$ ．

Q9：With $\mathrm{R}=20.0$ Ohms， $\mathrm{R}_{\mathrm{eq}}^{\prime}$（in Ohms）between A and B in the resistors－configuration shown in Figure below is触 6.67
B）zero
C） 60.0
D） 20.0
E） 13.3


Q10：In Figure below，the section of an electrical circuit $A B$ absorbs 50 W of power when a current $\mathrm{i}=1.0 \mathrm{~A}$ passes through it in the indicated direction．The potential difference $\mathrm{V}_{\wedge}-\mathrm{V}_{\mathrm{B}}$（in V ）

$\Omega, 1 d v=\frac{k d q}{r}=\frac{\lambda y d \theta}{b}$

$$
\begin{aligned}
& V=\int k \lambda d \theta= \\
& V=\frac{-Q k}{-\frac{2}{3} \pi R}\left(\frac{2}{3} \pi-0\right)=-\frac{Q k}{R}=\frac{-Q}{4 \pi E_{0} R}
\end{aligned}
$$

$$
\lambda=\frac{-Q}{\frac{2}{3} \pi R}
$$



$$
\begin{aligned}
d q & =\lambda d s \\
& =\lambda r d \theta
\end{aligned}
$$

$$
\theta_{0}=0 . \quad \theta_{f}=\frac{12 \varphi \pi \pi}{180}=
$$

(C)

$$
\theta_{f}=\frac{2}{3} \pi
$$

"


2
 0ropha4 ${ }^{2}$

$$
\begin{align*}
& U=k\left[\frac{4 q-5 q}{2 d}+\frac{4 q-2 q-2 q}{3 d}+\frac{5 q w-2 q}{d}\right]=\frac{k q^{2}}{d}\left[\frac{20}{2}-\frac{8}{3}-10\right] \\
& U=-\frac{8}{3} \cdot \frac{k q^{2}}{d}=-0.0411 \tag{E}
\end{align*}
$$

0.3

$$
\begin{equation*}
V=\frac{K Q}{R} \Rightarrow Q=\frac{V R}{K}=\frac{1500 \times 0.15}{9 \times 10^{2}}=25 \mathrm{nc} \tag{E}
\end{equation*}
$$

Q.4 a

وروس تقوية في الفيزياء لطفلهد
$P \cdot 5 \quad C=4 \pi \in R_{R} \rightarrow(9)$
(101-102, 105 ) $\qquad$ 077424559

$$
\begin{aligned}
& p=\rho \Rightarrow \frac{m}{v}=\frac{m^{\prime}}{\dot{v}^{\prime}} \Rightarrow \frac{m}{\frac{4}{6} r^{3}}=\frac{2 m}{\frac{4}{3} R^{3}} \Rightarrow R^{3}=2 r^{3} \Rightarrow R=\sqrt[3]{2} p \\
& C=4 \pi \epsilon_{0} \sqrt[3]{2} r=5.04 \pi \epsilon_{0} r
\end{aligned}
$$



$$
\begin{aligned}
& \Rightarrow E=\frac{1}{2} \frac{Q_{1}^{2}}{c_{1}}+\frac{1}{2} \frac{Q_{2}^{2}}{c_{2}}=\frac{1}{2} \frac{\left(Q_{1}\right)^{2}}{C}=\frac{1}{4} \frac{Q^{2}}{C} \\
& E=\frac{1}{4} \frac{Q^{2}}{c}=\frac{1}{2}\left(\frac{1}{2} \frac{Q^{7}}{c}\right)=\frac{1}{2} E_{0}=\frac{1}{2} 44=2 \mathrm{~J}
\end{aligned}
$$

Q.7-C $c_{12}=c_{1}+c_{2}=$ is. $\mu \mathrm{f}$ $60 / 19$


$$
-11-\frac{1}{15}+\frac{1}{4}=\frac{4+45}{80}=\frac{19}{60} \Rightarrow C_{\text {eq }}=\frac{60}{19}=3.16 \mathrm{\mu} \rho
$$

$Q \cdot 8$

$$
\Gamma_{1}=0.54 \mathrm{~W}, U_{1}=3 \mathrm{U} \text {, }
$$ 0

$$
P=I^{2} R \Rightarrow R=\frac{V^{2}}{R}
$$

$$
P_{1}=\frac{V_{1}^{2}}{R}, P_{2}=\frac{V_{2}^{2}}{R}
$$

$$
\frac{P_{1}}{P_{2}}=\frac{v_{1}^{2}}{v_{2}^{2}} \Rightarrow \frac{0.54}{P_{2}}=\frac{(3)^{2}}{(1.5)^{2}} \Rightarrow P_{2}=0.135
$$

0.9

2.10


$$
\begin{array}{ll}
P=I V_{A B} & V_{A B}= \\
50=1 V_{A B} & V_{A}-2 I-\varepsilon=V_{B} \\
& \\
& \text { Positive }
\end{array}
$$

$V_{B-B}=$ so Volt

(101 102, 105) ب 0
$077-422550$


--907achism -

UNIVERSITY OF JORDAN PHYSICS DEPT. 2ND. EXAM.

GENERAL PHYS. 32102

1ST. SEMESTER
1994-1995
TIME: 1 his

Student Number :
Lecturer Name:
CONSIDER: $\mathrm{E}=1.6^{*} 10^{-19} \mathrm{C}$
\& $\quad 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \quad \Theta_{0}=8.85 \times 1 \mathrm{C}$
Q1. For the circuit shown in figure, the amount of charge (in C. ) passes through the ammeter after the switch S is closed is: ( consider the capacitors initially uncharged )
a) 0.006
b) 0.012
c) 0.030
d) 0.036
e) 0.046


Q2. A $100 \mu \mathrm{~F}$ capacitor is charged to 100 V . It is then connected to $400 \mu \mathrm{~F}$ uncharged capacitor.
The energy (in J ) dissipated in the corulecting wires between the capacitors is:
a) 0.8
b) 0.6
c) 0.4
d) 1.2
e) 1.6


Q3. A parallel plate capacitor has a $3.6 \mathrm{~cm}^{2}$ area and 2.4 mm separation.
(101 102,105)
077-424590
Two different dielectric materials of equal size filled the space between the plates as shown in the figure. If the dielectric constants, $\mathrm{k}_{1}=5,4$ and $\mathrm{k}_{2}=4.2$, the equivalent capacitance (in pF ) of the system is:
a) 12.74
b) 6.37
c) 25.50
d) 16.74
e) 16.37


Q4. Suppose you want to store exactly -1 $\mathrm{J} / \mathrm{m}^{3}$-ofeetectic energy in a parallel plate capacitor, the magnitude of the electric field ( in $\mathrm{N} / \mathrm{mr}$ ) is:
a) $4.75 \times 10^{5}$
b) $9.50 \times 10^{5}$
c) $4.75 \times 10^{4}$
d) $9.50 \times 10^{4}$
e) $4.75 \times 10^{3}$

Q5. A wire of conducting material has a rectangular cross section ( $0.5 \times 4 \mathrm{~mm}$ ) and length 10 cm as shown in figure. If the density of free electrons is $6 \times 10^{20}$ electrons $/ \mathrm{m}^{3}$ and the current passing through it is 4.8 mLA , the lime ( in is ) required for a fire e electron

a) 1
b) 2
c) 4
d) 8
e) 16

Q6. The power output of a power station is 500 MW at a potential difference 132 kV . If the resistance of the complete power lines (the cables used to connect the station to houses) is 4 Ohm, the percentage loss of power in the connecting cables is:
a) $23.00 \%$
b) $17.20 \%$
c) $11.47 \%$
d) $4.54 \%$
e) $1.08 \%$

Q7. For the circuit shown in figure, the potential difference.
between point a and point $\mathrm{b}\left(\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$ in Volts is:
a) -10
b) 4
c) 6
d) -6
e) -4


 077-424590


Q8. For the circuit shown, the power (in W) delivered (consumed ) by the 6 V battery is:
a) 6.1
b) 2.4
c) 7.3
d) 3.6
!.
(e) 22.8


Q9. for the circuit shown in figure, the amount of charge (in $\mu \mathrm{C}$ ) on $\mathrm{C}=3 \mu \mathrm{~F}$ when it is completely charged is:
a) 48
b) 24
c) 32
d) 16
e) 12

Q10. For the circuit shown below, if the capacitance is intrially charged by a 10 . V source, then the switch " S " is closed at $\mathrm{t}=0$, the time (in $S$ ) required to discharge the capacitance to 3.66 V is:
a) 1.6
b) 1.2
c) $0.4^{+}$
d) 0.8
e) 0.6



الهْ
077-424590

| Q/A | a | b | c | d | e | $\mathrm{C} / \mathrm{A}$ | a | b | c | d | e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  | 6 |  |  |  |  |  |
| 2 |  |  |  |  |  | 7 |  |  |  |  |  |
| 3 |  |  |  |  |  | 8 |  |  |  |  |  |
| 4 |  |  |  |  |  | 9 |  |  |  |  |  |
| 5 |  |  |  |  |  | 10 |  |  |  |  |  |

2．
为
الهكدهية والطب（102，102）
C． 1


$$
400 \frac{I}{L} \frac{I}{G} 75 \mu \mathrm{H}
$$

2.2

100 Mf

$$
E_{i}=\frac{1}{2} C_{1} V^{2}=\frac{1}{2}+100 x^{-6}+(100)^{2}
$$

$$
=0.5 \mathrm{~J} \quad \text { eneryloss }=0.5-0.1=0.4
$$

$B$

$A=3.6 \mathrm{~cm}^{2} \quad d=2.4 \mathrm{~mm}, k_{1}=5.4$ $k_{2}=4.2$

$$
C_{e q}=C_{1}+C_{2}
$$

$$
c_{e y}=\frac{k_{1} \epsilon_{4}(A / 2)}{d}+\frac{k_{2} \epsilon_{0}(A / 2)}{d l_{2}}
$$

$$
C_{e f}=\frac{\epsilon_{0} A}{2 d}\left(k_{1}+k_{2}\right)=6,37 P f
$$

2
（101 102，10．5）（0）
2.4

Q． 5

$$
\begin{aligned}
& \text { no. of election }=n=6 \text { kk } 10 \text { 米 Volume }=6 * 10^{20} \text { *0.5外 } 4 * 10^{-6} 0.1=12 *^{10} \\
& I=\frac{\Delta Q}{A t} \Rightarrow \Delta t=\frac{\Delta Q}{I}=\frac{1.2710^{14} 16 * 10^{-19}}{4.8+10^{-3}}=0.4 * 10^{-2}=4 * 10^{-3}=4 \mathrm{~ms}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{l l}{\text { Volume }}=\frac{\sum^{\prime} C V^{2}}{d A}=\frac{\frac{1}{2} \frac{E_{0} A(E \cdot d)^{2}}{d}}{d A}=\frac{1}{2} \frac{E_{0} A^{2} E^{2} \alpha^{2}}{A^{\prime} d^{2}} \\
& \begin{aligned}
\frac{U}{V_{0} u}=\frac{1}{2} \in 0 E^{2}=1 \Rightarrow E=\sqrt{\frac{2}{\epsilon_{0}}} & =475 \cdot 10^{3} \cdot \frac{N}{C} \\
& =4.75410 \mathrm{C}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 077-424590 } \\
& \text { 景 } C=C V \\
& \frac{1}{4}=100 * 75 \% 10^{-6} \\
& \begin{aligned}
\frac{1}{3} & =100 * 75 * 10^{6} \\
\frac{3}{3}+7 & =0.03 \text { Coulcinds. }
\end{aligned} \\
& \text { - }
\end{aligned}
$$

.6
$6 \quad P=500$ 和 $6 \mathrm{~W} \quad \mathrm{~V}=132410 \mathrm{~V}$ $R=4 \pi$

$$
I=\frac{P}{1}=\frac{500910^{6}}{132710^{3}}=3.79410^{3} \mathrm{Amp}
$$

$$
P=I^{2} R=\left(-9{ }^{2} x^{\prime}(3.79 * 10)^{2} * 4=574 * 10^{6} 0\right.
$$

$$
\operatorname{Perchen}=\frac{57}{500} \times 100 \%=11.5^{0} / 0
$$

Q.7. $v_{a}+10-Y=V_{b} \Rightarrow V_{a}-V_{b}=-6$ vot
2.8
22.8
$20: 9$

$$
\theta=24 \mu \mathrm{C}
$$

 Hume.



المْ 077-4245\%
$\qquad$

University of Jordan
Faculty of Science Physics Department

General Physics-2
(0302102)

First Exam

Second Sem.99/2000
Time: 4:00-5:15
Date: $20 / 3 / 2000$

إلر
إلر多

## Constants:

Coulomb constant $\mathrm{k}=9.0 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$
, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg} \quad, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$

1- In the figure shown the point charges $Q=30 \mu \mathrm{C}, \mathrm{q}=5.0 \mu \mathrm{C}$; and $\mathrm{d}=30 \mathrm{~cm}$.


The magnitude of the electrostatic force on $q$ in (N) is:
a) 15
b) 23
c) zero
d) 7.5
e) 38

2- In the rectangular figure shown $\mathrm{a}=60 \mathrm{~cm}, \mathrm{~b}=80 \mathrm{~cm}$; and the point charges $Q=-4.0 \mathrm{nC}$, and $q=+1.5 \mathrm{nC}$.
The magnitude of the electric field at point P in ( $\mathrm{N} / \mathrm{C}$ ) is:

a) 68
b) 72
c) 77
d) 82
e) 120

3- A charge of 80 nC is uniformly distributed along the $x$-axis from $x=0$ to $x=2.0 \mathrm{~m}$. The magnitude of the electric field in (N/C) at the point $x=8.0 \mathrm{~m}$ is:
a) 30
b) 15
c) 48
d) 90
e) 60

4- Two point charges $q_{1}=+1.6 \mathrm{nC}$ and $q_{2}=-1.6 \mathrm{nC}$ are placed at $\mathrm{x}=0$, and $\mathrm{x}=60 \mathrm{~cm}$ respectively. The magnitude of the electric field in (N/C) on the $y$-axis at $y=80 \mathrm{~cm}$ is:
a) 14
b) 35
c) 27
d) 12
e) 37

5- A charge of uniform density of $3.5 \mathrm{nC} / \mathrm{m}$ is distributed along a circular arc as shown. The magnitude of the electric field in (N/C) at point $\ddot{P}$ is :
a) 76.5
b) zero
c) 126.0
d) 31.5
e) 63.0

6-A solid spherical conductor has a radius of 15 cm . The electric field 30 cm from the center of this sphere has a magnitude of $800 \mathrm{~N} / \mathrm{C}$. The surface charge density in $\left(\mathrm{C} / \mathrm{m}^{2}\right)$ on the sphere is:
a) $7.1 \times 10^{-9}$
b) $1.0 \times 10^{-8}$
c) $1.4 \times 10^{-8}$
d) $2.8 \times 10^{-8}$
e) $1.1 \times 10^{-7}$

7- Ar electron enters a region of uniform electric field of magnitude $50 \mathrm{~N} / \mathrm{C}$ with an initial velocity of $40 \mathrm{~km} / \mathrm{s}$ in a direction parallel to that of the electric field. The speed in $(\mathrm{km} / \mathrm{s})$ of the electron 1.5 ns after entering this region is:
a) 18
b) 53
c) 27
d) 62
e) 42

8- A uniform electric field $E=150(\mathrm{kN} / \mathrm{c})$. The flux in $\left(\mathrm{kN} . \mathrm{m}^{2} / \mathrm{C}\right)$. of this. field through a, square of side 20 cm , when the normal to the plane of the square makes an angle of $45^{\prime \prime}$ with the $x-a x i s$, is:
a) 71
b) 0.19
c) 0.28
d) 0.35
e) 0.14

9- An infinitely long cylinder of radius 4.0 cm carries a uniform volume charge density $j=2000$ $\mathrm{nC} / \mathrm{m}^{3}$. The electric field at $i=2.0 \mathrm{~cm}$ in $(\mathrm{kN} / \mathrm{C})$ is:
a) 2.26
b) $0: 11$
c) 0.057
d) $0: 44$
e) 0.23

10 -Point $A$ at $(2 m, 3 m)$ and $B$ at $(5 m ; 7 m)$ are in aregion of uniform electric field $E=(4 i+3 j) N / C$. The potential difference $V_{A}^{i}-V_{B}$ in (volts) is:
ii) 33
b) 27
c) 24
d) 30
3) 11


Answer Table


م



Q. $1 \quad Q=30 \mu \mathrm{C} \quad q=5 \mu \mathrm{~N} \quad \mathrm{~d}=30 \mathrm{~cm} \quad Q \quad 2 \mathrm{~F}$

$$
\begin{aligned}
& F_{1}=\frac{k Q q}{d^{2}}=\frac{2 \times 10^{9} \times 30 \times 5 \times 10^{-12}}{(0.3)^{2}}=1.5 \mathrm{~N} d \\
& F_{2}=\frac{k 2 Q q}{(2 d)^{2}}=\frac{2}{4} \frac{k Q q}{d^{2}}=\frac{1}{2} F_{1}=0.75 \mathrm{~N} \Rightarrow \overrightarrow{F_{2}}=1.5 \hat{i}=-0.75 \hat{i} \mathrm{~N}
\end{aligned}
$$

