

2 = 5 + 7 = 10 I. + Iz= I3 => I2= L3-L1 -> I2= L3-L1 14: 3I,-9+2I30=00 0--- 0 K2 6 4.5 + 2 - 5 + 2 I3 = 0 - - - 0 [3-11-2 -- 3 -> [= 1A / I = 3A / & = 15V P = VI = 15 + 2 = 30 W

F = I²R = (8645)² +5 = .0208 W

A 102 PHY student has connected [n] identical capacitors in parallel across a power supply o voltage 150.0 V. How many capacitors [n], each with C = 80.0 µF, were connected to supply 114.3 J of energy? Report your result for [n] as an integer number of capacitors.

Select one:

O 2023

O 402

O 489

O 127

O 13

Clear my choice

in parallel 30 => Visequel an Cequaindat = Color => E=1 cu2 => #5 114.3 = 1 cen (150) Cey = -01016 F -> -01016FZ N + 80 MF n = .01016 80 % 106 = 127

Which of the following is an incorrect statement?

Select one:

- O The capacitance depends only on the geometry of the device and can never be negative quantity.
- O The temperature coefficient of electric resistivity is a pure number with no dimension.
- O The electromotive force has the same unit as the electric potential.
- O The potential drops across electronic devices connected in parallel are equal.
- Ohm's law states that the ratio of the current density to the applied electric field is constant.

Clear my choice

The answer is A

A parallel plate capacitor consists of square plates of area 6.0 cm² separated by a distance of 2.0 mm. The capacitor is connected to a 6.0 V battery. If the plates are pulled apart so that the separation becomes 3.0 mm, how much work (in MeV) is done?

Select one:

18.61

5.05

808.03

789.47

99.56

Clear my choice

 $R_{2} = 11.61$ $R_{3} = 11.61 \text{ Tr} + 23.37 \text{ Tr} - 21.51 + 10.15 = 0$ $R_{1} = 23.71$ $V_{1} = 21.01$ $V_{2} = 24.33 \text{ A}$ $V_{3} = 21.01$

The answer is C

A nickel wire has a resistance R. If its length and diameter are both reduced by a factor of 4, its resistivity will:

Select one:

- O decrease by a factor of 4
- o stay the same
- O decrease by a factor of 16
- o increase by a factor of 4
- o increase by a factor of 16

The answer is B

A block of iron of volume 807 mm³ is used to make a wire 23.7 m long. What is the resistance (in Ω) of such a wire at room temperature?

Take $\rho = 9.70 \times 10^{-8} \Omega$.m

Select one:

0.07

67.51

504.78

1989.18

19.89

Clear my choice

 $R = \frac{gL}{A}$ $R = \frac{gL}{V}$ $= \frac{gL}{V}$

Capacitors A and B are identical.

Capacitor A is charged so it stores 4 J of energy and capacitor B is uncharged. The capacitors are then connected in parallel. The total stored energy (in J) in the capacitors is now:

- * (2 Points)
- \bigcirc $\frac{1}{4}$
- 16
- 0 8
- 0 4

A parallel plate capacitor consists of square plates of area 3.0 cm² separated by a distance of 3.0 mm. The capacitor is connected to a 6.0 V battery. If the plates are brought closer so that the separation becomes 2.0 mm, how much work (in MeV) is done?

Select one:

408.37

1111.78

49.78

423.09

2.88

A 102 PHY student has connected [n] identical capacitors in parallel across a power supply of voltage 210.0 V. How many capacitors [n], each with $C = 45.0 \, \mu\text{F}$, were connected to supply 231.2 J of energy? Report your result for [n] as an integer number of capacitors.

Select one:

Ceq = K n C

E = 1 CU2

231.2 = 1 An 45 + 16 a 210

N = 233

N = 233

Useful Constants

 $k_{\rm e} = 1/4\pi\epsilon_{\rm o} = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\epsilon_{\rm o} = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; e = 1.6x10⁻¹⁹ C; $m_{\rm electron} = 9.11 \times 10^{-31} \text{ kg}$; $m_{\rm proton} = 1.67 \times 10^{-27} \text{ kg}$; g = 9.8 m/s²

201010

If a potential difference of 2 V is applied across a 1- μF capacitor, then the charge (in μC) on the capacitor is

- O a. 2
- O b. 4
- O c. 6
- O d. 8
- o e. 10

Useful Constants

 $k_e = 1/4\pi\epsilon_o = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; e = 1.6x10⁻¹⁹ C; $m_{\text{electron}} = 9.11 \times 10^{-31} \text{ kg}$; $m_{\text{proton}} = 1.67 \times 10^{-27} \text{ kg}$; g = 9.8 m/s²

