

إعداد الطالبة: بثول محمد

A tom $\underset{\substack{-2 e \\-2 e}}{-8 e} \quad$ Electricity $\binom{$ Force }{ vector quantize }
$+p$ protons
d, anooj; Netcharge Q In newtons

- electrons

$$
\frac{\frac{-8}{-2}}{+10} \operatorname{Net}_{20} 0\left(\operatorname{dacos} x^{2} 0,1,1_{0}\right) 2_{0} l_{01}
$$

-6
(+8) Net $=-2 \Rightarrow$ negative charge
$2 e^{-}$obs?
$\frac{-5}{-2}$
(+8) Net $2+1 \Rightarrow$ positive wet charge

* The charge is quantized

Qnet $z n q e^{-}$

$$
\begin{aligned}
& \text { *qe } e^{-q} p+ \\
& q e 2+1.6 * 10^{-14} \mathrm{C} e^{-} e_{\text {Tubl dool'al }}^{\text {Wase }} \\
& \text { n:- Sojell oligsull ase } \\
& \text { Type of change:- } \\
& \text { 玉uйदbl }
\end{aligned}
$$

i) positive charge ($+q$)
2) negative charge ($-q$

* coulb̄um's charge laui: point charges, stuluoul q_{1}, q_{2}, Quantity of the charge coul $f(c)$

Distance meter (m)

Like charges: rebel eachother

$$
F \propto q_{1}, q_{2}
$$

$F \propto \frac{1}{r^{2}} \Rightarrow$ inverse squares law

$$
\begin{aligned}
x \quad r_{q} & \Rightarrow \text { Net }=\text { zero } \\
& \Rightarrow i-L_{0 l} \text { culo óselgo } \bar{z} \text { is }
\end{aligned}
$$

$$
\begin{align*}
& * F \times \frac{q_{1} q_{2}}{r^{2}} \Rightarrow F=\frac{k q_{1} q_{2}}{r_{2}} \hat{r} \quad \therefore k=\frac{1}{4 \pi \epsilon} \\
& \epsilon_{0}=8.85 * 10^{-12} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 * 10^{9} \quad \text { permat1 }
\end{align*}
$$

$(a, p) \quad v_{\hat{i}}>0, t, v_{f} \neq v_{\hat{i}}, \frac{v_{p}}{v_{e}}$ 2?? Given: $(E, t, v i)$
$v f=v \hat{\imath}+a t \Rightarrow \sum F=m a$
$m g+q E=m a \quad \therefore a=\frac{q E}{r^{4}}$
$\Rightarrow \quad v_{2 a t} \Rightarrow v_{2}=\frac{q_{r} E}{m} t \quad$ so $\frac{v_{p}}{v_{e}}=\frac{m_{e}}{m_{p}}$

$$
\Rightarrow \quad F_{G}=\frac{\sigma m_{1} m_{2}}{r_{1}}
$$

Example: - Find the distance if we put a third charge is between for the net forces on q_{3} is zero
F net $=0$

$$
\frac{x-x}{q_{1,260 \mu \mathrm{c}} q_{3}} \underset{4-x}{x} q_{2}=56 \mu_{c}
$$

$F_{13}=F_{23}$ \qquad

$$
\begin{aligned}
& \frac{k q_{1} q_{3}}{r_{2}}=\frac{k q_{2} q_{3}}{r^{2}} \Rightarrow \frac{25 * 10^{-3}}{x^{2}}=\frac{36 * 10^{-6}}{(4-x)^{2}} \\
& \Rightarrow \sqrt{36 \times 2}=\sqrt{25\left(16-8 x+x^{2}\right.} \\
& \quad 6 \times 220-5 x \Rightarrow 11 \times 220 \therefore x=\frac{20}{11} m
\end{aligned}
$$

* Electric Field
$E=\frac{F}{q_{0}} \quad \therefore E=\frac{\mathbb{K}, q}{r^{2}} \hat{r}=\mid q_{0}:$ test point charge ${ }^{2}+1$
$E=$ the Force per unit positive charge

Find the electric field at point a

$$
\vec{F}=\frac{k q_{1} q_{0}}{r^{2}} \hat{r}(N) \quad \vec{F}=k \frac{q_{1}}{r^{2}} \hat{r}(N / C)
$$

Example:- Find the Electric field at the origin

$$
\begin{aligned}
& E_{2}=\frac{9 * 10^{9} * 3 * 10^{-6}}{9}=3 * 10^{3}-\hat{\imath} \mathrm{N} / \mathrm{c} \\
& E=\frac{29 * 10^{9}+2 * 10^{-6}}{4}=4.5 * 10^{3}-\hat{\jmath} \mathrm{N} / \mathrm{C} \\
& \vec{E}=\left(4.5 * 10^{3}-\hat{\jmath}+3 * 10^{3^{8}}-\hat{\imath}\right)^{0} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \mid \vec{E} \text { net } \mid=\sqrt{9+c u} \\
& \theta=\tan ^{-1}\left(\frac{3}{u_{1} 5}\right)
\end{aligned}
$$

$$
\text { * } \vec{F}_{2} q \vec{E}
$$

s Lex mules ais si ga tax ail ger ago d's sung
continuous charge distribution

* uniform shape

1) wire:- (\sim 1D) وognd y ed \qquad $+9 x$ uniform charge distribution
$\lambda \rightarrow$ Linear charge density

$$
\therefore d q=\lambda(d l
$$

$\vec{E}=k \int \frac{d q}{r^{2}} \hat{r}=k \int \frac{\lambda d q}{r^{2}} \hat{r}$

1) wire (ID)

$$
\frac{G+t+t+t}{L}
$$

$\lambda=$ linear charge density

$$
\lambda=\frac{d q}{d l}
$$

Example: $-2 \vec{E}=k \int \frac{d d E}{r^{2}} \hat{r}$

$$
\vec{E}=k \int \frac{\lambda \delta t \mid 1}{r^{2}} \hat{r} \cdot \cdots
$$

$r:$ - dis trance bet ween the source point and the field point $d g=\lambda d L=\lambda d y$
λz linearcharge density
$\lambda=\frac{d q}{d t}$
Find the electric field at the origin

$$
\begin{aligned}
& \vec{E} 2 k \lambda \int \frac{d y}{y^{2}}(-\hat{\jmath}) \\
& \lambda=2 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& k \lambda(-\hat{\jmath}) \int_{a}^{a+l} \frac{d y}{y^{2}}=k \lambda(-\hat{\jmath})\left[\frac{-1}{y}\right]_{a}^{a+i} \\
& =+k \lambda \hat{\jmath}\left[\frac{1}{a+c}-\frac{1}{a}\right]
\end{aligned}
$$

2) surface area (2Dimention) surface charge, Density (σ)

$$
\begin{aligned}
& \sigma=\frac{Q}{A}=\frac{d q}{d a} c / m 2 \\
& d q=\sigma d a \\
& \Rightarrow \vec{E}=k \int \frac{d q}{r^{2}} \hat{r}=\sigma k \int \frac{d a}{r^{2}} \hat{r}
\end{aligned}
$$

Example:- charged ring $\quad E=k \int \frac{d q}{r^{2}} \hat{r}$

$$
\begin{aligned}
& E=K \int \frac{d q}{\left(x^{2}+R^{2}\right)} \cos \theta \\
& \vec{E}=K \hat{\int} \int \frac{d q x}{\left[k^{2}+x^{2}\right]\left[R^{2}+x^{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}=K \uparrow \int \frac{x d q}{\left[x^{2}+R^{2}\right]}{ }^{\frac{3}{2}}=\frac{K \hat{}}{\left[x^{2}+R^{2}\right]^{\frac{3}{2}}} \int d q \\
& \vec{E}=\frac{K \uparrow x Q}{\left[x^{2}+R^{2}\right]^{\frac{3}{2}}}
\end{aligned}
$$