50. 

$$
\vec{F}=\vec{F}+\vec{F}=1.5 \hat{i}-0.75 i=0.75 \hat{i} \mathrm{~N}
$$

Q.2 $\quad a=60 \mathrm{~cm} \quad b=80 \mathrm{~cm} \quad Q=-4 n c \quad q=1.5 \mathrm{nc}$

$$
\begin{align*}
& E_{1}=\frac{k g}{a^{2}}=\frac{2 \times 10^{9} \times 1.5 * 10^{-9}}{(0.6)^{2}}=37.5 \mathrm{~N} / \mathrm{C} \\
& \Rightarrow \vec{E}_{1}=37.5 j \mathrm{~N} / \mathrm{C} \\
& E_{2}=\frac{k Q}{b^{2}}=\frac{9 * 10^{9} \times 4 \times 10^{-9}}{(0.8)^{2}}=56.25 \mathrm{~N} / \mathrm{C} \\
& \Rightarrow \vec{E}_{2}=56.25(-i) \mathrm{N} / \mathrm{C} . \\
& \Rightarrow|\vec{E}|=\left|\vec{E}, \vec{E}_{2}\right|=|-56 \cdot 25 \hat{2}+37 \cdot \hat{j}|=\sqrt{(56.25)^{2}+(37.5)^{2}}=67.6 \mathrm{~N} / \mathrm{C} \tag{a}
\end{align*}
$$

Q. $3 . \quad q=80 n c \quad l=2 \mathrm{~m}, \quad \lambda=\frac{d q}{d x}=\frac{q}{l}=\frac{80}{2}=40 \mathrm{nc} / \mathrm{m}$.

$$
d E=\frac{k d q}{r^{2}}=\frac{k d d x}{r^{2}}=k d \frac{d x}{(8-x)^{2}}
$$

$E=k \lambda \int_{0}^{2} \frac{d x}{(8-x)^{2}}$
$E=k \lambda \int_{8}^{6} \frac{-d u}{u^{2}}$


$$
=-k \lambda\left[-\frac{1}{4}\right]_{8}^{6}=k \lambda\left(\frac{1}{6}-\frac{1}{8}\right)=\frac{k \lambda}{24}=\frac{0_{2} \times 10^{9} \times 40 \times 10^{-9}}{24}=15 \mathrm{~N} / \mathrm{c}
$$

ans is (B)



.... o

$$
\begin{aligned}
& \vec{E}_{2}=(14.4 \times 0.6) \hat{i}-(14.4 \times 0.8) \hat{\jmath}=8.64 \hat{L}-11.5 \hat{\jmath} \\
\Rightarrow & \overrightarrow{\vec{E}}=\vec{E}_{1}+\vec{E}=8.64 \hat{\mathbf{E}}+10.98 \hat{\jmath} \Rightarrow|E|=\sqrt{195.2}=14 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

$$
\because \square \text { 真 }
$$

䍜ctet $\Rightarrow$ $\square$

$$
\left|\overrightarrow{E_{1}}\right|=22.5 \mathrm{~N} / \mathrm{C} \quad,\left|\vec{E}_{2}\right|=14.4 \mathrm{~N} / \mathrm{C}
$$

using cosines' lav:

$$
|\vec{E}|=\sqrt{\left|\vec{E}_{n}\right|^{2}+|\overrightarrow{\vec{E}}|^{2}+2\left|\vec{E}_{1} \| \vec{E}_{2}\right| \cos x}
$$

with the identity:

$$
\begin{aligned}
& \cos \alpha=\cos (90+\theta)=-\sin \theta=-0.8 \\
& |\vec{E}|=\sqrt{(22.5)^{2}+(1.4)^{2}+2(22.5)(14.4)(-0.8)}=\sqrt{195.2} \simeq 14 \mathrm{~N} / \mathrm{C} .
\end{aligned}
$$

$\qquad$
Q. 5 Evection on the question sheet $R=0.5 \mathrm{~m} . \quad \lambda=3.5 \mathrm{nc} / \mathrm{m}$

$$
\lambda=\frac{d q}{d l}=\frac{q}{l}=3.5 \mathrm{nc} / \mathrm{m} .
$$

due to symmetry Ey component vanishes. so.

$$
d E_{x}=d E \cos \theta=\frac{k d q}{R^{2}} \cos \theta=\frac{k \lambda d l}{R^{2}} \cos \theta
$$

Recoil that

$0 \cdot$

$$
\left.E_{x}=\frac{k \lambda}{R} \int_{-\frac{\pi}{6}}^{\pi / 6} \cos \theta d \theta=\frac{k \lambda}{R} \sin \theta\right]_{-\pi / 6}^{\pi / 6}=\frac{9 * 10^{9} * 3.5 *\left(0^{-9}\right.}{0.5}\left[\frac{1}{2}-\frac{-1}{2}\right]
$$

So $E=E_{N}=63 \mathrm{~N} / \mathrm{C}$

$$
\begin{aligned}
& \text { Q. } 4 \quad 9=166, \quad 92=-1.6 n c \\
& E_{1}=\frac{9 \times 10^{9} \times 1.6+10^{-9}}{(0.8)^{2}}=22.5 \mathrm{~N} / \mathrm{C} \Rightarrow \vec{E}_{1}=22.5 \mathrm{~N} / \mathrm{c} \hat{\jmath} . \\
& \vec{E}_{1}=\left(E_{2} \cos \theta\right)^{\tilde{p}^{\prime}}+\left(E_{2} \sin \theta\right)(-j) \\
& \text { a with } \cos \theta=0.6-0.6 \\
& \text { but } \\
& \sin \theta=\frac{0.8}{1.0}=0.8 \\
& E_{z}=\frac{2 * 10^{9} \cdot 1 \cdot 6 \times 10^{-9}}{(1.0)^{2}}=14.4 \mathrm{~N} / \mathrm{c} \\
& \text { H }
\end{aligned}
$$


Q. $6 R=15 \mathrm{~cm}, \quad E(\mathrm{r}=30 \mathrm{~cm})=800 \mathrm{~N} / \mathrm{C}$ trad charge is $Q$ here $E=\frac{k Q}{P^{2}} \Rightarrow Q=\frac{E r^{2}}{k}=\frac{800 \times(0.3)^{2}}{9710^{3}}$

$$
\Rightarrow Q=8 n C
$$

this $Q$ is distributed on the surface af the sphere because it is a comdnator, so

$$
\sigma=\frac{Q}{A}=\frac{Q}{4 \pi R^{2}}=\frac{8 * 10^{-9}}{4 \pi *(0.15)^{2}}=2 \cdot 83 * 10^{-8} \mathrm{c} / \mathrm{m}^{2}
$$

ans is (d)
Q.7 $E=5.0 / \mathrm{N}, \quad v_{0}=40 \mathrm{~km} / \mathrm{s} \quad v_{0} / 1 E, \quad t=1.5 \times 10^{-9} \mathrm{~S}$ the frame on the electron is : $\vec{F}=q \vec{E}=-e \vec{E}=m \vec{a}$ so $\rightarrow \vec{a}$ $\vec{a}=\frac{-e}{m} \vec{E} \quad$ which means that the electron should decelente.
now

$$
\begin{align*}
& \vec{v}=\vec{v}_{0}+\vec{a} t \Rightarrow \varphi=40 \times 10^{3}+\left(\frac{-1.6 * 10^{-19}}{\left.9.1 * 10^{-31} * 50\right) * 1.5 \times 10^{-9}}\right. \\
& \Rightarrow v=26.8 * 10^{3} \mathrm{~m} / \mathrm{s}=26.6 / \mathrm{v} / \mathrm{s}=\text { ans is }
\end{align*}
$$

Q. $\mathcal{F} \quad \vec{E}=5 k N / c \hat{i} \quad \phi=? \quad P=20 \mathrm{~cm} ; \theta=45^{\circ}$

$$
\begin{aligned}
\vec{C} & \vec{E}-\vec{A}=E A \cos \theta-E l^{2} \cos \theta \\
& =5 \times 10^{3} \times(0.2)^{2} \times \cos 45=141.4 \mathrm{~N} / \mathrm{C} \\
\alpha & =0 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$


ans is (e)
Q. $9 \quad \hat{R}=4 \mathrm{~cm} \quad \rho=2000 \mathrm{nc} / \mathrm{m}^{3} \quad r=2 \mathrm{~cm}$
using Planer' haw the enclosed change $q^{\prime}$ is that within the internal volume of gaussian surface:
 $q^{\prime}=\rho v^{\prime}-\rho \pi r^{2} l$ so, $\oint E: d A=\frac{q}{\epsilon_{0}} \Rightarrow E \cdot 2 \frac{1}{E} t h=\frac{\rho}{\epsilon_{0}} \cdot 1 r^{2} X \Rightarrow E=\frac{\rho r}{2 \epsilon_{0}}=\frac{2000 * 10 \times 0.02}{2 * 8 \cdot 85 * 10^{-12}}$ $\Rightarrow \vec{E}-2 \sigma 0^{3}+A^{A}$
Q. 10

$$
\begin{aligned}
& \vec{r}=\left(x_{A}-x_{B}\right) \hat{i}+\left(y_{A}-y_{B}\right) \hat{\jmath}=-3 \hat{i}-4 \hat{\jmath} \quad \vec{E}=4 \hat{i}+3 \hat{\jmath} \\
& \Longrightarrow \Delta V=V_{A}-V_{B}=-\vec{E} \vec{r}=12+12=24 V_{0} .
\end{aligned}
$$

$\sim 1 \dot{\sim}$ $A$ Ns $B$ ar $r$ ar


$$
A
$$

ans A (c)


Jordan University
Departinent of Physics

Physics 102
Date: 9/4/2005
First Exam . Time: 11.12

Student's Name:
Instructor's Name: $22^{2}, \mathrm{JH}_{2}{ }^{\circ},>$
Note: $\mathrm{k}_{\mathrm{e}}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$
Question 1: In the figure shown, if the force acting on a charge $Q_{3}$ due to the. other two charges $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ is zero, then the ratio $\left(\mathrm{Q}_{1} / \mathrm{Q}_{2}\right)$ is:
(a) $1 / 2$
(b) 21
$1 / 4$
(d) 4
(e) $1 / 8$


## Question 2 and 3:

Two small spheres of equal charges $Q, 3$ gram each, are suspended by a 10 cm long string as shown, if the spheres are in equilibrium when the string makes a $10^{\circ}$ angle with the vertical. (consider $g=10 \mathrm{~m} / \mathrm{s}^{2}$ ).

## 2. The tension in the string (in $10^{-3} \mathrm{~N}$ ) is:

( 30
(b) 25
(c) 17
(d) 45
(e) 56
3. The charge on each sphere ( in nC ) is:
(a) 26
(b) 31
준 6
(d) 125
(e) 150

## Question 4 and 5:

If $Q_{1}=Q_{2}=16 \mu \mathrm{C}, \mathrm{a}=3.0 \mathrm{~m}$ and $b=4.0 \mathrm{~m}$, then
4. Total electric potential at point P (in KV ) is:
(a) 12
(b) 29

(d) 69
-5 . The change in potential energy of a $3 \mu \mathrm{C}$ charge as

it moves from infinity to point P (in mJ ) is:
(a) 252
迫 87
(c) 126
(d) 207
(e) 870

Question 6: A proton (mass $=1.67 \times 10^{-27} \mathrm{~kg}$, charge $=1.60 \times 10^{-19} \mathrm{C}$ ) enters a region of uniform electric field ( $E=250 \mathrm{~N} / \mathrm{C}$ ) with an initial velocity of 40 $\mathrm{km} / \mathrm{s}$ in the same direction as the electric field. The final velocity of the proton after $t=2 \mu \mathrm{~s}$ in the same direction (in $\mathrm{km} / \mathrm{s}$ ) is:
(a) 40
( 88
(c) 64
(d) 48
(e) 96


Question 7: The electric potential (in 1 ) at the center of an arc of radius R having uniform charge distribution $\lambda$ is:
(a) $2 \mathrm{k} \lambda \pi$
(6) Lax $\pi$,
(c) $k \lambda \pi / 6$
(d) $k \lambda \pi / 3$
(e) $1 / 2 \pi / 6 \mathrm{R}$


Question 8: A uniform electric field $2 i+3 j+4 k N / C$ intersects a surface of area $5 \mathrm{~m}^{2}$. Then the electric flux through this area if the surface lies in the xy plane $\left(\mathrm{Nm}^{2} / \mathrm{C}\right)$ is:
造 25
(e) 20
(a) 10
(b) 15
(c) 30

Owestion 9 and 10: A solid, insulating sphere of radius (a) has a uniform charge density $(\rho)$ and a total charge $Q$. Concentric with this sphere is an uncharged, conducting spherical shell whose inner and outer radii are b and c as shown
9. The magnitude of the electric field in the region $r<a$ is:
(a) $\mathrm{k}_{\mathrm{e}} \cdot 1 / \mathrm{I}^{2}$
(b) $k_{e} Q / a^{2}$
(c) $\mathrm{K}_{e} \mathrm{Qr} / \mathrm{a}^{2}$
$\mathrm{keQr}_{\mathrm{e}} / \mathrm{a}^{3}$
(e) zero
10. The magnitude of the electric field in the region $\mathrm{r}>\mathrm{c}$ is:


- $\mathrm{k}_{\mathrm{a}} \mathrm{Q} / \mathrm{T}^{2}$
(b) $k_{e} Q / a^{2}$
(c) $\mathrm{k}_{e} \mathrm{Qr} / \mathrm{a}^{2}$
(d) $\mathrm{KeQr} / \mathrm{a}^{3}$
(e) zero

Duestion 11: A uniform linear charge of $2.0 \mathrm{nC} / \mathrm{m}$ is distributed along the $x$ axis from $x=0$ to $x=3 \mathrm{~m}$. Which of the following integrals is correct for the $y$ component of the electric field at $y=4 \mathrm{~m}$ on the $y$ dxis?
(a) $\int_{0}^{3} \frac{72 d x}{\left(16+x^{2}\right)^{3 / 2}}$
(b) $\int_{0}^{4} \frac{54 d x}{\left(9+x^{2}\right)^{3 / 2}}$
(c) $\int_{0}^{3} \frac{572 d y}{16+y^{2}}$
(d) $\int_{0}^{5} \frac{54 d y}{16+y^{2}}$
(3) $\int_{0}^{7} \frac{54 d y}{9+y^{2}}$



Question 12: The potential in a region is $V(x, y, z)=2 x+3 x^{2} y+4 z$, then the magnitude of the electric field at the point that has coordinates $(4,2,1)$ is:
(3) 108
(b) zero
(c) 18
(d) 59
(e) 69

GOODLUCK

University of Jordan General Physics (0302102) Second Sem.2000/2001
Physics of Dept.
Second Exam:
Bate: 12/5/2001 : The: 70 minutes:....