Four capacitors are connected as shown in the figure. If $C = 3.0 \, \mu\text{F}$, the equivalent capacitance (in μF) between points a and b is

oa. 6.0

o b. 5.7

oc. 5.5

O d. 5.0

o e. 5.3

 10^{-27} kg; g = 9.8 m/s²

If $R = 9 \Omega$, what is the equivalent resistance (in Ω) between points A and B in the figure?

oa. 64

O b. 96

O c. 112

O d. 48

O e. 32

Determine the charge stored by C_1 (in mC) when C_1 = 20 μ F, C_2 = 10 μ F, C_3 = 30 μ F, and V_0 = 36 V.

o a. 0.36

o b. 0.24

oc. 0.32

O d. 0.4

o e. 0.48

 10^{-27} kg; g = 9.8 m/s²

A potential difference of 7.0 V is applied across a cylindrical conductor. The conductor is 20.0 m long, and has a radius of 0.5 mm and a resistivity of 5.6 \times 10⁻⁸ Ω .m. The current flowing in the conductor (in A) is

- o a. 1.4
- O b. 2.5
- O c. 4.2
- O d. 4.9
- o e. 6.1

If $V_{\rm A}$ – $V_{\rm B}$ = 60 V, how much energy (in mJ) is stored in the 54- μ F capacitor?

- o a. 50.3
- O b. 13.3
- O c. 26.1
- O d. 34.1
- o e. 19.2

Two identical parallel-plate capacitors each having plate area $A = 50.0 \text{ cm}^2$ and plate separation d = 1.0 mm are completely filled with two different dielectrics of dielectric constants $K_1 = 2.0$ and $K_2 = 5.5$, and then connected as shown in the figure. The equivalent capacitance (in pF) of the combination is

- o a. 221
- o b. 266
- o c. 332
- od. 389
- o e. 416

A capacitor in a single-loop *RC* circuit is charged to 85% of its final potential difference in 3.2 s. What is the time constant (in s) for this circuit?

o a. 1.27

o b. 0.79

oc. 2.11

od. 1.69

o e. 2.64

What is the potential difference $V_{\rm B} - V_{\rm A}$ (in V) when I = 2.0 A in the circuit segment shown below?

- oa. +54
- O b. +67
- O c. -54
- od. -67
- O e. +18

Determine the resistance R (in Ω) when I=2.0 A.

oa. 8

o b. 30

oc. 2.5

O d. 4.1

o e. 16.3

Useful Constants

 $k_0 = 1/4 \text{mc}_0 = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; $\epsilon = 1.6 \times 10^{-19} \text{ C}$; $m_{\text{electron}} = 9.11 \times 10^{-31} \text{ kg}$; $m_{\text{proton}} = 1.67 \times 10^{-27} \text{ kg}$; $g = 9.8 \text{ m/s}^2$

What is the equivalent resistance (in θ) of the combination of identical resistors between points θ and θ in the figure if R= 218 θ

35

C

42

28 b

49

d

C

56.5

0

2 b

EU

4

5.00

 $k_{\rm e} = 1/4\pi\epsilon_{\rm o} = 9 \times 10^9 \,\rm N.m^2/C^2$; $\epsilon_{\rm o} = 8.85 \times 10^{-12} \,\rm C^2/N.m^2$; $e = 1.6 \times 10^{-19} \,\rm C$; $m_{\rm electron} = 9.11 \times 10^{-31} \,\rm kg$; $m_{\rm proton} = 1.67 \times 10^{-27} \,\rm kg$; $g = 9.8 \,\rm m/s^2$

If a potential difference of 40 V is applied across a 10-0 resistor, then the current (in A) flowing in the resistor is

3

4

Useful Constants

 $k_{\rm e} = 1/4\pi\epsilon_{\rm o} = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$; $\epsilon_{\rm o} = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$; $\epsilon = 1.6 \times 10^{-19} \text{ C}$; $m_{\rm electron} = 9.11 \times 10^{-31} \text{ kg}$; $m_{\rm proton} = 1.67 \times 10^{-27} \text{ kg}$; $g = 9.8 \text{ m/s}^2$

The capacitor in the figure is initially uncharged. If $R=15.0~{\rm k}$ 0, $\epsilon=24.0~{\rm V}$, and the time constant is $t=55.0~{\rm \mu s}$, then after closing the switch the time (in ${\rm \mu s}$) it takes for the voltage across the capacitor to reach 8.0 V is

10

0

38.6

22

0.0

60

d

99.0

A parallel plate capacitor with a capacitance of 12 μF is connected to a source of emf with a potential difference of 3 V. If a dielectric material of $\kappa=6$ is inserted between the plates of the capacitor, then the change in the stored electrical energy, ΔU (in J) is: * [4]