3) charged sphere (3D) volume charge density

dielectric sphere
Example:- charge desk

$$
\vec{E}=K \int \frac{d q}{R^{c}} \hat{R}
$$

$d q=\sigma d a$

$$
d q=\sigma d a
$$

$$
\frac{d a{ }^{2} r d r}{\frac{r^{r} d r}{\left.x^{2}+r^{2}\right]}} \frac{d x^{3}}{\left[r^{2}+x^{2}\right]^{\frac{1}{2}}}
$$

$$
\begin{aligned}
& \int_{0}^{a} \frac{2 r d r}{\left[x^{2}+r^{2}\right]^{\frac{3}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 r d r z d\left(r^{2}\right) \\
& r_{2}=8 \\
& \vec{E}=\pi k \sigma x \times \int_{0}^{a} d\left(r^{2}\right)\left[r^{2}+x^{2}\right]^{\frac{3}{2}} \\
& \int d y\left[y+x^{2}\right]^{\frac{3}{2}} \\
& 2 \pi<\sigma \uparrow x\left[\frac{\left[r^{2}+x z\right.}{\pi-1 / 2}\right]_{0}^{a} \\
& \text { 2ा } 2^{\top} K x \uparrow\left[\left[\frac{1}{\left[\frac{1}{2}+x^{2}\right.}\right]^{\frac{1}{2}}-\frac{1}{x^{2}}\right]
\end{aligned}
$$

special case
Ka $\gg \times$ close to the surface $]$

$$
\begin{aligned}
\vec{E} & =2 k \hat{\imath} \\
& =\frac{2 \uparrow \sigma \pi}{4 \pi \epsilon_{0}}
\end{aligned} \quad=\frac{\sigma}{2 \epsilon_{0}} \uparrow
$$

Electric dipole:-

$$
\begin{aligned}
& \vec{p}=q \vec{d} \text { coulomb } \xrightarrow[-q E]{\longleftrightarrow} \xrightarrow[-q]{\longrightarrow} \\
& \text { Ca hentus }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow E \\
& d^{\prime}=d x \sin \theta
\end{aligned}
$$

でg-illiss \leftarrow auguado uniform electric field coss
$\vec{F}=+q \vec{E} \Rightarrow$ Electric dipole moment

$$
\begin{aligned}
\tilde{L} & =q E d \sin \theta \\
& =p E \sin \theta \Pi=\vec{p} \times \vec{E}
\end{aligned}
$$

potential energy $\Rightarrow U=-\vec{p} \cdot \vec{E}$ Tole I scolare

$$
\sin _{p}=\frac{\sigma}{2 E_{6}} \hat{n}
$$

(2) (1)
\hat{n} normal unit vector

$x:-$
sheets
sheen

Find the electric field
in the three regions region $\sin x$

$$
\begin{aligned}
& \vec{E}_{1}(\text { net })=0 \\
& \vec{E}_{3}(\text { net })=0 \\
& \vec{E}=\frac{2 \sigma}{\epsilon_{0}} \hat{n}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma+1+\sigma \\
& \text { (2) (1) } \\
& \text { * } p \longrightarrow \\
& \vec{E}=E_{1}+E_{2} \\
& =\frac{\sigma}{\epsilon_{0}} \hat{n} \\
& x p \longrightarrow
\end{aligned}
$$

Jルレ
Date
（2）
（1）

$1-102$
て.,

0 お出 Jis ciaro oglé Hiod

20
（\％）

Electric bield lines:

* ch y 23 Gays's law:Electric field (\vec{E}) fitesdis Electric flux $\left(\phi_{e}\right)$ styeacerell

close sulffface

$2 m^{2}=A$ area

$$
\begin{aligned}
& \phi_{e}=5 \\
& \frac{\phi_{e}}{A}-E=\frac{5^{1}}{2} 2^{2} 2^{\circ} \mathrm{N} / \mathrm{C}
\end{aligned}
$$

$$
E=\frac{\phi_{e}}{A} \quad\left\{\phi_{e}=E A\right.
$$

$$
\begin{aligned}
& A=A^{\prime} \cos \theta \\
& \phi_{e}=E A^{\prime} \cos \theta=\vec{E} \cdot \vec{A} \\
& \text { area } \rightarrow \text { vector } \overrightarrow{A^{\prime}}
\end{aligned}
$$

江说 20 出 50 $\quad 1$

2panasis $\vec{A}, \vec{A} \hat{n}$

$$
\varnothing_{e}=\vec{E} \cdot \hat{n} \cdot A
$$

For variable parameters

$$
\phi_{e}=\int_{\text {interface }}^{\vec{E} \cdot \hat{n} \text { da }}
$$

$$
\hat{i} \cdot \hat{\imath}=1
$$

$$
\begin{aligned}
& A=u \pi r^{2} \mid \oint_{2}^{2} \int_{2} \vec{E} \cdot \hat{n} d a \\
& \begin{array}{l}
=\int 8 k \frac{q}{r^{2}} \hat{n} \cdot \hat{n} d a \\
a<\pi
\end{array} \\
& =1<\frac{q}{r^{2}} \int \frac{\hat{n} \cdot \hat{n}}{1} d a \\
& \neq k \frac{q}{r^{2}} u \pi r^{2}=\frac{1}{4 \pi \epsilon_{0}} q u \pi=\frac{q_{e a d}^{E_{0}}}{E_{0}}
\end{aligned}
$$

$$
\int_{s} \vec{E} \cdot \hat{A} d a=\frac{q_{\text {enclosedt }}}{E_{0}} G \text { auss's law }
$$

pä̈bljer gowl

Gauss's law:-
Electric flux:-

1) $\phi_{c}=\int_{\text {surf }} \vec{E} \cdot \hat{n} d a=\int_{\text {sur }} \vec{E} \cdot \overrightarrow{d a}$

$$
\overrightarrow{d a}=d a \hat{n}
$$

2) $\phi_{e}=\frac{q_{e n c}}{\epsilon_{0}} \int_{s} \vec{E} \cdot \hat{\theta} d a z \frac{q e n c}{\epsilon_{0}}$

Examples. Find the electric ff lux) through

$$
\begin{aligned}
& \text { the shaded surface } 8 \\
& \phi_{e}=\frac{q_{e n s}}{\epsilon_{0}} \left\lvert\, \begin{array}{ll}
\phi_{\text {cube }} & =+\frac{q_{1}}{\epsilon_{0}} \\
q_{1}
\end{array}\right.
\end{aligned}
$$

$\phi_{\text {surface }}=\frac{q_{1}}{6 \epsilon_{0}}$

2 ged ul as Glass cig lo \underline{g} divide

Example of hemisphere 0) $\phi_{e}=\frac{+q_{2}}{2 \epsilon_{0}}$ curved surface

Ex:- Find the charge on the ball A t equilibrium:solve \longrightarrow Torque 2 f is

$$
T_{\text {net }}=0 \mid+q E l \cos 12-m g l \sin 18 \geq 0
$$

Example 8-
Find the electric field at point p

Ex:- charged dielectric sphere

$$
T=F d
$$

$$
\begin{aligned}
& f=\frac{+Q}{\frac{4}{3} \pi a^{3}} \text { coul/m } / \mathrm{m}^{3} \\
& \int \vec{E} \cdot \hat{n} d a=\frac{\text { qenc }}{\epsilon_{0}} \\
& E \int d a \hat{n}, \hat{n}=\frac{q_{e n c}}{\epsilon_{0}} \\
& E\left(4 \pi r^{2}\right)=\frac{Q}{E} \\
& E\left(4 \pi r^{2}\right)=\frac{\text { qenc }^{3}}{\epsilon_{0}} \\
& {\left[-\left(4 \pi r_{1}^{2}\right), \frac{\rho \rho}{\epsilon 0}\left[\frac{4}{3} \frac{\pi r_{1}^{3}}{6}\right)\right.} \\
& \overrightarrow{[-}=\frac{\rho r_{1} \hat{n}}{\epsilon_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ix } 20 \\
& \frac{d}{2}=L \sin \left(\frac{\theta}{2}\right) \\
& \text { dz } 2 \text { जिgel है, } \\
& \rightarrow F
\end{aligned}
$$

ch 23:-electric potential:- (V)
electric Force \rightarrow conservative force $f_{c} \rightarrow w_{c} \rightarrow U$ u potential energy (J)

V electric potential (Volt)

$$
d w=\vec{F} \cdot d \vec{r}
$$

wo Slider (10) ?