1- Two spherical conductors of radii $r_{1}=0.30 \mathrm{~m}$ and $r_{2}=1.5 \mathrm{~m}$ are very far apart. Initially the larger sphere is uncharged and the electric field at the surface of smaller sphere is $1.8 \times 10^{3} \mathrm{~N} / \mathrm{C}$. If int: spheres are then connected by a very long thin conducting wire, the lima charge (in nC) un the: larger sphere is:
a) 54
b) 12
c) 6.0
d) 36
e) 15

2- The electric field in a region of space is given by $\vec{E}(V / m)=-6.0 * 10^{2} \cdot x(m) . \ddot{i}$. If points A and B have locations $\vec{r}_{A}(m)=2.0 \hat{i}$ and $\vec{r}_{B}(m)=5.0 \bar{i}+4.0 \bar{j}$, the potential difference $\mathrm{V}_{B}-\mathrm{V}_{A}$ (in V ) is:
a) $6.0 \times 10^{2} \mathrm{~V}$
b) $6.3 \times 10^{33^{3}}$
c) zero
d) $1.5 \times 10^{3}$
e) $3.0 \times 10^{3}$


3- If $q_{1}=2 q_{2}=2 Q$ and $q_{3}=-2 Q$ in the -charge ${ }^{\text {". }}$ configuration shown in tie figure, the electrostatic potential energy : of this system is:
c) $\left(k Q^{2} / R\right) \cdot(2-1 / \sqrt{2})$
d) $-\left(4 \mathrm{KQ}^{2}\right) / \sqrt{\mathrm{x}_{\mathrm{y}} \mathrm{R}} \mathrm{m}^{2}$
e) $\left(k Q^{2} / R\right) \cdot(2+1 / \sqrt{2})$

4- The capacitance of a parallel-plate capacitor is $24 \mu \mathrm{~F}$ with the space between its plates is filled with a material of dielectric constant $k=1.6$. If this dielectric material is being replaced by air and then the separation between the plates is tripled, the final capacitance (in $\mu \mathrm{F}$ ) is: :
a) 5.0
b) 15
c) 4.0
d) 12
e) 16

5- When a $15-\mu \mathrm{F}$ capacitor is combined with a capacitor of unknown capacitance C ., the equivalent capacitance of the combination is $10 \mu \mathrm{~F}$. The value of $\mathrm{C}($ in $\mu \mathrm{F})$ is:
a) 2.5
b) 5.0
c) 30

d) 8.6
e) 7.5
الْ الْ
077-424590

6- If the $5.0-\Omega$ resistor in the circuit shown in the figure shown is dissipating energy at a rate of 45 W , the e.m.f $\varepsilon($ in $V$ ) of the battery is:
a) 20
b) 30
c) 10
d) 40
e) 50


7- A resistor $R$, a battery of em. $f \varepsilon$, and a charged capacitor are connected in series so that the polarity of the capacitor is as shown in the figure. If the magnitude of the potential different across C is $3 \varepsilon$ immediately after the switch $S$ is closed, the current $i(t \geq 0)$ is given by ;
a) Zero
b) $(\varepsilon / R) e^{-t / R c}$
c) $\varepsilon e^{-1 / R C}$
d) $(4 \varepsilon / R) e^{-t / R C}$
e) $(3 \varepsilon / R) e^{-1 / R C}$

(101 102,105)
077-424590


8- Two capacitors having capacitance in air $C_{1}(20 \mu F)$ and $C_{2}(40 \mu F)$ are connected in series. The space region between the plates of $C_{2}$ is then filled with a dielectric material $(k=2.0)$ while the potential difference across the combination is held constant at 80 V . The final energy (in mil) stored in $\mathrm{C}_{2}$ is:
a) 10
b) 48
c) 12
d) 51
e) 36

(101 102,105) ( 077-424590

9- In the circuit shown in the figure, the current (in $A$ ) through the resistor $R_{3}$ is:
a) 0.50
b) 1.5
c) Zero
d) 0.13
e) 1.2
10. The capacitors in the circuit slow are initially-
 uncharged. If $\varepsilon=50 \mathrm{~V}$, the final charge (in $\mu \mathrm{C}$ ) on each capacitor after the switch $S$ is closed is:
a) 530
b) 150
c) 880
d) 360
e) 250
( $\operatorname{wic}(\underset{\sim}{c}$
و
(101 102,105) (
077-424590
Answer Table


B
$5=12015$
2. 1

$$
q_{2}=\frac{E r_{1}^{2}}{\left(1+\frac{r_{1}}{r_{2}}\right)}=15+1 C
$$



C.2

$$
\begin{aligned}
E & =-\operatorname{coox} \hat{\imath} \\
r_{1 A} & =2 \hat{\imath} \\
r_{B} & =5 \hat{\imath}+4 \hat{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \int_{A}^{B} d v=\int-E \cdot d r=-\int_{S}^{077-424590} \underset{E}{E} \cdot(d x \hat{\imath}+d y \hat{\jmath}) \\
& \left.U_{B}-U_{A}=-\left[-600 \int_{2} x d x+0 .\right]=600 \frac{x^{2}}{2}\right]
\end{aligned}
$$

$$
V_{B}-V_{A}=300\left[B^{2}-2^{2}\right]=6.3 * 10
$$

C.3

25


المهان 077-424590

$$
C=\frac{k Q^{2}}{R}\left[7^{2}-x+\frac{-4}{\sqrt{2}}\right]=-\frac{4 k Q^{2}}{\sqrt{2} R}
$$

8.4

$$
\begin{aligned}
& C=24 \mu f \\
& j k=1.6
\end{aligned} \rightarrow\left[\begin{array}{l}
a_{i r} \\
C_{0}
\end{array} \rightarrow \sqrt{\text { Sepatetiop }}\right.
$$

$$
C=K C_{0} \ni C_{0}=\frac{24}{1.6}=15 \mu f g \quad C_{0}=\frac{\epsilon_{0} A}{d}, C_{A}=\frac{\epsilon_{0} A}{3 d}=\frac{1}{3}\left(\frac{\epsilon_{0} A}{d}\right)
$$

$$
\dot{C} f=\frac{1}{3} C_{0}=5 \cdot \mu f
$$



$$
C_{j}=10 \mu \rho
$$

$$
\frac{1}{c_{2}}=\frac{1}{10}-\frac{1}{15} \Rightarrow c_{2}=30 \text { m1 }
$$

$$
\begin{aligned}
& r=0.3 \\
& r_{2}=1.5 \quad E=1.8 * 10^{3} \\
& E \text { ( } E=\frac{k q}{r_{1}^{2}} \Rightarrow q^{2}=\frac{E r_{1}^{2}}{k} \\
& v_{1}=v_{2} \Rightarrow \frac{k q_{1}}{r_{1}}=\frac{k q_{2}}{r_{2}} \Rightarrow q_{1}=\frac{r_{1} q_{2}}{r_{2}} \\
& q=q_{1}+q_{2} \\
& \frac{F_{1}}{k}=\frac{r_{1} q_{2}}{r_{2}}+q_{2}=\left(\frac{r_{1}}{r_{2}}+1\right) q_{2}
\end{aligned}
$$


2今A

2.6

$$
\sum \frac{\square}{\pi} 10\left\{\begin{array}{l}
10 \\
\Rightarrow \frac{1}{10}+\frac{1}{10}=\frac{1}{5}
\end{array}\right.
$$

$$
\Rightarrow \quad \varepsilon \frac{\varepsilon}{\frac{1}{L^{2}}} 5
$$

$$
P=I^{2} R
$$

$$
4 S=I^{2}+5 \Rightarrow I=3 A
$$

$\qquad$
(2.7

$$
\begin{aligned}
& I=\frac{U_{0}}{R} e^{-t / R C} \\
& I=\frac{4 \varepsilon}{R} e^{-H / R C}
\end{aligned}
$$

(101 102,105)

$$
\begin{gathered}
C_{2} F=k C_{2}=29.40=80 \mathrm{Mf} \\
C^{C} \mathrm{H} \\
{[80}
\end{gathered} \quad \begin{gathered}
C=16 \mathrm{mf} \\
Z=1280 \mathrm{MC}
\end{gathered}
$$

Q. 8


$$
q_{1} q_{2}=q=1280 \mathrm{mc}
$$


 OFOTREQ
2.9

$$
I_{1}=I_{2}+I_{3}
$$



$$
\begin{array}{r}
10-6-6 \cdot I_{1}-2 I_{1}-I_{2}=0 \\
4-8 I_{1}-I_{2}=0 \\
-4+6-4 I_{3}-I_{2}=0
\end{array}
$$


a $I_{2}-L I_{3}+2=0$
(3) $x-2$ (107102,105) الم

$$
-11 I_{2-t 0}=0 \Rightarrow I_{2}=0
$$ 077-424590



$$
V_{a b}=(10+15) I_{1}=25 v_{o l t} \Rightarrow V_{c}=25 V_{0}(t \Rightarrow E=c U
$$

$$
Q=2 S \sim 10=2 S O C
$$


$(101102,105)$ (bly


Q6- If $C=45 \mu F$, determine the equivalent capacitance (in $\mu \mathrm{F}$ ) for the combination shown in the figure.
a) 36
b) 32
c) 34


Q7:- In the circuit showmen, if the current $I=1.2 \mathrm{~A}$, What is the magnitude of the current in the resistor R?
a) 5.6 A
b) 3.6 A
c) 2.6 A



Q8:- If a $3 \mu \mathrm{~F}$ capacief is charged 1040 V and a 5 HF capacitor charged 1018 V are connected to eatrolber, with the positive plate of each connected to the negative plate to the other. What is the final charge (in $\mu \mathrm{C}$ ) on the 3 rf F capacitor.
(T)
b) 15
c) 13
d) 26

Q9:-A capacitor in a single -loop inc circuit, is charged to $85 \%$ of its final potential difference in 2.55 . What is the time combatant for this circuit?
a) 1.5 s
3.3
c) 1.7 s
d) 1.9 s

Q10. The figure below shows a parallel-plate capacitor of plate area $A=100 \mathrm{~cm}^{2}$ and plate separation d $=1 \mathrm{~cm}$. A battery with voltage $V_{O}=75 \mathrm{~V}$ is connected to the plates .The battery is then disconnected and a dielectric slab of thickness $b=0.5$ chin and dielectric constant $k=3$ is inserted between the plates as shown. What is the potential difference (in $V$ )between the plates alter the slab has been introduced.

Q. $1 \quad \rho=1.64 \div 10^{-8} \Omega \cdot \mathrm{~m}, \ell=8 \mathrm{~m}, \quad V=100 \mathrm{~V}$
$E=\frac{V}{l}=\frac{100}{8}=12.5 \mathrm{~V} / \mathrm{m}$, using micinsopic dhm's low: $E=\rho J$

$$
=F=F=\frac{12 \cdot 5}{1.69 \times 10^{-8}}=7.39 \times 10^{8}=A / \mathrm{m}^{2}, \quad \text { anis is a }
$$

Q.2 $C_{1}=15, \mathrm{~F}, \quad C_{2}=10 \mu F, \quad C_{3}=20 \mu F, \quad V_{0}=18 \mathrm{~V}$

$$
\begin{aligned}
& U=\frac{1}{2} C V^{2} \\
& V_{0}=\frac{q}{C_{1}}+\frac{q}{C_{c q}} \Rightarrow 10+20=30 \mu F \\
&
\end{aligned}
$$



$$
q_{2}+q_{3}=180 \text { sic. bur } v_{2}=V_{3} \Rightarrow \frac{q_{2}}{c_{2}}=\frac{q_{3}}{c_{3}} \Rightarrow q_{3}=\frac{c_{3}}{c_{2}} q_{2}
$$

Fubratratx in $\quad q_{2}+q_{3}=180 p \mathrm{c} \Rightarrow$

$$
\begin{aligned}
& q+\frac{C_{3}}{C_{2}}=180 \times 10^{-6} \Rightarrow q\left(1+\frac{20}{16}\right)=180 \times 10^{-6} \Rightarrow q=6 \times 10^{-5} \mathrm{C} \\
\Rightarrow & U=\frac{1}{2} C v^{2}=\frac{q^{2}}{2}=\frac{1}{2} \frac{\left(6 \times 10^{-5}\right)^{2}}{10^{-5}}=1.8 \times 10^{-4} \mathrm{~J}=0.18 \mathrm{~m} .
\end{aligned}
$$

ans. is (d)
Q. $3 \quad i=2 m A, Q=50 \mu c$

$$
V_{A}+15-\frac{Q}{C}+15 \times 10^{3} i=V_{B}
$$

so

$$
V_{B}-V_{A}=\frac{50 \times 10^{-6}}{2 \times 10^{-6}}-15-15 \times 10^{3} \times 2 \times 10^{-3}=25-15-30=-20 \mathrm{~V}
$$

ansis (d)
Q. 4

$$
\begin{aligned}
& 2.4=0.2 m, A=0.4 \times 10^{-4} \mathrm{~m}^{2}, i=80 A, n=8 \times 10^{28 / m^{3}} \\
& \quad i=n e v A=n e \frac{l}{t} A \Rightarrow t=\frac{n E l}{i}=\frac{8 \times 10^{28} \times 1.6 \times 10^{-19} \pm 0.2 \times 0.4 \times 10^{-4}}{80}
\end{aligned}
$$

$\cdots$

$$
t=1280 \mathrm{sec}=213 \mathrm{~min}
$$

amsis b)
Q. $5 \quad R=20 \Omega, \Delta t=10^{\text {inin }}=6050 \mathrm{c}, V=30 \mathrm{~V}, \quad e=1.6 \times 10^{-19} \mathrm{C}$

$$
\begin{aligned}
& i=\frac{\Delta q}{\Delta t}=\frac{V}{R} \Rightarrow \Delta q=\frac{V \Delta t}{R^{2}}=\frac{30 \times 500}{20}=900 C \\
& n=\frac{\Delta q}{2}=\frac{900}{16 \% 10}=5.5 \times 10^{21} \text { efcotrans. }
\end{aligned}
$$

沙
Q． $6=45 \mu$ ，equivialut copacitance（series－parllel－serei）
1．Sencs（right brameh $2 c$ \＆ $2 c$ ）：


$$
\begin{aligned}
& -30-10 i_{1}-20 i_{3}+50=0 \\
& \Rightarrow i_{1}=-0.4 \mathrm{~A} \Rightarrow \text { from 3nnotion } \mathrm{A}: \\
& i_{1}+i_{2}=i_{3} \Rightarrow i_{2}=1.2-(-0.4)=16 \mathrm{~A}
\end{aligned}
$$

ansis（d）
 0，T 号（ $\leq$



$$
\begin{aligned}
& C_{1}=3 \mu \mathrm{~F}, V_{1}=40 \mathrm{~V} \Rightarrow \mathrm{~V}_{1}=C_{1} V_{1}=120 \mu \mathrm{C} \\
& {C_{2}}_{2}=5 \mu \mathrm{~F}, V_{2}=18 \mathrm{~V} \Rightarrow \mathrm{q}_{2}=C_{2} V_{2}=90 \mu \mathrm{C}
\end{aligned}
$$

乙抎＂

 －An ono $\therefore$ Nis

$$
q_{1}+q_{2}=30 \mu c D, v_{1}=v_{2} \Rightarrow \frac{q_{1}}{c_{1}}=\frac{q_{2}}{c_{2}} \Rightarrow q_{2}=\frac{c_{2}}{c_{1}} q
$$

substituting in（1）：

Pins：

$$
q_{1}+\frac{c_{1}}{c_{1}} q_{1}=30, \mu c \Rightarrow q\left(1+\frac{5}{3}\right)=30 \Rightarrow q 1=1125 \mu c
$$

so $q=30-11.25-1875 \mu c$ and

$$
v=\frac{q_{1}}{c_{1}}=\frac{11.25}{3}=3.75 v \quad \text { and } \quad v_{2}=\frac{q_{2}}{c_{2}}-\frac{1875}{5}=375 v
$$ Rrilitr our our

Q.9. $\quad V=0.85 V_{0}, t=2.5$ ser
but: $V=V_{0}\left(1-e^{-t / R C}\right) \Rightarrow \frac{V}{V_{0}}=1-e^{-t / R C}$
Q. 10

$$
\begin{aligned}
& A=100 \mathrm{~cm}^{2}=10^{-2} m^{2}, \quad d=10^{-2} \mathrm{~m}, v_{0}=75 \mathrm{~V}, b=5 \times 10^{-3} \mathrm{~m}, \\
& k^{\prime}=3 .
\end{aligned}
$$

We initial charge is $q_{0}=C_{0}=\frac{E A V_{0}=\frac{8.85 * 10^{-12} * 10^{-2}}{10^{-2}} \times 75}{d}$

$$
\Rightarrow a_{0}=6.64 * 10^{-10} \mathrm{C}
$$



$$
q=C V \Rightarrow Q_{0}=C^{\prime} V^{\prime} \Rightarrow V^{\prime}=\frac{C_{g}}{C} V_{0} \text { writh } C_{b}=\frac{G}{d}
$$

but these can be considerel tova copaciters inseries cinnection sou

Another numorical soln:

$$
C_{0} V_{0}=C^{\prime} V^{\prime} \Rightarrow C_{0}=\frac{E_{0} A}{\delta_{-11}}=\frac{5.85 * 10^{-12} \times 10^{-2}}{10^{-2}}=8.85 * 10^{-12} \mathrm{~F}
$$

$$
c_{1}=\frac{k \epsilon_{a} A}{b}=\cdots=5.31 \times 10^{-11} F \quad, C_{2}=\frac{E_{g}}{-b}=\cdots=1.77 \times 10^{-11} F
$$

sa, $c^{\prime}-\frac{c_{1} c_{2}}{c_{1}+c_{2}}=\frac{5.31 \times 10^{-11} \times 1 \cdot 77 \times 10^{-11}}{(5.31+1.77) * 10^{11}}=1.32 \times 10^{-11} \mathrm{~F}$
Rence $V^{\prime}=\frac{8.85 * 10^{-12}}{1.32 * 10^{-11}} \times 75=50 \mathrm{~V}$

$$
\begin{aligned}
& \Rightarrow 0^{\prime}: \frac{k \in A}{-b\left(a^{\prime}-b\right)\left(\frac{k(d-b)+b}{-b(t+b)}\right)}=\frac{k \in A}{k(d-b)+b} \quad \Rightarrow
\end{aligned}
$$

$\therefore$ If $C_{1}=20 \mu \mathrm{~F}, C_{2}=10 \mu \mathrm{~F}, \mathrm{C}_{3}=30 \mathrm{\mu} \mathrm{~F}$, and $\bar{v}_{0}=7.8 \mathrm{v}$, then the charge (in meth . stored by CI is:
a. 0.37 ;
b, 0.24 ;
c. 0.32 ;
d. 0.40;
e. 0.50 .


2 A 15 , $P$ capacitor is charged to 40 V and then connected across am initially uncharged 25 w Ficapacitor. The final potential difference (ir V) across the 25 н F capacitor is:
a. 12;
b. 18 ;
c 15 ;
d. 21;
e. 24.
3. A light bulb is rated at 30 W when operated at 120 V . The amount of charge (in C) that passes through this bulb in 1.0 min is:
a. 17i
p. 15;
d. 13;
$e-60$.
I. The maximum power (in wi) that can be generated from an I8 $V$ emf us any combination of a 6.0 s resistor and a 9.0 s resistor is:
a. 54 \%
b. 717;
C. 29 ;
ส.. 80 ;
e. 22 .

