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 21.1. (a) IDENTIFY and SET UP:   Use the charge of one electron 19( 1 602 10  C)−− . ×  to find the number of 
electrons required to produce the net charge. 
EXECUTE:   The number of excess electrons needed to produce net charge q is 

9
10

19
3 20 10  C 2 00 10  electrons

1 602 10  C/electron
q
e

−

−
− . ×= = . × .

− − . ×
 

(b) IDENTIFY and SET UP:   Use the atomic mass of lead to find the number of lead atoms in 
38 00 10  kg−. × of lead. From this and the total number of excess electrons, find the number of excess 

electrons per lead atom. 
EXECUTE:   The atomic mass of lead is 3207 10  kg/mol,−×  so the number of moles in 38 00 10  kg−. ×  is 

3
tot

3
8 00 10  kg 0 03865 mol

207 10  kg/mol
m

n
M

−

−
. ×= = = . .
× AN (Avogadro’s number) is the number of atoms in 1 mole, 

so the number of lead atoms is 23 22
A (0 03865 mol)(6 022 10  atoms/mol) 2 328 10  atomsN nN= = . . × = . × .  

The number of excess electrons per lead atom is 
10

13
22

2 00 10  electrons 8 59 10
2 328 10  atoms

−. × = . × .
. ×

 

EVALUATE:   Even this small net charge corresponds to a large number of excess electrons. But the 
number of atoms in the sphere is much larger still, so the number of excess electrons per lead atom is very 
small. 

 21.2. IDENTIFY:   The charge that flows is the rate of charge flow times the duration of the time interval. 
SET UP:   The charge of one electron has magnitude 191 60 10  Ce −= . × .  
EXECUTE:   The rate of charge flow is 20,000 C/s  and 4100 s 1 00 10  st µ −=  = . × .  

4(20,000 C/s)(1 00 10  s) 2 00 CQ −= . × = . .  The number of electrons is 19
e 19 1 25 10

1 60 10  C
Q

n −= = . × .
. ×

 

EVALUATE:   This is a very large amount of charge and a large number of electrons. 
 21.3. IDENTIFY and SET UP:   A proton has charge +e and an electron has charge ,e−  with 191 60 10  Ce −= . × .  

The force between them has magnitude F = k
| q1q2 |

r2
= k

e2

r2
 and is attractive since the charges have 

opposite sign. A proton has mass 27
p 1 67 10  kgm −= . ×  and an electron has mass 319 11 10  kg−. × .  The 

acceleration is related to the net forceF
G

by m= .F a
G G  

EXECUTE:   
2 19 2

9 2 2 9
2 10 2

(1 60 10  C)(8 99 10  N m /C ) 5 75 10  N.
(2 0 10  m)

e
F k

r

−
−

−
. ×= = . × ⋅ = . ×
. ×

 

proton: 
9

18 2
p 27

p

5 75 10  N 3 4 10  m/s .
1 67 10  kg

F
a

m

−

−
. ×= = = . ×

. ×
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electron: 
9

21 2
e 31

e

5 75 10  N 6 3 10  m/s
9 11 10  kg

F
a

m

−

−
. ×= = = . ×

. ×
 

The proton has an initial acceleration of 18 23 4 10  m/s. ×  toward the electron and the electron has an initial 
acceleration of 21 26 3 10  m/s. ×  toward the proton.  
EVALUATE:   The force the electron exerts on the proton is equal in magnitude to the force the proton 
exerts on the electron, but the accelerations of the two particles are very different because their masses are 
very different. 

 21.4. IDENTIFY:   Use the mass m of the ring and the atomic mass M of gold to calculate the number of gold 
atoms. Each atom has 79 protons and an equal number of electrons. 
SET UP:   23

A 6 02 10  atoms/mol.N = . ×  A proton has charge .e+  
EXECUTE:   The mass of gold is 10.8 g and the atomic weight of gold is 197 g/mol.  So the number of atoms is 

23 22
A

10.8 g(6 02 10  atoms/mol) 10  atoms.
197 g/mol

N n
⎛ ⎞= . × = 3.300×⎜ ⎟
⎝ ⎠

 The number of protons is  

  
np = (79 protons/atom)(3.300 × 1022  atoms) = 2.61×1024  protons.

  
Q = (np )(1.60 × 10−19 C/proton) = 4.18 × 105 C.  

(b) The number of electrons is 24
e p 10n n= = 2.61× .  

EVALUATE:   The total amount of positive charge in the ring is very large, but there is an equal amount of 
negative charge. 

 21.5. IDENTIFY:   Each ion carries charge as it enters the axon. 
SET UP:   The total charge Q is the number N of ions times the charge of each one, which is e. So ,Q Ne=  

where 191 60 10  Ce . .−= ×  
EXECUTE:   The number N of ions is 11 2 95 6 10 ions/m 1 5 10 m 8 4 10 ions.N . . .−= ( × )( × ) = ×  The total 

charge Q carried by these ions is 9 19 9 (8 4 10 )(1 60 10 C) 1 3 10  C 1 3 nC.Q Ne . . . .− −= = × × = × =  
EVALUATE:   The amount of charge is small, but these charges are close enough together to exert large 
forces on nearby charges. 

 21.6. IDENTIFY:   Apply Coulomb’s law and calculate the net charge q on each sphere. 
SET UP:   The magnitude of the charge of an electron is 191 60 10  C.e −= . ×  

EXECUTE:   1 2
2

| |q q
F k

r
=   gives  

  
q = 4πε0 Fr2 = 4πε0 (3.33 × 10−21 N)(0.200 m)2 = 1.217 × 10−16  C.  Therefore, the total 

number of electrons required is 16 19/ (1.217 10  C)/(1.60 10  C/electron) 0 electrons.n q e − −= = × × = 76  
EVALUATE:   Each sphere has 760 excess electrons and each sphere has a net negative charge. The two like 
charges repel. 

 21.7. IDENTIFY:   Apply 1 2
2

k q q
F

r
=  and solve for r. 

SET UP:   650 N.F =  

EXECUTE:   
9 2 2 2

1 2 3(8 99 10  N m /C )(1 0 C) 3 7 10  m 3 7 km
650 N

k q q
r

F
. × ⋅ .= = = . × = .  

EVALUATE:   Charged objects typically have net charges much less than 1 C. 
 21.8. IDENTIFY:   Use the mass of a sphere and the atomic mass of aluminum to find the number of aluminum 

atoms in one sphere. Each atom has 13 electrons. Apply Coulomb’s law and calculate the magnitude of 
charge q on each sphere. 
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SET UP:   23
A 6 02 10  atoms/mol.N = . ×  en ,q e′=  where en′ is the number of electrons removed from one 

sphere and added to the other. 
EXECUTE:   (a) The total number of electrons on each sphere equals the number of protons. 

24
e p A

0.0250 kg(13)( ) 10  electrons.
0.026982 kg/mol

n n N
⎛ ⎞= = = 7.25×⎜ ⎟
⎝ ⎠

 

(b) For a force of 41 00 10. ×  N to act between the spheres, 
2

4
2

0

11 00 10  N .
4

q
F

rπε
= . × =  This gives 

q = 4πε0 (1.00 × 104 N)(0.800 m)2 = 8.43 × 10−4 C.  The number of electrons removed from one sphere 

and added to the other is 15
en / 5 27 10  electronsq e′ = = . × .  

(c) 10
e en /n 7 27 10 .−′ = . ×  

EVALUATE:   When ordinary objects receive a net charge, the fractional change in the total number of 
electrons in the object is very small. 

 21.9. IDENTIFY:   Apply Coulomb’s law. 
SET UP:   Consider the force on one of the spheres. 

EXECUTE:   (a) 1 2q q q= =  and 
2

1 2
2 2

0 0

1 | | ,
4 4

q q q
F

r rπε πε
= =   so 

7
9 2 2

0

0 220 N0 150 m 7 42 10  C (on each).
(1/4 ) 8 988 10  N m /C

F
q r

πε
−.= = . = . ×

. × ⋅
 

(b) 2 14q q=  

  
F = 1

4πε0

q1q2

r2
=

4q1
2

4πε0r2
 so 7 7

1
0 0

(7 42 10  C) 3 71 10  C
4(1/4 ) (1/4 )

F F
q r r

πε πε
− −1 1= = = . × = . × .

2 2
 

And then 6
2 14 1 48 10  Cq q −= = . × .  

EVALUATE:   The force on one sphere is the same magnitude as the force on the other sphere, whether the 
spheres have equal charges or not. 

 21.10. IDENTIFY:   We need to determine the number of protons in each box and then use Coulomb’s law to 
calculate the force each box would exert on the other. 
SET UP:   The mass of a proton is 271 67 10  kg. −×  and the charge of a proton is 191 60 10  C. .−×  The 

distance from the earth to the moon is 83 84 10  m. .×  The electrical force has magnitude 1 2
e 2 ,

q q
F k

r
=  

where 9 2 28 99 10  N m /Ck . .= × ⋅  The gravitational force has magnitude 1 2
grav 2 ,m m

F G
r

=  where 

11 2 26 67 10  N m /kgG . .−= × ⋅  

EXECUTE:   (a) The number of protons in each box is 
3

23
27

1 0 10  kg 5 99 10
1 67 10  kg

.
N . .

.

−

−
×= = ×
×

 The total charge 

of each box is 23 19 4(5 99 10 )(1 60 10  C) 9 58 10  Cq Ne . . . .−= = × × = ×  The electrical force on each box is 
2 4 2

9 2 2
e 2 8 2

(9 58 10  C)(8 99 10  N m /C ) 560 N 130 lb
(3 84 10  m)

q .
F k . .

r .
×= = × ⋅ = =
×

 The tension in the string must equal 

this repulsive electrical force. The weight of the box on earth is 39 8 10  Nw mg . −= = ×  and the weight of 
the box on the moon is even less, since g is less on the moon. The gravitational forces exerted on the boxes 
by the earth and by the moon are much less than the electrical force and can be neglected. 
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(b) 
3 2

11 2 2 341 2
grav 2 8 2

(1 0 10  kg)6 67 10  N m /kg 4 5 10  N.
(3 84 10  m)

m m .
F G . .

r .

−
− −×= = ( × ⋅ ) = ×

×
 

EVALUATE:   Both the electrical force and the gravitational force are proportional to 21/r .  But in SI units 
the coefficient k in the electrical force is much greater than the coefficient G in the gravitational force. And 
a small mass of protons contains a large amount of charge. It would be impossible to put 1.0 g of protons 
into a small box, because of the very large repulsive electrical forces the protons would exert on each 
other. 

 21.11. IDENTIFY:   In a space satellite, the only force accelerating the free proton is the electrical repulsion of the 
other proton. 
SET UP:   Coulomb’s law gives the force, and Newton’s second law gives the acceleration: 

  a = F /m = (1/4πε0 )(e2 /r2 )/m. 
EXECUTE:    
(a) 9 2 2 19 2 2 27 4 29.00 10  N m /C )(1.60 10  C) /[(0.00250 m) (1.67 10  kg)] 2.21 10  m/s .a − −= ( × ⋅ × × = ×  
(b) The graphs are sketched in Figure 21.11. 
EVALUATE:   The electrical force of a single stationary proton gives the moving proton an initial 
acceleration about 20,000 times as great as the acceleration caused by the gravity of the entire earth. As the 
protons move farther apart, the electrical force gets weaker, so the acceleration decreases. Since the 
protons continue to repel, the velocity keeps increasing, but at a decreasing rate. 

 

 

Figure 21.11 
 

 21.12. IDENTIFY:   Apply Coulomb’s law. 
SET UP:   Like charges repel and unlike charges attract. 

EXECUTE:   (a) 
  
F = 1

4πε0

q1q2

r2
 gives 

6
2

2
0

(0 550 10 C)10 600 N
4 (0 30 m)

q
πε

−. ×
. =

.
 and 2 10 Cq =−5= +1.09×  

10.9 µC. The force is attractive and 1 0,q <  so q2 = +1.09 × 10−5  C  = +10.9µC. 
(b)   F = 0.600  N. The force is attractive, so is downward. 
EVALUATE:   The forces between the two charges obey Newton’s third law. 

 21.13. IDENTIFY:   Apply Coulomb’s law. The two forces on 3q must have equal magnitudes and opposite 
directions. 
SET UP:   Like charges repel and unlike charges attract. 

EXECUTE:   The force 2
G
F that 2q exerts on 3q has magnitude 2 3

2 2
2

q q
F k

r
= and is in the +x-direction.  

1
G
F  must be in the −x-direction, so 1q must be positive. 1 2F F= gives 1 3 2 3

2 2
1 2

.
q q q q

k k
r r

=  

( )
2 2

1
1 2

2

2 00 cm3 00 nC 0 750 nC.
4 00 cm

r
q q

r
⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

EVALUATE:   The result for the magnitude of 1q doesn’t depend on the magnitude of q3.  
 21.14. IDENTIFY:   Apply Coulomb’s law and find the vector sum of the two forces on Q. 

SET UP:   The force that 1q exerts on Q is repulsive, as in Example 21.4, but now the force that 2q exerts is 
attractive. 
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EXECUTE:   The x-components cancel. We only need the y-components, and each charge contributes 

equally. 
6 6

1 2 2
0

1 (2 0 10 C)(4 0 10 C) sin 0 173 N (since sin 0 600)
4 (0 500 m)y yF F α α
πε

− −. × . ×= = − = − . = . .
.

 Therefore, 

the total force is 2 0 35 N,F = .  in the -direction.y−  
EVALUATE:   If 1q is 2 0 Cµ− .   and 2q is 2 0 C,µ+ .   then the net force is in the -direction.y+  

 21.15. IDENTIFY:   Apply Coulomb’s law and find the vector sum of the two forces on 1.q  

SET UP:   Like charges repel and unlike charges attract, so 2
G
F and 3

G
F  are both in the -direction.x+  

EXECUTE:   1 31 2 5 4
2 32 2

12 13
6 749 10 N, 1 124 10 N.

q qq q
F k F k

r r
− −= = . × = = . × 4

2 3 1 8 10 N.F F F −= + = . ×  

41 8 10  NF −= . × and is in the -direction.x+  

EVALUATE:   Comparing our results to those in Example 21.3, we see that 1 on 3 3 on 1,= −
G G
F F  as required 

by Newton’s third law. 
 21.16. IDENTIFY:   Apply Coulomb’s law and find the vector sum of the two forces on 2.q  

SET UP:   2 on 1
G
F is in the -direction.y+  

EXECUTE:   
9 2 2 6 6

2 on 1 2
(9 0 10 N m /C )(2 0 10 C)(2 0 10 C) 0 100 N.

(0 60 m)
F

− −. × ⋅ . × . ×= = .
.

 2 on 1( ) 0xF = and 

2 on 1( ) 0 100 N.yF = + .   on 1QF  is equal and opposite to 1 on QF (Example 21.4), so  on 1( ) 0 23 NQ xF = − .  

and  on 1( ) 0 17 N.Q yF = .  2 on 1  on 1 0 23 N.x x Q xF F F= ( ) + ( ) = − .  

2 on 1  on 1 0 100 N 0 17 N 0 27 N.y y Q yF F F= ( ) + ( ) = . + . = .  The magnitude of the total force is 

2 2(0 23 N) (0 27 N) 0 35 NF = . + . = . . 1 0 23tan 40 ,
0 27

− . = °
.

 so 

G
F  is 40° counterclockwise from the  +y-axis, 

or 130°  counterclockwise from the  +x- axis. 
EVALUATE:   Both forces on 1q are repulsive and are directed away from the charges that exert them. 

 21.17. IDENTIFY and SET UP:   Apply Coulomb’s law to calculate the force exerted by 2q  and 3q  on 1q .  Add 
these forces as vectors to get the net force. The target variable is the x-coordinate of 3q .  

EXECUTE:   2
G
F  is in the x-direction. 

1 2
2 22

12
3 37 N, so 3 37 Nx

q q
F k F

r
= = . = + .  

2 3  and 7 00 Nx x x xF F F F= + = − .  

3 2 7 00 N 3 37 N 10 37 Nx x xF F F= − = − . − . = − .  
For 3xF  to be negative, 3q  must be on the -axis.x−  

1 3 1 3
3 2

3
, so 0 144 m, so 0 144 m

q q k q q
F k x x

Fx
= = = . = − .  

EVALUATE:   2q  attracts 1q  in the +x-direction so 3q  must attract 1q  in the −x-direction, and 3q  is at 
negative x. 

 21.18. IDENTIFY:   Apply Coulomb’s law. 
SET UP:   Like charges repel and unlike charges attract. Let 21

G
F  be the force that 2q  exerts on 1q  and let 

31
G
F  be the force that 3q  exerts on 1.q  
EXECUTE:   The charge 3q  must be to the right of the origin; otherwise both 2 3andq q would exert forces 
in the +x-direction. Calculating the two forces: 

9 2 2 6 6
1 2

21 2 2
0 12

1 (9.0 10 N m /C )(3 00 10 C)(5 00 10 C) 3 375 N,
4 (0 200 m)

q q
F

rπε

− −× ⋅ . × . ×= = = .
.

 in the  +x-direction. 
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9 2 2 6 6 2

31 2 2
13 13

(9 10 N m /C )(3 00 10 C)(8 00 10 C) 0 216 N m ,F
r r

− −× ⋅ . × . × . ⋅= =  in the −x-direction. 

We need 21 31 7 00 N,xF F F= − = − .  so 
2

2
13

0 216 N m3 375 N 7 00 N.
r

. ⋅. − = − .  

2

13
0 216 N m 0 144 m.

3 375 N 7 00 N
r

. ⋅= = .
. + .

 3q  is at 0 144 m.x = .  

EVALUATE:   31 10 4 NF = . . 31F  is larger than 21,F  because 3q  is larger than 2q  and also because 13r  is 

less than 12r .  
 21.19. IDENTIFY:   Apply Coulomb’s law to calculate the force each of the two charges exerts on the third charge. 

Add these forces as vectors. 
SET UP:   The three charges are placed as shown in Figure 21.19a. 

 

 

Figure 21.19a 
 
 
 
 
 

EXECUTE:   Like charges repel and unlike attract, so the free-body diagram for 3q  is as shown in  
Figure 21.19b. 

 

 
F1 = 1

4πε0

q1q3

r13
2

 

F2 = 1
4πε0

q2q3

r23
2

 

Figure 21.19b 
  

 

9 9
9 2 2 6

1 2
(1 50 10  C)(5 00 10  C)8 988 10  N m /C 1 685 10  N

(0 200 m)
F

− −
−. × . ×= ( . × ⋅ ) = . ×

.
 

9 9
9 2 2 7

2 2
(3 20 10  C)(5 00 10  C)8 988 10  N m /C 8 988 10  N

(0 400 m)
F

− −
−. × . ×= ( . × ⋅ ) = . ×

.
 

The resultant force is 1 2= + .R F F
G G G

 
0xR = .  

6 7 6
1 2 1 685 10  N 8 988 10  N 2 58 10  NyR F F − − −= −( + ) = −( . × + . × ) = − . × .  

The resultant force has magnitude 62 58 10  N −. × and is in the -direction.y−  
EVALUATE:   The force between 1 3 and q q  is attractive and the force between 2 3and q q  is replusive. 
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 21.20. IDENTIFY:   Apply 2
qq

F k
r

′
=  to each pair of charges. The net force is the vector sum of the forces due to 

1q  and 2q .  
SET UP:   Like charges repel and unlike charges attract. The charges and their forces on 3q are shown in 
Figure 21.20. 

EXECUTE:   
9 9

1 3 9 2 2 6
1 2 2

1

(4 00 10  C)(6 00 10  C)8 99 10  N m /C 5 394 10  N.
(0 200 m)

q q
F k

r

− −
−. × . ×= = ( . × ⋅ ) = . ×

.
 

9 9
2 3 9 2 2 6

2 2 2
2

(5 00 10  C)(6 00 10  C)8 99 10  N m /C 2 997 10  N.
(0 300 m)

q q
F k

r

− −
−. × . ×= = ( . × ⋅ ) = . ×

.
 

6
1 2 1 2 2 40 10  N.x x xF F F F F −= + = + − = . ×  The net force has magnitude 62 40 10  N−. ×  and is in the  

+x-direction. 
EVALUATE:   Each force is attractive, but the forces are in opposite directions because of the placement of the 
charges. Since the forces are in opposite directions, the net force is obtained by subtracting their magnitudes. 

 

 

Figure 21.20 
 

 21.21. IDENTIFY:   We use Coulomb’s law to find each electrical force and combine these forces to find the net 
force. 
SET UP:   In the O-H-N combination the O−  is 0.170 nm from the H+  and 0.280 nm from the N .−  In the 
N-H-N combination the N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  Like charges 
repel and unlike charges attract. The net force is the vector sum of the individual forces. The force due to 

each pair of charges is 
2

1 2
2 2 .

q q e
F k k

r r
= =  

EXECUTE:   (a) 
2

1 2
2 2 .

q q e
F k k

r r
= =  

O-H-N: 

O - H :− +
19 2

9 2 2 9
9 2

(1 60 10  C)8 99 10  N m /C 7 96 10  N,
(0 170 10  m)

.
F . .

.

−
−

−
×= ( × ⋅ ) = ×
×

 attractive 

O - N :− −
19 2

9 2 2 9
9 2

(1 60 10  C)8 99 10  N m /C 2 94 10  N,
(0 280 10  m)

.
F . .

.