$w=q \int \vec{E} \cdot \overrightarrow{d r}$
define $\omega C=\Delta u$

$$
\begin{aligned}
& \Delta u=u_{B}-u_{A} \\
& \frac{\Delta u}{q}=-\int_{A}^{B} \vec{E} \cdot \overrightarrow{d s}_{s}
\end{aligned}
$$

define:- $\frac{J}{\left(0_{0}\right)} \frac{\Delta u}{q}=\Delta v \quad$ potential difference

$$
\frac{J}{\text { could }}=\text { volt } \quad\left\{\Delta v=\frac{\Delta u^{2}}{q}\right.
$$

potential difference $\quad \Delta V=V_{B}-V_{A}$

$$
\begin{aligned}
& V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot \overrightarrow{d_{s}} \\
& \Delta V=\frac{\Delta u}{q} \quad \frac{J}{\operatorname{coul}}=v d t \quad\left\{\begin{array}{l}
\text { enery }=\text { wor } k \text { oh } \\
\text { wz - } \Delta u
\end{array}\right.
\end{aligned}
$$

$$
\Delta u=q \Delta v
$$

$$
u_{p}=q v_{p}
$$

$$
V_{B}-V_{A} z-\int_{A}^{0} \vec{E} \cdot \overrightarrow{d s}
$$

$$
V_{p}=-\int_{\infty}^{p} \vec{E} \cdot \overrightarrow{d s}
$$

$$
V_{\infty}=0
$$

$$
v_{B}=\frac{k q}{r_{B}}, v_{A}=K \frac{q}{r_{A}}
$$

$$
=k q \frac{1}{r} \int_{r_{A}}^{r_{B}}=\frac{k q}{r_{B}}-\frac{k q}{r_{A}}
$$

$V=\frac{k \frac{q}{r}}{r}$ volt

$$
V=1<\sum \frac{q_{i}}{r_{i}} \text { volt }
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\vec{F}=K \frac{q_{1} q_{2}}{r^{2}} \hat{r} \\
\vec{E}=K \frac{q}{r^{2}} \hat{r} \\
V=K \frac{q}{r} \\
v_{p}=-\int_{\infty}^{p} \vec{E} \cdot \overrightarrow{d s}
\end{array}\right] \\
& \text { Ex:- } \\
& v_{p}=v_{q_{1}}+v_{q_{2}} \\
& =\frac{9 * 10^{9}\left(-2 * 10^{-6}\right)}{5}+\frac{9 * 10^{9}\left(5 * 10^{-6}\right)}{4} \\
& 27.35 * 10^{3} \text { valt }
\end{aligned}
$$

B) Find the energy fo bring a 3 M from infinite to point p

$$
\begin{aligned}
& U=\frac{q}{7} V_{p} \\
= & 3 * 10^{-6}\left(7.65 * 10^{3}\right) \mathrm{J}=22.95 * 10^{-3} \mathrm{~J}=\left\{\begin{array}{l}
22.95 \\
\mathrm{~mJ}
\end{array}\right\}
\end{aligned}
$$

(2) $0{ }^{2}$

$\int_{+} 0 \operatorname{mg}_{8} q \vec{E} \mid \vec{A}$
$\because \vec{F}_{2} q_{\vec{E}}^{\mathrm{H}_{2}} \mathrm{ma}$

$$
\vec{G}=\frac{q}{m} \vec{E}
$$

$E X(2)$ a) Find the electric field at point P.

$$
\begin{aligned}
& \lambda=\frac{10 * 10^{-6}}{0.20} \text { could } / m \\
& \vec{E}=k \int \frac{d q}{r^{2}}=k \lambda \int \frac{d x}{r^{2}} \hat{r} \\
& r=\sqrt{x^{2}+(0.5)^{2}} \\
& \vec{E}=k \lambda \int \frac{d r}{\left(x^{2}+(0.5)^{2}\right)} \hat{r}
\end{aligned}
$$

$E x=k \lambda \int \frac{d x}{\left(x^{2}+(0.5)^{2}\right)} \cos \theta(-\hat{1})$
$\left(\left(x^{2}+(0.5)^{2}\right)\right.$
$=E d \int \frac{d x}{\left.\left[x^{2}+60.5\right)^{2}\right]} \sqrt{\left.2 \frac{x}{\left[x^{2}+(5.5)^{2}\right.}\right]^{1 / 2}}(-\hat{1})$
ch 238－potential energy：$u \ldots \Delta u=q \Delta v$

$$
u=q v
$$

The potential energye of the system $V=\frac{k q_{1}}{r_{12}}$ volt at pcharge q_{2}
Example：－

$u_{\text {total }}=\frac{K q_{1} q_{2}}{L}+\frac{K q_{1} q_{3}}{L \sqrt{2}}+\frac{K q_{2} q_{3}}{L}$
θ the total energy of the system
to bring the charge qu from
＊Find the energy
infinity topoint p ．or from p to infinity？？
$u_{q_{3}}=q_{3} v_{p} / v_{p}=\frac{K q_{1}}{L \sqrt{2}}+\frac{K q_{22}}{L}$

$$
u_{q_{3}}=\frac{K q_{i} q_{3}}{L \sqrt{2}}+\frac{K q_{2} q_{3}}{L}
$$

* Find the energy of the system in 4

$$
\begin{aligned}
& u=k \frac{q q^{\prime}}{r} J \\
& u_{\text {system }}=\frac{k q_{1} q_{2}}{a}+\frac{k q_{1} q_{3}}{a \sqrt{2}}+\frac{k q_{1} q_{4}}{a} q_{1} \quad q_{1} \quad q_{2} \\
& \text { +kq} q_{2} \text { square } \\
& \Rightarrow V_{p}=-\int_{0}^{p} \vec{E} \cdot \overrightarrow{d s} \quad \frac{\frac{q_{2}}{a}}{}+\frac{\frac{k q_{2} q_{4}}{q^{2}}}{}+\frac{k q_{2} q_{4}}{a} \\
& d V=-\vec{E} \cdot d \vec{s} \\
& * \text { along } x \text {-axis } \Rightarrow d v z-E x d x \quad(10-\text { indy) } \\
& E x=\frac{-d v}{d x} \\
& \vec{E}=\frac{-d v}{d x} \uparrow \\
& \text { * along }{ }^{y} \text {-axis } \Rightarrow \vec{E}=\frac{-d v}{d y} \hat{j} \\
& A \text { along } Z \text {-axis } \Rightarrow \vec{E}=\frac{-d v}{d z} \hat{k} \\
& \text { in } 3 D \Rightarrow \vec{E}=\frac{-\partial v}{\partial x} \hat{i}-\frac{\partial v}{\partial y} \hat{i}-\frac{\partial v}{\partial \tau} \hat{k} \\
& \left\{\begin{array}{l}
\frac{\partial V}{\partial x} \rightarrow \text { partial } \vec{E} 2-q r a d \nabla=A \Delta X-\nabla V \\
d v \text { normal } \overrightarrow{d x} \text { derivation }
\end{array}\right.
\end{aligned}
$$

Example 8-A certain potential is given by

$$
\begin{aligned}
& v(x, y, z)=3 x y z \quad \text { Find } \vec{E}(x, y, z z) \\
& \frac{\partial V}{\partial x} z 3 y z, \frac{\partial v}{d y}=3 x z, \frac{\partial v}{\partial z}=3 x y
\end{aligned}
$$

\Rightarrow Find $\vec{E}(1,1,1) \rightarrow$ needed to bring achange of $2 M c$ from point B to point $C_{\text {:- }}$

$$
\begin{aligned}
\Delta U & =q \Delta V \\
& =2\left(10^{-8}\right)[-2] J
\end{aligned}
$$

Equipotential

Find $U_{A B} \Rightarrow U_{A B}=0$
E
uniform elect rice field

$$
V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot \overrightarrow{d s}
$$

$$
=-\vec{E} \cdot \int d s=-\vec{E} \cdot \vec{d}
$$

$$
z-E d \cos 0
$$

$$
2-E d
$$

SL boles
So ode yest All haber

$U_{A B}=$ zero
Curie elector ΔV المrera

Example

$$
\cos 0=\frac{d}{d^{\prime}}
$$

'miform electric field

$$
\begin{aligned}
& V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{s}=-\vec{E} \cdot \int d \vec{s}=-\vec{E} \cdot \vec{d}=-\Sigma d \\
& V_{C}-N_{A}=-\int_{A}^{C} \vec{E} \cdot d \vec{s}=-\vec{E} \cdot d^{\prime}=-E d^{\prime} \cos \theta \\
& \therefore V_{B}-V_{A}=V_{C}-V_{A} \Rightarrow V_{B}=V_{C}
\end{aligned}
$$