E AS 50 potential difference is maintained across a 2.0 m length win Fiat has a diameter of 0.50 mu. If the wire is made of material the line a resistivity of $7: 0 \times 10-8$ am, then the current (in $A$ ) in the wire is:
a. 70 ;
b. 65 ;
c. 61;
d. 58 ;
e. 280 .
6. Amesistor of unknown resistance and a 15 n resistor are connected across a 20 V emf in such aby that a 2.0 A is observed in the em! The value of the unborn resistance (in al is:
a. 75;
b. 12;
C. 7.5
d. $30 ;$
e. 5.0
$\therefore 1=30 \mathrm{ma}$, then the magnitude and sense direction of the current in the 500 s
resjecor are:
a a mA left to might;
b EG int riglit to left;
$\therefore$ a 3 mn leEt to right;
A. 4 Bm right to leEt;

$\because$ 衫解 left to right.
Lutist



列
Q.1 $C_{1}=20 \mu F, \quad C_{2}=10 \mu F, C_{3}=30, \mathrm{~F}, \quad, \quad V_{0}=18 \mathrm{~V}$

$$
C_{\text {parmbl }}=C_{4}+C_{3}=10+30=40 \mu F \Rightarrow C_{e q}=\frac{40 \pm 20}{40+20}=133 \mu \mathrm{~F} \text {. }
$$

$q=V_{0} C_{q}=18 \times 13.3 * 10^{-6}=24 \mu c$, this charme is on $C_{1}$ and is distributed on bath $C_{2}$ ound $C_{2}$. cuss is (b)
Q. 2

$$
C_{1}=15 \mu \mathrm{~F}
$$

$$
V=40 \mathrm{~V}
$$

$$
C_{2}=25 \mu F \Rightarrow q_{0}=C_{1} V=15 \times 40=600 \mu c
$$



$$
\begin{aligned}
& v_{01}=\frac{q_{1}}{c_{1}}=\frac{q_{2}}{c_{2}} \text { with } q_{1}+q_{2}=q_{0} \text { so } \frac{q_{1}}{c_{1}}=\frac{q_{0}-q_{1}}{c_{2}} \Rightarrow \\
& c_{7} q_{1}=c_{1}\left\{q_{0}-q_{1}\right\} \Rightarrow q_{1}=\frac{c_{1} q_{0}}{c_{1}+c_{2}} \Rightarrow q_{1}=\frac{19: 600}{15+c_{2}}=225 c \Rightarrow v_{1}=\frac{q_{1}}{c_{1}}=15 \mathrm{~V}
\end{aligned}
$$

ansis (C)
Q. $3 \quad P=30 W \quad V=120 \mathrm{~V} \quad \Delta t=1$ min $=60$ rec $\Rightarrow \quad i=\frac{P}{V}=\frac{30}{120}=\frac{1}{4} \mathrm{~A}$

$$
\begin{equation*}
s o \Delta q=i \Delta t=0.25 * 60=15 C \tag{b}
\end{equation*}
$$

Q.4, $\varepsilon=18, \quad R=6 \Omega, R=9 \Omega, \quad P=\frac{V^{2}}{R}$ as Ris less, Pislenger.

$$
\text { Now, with } R_{\text {prute }}=\frac{P_{1} R_{2}}{R_{1}+R_{2}}=\frac{6 * 9}{6+9}=3.6 \Omega \quad P_{2}=\frac{(18)^{2}}{3 \cdot 6}=90 \text { W.tt }
$$

$\qquad$
Q.5 $V=50 \mathrm{~V}, f=2 \mathrm{~m}, \quad d=0.5 \mathrm{~mm}, P=7 * 10^{-8} \Omega \cdot m, R=\frac{P l}{A}=\frac{7 \times 10^{-8}, 2}{\pi\left(0.25 \times 10^{-7}\right)^{2}}$
so $B=0.71 \Omega$ and $i=\frac{V}{R}=\frac{50}{0.71}=70.1 \mathrm{~A}$ ans. is (8)
Q. $6 \quad R_{1}=?, R_{2}=152 \varepsilon=20 \mathrm{~V}, i=2 A, R_{s q}=\frac{V}{i}=\frac{20}{2}=10 \Omega$ this is less than $R_{2}$ which means comection is in pardet since:
 $\frac{1}{R_{1}}+\frac{1}{15}=\frac{1}{10} \Rightarrow \frac{1}{R_{1}}=\frac{10}{10}-\frac{1}{15}=\frac{3-2}{30}=\frac{1}{30} \Rightarrow R_{1}=30 \Omega$ ansis. (d)


$$
\begin{aligned}
& 10-400 i_{1}+30-500 i_{2}=0 \\
& \Rightarrow 500 i_{2}=30+10-400 * 30 * 10^{-3} \Rightarrow i_{2}=\frac{28}{200}=0.056 A \text { (Nft+ight)}
\end{aligned}
$$


2064048
mater：
（anarnaro
Y $\because$ 㞓 I $=1.5$ in the circuit segment
then the potential difference $V_{B}-V_{A}$
（in V）is：
a．+22 ；
$1 p-22 ;$
c．$-38 ;$
d．$+38_{i}$ e．$+2 . v$

9．How many time－constants must elapse if an initially uncharged capacitor is to reach 80 者 of its final potential difference？ a． 2.2 ；
b． 1.9 i
C． 1.6 ；
d． 3.0 ；
e． 5.0 ．

0 If $R=22$－$x_{4}$ then the equivalent resistance （in s）between points a and $b$ is：
a． 20 ；
b．10́；
c． $24 ;$
d． 28 ；
e． 6.0

##  <br> 2－20 

1．If $C=45$ if then the equivalent capacitance（in ，$F$ ）for the combination
 shown is：
a：28；
b． 36 ；
C． 52 ；
d． 44 ；


A parallel plate capacitor of separation 5.0 m is initially charged to a potential of 600 V ，then isolated．The region between the plates is then filled with a dielectric of $K_{: ~}=1,5$ a The induced surface charge
density $\left(\operatorname{in} \mathrm{c} / \mathrm{m}^{2}\right)$ is：
a． $1.7 \times 10-7$ ；
b． $1.7 \times 10-10.3 \because$
c． $3.4 \times 10-7$
d． $3.4 \times 10-8$ ；
e． $8.5 \times 10^{-7}$

## ET OT QUESTIONS

Coth
（6）

##  <br> ANSWERTABEE



Q. $2 \quad V=-0.80 V_{0} \Rightarrow \quad 0.8 V_{0}=V_{0}(1-$

$$
\Rightarrow \ln 0.2=-t=t=1.619
$$

Q. $10 \quad R=12 \Omega$



r.a....
 tabe $V_{a b}=i_{1} R+i_{4}(2 R)$ (1) atad $\quad V_{a_{b}}=i p+i_{3}(0)+i_{5} R$ (2)
Q. 11.



$$
Q \cdot 12 \quad d=5 \mathrm{~mm}=5 \times 10^{-3} \quad V=600 V, \quad k=5
$$

$$
E=E_{0}-E^{\prime} \Rightarrow E^{\prime}=E_{0}-E^{\prime} \Rightarrow\left(E=\frac{E_{0}}{k}\right)
$$

$$
\Rightarrow E^{\prime}=E_{0}-\frac{E_{0}}{K} \quad \text { but } E=\frac{\tilde{\sigma}}{\varepsilon_{0}} \text { solo }
$$

$E^{\prime}=\sigma_{c}\left(1-\frac{1}{i}\right)$ and with $E=V=\sigma$.
$\left.\Rightarrow \sigma=\frac{E_{\sigma} V}{d}=\frac{8 \cdot 8.5 * 10^{-12} \times 500}{5 * 10^{-3}}=1.06 \times 10^{-6} 0^{6} 4\right)^{2}$
sa

$$
\begin{equation*}
\hat{\sigma}^{\prime}=\tilde{\sigma}\left(1-\frac{1}{k}\right)=1.06+10^{-6}\left(1-\frac{1}{5}\right)=8.5 * 10^{-7} \mathrm{Cm}^{2} \text { ans is (e) } \tag{e}
\end{equation*}
$$

$\qquad$
$6764 \times 45$

$$
\begin{aligned}
& C=45, \mu \mathrm{~F} \\
& \text { 1. } \operatorname{sen}=C_{1}=\frac{3 c+5 c}{3 c+5 c}=\frac{15}{8}=1.67 c \\
& \text { opotheniand }
\end{aligned}
$$

$$
\begin{align*}
& \text { 3. Series } \Rightarrow C_{\text {eq }}=\frac{1 C * 3.87 C}{1 C+3.87 C}=0.79 C=0.79 \times 45=36 \mu F \tag{b}
\end{align*}
$$

$$
\begin{align*}
& \Rightarrow R_{2}=\frac{4}{3} x=\frac{4}{3}+12=16 r^{2} \tag{6}
\end{align*}
$$


$\square$ $-\cdots-\quad-\quad$. $\qquad$

㸪 ا
Q.23 $\overrightarrow{\vec{B}}=2 \hat{i}-3 \hat{\jmath} T \quad \vec{v}=(\hat{q}+\hat{j}+3 \hat{F}) \mathrm{m}(\mathrm{s}$

$$
\begin{aligned}
\vec{F} & =-e \vec{v} \times \vec{g}=-e\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 3
\end{array}\right| \\
2 & -3
\end{aligned}\left|\begin{array}{l}
0
\end{array}\right|
$$

$$
=(-14.4 \hat{\imath}-9.6 \hat{\jmath}+8 \hat{k}) * 10^{-19} \mathrm{~N}
$$

ansis (0)
Q. 24 Partide is nat deffected (civ) when $F=0$ hene $F=q E+q v B=0 \Rightarrow E+v B=0 \Rightarrow$

$$
v=-\frac{E}{|B|} \Rightarrow|v|=\frac{|E|}{|B|}
$$

2.25
Q.26, $R=2.5 \mathrm{~cm}, i=2.5 A \quad r=R / 2$





$$
\begin{aligned}
i^{\prime} & =\frac{i}{A} \times A^{\prime}=\frac{2 \cdot 5}{\pi R^{2}} \times \pi \\
& =\frac{2 \cdot 5 R^{\pi}}{4 R^{2}}=0.625 A
\end{aligned}
$$

So

$$
\begin{aligned}
& \text { § } B \cdot d l=\mu a L^{\circ} \Rightarrow B \cdot 2 \pi r=\mu \cdot i \Rightarrow B=\frac{\mu b^{\prime}}{2 \pi r}=\frac{4 \pi \times 10^{-7} \times 2 \cdot 5}{2 \pi * 1.25} \\
& B=1 \times 10^{-7}=0.1=10^{-6}=0.1 \quad 1
\end{aligned}
$$

Q.27, $\quad i=20 A, \quad a=3 c h, \quad b=5 \operatorname{cin}$

Hes is $\frac{60}{360}=\frac{1}{6}$ ericle, but for fall circle $\Rightarrow B=\frac{\mu_{0} L^{\prime}}{2 R}$ so
For this crtamoh $\vec{B}=\frac{1}{6} \frac{\mu 0 i}{2 b}=\frac{1}{6}\left(\frac{4 \pi \times 10^{-7}+20}{2 \pm 0.05}\right)=411+10^{-5}(\otimes$ (on) and forthe internal are $B_{3}=\frac{1}{6} \frac{\mu_{0} i}{2 a}=6.98 * 10^{-5}$ (0) (ont)

$$
\Rightarrow B=B-B=(6.28-4.19) \times 10^{-5}=270 \times 10^{6} \mathrm{~T}
$$

(2) (ont)

$$
\begin{aligned}
& i=6 A, B=0 \cdot 5 T, F=i 2 B \sin 90 \Rightarrow \\
& \frac{F}{l}=1 B=6 \frac{1}{2}=3 \mathrm{~N} / \mathrm{m}=\frac{3 \mathrm{~N}}{100 \mathrm{~cm}}=0.03 \mathrm{~N} / \mathrm{cm} \text { ansin (0) }
\end{aligned}
$$


$Q .28, Q=30 \operatorname{cm}, \quad B=5 \approx 10^{-4} T \quad i=1 A$

Q.29 $N=50$ turn $\quad A=5 * 10=50 \mathrm{~cm}^{2}=50,0^{-4} \mathrm{~m}^{2}, \quad B_{1}=0, B=0.5 T$ $\theta=0, \Delta t=0.25 \mathrm{sec} \quad$ Now:

$$
\begin{aligned}
& E=-N \frac{\Delta \phi}{\Delta t}=-N \frac{\Delta(B \cdot A)}{\Delta t}=-N A \cos \frac{\Delta B}{\Delta t} \Rightarrow \\
& |\varepsilon|=50 \times 50 \approx 10^{-4} \approx \frac{0.5}{0.25}=0 \cdot 5 V \text { \& }
\end{aligned}
$$

Q.30

$$
\begin{aligned}
& d=5 \operatorname{con} \Rightarrow=2.5 c \operatorname{con}, \quad \frac{\Delta B}{\Delta t}=0.4 T / S, \theta=0 \\
& \varepsilon=\frac{\Delta \phi}{\Delta t}=\frac{\Delta(B A \cos D)}{\Delta t}=\frac{A B}{\Delta t}=\pi(0.025)^{2} \times 0.4=0.785 \times 10^{-3} V
\end{aligned}
$$

Q. 31

$$
N=60 \text { farns } \quad R=0, s, v=6 \mathrm{~m} / \mathrm{s}, \quad, \quad-0.2 A, L=8 \mathrm{~cm}
$$

$$
\varepsilon=i R=0.2 * 0.2=0.04 \mathrm{~V}
$$

but

$$
\begin{gathered}
\left.\varepsilon=N \frac{\Delta \phi}{\Delta t}=N \frac{\Delta(B A \cos 0}{\Delta t}\right)=N B \frac{\Delta A}{\Delta t}=N B l \frac{\Delta \Delta}{\Delta t} \\
\Rightarrow \varepsilon \varepsilon=N B \ell V
\end{gathered}
$$

so $B=\frac{\varepsilon}{N \ell v}=\frac{0.04}{60=0.08 * 6}-1.39 \times 10^{-3} T=139 \mathrm{nT}$
ming g be
ansis (c)
Q. 32

$$
A-5066=3006 m^{2}=30 \times 10^{-4} m^{2}
$$

$$
m=S g, B=2 T,
$$ $\varphi=0.3 \mathrm{~m} / \mathrm{s}$.









 Me 2vq7itvests.

Q8:-A parallel plate air filled capacitor is charged until a potential difference $V$ appears across it Another capacitor, having hard rubber (dielectric constant k=3) between its plates but otherwise identical , is also charged to the same potential difference. If the energy of the first capacitor is $W$, that of the second is
a) $W / 3$
b) W
c) 3 W
d) 9 W

Q9:-A charge of $10^{-10} \mathrm{C}$ between two parallel metal plates 1 cm apart experience a force of $10^{-5} \mathrm{~N}$. The potential difference between the plates is
a) $10^{-5} \mathrm{~V}$
b) 10 V
c) $10^{3} \mathrm{~V}$.
d) $10^{5} \mathrm{~V}$

Q10:-An electron whose KE is 150 eV has a speed of
a) $7.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
b) $5.1 \times 10^{7} \mathrm{~m} / \mathrm{s}$
c) $2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
d) $7.3 \times 10^{13} \mathrm{~m} / \mathrm{s}$

Q11:-Which of the following combination of length and cross sectional area will give a certain volume of copper the least resistance
a) $L$ and $A$
b) 2 L and $\mathrm{A} / 2$
c) $(1 / 2) L$ and 2 A
d) does not matter because the volume remains
Q12:- A battery of emf $\varepsilon$ and internal resistance $r$ is connected to an external resistance
$R$. If $R=r$
a) the current in the circuit will be minimum
b) the current in the circuit will be maximum
c) the power dissipated in the circuit will be maximum
d) the power dissipated in the circuit will be minimum



Q13:-When a $100-\mathrm{W}, 240-\mathrm{V}$ light bulb is operated at 200 V , the current that flows in it is
a) 0.35 A
b) 0.42 A
c) 0.50 A
d) 0.58 A

Q14:- A resistor of unknown resistance is in parallel with a12- $\Omega$ resistor. A battery of emf 24 V and negligible internal resistance is connected across the combination. The battery provides a current of 3A. The unknown resistance is
a) $8 \Omega$
b) $12 \Omega$
c) $24 \Omega$
d) $36 \Omega$

Q15:-In the circuit shown , the potential difference between points $a$ and $c$ is:

a) 3.2 V
b) 1.6 V
c) 1.2 V
d) 5.4 V

Q16:-The magnetic field do not interact with
a) stationary electric charge
b) stationary -permanent magnet
b) moving electric charge
d) moving permanent magnet

Q23:-Consider the current carrying loop shown, the magnitude of the magnetic field $B$ at the point $P$ is

a) $\mu_{0} I(b-a) / 12 a b$
b) $\mu_{0} I\left(b^{2}-a^{2}\right) / 12 a b$
c) $\mu_{0} \mathrm{ab} / 12 I(b-a)$
d) $12 \mu_{0}(\mathrm{~b}-\mathrm{a}) / \mathrm{Iab}$

Q24:-Two long parallel wires, each having a mass per unit length of $40 \mathrm{~g} / \mathrm{m}$, are supported in a horizontal plane by strings as shown in the figure below. Each wire carries the same current, $I$, causing the wires to repel each other so the angle, $\theta$, between the supporting strings is $16^{\circ}$. The magnitude and direction for both currents is
a) 7.82 A antiparallel
b) 67.8 A antiparallel
c) 12.3 A parallel
d) 40 A antiparallel.