−
−

−
×= ( × ⋅ ) = ×
×

 repulsive 

N-H-N: 

N - H :− +
19 2

9 2 2 9
9 2

(1 60 10  C)(8 99 10  N m /C ) 6.38 10  N,
(0 190 10  m)

.
F .

.

−
−

−
×= × ⋅ = ×
×

 attractive 

N - N :− −
19 2

9 2 2 9
9 2

(1 60 10  C)(8 99 10  N m /C ) 2 56 10  N,
(0 300 10  m)

.
F . .

.

−
−

−
×= × ⋅ = ×
×

 repulsive 

The total attractive force is 81 43 10  N. −×  and the total repulsive force is 95 50 10  N. .−×  The net force is 
attractive and has magnitude 8 9 91 43 10  N 5 50 10  N 8 80 10  N. . . .− − −× − × = ×  

(b) 
2 19 2

9 2 2 8
2 9 2

(1 60 10  C)8 99 10  N m /C 8 22 10  N.
(0 0529 10  m)

e .
F k . .

r .

−
−

−
×= = ( × ⋅ ) = ×

×
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EVALUATE:   The bonding force of the electron in the hydrogen atom is a factor of 10 larger than the 
bonding force of the adenine-thymine molecules. 

 21.22. IDENTIFY:   We use Coulomb’s law to find each electrical force and combine these forces to find the net 
force. 
SET UP:   In the O-H-O combination the O−  is 0.180 nm from the H+  and 0.290 nm from the other O .−  
In the N-H-N combination the N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  In the  
O-H-N combination the O−  is 0.180 nm from the H+  and 0.290 nm from the other N .−  Like charges 
repel and unlike charges attract. The net force is the vector sum of the individual forces. The force due to 

each pair of charges is 
2

1 2
2 2 .

q q e
F k k

r r
= =  

EXECUTE:   Using 
2

1 2
2 2 ,

q q e
F k k

r r
= =  we find that the attractive forces are: O - H ,− +  97.10 10  N;−×  

N - H ,− + 96.37 10  N;−× O - H ,− + 97.10 10  N.−×  The total attractive force is 82.06 10  N.−×  The repulsive 

forces are: O O ,− −- 92.74 10  N;−× N N ,− − - 92.56 10  N;−× O N ,− −- 92.74 10  N.−×  The total repulsive 

force is 98.04 10  N.−×  The net force is attractive and has magnitude 81.26 10  N.−×  
EVALUATE:   The net force is attractive, as it should be if the molecule is to stay together. 

 21.23. IDENTIFY:   .F q E=  Since the field is uniform, the force and acceleration are constant and we can use a 
constant acceleration equation to find the final speed. 
SET UP:   A proton has charge +e and mass 271 67 10  kg.−. ×  

EXECUTE:   (a) 19 3 161 60 10  C 2 75 10  N/C 4 40 10  N.F − −= ( . × )( . × ) = . ×  

(b) 
16

11 2
27

4 40 10  N 2 63 10  m/s .
1 67 10  kg

F
a

m

−

−
. ×= = = . ×
. ×

 

(c) 0x x xv v a t= + gives 11 2 6 5(2 63 10  m/s )(1 00 10  s) 2 63 10  m/s.v −= . × . × = . ×  
EVALUATE:   The acceleration is very large and the gravity force on the proton can be ignored. 

 21.24. IDENTIFY:   For a point charge, 2 .
q

E k
r

=  

SET UP:   
G
E  is toward a negative charge and away from a positive charge. 

EXECUTE:   (a) The field is toward the negative charge so is downward. 
9

9 2 2
2

5 00 10  C8 99 10  N m /C  N/C.
(0 250 m)

E
−. ×= ( . × ⋅ ) = 719

.
 

(b) 
  
r =

k q

E
= (8.99 × 109  N ⋅ m2 /C2 )(5.00 × 10−9  C)

12.0 N/C
= 1.94 m.  

EVALUATE:   At different points the electric field has different directions, but it is always directed toward 
the negative point charge. 

 21.25. IDENTIFY:   The acceleration that stops the charge is produced by the force that the electric field exerts on it. 
Since the field and the acceleration are constant, we can use the standard kinematics formulas to find 
acceleration and time. 
(a) SET UP:   First use kinematics to find the proton’s acceleration. 0xv =  when it stops. Then find the 
electric field needed to cause this acceleration using the fact that F qE.=  

EXECUTE:   2 2
0 02 ( ).x x xv v a x x= + − 6 20 (4.50 10 m/s) 2 (0.0320 m)a= × +  and 14 23.16 10  m/s .a = ×   

Now find the electric field, with .  q e eE ma= = and 
27 14 2 19 6/ (1.67 10  kg)(3.16 10  m/s )/(1.60 10 C) 3.30 10 N/C,E ma e − −= = × × × = ×  to the left. 

(b) SET UP:   Kinematics gives 0 ,v v at= +  and 0v =  when the electron stops, so 0/ .t v a=  

EXECUTE:   6 14 2 8
0 / (4.50 10 m/s)/(3.16 10  m/s ) 1.42 10  s 14.2 ns.t v a −= = × × = × =  
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(c) SET UP:   In part (a) we saw that the electric field is proportional to m, so we can use the ratio of the 
electric fields. e p e p/ /E E m m= and e e p p/ .E m m E= ( )  

EXECUTE:   e [(9.11 kg)/(1.67 kg)](3.30  N/C) 1.80  N/C,E −31 −27 6 3= ×10 ×10 ×10 = ×10  to the right. 
EVALUATE:   Even a modest electric field, such as the ones in this situation, can produce enormous 
accelerations for electrons and protons. 

 21.26. IDENTIFY:   Use constant acceleration equations to calculate the upward acceleration a and then apply 
q=F E

G G
to calculate the electric field. 

SET UP:   Let +y be upward. An electron has charge .q e= −  

EXECUTE:   (a) 0 0yv = and ,ya a=  so 21
0 0 2y yy y v t a t− = + gives 21

0 2 .y y at− =  Then 

12 20
2 6 2

2( ) 2(4 50 m) 1 00 10 m/s .
(3 00 10 s)

y y
a

t −
− .= = = . ×

. ×
 

31 12 2

19
(9 11 10 kg)(1 00 10 m/s ) 5 69 N/C

1 60 10 C
F ma

E
q q

−

−
. × . ×= = = = .

. ×
 

The force is up, so the electric field must be downward since the electron has negative charge. 
(b) The electron’s acceleration is 11~10 ,g  so gravity must be negligibly small compared to the electrical force. 
EVALUATE:   Since the electric field is uniform, the force it exerts is constant and the electron moves with 
constant acceleration. 

 21.27. IDENTIFY:   The equation q=F E
G G

 relates the electric field, charge of the particle, and the force on the 
particle. If the particle is to remain stationary the net force on it must be zero. 
SET UP:   The free-body diagram for the particle is sketched in Figure 21.27. The weight is mg, downward. For 
the net force to be zero the force exerted by the electric field must be upward. The electric field is downward. 
Since the electric field and the electric force are in opposite directions the charge of the particle is negative. 

 
 

 mg q E=  

Figure 21.27   
 

EXECUTE:   (a) 
3 2

5(1 45 10  kg)(9 80 m/s ) 2 19 10  C and 21 9 C.
650 N/C

mg
q q

E
µ

−
−. × .= = = . × = − .   

(b) SET UP:   The electrical force has magnitude EF q E eE= = .  The weight of a proton is w mg= .  

EF w=  so .eE mg=  

EXECUTE:   
27 2

7
19

(1 673 10  kg)(9 80 m/s ) 1 02 10  N/C
1 602 10  C

mg
E

e

−
−

−
. × .= = = . × .

. ×
 

This is a very small electric field. 
EVALUATE:   In both cases and ( / )q E mg E m q g= = .  In part (b) the /m q  ratio is much smaller 

8( 10 )−∼  than in part (a) 2( 10 )∼  so E is much smaller in (b). For subatomic particles gravity can usually 
be ignored compared to electric forces. 

 21.28. IDENTIFY:   The electric force is .q=
G G
F E  

SET UP:   The gravity force (weight) has magnitude w mg= and is downward. 
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EXECUTE:   (a) To balance the weight the electric force must be upward. The electric field is downward,  
so for an upward force the charge q of the person must be negative. w F= gives mg q E=  and 

2(60 kg)(9 80 m/s ) 3 9 C.
150 N/C

mg
q

E
.= = = .  

(b) 
2

9 2 2 7
2 2

(3 9 C)8 99 10  N m /C 1 4 10  N.
(100 m)

qq
F k

r

′ .= = ( . × ⋅ ) = . ×  The repulsive force is immense and this is 

not a feasible means of flight. 
EVALUATE:   The net charge of charged objects is typically much less than 1 C. 

 21.29. IDENTIFY:   The equation q=F E
G G

 gives the force on the particle in terms of its charge and the electric 
field between the plates. The force is constant and produces a constant acceleration. The motion is similar 
to projectile motion; use constant acceleration equations for the horizontal and vertical components of the 
motion. 
SET UP:   The motion is sketched in Figure 21.29a. 

 

 For an electron q e= − .  

Figure 21.29a 
  

 

 and q q=
G G
F E  negative gives that 

G
F  and 

G
E  are in opposite directions, so 

G
F  is upward. The free-body 

diagram for the electron is given in Figure 21.29b. 
 

 EXECUTE:   (a) y yF ma∑ =  
eE ma=  

Figure 21.29b 
  

 

Solve the kinematics to find the acceleration of the electron: Just misses upper plate says that 
0 2 00 cmx x− = .  when 0 0 500 cmy y− = + . .  

x-component: 
6

0 0 01 60 10  m/s, 0, 0 0200 m, ?x xv v a x x t= = . × =  − = . =  
21

0 0 2x xx x v t a t− = +  

80
6

0

0 0200 m 1 25 10  s
1 60 10  m/sx

x x
t

v
−− .= = = . ×

. ×
 

In this same time t the electron travels 0.0050 m vertically. 
y-component: 

8
0 01 25 10  s, 0, 0 0050 m, ?y yt v y y a−= . × =  − = + . =  

21
0 0 2y yy y v t a t− = +  

13 20
2 8 2

2( ) 2(0 0050 m) 6 40 10  m/s .
(1 25 10  s)y

y y
a

t −
− .= = = . ×

. ×
 

(This analysis is very similar to that used in Chapter 3 for projectile motion, except that here the acceleration 
is upward rather than downward.) This acceleration must be produced by the electric-field force: .eE ma=  
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31 13 2

19
(9 109 10  kg)(6 40 10  m/s ) 364 N/C

1 602 10  C
ma

E
e

−

−
. × . ×= = =

. ×
 

Note that the acceleration produced by the electric field is much larger than g, the acceleration produced by 
gravity, so it is perfectly ok to neglect the gravity force on the electron in this problem. 

(b) 
19

10 2
27

p

(1 602 10  C)(364 N/C) 3 49 10  m/s .
1 673 10  kg

eE
a

m

−

−
. ×= = = . ×

. ×
 

This is much less than the acceleration of the electron in part (a) so the vertical deflection is less and the  
proton won’t hit the plates. The proton has the same initial speed, so the proton takes the same time 

81 25 10  st −= . ×  to travel horizontally the length of the plates. The force on the proton is downward (in the  
same direction as ,E

G
 since q is positive), so the acceleration is downward and 10 23 49 10  m/sya = − . × .  

2 10 2 8 2 61 1
0 0 2 2 ( 3 49 10  m/s )(1 25 10  s) 2 73 10  my yy y v t a t − −− = + = − . × . × = − . × .  The displacement is 

62 73 10  m,−. ×  downward. 
EVALUATE:   (c) The displacements are in opposite directions because the electron has negative charge and 
the proton has positive charge. The electron and proton have the same magnitude of charge, so the force 
the electric field exerts has the same magnitude for each charge. But the proton has a mass larger by a 
factor of 1836 so its acceleration and its vertical displacement are smaller by this factor. 
(d) In each case a g� and it is reasonable to ignore the effects of gravity. 

 21.30. IDENTIFY:   Use the components of 

G
E  from Example 21.6 to calculate the magnitude and direction of .

G
E  

Use q=
G G
F E  to calculate the force on the 2 5 nC− . charge and use Newton’s third law for the force on the 

8 0 nC− . charge. 
SET UP:   From Example 21.6, ˆ ˆ( 11 N/C) (14 N/C) .= − +

G
E i j  

EXECUTE:   (a) 2 2 2 2( 11 N/C) (14 N/C) 17 8 N/C.x yE E E= + = − + = .  

1 1tan tan (14/11) 51 8 ,y

x

E

E
− −
⎛ ⎞
⎜ ⎟ = = . °
⎜ ⎟
⎝ ⎠

 so 128θ = °  counterclockwise from the +x-axis. 

(b) (i) q=
G G
F E so 9 817 8 N/C 2 5 10 C 4 45 10 N,F −= ( . )( . × ) = . ×2  at 52° below the +x-axis. 

(ii) 84 45 10  N−. × at 128° counterclockwise from the +x-axis. 
EVALUATE:   The forces in part (b) are repulsive so they are along the line connecting the two charges and 
in each case the force is directed away from the charge that exerts it. 

 21.31. IDENTIFY:   Apply constant acceleration equations to the motion of the electron. 
SET UP:   Let +x be to the right and let y+ be downward. The electron moves 2.00 cm to the right and  
0.50 cm downward. 
EXECUTE:   Use the horizontal motion to find the time when the electron emerges from the field. 

6 21
0 0 0 0 20 0200 m, 0, 1 60 10 m/s.x x x xx x a v x x v t a t− = . = = . × − = +  gives 

81 25 10 s.t −= . ×  Since 

0,xa = 61 60 10 m/s.xv = . × 8
0 0y0 0050 m, 0, 1 25 10 s.y y v t −− = . = = . × 0

0 2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 gives 

58 00 10 m/s.yv = . ×  Then 2 2 61 79 10 m/s.x yv v v= + = . ×  

EVALUATE:   0y y yv v a t= + gives 13 26 4 10  m/s .ya = . ×  The electric field between the plates is 
31 13 2

19
(9 11 10  kg)(6 4 10  m/s ) 364 N/C.

1 60 10  C
yma

E
e

−

−
. × . ×= = =

. ×
 This is not a very large field. 

 21.32. IDENTIFY:   Apply constant acceleration equations to the motion of the proton. / .E F q=  

SET UP:   A proton has mass 
27

p 1 67 10  kgm −= . ×  and charge .e+  Let +x be in the direction of motion of 
the proton. 



21-12   Chapter 21 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EXECUTE:   (a) 0 0.xv =  
p

.eE
a

m
=  2

0 0
1
2x xx x v t a t− = + gives 2 2

0
p

1 1 .
2 2x

eE
x x a t t

m
− = =  Solving for E gives 

  
E = 2(0.0160 m)(1.67 × 10−27 kg)

(1.60 × 10−19 C)(3.20 × 10−6 s)2
= 32.6 N/C.  

(b) 0 p 40
0 2 6

p p

2( ) 2( ) 2(0.0160 m) 1.00 10 m/s
3.20 10  sx x x

x x meE e x x
v v a t t t

m m tet −
−⎛ ⎞ −= + = = = = = × .⎜ ⎟

×⎝ ⎠
 

EVALUATE:   The electric field is directed from the positively charged plate toward the negatively charged 
plate and the force on the proton is also in this direction. 

 21.33. IDENTIFY:   Find the angle θ  that r̂  makes with the +x-axis. Then ˆ ˆˆ (cos ) sin .θ θ= + ( )r i j  
SET UP:   tan / .y xθ =  

EXECUTE:   (a) 1 1 35tan  rad.
0 2

π− − .⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 ˆˆ .= −r j  

(b) 1 12tan  rad.
12 4

π− ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 2 2ˆ ˆˆ .
2 2

= +r i j  

(c) 1 2 6tan 1 97 rad 112 9
1 10

− .⎛ ⎞ = . = . °.⎜ ⎟+ .⎝ ⎠
 ˆ ˆˆ 0 39 0 92= − . + .r i j  (Second quadrant). 

EVALUATE:   In each case we can verify that r̂  is a unit vector, because ˆ ˆ 1.⋅ =r r  
 21.34. IDENTIFY:   The net force on each charge must be zero. 

SET UP:   The force diagram for the 6 50 Cµ− .   charge is given in Figure 21.34. FE is the force exerted on 
the charge by the uniform electric field. The charge is negative and the field is to the right, so the force 
exerted by the field is to the left. qF  is the force exerted by the other point charge. The two charges have 
opposite signs, so the force is attractive. Take the +x-axis to be to the right, as shown in the figure. 
EXECUTE:   (a) 6 8 3(6 50 10  C)(1 85 10  N/C) 1 20 10  NEF q E −= = . × . × = . ×  

   
Fq = k

q1q2

r2
= (8.99 × 109  N ⋅ m2 /C2 ) (6.50 × 1026  C)(8.75 × 10−6  C)

(0.0250 m)2
= 8.18 × 102  N  

0xF∑ =  gives 0q ET F F+ − =  and 382 N.E qT F F= − =  

(b) Now qF  is to the left, since like charges repel. 

0xF∑ =  gives 0q ET F F− − =  and 32 02 10  N.E qT F F= + = . ×  
EVALUATE:   The tension is much larger when both charges have the same sign, so the force one charge 
exerts on the other is repulsive. 

 

 
Figure 21.34 

 

 21.35. IDENTIFY and SET UP:   Use 
G
E  in 0

0q
= FE
GG

 to calculate ,  to calculate ,m =
G G G GF F a a and a constant 

acceleration equation to calculate the final velocity. Let +x be east. 
(a) EXECUTE:   19 19(1 602 10  C)(1 50 N/C) 2 403 10  N.xF q E − −= = . × . = . ×  

19 31 11 2/ (2 403 10  N)/(9 109 10  kg) 2 638 10  m/s .x xa F m − −= = . × . × = + . ×  
5 11 2

0 04 50 10  m/s, 2 638 10  m/s , 0 375 m, ?x x xv a x x v= + . × = + . ×  − = . =  
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2 2 5
0 02 ( ) gives 6 33 10  m/s.x x x xv v a x x v= + − = . ×  

EVALUATE:   
G
E is west and q is negative, so 

G
F  is east and the electron speeds up. 

(b) EXECUTE:   19 19(1 602 10  C)(1 50 N/C) 2 403 10  N.xF q E − −= − = − . × . = − . ×  

19 27 8 2/ 2 403 10  N /(1 673 10  kg) 1 436 10  m/s .x xa F m − −= = (− . × ) . × = − . ×  
4 8 2

0 01 90 10 m/s, 1 436 10 m/s , 0 375 m, ?x x xv a x x v= + . × = − . ×  − = . =  
2 2 4

0 02 ( ) gives 1 59 10  m/s.x x x xv v a x x v= + − = . ×  

EVALUATE:   0 so q >
G
F is west and the proton slows down. 

 21.36. IDENTIFY:   The net electric field is the vector sum of the fields due to the individual charges. 
SET UP:   The electric field points toward negative charge and away from positive charge. 

 

 
Figure 21.36 

 

EXECUTE:   (a) Figure 21.36a shows Q
G
E  and q+E

G
 at point P. Q

G
E  must have the direction shown, to 

produce a resultant field in the specified direction. Q
G
E  is toward Q, so Q is negative. In order for the 

horizontal components of the two fields to cancel, Q and q must have the same magnitude. 
(b) No. If the lower charge were negative, its field would be in the direction shown in Figure 21.36b. The 
two possible directions for the field of the upper charge, when it is positive ( +

G
E ) or negative ( −

G
E ), are 

shown. In neither case is the resultant field in the direction shown in the figure in the problem. 
EVALUATE:   When combining electric fields, it is always essential to pay attention to their directions. 

 21.37. IDENTIFY:   Calculate the electric field due to each charge and find the vector sum of these two fields. 
SET UP:   At points on the x-axis only the x-component of each field is nonzero. The electric field of a 
point charge points away from the charge if it is positive and toward it if it is negative. 
EXECUTE:   (a) Halfway between the two charges, 0E = .  

(b) For ,x a<  2 2 2 2 2
0 0

1 4 .
4 4( ) ( ) ( )x

q q q ax
E

a x a x x aπε πε
⎛ ⎞

= − = −⎜ ⎟⎜ ⎟+ − −⎝ ⎠
 

For ,x a>  
2 2

2 2 2 2 2
0 0

1 2 .
4 4( ) ( ) ( )x

q q q x a
E

a x a x x aπε πε
⎛ ⎞ += + =⎜ ⎟⎜ ⎟+ − −⎝ ⎠

 

For ,x a< −  
2 2

2 2 2 2 2
0 0

1 2 .
4 4( ) ( ) ( )x

q q q x a
E

a x a x x aπε πε
⎛ ⎞− += + = −⎜ ⎟⎜ ⎟+ − −⎝ ⎠

 

The graph of xE versus x is sketched in Figure 21.37 (next page). 
EVALUATE:   The magnitude of the field approaches infinity at the location of one of the point charges. 
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Figure 21.37 

 

 21.38. IDENTIFY:   Add the individual electric fields to obtain the net field.  
SET UP:   The electric field points away from positive charge and toward negative charge. The electric 
fields 1

G
E  and 2

G
E  add to form the net field .

G
E  

 

EXECUTE:   (a) The electric field is toward A at points B and C and the field is zero at A. 
(b) The electric field is away from A at B and C. The field is zero at A. 
(c) The field is horizontal and to the right at points A, B, and C. 
EVALUATE:   Compare your results to the field lines shown in Figure 21.28a and b in the textbook. 