 * continuous charge distribution **

$$
\lambda=\frac{q}{L}=\frac{2 \times 10^{-6}}{0.2} d m
$$

$$
\xrightarrow[L=20 \mathrm{~cm}]{+\mathrm{Cl}^{+}} d x
$$

$$
\begin{array}{ll}
d V=K \frac{d q}{r} & \lambda=\frac{d q}{d x} \\
\left.V=K \int_{0}^{l} \frac{d q}{r}=K \lambda \int_{0}^{L} \frac{d x}{\sqrt{x^{2}+y^{2}}}=K \lambda \ln \left(x+\left(x^{2}+y^{2}\right)\right)^{\frac{1}{2}}\right]_{0}^{L} \\
z K \lambda\left[\ln \left(L+\left(L^{2}+y z\right)^{\frac{1}{2}}\right)-\ln y\right]
\end{array}
$$

Example:-dq $\quad \lambda=\frac{q}{2 \pi a} \quad$ i $\quad q$

$$
\begin{aligned}
& \vec{E}=\frac{k q}{r^{2}} \hat{r} \\
& V=\frac{k q}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}=\frac{-\partial v}{\partial r} \hat{r} \\
& \vec{E}=k \int \frac{d q}{r^{2}} \hat{r}
\end{aligned}
$$

$$
\therefore \vec{E}=-\frac{\partial v}{\partial x} \hat{\imath}=-\left(\frac{-1}{2} k q * 2 x\left(x^{2}+a^{2}\right)^{\frac{-1}{2}}\right)=\frac{k q x}{\sqrt{\left(a^{2}+x^{2}\right)^{3}}}
$$

Example: -uniform charge dis k
$a=2 \pi r$
da $22 \pi r d r$
$W=k \int \frac{d q}{r^{\prime}}=k \sigma \int \frac{d a}{r^{\prime}}$
$\left.=k \sigma \int_{0}^{a} \frac{2 \pi r d r}{\sqrt{r^{2}+x^{2}}}=\sigma k \pi \int_{0}^{a} \frac{2 r d r}{\sqrt{r^{2}+x^{2}}}=6 k v+2 \sqrt{r^{2}+x^{2}}\right]_{0}^{a}$
$=\operatorname{mex}=-2 k \pi\left(\sqrt{a^{2}+x^{2}}-x\right)$

Example:- Find the charge unteach sphere

$$
\begin{align*}
& v_{1}=K \frac{q_{1}}{r_{1}} \tag{1}\\
& v_{2}=K \frac{q_{2}}{r_{2}}
\end{align*} \Rightarrow \frac{v_{1}=v_{2}}{r_{1}}=\frac{k q_{2}}{r_{2}} \Rightarrow \frac{q_{1}}{r_{1}}=\frac{q_{2}}{r_{2}} \ldots \text { (2) }
$$

$$
\therefore q_{2} 2
$$

$\Rightarrow q_{12}$

Example:- Find the potential of eachsptere

$$
A
$$

$$
v_{A}=\frac{k q_{1}}{r_{1}}+\frac{\frac{k q_{2}}{0}}{n} \Rightarrow A \text { oB } \quad \Rightarrow i
$$

$$
v_{B}=\frac{k q_{2}}{r_{2}}+\frac{k q_{1}}{r} \Rightarrow B d_{A} \text { ji }
$$

Example:- Find Vat point 0

(3) N(1) Lolio 0 ine \vec{E} adblis

$$
\vec{E}=\text { (2k } \lambda
$$

نَ

$$
V=k \int \frac{d q}{r}
$$

Special case:-
$u=q v$
$j=e^{-} v \rightarrow v a l^{\prime}$

$$
\begin{aligned}
& J 2 \mathrm{~V}^{-9} \times 1 \mathrm{~V}=1.6 \times 10^{-19} \mathrm{ev} \\
& =1.6 \times 10^{-9} \times 1.6 \times 10^{-4} \mathrm{eV}
\end{aligned}
$$

Ch 24:- capacitance and the dielectr. C

\Rightarrow dielectric, Insubtor

icu
$\Rightarrow c=\frac{q}{v}=\frac{q}{\frac{k}{a}}=\frac{a}{k}=4 \bar{N} \epsilon_{0} \cdot a \Rightarrow q \Rightarrow 1 ا$ s. as

Electric Capacitor sbrosicincu

Source
parallel plate capacitor

$$
\begin{aligned}
& \vec{E}_{1}=\frac{\sigma}{z \epsilon 0} \\
& \vec{E}_{2}=\frac{\sigma}{z E_{0}} \\
& \vec{E}_{1}+\vec{E}_{2}=\frac{\sigma}{\epsilon_{0}} \hat{n}
\end{aligned}
$$

(ion

Tout $20 \Rightarrow 2,151 \underline{?}$

$$
\Rightarrow c_{2}^{q} \frac{q}{\left(q A \epsilon_{0}\right) d} \underset{\sim}{d} \rightarrow \epsilon_{0} A \rightarrow_{i m u}^{a}
$$

$\therefore C_{2} \epsilon_{0} \frac{A}{N}$
cylinderical capacitors

$$
\begin{aligned}
& C=\frac{q}{\Delta v} \quad \Delta V=V_{B}-V_{A} \\
& \Delta V=-\int_{A}^{B} \vec{E} \cdot \overrightarrow{d s}
\end{aligned}
$$

Ch 24:- Capacitance (c)
$C=\frac{Q}{V} \quad$ Furad
parallel plate capucitor $C=\frac{E_{0} A}{d}$

* cylinder cuical cupacitor? -

$$
\begin{aligned}
& \quad a-b \text { Source jeo } \\
& =-\int_{a}^{a k \lambda d r}{ }^{r} b \\
& =-2 k \lambda f^{b} \frac{d r}{r} \\
& =-2 k \lambda(\ln r)_{a}^{b}=-2 k \lambda(\ln b-\ln a)
\end{aligned}
$$

$E 2 \pi r l 2 \frac{1}{\epsilon_{0}} \lambda 1$

$$
E=\frac{\lambda}{2 \pi r \epsilon_{0}}=\frac{2 k \lambda}{r}
$$

$$
\begin{aligned}
& C=\frac{Q}{\Delta V}=\frac{\lambda l}{2 k \lambda \ln \left(\frac{a}{b}\right)} \\
& C=\frac{l}{2 k \ln \left(\frac{a}{b}\right)} \Rightarrow \frac{c}{l}=\frac{1}{2 k \ln \left(\frac{a}{b}\right)} \quad \mathrm{F} / \mathrm{m}
\end{aligned}
$$

spherical capacitor:-

$$
\begin{aligned}
& C=\frac{\Phi}{K \Phi\left(\frac{a-b}{a b}\right)} \\
& =4 \pi \in 0\left(\frac{a b}{a-b}\right)
\end{aligned}
$$

$$
\frac{C=Q}{\Delta V}
$$

$$
2-\int_{a}^{b} E r d r=-k \int_{b}^{b} \frac{p}{r^{2}} d r
$$

$$
z-k \phi \int_{a}^{b} \frac{d r}{r^{z}}
$$

$$
=k p\left[\frac{1}{r}\right]_{a}^{b}
$$

$$
\Delta V=K \Delta\left[\frac{1}{b}-\frac{1}{a}\right]=\Delta K\left(\frac{a-b}{a b}\right)
$$

Combination of capacity or

Con desor condense $\dot{0}$ Toll

$$
\begin{aligned}
& \frac{1}{C \text { eq }}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\text { (1) } \\
& C \text { F }=\frac{4 M F}{4}=1 M F \\
& C \text { ceq } 2 \frac{C}{n}
\end{aligned}
$$

Energy stored in the capacitor roral energy (Jol).

$$
\begin{aligned}
& V=\frac{U(J)}{q(\text { cout })} \quad \text { voll } \\
& \Delta U=w \\
& V_{2} \frac{w}{q} \quad \Rightarrow \quad d w=v d q
\end{aligned}
$$

$d w z \frac{q}{c} d q$

$$
w=\frac{1}{c} \quad \int_{0}^{a} q d q=\frac{1}{2} \frac{q^{2}}{c} J
$$

$$
w=\frac{1}{2} \frac{c^{2} v^{2}}{c}
$$

$$
U=\frac{1}{2} C V^{2}
$$

$$
w=\frac{q^{2} v}{2 q}=\frac{1 q V}{2} V
$$

Energy density

$$
\frac{U}{V_{\text {glume }}}=u \frac{J}{m^{2}}, \quad \frac{V}{d} 2 E
$$

parallel plate capacitor

$$
u=\frac{\frac{1}{2} c v^{2}}{A d}=\frac{1 \epsilon_{0} \frac{A}{d} v^{2}}{2 A d}=\frac{1}{2} \epsilon_{0} \frac{V^{2}}{d^{2}}=\frac{1}{2} \epsilon_{0} E^{2}\left(x_{0}\right)
$$