Q25:-A wire carries a steady current 2.4 A . A straight section of the wire with a length 0.75 m along the $x$ axis, lies in a uniform magnetic field $B=1.2 i+2 j+1.6 \mathrm{k}$ If the current flows in the $+x$ direction, what is the magnetic force on the section of the wire
a) $-2.88 j+3.6 k$
b) $3: 6 \mathrm{j}-2.88 \mathrm{k}$
c) $1.5 \mathrm{j}+1.2 \mathrm{k}+2 \mathrm{i}$
d) -1.5 i



a
Q. 1 deficien $y=l a c k=0$
Q.2 $k=\frac{1}{4 \pi \epsilon}$ whene $\epsilon$ is electric permitivity of the mediuss and for vacunm or air itis $\epsilon_{0} k=9 * 10^{9} \mathrm{Nm}^{2}$
Q.3 $E=\frac{F}{9}$ so it is fons per unnt chaige
Q.4 $\quad r_{2}=3 r_{1} \Rightarrow F_{2}=\frac{k Q_{1} Q_{2}}{\left(3 r_{1}\right)^{2}}=\frac{F_{1}}{9}$ ans is (c)
Q. 5 Electric field is aveetfr, while others are scalars ansis (6)
Q. 6 since-ve charges repel each other also, thei they have tre potential energy, where -re pot ensugy refors to aftraction. and $U=k \frac{q_{1} q_{2}}{r}$.
Q. $7 E_{0}=K E$ soit is loss since $k>1$
$Q .8, k=3, \quad U_{1}=\frac{1}{2} C_{1} v^{2}, \quad C_{2}=3 C_{1} \Rightarrow U_{2}=\frac{1}{2}\left(3 C_{1} v^{2}\right)=3 U_{1}$
since als: $\quad U_{2}=k U_{4}$
ansir C
Q. 2

$$
\begin{aligned}
& q=10^{-10} c \quad d=1 \mathrm{~cm} \quad F=10^{-5} \mathrm{~N} \\
& F=q E \Rightarrow E=\frac{10^{-5}}{10^{-10}}=10^{+5} \mathrm{~N} / \mathrm{c} \\
& V=E d=10^{5} \times 10^{-2} \mathrm{~V} / 1 \mathrm{l}
\end{aligned}
$$

2.10

$$
K \cdot E=150 \mathrm{eV}=150 \times 1.6 \times 10^{-19}=2.4 \times 10^{-17} \mathrm{~J}=\frac{1}{2} \mathrm{~m} \mathrm{v}^{2}
$$

so

$$
v=\sqrt{\frac{2 \div 24 \times 10^{-7}}{9 \cdot 11 \times 10^{-31}}}=7.26 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

Q. 11
(7) $R=\frac{P L}{A}$
(b) $\frac{\rho_{2} L}{A / Z}-\frac{2 \rho_{2} L}{A}=2 R$
(c) $\frac{\rho(L)}{2 A}=\frac{R}{4}$
(d) it doennt depend on the volu.
(纟)


 $P=I^{2} R$ which is max wirt conpent.
Q.13, $P=100 \mathrm{~W}, V=240 \mathrm{~V}, V=200 \mathrm{~V}$


$$
P=\frac{V^{2}}{R} \Rightarrow R=\frac{(240)^{2}}{100}=576 \Omega
$$



$$
i=\frac{V}{R}=\frac{200}{576}=0.347 \mathrm{~A}
$$

amsis@
Q. 14

$$
\begin{aligned}
& R_{e q}=\frac{\varepsilon}{i}=\frac{24}{3}=8 \Omega, \text { so } \frac{R_{1} R_{2}}{R_{1}+R_{2}}-8 \Omega \quad[12 \Omega \\
& \frac{12 R_{1}}{12+R_{1}}-8 \Rightarrow 12 R_{1}=12 \times 8+8 R_{1} \Rightarrow 4 R_{1}=96 \Rightarrow R_{1}=24 \Omega
\end{aligned}
$$

ans is (c)
Q. 15 whers, $\operatorname{Lin} b \in\{d$ bey


$$
-4 i+5-10-10 i-0 \Rightarrow 1--5 A
$$



$$
V_{c}-8-4 i+5=V_{a} \Rightarrow V_{c}-V_{a}=-8+4+\left(\frac{-5}{14}\right)-5=1.57
$$ ansic (b)

Q. 16 it inferncts with all excopt stationany elecfric change ansis (a)


- olisthbsb \& kiét-

ansis (c)
Q. $18, F-9 U \times B=9 U B \sin 0=0$ so, nofore ack an the electim:

$$
\text { Q. } 19 \text { qvB }=\frac{m v v^{2}}{R} \Rightarrow R=\frac{m v}{q B} \Rightarrow R_{2}=\frac{m(2 v)}{q B}=2 R_{1}
$$

Q． $20 \quad N=10$ turns，$r=10 \mathrm{~cm}, i=5 A, \vec{B}=2.55 T, \theta=90^{\circ}$


$$
\begin{align*}
& \mu=N \cdot A=10 \div 5 * \pi(0.1)^{2}=1.57 A^{2} \\
&\left.\Delta U=\Delta W=\int_{0}^{\pi / 2} d \theta=-\int_{0}^{\pi / 2} B \mu \sin \theta d \theta=\mu B \cos \theta\right]_{0}^{\pi / 2} \\
&=\mu B[0-1]=-1.57 \times 2.55=4 J \quad \text { ansis } \tag{b}
\end{align*}
$$

Q． $21 \quad d_{1}+d_{2}=(a-b) \Rightarrow$ in series for capacitors：

$$
\frac{1}{c}=\frac{1}{c_{1}}+\frac{1}{C_{2}}=\frac{d_{1}}{\epsilon_{0} A}+\frac{d_{2}}{\epsilon_{0} A}=\frac{a-b}{\epsilon_{0} A} \Rightarrow C=\frac{E_{0} A}{a-b}
$$

$$
\begin{aligned}
& \text { Q. } 22 \text { vi dischenging. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{t}{R C}=\ln 01 \Rightarrow t=-R C \ln 01=829 \mu \mathrm{~s}
\end{aligned}
$$

Q．23 from Biot－Savait lins：

$$
B=\int \frac{\mu_{0} i}{4 \pi} \frac{d l}{R^{2}}=\frac{\mu_{0} i}{4 \pi R^{x}} \int_{0}^{\pi / 3} R^{\prime} \theta \theta=\frac{\mu_{0}}{4 \pi R} \frac{\pi}{3}=\frac{\mu_{0} i}{12 R} .
$$

oR for full cirde，$B=\frac{\mu_{0} i}{2 R}$ so for $\frac{1}{\sigma}$ circle $B=\frac{\mu_{0} i}{12 R}$ Now：for orc $a \Rightarrow B_{1} \frac{R}{12 a} O$ hoi wile
for $\operatorname{arc} b \Rightarrow B_{2}=\frac{\mu_{0} i}{12 b} Q \Rightarrow$

$$
B=B+\left(-B_{2}\right)=\frac{\mu_{0} c}{12}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{\mu_{0} c}{12} \frac{b-a}{a b} 0
$$


Q. 24

$$
\frac{\mathrm{m}}{\mathrm{l}}=40 \mathrm{~g} / \mathrm{m} \quad \theta-16^{\circ}
$$

 antiparallel ols. Ki i exat: $T \cos 8$
$T \cos 8=m g \quad$ and $T \sin 8=F$
$\qquad$
$\qquad$


$$
\frac{F}{m g}=\tan 8 \Rightarrow F=m g \tan 8=40 \times 10^{-3} 10-\tan 8=0.055 \mathrm{~N} / m
$$

but
Q.25, $\quad 2=2.4 A, \vec{l}=(0.75 \hat{\imath}) m, \vec{B}=(12 \hat{\imath}+2 \hat{\jmath}+1.6 \hat{k}) T$ $F-i l B \sin \theta \hat{n} \quad \alpha$

$$
\vec{F}=i \vec{l} \times \vec{B}=2.4 \times 1 / \hat{l} \quad \vec{k} \mid
$$

$$
=-24[\hat{\imath}(0)-\hat{\jmath}(0.75-1.6)-\hat{k}(0.75 \times 2)]
$$

$$
=2.4[-1.2 \hat{\jmath}+1.5 k]=-2.88 j-3.6 k \mathrm{~N}
$$

ansi:@
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
\begin{align*}
& \frac{F}{l}=\frac{\mu_{0} L_{1} L_{2}}{2 \pi a}=\frac{\mu_{0} i^{2}}{2 \pi a} \Rightarrow \quad \omega_{1} \eta_{1} \omega_{1} \omega_{n}, a \quad \square \\
& \frac{a}{0.06}-\sin 8 \Rightarrow \frac{a}{2}=0.06 \sin 8 \Rightarrow a=0.0167 \Rightarrow \\
& \frac{F}{l}=\frac{4 \pi \times 10^{-7} \times L^{2}}{2 \pi}=0.0167 \quad-055 \Rightarrow i^{2}=4584.15 A^{2} \\
& \Rightarrow i=677 \mathrm{~A} \tag{b}
\end{align*}
$$

Physics mepantinat
12 ate: 22/5/1095

Second Semester 1994/95



077-424590
NOTE: $\left.\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}\right), m_{e}=9.11 \times 10^{-31} \mathrm{~kg} ; \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$,
$e=1.6 \times 10^{-19} \mathrm{C}$,
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$


1. Charge of uniform density $8.0 \mathrm{nc} / \mathrm{m}$ is distributed along the $x$ axis from $x=-2.0 \mathrm{~m}$ to $x=+3.0 \mathrm{~m}$. The magnitude of the electric field N/C) at the point $x=+5.0 \mathrm{~m}$ on the $x$ axis is:
a. 16;
b. 13;
c. 19 ;
(d) 26 ;
e. 5.0 .
2. Two infinite, uniformly charged, flat surfaces are mutually perpendicular. One of the sheets has a charge density of $+30 \mathrm{pc} / \mathrm{m}^{2}$, and the other carries a charge density of $-40 \mathrm{pc} / \mathrm{m}^{2}$. The magnitude of the electric field (in N/C) at any point not on either surface is: a. $2.8 ;$ b. $5.6 i$ c. 7.9 id. $3.8 ;$ (3.0
3. A particle (charge $=40, \mu \mathrm{C}$ ) moves directly toward a second particle (charge $=80 \mu \mathrm{C}$ ) which is held in a fixed position. At an instant when the distance between the two particles is 2.0 m , the kinetic energy of the moving particle is 24 J . The distance (in m) separating the two particles when the moving particle is momentarily stopped is:

4. A linear charge of nonuniform density $\lambda=b x$, where $b=3.2 \mathrm{nC} / \mathrm{m}^{2}$, is distributed along the $x$-axis From $x=2.0 \mathrm{~m}$ to $x=3.0 \mathrm{~m}$. The electric potential (in V), relative to zero at infinity, of the point $Y=4.0 \mathrm{~m}$ on the $y$-axis is:
a. 36 ;
b. 95 ;
C. 10 :
d. 17 ;
ㄷ. 15
5. An electric device, which heats water by immersing a resistance wire in the water, generates 50 cal of heat per second when an electric potential difference of 13 is placed across its leads: The resistance (in s) of the heater wire is: (Note: 1 cal $=4.186 \mathrm{~J}$ ) a. $0.94 ;$ © 0.81 c. 0.58 id. 0.69 ; e. 1.5 .
6. The power (in w) supplied by the 20 V emf is: a. -10 ;
b. +10 ;
c. zero;
(C). $\div 20$;




077-424590
7. At $t=0$ the switch $S$ is closed with the capacitor uncharged. If $C=30, \mu \mathrm{~F}$, $\Sigma=50 \mathrm{~V}$, and $\mathrm{R}=10 \mathrm{k} \Omega$ then the potential difference (in $V$ ) across the capacitor when $I=3.0 \mathrm{~mA}$ is:
(e) $20 ;$
b. 15;
c. 25 ;
d. 30
e. 45 .
$\qquad$

$(101102,105)$ (2) 12.4551 )
$-1^{-6}$

8. A 2.0 C charge moves with a velocity of $(2 \hat{i}+4 \hat{j}+6 \hat{k}) \mathrm{m} / \mathrm{s}$ and experiences a magnetic force of $(4 i-20 j+12 k)$. N. The $x$ component of the magnetic field is equal to zero. The z component of the magnetic field (in $T$ ) is:
a. -3.0 ;
b. +3.0 ;
Q. +5.0 ;
d. -5.0 ;
e. +6.0 .
9. A current of 4.0 A is maintained in a single circular loop having a circumference of 80 cm . An external magnetic field of 2.0 is directed such that the angle between the field and the plane -of the loop is 70 . The magnitude of the torque ( in NOm) exerted on the loppy es g by the magnetic forces acting upon it is:
a. 0.41 ;
b. 0.14 ;
C. 0.38 ;
(a)) 0.27 ;
e. 0.77
10. A wire (mass $=50 \mathrm{~g}$, length $=90 \mathrm{~cm}$ ) is suspended horizontally by two vertical wires which conduct a current $I=12.0 \mathrm{~A}$, as shown. The magnetic field in the region is into the paper and has a magnitude of 80 mT . The tension (in N) in ej.thex wire is:
a. 0.15 ;
(b) 0.68 ;
c. 0.30 ;
d. 0.34 ;
e. 0.10

An electron which moves through a velocity selector ( $E=4.0 \mathrm{kV} / \mathrm{m}, \mathrm{B}=$ 2.0 mT ) subsequently follows a circular path (radius = 5.3 mm ) in i a uniform inaginetic field. The magnitude of this magnetic field (in mT) is:
a. 1.8
b. 2,4 ;
c. 3.2 ;
d. 2.8;
(e. 4.6

2
12. A charged particle moves in a region of uniform magnetic field along a helical path (radius $=2.7 \mathrm{~cm}$, pitch, $P=20 \mathrm{~cm}$, period $=20 \mathrm{~ms}$ ). The speed (in $\mathrm{km} / \mathrm{s}$ ) of the particle as it moves along this path is: as) 0.13 ;
b. 0.10 ;
c. 0.16 ;
d. 0.23 ;

13. Two long parallel wires, separated by 16 ci carry equal currents in opposite directions. If the magnitude of the magnetic field is 50 ar at a point between the wires that is 10 cm from one of them, then the current (in A) in each wire is:
a. zero;
(0) 9.4 ;
c. 15 ;
d. 25;
e. 37.5
14. In the figure shown beside, if $a=2.0 \mathrm{~cm}$, $\mathrm{b}=5.0 \mathrm{~cm}$, and $I=25 \mathrm{~A}_{\text {, }}$ then the magnitude of the magnetic field (in is T) at the point $P$ is: a. $4.5 \%$
d. 6.0 i
(b) 7.5 ;
c. 9.0 ;

15. A straight wire (length $=8.0 \mathrm{~m}$ ) is bent to form a square. If the wire carries a current of 30 A , then the magnitude of the magnetic field (in uT) at the center of the square is:
(a) 17 ;
b. 14 ;
c. 11;
ब. 20
e. 36
16. A solenoid 4.0 cm in radius and 4.0 m in length has 5000 uniformly spaced turns and carries a current of 5.0 A. Consider a plane circular surface (radius $=2.0 \mathrm{~cm}$ ) located at the center of the solenoid with its axis coinciderit with the axis of the solenoid.. The magnetic flux (in $\nu$ Wb) through this surface is:
a. - 63 ;
b. 16 ;
c. $250_{i}$
(d.) 10 ;
e. 5.0

University of Jordan Department of Physics Faculty of Science

Final Exam (102)
-ー・


Student Name:
Instructor:
$\qquad$ Student No.:----.
Section Number:-----------
$g=9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \quad \quad \mu_{0}=4 \times 10^{-\vec{T}} \quad \mathrm{wb} / \mathrm{A} \cdot \mathrm{m}$
$e=1.6 \times 10^{-19} \mathrm{C}$

(101 102,105) (b)
077-424590


病
（101 102，105）（أهن（1）

A 20－turn circular coil（radius $=4.0 \mathrm{~cm}$ ，total resistance $=0.20 \mathrm{~s}$ ） is placed in a uniform magnetic field directed perpendicular to the plane of the coil．The magnitude of the magnetic field varies with time as given by $B=50 \sin (10 \pi \pi t$ mT where $t$ is measured in seconds． The magitude of the induced current（in mA in the coil at 0.10 s is：
a． 50 i
b．1579；
c． 320 ；
d．zero；
（e） 790