 21.39.  IDENTIFY:   
  
E = 1

4πε0

q

r2
 gives the electric field of each point charge. Use the principle of superposition 

and add the electric field vectors. In part (b) use 0

0q
= FE
GG

 to calculate the force, using the electric field 

calculated in part (a). 
SET UP:   The placement of charges is sketched in Figure 21.39a. 

 
 

\ 

 
Figure 21.39a 

 

The electric field of a point charge is directed away from the point charge if the charge is positive and 

toward the point charge if the charge is negative. The magnitude of the electric field is 2
0

1 ,
4

q
E

rπε
=  

where r is the distance between the point where the field is calculated and the point charge. 
(a) EXECUTE:   (i) At point a the fields 1 1 2 2of  and  of q q

G G
E E  are directed as shown in Figure 21.39b. 

 

 
Figure 21.39b 
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9
1 9 2 2

1 2 2
0 1

1 2 00 10  C8 988 10  N m /C 449 4 N/C.
4 (0 200 m)

q
E

rπε

−. ×= = ( . × ⋅ ) = .
.

 

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C(8 988 10  N m /C ) 124 8 N/C.
4 (0 600 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

1 1449 4 N/C, 0.x yE E= . =  

2 2124 8 N/C, 0.x yE E= . =  

1 2 449 4 N/C 124 8 N/C 574 2 N/C.x x xE E E= + = + . + . = + .  

1 2 0.y y yE E E= + =  
The resultant field at point a has magnitude 574 N/C and is in the +x-direction. 
(ii) At point b the fields 1 1 2 2of  and  of q q

G G
E E  are directed as shown in Figure 21.39c. 

 

 
Figure 21.39c 

 

9
1 9 2 2

1 2 2
0 1

1 2 00 10  C8 988 10  N m /C 12 5 N/C.
4 (1 20 m)

q
E

rπε

−. ×= = ( . × ⋅ ) = .
.

 

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C8 988 10  N m /C 280 9 N/C.
4 (0 400 m)

q
E

rπε

−. ×= = ( . × ⋅ ) = .
.

 

1 112 5 N/C, 0.x yE E= . =  

2 2280 9 N/C, 0.x yE E= − . =  

1 2 12 5 N/C 280 9 N/C 268 4 N/C.x x xE E E= + = + . − . = − .  

1 2 0.y y yE E E= + =  
The resultant field at point b has magnitude 268 N/C and is in the -direction.x−  
(iii) At point c the fields 1 1 2 2of  and  of q q

G G
E E  are directed as shown in Figure 21.39d. 

 

 
Figure 21.39d 

 

9
1 9 2 2

1 2 2
0 1

1 2 00 10  C(8 988 10  N m /C ) 449 4 N/C.
4 (0 200 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C(8 988 10  N m /C ) 44 9 N/C.
4 (1 00 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

1 1449 4 N / C, 0.x yE E= − . =  

2 244 9 N / C, 0.x yE E= + . =  

1 2 449 4 N/C 44 9 N/C 404 5 N/C.x x xE E E= + = − . + . = − .  

1 2 0.y y yE E E= + =  
The resultant field at point b has magnitude 404 N/C and is in the -direction.x−  



21-16   Chapter 21 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

(b) SET UP:   Since we have calculated 
G
E  at each point the simplest way to get the force is to use 

e= − .
G G
F E  
EXECUTE:   (i) 19 17(1 602 10  C)(574 2 N/C) 9 20 10  N, -direction.F x− −= . × . = . × −  

(ii) 19 17(1 602 10  C)(268 4 N/C) 4 30 10  N, -direction.F x− −= . × . = . × +  

(iii) 19 17(1 602 10  C)(404 5 N/C) 6 48 10  N, -direction.F x− −= . × . = . × +  
EVALUATE:   The general rule for electric field direction is away from positive charge and toward negative 
charge. Whether the field is in the +x- or −x-direction depends on where the field point is relative to the 
charge that produces the field. In part (a), for (i) the field magnitudes were added because the fields were in 
the same direction and in (ii) and (iii) the field magnitudes were subtracted because the two fields were in 
opposite directions. In part (b) we could have used Coulomb’s law to find the forces on the electron due to 
the two charges and then added these force vectors, but using the resultant electric field is much easier. 

 21.40. IDENTIFY:   
  
E = 1

4πε0

q

r2
 gives the electric field of each point charge. Use the principle of superposition 

and add the electric field vectors. In part (b) use 0

0q
= FE
GG

 to calculate the force, using the electric field 

calculated in part (a). 
(a) SET UP:   The placement of charges is sketched in Figure 21.40a. 

 
 

\ 

 
Figure 21.40a 

 

The electric field of a point charge is directed away from the point charge if the charge is positive and 

toward the point charge if the charge is negative. The magnitude of the electric field is 2
0

1 ,
4

q
E

rπε
=  

where r is the distance between the point where the field is calculated and the point charge. 
(i) At point a the fields 1 1 2 2 of  and  of q q

G G
E E  are directed as shown in Figure 21.40b. 

 

 
Figure 21.40b 

 

EXECUTE:   
  
E1 = 1

4πε0

q1

r1
2

= (8.988 × 109  N ⋅ m2 /C2 ) 4.00 × 10−9  C
(0.200 m)2

= 898.8 N/C.  

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C(8 988 10  N m /C ) 124 8 N/C.
4 (0 600 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

1 1 N/C, 0.x yE E= 898.8 =  

2 2124 8 N/C, 0.x yE E= . =  

  Ex = E1x + E2x = −898.8 N/C + 124.8 N/C = −774 N/C.  

1 2 0.y y yE E E= + =  
The resultant field at point a has magnitude 774 N/C and is in the –x-direction. 



Electric Charge and Electric Field   21-17 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

(ii) SET UP:   At point b the fields 1 1 2 2of  and  of q q
G G
E E  are directed as shown in Figure 21.40c. 

 

 
Figure 21.40c 

 

EXECUTE:   
  
E1 = 1

4πε0

q1

r1
2

= (8.988 × 109  N ⋅ m2 /C2 ) 4.00 × 10−9  C
(1.20 m)2

= 24.97 N/C.  

  
E2 = 1

4πε0

q2

r2
2

= (8.988 × 109  N ⋅ m2 /C2 )5.00 × 10−9  C
(0.400 m)2

= 280.9 N/C.  

1 124.97 N/C, 0.x yE E= − =  

2 2280 9 N/C, 0.x yE E= − . =  

  Ex = E1x + E2x = −24.97 N/C − 280.9 N/C = −305.9 N/C.  

1 2 0.y y yE E E= + =  
The resultant field at point b has magnitude 306 N/C and is in the -direction.x−  
(iii) SET UP:   At point c the fields 1 1 2 2of  and  of q q

G G
E E  are directed as shown in Figure 21.40d. 

 

 
Figure 21.40d 

 

EXECUTE:   
  
E1 = 1

4πε0

q1

r1
2

= (8.988 × 109  N ⋅ m2 /C2 ) 4.00 × 10−9  C
(0.200 m)2

= 898.8 N/C.  

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C(8 988 10  N m /C ) 44 9 N/C.
4 (1 00 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

1 1898.8 N/C, 0.x yE E= + =  

2 244 9 N/C, 0.x yE E= + . =  

  Ex = E1x + E2x = +898.8 N/C + 44.9 N/C = +943.7 N/C.  

1 2 0.y y yE E E= + =  
The resultant field at point b has magnitude 944 N/C and is in the +x-direction.  
(b) SET UP:   Since we have calculated 

G
E  at each point the simplest way to get the force is to use 

e= − .
G G
F E  
EXECUTE:   (i) 19 16(1 602 10  C)(774 N/C) 1.24 10  N, + -direction.F x− −= . × = ×  

(ii) 19 17(1 602 10  C)(305.9 N/C) 4 90 10  N, -direction.F x− −= . × = . × +  

(iii) 19 16(1 602 10  C)(943.7 N/C) 10  N, -direction.F x− −= . × =1.51× −  
EVALUATE:   The general rule for electric field direction is away from positive charge and toward negative 
charge. Whether the field is in the +x- or −x-direction depends on where the field point is relative to the 
charge that produces the field. In part (a), for (i) the field magnitudes were subtracted because the fields 
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were in opposite directions and in (ii) and (iii) the field magnitudes were added because the two fields were 
in the same direction. In part (b) we could have used Coulomb’s law to find the forces on the electron due 
to the two charges and then added these force vectors, but using the resultant electric field is much easier. 

 21.41. IDENTIFY:   2 .
q

E k
r

=  The net field is the vector sum of the fields due to each charge. 

SET UP:   The electric field of a negative charge is directed toward the charge. Label the charges 1 2 , ,q q  
and 3 ,q  as shown in Figure 21.41a. This figure also shows additional distances and angles. The electric 
fields at point P are shown in Figure 21.41b. This figure also shows the xy-coordinates we will use and the 
x- and y-components of the fields 1,E

G
 2,E
G

 and 3.
G
E  

EXECUTE:   
6

9 2 2 6
1 3 2

5 00 10  C(8 99 10  N m / C ) 4 49 10  N/C.
(0 100 m)

E E
−. ×= = . × ⋅ = . ×

.
 

6
9 2 2 6

2 2
2 00 10  C(8 99 10  N m /C ) 4 99 10  N/C.
(0 0600 m)

E
−. ×= . × ⋅ = . ×

.
 

1 2 3 0y y y yE E E E= + + =  and 7
1 2 3 2 12 cos53 1 1 04 10  N/C.x x x xE E E E E E= + + = + . ° = . ×  

71 04 10  N/C,E = . ×  toward the 2 00 Cµ− .   charge. 
EVALUATE:   The x-components of the fields of all three charges are in the same direction. 

 

 

 

Figure 21.41   
 

 21.42. IDENTIFY:   The net electric field is the vector sum of the individual fields. 

SET UP:   The distance from a corner to the center of the square is 2 2( /2) ( /2) / 2.r a a a= + =  The 

magnitude of the electric field due to each charge is the same and equal to 2 22 .q
kq kq

E
r a

= =  All four  

y-components add and the x-components cancel.  

EXECUTE:   Each y-component is equal to 2 2
2 2cos45 .

2 2
q

qy q
E kq kq

E E
a a

−= − ° = − = = −  The resultant field 

is 2
4 2 ,kq

a
 in the -direction.y−  

EVALUATE:   We must add the y-components of the fields, not their magnitudes. 

 21.43. IDENTIFY:   For a point charge, 2
q

E k
r

= .  The net field is the vector sum of the fields produced by each 

charge. A charge q in an electric field 
G
E  experiences a force q= .F E

G G
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SET UP:   The electric field of a negative charge is directed toward the charge. Point A is 0.100 m from 2q  
and 0.150 m from 1.q  Point B is 0.100 m from 1q  and 0.350 m from 2.q  
EXECUTE:   (a) The electric fields at point A due to the charges are shown in Figure 21.43a. 

9
1 9 2 2 3

1 2 2
1

6 25 10  C8 99 10  N m /C 2 50 10  N/C.
(0 150 m)A

q
E k

r

−. ×= = ( . × ⋅ ) = . ×
.

 

9
2 9 2 2 4

2 2 2
2

12 5 10  C(8 99 10  N m /C ) 1 124 10  N/C.
(0 100 m)A

q
E k

r

−. ×= = . × ⋅ = . ×
.

 

Since the two fields are in opposite directions, we subtract their magnitudes to find the net field. 
3

2 1 8 74 10  N/C,E E E= − = . ×  to the right. 
(b) The electric fields at point B are shown in Figure 21.43b. 

9
1 9 2 2 3

1 2 2
1

6 25 10  C8 99 10  N m /C 5 619 10  N/C.
(0 100 m)B

q
E k

r

−. ×= = ( . × ⋅ ) = . ×
.

 

9
2 9 2 2 2

2 2 2
2

12 5 10  C(8 99 10  N m /C ) 9 17 10  N/C.
(0 350 m)B

q
E k

r

−. ×= = . × ⋅ = . ×
.

 

Since the fields are in the same direction, we add their magnitudes to find the net field. 
3

1 2 6 54 10  N/C,E E E= + = . ×  to the right. 

(c) At A, 38 74 10  N/C,E = . ×  to the right. The force on a proton placed at this point would be 
19 3 15(1 60 10  C)(8 74 10  N/C) 1 40 10  N,F qE − −= = . × . × = . ×  to the right. 

EVALUATE:   A proton has positive charge so the force that an electric field exerts on it is in the same 
direction as the field. 

 

 

 

Figure 21.43   
 

 21.44. IDENTIFY:   Apply 
  
E = 1

4πε0

q

r2
 to calculate the electric field due to each charge and add the two field 

vectors to find the resultant field. 
SET UP:   For 1,q  ˆˆ .=r j  For 2,q  ˆ ˆˆ cos sin ,θ θ= +r i j  where θ  is the angle between 2

G
E and the +x-axis. 

EXECUTE:   (a) 
9 2 2 9

41
1 2 2

0 1

(9 0 10  N m /C )( 5 00 10  C)ˆ ˆ ˆ( 2 813 10  N/C) .
4 (0 0400 m)

q
rπε

−. × ⋅ − . ×= = = − . ×  
.

E j j j
G

 

9 2 2 9
42

2 2 2 2
0 2

(9 0 10  N m /C )(3 00 10  C) 1 080 10  N/C.
4 (0 0300 m) 0 0400 m

q
rπε

−. × ⋅ . ×= = = . ×
. + ( . )

E
G

 The angle of 2,
G
E  measured from 

the -axis,x  is 
1 4 00 cm180 tan 126 9

3 00 cm
− .⎛ ⎞° − = . °⎜ ⎟.⎝ ⎠

 Thus 

4 3 3
2

ˆ ˆ ˆ ˆ1 080 10  N/C cos126 9 sin126 9 6 485 10  N/C (8 64 10  N/C) .= ( . × )( . ° + . °) = (− . × ) + . ×E i j i j
G

 

(b) The resultant field is 3 4 3
1 2

ˆ ˆ( 6 485 10  N/C) 2 813 10  N/C 8 64 10  N/C .+ = − . × + (− . × + . × )
G G
E E i j  

3 4
1 2

ˆ ˆ( 6 485 10  N/C) 1 95 10  N/C .+ = − . × − ( . × )E E i j
G G

 

EVALUATE:   1
G
E  is toward 1q since 1q is negative. 2

G
E  is directed away from 2,q  since 2q is positive. 
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 21.45. IDENTIFY:   The forces the charges exert on each other are given by Coulomb’s law. The net force on the 
proton is the vector sum of the forces due to the electrons. 
SET UP:   19

e 1.60 10  C.q −= − × 19
p 1 60 10  C.q . −= + ×  The net force is the vector sum of the forces exerted 

by each electron. Each force has magnitude 

2
1 2

2 2
q q e

F k k
r r

= =  and is attractive so is directed toward the 

electron that exerts it. 
EXECUTE:   Each force has magnitude  

2
1 2

1 2 2 2
q q e

F F k k
r r

= = = =
9 2 2 19 2

8
10 2

(8.988 10  N m /C )(1.60 10  C) 1.023 10  N.
(1.50 10  m)

−
−

−
× ⋅ × = ×

×
The vector force 

diagram is shown in Figure 21.45. 
 
 

 
Figure 21. 45 

 
 

Taking components, we get 8
1 1 023 10  N;xF . −= × 1 0.yF = 9

2 2 cos65.0 4.32 10  N;xF F −= ° = ×  
9

2 2 sin65 0 9.27 10  N.yF F . −= ° = × 8
1 2 1.46 10  N;x x xF F F −= + = × 9

1 2 9.27 10  N.y y yF F F −= + = ×

2 2 81 73 10  N.x yF F F . −= + = ×
9

8
9.27 10  Ntan 0.6349
1.46 10  N

y

x

F

F
θ

−

−
×= = =
×

 which gives 

32.4 .θ = ° The net force is 
81.73 10  N−×  and is directed toward a point midway between the two electrons. 

EVALUATE:   Note that the net force is less than the algebraic sum of the individual forces. 
 21.46. IDENTIFY:   We can model a segment of the axon as a point charge. 

SET UP:   If the axon segment is modeled as a point charge, its electric field is 2 .q
E k

r
=  The electric field 

of a point charge is directed away from the charge if it is positive. 
EXECUTE:   (a) 115 6 10 Na. +×  ions enter per meter so in a 

40.10 mm 1 0 10  m. −= ×  section, 
75 6 10 Na. +×  ions 

enter. This number of ions has charge 7 19 12(5.6 10 )(1.60 10  C) 9 0 10  Cq . .− −= × × = ×  

(b) 
12

9 2 2
2 2 2

9 0 10  C8 99 10  N m /C 32 N/C,
(5 00 10  m)

q .
E k .

r .

−

−
×= = ( × ⋅ ) =
×

 directed away from the axon. 

(c) 
9 2 2 12

6
(8 99 10  N m /C )(9 0 10  C) 280 m.

1 0 10  N/C
k q . .

r
E .

−

−
× ⋅ ×= = =

×
 

EVALUATE:   The field in (b) is considerably smaller than ordinary laboratory electric fields. 
 21.47. IDENTIFY:   The electric field of a positive charge is directed radially outward from the charge and has 

magnitude 2
0

1 .
4

q
E

rπε
=  The resultant electric field is the vector sum of the fields of the individual charges. 

SET UP:   The placement of the charges is shown in Figure 21.47a. 
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Figure 21.47a 

 

EXECUTE:   (a) The directions of the two fields are shown in Figure 21.47b. 
 

 
E1 = E2 = 1

4πε0

q

r2
 with r = 0.150 m.  

2 1 0; 0, 0.x yE E E E E= − = = =  

Figure 21. 47b 
  

 

(b) The two fields have the directions shown in Figure 21.47c. 
 

 1 2, in the -direction.E E E x= + +  

Figure 21. 47c 
  

 

9
1 9 2 2

1 2 2
0 1

1 6 00 10  C(8 988 10  N m /C ) 2396 8 N/C.
4 (0 150 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

9
2 9 2 2

2 2 2
0 2

1 6 00 10  C(8 988 10  N m /C ) 266 3 N/C.
4 (0 450 m)

q
E

rπε

−. ×= = . × ⋅ = .
.

 

1 2 2396 8 N/C 266 3 N/C 2660 N/C; 2660 N/C, 0.x yE E E E E= + = . + . = = + =  
(c) The two fields have the directions shown in Figure 21.47d. 

 

 0 400 msin 0 800.
0 500 m

θ .= = .
.

 

0 300 mcos 0 600.
0 500 m

θ .= = .
.

 

Figure 21. 47d 
  

 

  
E1 = 1

4πε0

q1

r1
2

=
9

9 2 2
2

6 00 10  C(8 988 10  N m /C ) 337 1 N/C.
(0 400 m)

−. ×. × ⋅ = .
.
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E2 = 1

4πε0

q2

r2
2

 = 
9

9 2 2
2

6 00 10  C(8 988 10  N m /C ) 215 7 N/C.
(0 500 m)

−. ×. × ⋅ = .
.

 

1 1 10, 337 1 N/C.x yE E E=  = − = − .  

2 2 cos (215 7 N/C)(0 600) 129 4 N/C.xE E θ= + = + . . = + .  

2 2 sin (215 7 N/C)(0 800) 172 6 N/C.yE E θ= − = − . . = − .  

1 2 129 N/C.x x xE E E= + = +  

1 2 337 1 N/C 172 6 N/C 510 N/C.y y yE E E= + = − . − . = −  

2 2 2 2(129 N/C) ( 510 N/C) 526 N/C.x yE E E= + = + − =  
G
E  and its components are shown in Figure 21.47e. 

 

 
tan .y

x

E

E
α =  

510 N/Ctan 3 953.
129 N/C

α −= = − .
+

 

284 , counterclockwise from -axis.xα = ° +  

Figure 21. 47e 
  

 

(d) The two fields have the directions shown in Figure 21.47f. 
 

 0 200 msin 0 800.
0 250 m

θ .= = .
.

 

Figure 21. 47f 
  

 

The components of the two fields are shown in Figure 21.47g. 
 

 
1 2 2

0

1 .
4

q
E E

rπε
= =  

9
9 2 2

1 2
6 00 10  C(8 988 10  N m /C ) .
(0 250 m)

E
−. ×= . × ⋅

.
 

1 2 862 8 N/C.E E= = .  

Figure 21. 47g 
  

 

1 1 2 2cos , cosx xE E E Eθ θ.= − = +  

1 2 0.x x xE E E= + =  

1 1 2 2sin , siny yE E E Eθ θ.= + = +  
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1 2 1 12 2 sin 2(862 8 N/C)(0 800) 1380 N/C.y y y yE E E E E θ= + = = = . . =  
1380 N/C, in the -directionE y= + .  

EVALUATE:   Point a is symmetrically placed between identical charges, so symmetry tells us the electric 
field must be zero. Point b is to the right of both charges and both electric fields are in the +x-direction and 
the resultant field is in this direction. At point c both fields have a downward component and the field of 

2q  has a component to the right, so the net 
G
E  is in the fourth quadrant. At point d both fields have an 

upward component but by symmetry they have equal and opposite x-components so the net field is in the  
+y-direction. We can use this sort of reasoning to deduce the general direction of the net field before doing 
any calculations. 

 21.48. IDENTIFY:   Apply 
  
E = 1

4πε0

q

r2
 to calculate the field due to each charge and then calculate the vector 

sum of those fields. 
SET UP:   The fields due to 1q and to 2q are sketched in Figure 21.48. 