$U=\int u d v$
$d U_{2} d u(d v) \longrightarrow$ volume element \Rightarrow fer $u=u$ volume $d \tau_{2} d v$
induced chowije densily

$$
\begin{aligned}
& V<V \\
& V=\frac{1}{k}\left(V_{0}\right)
\end{aligned}
$$

$$
\left[=\frac{1}{k}\left(E_{0}\right)\right.
$$

$\frac{\sigma_{1} \sigma_{i}}{\epsilon_{0}}=\frac{1}{K}\left[\frac{\sigma}{\epsilon_{0}}\right]$
15:- dievetric constant

Jistor
$\sigma \uparrow=\sigma\left(\frac{k-1}{k}\right)$ indused charge
$\rightarrow C_{0} C_{0} \frac{A}{d} \quad C_{2} \in \frac{A}{d}$
$\therefore \frac{C}{C_{0}} 2 \frac{E}{E_{0}} 2 K \quad C_{2} K C_{0}$
C دis
C. $2 \dot{2}$

Example,. Find the equivalant capacitor $\left(C_{a b}\right)$

$$
\begin{aligned}
& C_{52} \frac{c_{2}+C_{3}}{C_{2}+C_{3}}=\frac{3}{4} M F=0.75 \mu_{F} \\
& C_{6}=C_{5}+C_{1}=2.75 \mu_{F}
\end{aligned}
$$

$$
C_{7}=\frac{C_{6} C_{4}}{C_{6}+C_{4}}=\frac{2.75+64}{6.75}=\frac{11}{6.75} M S
$$

Find the energy of C_{1}

$$
q_{2} C V=4 M F+120,480 M F
$$

2. closed S_{1}, S_{2} o Find the energy

Sj"

$$
\begin{aligned}
& u^{\prime} \frac{1}{2} C v^{2} 2 \frac{1}{2} q v \\
& \mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}=6 \mu \mathrm{~F} \\
& \mathrm{Veq}=\frac{q}{C_{\text {eq }}}=\frac{480}{6} M_{F}=8 \text { volt } \\
& q_{1} 2 \mathrm{CV} \therefore q=2 u_{*} 10^{-6}-880 \mathrm{C} \quad 3320 \mu_{\mathrm{C}} \\
& q_{2}=2 * 10^{-6} * 80 \mathrm{C}=160 \mathrm{mc} \\
& q_{2}=q_{e q}-q_{1}=16 \mu_{c}
\end{aligned}
$$

$$
* * 23-7:
$$

ge a $K \in$ gan arb

1. Find the nearest distance between the two protons

$$
\begin{aligned}
& E \hat{t}=E f \\
& k \epsilon=\frac{K q q}{r} \rightarrow \text { potential energy } \\
& \frac{1}{2} m v^{2}+\frac{1}{2} m v^{2}=\frac{K(q p)^{2}}{r} \\
& \therefore \quad r=\frac{9 * 10^{9} *\left(1.6 * 10^{-19}\right)^{2}}{\left(1.67 * 10^{-27} *(1500)^{2}\right)}
\end{aligned}
$$

2. Find the maximum electric for ce

$$
F=\frac{k(q)^{2}}{r^{2}}
$$

Example:-

Permativity $\Leftarrow \in k \in$

$$
\begin{array}{l|l}
c_{1}=\epsilon_{1} \frac{A}{d} & C_{\text {eq }} 2 C_{1} C_{2} \\
C_{1}+C_{2} \\
c_{2}=\epsilon_{2} \frac{A}{d} & \Rightarrow \epsilon_{1}=K \epsilon_{0} 21.2 \times 8.85 * 10^{-12} \\
& \epsilon_{2} 2 K \epsilon_{0} 2208.85 * 10^{-12}
\end{array}
$$

Example:- Find the equivalent capacitor

$$
\begin{aligned}
& \begin{array}{lll}
\frac{d}{d} k_{1} & \epsilon_{1} & \uparrow \\
d & k_{2} & \epsilon_{2} \\
\downarrow^{2 d}
\end{array} \\
& c_{1} \geqslant \epsilon_{1} \frac{A}{d} \\
& C_{2}=\epsilon_{2} \frac{A}{d} \\
& \text { ES; } \\
& \text { المار'2 } \\
& \therefore C_{0}=\epsilon_{0} \frac{A}{2 d} \\
& \therefore c_{\text {eq }}=\frac{c_{1} c_{2}}{c_{1}+c_{2}} \\
& c_{\text {eq }}=C_{1}+C_{2}
\end{aligned}
$$

Example: - Find the charge of c

$$
q_{1}=C V=4 * 10^{-6} * 120=480 \mu_{C}
$$

Find the anergy stored in C_{1}

$$
U=\frac{1}{2} C V^{2} 2 \frac{1}{2}+4 \mu F=(120)^{2} J
$$

${ }^{4} M_{F}$

(3.)

$$
\begin{aligned}
& q_{\text {eq }}=q_{1}+q_{2}=480 \mu \mathrm{C} \\
& \frac{q_{1}}{c_{1}}=\frac{q_{2}}{c_{2}} \Rightarrow v_{a} \mathrm{vb}
\end{aligned}
$$

$$
\begin{aligned}
& * \text { Find the Final potenergg } \\
& U_{f}=\frac{1}{2} c_{1} v^{2}+\frac{1}{2} c_{2} v^{2}
\end{aligned}
$$

$\therefore V=\frac{480 \mu F}{c_{1}+c_{2}} \quad$ parallel $q_{2} c v$ $V a \geq v b$

Example:-24-51 \therefore Nab 212 V

1) Find the initial energy of the system
2) Find the energy stored in C_{2}

$$
\text { (1) } \therefore C_{6}=\frac{C_{3} C_{4}}{c_{3}+C_{4}}=\frac{6 * 12}{18}=4 \mu \mathrm{~F}
$$

$$
C_{7}=C_{6}+C_{5}=8 \mu_{F}
$$

$$
U_{1}=\frac{1}{2} c_{\text {of }} V^{2}=\frac{1}{2} * 2 * 144 * 10^{-6}=144 \mu_{\mathrm{J}} .
$$

$$
V=\frac{1}{K} V_{0} \quad \quad \quad=\frac{1}{k} E_{0}
$$

dielectric

وب大د الشو'ل وعدf

$$
\begin{aligned}
& q_{q}=2 \mu_{F} * 12=24 \mu_{c} \\
& \therefore q_{2}=c v \Rightarrow v_{1}=\frac{12+10^{-6}}{8+10^{-6}}=3 v \Rightarrow v_{1} 2 v_{2} \\
& \Rightarrow q_{6}+q_{5}=24 \mu_{c} \quad \therefore q_{6}=q_{5}=12 \mu_{c} \\
& v_{3}=2 v \quad, v_{4}=1 v \Rightarrow v_{3}+v_{4}=3 v
\end{aligned}
$$

(2) $U=\frac{1}{2} C v^{2}=\frac{1}{2}+4 * 10^{-6}+6=12 \mu \mathrm{~J}$

Example:- Find C_{1} if Id $_{2}=0$

Solng.

$$
\begin{aligned}
& \text { solng: } V_{a c} \text { 2 } V_{a d} \ldots(1) \\
& V_{c}-V_{d} 20 \therefore V_{b c}=V_{b d} \\
& q_{2} c V \\
& \Rightarrow \frac{q_{1}}{4}=\frac{q_{2}}{8} \cdots(1) \quad \frac{q_{1}}{3}=\frac{q_{2}}{c} \\
& \Rightarrow q_{2}=2 k_{1} \Rightarrow \frac{q_{1}}{3}=\frac{2 q_{1}}{c_{1}} \Rightarrow c_{1}=6 \mu \mathrm{~F}
\end{aligned}
$$

current and Risistence

$$
\begin{aligned}
& V_{a b}=E b \\
& \Delta V=V_{a b}=V_{a}-V_{b} \\
& \Rightarrow \vec{F}=q \vec{E}=m \vec{a} \quad V_{a}>V_{b} \\
& \therefore \vec{a}=\frac{q \vec{E}}{m}
\end{aligned}
$$

$$
\left|I_{p}\right| \quad I_{2}\left|I_{e}\right|
$$

 ch imo jo by

$$
v_{b}-v_{a}=-\int_{b}^{a} E \cdot d r
$$

Drift velocity
agojody (Td)

n_{i} number densi ty carrier

I(avelage electric current) $\Rightarrow \operatorname{Iag}=\frac{\Delta q}{\Delta t}$
volume $=A, \Delta x=A, v d=\Delta t$
\therefore total number of carriers $\Rightarrow N_{2} A \cdot V_{d} \Delta t n$

$$
\Delta Q=A \cdot d \cdot \Delta t n \cdot q
$$

$$
\operatorname{Iavg}=\frac{\Delta q}{\Delta t}=\frac{A \cdot v d \cdot n, \Delta t \cdot q]}{\Delta t}
$$