A conducting rod（length $=80 \mathrm{~cm})$ rotates at a constant angular rate of 15 revolutions per s about a pivot at one end．A uniform field（ $B=$ 90 mp）is directed perpendicularly to the plane of rotation The． magnitude of the emf induced（in $V$ ）between the ends of the rod is： © 2.7 ．
b． 2.1 ；
C． 2.4 ；
d． 1.8 i
A conducting bar moves along parallel frictionless conducting rails connected on one end by a 2.0 s resistor as shown． A uniform I． 60 T magnetic field makes an 60 angle of $60^{\circ}$ with the normal to the paper． The current（in $A$ ）in the resistor is： a． 2.1 ；
b． 1.6 ；
c． 1.2 ；
？ 077－424590
（IVI luesivj）－
$077-424590$
）．A long straight wire carrying current （ I $=100$ A）is parallel to one edge and is in the plane of a single－turn
rectangular loop（ $a=50 \mathrm{~cm}$ and $b=6.0 \mathrm{~cm})$ ， as shown．If the loop is moving in the plane shown so that the distance $x$ changes at a constant rate of $20 \mathrm{~cm} / \mathrm{s}$ ．then the magnitude of the emf induced（in if V）in the loop at the instant $X=5.0 \mathrm{~cm}$ is ：
（2）11；
b． 22 ；
C．27；
d， 16 ；
（35 $2.4 ;$


玉NT OE QUESTIONS


| Q．N®． | a | b | c | d | e | Q．Fo， | a | $b$ | c | d | e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | E |  | $1{ }^{1}$ | W | － |  |  |  |
| 2 | 5＊ |  |  |  |  | 12. | \％ |  |  |  |  |
| 3 | Pr |  |  |  | ． | 13 |  | 4 |  |  |  |
| 4 |  |  |  |  | $\bigcirc$ | 14 |  | U | $\cdots$ |  |  |
| 5 | ： | $x$ |  |  |  | 15 | K |  |  |  |  |
| 6. |  |  |  | $\bigcirc$ |  | 16 |  | $\because$ |  | 4 |  |
| 7 | 区 |  |  |  |  | 17 |  |  |  |  | K |
| 8 |  |  | K |  |  | 18 | Y |  | $\cdots$ | $\cdots$ |  |
| 9 |  | $\pm$ |  |  |  | 19 |  |  |  | ＊ |  |
| 10 |  | \％ |  |  |  | 20 |  | － |  |  |  |


［16］
(1)
Q.1 A small sphere of mass 0.1 gm is suspended by a light string between two charged parallel plates 5 cm apart. The electric field between the plates is uniform and the charge on the sphere is $6 \times 10^{-9} \mathrm{C}$. If the string makes an angle of $30^{\circ}$ with the vertical (at equilibrium), then the potential difference (in volt) between the two plates is:
a) 9430
b) 8166
c) 4715
d) 4083
e) 5200

居属
 077-424590
Q. 2 Eight charged spherical raindrops each of radius $r$ and each at a potential $b^{W}$ combine to form a single raindrop of radius R. The potential of the large drop is:
a) 16 V .,
b) 12 V
c)
2 V
d) 24 V
e) 48 V

A solid insulating sphere of radius $R$ has a uniform charge density $P$. The sphere is located at the center of a cube of side $2 R$. The electric flux through each face of the cube is:
a) $\frac{4}{3} \frac{\pi R^{3} \rho_{0}}{\epsilon_{0}}$
b) $\frac{3}{4} \frac{\Pi R^{3} \rho_{0}}{E_{0}}$
c) zero
315 \% \&
d) $\frac{q}{2} \frac{\pi R^{3} \rho_{0}}{\epsilon_{0}}$ e) $\frac{2}{9} \frac{\pi R^{3} \rho_{0}}{\epsilon_{0}}$
(101 102,105) (Fly d ut 077-424590
Q.4 An air filled parallel-plate capacitor is charged and insulated (disconnected from the source). The plates are brought closer togather, using insulated handles to move them. Which of the following statements is correct?
a) The potential difference between the plates increases,
b) The potential difference between the plates decreases,
c) The charge on each plate increases;
d) The charge on each plate decreases,
e) The capacitance decreases.
Q.5 A resistance wire has a cross sectional area of $0.02 \mathrm{~cm}^{2} ; \mathrm{a}$ resistance of 0.6 m and a length of 3 m Its conductivity $\left(o h m-n_{i}\right)^{-1}$ ja:
a) $6 \times 10^{6}$
b) $3.76 \times 10^{6}$
c) $5 \times 10^{6}$
d) $1.25 \times 10^{6}$
e) $\quad 2.5: \times 10^{6}$
Q.6. An electron is moving with a velocity $\vec{v}=(5 \hat{\imath}+3 \hat{j}) \hat{x} 10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in a magnetic field $\overrightarrow{\vec{B}}=0.003 \hat{\imath}$ T. The magnetic force (in v)
on the electron is:
a) $1.44 \times 10^{-7}$
b) $\quad-2.88 \times 10^{-7} \hat{\mathrm{k}}$
c) $+2.88 \times 10^{-\frac{7}{7}} \hat{v}$
d) $-1.41 \times 10^{-7} \hat{\mathrm{~F}}$
e) Zero

(1)

$$
\begin{array}{r}
\text { H1 } A=3.6 \mathrm{~cm}^{2}, \Delta V=20 \mathrm{~V} \quad \alpha=1.8 \mathrm{~mm} \\
\quad Q=1 ? \\
q=C \Delta V, C=\frac{A \varepsilon 0}{d} \rightarrow C=1.77 \times 10^{-12} \mathrm{PF} \\
\rightarrow Q=C \Delta V=3.54 \times 10^{-11} C=35.4 \mathrm{PC}
\end{array}
$$

(2)

$$
\begin{aligned}
& E_{\text {max }}=6 \times 10^{7} \mathrm{~V} / \mathrm{m} \quad, A=1.75 \mathrm{~cm}^{2}, d=0.0 \mathrm{um} \\
& \Delta V_{\text {max }}=? ? \\
& \Rightarrow V_{\max } \quad E_{\max } \alpha=3600^{-V}=3.6 / \mathrm{kV} \\
& C_{1}=254 \mathrm{~F}
\end{aligned}
$$

(3) $-6=0.78 \mathrm{~mJ}$

$$
c_{3}=25 M F
$$

$$
\begin{aligned}
& U=\frac{q^{2}}{2 C}=\frac{C v^{2}}{2}=\frac{1}{2} q v \\
& L_{T}=7.84 \times 10^{-\frac{4}{\mathrm{~J}}} \\
& =0.78 \mathrm{~mJ}
\end{aligned}
$$

$$
\rightarrow a_{1}=a_{2}=a_{-3} \longrightarrow v_{2}=\frac{a}{c_{2}},
$$

$$
a=c V_{e q} a b
$$

$$
\begin{aligned}
& \rightarrow a_{1}=a_{2}=o_{3} \\
& \rightarrow \frac{1}{c_{e q}}=\left(\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}}\right) \rightarrow c_{e q}=10 \mathrm{MF} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{c_{e q}}=\left(\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}}\right) \rightarrow e q \\
& \rightarrow q=2.8 \times 10^{-4} \mathrm{C} \rightarrow v_{2}=\frac{Q}{c_{2}}=\frac{2.8 \times 10^{-4}}{50 \times 10^{-6}}=5.6 \mathrm{~V}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { (4) } R_{1}=\rho \frac{L}{A} & R_{2}=? ? \\
A_{2}=\frac{\pi}{4} \alpha^{2} & A_{2}=\frac{\pi}{4}\left(\frac{\partial}{2}\right)^{2}=\frac{\pi}{4} d^{2}+\left(\frac{L}{4}\right) \\
A_{1}=\frac{\pi}{4} \alpha^{2} & A_{2}=\frac{1}{4} A_{1} \\
4=L & L_{2}=\frac{1}{2} L=\frac{1}{2} L \\
\rightarrow R_{2}=\rho \frac{L}{4} L \\
\rightarrow 2
\end{array}
$$

(5)

$$
\begin{array}{ll}
A=4 \times 10^{-6} \mathrm{~m}^{2} & h=6.0 \times 10^{128} \mathrm{e} \mathrm{~m}^{3} \\
I=7 \mathrm{~A} & V_{\alpha}=? ?
\end{array}
$$

$$
J=n(2) v_{2}
$$

$$
5=n q A V_{d} \rightarrow V_{d}=\frac{I}{n q A}=1.8 \times 10^{-4}=0.18 \mathrm{~mm} / \mathrm{s}
$$

(6)

$$
\begin{array}{ccc}
d=? ? & \mathbb{E}=1.4 \times 10^{7} \mathrm{~J}, & p=8 \times 10^{3} \mathrm{~W} \\
\Delta V_{\text {Baltery }}=12 \mathrm{~V} & V=20 \mathrm{~m} / \mathrm{s} \\
E=P t \rightarrow & 1.4 \times 10^{7}=8 \times 10^{3} t \rightarrow & t=2.7505
\end{array}
$$

$$
\rightarrow d=v t=35000 \mathrm{~m}=35 \mathrm{~km}
$$

$$
J \alpha=35 \mathrm{~km} \text { answer: E }
$$

(7)
(9) $\tau=0.41 \mathrm{Nm}$

$$
\begin{array}{ll}
I=25 \mathrm{~A} & \begin{array}{l}
I=50 \mathrm{~cm} \\
\\
B=80 \mathrm{mT} \\
C=90-35=55^{\circ}
\end{array} \\
C=? ?
\end{array}
$$

$$
\tau=J A B \sin \theta=0.41 \mathrm{~N} \cdot \mathrm{~m}
$$

(10)

$$
1=70 \mathrm{~cm}
$$

$$
I=50 \mathrm{~A}
$$

$$
\theta=60^{\circ}
$$

$$
F=1.7 \pi
$$

$$
B=\frac{F}{I L \sin \theta^{-}}=56.1 \times 10^{-3} \mathrm{~J}=56.1 \mathrm{~mJ}
$$

(11) using twerigho hand vile

election $\Theta \underset{y}{ }$

since negabiv its
$(\vec{F})$ the oppositeativection of the posbive charge.
$\Rightarrow$ the electron will be deflected upward answer
(12)

$$
\begin{aligned}
& \text { (12) } \frac{\underbrace{-50-v}_{b}}{V_{b}-r_{A}=-10 v}] \\
& v_{b}-v_{a}=? ?
\end{aligned}
$$

$$
R_{1}=R_{2}=10 \Omega
$$

$$
R_{3}=20 \Omega
$$

$\Rightarrow$ Kirchotf's law $\quad \sum V=0$

Takepath 6t abeda $50 \square$
$\rightarrow$ Assume direction


$$
\begin{aligned}
& +V_{A}-10 I_{2}+10 I_{1}-V_{b}=0 \\
& \rightarrow V_{A}-V_{b}=10 I_{2}+10 I_{1} \\
& V_{A}=+60 V_{b}=+50 \rightarrow 60-50=10 I_{2} 610 I_{1} \\
& 10=10 I_{2}+10 I_{1} \rightarrow V_{A}-V_{b}=10 \rightarrow V_{b}-V_{A}=-10 V_{0}
\end{aligned}
$$

(1)

$$
\begin{array}{ll}
I=5 \mathrm{~A} \quad t=5 \mathrm{~S} & n=? ? \\
q=n e \rightarrow n=\frac{q}{e}, & q=I t=25 C \\
\rightarrow n=1.6 \times 10^{20} &
\end{array}
$$

$$
\begin{aligned}
& \text { (2) } \frac{\sqrt{P=72 W}}{I}=3.8 \mathrm{~A} \\
& P=\zeta^{2} R=72 \mathrm{~W}
\end{aligned}
$$



$$
\begin{aligned}
& R_{\text {eq }}=2 R \\
& \rightarrow \zeta_{1}=\frac{\varepsilon}{2 R}=\text { 䋊 } \frac{1}{2} \frac{\varepsilon}{R} \\
& R_{\text {eq }}=\frac{3}{2} R \rightarrow I_{2}=\frac{\varepsilon}{\frac{3}{2} R}=\frac{2}{3} \frac{\varepsilon}{R}
\end{aligned}
$$


$\Rightarrow I_{2}>I_{1} \rightarrow P=I^{2} R \rightarrow P_{2}>P_{1}$
$\Rightarrow$ power will increase
(4)


$$
I_{3}=I_{1}+I_{2}
$$

$\rightarrow \sum r=\sum I R$ ased pafn bcdeb
Assume

$$
\rightarrow+15=180 I_{3}+60 I_{2}-150180 I_{1}+260 I_{2}
$$

Take path a befa

$$
\Sigma r=\Sigma I R \rightarrow 10=60 I_{2}-34 I_{1}
$$

$\Rightarrow$ solve 1

$$
\begin{aligned}
& 15=180 I_{1}+240 I_{2} \\
& 10=-34 I_{1}+60 I_{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow I_{1} & =-0.0791 \mathrm{~A} \\
I_{2} & =0.1218 \mathrm{~A} \\
I_{3} & =I_{1} 6 I_{2}<0.043 \mathrm{~A}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& E=2 k V / m, B=8 \mathrm{mT} \quad K=? ? \\
& V=\frac{E}{B}=250 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& K=\frac{1}{2} \mathrm{mV}=2.846 \times 10^{-20} \mathrm{~J} \\
& \Rightarrow k=2.846 \times 10^{-20} \mathrm{~J} \times \frac{1 \mathrm{eV}}{1.0 \times 10^{-19} \mathrm{~J}} \\
& k=0.177 \mathrm{eV}=0.18 \mathrm{eV}
\end{aligned}
$$

(6) $I=0 \quad R C$ circuibs when the

- switch is closed por avery longtime $a=a_{\max }$

$$
\Rightarrow I(t)=0
$$

(7) $\begin{array}{lll}\circ & 0 \\ 0 & 0 \\ \stackrel{v}{4}-3\end{array}$

de fletted downuarp
(8)

$$
\begin{array}{lll}
N=200 & I=4 \mathrm{~A} & r=\frac{d}{2}=I C \mathrm{M} \\
B=0.35 T & Q=90-30=60^{\circ} \quad A=\pi r^{2}
\end{array}
$$

$$
\tau=N L A B \sin \theta=0.076 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\begin{aligned}
& \text { (9) } \\
& B=\frac{10 n t}{}=\frac{\mu 0 N I}{L} \\
& B_{1}=\frac{100 N I}{L} \\
& B_{2}=\frac{\mu_{0}(2 N) \zeta}{h L}=\frac{\mu_{0} N J}{L} \\
& \Rightarrow B_{1}=B_{2}=\text { consbent } \\
& \Rightarrow B_{1}=1 \beta_{2}
\end{aligned}
$$

10

$$
\begin{aligned}
& B_{x}=B_{l} \cos 60+B_{2} \cos 600 \\
& B_{x}=B_{1} \sin 6+B_{2} \sin 30 \\
& B_{y}=90 \quad \Rightarrow B_{x}=2 B_{1} \cos 60 \\
& B_{1}=B_{2}=\frac{40 I}{2 \pi r 1}=\frac{2 \times 10^{-1} * I}{V t} \times \cos 60 \rightarrow F \frac{F_{2} \frac{2 T_{2} \tau_{2}}{2 \pi I} \times 40}{}+\cos 60 \\
& F=\frac{2 \times 10^{-7} I^{2} L}{2 *} \cos 60=\frac{2 \times 10^{-7} \times 20^{2} \times 1}{5 \times 10^{-3}} \times \cos 60 \\
& F_{1}=8 \times 0^{-3} \mathrm{~N} \rightarrow F_{\text {ueb }}=2 F_{1}=16 \times 10^{-3}=16 \mathrm{mN}
\end{aligned}
$$

(11)


$$
B=\frac{40 I}{4 \pi R_{1}}(1) \quad-\frac{40 I}{4 \pi R_{2}} \varnothing
$$

$$
=\frac{\mu 0 I}{4 \pi} \otimes\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]=1.047 \times 10^{-4 T}, \begin{aligned}
& B=0.104 \mathrm{mT}
\end{aligned}
$$

(12) $R=2 \mathrm{~cm} \quad I=20 \mathrm{~A} \quad r_{1}=1.5 \mathrm{~cm}$

$$
\begin{aligned}
B & =\frac{\mu O I}{2 \pi} \frac{r}{R^{2}}(r<R) \\
& =1.5 \times 10^{-4} T=0.15 \mathrm{mT}
\end{aligned}
$$

(1)


$$
R=18-\Omega
$$

condutivg cables
A $3 R$
$\longrightarrow$

are comected
$\Rightarrow R_{e q}=2 R+3.3333 R=\frac{16}{3} R$ iusevies

$$
\Rightarrow R_{e_{1}}=\frac{16}{3} \times 18=96 \Omega
$$

(3)


$$
Q_{1}=? ?
$$

sin

$$
\begin{aligned}
& q_{1}=q_{\text {qotal }}=c_{e^{V}}^{V_{0}} \\
& c_{q q}=13.333 \mathrm{MF} \rightarrow Q=13.333 \times 10^{-6} * 18=240 \times 10^{-6} \mathrm{C} \\
& q=0.24 \mathrm{mc}
\end{aligned}
$$



$$
\begin{aligned}
& V_{A}-V_{B}=\Delta V=50 \mathrm{~V} \\
& V=? ? \quad Q C=54 \mu F=? ? \\
& V=\frac{q^{2}}{2 C}=\frac{c V^{2}}{2}=\frac{1}{2} q \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C Cllen } \\
& \Rightarrow v_{23}=\frac{a_{23}}{c_{23}}=22.222 \mathrm{~V} \\
& a=2 \times 10^{-3} \mathrm{C} \\
& Q_{1}=Q_{23} \\
& \Rightarrow t_{3}=\frac{c_{3} U_{23}}{2}=13.33 \times 10^{-\frac{J}{J}}=13.3 \mathrm{VJ}
\end{aligned}
$$