EXECUTE:   
9

2 2
0

1 (6 00 10  C) ˆ ˆ( ) 150  N/C.
4 (0 6 m)πε

−. ×= − = −
.

E i i
G

 

9
1 2 2

0

1 1 1ˆ ˆ ˆ ˆ(4 00 10  C) (0 600) (0 800) (21 6 28 8 )N/C.
4 (1 00 m) (1 00 m)πε

− ⎛ ⎞
= . × . + . = . + .⎜ ⎟⎜ ⎟. .⎝ ⎠

E i j i j
G

 

1 2
ˆ ˆ( 128 4 N/C) (28 8 N/C) .= + = − . + .

G G G
E E E i j  2 2(128 4 N/C) (28 8 N/C) 131 6 N/CE = . + . = .  at 

1 28 8tan 12 6
128 4

θ − .⎛ ⎞= = . °⎜ ⎟.⎝ ⎠
 above the x− -axis and therefore 167 4. ° counterclockwise from the +x-axis. 

EVALUATE:   1
G
E is directed toward 1q because 1q is negative and 2

G
E is directed away from 2q because 

2q is positive. 
 

 
Figure 21.48 

 

 21.49. IDENTIFY:   We must use the appropriate electric field formula: a uniform disk in (a), a ring in (b) because 
all the charge is along the rim of the disk, and a point-charge in (c). 
(a) SET UP:   First find the surface charge density (Q/A), then use the formula for the field due to a disk of 

charge, 

  

Ex = σ
2ε0

1− 1

(R/x)2 + 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.  

EXECUTE:   The surface charge density is 
9

5 2
2 2

6 50 10  C 1.324 10  C/m .
(0 0125 m)

Q Q
A r

σ
π π

−
−. ×= = = = ×

.
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The electric field is 

5 2

12 2 22 20

1 1 324 10  C/m 11 1
2 2(8 85 10  C /N m )( / ) 1 1 25 cm 1

2 00 cm

xE
R x

σ
ε

−

−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥. ×⎢ ⎥= − = −⎢ ⎥⎢ ⎥ . × ⋅+ .⎢ ⎥⎛ ⎞⎣ ⎦ +⎜ ⎟⎢ ⎥.⎝ ⎠⎣ ⎦

 

51.14 10  N/C,xE  = ×  toward the center of the disk. 

(b) SET UP:   For a ring of charge, the field is E = 1
4πε0

Qx

(x2 + a2 )3/2
.  

EXECUTE:   Substituting into the electric field formula gives 
9 2 2 9

2 2 3/2 2 2 3/2
0

1 (9 00 10 N m /C )(6 50 10 C)(0 0200 m)
4 ( ) [(0 0200 m) (0 0125 m) ]

Qx
E

x aπε

−. × ⋅ . × .= =
+ . + .

 

48.92 10  N/C,E = ×  toward the center of the disk. 

(c) SET UP:   For a point charge,   E = (1/4πε0 )q/r2.  

EXECUTE:   9 2 2 9 2 5(9.00 10  N m /C )(6.50 10  C)/(0.0200 m) 1.46 10 N/C.E − = × ⋅ × = ×  
(d) EVALUATE:   With the ring, more of the charge is farther from P than with the disk. Also with the ring 
the component of the electric field parallel to the plane of the ring is greater than with the disk, and this 
component cancels. With the point charge in (c), all the field vectors add with no cancellation, and all the 
charge is closer to point P than in the other two cases. 

 21.50. IDENTIFY:   For a long straight wire, 
0

.
2

E
r

λ
πε

=  

SET UP:   
 

1
2πε0

= 1.80 × 1010  N ⋅ m2 /C2.  

EXECUTE:   Solve 
  
E = λ

2πε0r
 for r: 

  
r = 3.20 × 10−10 C/m

2πε0 (2.50 N/C)
= 2.30 m.  

EVALUATE:   For a point charge, E is proportional to 21/r .  For a long straight line of charge, E is 
proportional to 1/r.  

 21.51. IDENTIFY:   For a ring of charge, the magnitude of the electric field is given by 2 2 3/2
0

1 .
4 ( )x

Qx
E

x aπε
=

+
 

Use .q=
G G
F E  In part (b) use Newton’s third law to relate the force on the ring to the force exerted by the 

ring. 
SET UP:   90 125 10 C,Q −= . × 0 025 ma = . and 0 400 m.x = .  

EXECUTE:   (a) 2 2 3/2
0

1 ˆ ˆ(7 0 N/C) .
4 ( )

Qx
x aπε

= = .
+

E i i
G

 

(b) 6 5
on ring on q

ˆ ˆ( 2 50 10  C)(7 0 N/C) (1 75 10  N) .q − −= − = − = − − . × . = . ×F F E i i
G G G

 
EVALUATE:   Charges q and Q have opposite sign, so the force that q exerts on the ring is attractive. 

 21.52. (a) IDENTIFY:   The field is caused by a finite uniformly charged wire. 
SET UP:   The field for such a wire a distance x from its midpoint is 

2 20 0

1 12 .
2 4( / ) 1 ( / ) 1

E
x x a x x a

λ λ
πε πε

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠+ +
 

EXECUTE:   
9 2 2 9

2

(18 0 10  N m /C )(175 10  C/m)

6 00 cm(0 0600 m) 1
4 25 cm

E
−. × ⋅ ×=

.⎛ ⎞. +⎜ ⎟.⎝ ⎠

 43.03 10  N/C,= ×  directed upward. 
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(b) IDENTIFY:   The field is caused by a uniformly charged circular wire. 

SET UP:   The field for such a wire a distance x from its midpoint is 2 2 3/2
0

1 .
4 ( )x

Qx
E

x aπε
=

+
 We first find 

the radius a of the circle using 2πa = l.  
EXECUTE:   Solving for a gives /2 (8.50 cm)/2 1.353 cm. a l π π= =  =  
The charge on this circle is (175 nC/m)(0.0850 m) 14.88 nC.Q lλ= = =  
The electric field is 

  

E = 1
4πε0

Qx

(x2 + a2 )3/2
= (9.00 × 109 N ⋅ m2 /C2 )(14.88 × 10−9 C/m)(0.0600 m)

(0.0600 m)2 + (0.01353 m)2⎡
⎣

⎤
⎦

3/2
 

43.45 10  N/C,E = ×  upward. 
EVALUATE:   In both cases, the fields are of the same order of magnitude, but the values are different 
because the charge has been bent into different shapes. 

 21.53. (a) IDENTIFY and SET UP:   Use p = qd to relate the dipole moment to the charge magnitude and the 
separation d of the two charges. The direction is from the negative charge toward the positive charge. 
EXECUTE:     p = qd = (4.5 × 10−9  C)(3.1× 10−3  m) = 1.4 × 10−11 C ⋅ m.  The direction of pG  is from 1q  

toward 2.q  
(b) IDENTIFY and SET UP:   Use τ = pE sinφ  to relate the magnitudes of the torque and field. 
EXECUTE:   sin , with pEτ φ φ=  as defined in Figure 21.53, so  

 
 

 
.

sin
E

p
τ

φ
=  

9

11
7 2 10  N m 860 N/C.

(1 4 10  C m)sin36 9
E

−

−
. × ⋅= =

. × ⋅ . °
 

Figure 21. 53 
  

 

EVALUATE:   The equation τ = pE sinφ  gives the torque about an axis through the center of the dipole. 
But the forces on the two charges form a couple and the torque is the same for any axis parallel to this one. 
The force on each charge is q E  and the maximum moment arm for an axis at the center is /2,d  so the 

maximum torque is 82( )( /2) 1 2 10  N mq E d −= . × ⋅ .  The torque for the orientation of the dipole in the 
problem is less than this maximum. 

 21.54. (a) IDENTIFY:   The potential energy is given by ( ) cosU pEφ φ.= − ⋅ = −p E
GG  

SET UP:   ( ) cos ,  where  is the angle between  and .U pEφ φ φ= − ⋅ = −p E p E
G GG G  

EXECUTE:   parallel: 0 and (0 ) .U pEφ = ° = −  
perpendicular: 90  and (90 ) 0.Uφ = ° ° =  

30 6 24(90 ) (0 ) (5 0 10  C m)(1 6 10  N/C) 8 0 10  JU U U pE − −∆ = ° − ° = = . × ⋅ . × = . × .  

(b) 
24

3
2 23

2 2(8 0 10  J) so 0 39 K.
3 3(1 381 10  J/K)

U
kT U T

k

−

−
∆ . ×= ∆ = = = .

. ×
 

EVALUATE:   Only at very low temperatures are the dipoles of the molecules aligned by a field of this 
strength. A much larger field would be required for alignment at room temperature. 

 21.55. IDENTIFY:   The torque on a dipole in an electric field is given by .= ×
GG Gp Eτ  

SET UP:   sinpEτ φ= ,  where φ is the angle between the direction of Gp and the direction of .
G
E  

EXECUTE:   (a) The torque is zero when Gp  is aligned either in the same direction as 
G
E  or in the opposite 

direction, as shown in Figure 21.55a (next page). 



21-26   Chapter 21 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

(b) The stable orientation is when Gp  is aligned in the same direction as .
G
E  In this case a small rotation of 

the dipole results in a torque directed so as to bring Gp back into alignment with .
G
E  When Gp is directed 

opposite to ,
G
E  a small displacement results in a torque that takes Gp farther from alignment with .

G
E  

(c) Field lines for dipoleE in the stable orientation are sketched in Figure 21.55b. 
EVALUATE:   The field of the dipole is directed from the + charge toward the − charge. 

 
 

 

Figure 21. 55 
  

 

 21.56. IDENTIFY:   Calculate the electric field due to the dipole and then apply .q=
G G
F E  

SET UP:   The field of a dipole is
  
Edipole (x) = p

2πε0x3
.  

EXECUTE:   
  
Edipole = 6.17 × 10−30 C ⋅ m

2πε0 (3.0 × 10−9 m)3
= 4.11× 106 N/C.  The electric force is 

19 6 13(1 60 10  C)(4 11 10  N/C) 6 58 10 NF qE − −= = . × . × = . ×  and is toward the water molecule (negative  
x-direction). 
EVALUATE:   dipole

G
E is in the direction of ,Gp  so is in the +x-direction. The charge q of the ion is negative, 

so 
G
F is directed opposite to 

G
E and is therefore in the −x-direction. 

 21.57. (a) IDENTIFY:   Use Coulomb’s law to calculate each force and then add them as vectors to obtain the net 
force. Torque is force times moment arm. 
SET UP:   The two forces on each charge in the dipole are shown in Figure 21.57a. 

 

 sin 1 50/2 00 so 48 6 .θ θ= . . = . °  

Opposite charges attract and like charges repel. 

1 2 0.x x xF F F= + =  

Figure 21. 57a 
  

 

EXECUTE:   
6 6

3
1 2 2

(5 00 10  C)(10 0 10  C) 1 124 10  N.
(0 0200 m)

qq
F k k

r

− −′ . × . ×= = = . ×
.

 

1 1sin 842 6 N.yF F θ= − = − .  

2 1 2842 6 N so 1680 Ny y y yF F F F= − . = + = −  (in the direction from the 5 00- Cµ+ .  charge toward the 
5 00- Cµ− .  charge). 

EVALUATE:   The x-components cancel and the y-components add. 
 
 



Electric Charge and Electric Field   21-27 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

(b) SET UP:   Refer to Figure 21.57b. 
 

 The y-components have zero moment arm 
and therefore zero torque. 

1 2and x xF F  both produce clockwise torques. 

Figure 21. 57b 
  

 

EXECUTE:   1 1 cos 743 1 N.xF F θ= = .  

12( )(0 0150 m) 22 3 N m, clockwise.xFτ = . = . ⋅  
EVALUATE:   The electric field produced by the 10 00 Cµ− .  charge is not uniform so   τ = pE sinφ  does 
not apply. 

 21.58. IDENTIFY:   Find the vector sum of the fields due to each charge in the dipole. 

SET UP:   A point on the x-axis with coordinate x is a distance 2 2( /2)r d x= + from each charge. 

EXECUTE:   (a) The magnitude of the field due to each charge is 2 2 2
0 0

1 1 ,
4 4 ( /2)

q q
E

r d xπε πε
⎛ ⎞

= = ⎜ ⎟⎜ ⎟+⎝ ⎠
  

where d is the distance between the two charges. The x-components of the forces due to the two charges  
are equal and oppositely directed and so cancel each other. The two fields have equal y-components, 

so 2 2
0

2 12 sin ,
4 ( /2)y

q
E E

d x
θ

πε
⎛ ⎞

= = ⎜ ⎟⎜ ⎟+⎝ ⎠
 where θ  is the angle below the x-axis for both fields. 

2 2

/2sin
( /2)

d

d x
θ =

+
 and 

( ) ( )
dipole 2 3/22 2 2 2 20 0

2 1 /2 .
4 /2 /2 4 ( /2)

q d qd
E

d x d x d xπε πε

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎜ ⎟⎝ ⎠ ⎡ ⎤+ +⎝ ⎠⎝ ⎠ ⎣ ⎦

 The 

field is the −y-direction. 

(b) At large x, 2 2( /2) ,x d�  so the expression in part (a) reduces to the approximation 
  
Edipole ≈ qd

4πε0x3
.  

EVALUATE:   Example 21.14 shows that at points on the +y-axis far from the dipole, 
  
Edipole ≈ qd

2πε0 y3
.   

The expression in part (b) for points on the x-axis has a similar form. 
 21.59. IDENTIFY:   Apply Coulomb’s law to calculate the force exerted on one of the charges by each of the other 

three and then add these forces as vectors. 
SET UP:   The charges are placed as shown in Figure 21.59a. 

 

 1 2 3 4q q q q Q= = = =  

Figure 21.59a 
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Consider forces on 4q .  The free-body diagram is given in Figure 21.59b. Take the y-axis to be parallel to the 

diagonal between 2q  and 4q  and let y+  be in the direction away from 2q .  Then 2
G
F  is in the -direction.y+  

 

 
EXECUTE:   (a) 

2

3 1 2
0

1 .
4

Q
F F

Lπε
= =  

2

2 2
0

1 .
4 2

Q
F

Lπε
=  

1 1 1sin 45 / 2.xF F F= − ° = −  

1 1 1cos45 / 2.yF F F= + ° = +  

3 3 3sin 45 / 2.xF F F= + ° = +  

3 3 3cos45 / 2.yF F F= + ° = +  

2 2 20, .x yF F F=  =  

Figure 21.59b 
  

 

(b) 1 2 3 0.x x x xR F F F= + + =  
2 2 2

1 2 3 2 2 2
0 0 0

1 1(2/ 2) (1 2 2).
4 4 2 8y y y y

Q Q Q
R F F F

L L Lπε πε πε
= + + = + = +  

  
R = Q2

8πε0 L2
(1+ 2 2).  Same for all four charges. 

EVALUATE:   In general the resultant force on one of the charges is directed away from the opposite corner. 
The forces are all repulsive since the charges are all the same. By symmetry the net force on one charge 
can have no component perpendicular to the diagonal of the square. 

 21.60. IDENTIFY:   Apply 2
k qq

F
r

′
=  to find the force of each charge on .q+  The net force is the vector sum of 

the individual forces. 
SET UP:   Let 1 2 50 Cq µ= + .   and 2 3 50 C.q µ= − .   The charge q+ must be to the left of 1q or to the right of 

2q  in order for the two forces to be in opposite directions. But for the two forces to have equal magnitudes, 
q+ must be closer to the charge 1,q  since this charge has the smaller magnitude. Therefore, the two forces 

can combine to give zero net force only in the region to the left of 1.q  Let q+ be a distance d to the left of 

1,q  so it is a distance 0 600 md + . from 2.q  

EXECUTE:   1 2F F= gives 1 2
2 2 .

( 0 600 m)
kq q kq q

d d
=

+ .
 1

2
( 0 600 m) 0 8452 0 600 m

q
d d d

q
= ± + . = ±( . )( + . ).   

d must be positive, so (0 8452)(0 600 m) 3 27 m.
1 0 8452

d
. .= = .

− .
 The net force would be zero when q+ is at 

3 27 m.x = − .  
EVALUATE:   When q+ is at 3 27 m,x = − .  1

G
F  is in the –x-direction and 2

G
F is in the +x-direction. 

 21.61. IDENTIFY:   Apply 2
qq

F k
r

′
=  for each pair of charges and find the vector sum of the forces that 1q  and 

2q  exert on 3q .  
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SET UP:   Like charges repel and unlike charges attract. The three charges and the forces on 3q are shown 
in Figure 21.61. 

 

 
Figure 21.61 

 

EXECUTE:   (a) 
  
F1 = k

q1q3

r1
2

= (8.99 × 109  N ⋅ m2 /C2 ) (5.00 × 10−9  C)(6.00 × 10−9  C)
(0.0500 m)2

= 1.079 × 10−4  N.  

36 9θ = . °.  5
1 1 cos 8 63 10  N.xF F θ −= + = . ×  5

1 1sin 6 48 10  N.yF F θ −= + = . ×  

  
F2 = k

q2q3

r2
2

= (8.99 × 109  N ⋅ m2 /C2 ) (2.00 × 10−9  C)(6.00 × 10−9  C)
(0.0300 m)2

= 1.20 × 10−4  N.  

2 0,xF =  4
2 2 1 20 10  N.yF F −= − = − . ×  5

1 2 8 63 10  N.x x xF F F −= + = . ×  
5 4 5

1 2 6 48 10  N 1 20 10  N 5 52 10  N.y y yF F F − − −= + = . × + (− . × ) = − . ×  

(b) 2 2 41 02 10  N.x yF F F −= + = . ×  tan 0 640.y

x

F

F
φ = = .  32 6 ,φ = . °  below the +x-axis. 

EVALUATE:   The individual forces on 3q  are computed from Coulomb’s law and then added as vectors, 
using components. 

 21.62. IDENTIFY:   Apply 0xF∑ =  and 0yF∑ =  to one of the spheres. 

SET UP:   The free-body diagram is sketched in Figure 21.62 (next page). eF  is the repulsive Coulomb 
force between the spheres. For small ,θ  sin tanθ θ.≈  

EXECUTE:   esin 0xF T Fθ∑ = − = and cos 0.yF T mgθ∑ = − =  So 
2

e 2
sin .

cos
mg kq

F
d

θ
θ

= =  But 

tan sin ,
2
d
L

θ θ≈ =  so 
2

3 2kq L
d

mg
= and 

1/32

0
.

2
q L

d
mgπε

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   d increases when q increases. 
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Figure 21.62 

 

 21.63. IDENTIFY:   Use Coulomb’s law for the force that one sphere exerts on the other and apply the first 
condition of equilibrium to one of the spheres. 
SET UP:   The placement of the spheres is sketched in Figure 21.63a. 

 

 
Figure 21.63a 

 

EXECUTE:   (a) The free-body diagrams for each sphere are given in Figure 21.63b. 
 

 
Figure 21.63b 

 

cF  is the repulsive Coulomb force exerted by one sphere on the other. 
(b) From either force diagram in part (a): .y yF ma∑ =  

cos25 0 0 and .
cos25 0

mg
T mg T. ° − = =

. °
 

.x xF ma∑ =  

c csin 25 0 0 and sin 25 0 .T F F T. ° − = = . °  
Use the first equation to eliminate T in the second: c / cos25 0 sin 25 0 tan 25 0 .F mg mg= ( . °)( . °) = . °  

[ ]
2 2

1 2
c 2 2 2

0 0 0

1 1 1 .
4 4 4 2(1 20 m)sin 25 0

q q q q
F

r rπε πε πε
= = =

. . °
 

Combine this with c tan 25 0F mg= . °  and get 
[ ]

2

2
0

1tan 25 0 .
4 2(1 20 m)sin 25 0

q
mg

πε
. ° =

. . °
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0

tan 25 02 40 m sin 25 0 .
(1/4 )

mg
q

πε
. °= ( . ) . °  

3 2
6

9 2 2
(15 0 10  kg)(9 80 m/s ) tan 25 0(2 40 m)sin 25 0 2 80 10  C.

8 988 10  N m /C
q

−
−. × . . °= . . ° = . ×

. × ⋅
 

(c) The separation between the two spheres is given by 2 sin 2 80 CL qθ µ. = .  as found in part (b). 

Fc = (1/4πε0 )q2 /(2Lsinθ )2  and Fc = mg tanθ.  Thus (1/4πε0 )q2 /(2Lsinθ )2 = mg tanθ.   

  
(sinθ )2 tanθ = 1

4πε0

q2

4L2mg
=

6 2
9 2 2

2 3 2
(2 80 10  C)(8 988 10  N m /C ) 0 3328

4(0 600 m) (15 0 10  kg)(9 80 m/s )

−

−
. ×. × ⋅ = . .

. . × .
 

Solve this equation by trial and error. This will go quicker if we can make a good estimate of the value of 
θ  that solves the equation. For θ  small, tan sinθ θ≈ .  With this approximation the equation becomes 

3sin 0 3328θ = .  and sin 0 6930,θ = .  so 43 9θ = . °.  Now refine this guess: 
 

θ  2sin tanθ θ   
45 0. °  0.5000  
40 0. °  0.3467  
39 6. °  0.3361  
39 5. °  0.3335  
39 4. °  0.3309 so 39 5 .θ = . °  

 

EVALUATE:   The expression in part (c) says 0 as  and 90  as 0L Lθ θ→ → ∞ → ° → .  When L is decreased 
from the value in part (a), θ  increases. 