- 0 0
- $0.1.2 \times 10^{-5}$
- $0.1.4 \times 10^{-6}$
- $0.5.4 \times 10^{-5}$
- 2.7 × 10 €

-676-cosa

A 10.0 μ F capacitor is charged using a 10.0 V battery through a resistor R. If the potential difference on the capacitor reaches 4.00 V in 3.00 sec, then R (in k Ω) is : * (2 Points)

- 0 1.35
- @ 391
- 9 587
- 0 402
- 108

A parallel plate capacitor with a capacitance of 12 μ F is connected to a source of emf with a potential difference of 3 V. If a dielectric material of $\kappa=6$ is inserted between the plates of the capacitor, then the change in the stored electrical energy, ΔU (in J) is: * $\Box G$ (2 Points)

- $0.1.4 \times 10^{-6}$
- 1.2 × 10⁻⁵
- 2.7×10^{-4}
- \bigcirc 5.4 × 10⁻⁵
- 0

A long copper wire of cross sectional area of $4.0x10^{-6}$ m² and carrying a current of 5 A. The drift speed in (m/s) of the electrons in wire is: (the concentration of electrons is $6.0x10^{-28}$ / m³, e= $1.6x10^{-19}$ C) * (2 Points)

- € 4.0 ×10⁻⁴
- @ 0.13x10⁻⁴
- None of the above
- 13x10-1
- · 1.3×10-

 $\Delta V = 2 \times C - 1M = Q - 2!2$ $C = Q - 2 + 1 \times 10^{-6}$ $Q = 2 \wedge C = Q$

(1,2) (8,4) (series) (3) 5 R D 5 R + 5 R = 10 R = R. (5) 3R 33R+3R=6R=R2 A (R, 5R) (R, 3R) (Parallel) 10 R * 5 R = 50 R2 = 3.33 R = R3 0 SR R, 10 R+5R 15R @ 6R * 3R = 18R2 = 2R = Ru 6R+3R R (R, Ru) (series) 3.33 R + 2 R = 8.33 R = 7 5.53 * 9 = 48

P = 5.6 + 100

R= PL

R = 5.6 x 10 x 20

X 4.5 *103 12

R=1,426

 $R = \frac{V}{I} = 7 I = \frac{7}{1,426} = 4.9$

[] = u.a (d)

energy =
$$\frac{CV^2}{2}$$
 = $\frac{2}{2}$ = $\frac{4(80)^2}{2}$

$$V(4) = \mathcal{E}(1 - e^{\frac{1}{2}})$$
 $-85\mathcal{E} = \mathcal{E}(1 - e^{\frac{1}{2}})$
 $-1.95 = -1.96$
 $-1.96 = -3.2$
 $-1.96 = -3.2$
 $-1.96 = -3.2$
 $-1.96 = -3.2$

Re V=uov R=10 x I=2??? R=V=x I=uo =uA I=uA

v= E (1- e => 8=24 () - e====) 1 -1 = -+ 0 2 -1 = - nc 2 = e Trc -. 4055 + = 22 Ms

energy =
$$U$$
 $U = CV^{2}$
 $U_{1} = 12 \times 10^{6} \times Q = 54 \times 10^{6} \text{ J}$
 $U_{2} = C_{New} V^{2}$
 $C_{New} = C \times K$
 $C_{New} = 12 \times 10^{6} \times 6 = 72 \times 10^{6} \text{ f}$
 $U_{1} = 72 \times 10^{6} \times Q = 324 \times 10^{6} \text{ J}$
 $\Delta U = U_{2} - U_{1}$
 $\Delta U = 324 \times 10^{6} - 54 \times 10^{6} = 270 \times 10^{6} \text{ J}$
 $\Delta U = 2.7 \times 10^{6} \text{ J}$

V = 4V = 10V = 10M = 1 = 35 $V(1) = E = (1 - e^{\frac{1}{R}})$ $U = 10 = (1 - e^{\frac{1}{R}})$ $U = 1 = (e^{\frac{1}{R}})$ $U = 1 = (e^{\frac{1}{R}})$ U = 1 = (e

energy = U Uold = Co2 C2 = C V = 12 x10-6 x 50 Q . 600 x 10-6 C U = (600 *106,2 Upen = 7.5 x10-3 C= (180 + 100 => Q= 424.2641 +106 424.2641 * 10 = 600 × 10-6 In . 70711 = 100 Rc +0-34657 =++ 1 . 935 . 75 ×10-6 1-0.036 ms

A: 4 *10 m2 [=5 A Q=1.6 *10 C N=6 *10 I = N*191 * V * A 8 = 6 * 10 * 1.6 * 10 * V * U * 10 6 5 = 38.4 × 10 V2 V1 = 1.3 *10