Iavg $=\frac{\Delta q}{\Delta t} \quad C / s=A m p e r e$
Example: Find c_{1} if $V_{c d}=0$
soln: $\quad V_{a c}=\mathrm{Vad} \ldots$ (1)
$2 \mathrm{Vd} \cdot n \cdot$ q.A

$$
\begin{gathered}
q=c v \\
v v_{c}-v d 20 \\
\Rightarrow \frac{q_{1}}{4}=\frac{q_{2}}{8} \cdots(1) \\
\Rightarrow q_{2}=2 q_{1} \Rightarrow \frac{q_{1}}{3}=\frac{q_{2}}{c_{1}} \Rightarrow \frac{q_{1}}{3}=\frac{2 q_{1}}{c_{1}} \Rightarrow c_{1} 26 \mu \mathrm{~L}
\end{gathered}
$$

** Resistance and current
$V_{a b}=E L \Rightarrow V_{a b}, V_{a}-V_{b}$
 Niva - ait tano
$\measuredangle \longrightarrow$ conduativety
$\bar{J} \rightarrow$ carrent des.l.y

$J \propto E \quad J=\sigma \vec{E}$ ohm's law

$$
J=\frac{1}{\rho} \vec{E} \Rightarrow \rho 2 \frac{1}{\sigma} \rightarrow \text { resistivily }
$$

$$
\begin{aligned}
& J=\sigma E \\
& \begin{array}{l}
\frac{I}{A}=-\frac{V}{L} \Rightarrow \frac{V}{I}=\frac{1}{\sigma} \frac{1}{A}= \\
\text { dine } \frac{\Delta V}{I}=R \rightarrow \text { resistance \& to }
\end{array} \\
& R \Rightarrow \underset{a_{I}}{\sqrt{2}} \frac{D^{2}}{b} \quad a b=I R \\
& \text { Example } \\
& 10 \mathrm{~V} \text {, } 6 V \\
& \frac{\rho L}{A}=R \\
& \left\{\begin{array}{l}
V_{2} I R \text { ohms } y_{a w} \\
V_{a}>v_{6}
\end{array}\right. \\
& \text { Find potential drop } \\
& V_{a b} 2 V_{a}-V_{b} \quad u V \\
& \text { ohmic resistance } \\
& \text { slope } 2 \frac{\Delta V}{I}=R
\end{aligned}
$$

Silos
$V_{a b} \rightarrow$ external potential J,umerig volt mater ohme's law
$\varepsilon=I R-I_{r}$
$\therefore I=1$ $V, I R$

$$
P=I^{2} R
$$

* electric power :-

Energy $\Delta U=\Delta q \Delta V$
define the power $p=\frac{\Delta \omega}{\Delta t} J / \sec 2 \omega a t t$

* $p_{2} \frac{\Delta q}{\Delta t} \Delta V$

$$
P=I \Delta V \Rightarrow P=\frac{V}{R}(V)=\frac{V^{2}}{R}
$$

 مَّ

$$
P=I(I R)=I^{Q} R
$$

Example:- Aproton beam is strike a target. How many proton strike the target in 23 sec . If the current is 125 MA

$$
\begin{aligned}
& I=\frac{\Delta q}{\Delta t} \Rightarrow \Delta q=125 * 10^{-6}+23 \\
& \Delta q=n \cdot q_{p} \Rightarrow n=\frac{125 * 23 * 10^{-6}}{1.8+610^{-19}}
\end{aligned}
$$

Exampk:- A potential of 120 Volt is a pplied to awise of leng th 150 cm withe aross section area of $0.6 \mathrm{~mm}^{2}$, Find the current in the cupper wire of तu $=1.5 \times 10^{7}$

$$
\begin{aligned}
& \text { Soln:- } V=I R \Rightarrow I=\frac{V}{R}=\therefore R=\frac{1}{\sigma} \times \frac{1}{A}=\frac{1.5}{1.5 * 10^{7}+06010^{-3}} \text { ohma } \\
& I=\frac{1 R 0}{R}
\end{aligned}
$$

$$
* \text { emf } \mathcal{L}
$$

D.C soarce
Exteraalpotential Vab

* Ressitance combination

1) Series combination

$$
\begin{aligned}
& V_{b}>V_{c}>V_{d} \\
& V_{b}=V_{a}, V_{d}=V_{e} \text { piscum }
\end{aligned}
$$

6

$$
\begin{aligned}
& V_{2} \mathbb{R}_{1}+I R_{2} \\
& I R_{\text {eq }}{ }_{2} I R_{1}+I R_{2} \\
& R_{\text {eq }} 2 R_{1}+R_{2} \\
& R_{\text {eq }} 2 R_{1}+R_{2}
\end{aligned}
$$

2) parallel combination

$$
\begin{aligned}
& \text { 2) parallel combination } \\
& V_{2}=V_{1}=I_{2} \\
& R_{\text {eq }} \\
& R_{1}+\frac{V}{R_{1}}=\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{1} R_{7}}{R_{1}+R_{2}}=\frac{18}{9}=2 I_{\Omega}
\end{aligned}
$$

Example:- Find the current in the circuit

$$
T=I=\frac{\varepsilon}{R_{\text {eq u }}}=\frac{10}{5+1}=\frac{10}{6}=\frac{5}{3} \mathrm{Amp}
$$

Example:- Find the potential drop across
\qquad
$V=I R=1.66 * 1=1.66 \mathrm{~V}$

$$
1
$$

med a da's $\tilde{\sigma}_{0}$ glace $ل$

A
Example:- Find the internal pot. drop
Visternal 2 IR 21.66 t/ 21.66 V

I deal source \Rightarrow Vinternal 20 , Because \quad r20
$*$ Kirchilf's law's

burch. 3

1) $\sum I 20$ at a junction (a) OR[b]

at iunction as $I_{3}-I_{2}-I_{1} 20$
2) $\sum V=0$ over loop

$$
\begin{aligned}
& \therefore-2 I_{1}-3 I_{3}+620 \\
& \left(I_{3}-I_{2}-I_{1} 20\right) * 3 \\
& 6-3 I_{3}-2 I_{1} 20
\end{aligned}
$$

$$
\begin{aligned}
& 3 I_{3}-3 I_{2}-3 I_{1} 20 \\
& \frac{-3 I_{3}+6-2 I_{1}=0}{\left(6-3 I_{2}-5 I_{1} 20\right) * 4} \\
& \left(-12-2 I_{1}+4 I_{2} 20\right) * 83 \\
& \\
& 24-12 I_{2}-20 I_{1} 20 \\
& \frac{-36+12 I_{2}-6 I_{1} 20}{-12-26 I_{1} 20 \therefore I_{1}}=\frac{-12}{26}
\end{aligned}
$$

Example:-

$$
\begin{aligned}
& V_{a}=V_{b} \\
& 1+2 \Rightarrow \leq j 55 \\
& 3+4 \Rightarrow y^{\prime}, 96 \\
& 5+6 \Rightarrow 3^{\prime \prime} 9
\end{aligned}
$$

civ jeli $1 \Omega \quad \overline{\text { cox }}$ $V_{a}=V_{b}$ \&i sund

cunt دMn djillis x $V_{a} \neq V_{b} \quad$ ib $\quad j \bar{\nu}$,
Excumple: Find $V_{a b}$

$$
\begin{aligned}
& I=\frac{\varepsilon}{R_{\text {eq }}+r}=\frac{12}{5}=2.4 \text { Amp } 12 \sqrt{V} \\
& v_{a b}=V_{a}-b v(+2 * 2.4-b)=4.8-6 \\
& z-1.2 v
\end{aligned}
$$

amer-uo di b
on,$\dot{\sim}>5$, 9 Pacoum
b, a

$$
\begin{aligned}
& V_{b a}=1.2 V_{2} V_{d} \\
& \text { * } R C-\text { Series combination } \\
& \sum V_{2}=+\varepsilon-R I-\frac{q}{c}=0 \\
& V_{R=[R} \quad V_{c}=\frac{q}{c}
\end{aligned}
$$