 21.64. IDENTIFY:   Apply 0xF∑ = and 0yF∑ =  to each sphere. 

SET UP:   (a) Free body diagrams are given in Figure 21.64 (next page). eF is the repulsive electric force 
that one sphere exerts on the other. 

EXECUTE:   (b) /cos20 0 0834 N,T mg= ° = .  so 
1 2

e 2
1

sin 20 0 0285 N .kq q
F T

r
= ° = . =  

(Note: 1 2(0 500 m)sin 20 0 342 m )r = . ° = . .  

(c) From part (b), 13 2
1 2 3 71 10 Cq q −= . × .  

(d) The charges on the spheres are made equal by connecting them with a wire, but we still have 

Fe = mg tanθ = 0.0453 N = 1
4πε0

Q2

r2
2

,  where 1 2 .2
q q

Q
+

=  But the separation 2r is known: 

2 2(0 500 m)sin30 0 500 mr = . ° = . .  Hence: Q =
q1+q2

2
= 4πε0 Fer2

2 = 1.12 × 10−6  C.  This equation, along  

with that from part (c), gives us two equations in 1q and 2:q 6
1 2 2 24 10 Cq q −+ = . ×  and 

13 2
1 2 3 71 10 Cq q −= . × .  By elimination, substitution and after solving the resulting quadratic equation, we 

find: 6
1 2 06 10 Cq −= . ×  and 7

2 1 80 10 C.q −= . ×  
EVALUATE:   After the spheres are connected by the wire, the charge on sphere 1 decreases and the charge 
on sphere 2 increases. The product of the charges on the sphere increases and the thread makes a larger 
angle with the vertical. 
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Figure 21.64 

 

 21.65. IDENTIFY:   The electric field exerts a horizontal force away from the wall on the ball. When the ball hangs 
at rest, the forces on it (gravity, the tension in the string, and the electric force due to the field) add to zero. 
SET UP:   The ball is in equilibrium, so for it 0xF∑ =  and 0.yF∑ =  The force diagram for the ball is 

given in Figure 21.65. EF  is the force exerted by the electric field. .q=F E
G G

 Since the electric field is 

horizontal, E
G
F  is horizontal. Use the coordinates shown in the figure. The tension in the string has been 

replaced by its x- and y-components. 
 
 

 
Figure 21.65 

 

EXECUTE:   0yF∑ =  gives 0yT mg .− =  cos 0T mgθ − =  and 
cos
mg

T .
θ

=  0xF∑ =  gives 0E xF T .− =  

sin 0EF T .θ− =  Combing the equations and solving for EF  gives 

3 2 2 sin tan (12 3 10  kg)(9 80 m/s )(tan17 4 ) 3 78 10  N.
cosE
mg

F mg . . . .θ θ
θ

− −⎛ ⎞
= = = × ° = ×⎜ ⎟
⎝ ⎠

EF q E=  so 

2
4

6
3 78 10  N 3 41 10  N/C.
1 11 10  C

EF .
E .

q .

−

−
×= = = ×
×

 Since q is negative and E
G
F  is to the right, 

G
E  is to the left in the figure. 

EVALUATE:   The larger the electric field E the greater the angle the string makes with the wall. 
 21.66. IDENTIFY: The net force on q3 is the vector sum of the individual forces. Coulomb’s law gives the force 

between any two point-charges. 

SET UP:   Use 1 2
2

| | .q q
F k

r
=  The force on q3 due to q1 is in the –x-direction, so q2 must be negative to 

make the net force on q3 in the  +x-direction. We know that the x-component of the net force on q3 is  
F3x = +6.00 N. 
(a) EXECUTE:   The net force on q3 is the sum of the two forces: F3x = F1x + F2x = +6.00 N. Applying 
Coulomb’s law gives 
6.00 N = k[–(6.00 µC)(3.00 µC)/(0.200 m)2 + (3.00 µC)q2/(0.400 m)2],  q2 = –5.96 ×10–6 C = –59.6 µC. 
(b) Now F3x = –6.00 N. In this case, assume that q2 is positive, so the x-components all add. Using the same 
approach as in (a), we have 
–6.00 N = k[–(6.00 µC)(3.00 µC)/(0.200 m)2 – (3.00 µC)q2/(0.400 m)2] = +1.16 ×10–5 C = +11.6 µC. 
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EVALUATE:   Is is tempting to think that the answer to (b) should be just the negative of the answer to (a), 
but that is not the case. In (a) the two forces on q3 were in opposite directions, but in (b) they are in the 
same direction. 

 21.67. IDENTIFY:   For a point charge, 2 .
q

E k
r

=  For the net electric field to be zero, 1
G
E and 2

G
E  must have equal 

magnitudes and opposite directions. 
SET UP:   Let 1 0 500 nCq = + .  and 2 8 00 nCq = + . .  

G
E  is toward a negative charge and away from a 

positive charge. 
EXECUTE:   The two charges and the directions of their electric fields in three regions are shown in Figure 21.67. 
Only in region II are the two electric fields in opposite directions. Consider a point a distance x from  

1q  so a distance 1 20 m x. −  from 2.q  1 2E E=  gives 2 2
0 500 nC 8 00 nC .

(1 20 m )
k k

x x
. .=

. −
 

2 216 (1 20 m ) .x x= . −  

4 (1 20 m )x x= ± . −  and 0 24 mx = .  is the positive solution. The electric field is zero at a point between the 
two charges, 0.24 m from the 0.500 nC charge and 0.96 m from the 8.00 nC charge. 
EVALUATE:   There is only one point along the line connecting the two charges where the net electric field 
is zero. This point is closer to the charge that has the smaller magnitude. 

 

 
Figure 21.67 

 

 21.68. IDENTIFY:   The net electric field at the origin is the vector sum of the fields due to the two charges. 

SET UP:   2 .
q

E k
r

=  
G
E  is toward a negative charge and away from a positive charge. At the origin, 1

G
E  

due to the −3.00 nC  charge is in the +x-direction, toward the charge. 

EXECUTE:   (a) 
  
E1 = (8.99 × 109  N ⋅ m2 /C2 ) (3.00 × 10−9  C)

(1.20 m)2
= 18.73 N/C, so E1x = +18.73 N/C.  

1 2 .x x xE E E= + 45.0 N/C,xE = +  so E2x = Ex − E1x = +45.0 N/C − 18.73 N/C = 26.27 N/C.  

G
E  is away 

from Q so Q is positive. Using 2 2
Q

E k
r

=  gives 

2 2
2

9 2 2
(26.27 N/C)(0.600 m) 1.05 10  C = 1.05 nC.

8.99 10  N m /C
E r

Q
k

−9= = = ×
× ⋅

Since Q is positive, Q = +1.05 nC. 

(b) 45.0 N/C,xE = −  so   E2x = Ex − E1x = −45.0 N/C − 18.73 N/C = −63.73 N/C.
G
E  is toward Q so Q is 

negative. 
2 2

92
9 2 2

(63.73 N/C)(0.600 m) 2.55 10  C = 2.55 nC.
8.99 10  N m /C

E r
Q

k
−= = = ×

× ⋅
 Since Q is negative, we have  

Q = –2.55 nC. 

EVALUATE:   The equation 2
q

E k
r

=  gives only the magnitude of the electric field. When combining 

fields, you still must figure out whether to add or subtract the magnitudes depending on the direction in 
which the fields point. 
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 21.69. IDENTIFY:   For equilibrium, the forces must balance. The electrical force is given by Coulomb’s law. 
SET UP:   Set up axes so that the charge Q+  is located at 0,x =  the charge 4Q+  is located at ,x d=  and 
the unknown charge that is required to produce equilibrium, q, is located at a position .x a=  Apply 

1 2
2

| |q q
F k

r
=  to each pair of charges to obtain eqilibrium.  

EXECUTE:    For a charge q  to be in equilbrium, it must be placed between the two given positive charges 
(0 )a d< <  and the magnitude of the force between q and +Q must be equal to the magnitude of the force 

between q and +4Q: 2 2
| | 4 | | .

( )
q Q q Q

k k
a d a

=
−

 Solving for a we obtain ( ) 4 ,d a a− = ±  which has 
3
d

a =  as its 

only root in the required interval (0 ).a d< <  Furthermore, to conteract the repulsive force between +Q 
and 4Q+  the charge q must be negative | |q q( = − ).  The condition that +Q is in equilibrium gives us 

2

2 2
4 .

( 3)
qQ Q

k k
d/ d
− =  Solving for q we obtain q = − 4

9
Q.  

EVALUATE:    We have shown that both q and +Q are in equilibrium provided that 
3
d

a =  and 
  
q = − 4

9
Q.  To 

make sure that the problem is well posed, we should check that these conditions also place the charge +4Q is 

in equilbrium.  We can do this by showing that 2
4

( )
qQ

k
d a
−

−
 is equal to 

2

2
4Q

k
d

 when the given values for both 

a and q are substituted. 
 21.70. IDENTIFY and SET UP:    Like charges repel and unlike charges attract, and Coulomb’s law applies. The 

positions of the three charges are sketched in Figure 21.70a, and each force acting on 3q  is shown. The 
distance between 1q  and 3q  is 5.00 cm. 

 

 

Figure 21.70 
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EXECUTE:    (a) 
9 9

9 2 2 51 3
1 2 2 2

1

| | (3 00 10  C)(5 00 10  C)(8 99 10  N m /C ) 5 394 10  N.
(5 00 10  m)

q q
F k

r

− −
−

−
. × . ×= = . × ⋅ = . ×

. ×
 

5 5
1 1 cos (5 394 10  N)(0 600) 3 236 10  N.xF F θ − −= − = − . × . = − . ×   

5 5
1 1sin (5 394 10  N)(0 800) 4 315 10  N.yF F θ − −= − = − . × . = − . ×  

9 9
9 2 2 52 3

2 2 2 2
2

| | (2 00 10  C)(5 00 10  C)(8 99 10  N m /C ) 9 989 10  N.
(3 00 10  m)

q q
F k

r

− −
−

−
. × . ×= = . × ⋅ = . ×

. ×
 

5
2 9 989 10  N;xF −= . × 2 0.yF =  

5 5 5
1 2 9 989 10  N ( 3 236 10  N) 6 75 10  N;x x xF F F − − −= + = . × + − . × = . ×  

5
1 2 4 32 10  N.y y yF F F −= + = − . ×  

(b) F
G

 and its components are shown in Figure 21.70b. 

2 2 58 01 10  Nx yF F F −= + = . × . tanθ =
Fy

Fx
= 0.640  and 32 6θ = . °. F

G
 is 327°  counterclockwise from 

the +x-axis. 

EVALUATE:   The equation 1 2
2

| |q q
F k

r
=  gives only the magnitude of the force. We must find the 

direction by deciding if the force between the charges is attractive or repulsive. 
 21.71. IDENTIFY:   Use Coulomb’s law to calculate the forces between pairs of charges and sum these forces as 

vectors to find the net charge. 
(a) SET UP:   The forces are sketched in Figure 21.71a. 

 

 EXECUTE:   1 3 0,+ =F F
G G

 so the net force is 2= .
G G
F F  

F = 1
4πε0

q(3q)
(L/ 2)2

= 6q2

4πε0 L2
,  away from the vacant corner.

Figure 21. 71a 
  

 

(b) SET UP:   The forces are sketched in Figure 21.71b. 
 

 
EXECUTE:   

2

2 2 2
0 0

1 (3 ) 3 .
4 ( 2 ) 4 (2 )

q q q
F

L Lπε πε
= =  

2

1 3 2 2
0 0

1 (3 ) 3 .
4 4

q q q
F F

L Lπε πε
= = =  

The vector sum of 1 3and  isF F  2 2
13 1 3F F F= + .  

Figure 21. 71b 
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2

13 1 13 22
0

3 22 ;  and 
4

q
F F

Lπε
= =  F F

G G
 are in the same direction. 

2

13 2 2
0

3 12 ,
24

q
F F F

Lπε
⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

 and is directed toward the center of the square. 

EVALUATE:   By symmetry the net force is along the diagonal of the square. The net force is only slightly 
larger when the 3q−  charge is at the center. Here it is closer to the charge at point 2 but the other two 
forces cancel. 

 21.72. IDENTIFY:   For the acceleration (and hence the force) on Q to be upward, as indicated, the forces due to 
1q  and 2q  must have equal strengths, so 1q  and 2q  must have equal magnitudes. Furthermore, for the 

force to be upward, 1q  must be positive and 2q  must be negative. 
SET UP:   Since we know the acceleration of Q, Newton’s second law gives us the magnitude of the force 
on it. We can then add the force components using 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + = .  The electrical 

force on Q is given by Coulomb’s law, FQq1
= 1

4πε0

| Qq1 |

r2
 (for 1)q  and likewise for 2.q  

EXECUTE:   First find the net force: 2(0.00500 kg)(324 m/s ) 1.62 N.F ma = = =  Now add the force  
components, calling θ  the angle between the line connecting 1q  and 2q  and the line connecting 1q  and Q. 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + =  and 

1

1 62 N 1.08 N.
2cos 2 25 cm2

3 00 cm

Qq
F

F
θ

.= = =
⎛ ⎞.
⎜ ⎟.⎝ ⎠

 Now find the charges 

by solving for 1q  in Coulomb’s law and use the fact that 1q  and 2q  have equal magnitudes but opposite 

signs. 
  
FQq1

= 1
4πε0

Q q1

r2
 and q1 =

r2 FQq1

1
4πε0

Q
= (0.0300 m)2 (1.08 N)

(9.00 × 109 N ⋅ m2 /C2 )(1.75 × 10−6 C)
86 17 10  C−= . × .  

8
2 1 6 17 10  Cq q −= − = − . × .  

EVALUATE:   Simple reasoning allows us first to conclude that 1q  and 2q  must have equal magnitudes but 
opposite signs, which makes the equations much easier to set up than if we had tried to solve the problem 
in the general case. As Q accelerates and hence moves upward, the magnitude of the acceleration vector 
will change in a complicated way. 

 21.73. IDENTIFY:   The small bags of protons behave like point-masses and point-charges since they are 
extremely far apart. 
SET UP:   For point-particles, we use Newton’s formula for universal gravitation 2

1 2( / )F Gm m r=  and 
Coulomb’s law. The number of protons is the mass of protons in the bag divided by the mass of a single 
proton. 
EXECUTE:   (a) 27 23(0 0010 kg)/(1 67 10  kg) 6 0 10−. . × = . ×  protons. 
(b) Using Coulomb’s law, where the separation is twice the radius of the earth, we have 

  Felectrical = (9.00 × 109  N ⋅ m2 /C2 )(6.0 × 1023 × 1.60 × 10−19  C)2 /(2 × 6.37 × 106  m)2 = 5.1× 105  N.  

  
Fgrav  = (6.67 × 10−11 N ⋅ m2 /kg2 )(0.0010 kg)2 /(2 × 6.37 × 106  m)2  = 4.1× 10−31 N.  

EVALUATE:   (c) The electrical force (≈200,000 lb!) is certainly large enough to feel, but the gravitational 
force clearly is not since it is about 3610  times weaker. 

 21.74. IDENTIFY:   The positive sphere will be deflected in the direction of the electric field but the negative sphere 
will be deflected in the direction opposite to the electric field. Since the spheres hang at rest, they are in 
equilibrium so the forces on them must balance. The external forces on each sphere are gravity, the tension in 
the string, the force due to the uniform electric field and the electric force due to the other sphere. 
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SET UP:   The electric force on one sphere due to the other is 
2

C 2

q
F k

r
=  in the horizontal direction, the 

force on it due to the uniform electric field is EF qE=  in the horizontal direction, the gravitational force is 
mg vertically downward and the force due to the string is T directed along the string. For equilibrium 

0xF∑ =  and 0.yF∑ =  
EXECUTE:   (a) The positive sphere is deflected in the same direction as the electric field, so the one that is 
deflected to the left is positive. 
(b) The separation between the two spheres is 2(0.530 m)sin29.0o = 0.5139 m.  

  
FC = k

q2

r2
= (8.99 × 109  N ⋅ m2 /C2 )(72.0 × 10−9  C)2

(0.5139 m)2
= 1.765 × 10−4  N.  .EF qE=  0yF∑ =  gives 

  T cos29.0o − mg = 0  so o .
cos29.0

mg
T =  0xF∑ =  gives T sin29.0o + FC − FE = 0.  

  mg tan29.0o + FC = qE.  Combining the equations and solving for E gives 

  
E =

mg tan29.0o + FC
q

= (6.80 × 10−6  kg)(9.80 m/s2 ) tan29.0o + 1.765 × 10−4  N
72.0 × 10−9  C

= 2.96 × 103  N/C.  

EVALUATE:   Since the charges have opposite signs, they attract each other, which tends to reduce the 
angle between the strings. Therefore if their charges were negligibly small, the angle between the strings 
would be greater than 58.0°. 

 21.75. IDENTIFY:   The only external force acting on the electron is the electrical attraction of the proton, and its 
acceleration is toward the center of its circular path (that is, toward the proton). Newton’s second law 
applies to the electron and Coulomb’s law gives the electrical force on it due to the proton. 

SET UP:   Newton’s second law gives 
2

C .v
F m

r
=  Using the electrical force for FC gives 

2 2

2 .e v
k m

rr
=   

EXECUTE:   Solving for v gives 
2 9 2 2 19 2

6
31 11

(8.99 10  N m /C )(1.60 10  C) 2.19 10  m/s.
(9.109 10  kg)(5.29 10  m)

ke
v

mr

−

− −
× ⋅ ×= = = ×

× ×
 

EVALUATE:   This speed is less than 1% the speed of light, so it is reasonably safe to use Newtonian 
physics. 

 21.76. IDENTIFY:   To be suspended, the electric force on the raindrop due to the earth’s electric field must be 
equal to the weight of the drop. 
SET UP:   The weight of the raindrop is w mg= and is downward. We can calculate the mass of the 

raindrop from the known density of water: ,m Vρ=  where 3 310  kg/mρ =  and 34 .
3

V rπ=  The electric 

force is ,q=F E
G G

 where 150 N/C.E =  
EXECUTE:   To balance the weight of the raindrop the electric force must be upward. Since the electric 
field is downward the net charge on the raindrop must be negative. For equilibrium we must have 

 | | .w mg q E= =  Therefore 

3 5 3 3 3 2 134 4| | / (1 0 10  m) (10  kg/m )(9 80 m/s )/(150 N/C) 2 7 10  C.
3 3

mg
q r g E

E
π ρ π − −⎛ ⎞= = = . × . = . ×⎜ ⎟

⎝ ⎠
 

The number of excess electrons is 
13

6
19

| | 2 7 10  C 1 7 10 .
1 60 10  C

q
e

−

−
. ×= = . ×

. ×
 

EVALUATE:   Although this may appear to be a large number in absolute terms, the excess number of 
electrons represents only about 10–7 % of the total number of electrons in the raindrop.  



21-38   Chapter 21 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

 21.77. IDENTIFY:   0

0q
= FE
GG

 gives the force exerted by the electric field. This force is constant since the electric 

field is uniform and gives the proton a constant acceleration. Apply the constant acceleration equations for 
the x- and y-components of the motion, just as for projectile motion. 
SET UP:   The electric field is upward so the electric force on the positively charged proton is upward and 
has magnitude F eE.=  Use coordinates where positive y is downward. Then applying m∑ =F a

G G  to the 
proton gives that 0 and / .x ya a eE m= = −  In these coordinates the initial velocity has components 

0 cosxv v α= +  and 0 sin ,yv v α= +  as shown in Figure 21.77a. 
 

 

Figure 21.77a 
 

EXECUTE:   (a) Finding max max: At h y h=  the y-component of the velocity is zero. 

0 0 0 max0, sin , / , ?y y yv v v a eE m y y hα=  =  = −  − = =  
2 2

0 02 ( ).y y yv v a y y= + −  
2 2

0
0 .

2
y y

y

v v
y y

a

−
− =  

2 2 2 2
0 0

max
sin sin .

2( / ) 2
v mv

h
eE m eE

α α−= =
−

 

(b) Use the vertical motion to find the time t: 0 0 00, sin , / , ?y yy y v v a eE m tα− =  =  = −  =  

2
0 0

1 .
2y yy y v t a t− = +  

With 0 0 0
0

2 2( sin ) 2 sin0 this gives .
/

y

y

v v mv
y y t

a eE m eE
α α− = = − = − =

−
 

Then use the x-component motion to find d: 0 0 0 00, cos , 2 sin / , ?x xa v v t mv eE x x dα α=  =  =  − = =  

2
0 0

1  gives
2x xx x v t a t− = +  

2 2
0 0 0

0
2 sin 2sin cos sin 2cos .mv mv mv

d v
eE eE eE

α α α αα ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

(c) The trajectory of the proton is sketched in Figure 21.77b. 
 

 
Figure 21.77b 

 

(d) Use the expression in part (a): 
5 2 27

max 19
[(4 00 10  m/s)(sin30 0 )] (1 673 10  kg) 0 418 m.

2(1 602 10  C)(500 N/C)
h

−

−
. × . ° . ×= = .

. ×
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Use the expression in part (b): 
27 5 2

19
(1 673 10  kg)(4 00 10  m/s) sin 60 0 2 89 m.

(1 602 10  C)(500 N/C)
d

−

−
. × . × . °= = .