(5)

$$
\begin{array}{ll}
l=30 \mathrm{~m} \quad & A=5 \times 10^{-6} \mathrm{~m}^{2} \quad \rho=1.7 \times 10^{8} \Omega \mathrm{~m} \\
& R=?!, \\
& R=\frac{L}{A}=0.102 \Omega=0.10 \Omega \\
& R=0.1 \Omega
\end{array}
$$

(6)


$$
\begin{aligned}
& c_{1}=5 \mathrm{MF} \\
& c_{2}=15 \mathrm{MF} \\
& C_{3}=30 \mu \mathrm{~F} \\
& V_{2}=? ?
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow C_{23} & =10 \mathrm{MF} \\
\rightarrow V_{23} & =24 \mathrm{~V}
\end{aligned}
$$



$$
v_{2}=\frac{q_{2}}{c_{2}}
$$

$$
a_{3}=a_{2}!!
$$

$$
V_{1}=V_{23}=24 v
$$

$$
\begin{aligned}
& q_{23}=2.4 \times 10^{-4} \mathrm{C} \\
& \rightarrow v_{2}=\frac{c_{23}=q_{2}=q_{3}}{c_{2}}=\frac{q_{22}}{c_{2}}=16 \mathrm{~V}
\end{aligned}
$$

(7)


$$
t \Rightarrow \Sigma v=0
$$

$$
\varepsilon-V_{c}-V_{R}=0
$$

$$
\begin{aligned}
& \tau=? ? \\
& v_{\text {carreibor }}=85 v_{\text {max }} \\
& v_{\text {max }}=\varepsilon \\
& t=2.45
\end{aligned}
$$

$$
\begin{array}{cc}
\varepsilon-0.85 \varepsilon-I R=0 & t=2.45 \\
I R=0.15 \varepsilon \rightarrow \varepsilon-0.85 \varepsilon-0.15 \varepsilon=0 \rightarrow n 0 \text { result }
\end{array}
$$

from capacitor charging equation

$$
\begin{array}{lll}
\frac{q(t)}{c}=\frac{a_{\max }\left(1-e^{-t / \tau}\right)}{c} & v_{c}=\frac{q(t)}{c} \\
& V_{c}=\varepsilon\left(1-e^{-t / \tau}\right) & \frac{a_{\max }=\varepsilon}{c} \\
\Rightarrow 0.85 \varepsilon=R\left(1-e^{-t / \tau}\right) & V_{c}=0.85 \varepsilon \\
& 0.85=\left(1-e^{-t(\tau)} \rightarrow \text { solve for } \tau\right. \\
\Rightarrow r=1.265 s=1.275 &
\end{array}
$$

(8)

$$
\begin{array}{ll}
p=T^{2} R & I=4 \mathrm{~A} \\
p=32 W & r=2 \Omega
\end{array}
$$

(9)


$$
\begin{aligned}
\Sigma V=0 & \rightarrow V_{B}-(0.9 * 16)-(15)-(0.5 * 10)-V_{A}=0 \\
& \rightarrow V_{B}-V_{A}-28=0 \rightarrow V_{B}-V_{A}=+28 V
\end{aligned}
$$

(10)


$$
\begin{aligned}
& I=1.5 \Omega \\
& R=? ? \\
& 1.5=I_{1}+I_{2}
\end{aligned}
$$

a bcfeb

$$
\begin{aligned}
& \Sigma V=0 \rightarrow+50-(20 * 1.5)-\left(I_{1} R\right)=0 \\
& \text { abed9 } \sqrt{4 /} \rightarrow \quad 20 \sigma=I_{1} R \\
& \text { (2) } \\
& \Sigma V=0 \rightarrow+50-(20 * 1 \cdot 5)-(30)-\left(10 * I_{2}\right)=0
\end{aligned}
$$

Assumption
abeda


$$
\begin{aligned}
& \Sigma v=0 \rightarrow(50-20 \not 11.5)-(30)-\left(10 \tau_{2}\right)=0 \\
& \Rightarrow-40=10 I_{2} \rightarrow I_{2}=-1 \mathrm{~A}
\end{aligned}
$$

From eq (1) $I_{1+I_{2}}=1.5 \longrightarrow I_{1}=2.5 \mathrm{~A}$

$$
\text { from eq(2) } 20=I_{1} R \rightarrow 20=2.5 R
$$

$$
\rightarrow R=8-\Omega
$$

(1) Charge will stay the sam $C$ inserting dielectric material only increases the capacitance
$+1$ not bye charge $+\sqrt{2}$
(2)


$$
\rightarrow \quad c_{1}+c_{2}=10 \mathrm{pF}
$$

$$
\begin{align*}
\rightarrow+1
\end{align*}+\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{1.6}
$$

$$
\begin{aligned}
& \rightarrow 5\left(c_{1}+C_{2}\right)=8 C_{1} C_{2} \\
& \rightarrow 59+5 C_{2}=8 C_{1} C_{2} \rightarrow \text { no result }
\end{aligned}
$$

The equation
$\Rightarrow$ the best way to solve
is 60 try the choices will yield results thad are not in tue
Try

$$
\left(C_{1}, C_{2}\right)=(8,2) \Rightarrow \text { The answer is }(8,2)
$$ choices

$$
\left(\frac{1}{8}+\frac{1}{2}\right)^{-1}=1.6 \quad 8+2=10 \mathrm{~L}
$$

$$
\begin{aligned}
& \text { (3) } q=4 n \mathrm{c} \quad \alpha=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \left(x_{1}, y_{1}\right)=(1.2,1.1) \mathrm{mm} \quad \alpha=3.53 \mathrm{~mm} \\
& \left(x_{2}, y_{2}\right)=(1.4,-1.3) \\
& p=2 \alpha=14.2 \times 10^{-12} \mathrm{c}
\end{aligned}
$$

(4)

$$
L_{A}=L, \rho_{A}=\rho
$$

$$
A_{B}, L_{B}=L_{B}, \rho_{B}
$$

$$
\begin{aligned}
& \frac{A_{B}}{A_{A}}=? ? \quad R_{A}=\rho \frac{L}{A_{A}}=3 R \rightarrow A_{A}=\frac{1}{3} A \\
& \rightarrow A_{B}=3 A_{A}
\end{aligned}
$$

$$
P_{B}=\rho \frac{L}{A_{B}}=R \rightarrow \frac{A B=3 A_{A}}{\rightarrow \frac{A_{B}}{0}=3}
$$

$$
\rightarrow \frac{A_{B}}{A_{A}}=3 \text { answer }
$$

$$
\begin{aligned}
& \text { (5) } I=10 \mathrm{~A}=A n V_{\alpha} \rightarrow V_{2}=\frac{I}{\text { Anq }}=1.04 \times 10^{-4} \mathrm{~m} / \mathrm{s} \\
& \begin{array}{ll}
q=+e \\
\alpha=3 \mathrm{~mm}
\end{array} \quad \begin{array}{l}
28
\end{array} \quad V_{Q}=1.04 \times 10^{-4} \mathrm{n} / \mathrm{s} \text { answer } A \\
& h=8.5 \times 10^{+28} \\
& A=\pi\left(\frac{d}{2}\right)^{2}=\frac{\pi}{4} \alpha^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { A } \begin{array}{l}
\text { material } \\
\text { same lengon } \\
\text { same }
\end{array} \\
& R_{A}=3 R \quad \begin{array}{l}
L_{A}=L_{B} \\
V_{A}=\rho_{B}
\end{array} \quad R_{B}=R
\end{aligned}
$$

(6) $P=\frac{V^{2}}{R} \rightarrow R=\frac{V^{2}}{P}=11.1 \Omega$ $V=120 \mathrm{~V}$ $p=1.3 \mathrm{~kW}$

$$
R=11 . I \Omega \text { answer }
$$

(7)

$$
\begin{array}{ll}
R C=0.5 & R=100 \Omega \\
& C=5000 \mathrm{AF} \\
I(t)=I_{\text {max }} e^{-t / R C} & t=15, \varepsilon=120 \mathrm{~V} \\
I(b)=1.2 e^{-1 / 0.5)} & I_{\text {max }}=\frac{\varepsilon}{R}=1.2 \mathrm{~A} \\
I(b)=1.2 e^{-2}=0.16 \mathrm{~A} &
\end{array}
$$

(8)

$$
\begin{aligned}
& \varepsilon-I r=I R \\
& 150-14 r=9 \cdot 9 * 14 \\
& \rightarrow r=0.8 \Omega
\end{aligned}
$$

(9)


$$
\begin{aligned}
& I_{3}=1.17 \mathrm{~A} \\
& I_{1}=I_{2}+I_{3} \\
& I_{1}=I_{2} 61.17 \\
& \left(I_{1,} I_{2}\right)=(1.33,0.17)
\end{aligned}
$$

'cdefc

$$
\begin{aligned}
\left.\sum V=0 \rightarrow 2 * 1.17\right)-\left(2 I_{2}\right)=0 \\
\rightarrow 2 I_{2}=2.34=-2 \rightarrow I_{2}=0.17 \mathrm{~A}
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \vec{V}=j-j+2 k \\
& \vec{B}=(i-j-\hat{k})
\end{aligned} \quad \rightarrow \overrightarrow{F_{B}}=q *(\vec{v} \times \vec{b})
$$

$$
\left.\begin{array}{rl}
\rightarrow \vec{V} \times \vec{B}=(3,3,0) \rightarrow\left[\begin{array}{l}
\vec{V} \times \vec{B}]
\end{array}=\sqrt{3^{2} 63^{2}}\right. \\
=4.24 \frac{\mathrm{mT}}{\mathrm{~s}}
\end{array}\right] \begin{aligned}
19 \times 4.24 & =68 \times 10^{-19} \mathrm{~N}
\end{aligned}
$$

$$
\rightarrow \begin{aligned}
& F_{B}=2(\vec{V} \times \vec{B})=1.6 \times 10^{19} \mathrm{K4.24}=68 \times 10^{-19} \mathrm{~N} \\
& \text { answer }
\end{aligned}
$$

answer
(11)

$$
\begin{aligned}
& \frac{F}{L}=工 B \rightarrow B=\frac{F}{I L}=0.008 T \\
& \vec{F}=I \overleftarrow{L} \times \vec{B}
\end{aligned}
$$

$\Rightarrow B$ is into the page using the Fighatra right hand rule
(12)

$$
\begin{aligned}
& \mathcal{K}_{\text {max }}=N L A B \sin \left(90^{\circ}\right)=N T A B \\
& \gamma=30 * 5 * \pi\left(5 \times 10^{-2}\right)^{2} * 0.9 \\
& Y=0.59 \mathrm{Nm} \text { answer }
\end{aligned}
$$

(1)

$$
\begin{array}{ll}
A=5 \times 10^{-6} \mathrm{~m}^{2} & \rho=3.5 \times 10^{-5} \Omega \mathrm{~m}, \quad \Delta V=15 \mathrm{~V} \\
J=4 \times 10^{-3} \mathrm{~A}, & L=? ?, R=\frac{\Delta V}{I}=\frac{\rho L}{4}
\end{array}
$$

$$
\frac{D V}{\zeta}=\frac{\rho C}{A} \rightarrow L=\frac{D V}{I} * \frac{A}{\rho}=535.71 \Omega
$$

$R=536 \Omega$ answer
(2)


$$
A=\pi r^{2}
$$

$$
\begin{array}{ll}
L_{1} & R_{2}=\rho \frac{L_{2}}{A}=\rho \frac{2 L_{1}}{A} \\
R_{1}=\rho \frac{L_{1}}{A} & R_{2}=2 R_{1} \text { onswer }
\end{array}
$$

$$
\begin{aligned}
& A=\pi r^{2} \\
& L_{2}=2 L_{1} \\
& R_{2}=\rho \frac{L_{2}}{A}=\rho \frac{2 L_{1}}{A} \\
& R_{2}=2 R_{1} \text { onsmer }
\end{aligned}
$$

Note if Nolume was constant and $c_{2}=24$

$$
V_{1}=A L_{1} \rightarrow \quad V_{2}=A_{2} L_{2}, L_{2}=L_{1} \rightarrow A_{2}=\frac{1}{2} A_{1}
$$

Then $R_{2}=4 R_{1}$
(4) (3)


$$
\begin{aligned}
& R_{\text {er }}=4+\left(\frac{1}{7}+\frac{1}{10}\right)^{-1}+9=17-11 \Omega \\
& R_{\text {eq }}=17 \Omega \text { answer }
\end{aligned}
$$

(4)

$$
\begin{aligned}
& R=1 \mathrm{M} \Omega \quad c=5 \mu \mathrm{~F} \quad t=10 \mathrm{~s} \\
& \tau=55 \quad\left\{=30^{\circ} \mathrm{V} \quad J=\right.\text { ?? } \\
& I(6)=I_{0} e^{-t / \tau} \rightarrow I_{0}=\frac{\varepsilon}{R} \\
& I(t=10)=\frac{30}{10^{6}} * e^{-\frac{10}{5}} \rightarrow I=4.06 \mathrm{MA} \\
& J=4.06 \times 10^{-6} \mathrm{~A}=4.06 \mathrm{MA} \\
& v_{c}=0.8 \varepsilon \quad t=\text { ? ? } \\
& v_{c}=\varepsilon\left(1-e^{t / \tau}\right) \rightarrow 0.8 \%=\mathscr{k}\left(1-e^{-t / \tau}\right) \\
& \rightarrow 0.2=e^{-t r \pi} \rightarrow \text { ino.2 }=-\frac{t}{\tau} \Rightarrow \frac{t=1.6 \tau}{\text { answer }}
\end{aligned}
$$

$\sqrt{4})$
(6) Halve2 $c=\frac{A \varepsilon 0}{d}, \quad U=\frac{a}{c}$

$$
\begin{aligned}
& \downarrow \\
& c_{2}=\frac{A \varepsilon_{0}}{\frac{1}{2} \alpha}=2 C, U_{2}=\frac{Q}{2 C}=\frac{1}{2} v \\
& V_{2}=\frac{1}{2} V \Rightarrow \text { ancimer }
\end{aligned}
$$

(7)

$$
\begin{aligned}
F & =q V B \sin \theta \rightarrow \sin \theta=\frac{F}{F V B} \\
\rightarrow \theta & =\sin ^{-1}\left(\frac{F}{q V B}\right)=\sin ^{-1}\left(\frac{8.2 \times 10^{-13}}{4 \times 10^{0} * 17 * 1.6 \times 10^{19}}\right) \\
\sigma & =48 \cdot 9^{0}
\end{aligned}
$$

(8)

$$
\begin{aligned}
& \vec{V}=3 \mathrm{~km} / \mathrm{s} \hat{i} \\
& \vec{B}=2 \hat{j}+3 \hat{j}+4 k
\end{aligned}
$$

$$
4=-6 \mathrm{ML}
$$

$$
m=2 m g
$$

$$
a=?!
$$

$$
\begin{aligned}
& \rightarrow \sum \vec{F}=m \vec{a} \quad q \dot{\beta} \times \vec{v}=m \vec{a} \\
& \quad+6 \times 160 \cdot(-12 \hat{j}+9 \hat{k})=2 \times 10^{-6} \vec{q} \\
& \vec{a}=(-36 \hat{j}+27 \hat{k})-3
\end{aligned}
$$

$$
\vec{a}=3 \hat{\sigma}-27 \hat{k}
$$

$$
\begin{aligned}
& \text { (9) } \\
& a_{e}=2 \mu \mathrm{~F}=\mathrm{V}_{2}^{v_{c} c_{2}} * 2 \times 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{(=2 \mu F}=V_{e=2 \mu \mathrm{~F}}^{V_{2} c_{2}} * 2 \times 10^{-6} \\
& Q=D V_{4 b} c_{e q}, c_{r q}=\left[\left(\frac{1}{(2+3)}\right)+\left(\frac{1}{4}\right)+\left(\frac{1}{8}\right)\right]^{-3}
\end{aligned}
$$



$$
Q=4 O H C \quad Q-a_{2}=q_{3}
$$

$$
a_{2}=8 * 2 \times 10^{-6}
$$

answer $\frac{q_{2}=16 \mathrm{MC}}{\text { ans }}$
(b)

$$
\begin{aligned}
& \Sigma v=0, \vec{L} \\
& \rightarrow 12-8 I-6-(10 I)=0 \\
& 6=185 \rightarrow \sqrt{I}=0.3333 \mathrm{~A} \\
& \text { I RV } \\
& \sqrt[1]{P}=I^{2} R=(0.3333)^{2} * 10=1.1 \mathrm{~W}
\end{aligned}
$$

(14)
(14)

$$
\begin{aligned}
& q(t)=q_{0} e^{-t / R C} \\
& q=5 \times 10^{-6} e^{-\frac{0.5}{0.5}} \\
& q=5 \times 10^{-6} e^{-1} \\
& q=1.84 \pi c
\end{aligned}
$$