$I_{\text {max }} 2$, wallis ad sol oriole
at $t=\left(\mathrm{o}^{+}\right)=+\varepsilon$-IR -020
$\therefore I_{\max }=\frac{\varepsilon}{R}=I_{0} \rightarrow$ at $t 20$
 time

$$
\begin{aligned}
& \varepsilon-q_{\text {max }}=0 \quad \therefore q_{\text {max }} 2 \subset \varepsilon \\
& \varepsilon-I R-\frac{q_{2}}{c} 20 \\
& \varepsilon-\frac{d q}{d t} R-\frac{q}{c}=0 \\
& \varepsilon=\frac{d q}{d t} R+\frac{q}{c} 208: \frac{\varepsilon C-q}{C R}=\frac{d q}{d t} \\
& \left.\Rightarrow \int_{0}^{q} \frac{d q}{\varepsilon c-q}=\int_{0}^{t} \frac{d t}{c R} \Rightarrow-\ln (\varepsilon c-q)\right]_{0}^{q}=\frac{t}{R c} \\
& \therefore \frac{-t}{R c}=\ln |\varepsilon c-q|-\ln |\varepsilon c|=\ln \frac{\varepsilon c-q}{\varepsilon c} \\
& \therefore \frac{\varepsilon c-\hbar}{\varepsilon c}=e^{-t / R c} \Rightarrow e^{-t / R c}=\frac{q_{\text {max }}-q}{q_{\text {max }}} \\
& e^{-t / R c} * q_{\max }=q_{\max }-q \quad i q_{2} q_{\max }\left(1-e^{-t / R c}\right)
\end{aligned}
$$

Example:- If Io 2100 A , Find I

$$
T=R C=10 * 10^{3} * 10^{-6} * 6=60 * 10^{3} 260 \mathrm{~ms}
$$

$$
I=I_{0} e^{-t / \tau} \Rightarrow t, \tau \quad \therefore I=I_{0} e^{-1}
$$

$$
0,5=6
$$

$$
I_{2} \frac{I_{0}}{e} 2 \frac{I_{0}}{2.7} \simeq 0.36 I_{0} 236 \mathrm{~A}
$$

$$
\therefore 4 T=240 \mathrm{mS}=0.24 \mathrm{~S}
$$

2. Find the current after 10 ms in the I, I max $e^{-t / R c}$
$I \max =\frac{\epsilon}{R}=1.2 \mathrm{~mA}$
Example:- Find the time forthe resister to have a current of $\frac{I_{0}}{10}$

$$
\begin{aligned}
& I=I_{0} e_{e}^{-t / R c} \\
& \frac{I I_{0}}{10} 2 J_{0}^{-t / R c} e^{10 \tau} \rightarrow-\ln 102-t / R c \\
& \therefore t=R c \ln 10
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}_{B}=q(\vec{V} \times \vec{B}) \\
& \vec{F}_{B}=q V B \sin \theta
\end{aligned}
$$

** Magnetic flux

$$
\phi_{e}=\int_{\text {surface }} \vec{E} \cdot \overrightarrow{d a}=\frac{q_{e n c}}{\epsilon_{0}}
$$

$$
\Rightarrow \Phi_{m}=\int_{\zeta u r} \vec{B} \cdot \overrightarrow{d a}
$$

$\Rightarrow * * *$ Gauss's law :-

$$
\Rightarrow \phi_{m}=\int_{\text {ser }} \vec{B} \cdot \overrightarrow{d a}=0
$$

** ** Magnetic field + Electricfield

$$
\begin{aligned}
& \vec{F}_{\text {net }}=q[\vec{E}+\vec{V} \times \vec{B}] \Rightarrow \text { Lorentz } z \text { Force } \\
& \vec{F}_{B}=q(\vec{V} \times \vec{B})=q V B \sin \theta \\
& N=C \frac{m}{5} B \rightarrow B=\frac{N \cdot 5}{\text { rim. }}=\text { Test (T) }
\end{aligned}
$$

* charged particle in a magnetic field.

$$
\begin{aligned}
& \times \times \vec{F}_{B} \times \quad 2 q \vee B \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { مो د } \\
& \rightarrow \frac{m v^{2}}{R}=q \vee B \quad \therefore \frac{m v}{R}=q_{n} B \\
& \rightarrow \sqrt{V=\frac{q_{1} B R}{m}} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

V linear velocity
W angular velocity Rads
$V=\omega R$
(3)

$$
\begin{aligned}
& \left(\therefore \frac{(l) \frac{q B}{m}}{}\right) \\
& V=\frac{2 \pi R}{T} T_{1} \\
& 1 Z^{N}{ }^{0} \frac{2 \pi^{T} R^{B}}{V} \\
& \text { Scanned by CamScanner }
\end{aligned}
$$

$$
\begin{array}{ll}
\longrightarrow & F=\operatorname{ma}=q E \\
+q & =a=\frac{q E}{m}
\end{array}
$$

\Rightarrow The magnetic work 20

$$
w=\Delta k \in=\frac{1}{2} m V_{\mapsto_{0}} \rightarrow w=0
$$

*** conducting wire in amagnetic field carry ing a current
 $B 2-20 \hat{k}$ Tesla

$$
V=A L
$$

no of charges $n A L$

$$
\begin{aligned}
\text { F total }=n A L q\left(\overrightarrow{V_{d}} \times \vec{B}\right) & \rightarrow I=n A \vee d q \\
=n A L q \vee d B \sin \theta & =I(\vec{L} \times \vec{B})
\end{aligned}
$$

* Example:- semi circle in a uniform magneticfield
- Find the magnetic force

1) Force on a straight wire abs

$$
\Rightarrow \vec{F}=I(\vec{I} \times \vec{B}) \hat{K}(N)
$$

$$
\frac{\vec{F}=I \cdot 2 B, B \hat{K} \cdot N)}{\overrightarrow{r_{\operatorname{mag}}} 2 q(\vec{V} \times \vec{B})}=I(\vec{L} \times \vec{B})^{0} \Rightarrow I^{\top} A^{0} n^{0} V^{k} q
$$

$$
\begin{aligned}
& \vec{F}_{\text {mag }}=I(\vec{L} \times \vec{B}) \\
& \vec{F}_{B}=\int I(d L \times B) \\
& F_{B}=I \int d L \times B=I \int d L \sin \theta=I B \int \sin \theta d L
\end{aligned}
$$

Example
\vec{F}_{B} (wire)

$$
\begin{aligned}
F_{B} & >I B \int_{1} R d \theta \sin \theta \\
& \left.=I B R \int_{0}^{\pi} \sin \theta d \theta=I B R(-\cos \theta)\right]_{0}^{\pi} 22 I B R(-\hat{K})
\end{aligned}
$$

*x A conducting loop coring a current ina uniform magnetic field.

part 1 :- $\overrightarrow{F_{1}}=I(\vec{I} \times \vec{B})=I \cup B(-k) \xrightarrow{B}$
part 2: $\vec{F}_{2}=0$
part 3: $\vec{F}_{3} 2 \operatorname{ILB}(K)$
$\operatorname{part}(4): \vec{F}_{y}=0$

$$
\rightarrow \vec{F}_{\text {eq }}=I L B(-\hat{k})+\operatorname{ILB}(\hat{k}) \geq 0
$$

 (Torque

$$
\tau=F \cdot d=I \perp B a_{0} z I A B
$$

define $=I A=M$ magnetic dipole moment (guublia êt u ulbin)
$\vec{p}=q \vec{d}$
$\tau={ }^{\mu} B$
$\mu=N I A$
$\Rightarrow T=\vec{M} \times \vec{B}$ sublies
$\tau=\vec{P} \times \vec{E}$ كُربا
$U=-\vec{\mu} \cdot \vec{B}=-\mu_{B} \cos \theta(\overline{\operatorname{son}})$