. ×
 

EVALUATE:   In part (a), 10 2/ 4 8 10  m/sya eE m= − = − . × .  This is much larger in magnitude than g, the 
acceleration due to gravity, so it is reasonable to ignore gravity. The motion is just like projectile motion, 
except that the acceleration is upward rather than downward and has a much different magnitude.  

maxh  and d increase when 0or vα  increase and decrease when E increases. 
 21.78. IDENTIFY:   The electric field is vertically downward and the charged object is deflected downward, so it 

must be positively charged. While the object is between the plates, it is accelerated downward by the 
electric field. Once it is past the plates, it moves downward with a constant vertical velocity which is the 
same downward velocity it acquired while between the plates. Its horizontal velocity remains constant at v0 
throughout its motion. The forces on the object are all constant, so its acceleration is constant; therefore we 
can use the standard kinematics equations. Newton’s second law applies to the object. 

SET UP:   Call the x-axis positive to the right and the y-axis positive downward. The equations 0

0
,

q
= FE
GG

 

2
0 0

1 ,
2y yy y v t a t− = +  0 ,y y yv v a t= +  x = vxt, and ΣFy = may  all apply. vx = v0 = constant. 

EXECUTE:   Time through the plates: t = x/vx = x/v0 = (0.260 m)/(5000 m/s) = 5.20 ×10–5 s. 

Vertical deflection between the plates: 2
1 0 0

1
2y yy = y y v t a t∆ − = +  = 1

2
ayt2 = 1

2
(qE/m)t2 

  ∆y1  = 1
2

(800 N/C)(5.20 ×10–5 s)2(q/m) = (1.0816 ×10–6 kg m/C)⋅ (q/m). 

vy as the object just emerges from the plates:  
0y y yv v a t= + = (qE/m)t = (q/m)(800 N/C)(5.20 ×10–5 s) = (0.04160 kg m/C s)( / ).q m⋅ ⋅  (This is the initial 

vertical velocity for the next step.) 
Time to travel 56.0 cm: t = x/vx = (0.560 m)/(5000 m/s) = 1.120 ×10–4 s. 
Vertical deflection after leaving the plates:  

  ∆y2  = v0y t  = (0.04160 kg m/C s)⋅ ⋅ (q/m)(1.120 ×10–4 s) = (4.6592 ×10–6 kg m/C)⋅ (q/m). 
Total vertical deflection:  
d  =   ∆y1  + 2.y∆  
1.25 cm = 0.0125 m = (1.0816 ×10–6 kg m/C)⋅ (q/m) + (4.6592 ×10–6 kg m/C)⋅ (q/m). 
q/m = 2180 C/kg. 
EVALUATE:   The charge on 1.0 kg is so huge that it could not be dealt with in a laboratory. But this is a 
tiny object, more likely with a mass in the range of 1.0 µg, so its charge would be (2180 C/kg)(10–9 kg) = 
2.18 ×10–6 C ≈ 2 µC. That amount of charge could be used in an experiment. 

 21.79. IDENTIFY:   Divide the charge distribution into infinitesimal segments of length  d ′x .  Calculate xE  and yE  

due to a segment and integrate to find the total field. 
SET UP:   The charge dQ  of a segment of length d ′x is dQ = (Q/a)d ′x .  The distance between a segment 
at x′  and a point at x on the x-axis is x x′−  since x > a. 

EXECUTE:   (a) 
  
dEx = 1

4πε0

dQ

(x − ′x )2
 = 2

0

1 ( / ) .
4 ( )

Q a dx
x xπε

′
′−

 Integrating with respect to x′  over the length of 

the charge distribution gives 

200 0 0 0

1 ( / ) 1 1 1 1 1 .
4 4 4 ( ) 4 ( )( )

a
x

Q a dx Q Q a Q
E

a x a x a x x a x x ax xπε πε πε πε
′ ⎛ ⎞= = − = =⎜ ⎟− − −′− ⎝ ⎠∫  Ey = 0. 

(b) At the location of the charge, x = r + a, so 
0 0

1 1 .
4 ( )( ) 4 ( )x

Q Q
E

r a r a a r r aπε πε
= =

+ + − +
 

Using q=F E,
G G

 we have 
0

1 ˆ.
4 ( )

qQ
q

r r aπε
= =  

+
F E i
G G
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EVALUATE:   (c) For ,r a� r + a → r, so the magnitude of the force becomes  F = 1
4πε0

qQ

r2
 .  The charge 

distribution looks like a point charge from far away, so the force takes the form of the force between a pair 
of point charges. 

 21.80. IDENTIFY:   The electric field is upward, but whether it exerts an upward or downward force on the object 
depends on the sign of the charge on the object, so we should first find the sign of this charge. Then apply 
Newton’s second law. The forces (gravity and the electric force) are both constant, so the acceleration is 
constant. Therefore the standard kinematics formulas apply. 

SET UP:   Call the +y-axis upward. The equations  0

0
,

q
= FE
GG

 ,y yF maΣ =  2
0 0

1
2y yy y v t a t− = +  all apply. 

EXECUTE:   First find the sign of the charge of the object. If no electric field were present, only gravity 
would be acting, so the distance the object would travel in 0.200 s would be 

2
0 0

1
2y yy y v t a t− = +  = (1.92 m/s)(0.200 s) – 1

2
(9.80 m/s2)(0.200 s)2 = 0.1880 m = 18.8 cm. 

Since the object travels only 6.98 cm in 0.200 s, the force due to the electric field must be opposing its 
motion, so this force must be downward. Since the electric field is upward, the charge must be negative. 
Now look at the motion with the electric field present. Newton’s second law gives 

:Σ =y yF ma  mg + qE = may. We get ay using kinematics. 

2
0 0

1 :
2

− = +y yy y v t a t  0.0698 m = (1.92 m/s)(0.200 s) + 1
2

ay (0.200 s)2. 

ay = –15.71 m/s2, with the minus sign telling us it is downward. Now use this value in Newton’s second 
law. Solve  mg + qE = may  for q/m: 
q/m = (ay – g)/E = (15.71 m/s2 – 9.80 m/s2)/(3.60 ×104 N/C) = 1.64 ×10–4 C/kg. 
EVALUATE:   A kilogram of the material of this object would have a charge of 1.64 × 10–4 C = 164 µC. 

 21.81. IDENTIFY:   1 2 .x x xE E E= +  Use 
  
E = 1

4πε0

q

r2
 for the electric field due to each point charge. 

SET UP:   
G
E is directed away from positive charges and toward negative charges. 

EXECUTE:   (a) 50 0 N/C.xE = + .
  
E1x = 1

4πε0

q1

r1
2

= (8.99 × 109  N ⋅ m2 /C2 ) 4.00 × 10−9  C
(0.60 m)2

= +99.9 N/C.  

1 2 ,x x xE E E= +  so   E2x = Ex − E1x = +50.0 N/C − 99.9 N/C = −49.9 N/C.  Since 2xE is negative, 2q must 

be negative. 

  
q2 =

E2x r2
2

(1/4πε0 )
= (49.9 N/C)(1.20 m)2

8.99 × 109  N ⋅ m2 /C2
= 7.99 × 10−9  C. 9

2 7 99 10  C.q −= − . ×  

(b) 50.0 N/C.xE = − 1 99.9 N/C,xE = +  as in part (a). 2 1 149.9 N/C.x x xE E E= − = − 2q is negative. 

  
q2 =

E2x r2
2

(1/4πε0 )
= (149.9 N/C)(1.20 m)2

8.99 × 109  N ⋅ m2 /C2
= 2.40 × 10−8  C.  8

2 2 40 10  C.q −= − . ×  

EVALUATE:   2q  would be positive if 2xE were positive. 

 21.82. IDENTIFY:   Use 
  
E = 1

4πε0

q

r2
 to calculate the electric field due to a small slice of the line of charge and 

integrate as in Example 21.10. Use 
0q

= FE
GG

 to calculate .
G
F  

SET UP:   The electric field due to an infinitesimal segment of the line of charge is sketched in Figure 21.82. 
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2 2

sin .y

x y
θ =

+
 

2 2
cos .x

x y
θ =

+
 

Figure 21.82 
  

 

Slice the charge distribution up into small pieces of length dy. The charge dQ in each slice is 
( / )dQ Q dy a= .  The electric field this produces at a distance x along the x-axis is dE. Calculate the 

components of d
G
E  and then integrate over the charge distribution to find the components of the total field. 

EXECUTE:   2 2 2 2
0 0

1 .
4 4

dQ Q dy
dE

ax y x yπε πε
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

2 2 3/2
0

cos .
4 ( )x

Qx dy
dE dE

a x y
θ

πε
⎛ ⎞

= = ⎜ ⎟⎜ ⎟+⎝ ⎠
 

2 2 3/2
0

sin .
4 ( )y

Q ydy
dE dE

a x y
θ

πε
⎛ ⎞

= − = − ⎜ ⎟⎜ ⎟+⎝ ⎠
 

  
Ex = dEx∫ = − Qx

4πε0a
dy

(x2 + y2 )3/20

a
∫ = 2 2 2 2 20 0

0

1 1 .
4 4

a
Qx y Q

a xx x y x aπε πε

⎡ ⎤
⎢ ⎥ =
⎢ ⎥+ +⎣ ⎦

 

  
Ey = dEy∫ = − Q

4πε0a
ydy

(x2 + y2 )3/20

a
∫ =

2 2 2 20 0
0

1 1 1 .
4 4

a
Q Q

a a xx y x aπε πε

⎡ ⎤ ⎛ ⎞
⎢ ⎥− − = − −⎜ ⎟⎜ ⎟⎢ ⎥+ +⎝ ⎠⎣ ⎦

 

(b) 0 .q=F E
G G

 

2 2 2 20 0

1 1 1; .
4 4x x y y

qQ qQ
F qE F qE

x a xx a x aπε πε
⎛ ⎞−= − = = − = −⎜ ⎟⎜ ⎟+ +⎝ ⎠

 

(c) For ,x a�  
1/22 2 2

2 2 32 2

1 1 1 11 1 .
2 2

a a a
x x xx x xx a

−
⎛ ⎞ ⎛ ⎞

= + = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
 

2

2 3 3
00 0

1 1, .
44 2 8x y

qQ qQ a qQa
F F

a x xx x xπεπε πε
⎛ ⎞

≈ − ≈ − + =⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   For , y xx a F F� �  and F ≈ Fx = qQ

4πε0x2
 and 

G
F  is in the -direction.x−  For x a�  the 

charge distribution Q acts like a point charge. 

 21.83. IDENTIFY:   Apply 2 2

0
[1 ( / 1) ].

2
E R x

σ
ε

−1/2= − +  

SET UP:   2/ / .Q A Q Rσ π= = 2 1/2 2(1 ) 1 /2,y y−+ ≈ −  when 2 1.y �  
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EXECUTE:   (a) 
  
E = σ

2ε0
[1− (R2 /x2 + 1)−1/2 ]  gives 

1/22 2

2
0

7.00 pC/ (0.025 m) (0.025 m)1 1 1.56 N/C,
2 (0.200 m)

E
π

ε

−⎡ ⎤⎛ ⎞⎢ ⎥= − + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 in the -direction.x+  

(b) For ,x R�  E = σ
2ε0

[1− (1− R2 /2x2 + ⋅ ⋅ ⋅)] ≈ σ
2ε0

R2

2x2
= σπ R2

4πε0x2
= Q

4πε0x2
.  

(c) The electric field of (a) is less than that of the point charge (0.90 N/C) since the first correction term to 
the point charge result is negative. 

(d) For 0.200 m,x =  the percent difference is (1.58 1.56) 0.01 1%.
1.56

− = =  For 0.100 m,x =  

disk 6.00 N/CE =  and point 6.30 N/C,E =  so the percent difference is (6.30 6.00) 0.047 5%.
6.30

− = ≈  

EVALUATE:   The field of a disk becomes closer to the field of a point charge as the distance from the disk 
increases. At 10.0 cm,x = / 25%R x =  and the percent difference between the field of the disk and the field 
of a point charge is 5%. 

 21.84. IDENTIFY:   Apply 0xF∑ = and 0yF∑ = to the sphere, with x horizontal and y vertical. 

SET UP:   The free-body diagram for the sphere is given in Figure 21.84. The electric field 
G
E of the sheet 

is directed away from the sheet and has magnitude 
0

.
2

E
σ
ε

=  

EXECUTE:   0yF∑ =  gives cosT mgα = and .
cos
mg

T
α

=  0xF∑ = gives T sinα = qσ
2ε0

 and 

0
.

2 sin
q

T
σ

ε α
=  Combining these two equations we have mg

cosα
= qσ

2ε0 sinα
 and 

0
tan .

2
q

mg
σα

ε
=  Therefore, 

0
arctan .

2
q

mg
σα

ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

EVALUATE:   The electric field of the sheet, and hence the force it exerts on the sphere, is independent of 
the distance of the sphere from the sheet. 

 

 
Figure 21.84 

 

 21.85. IDENTIFY:   Divide the charge distribution into small segments, use the point charge formula for the 
electric field due to each small segment and integrate over the charge distribution to find the x- and  
y-components of the total field. 
SET UP:   Consider the small segment shown in Figure 21.85a. 
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 EXECUTE:   A small segment that subtends  
angle dθ  has length a dθ  and contains charge 

1
2

2ad Q
dQ Q d

a
θ θ

π π
⎛ ⎞

= = .⎜ ⎟⎜ ⎟
⎝ ⎠

 1
2( aπ  is the total  

length of the charge distribution.) 

Figure 21.85a 
  

 

The charge is negative, so the field at the origin is directed toward the small segment. The small segment is 
located at angle θ  as shown in the sketch. The electric field due to dQ is shown in Figure 21.85b, along 
with its components. 

 

 
2

0

1 .
4

dQ
dE

aπε
=  

2 2
02

Q
dE d

a
θ.

π ε
=  

Figure 21.85b 
  

 

2 2
0cos ( /2 )cosxdE dE Q a dθ π ε θ θ.= =  

/2 /2
2 2 2 2 2 200

0 0 0
cos (sin ) .

2 2 2x x
Q Q Q

E dE d
a a a

π πθ θ θ
π ε π ε π ε

= = = =∫ ∫  

2 2
0sin ( /2 )sinydE dE Q a dθ π ε θ θ.= =  
/ 2 /2

2 2 2 2 2 200
0 0 0

sin ( cos ) .
2 2 2y y

Q Q Q
E dE d

a a a

π πθ θ θ
π ε π ε π ε

= = = − =∫ ∫  

EVALUATE:   Note that ,x yE E=  as expected from symmetry. 
 21.86. IDENTIFY:   We must add the electric field components of the positive half and the negative half. 

SET UP:   From Problem 21.85, the electric field due to the quarter-circle section of positive charge has 

components
  
Ex = + Q

2π 2ε0a2
, Ey = − Q

2π 2ε0a2
.  The field due to the quarter-circle section of negative 

charge has components
  
Ex = + Q

2π 2ε0a2
,  Ey = + Q

2π 2ε0a2
.  

EXECUTE:   The components of the resultant field is the sum of the x- and y-components of the fields due 
to each half of the semicircle. The y-components cancel, but the x-components add, giving 

  
Ex = + Q

π 2ε0a2
,  in the -direction.x+  

EVALUATE:   Even though the net charge on the semicircle is zero, the field it produces is not zero because 
of the way the charge is arranged. 
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 21.87. IDENTIFY:   Each wire produces an electric field at P due to a finite wire. These fields add by vector addition. 

SET UP:   Each field has magnitude 
  

1
4πε0

Q

x x2 + a2
.  The field due to the negative wire points to the left, 

while the field due to the positive wire points downward, making the two fields perpendicular to each other 
and of equal magnitude. The net field is the vector sum of these two, which is 

  
Enet = 2E1 cos 45° = 2 1

4πε0

Q

x x2 + a2
cos45°.  In part (b), the electrical force on an electron at P is eE. 

EXECUTE:   (a) The net field is 
  
Enet = 2 1

4πε0

Q

x x2 + a2
cos45°.  

9 2 2 6
4

net 2 2

2(9 00 10  N m /C )(2 50 10  C)cos45 6.25 10  N/C.
(0 600 m) (0 600 m) 0 600 m

E
−. × ⋅ . × ° = = ×

. . + ( . )
 

The direction is 225° counterclockwise from an axis pointing to the right at point P. 
(b) 19 4(1.60 10  C)(6.25 10  N/C) 1.00 10  N,F eE − −14 = = × × = ×  opposite to the direction of the electric 
field, since the electron has negative charge. 
EVALUATE:   Since the electric fields due to the two wires have equal magnitudes and are perpendicular to 
each other, we only have to calculate one of them in the solution. 

 21.88. IDENTIFY:   Each sheet produces an electric field that is independent of the distance from the sheet. The 
net field is the vector sum of the two fields. 
SET UP:   The formula for each field is E = σ /2ε0 ,  and the net field is the vector sum of these, 

  
Enet =

σ B
2ε0

±
σ A
2ε0

=
σ B ± σ A

2ε0
, where we use the +  or −  sign depending on whether the fields are in the 

same or opposite directions and Bσ  and Aσ are the magnitudes of the surface charges. 
EXECUTE:   (a) The two fields oppose and the field of B is stronger than that of A, so 

2 2
5

net 12 2 20 0 0

C/m C/m 1.58 10  N / C,
2 2 2 2(8.85 10  C /N m )

B A B AE
σ σ σ σ µ µ
ε ε ε −

− 11.6 − 8.80 = − =  = = ×
× ⋅

 to the right. 

(b) The fields are now in the same direction, so their magnitudes add. 

0
2 2 6

net  (11.6 C/m 0 C/m )/2 1.15 10  N/C,E µ µ ε= + 8.8 = ×  to the right. 

(c) The fields add but now point to the left, so 6
net 1.15 10  N/C,E = × to the left. 

EVALUATE:   We can simplify the calculations by sketching the fields and doing an algebraic solution first. 
 21.89. IDENTIFY:   Each sheet produces an electric field that is independent of the distance from the sheet. The 

net field is the vector sum of the two fields. 
SET UP:   The formula for each field is 0/2 ,E σ ε=  and the net field is the vector sum of these. 

  
Enet =

σ B
2ε0

±
σ A
2ε0

=
σ B ± σ A

2ε0
,  where we use the +  or −  sign depending on whether the fields are in the 

same or opposite directions and Bσ  and Aσ are the magnitudes of the surface charges. 

EXECUTE:   (a) The fields add and point to the left, giving Enet = 1.15 × 106  N/C.  

(b) The fields oppose and point to the left, so 5
net 1.58 10  N/C.E = ×  

(c) The fields oppose but now point to the right, giving Enet = 1.58 × 105  N/C.  
EVALUATE:   We can simplify the calculations by sketching the fields and doing an algebraic solution first. 

 21.90. IDENTIFY:   The sheets produce an electric field in the region between them which is the vector sum of the 
fields from the two sheets. 
SET UP:   The force on the negative oil droplet must be upward to balance gravity. The net electric field 
between the sheets is   E = σ /ε0 ,  and the electrical force on the droplet must balance gravity, so .qE mg =  
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EXECUTE:   (a) The electrical force on the drop must be upward, so the field should point downward since 
the drop is negative. 
(b) The charge of the drop is 5e, so qE = mg. (5e)(σ /ε0 ) = mg  and 

9 2 12 2 2
20

19
(486 10 kg)(9 80 m/s )(8 85 10 C /N m ) 52  C/m .

5 5(1 60 10 C)
mg

e
εσ

− −

−
× . . × ⋅= = = .7

. ×
 

EVALUATE:   Balancing oil droplets between plates was the basis of the Milliken Oil-Drop Experiment 
which produced the first measurement of the mass of an electron. 

 21.91. IDENTIFY:   Apply the formula for the electric field of a disk. The hole can be described by adding a disk 
of charge density σ− and radius 1R to a solid disk of charge density σ+ and radius 2.R  

SET UP:   The area of the annulus is 2 2
2 1R Rπ σ( − ) .  The electric field of a disk is 

2

0
1 1/ ( / ) 1 .

2
E R x

σ
ε

⎡ ⎤= − +⎢ ⎥⎣ ⎦
 

EXECUTE:   (a) 2 2
2 1Q A R Rσ π σ.= = ( − )  

(b) 2 2
2 1

0

ˆ( ) 1 1/ ( / ) 1 1 1/ ( / ) 1 .
2

x
x R x R x

x
σ
ε

⎛ ⎞⎡ ⎤ ⎡ ⎤= − + − − +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
E i
G

 

( )2 2
1 2

0

ˆ( ) 1/ ( / ) 1 1/ ( / ) 1 .
2

x
x R x R x

x
σ
ε

= + − +E i
G

 The electric field is in the -directionx+  at points above 

the disk and in the −x-direction at points below the disk, and the factor ˆx
x
i specifies these directions. 