(15)

$$
\begin{gathered}
R_{\text {eq }}=\left(\frac{1}{4}+\frac{1}{2}\right)^{-3}+4 \\
\left.R_{\text {eq }}=\left(\frac{1}{1.1^{333}}+\frac{1}{2}\right)^{-1}\left(\frac{1}{4} 6 \frac{1}{2}\right)^{-3}+\frac{1}{2}\right)^{-9} \\
+6=6.8 \Omega \\
\rightarrow I=\frac{6}{6.8}=0.088 \mathrm{~A}
\end{gathered}
$$

(1)

$$
\begin{aligned}
& R=4-\Omega \\
& 5=4 \mathrm{~A} \\
& t=60 \times 5 \\
& t=300 \mathrm{~S} \\
& t=n e \quad q=I t \\
& n=\text { ?? } \\
& n e=I 6 \rightarrow n=\frac{I t}{e}=7.5 \times 10^{22} \text { electrons }
\end{aligned}
$$

(2)

$$
R_{1}, L_{1}, \rho, A_{1} \quad R_{2}, \frac{l}{4}, \rho, 4 A_{1}
$$

when, the cylinder wire length is reduced tue cross sectional area increase by the same amount

$$
\begin{aligned}
\Rightarrow & R_{2}=\frac{\frac{1}{4} L}{4 A}=\frac{1}{16} \rho \frac{L}{A}=\frac{1}{16} R_{1} \\
& R_{2}=\frac{1}{16} R \text { answer }
\end{aligned}
$$

most thermal energy $=$ mast power consuming
(3)


$$
\Rightarrow P=I^{2} R \text { answer } I_{1}=\frac{\varepsilon}{2 R}, \quad \tau_{2}=\frac{\varepsilon}{R} \rightarrow I_{1} \neg I_{1} \Rightarrow p_{2} \neg P_{i}
$$

(4) case (2)


$$
R_{\text {elf }}=R_{1}+R_{2}
$$

There and resistor will be neglected

$$
I_{1}=\frac{D U}{R_{1}+R_{2}}
$$

Because tucenaulbing wire will allow the the current to pass without passing through the resistor

$$
\begin{aligned}
& \rightarrow R_{e q}-R_{1} \rightarrow I_{2}=\frac{\varepsilon}{R_{1}}>I_{1} \\
& \Rightarrow P=I^{2} R \rightarrow P_{2}>P_{1} \rightarrow \text { increase }
\end{aligned}
$$

(5)


$$
\begin{align*}
& I=I_{1}+I_{2} \\
& 1 \cdot 9=I_{1}+I_{2} \tag{1}
\end{align*}
$$

$\frac{a c d f a}{}$


$$
\Sigma V=0 \quad 2+30-(10 * 1 \cdot 9)=I_{2} R
$$

(5)


$$
\begin{equation*}
I=I_{1}+I_{2} \rightarrow 1.9=I_{1} 6 I_{2} \tag{1}
\end{equation*}
$$

abed 9


$$
\begin{aligned}
\Sigma V & =0 \rightarrow 50-(20 \times 1.9)-30=10 I_{1}=0 \\
& \rightarrow I_{1}=\frac{-18}{10}=-1.8 \mathrm{~A} \rightarrow I_{1}=\frac{1.8 \mathrm{~A}}{1 \text { 1ert }}
\end{aligned}
$$

(6) $r=\frac{m v}{q B} \rightarrow \quad r \rightarrow 2 r$ How??

$$
r=\frac{m v}{F\left(\frac{1}{2} B\right)} \rightarrow B_{2}=\frac{1}{2} B_{1}=\frac{1}{2}(0.2)=0.1 T
$$

(7) $v_{b}-v+E-V_{k}-v_{a}=0$

9

$$
V_{b}-\nabla_{a}-4-8+g \rightarrow V_{b}-V_{A}=3 V
$$


(9)


Same current

$$
I_{c}=I_{2}=I
$$

(10) The current inbue batbery atfer a longtime $I=\frac{\varepsilon}{R}$
the current intue resisbor however is zero
(11)

$$
a \times \quad F_{B}=0 \quad q, \sigma=0 \quad F_{B}=q \cup B \rightarrow v=0 \geqslant F_{B=0}
$$

$$
b \times F_{E}=\frac{k q_{1} q_{2}}{r^{2}} \text { dosen't depend, on velociby }
$$

$c \times \quad F_{E}$ isinderendant of webcity

$$
d \vee F_{B}=q \vee B, F_{E}=\frac{k q_{1} q_{2}}{r^{2}} v
$$

(12) oub of $B$ fue page © using the $Q$ right hamp
rule
ex cas
विद्ध ।
Example eleefron
(c) goes
in the oppsing
direction us

$$
\xrightarrow{\mathrm{B}^{v}} F O
$$

(13) $E=V B=1.6 \times 10^{7} * 20 \times 10^{-3}=320 \mathrm{kV} / \mathrm{m}$
(14)

$$
\begin{aligned}
& \partial \vec{F}=I B \overrightarrow{d L} \sin \theta \quad \alpha E \cdot R d \theta \\
& \vec{F}=I B \int_{0} R d \theta * \sin \theta \\
& \left.F=I B R \hat{k} \int_{0}^{\pi} \sin \theta \cdot d \theta=I R B \hat{R} \cos \theta\right]_{\pi}^{0} \\
& F=2 I R B \hat{k}
\end{aligned}
$$

(15) बuscospostion $1 \quad 0=0, \tau=I A B \sin _{c} \theta$ answer $\rightarrow \sin 6=0>0=0$ a position \&
(1)

$$
\begin{aligned}
& q=4 t^{3}+5 t+6 \quad e t=1 \quad I=11 \\
& I=\frac{\partial q}{\partial L}=12 t^{2}+5 \rightarrow t=1 \rightarrow \tau=17 \mathrm{~A}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& p=30 \mathrm{w}, \quad \Delta v=120 \mathrm{~V} \quad t=60 \mathrm{~S}, q=?! \\
& q=I t, \quad I=\frac{p}{D V}=\frac{1}{4} \mathrm{~A} \quad, q=15 \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \frac{O}{L L} \longrightarrow \\
& A_{1} \quad V=A L \\
& V_{1}=A_{1} L_{1} \\
& V_{1}=V_{2}=V=4 L_{1} * \frac{1}{4} A_{1} \Rightarrow A_{2}=\frac{1}{4} A_{1}
\end{aligned}
$$

$$
\rightarrow R_{2}=\rho \frac{4 l}{\frac{1}{4} A}=16 R \rightarrow R_{2}=16 R_{1}
$$

(4)


$$
\begin{aligned}
& U_{2}=1 b \not y 2207 \\
& \Rightarrow T=\frac{30}{15}=2 \mathrm{~A} \\
& r=\frac{V_{2}^{2}}{30}=\frac{20^{2}}{30}=13.33 \mathrm{~W}
\end{aligned}
$$

(5)


$$
\begin{aligned}
& R=24 \Omega \\
& \varepsilon=? ? \quad I=0.5 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {eq }}=\frac{2 R}{2}+R=2 R=48 \Omega \\
& * \quad=I R_{\text {eq }}=24 \mathrm{~V} \rightarrow \varepsilon=24 \mathrm{~V}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& V_{B}+12+(1.5 * 20)-20-V_{A}=0 \\
& V_{B}-V_{A}+22=0 \rightarrow V_{B}-V_{A}=-22 \mathrm{~V}
\end{aligned}
$$

(7)
(7) $\quad R \quad R \quad R=12 \Omega$

(8) $\quad \varepsilon=30 \mathrm{~V} \quad R=5 \Omega$
infially $\zeta<\frac{\varepsilon}{R}=6 \mathrm{~A}$

(9)
(10)

use the right hand ruce

$$
F_{B}=I(2 U) B \hat{k}=2 I L B
$$

(11)

$$
\text { (11) } \begin{aligned}
& \vec{A}=\pi\left(0.5^{2}\right) * \frac{(2 \hat{i}-3 \hat{j}+2 \hat{i})}{3} \\
& t=3 A \quad \vec{B}=2 \hat{i}-6 \hat{j} \\
& \Rightarrow \mu= I \vec{A}=\frac{\pi}{4}(2 \hat{i}-3 \hat{j}+2 \hat{k}) \\
&\left.\mu=\vec{\mu} \times \vec{\beta}=\frac{\pi}{4}(12 \hat{i}+4)^{\hat{j}}-6 \hat{k}\right) \\
& \tau_{x}=9 \cdot 4 \hat{i}
\end{aligned}
$$

(12)


$$
\begin{aligned}
& \Rightarrow \sum \vec{F}=0 \rightarrow 2 T=m g+I L B \\
& \Rightarrow T=\frac{m g+I L B}{2}=0.34 \\
& I=0.34 \mathrm{~N}
\end{aligned}
$$

$$
m=50 \times 10^{-3} \mathrm{~kg}
$$

$$
l=0.4 \mathrm{~m}
$$

$$
I=8 \mathrm{~A}
$$

$$
B=60 \times 10^{-3} \mathrm{~T}
$$

$$
\begin{array}{lll}
\vec{E}=(4 \hat{i}+3 \hat{j}) N / C & A(2,3) \\
\Delta V=2, ? & B(5,7) \\
\Delta V=\vec{E} \cdot \vec{d} & A=\overrightarrow{A B} \\
\rightarrow \Delta V=(4 \hat{i}+3 \hat{j}) \cdot(3 \hat{i}+4 \hat{j}) & \delta=3 \hat{i}+(73) \hat{j} \\
\rightarrow \Delta \hat{j} \\
& \Delta V=12+12=24 V &
\end{array}
$$

$b=40 \times 10^{-9} \mathrm{~h} C$

$$
\begin{aligned}
& \lambda(x)=40 \times 10^{-9} x \\
& C=0.2 \mathrm{~m} \\
& \Delta V=? ?
\end{aligned}
$$

$$
\begin{array}{ll}
v=F \int \frac{\partial L}{r}=k * 4 \times 10^{-9} \int_{0}^{-0.2} \frac{x d x}{\sqrt{2}+0.6} & r=\sqrt{x^{2}+0.16} \\
v=9 * 40 \int_{0}^{0.2} \frac{x d x}{\sqrt{x^{2}+0.16}} & \alpha L=\lambda d x \\
\alpha=17 \mathrm{~V} & \alpha L=b x \partial x
\end{array}
$$

(3)
from Gaass's law $E=\frac{\rho r}{3 \varepsilon 0}$

$$
\Rightarrow v_{a}-v_{n}=\frac{\rho}{3 \varepsilon \sigma} \int_{0}^{4 \pi 1^{0^{2}}} r d r
$$

$$
D^{V}=3 \mathrm{~V} \text { answer }
$$

(4) $\quad R=20 \Omega \quad t=10 \mathrm{~min} \quad \Delta v=30 \mathrm{~V}$

$$
\begin{array}{lll}
R=20 \Omega & t=? \\
n=? ? & q=n e & q=t, \quad I=\frac{D V}{R}
\end{array}
$$

$$
n=\frac{q}{e}=5.6 \times 10^{2}
$$

$$
\rightarrow I=1.5 \mathrm{~A}, \quad q=900 \mathrm{C}
$$

(5) St refoned
$\downarrow$
volume
remains.
consband

$$
V=A L
$$

$$
R=\rho \frac{L}{A}
$$

$$
\Rightarrow R_{2}=16 R
$$



$$
\begin{aligned}
& I=1.5 \mathrm{~A} \\
& R=?! \\
& I=I_{1}+I_{2}
\end{aligned}
$$

$b c$ de b


$$
\begin{aligned}
\Sigma v=0 & \rightarrow+50-(20 \times 1 \cdot 5)-I_{2} R=0 \\
& \rightarrow 20=I_{1} R \quad \rightarrow 20=2.5 R
\end{aligned}
$$


abeta


$$
+30+(20 * 1.5)+10 I_{2}-50=0
$$

$$
\begin{aligned}
\Rightarrow \quad 10 & =-10 I_{2} \rightarrow I_{2}=-1 \mathrm{~A} \\
20 & =I_{1} R \rightarrow 20=2.5 R \rightarrow \frac{\sqrt{I_{1}}=2.5 \mathrm{~A}}{\text { Answen }}
\end{aligned}
$$

(7) $\frac{K}{b} \frac{\varepsilon_{0} A}{\alpha}$ is not a capacitance coulmob's constant $\quad r$ =dielectric constant
if it was $\frac{K \varepsilon_{0} A}{\alpha} \rightarrow$ parallel plate capacitor
(8)

$$
\begin{gathered}
P=7.5 \mathrm{~W} V=125 V \\
\alpha=4.5 \times 10^{-3} /{ }^{\circ} \mathrm{C}, R_{0}=27 \\
T_{0}=20^{\circ} \mathrm{C}, T=7 T_{0}=140^{\circ} \mathrm{C} \\
R=R_{0}\left[1 t \alpha\left(T-T_{0}\right)\right] \rightarrow R_{0}=\frac{R}{1+\alpha\left(T-T_{0}\right)} \\
\rightarrow R=\frac{\Delta V^{2}}{P}=2083.33 \rightarrow 208353=20 \\
R_{0}=\frac{2083.33}{1 t 4.5 \times 10^{-3} *(140-20)}=1352.81 \\
R_{0}=1352 . \Omega
\end{gathered}
$$

(9)

$$
V=\frac{q^{2}}{2 C}=\frac{1}{2} q V=\frac{C V^{2}}{2}
$$



$$
\begin{aligned}
& v_{0}=18^{2 V} \\
& c_{1}=15 \mathrm{mF}^{2}
\end{aligned}
$$

$$
c_{2}=b^{\mu F}
$$

$$
\begin{aligned}
& c_{2}=60 \mathrm{NF} \\
& c_{3}=20 \mathrm{MF}
\end{aligned}
$$

$$
c_{c_{2}}=c_{23}+c_{1}, \quad c_{23}=c_{2} b c_{3}=30 \mu F
$$

$$
c_{e q}=\left(\frac{1}{30}+\frac{1}{15}\right)^{-1}=10 \mathrm{HF}
$$

$$
Q=C_{e q} v_{0}=1.8 \times 10^{-4} \mathrm{C}
$$

$$
Q=\frac{C_{2} V_{0}=1.810}{C_{23}}=6 \mathrm{~V} \rightarrow \begin{aligned}
& U_{3}=\frac{V_{3}{ }^{2}}{2} \\
& V_{23}=\frac{4}{2}=3.6 \times 10^{-} \mathrm{J}=0.36 \mathrm{~mJ}
\end{aligned}
$$

$$
\text { answer } \begin{aligned}
v_{2} & =\frac{c_{2} v_{23}^{2}}{2}=0.18 \mathrm{~mJ} \\
v_{1} & =\frac{q^{2}}{2 c_{1}}=1.1 \mathrm{~mJ}
\end{aligned}
$$

(10)

$$
\begin{aligned}
& V_{c}=0.85 \varepsilon \quad, t=2.45 \quad \tau=? ? \\
& v_{c}=\varepsilon\left(1-e^{-t / \tau}\right) \rightarrow 0.854=q\left(1-e^{-\frac{2.4}{\tau}}\right) \\
& \rightarrow \tau=1.2655=1.35 \text { answer }
\end{aligned}
$$

(12)

$$
p=1200 \mathrm{w}, \quad \Delta v=120^{-v} \quad l=4 \mathrm{~m}
$$

$$
A=0.33 \times 10^{-6} \mathrm{~m}^{2}, \rho=1,2
$$

$$
R=\frac{\rho l}{A}, R=\frac{v^{2}}{p} \rightarrow \sqrt{R=12 \Omega}
$$

$$
\rho=\frac{R A}{L}=9.9 \times 10^{-7} \Omega \mathrm{~m} \text { answer }
$$

$$
\begin{aligned}
& \text { (11) } \\
& q(t)=q_{0} e^{-t / R C} \\
& \rightarrow \quad u=\frac{q^{2}}{2 c}, u_{p}=\frac{q^{2}(t)}{2 c} \\
& R=45 \Omega \\
& C=85 \mathrm{MF} \\
& v_{i}=\frac{a_{b}^{2}}{2 c} \\
& U_{i}=100 \% \mathrm{U} \\
& U_{t}=0.8 U_{i} \\
& u_{i}=0 \\
& -U_{p}=0.80 \\
& \frac{u_{f}}{u_{i}}=\frac{q^{2}}{Q_{0}{ }^{2}} \rightarrow 0.8=\frac{q^{2}}{a_{0}{ }^{2}} \\
& \downarrow \\
& \frac{v_{f}}{v_{i}}=0.8 \\
& \rightarrow \sqrt{\frac{q}{Q_{0}}}=\sqrt{0.8} \\
& I=a_{0} e^{-t / R C} \rightarrow \frac{q}{a_{0}}=e^{-t / R C} \rightarrow t=-R C \ln \left(\frac{q}{a_{0}}\right) \\
& t=0.4 \mathrm{~ms} \\
& \rightarrow t=4.016 \times 10^{-4} \mathrm{~s}=0.4 \mathrm{~ms} \\
& \text { answer }
\end{aligned}
$$