Example: Aproton with velocity $\vec{V}=2 i-4 j+\hat{k} \mathrm{~m} / \mathrm{s}$ in a region of imagnetic field $\vec{B}=\hat{\imath}+2 \jmath-\hat{k}$ Tesla, Find the magnetic torse

$$
\begin{aligned}
& \vec{F}_{2} q(\vec{V} \times \vec{B}) \\
& =1.6 * 10^{-19}((2 \hat{\imath}-4 \hat{\jmath}+\hat{k}) \times(\hat{\imath}+2 \hat{\jmath}-\hat{k})) \\
& =1.6 * 10^{-19}(4 \hat{k}+2 \hat{\jmath}-4(-\hat{k})+4 \hat{\imath}+\hat{\jmath}-2 \hat{k}) \\
& 21.6 * 10^{-19}(2 \hat{\imath}+3 \hat{\jmath}+8 \hat{k})
\end{aligned}
$$

$\hat{\imath}$) ol़ु Vg out

$$
\begin{aligned}
& \vec{F}^{2} 2 \hat{\imath}+3 \hat{\jmath}+3 \hat{k} \\
& \cos \theta=\frac{2}{\sqrt{4+9+64}}
\end{aligned}
$$

$$
\vec{A}=2 \hat{\imath}+3 \hat{\jmath}
$$

$$
\tan \theta=\left(\frac{3}{2}\right) \rightarrow \theta=\tan ^{-1}\left(\frac{3}{2}\right)
$$

Example:- $B 2 B_{0} \hat{k}$

$$
\vec{F}_{m}=I \ell B(\hat{k})
$$

$$
\vec{F}_{m}=I \ell B(-\hat{\jmath})
$$

$$
\vec{F}_{\text {net }}=m g+I l B(-\hat{\jmath})
$$

$$
\vec{F}_{m}=I \ell B(\hat{\jmath})
$$

$$
\vec{F}_{\text {BEt }}=I l B-B g
$$

Example:- Flectrion beam are accelerated from rest thought a pol- diff of 250 Vdt . The electron ravel in a circular path with a radius 1.5 cm . Find the magnetic field if it is normal to the beam.

$$
\begin{aligned}
& \frac{1}{2} m V^{2}=q \Delta V \\
& \frac{1}{2} \times 9.1 * 10^{-31} V^{2}=1.6 \times 10^{-19} * 250 \quad \therefore V=1.11 * 10^{-1} \mathrm{~m} / \mathrm{s} \\
& \\
& \Rightarrow q V B=\frac{m V^{2}}{R} \quad \therefore B=\frac{V^{2}}{q} \quad \frac{29.1 * 10^{-31} * 1.11 * 10^{-1}}{7.5 * 10^{-2} * 1.6 * 10^{-19}}=8.4 * 10^{-9 \text { Test }} 7
\end{aligned}
$$

* Example:- A rectangutet cail of dimension $5.4 * 8.5 \mathrm{~cm}$ consists of 25 tums and carries a current of $15 \mathrm{~mA}, 2 \mathrm{~A} 0.35 \mathrm{~T}$ magnetic field is applied parallel to the pane of the loop
a) calculate the magnetic dipole moment

$$
\vec{M}=N I A=25 * 15 * 10^{3} *(8.5 * 5.4) * 10^{-4}=1 \cdot 7 * 10^{-3} A \cdot \mathrm{~m}^{2}
$$

b) The magnitude of the torque

$$
\vec{\epsilon}=\vec{\mu} \times \vec{B}=\mu B \sin \theta=1.7 * 10^{-3} * 0.35 \mathrm{~N} . \mathrm{m}
$$

$$
\text { Exampler if } \vec{B}=0.8 \hat{\imath} \text { Teda, Find I }
$$

$$
\tau=\mu B \sin \theta \longrightarrow \sin 60
$$

$$
=\text { IAB } \frac{\sqrt{3}}{2}=1.2 * 0.4+0.3 * 0.8 * \frac{\sqrt{3}}{2}
$$

* $\mathrm{Ch} 28:-$

$$
0.3
$$

sources of the magnetic fied * * Biot - Savart law:-

$$
\begin{aligned}
& F_{e^{2}} \frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r} \hat{r} \quad \overrightarrow{d B} \\
\longrightarrow & B=\frac{\mu_{0}}{4 \pi} \int \frac{I \overrightarrow{d s} \times \hat{r}}{r^{2}} \geq \frac{\mu_{0} I}{4 \pi} \cdot \frac{I \overrightarrow{d s}^{r} \times \hat{r}}{r^{2}} \int \frac{\overrightarrow{r_{s}} \times \vec{r}}{r^{2}}
\end{aligned}
$$

$$
\overrightarrow{d B} \quad * \text { pormeability } \mu_{0}
$$

$$
\underset{\sim A}{ }
$$

$$
E x
$$

Example:- Find the magnetic field at point p

$$
\begin{aligned}
& \vec{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{\vec{s} x \hat{r}}{r^{2}}=\frac{\mu_{0} I}{4 \pi} \int \frac{d x \times \hat{r}}{r^{2}} \\
& =\frac{\mu_{0} I \hat{k}}{4 \pi} \int \frac{d x \sin \theta}{r^{2}}=\frac{\mu_{0} I R}{4 \pi} \int_{\theta}^{\theta_{2}} \frac{a \cos b}{a \pi \cos \theta} \cdot \operatorname{sinede} \\
& \left.=\frac{\mu_{0} I \hat{R}}{4 \pi}\left[\frac{-\cos \theta}{a}\right]\right]_{\theta_{1}}^{\theta_{2}} \quad 1 \quad 1 l_{2}^{\theta}
\end{aligned}
$$

$$
\frac{z-\mu_{0} I \hat{F}}{4 \pi a}\left(\cos \theta_{2}-\cos \theta_{1}\right)
$$

dobisla 4

$$
r=\frac{a}{\sin \theta}=\operatorname{ccess} a \csc \theta
$$ shut

* Very long wire $\vec{B}=\frac{\mu_{0} I \hat{K}}{4 \pi a}=\frac{\mu_{0} I \hat{K}}{2 \pi a}$ Tesla

$$
\mu_{0}=4 \pi * 10^{-7}
$$

\Rightarrow Example1-Find the magnetic field at the orig in

$$
\begin{aligned}
& B_{1}=B_{3} 20 \quad s=R \theta \rightarrow d s 2 R d \theta \\
& B_{2}=\frac{\mu_{0} I}{4 \pi} \int \frac{\overrightarrow{d s} \times \hat{r}}{r^{2}}=\frac{\mu_{0} I R}{4 \pi R^{2}} \int_{0}^{\pi / 2} \sin \theta d \theta \\
& \left.=\frac{\mu_{0} I}{4 \pi R}[-\cos \theta]\right]_{0}^{\pi / 2} \frac{2-\hat{k} M_{0} I}{4 \pi R} \\
& =\frac{-\mu_{0} I \hat{R}}{4 \pi R} \text { Tesla }
\end{aligned}
$$

* magnetic force between two parallel wire $F_{\text {mag }}=I(\vec{l} \times \vec{B})$

$$
\vec{F}_{2}=I=L B_{1}=I_{2} \mid I_{1} \mu_{0}
$$

$$
\vec{F}_{1}=\frac{I_{1} I_{2} l M_{0}}{2 \pi a}
$$

Exumple:- Find the magnetic field at the center of the regtangele

$$
B_{1} 2 B_{2} \quad, B_{22} B_{4}
$$

Bnet $2 B_{1}+B_{2}+B_{3}+B_{4} 2 B_{1}+2 B_{2}$
** magnetic flux:-

$$
\oint_{m=} \vec{B} \cdot \overrightarrow{d a} \quad \text { Cm }_{5} \oint \vec{B} \cdot \overrightarrow{d a} 20 \text { close loop }
$$

$\Rightarrow D_{E}=\int \vec{E} \cdot d \vec{a}=\frac{q_{e n c}}{E J}$

* * Amper's Lav:-

$$
\int \vec{B} \cdot \overrightarrow{d s} z \int_{1} B d s
$$

Amperian lasp
boll cër er sug $\sqrt{\text { Suld }}$ f(H) ś coto só

3 $\int B \cdot d s$ $\int B d s$

$$
\begin{aligned}
& B \int d s \geq B S=2 B \pi K=\frac{\bar{\mu}_{0} I}{2 K R} \rightarrow B=\mu_{0} I \\
& \therefore \int \vec{B} \cdot d \vec{s}=\mu_{0} I
\end{aligned}
$$