(c) Note that 2 2 1/2
1 1

1 1
1/ ( / ) 1 (1 ( / ) )

x x
R x x R

R R
−+ = + ≈ .  This gives 

2

0 1 2 0 1 2

1 1 1 1ˆ ˆ( ) .
2 2

x
x x

R R x R R
σ σ
ε ε

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
E i i
G

 Sufficiently close means that 2
1( / ) 1.x R �  

(d) 
0 1 2

1 1
2x x
q

F qE x.
R R

σ
ε

⎛ ⎞
= − = − −⎜ ⎟

⎝ ⎠
 The force is in the form of Hooke’s law: ,xF kx= −  with 

0 1 2

1 1 .
2
q

k
R R

σ
ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

0 1 2

1 1 1 1 .
2 2 2

k q
f

m m R R
σ

π π ε
⎛ ⎞

 = = −⎜ ⎟
⎝ ⎠

 

EVALUATE:   The frequency is independent of the initial position of the particle, so long as this position is 
sufficiently close to the center of the annulus for 2

1( / )x R  to be small. 
 21.92. IDENTIFY:   Apply constant acceleration equations to a drop to find the acceleration. Then use F ma= to 

find the force and F q E= to find .q  
SET UP:   Let 2 0 cmD = . be the horizontal distance the drop travels and 0 30 mmd = . be its vertical 
displacement. Let x+  be horizontal and in the direction from the nozzle toward the paper and let y+  be 
vertical, in the direction of the deflection of the drop. 0xa =  and call .ya a=  

EXECUTE:   (a) Find the time of flight: 4/ (0 020 m)/(50 m/s) 10  s.t D v −= = . = 4.00  ×  21 .
2

d at=  

  
a = 2d

t2
= 2(3.00 × 10−4 m)

(4.00 × 10−4 s)2
= 3750 m/s2.  Then / /a F m qE m= = gives 

  
q = ma/E = (1.4 × 10−11 kg)(3750 m/s2 )

8.00 × 104 N/C
= 6.56 × 10−13 C,  which rounds to 6.6 ×10–13 s. 

(b) Use the equations and calculations above: if v → v/2, then t →  2t, so a →  a/4, which means that q →  
q/4, so q =  (6.56 ×10–13 s)/4 = 1.64 ×10–13 s, which rounds to 1.6 ×10–13 s. 
EVALUATE:   Since q is positive the vertical deflection is in the direction of the electric field. 
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 21.93 IDENTIFY:   The net force on the third sphere is the vector sum of the forces due to the other two charges. 
Coulomb’s law gives the forces. 

SET UP:   1 2
2

| | .q q
F k

r
=  

EXECUTE:   (a) Between the two fixed charges, the electric forces on the third sphere q3 are in opposite 
directions and have magnitude 4.50 N in the +x-direction. Applying Coulomb’s law gives 
4.50 N = k[q1(4.00 µC)/(0.200 m)2 – q2(4.00 µC)/(0.200 m)2].  
Simplifying gives q1 – q2 = 5.00 µC. 
With q3 at x = +0.600 m, the electric forces on q3 are all in the +x-direction and add to 3.50 N. As before, 
Coulomb’s law gives 
3.50 N = k[q1(4.00 µC)/(0.600 m)2 + q2(4.00 µC)/(0.200 m)2]. 
Simplifying gives q1 + 9q2 = 35.0 µC. 
Solving the two equations simultaneously gives q1 = 8.00 µC and q2 = 3.00 µC. 
(b) Both forces on q3 are in the –x-direction, so their magnitudes add. Factoring out common factors and 
using the values for q1 and q2 we just found, Coulomb’s law gives 
Fnet = kq3 [q1/(0.200 m)2 + q2/(0.600 m)2]. 
Fnet = 9 2 2(8.99 10  N m /C )× ⋅ [(8.00 µC)/(0.200 m)2 + (3.00 µC)/(0.600 m)2] = 7.49 N, and it is in the  
–x-direction. 
(c) The forces are in opposite direction and add to zero, so 
0 = kq1q3/x2 – kq2q3/(0.400 m – x)2. 
(0.400 m – x)2 = (q2/q1)x2. 
Taking square roots of both sides gives 

2 10.400 m /x x q q− = ±  = ±0.6124x.  
Solving for x, we get two values: x = 0.248 m and x = 1.03 m. The charge q3 must be between the other 
two charges for the forces on it to balance. Only the first value is between the two charges, so it is the 
correct one: x = 0.248 m.  
EVALUATE:   Check the answers in part (a) by substituting these values back into the original equations. 
8.00 µC – 3.00 µC = 5.00 µC and 8.00 µC + 9(3.00 µC) =35.0 µC, so the answers check in both equations. 
In part (c), the second root, x = 1.03 m, has some meaning. The condition we imposed to solve the problem 
was that the magnitudes of the two forces were equal. This happens at x = 0.248 mn, but it also happens at 
x = 1.03 m. However at the second root the forces are both in the +x-direction and therefore cannot cancel. 

 21.94. IDENTIFY and SET UP:   The electric field Ex produced by a uniform ring of charge, for points on an axis 

perpendicular to the plane of the ring at its center, is 2 2 3/2 ,
( )x

kQx
E

x a
=

+
 where a is the radius of the ring,  

x is the distance from its center along the axis, and Q is the total charge on the ring. 
EXECUTE:   (a) Far from the ring, at large values of  x, the ring can be considered as a point-charge, so its 
electric field would be E = kQ/x2. Therefore Ex2 = kQ, which is a constant. From the graph (a) in the 
problem, we read off that at large distances Ex2 = 45 2N m /C,⋅  which is equal to kQ, so  

Q = (45  N ⋅ m2 /C )/k = 5.0 ×10–9 C = 5.0 nC. 

(b) The electric field along the axis a distance x from the ring is 2 2 3/2 .
( )x

kQx
E

x a
=

+
 Very close to the ring, 

x2 << a2, so the formula becomes Ex = kQx/a3. Therefore E/x = kQ/a3, which is a constant. From graph (b) 
in the problem, E/x approaches 700  N/C ⋅ m  as x approaches zero. So kQ/a3 = 700 N/C m,⋅  which gives 

a = [kQ/(700  N/C ⋅ m )]1/3 = [(45  N ⋅ m2 /C )/(700 N/C ⋅ m )]1/3 = 0.40 m = 40 cm. 
EVALUATE:   It is physically reasonable that a ring 40 cm in radius could carry 5.0 nC of charge. 

 21.95. IDENTIFY:   Apply Coulomb’s law to calculate the forces that 1q and 2q exert on 3,q  and add these force 
vectors to get the net force. 
SET UP:   Like charges repel and unlike charges attract. Let x+  be to the right and y+  be toward the top of 
the page. 
EXECUTE:   (a) The four possible force diagrams are sketched in Figure 21.95a. 
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Only the last picture can result in a net force in the -direction.x−  
(b) 1 3 22 00 C, 4 00 C, and 0q q qµ µ= − .  = + .  > .  

(c) The forces 1
G
F  and 2

G
F  and their components are sketched in Figure 21.95b. 

Fy = 0 = − 1
4πε0

q1 q3

(0.0400 m)2
sinθ1 + 1

4πε0

q2 q3

(0.0300 m)2
sinθ2.  This gives 

1
2 1 1 1

2

9 sin 9 3/5 27 0 843 C.
16 sin 16 4/5 64

q q q q
θ µ
θ

= =  = = .  

(d) 1 2x x xF F F= + and 0,yF =  so 1 2
3 2 2

0

1 4 3 56 2 N.
4 5 5(0 0400 m) (0 0300 m)

q q
F q

πε
⎛ ⎞

= + = .⎜ ⎟⎜ ⎟. .⎝ ⎠
 

EVALUATE:   The net force 
G
F on 3q is in the same direction as the resultant electric field at the location of 

3q due to 1q  and 2.q  
 

     
Figure 21.95 

 

 21.96. IDENTIFY:   Calculate the electric field at P due to each charge and add these field vectors to get the net 
field. 
SET UP:   The electric field of a point charge is directed away from a positive charge and toward a negative 
charge. Let x+  be to the right and let y+  be toward the top of the page. 
EXECUTE:   (a) The four possible diagrams are sketched in Figure 21.96a (next page). 
The first diagram is the only one in which the electric field must point in the negative y-direction. 
(b) 1 23 00 C, and 0.q qµ= − . <  

(c) The electric fields 1
G
E and 2

G
E and their components are sketched in Figure 21.96b. 1

5cos ,
13

θ =  

1
12sin ,
13

θ =  2
12cos
13

θ = and 2
5sin .

13
θ =  1 2

2 2
5 120 .

13 13(0 050 m) (0 120 m)x
k q k q

E = = − +
. .

 This gives 

2 1
2 2

5 .
12(0 120 m) (0 050 m)

k q k q
=

. .
 Solving for 2q  gives 2 7 2 C,q µ= .  so 2 7 2 C.q µ= − .  Then 

1 72
2 2

12 5 1 17 10  N/C.
13 13(0 050 m) (0 120 m)y

k q kq
E = − − = − . ×

. .
 71 17 10  N/C.E = . ×  

EVALUATE:   With 1q known, specifying the direction of 
G
E determines both 2q and E. 
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Figure 21.96 

 

 21.97. IDENTIFY:   To find the electric field due to the second rod, divide that rod into infinitesimal segments of 
length dx, calculate the field dE due to each segment and integrate over the length of the rod to find the 
total field due to the rod. Use d dq=  

G G
F E  to find the force the electric field of the second rod exerts on 

each infinitesimal segment of the first rod. 
SET UP:   An infinitesimal segment of the second rod is sketched in Figure 21.97. ( / )dQ Q L dx= ′.  

EXECUTE:   (a) 2 2 .
( /2 ) ( /2 )

k dQ kQ dx
dE

Lx a L x x a L x
 ′= =

+ + − ′ + + − ′
 

20 0 0

1 1 1 .
/2 /2 /2( /2 )

L
L L

x x
kQ dx kQ kQ

E dE
L L x a L x L x a x a Lx a L x

′ ⎡ ⎤ ⎛ ⎞= = = = −⎜ ⎟⎢ ⎥+ + − ′ + + ++ + − ′ ⎣ ⎦ ⎝ ⎠∫ ∫  

2 1 1 .
2 2 2x

kQ
E

L x a L x a
⎛ ⎞= −⎜ ⎟+ + +⎝ ⎠

 

(b) Now consider the force that the field of the second rod exerts on an infinitesimal segment dq of the first 
rod. This force is in the -direction.x+ .dF dq E=  

2/2 /2
2/2 /2

2 1 1 .
2 2 2

L a L a

a a

EQ kQ
F E dq dx dx

L x a L x aL

+ + ⎛ ⎞= = = −  ⎜ ⎟+ + +⎝ ⎠∫ ∫ ∫  

[ ] [ ]( )2 2
/2 /2

/2 /22 2
2 1 2 2 2ln ( 2 ) ln(2 2 ) 1n .

2 2 4 2
L a L a
a a

kQ kQ a L a L a
F a x L x a

a L aL L
+ + ⎡ + + + ⎤⎛ ⎞⎛ ⎞= + − + + = ⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎝ ⎠⎣ ⎦

 

2 2

2
( )1n .
( 2 )

kQ a L
F

a a LL

⎛ ⎞+= ⎜ ⎟⎜ ⎟+⎝ ⎠
 

(c) For ,a L�  
2 2 2 2

2 2 2
(1 / )1n (21n (1 / ) ln(1 2 / )).
(1 2 / )

kQ a L a kQ
F L a L a

L a L a L

⎛ ⎞+= = + − +⎜ ⎟⎜ ⎟+⎝ ⎠
 

For small z, 
2

ln(1 ) .
2
z

z z+ ≈ −  Therefore, for ,a L�  

2 2 2 2

2 2 2 2
2 22 .

2
kQ L L L L kQ

F
a aL a a a

⎡ ⎤⎛ ⎞ ⎛ ⎞
≈ − + ⋅ ⋅ ⋅ − − + ⋅ ⋅ ⋅ ≈⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

EVALUATE:   The distance between adjacent ends of the rods is a. When a L� the distance between the 
rods is much greater than their lengths and they interact as point charges. 

 

 
Figure 21.97 
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 21.98. IDENTIFY and SET UP:    The charge of n electrons is ne. 
EXECUTE:   The charge on the bee is Q = ne, so the number of missing electrons is  
n = Q/e = (30 pC)/e = (30 ×10–12 C)/(1.60 ×10–19 C) = 1.88 ×108 ≈ 1.9 ×108 electrons, which makes choice 
(a) correct. 
EVALUATE:   This charge is due to around 190 million electrons. 

 21.99. IDENTIFY and SET UP:   One charge exerts a force on another charge without being in contact.  
EXECUTE:   Even though the bee does not touch the stem, the positive charges on the bee attract negative 
charges (electrons normally) in the stem. This pulls electrons toward the bee, leaving positive charge at the 
opposite end of the stem, which polarizes it. Thus choice (c) is correct. 
EVALUATE:   Choice (b) cannot be correct because the bee is positive and would therefore not attract the 
positive charges in the stem. 

 21.100. IDENTIFY and SET UP:   Electric field lines begin on positive charges and end on negative charges.  
EXECUTE:   The flower and bee are both positive, so no field lines can end on either of them. This makes 
the figure in choice (c) the correct one. 
EVALUATE:   The net electric field is the vector sum of the field due to the bee and the field due to the 
flower. Somewhere between the bee and flower the fields cancel, depending on the relative amounts of 
charge on the bee and flower. 

 21.101. IDENTIFY and SET UP:   Assume that the charge remains at the end of the stem and that the bees approach 

to 15 cm from this end of the stem. The electric field is 2
| | .q

E k
r

=  

EXECUTE:   Using the numbers given, we have 

  
E = k

| q |
r2

 = ( 9 2 28.99 10  N m /C )× ⋅ (40 ×10–12 C)/(0.15 m)2 = 16 N/C, which is choice (b). 

EVALUATE:   Even if the charge spread out a bit over the stem, the result would be in the neighborhood of 
the value we calculated. 
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 22.1. IDENTIFY and SET UP:   cos ,E E dAφΦ = ∫  where φ  is the angle between the normal to the sheet n̂  and 

the electric field .E
G

 
(a) EXECUTE:    In this problem E and cosφ  are constant over the surface so 

2 2cos cos (14 N/C)(cos 60 )(0.250 m ) 1.8 N m /C.E E dA E Aφ φΦ = = = ° = ⋅∫  

EVALUATE:   (b) EΦ  is independent of the shape of the sheet as long as φ  and E are constant at all points 
on the sheet. 
(c) EXECUTE:   (i) cos .E E AφΦ =  EΦ  is largest for 0 , so cos 1 and .E EAφ φ= ° = Φ =  
(ii) EΦ  is smallest for 90 , so cos 0 and 0.Eφ φ= ° = Φ =  
EVALUATE:   EΦ  is 0 when the surface is parallel to the field so no electric field lines pass through the 
surface. 

 22.2. IDENTIFY:   The field is uniform and the surface is flat, so use cos .E EA φΦ =  

SET UP:   φ  is the angle between the normal to the surface and the direction of ,E
G

 so 70 .φ = °  

EXECUTE:     ΦE = (90.0 N/C)(0.400 m)(0.600 m)cos70° = 7.39 N ⋅ m2 /C.  

EVALUATE:   If the field were perpendicular to the surface the flux would be   ΦE = EA = 21.6 N ⋅ m2 /C.  

The flux in this problem is much less than this because only the component of E
G

perpendicular to the 
surface contributes to the flux. 

 22.3. IDENTIFY:   The electric flux through an area is defined as the product of the component of the electric 
field perpendicular to the area times the area. 
(a) SET UP:   In this case, the electric field is perpendicular to the surface of the sphere, so 

2(4 ).E EA E rπΦ = =  
EXECUTE:   Substituting in the numbers gives 

6 2 5 2(1.25 10 N/C)4 (0.150 m) 3.53 10 N m /C.E πΦ = × = × ⋅  
(b) IDENTIFY:   We use the electric field due to a point charge. 

SET UP:   
  
E = 1

4πε0

q

r2
 

EXECUTE:   Solving for q and substituting the numbers gives 

2 2 6 6
0 9 2 2

14 (0.150 m) (1.25 10 N/C) 3.13 10 C.
9.00 10 N m /C

q r Eπε −= = × = ×
× ⋅

 

EVALUATE:   The flux would be the same no matter how large the sphere, since the area is proportional to 
2r  while the electric field is proportional to 21/ .r  

GAUSS’S LAW 

22
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 22.4. IDENTIFY:   Use cosE d E dAφΦ = ⋅ =∫ ∫E A
GG

 to calculate the flux through the surface of the cylinder. 

SET UP:   The line of charge and the cylinder are sketched in Figure 22.4. 
 

 

Figure 22.4 
 

EXECUTE:   (a) The area of the curved part of the cylinder is 2 .A rlπ=  
The electric field is parallel to the end caps of the cylinder, so 0⋅ =E A

GG
 for the ends and the flux through 

the cylinder end caps is zero. 
The electric field is normal to the curved surface of the cylinder and has the same magnitude 0/2E rλ πε=  
at all points on this surface. Thus 0φ = °  and 

  
ΦE = EAcosφ = EA = (λ /2πε0r)(2πrl) = λl

ε0
= (3.00 × 10−6  C/m)(0.400 m)

8.854 × 10−12  C2 /N ⋅ m2
= 1.36 × 105  N ⋅ m2 /C.  

(b) In the calculation in part (a) the radius r of the cylinder divided out, so the flux remains the same, 
5 21.36 10  N m /C.EΦ = × ⋅  

(c) 
6

5 2
12 2 2

0

(3.00 10  C/m)(0.800 m) 2.71 10  N m /C,
8.854 10  C /N mE

lλ
ε

−

−
×Φ = = = × ⋅

× ⋅
 which is twice the flux calculated in parts 

(a) and (b). 
EVALUATE:   The flux depends on the number of field lines that pass through the surface of the 
cylinder. 

 22.5. IDENTIFY:   The flux through the curved upper half of the hemisphere is the same as the flux through the 
flat circle defined by the bottom of the hemisphere because every electric field line that passes through the 
flat circle also must pass through the curved surface of the hemisphere. 
SET UP:   The electric field is perpendicular to the flat circle, so the flux is simply the product of E and the 
area of the flat circle of radius r. 
EXECUTE:   2 2( )E EA E r r Eπ πΦ = = =  
EVALUATE:   The flux would be the same if the hemisphere were replaced by any other surface bounded 
by the flat circle. 

 22.6. IDENTIFY:   Use EΦ = ⋅E A
GG

 to calculate the flux for each surface. 

SET UP:   ˆcos where .EA AφΦ = ⋅ = =E A A n
G GG

 

EXECUTE:   (a) 
1

ˆˆ (left).S = −n j  
1

3 2 2(4 10  N/C)(0.10 m) cos(90 53.1 ) 32 N m /C.SΦ = − × ° − ° = − ⋅  

2
ˆˆ (top).S = +n k  

2

3 2(4 10  N/C)(0.10 m) cos90 0.SΦ = − × ° =  

3
ˆˆ (right).S = +n j  

3

3 2 2(4 10  N/C)(0.10 m) cos(90 53.1 ) 32 N m /C.SΦ = + × ° − ° = + ⋅  

4
ˆˆ (bottom).S = −n k  

4

3 2(4 10  N/C)(0.10 m) cos90 0.SΦ = × ° =  

5
ˆˆ (front).S = +n i  

5

3 2 2(4 10  N/C 0.10 m cos53.1 24 N m /C.SΦ = + × ° = ⋅)( )  

6
ˆˆ (back).S = −n i  

6

3 2 2(4 10  N/C)(0.10 m) cos53.1 24 N m /C.SΦ = − × ° = − ⋅  

EVALUATE:   (b) The total flux through the cube must be zero; any flux entering the cube must also leave 
it, since the field is uniform. Our calculation gives the result; the sum of the fluxes calculated in part (a) 
is zero. 
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 22.7. IDENTIFY:   Apply Gauss’s law to a Gaussian surface that coincides with the cell boundary. 

SET UP:   ΦE =
Qencl

ε0
.  

EXECUTE:   
  
ΦE =

Qencl
ε0

= −8.65 × 10−12  C
8.854 × 10−12  C2 /(N ⋅ m2 )

= −0.977 N ⋅ m2 /C.  enclQ  is negative, so the flux is 

inward. 
EVALUATE:   If the cell were positive, the field would point outward, so the flux would be positive. 

 22.8. IDENTIFY:   Apply Gauss’s law to each surface. 
SET UP:   enclQ  is the algebraic sum of the charges enclosed by each surface. Flux out of the volume is 
positive and flux into the enclosed volume is negative. 
EXECUTE:   (a) 

  
ΦS1

= q1/ε0 = (4.00 × 10−9  C)/ε0 = 452 N ⋅ m2 /C.  

(b) 
  
ΦS2

= q2 /ε0 = (−7.80 × 10−9  C)/ε0 = −881 N ⋅ m2 /C.  

(c) 
3

9 2
1 2 0 0( )/ ((4.00 7.80) 10  C)/ 429 N m /C.S q q ε ε−Φ = + = − × = − ⋅  

(d) 
4

9 2
1 3 0 0/ [(4.00 2.40) 10  C]/ 723 N m /C.S q q ε ε−Φ = ( + ) = + × = ⋅  

(e) 
5

9 2
1 2 3 0 0( )/ ((4.00 7.80 2.40) 10  C)/ 158 N m /C.S q q q ε ε−Φ = + + = − + × = − ⋅  

EVALUATE:   (f) All that matters for Gauss’s law is the total amount of charge enclosed by the surface, not 
its distribution within the surface. 

 22.9. IDENTIFY:   Apply the results in Example 22.5 for the field of a spherical shell of charge. 

SET UP:   Example 22.5 shows that 0E =  inside a uniform spherical shell and that 2
q

E k
r

=  outside the 

shell. 
EXECUTE:   (a) 0.E =  

(b) 0 060 mr = .  and 
  
E = (8.99 × 109  N ⋅ m2 /C2 ) 49.0 × 10−6  C

(0.060 m)2
= 1.22 × 108  N/C.  

(c) 0.110 mr =  and 
  
E = (8.99 × 109  N ⋅ m2 /C2 ) 49.0 × 10−6  C

(0.110 m)2
= 3.64 × 107  N/C.  

EVALUATE:   Outside the shell the electric field is the same as if all the charge were concentrated at the 
center of the shell. But inside the shell the field is not the same as for a point charge at the center of the 
shell, inside the shell the electric field is zero. 

 22.10. IDENTIFY:   Apply Gauss’s law to the spherical surface. 
SET UP:   enclQ  is the algebraic sum of the charges enclosed by the sphere. 
EXECUTE:   (a) No charge enclosed so 0.EΦ =  

(b) 
  
ΦE =

q2
ε0

= −6.00 × 10−9  C
8.85 × 10−12  C2 /N ⋅ m2

= −678 N ⋅ m2 /C.  

(c) 
  
ΦE =

q1 + q2
ε0

= (4.00 − 6.00) × 10−9 C
8.85 × 10−12  C2 /N ⋅ m2

= −226 N ⋅ m2 /C.  

EVALUATE:   Negative flux corresponds to flux directed into the enclosed volume. The net flux depends 
only on the net charge enclosed by the surface and is not affected by any charges outside the enclosed 
volume. 
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 22.11. (a) IDENTIFY and SET UP:   It is rather difficult to calculate the flux directly from E dΦ = ⋅∫E A
GG

 since the 

magnitude of E
G

 and its angle with dA
G

 varies over the surface of the cube. A much easier approach is to 
use Gauss’s law to calculate the total flux through the cube. Let the cube be the Gaussian surface. The 

charge enclosed is the point charge. 
  
ΦE =

Qencl
ε0

.  

EXECUTE:   
  
ΦE =

Qencl
ε0

= 6.20 × 10−6  C
8.854 × 10−12  C2 /N ⋅ m2

= 7.002 × 105  N ⋅ m2 /C.  By symmetry the flux is the 

same through each of the six faces, so the flux through one face is 
5 2 5 21

6 (7.002 10  N m /C) 1.17 10  N m /C.× ⋅ = × ⋅  

(b) EVALUATE:   In part (a) the size of the cube did not enter into the calculations. The flux through one 
face depends only on the amount of charge at the center of the cube. So the answer to (a) would not change 
if the size of the cube were changed. 

 22.12. IDENTIFY:   Apply the results of Examples 22.9 and 22.10. 

SET UP:   2
q

E k
r

=  outside the sphere. A proton has charge .e+  

EXECUTE:   (a) 
19

9 2 2 21
2 15 2

92(1.60 10  C)(8.99 10  N m /C ) 2.4 10  N/C.
(7.4 10  m)

q
E k

r

−

−
×= = × ⋅ = ×

×
 

(b) For 101.0 10  m,r −= ×  
215

21 13
10

7.4 10  m(2.4 10  N/C) 1.3 10  N/C.
1.0 10  m

E
−

−
⎛ ⎞×= × = ×⎜ ⎟⎜ ⎟×⎝ ⎠

 

(c) 0,E =  inside a spherical shell. 
EVALUATE:   The electric field in an atom is very large. 

 22.13. IDENTIFY:   Each line lies in the electric field of the other line, and therefore each line experiences a force 
due to the other line. 

SET UP:   The field of one line at the location of the other is E = λ
2πε0r

.  For charge dq dxλ=  on one line, 

the force on it due to the other line is .dF Edq=  The total force is .F Edq E dq Eq= = =∫ ∫  

EXECUTE:   
  
E = λ

2πε0r
= 5.20 × 10−6  C/m

2π (8.854 × 10−12  C2 /(N ⋅ m2 ))(0.300 m)
= 3.116 × 105  N/C.  The force on one 

line due to the other is ,F Eq=  where 7(0.0500 m)  2.60 10  C.q λ −= = ×  The net force is 
5 7(3.116 10  N/C)(2.60 10  C) 0.0810 N.F Eq −= = × × =  

EVALUATE:   Since the electric field at each line due to the other line is uniform, each segment of line 
experiences the same force, so all we need to use is ,F Eq=  even though the line is not a point charge. 

 22.14. IDENTIFY:   Apply the results of Example 22.5. 
SET UP:   At a point 0.100 m outside the surface, 0.550 m.r =  

EXECUTE:   (a) 
  
E = 1

4πε0

q

r2
= 1

4πε0

(2.50 × 10−10 C)
(0.550 m)2

= 7.44 N/C.  

(b) 0E =  inside of a conductor or else free charges would move under the influence of forces, violating 
our electrostatic assumptions (i.e., that charges aren’t moving). 
EVALUATE:   Outside the sphere its electric field is the same as would be produced by a point charge at its 
center, with the same charge. 

 22.15. IDENTIFY and SET UP:   Example 22.5 derived that the electric field just outside the surface of a spherical 

conductor that has net charge |q| is 
  
E = 1

4πε0

| q |
R2

.  Calculate |q| and from this the number of excess 

electrons. 
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EXECUTE:   
2 2

9
9 2 2

0

(0.130 m) (1150 N/C)| | 2.162 10  C.
(1/4 ) 8.988 10  N m /C

R E
q

πε
−= = = ×

× ⋅
 

Each electron has a charge of magnitude 191.602 10  C,e −= ×  so the number of excess electrons needed is 

 

2.162 × 10−9  C
1.602 × 10−19  C

= 1.35 × 1010.  

EVALUATE:   The result we obtained for q is a typical value for the charge of an object. Such net charges 
correspond to a large number of excess electrons since the charge of each electron is very small. 

 22.16. IDENTIFY:   According to the problem, Mars’s flux is negative, so its electric field must point toward the 
center of Mars. Therefore the charge on Mars must be negative. We use Gauss’s law to relate the electric 
flux to the charge causing it. 

SET UP:   Gauss’s law is encl

0
.E

Q
ε

Φ =  The enclosed charge is negative, so the electric flux must also be 

negative.  The flux is   ΦE = EAcosφ  = –EA since φ  = 180° and E is the magnitude of the electric field, 
which is positive. 
EXECUTE:   (a) Solving Gauss’s law for q, putting in the numbers, and recalling that q is negative, gives 

  q = ε0 ΦE = (−3.63 × 1016  N ⋅ m2 /C)(8.85 × 10−12  C2 /N ⋅ m2 ) = −3.21× 105  C.  
(b) Use the definition of electric flux to find the electric field. The area to use is the surface area of Mars. 

  
E =

ΦE
A

= 3.63 × 1016 N ⋅ m2 /C
4π (3.39 × 106 m)2

= 2.51× 102 N/C.  

(c) The surface charge density on Mars is therefore σ = q
AMars

= −3.21× 105 C
4π (3.39 × 106 m)2

= −2.22 × 10−9 C/m2.  

EVALUATE:   Even though the charge on Mars is very large, it is spread over a large area, giving a small 
surface charge density. 

 22.17. IDENTIFY:   Add the vector electric fields due to each line of charge. E(r) for a line of charge is given by 
Example 22.6 and is directed toward a negative line of charge and away from a positive line. 
SET UP:   The two lines of charge are shown in Figure 22.17. 

 

 

0

1 .
2

E
r
λ

πε
=  

Figure 22.17   
 

EXECUTE:   (a) At point a, 1 2and E E
G G

 are in the -directiony+  (toward negative charge, away from 
positive charge). 

6 5
1 0(1/2 )[(4.80 10  C/m)/(0.200 m)] 4.314 10  N/C.E πε −= × = ×  

6 5
2 0(1/2 )[(2.40 10  C/m)/(0.200 m)] 2.157 10  N/C.E πε −= × = ×  

5
1 2 6.47 10  N/C,E E E= + = ×  in the y-direction. 

(b) At point b, 1
G
E  is in the 2-direction and y+ E

G
 is in the -direction.y−  

6 5
1 0(1/2 )[(4.80 10  C/m)/(0.600 m)] 1.438 10  N/C.E πε −= × = ×  
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6 5
2 0(1/2 )[(2.40 10  C/m)/(0.200 m)] 2.157 10  N/C.E πε −= × = ×  

4
2 1 7.2 10  N/C,E E E= − = ×  in the -direction.y−  

EVALUATE:   At point a the two fields are in the same direction and the magnitudes add. At point b the two 
fields are in opposite directions and the magnitudes subtract. 

 22.18. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Draw a cylindrical Gaussian surface with the line of charge as its axis. The cylinder has radius 
0.400 m and is 0.0200 m long. The electric field is then 840 N/C at every point on the cylindrical surface 
and is directed perpendicular to the surface. 
EXECUTE:   2

cylinder (2 ) (840 N/C)(2 )(0.400 m)(0.0200 m) 42.2 N m /C.d EA E rLπ π⋅ = = = = ⋅∫ E A
GG

v  

The field is parallel to the end caps of the cylinder, so for them 0.d⋅ =∫ E A
GG

v  From Gauss’s law, 

  q = ε0 ΦE = (8.854 × 10−12  C2 /N ⋅ m2 )(42.2 N ⋅ m2 /C) = 3.74 × 10−10 C.  
EVALUATE:   We could have applied the result in Example 22.6 and solved for .λ Then .q Lλ=  

 22.19. IDENTIFY:   The electric field inside the conductor is zero, and all of its initial charge lies on its outer 
surface. The introduction of charge into the cavity induces charge onto the surface of the cavity, which 
induces an equal but opposite charge on the outer surface of the conductor. The net charge on the outer 
surface of the conductor is the sum of the positive charge initially there and the additional negative charge 
due to the introduction of the negative charge into the cavity. 
(a) SET UP:   First find the initial positive charge on the outer surface of the conductor using i ,q Aσ=  
where A is the area of its outer surface. Then find the net charge on the surface after the negative charge 
has been introduced into the cavity. Finally, use the definition of surface charge density. 
EXECUTE:   The original positive charge on the outer surface is 

2 6 2 2 6
i (4 ) (6.37 10  C/m )4 (0.250 m) 5.00 10  C.q A rσ σ π π− −= = = × = ×  

After the introduction of 0 500 Cµ− .   into the cavity, the outer charge is now 

5.00 C 0.500 C 4.50 C.µ µ µ −  =   

The surface charge density is now 
6

6 2
2 2

4.50 10  C 5.73 10  C/m .
4 4 (0.250 m)

q q
A r

σ
π π

−
−×= = = = ×  

(b) SET UP:   Using Gauss’s law, the electric field is E =
ΦE
A

= q
ε0 A

= q

ε0 4πr2
.  

EXECUTE:   Substituting numbers gives 
6

5
12 2 2 2

4.50 10  C 6.47 10  N/C.
(8.85 10  C /N m )(4 )(0.250 m)

E
π

−

−
×= = ×

× ⋅
 

(c) SET UP:   We use Gauss’s law again to find the flux. encl

0
.E

Q
ε

Φ =  

EXECUTE:   Substituting numbers gives 
6

4 2
12 2 2

0.500 10 C 5.65 10 N m /C.
8.85 10  C /N mE

−

−
− ×Φ = = − × ⋅
× ⋅

 

EVALUATE:   The excess charge on the conductor is still 5.00 C,µ+   as it originally was. The introduction 
of the 0.500 Cµ−   inside the cavity merely induced equal but opposite charges (for a net of zero) on the 
surfaces of the conductor. 

 22.20. IDENTIFY:   Apply the results of Examples 22.5, 22.6, and 22.7. 
SET UP:   Gauss’s law can be used to show that the field outside a long conducting cylinder is the same as 
for a line of charge along the axis of the cylinder. 
EXECUTE:   (a) For points outside a uniform spherical charge distribution, all the charge can be considered 
to be concentrated at the center of the sphere. The field outside the sphere is thus inversely proportional to 
the square of the distance from the center. In this case, 
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2
0.200 cm(480 N/C) 53 N/C.
0.600 cm

E
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) For points outside a long cylindrically symmetrical charge distribution, the field is identical to that of a 

long line of charge: 
  
E = λ

2πε0r
,  that is, inversely proportional to the distance from the axis of the cylinder. 

In this case 0 200 cm(480 N/C) 160 N/C.
0 600 cm

E
.⎛ ⎞= =⎜ ⎟.⎝ ⎠

 

(c) The field of an infinite sheet of charge is E = σ /2ε0;  i.e., it is independent of the distance from the 
sheet. Thus in this case 480 N/C.E =  
EVALUATE:   For each of these three distributions of charge the electric field has a different dependence on 
distance. 

 22.21. IDENTIFY:   The magnitude of the electric field is constant at any given distance from the center because 
the charge density is uniform inside the sphere. We can use Gauss’s law to relate the field to the charge 
causing it. 

(a) SET UP:   Gauss’s law tells us that EA = q
ε0

,  and the charge density is given by 3 .
(4/3)

q q
V R

ρ
π

= =  

EXECUTE:   Solving for q and substituting numbers gives 

  q = EAε0 = E(4πr2 )ε0 = (1750 N/C)(4π )(0.500 m)2 (8.85 × 10−12  C2 /N ⋅ m2 ) = 4.866 × 10−8  C.  Using the 

formula for charge density we get 
8

7 3
3 3

4.866 10 C 2.60 10 C/m .
(4/3) (4/3) (0.355 m)

q q
V R

ρ
π π

−
−×= = = = ×  

(b) SET UP:   Take a Gaussian surface of radius 0.200 m,r =  concentric with the insulating sphere. The 

charge enclosed within this surface is 3
encl

4 ,
3

q V rρ ρ π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 and we can treat this charge as a point-

charge, using Coulomb’s law E = 1
4πε0

qencl

r2
.  The charge beyond 0.200 mr =  makes no contribution to 

the electric field. 
EXECUTE:   First find the enclosed charge: 

3 7 3 3 9
encl

4 4(2.60 10 C/m ) (0.200 m) 8.70 10 C
3 3

q rρ π π− −⎛ ⎞ ⎡ ⎤= = × = ×⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 

Now treat this charge as a point-charge and use Coulomb’s law to find the field: 
9

9 2 2 3
2

8.70 10 C(9.00 10 N m /C ) 1.96 10 N/C
(0.200 m)

E
−×= × ⋅ = ×  

EVALUATE:   Outside this sphere, it behaves like a point-charge located at its center. Inside of it, at a 
distance r from the center, the field is due only to the charge between the center and r. 

 22.22. IDENTIFY:   We apply Gauss’s law, taking the Gaussian surface beyond the cavity but inside the solid. 

SET UP:   Because of the symmetry of the charge, Gauss’s law gives us E1 =
qtotal
ε0 A

,  where A is the surface 

area of a sphere of radius 9.50 cmR =  centered on the point-charge, and totalq  is the total charge 
contained within that sphere. This charge is the sum of the −3.00µC  point charge at the center of the 
cavity plus the charge within the solid between 6.50 cmr =  and 9.50 cm.R =  The charge within the solid 
is 3 3 3 3

solid [(4/3) (4/3) ] (4 /3) ( ).q V R r R rρ ρ π π π ρ= = − = −  

EXECUTE:   First find the charge within the solid between 6.50 cmr =  and 9.50 cm:R =  
4 3 3 3 6

solid
4 (7.35 10  C/m )[(0.0950 m) (0.0650 m) ] 1.794 10  C.
3

q
π − −= × − = ×  
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Now find the total charge within the Gaussian surface: 

total solid point 3.00 C 1.794 C 1.206 C.q q q µ µ µ= + = −  +  = −  
Now find the magnitude of the electric field from Gauss’s law: 

9 2 2 6
6

2 2 2
0 00

| | | | 1 | | (8.99 10  N m /C )(1.206 10  C) 1.20 10  N/C.
44 (0.0950 m)

q q q
E

A r rε πεε π

−× ⋅ ×= = = = = ×  

The fact that the charge is negative means that the electric field points radially inward. 
EVALUATE:   Because of the uniformity of the charge distribution, the charge beyond 9.50 cm does not 
contribute to the electric field. 

 22.23. IDENTIFY:   The charged sheet exerts a force on the electron and therefore does work on it. 
SET UP:   The electric field is uniform so the force on the electron is constant during the displacement. The 

electric field due to the sheet is 
  
E = σ

2ε0
 and the magnitude of the force the sheet exerts on the electron is 

.F qE=  The work the force does on the electron is .W Fs=  In (b) we can use the work-energy theorem, 

tot 2 1.W K K K= ∆ = −  
EXECUTE:   (a) ,W Fs=  where 0 250 m.s = .  ,F Eq=  where 

12 2

12 2 2
0

2.90 10  C/m 0.1638 N/C.
2 2(8.854 10  C /(N m ))

E
σ
ε

−

−
×= = =

× ⋅
 Therefore the force is 

19 20(0.1638 N/C)(1.602 10  C) 2.624 10  N.F − −= × = ×  The work this force does is 216.56 10  J.W Fs −= = ×  

(b) Use the work-energy theorem: tot 2 1.W K K K= ∆ = −  1 0.K =  2
2 2

1 .
2

K mv=  So, 2
2

1 ,
2

mv W=  which 

gives 
21

5
2 31

2 2(6.559 10  J) 1.2 10  m/s.
9.109 10  kg

W
v

m

−

−
×= = = ×

×
 

EVALUATE:   If the field were not constant, we would have to integrate in (a), but we could still use the 
work-energy theorem in (b). 

 22.24. IDENTIFY:   The charge distribution is uniform, so we can readily apply Gauss’s law. Outside a spherically 
symmetric charge distribution, the electric field is equivalent to that of a point-charge at the center of the 
sphere. 

SET UP:   Gauss’s law: encl

0
,Q

d
ε

⋅ =∫ E A
GG

v  E = k
| q |
r2

 outside the sphere. 

EXECUTE:    (a) Outside the sphere, 2
| | ,q

E k
r

=  so Q = Er2/k, which gives 

Q = (940 N/C)(0.0800 m)2/ 9 2 2(8.99 10  N m /C )× ⋅  = 6.692 ×10–10 C. The volume charge density is 

  

ρ = Q
V

= Q
4
3

π R3
 = (6.692 ×10–10 C)/(4π/3)(0.0400 m)3 = 2.50 ×10–6 C/m3. 

(b) Apply Gauss’s law: encl

0
,Q

d
ε

⋅ =∫ E A
GG

v  with the Gaussian surface being a sphere of radius r = 0.0200 m 

centered on the sphere of charge. This gives 
E(4πr2) = Qenc/ 0,ε  where Qencl = 4/3 πr3ρ. Solving for E and simplifying gives 

E = rρ /3 ε0  = (0.0200 m)(2.50 ×10–6 C/m3)/ –12 2 2[3(8.854 10  C /N m )]× ⋅ = 1880 N/C. 
EVALUATE:   Outside the sphere of charge, the electric field obeys an inverse-square law, but inside the 
field is proportional to the distance from the center of the sphere. 

 22.25. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that lies wholly within the conducting material. 
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EXECUTE:   (a) Positive charge is attracted to the inner surface of the conductor by the charge in the cavity. 
Its magnitude is the same as the cavity charge: inner 6.00 nC,q = +  since 0E =  inside a conductor and a 
Gaussian surface that lies wholly within the conductor must enclose zero net charge. 
(b) On the outer surface the charge is a combination of the net charge on the conductor and the charge “left 
behind” when the 6 00 nC+ .  moved to the inner surface: 

tot inner outer outer tot inner 5.00 nC 6.00 nC 1.00 nC.q q q q q q= + ⇒ = − = − = −  
EVALUATE:   The electric field outside the conductor is due to the charge on its surface. 

 22.26. IDENTIFY:   If the sphere is to remain motionless, the downward force of gravity must be balanced by the 
upward electric force due to the sheet. The nonconducting sheet produces a uniform electric field that is 
perpendicular to the sheet and independent of the distance from the sheet. 

SET UP:   0,yFΣ =  
  
E = σ

2ε0
 for a large nonconducting sheet, q .=F E

G G
 

EXECUTE:   (a) 
  
Σ Fy = 0 : qE – mg = 0. Solving for q and using E = σ

2ε0
 gives 

  

q = mg
E

= mg
σ

2ε0

=
2ε0mg

σ
 = 2( –12 2 28.854 10  C /N m× ⋅ )(8.00 ×10–6 kg)(9.80 m/s2)/(5.00 ×10–6 C/m2). 

q = 2.78 ×10–10 C. 
(b) The electric field does not depend on the distance from the sheet, so the field, and therefore the charge, 
would be the same as in (a). 
EVALUATE:   If the object were to be very far from the sheet, the field would not be uniform. And if the 
object were extremely far away compared to the dimensions of the sheet, the sheet would resemble a point 
charge. 

 22.27. IDENTIFY:   Apply Gauss’s law to each surface. 
SET UP:   The field is zero within the plates. By symmetry the field is perpendicular to a plate outside the 
plate and can depend only on the distance from the plate. Flux into the enclosed volume is positive. 
EXECUTE:   2 3andS S  enclose no charge, so the flux is zero, and electric field outside the plates is zero. 

Between the plates, 4S  shows that 0 0/ /EA q Aε σ ε− = − = −  and E = σ /ε0.  
EVALUATE:   Our result for the field between the plates agrees with the result stated in Example 22.8. 

 22.28. IDENTIFY:   Close to a finite sheet the field is the same as for an infinite sheet. Very far from a finite sheet 
the field is that of a point charge. 

SET UP:   For an infinite sheet, 
0

.
2

E
σ
ε

=  For a positive point charge, 2
0

1 .
4

q
E

rπε
=  

EXECUTE:    (a) At a distance of 0.100 mm from the center, the sheet appears “infinite,” so 

  
E ≈ σ

2ε0
= q

2ε0 A
= 4.50 × 10−9  C

2ε0 (0.800 m)2
= 397 N/C.  

(b) At a distance of 100 m from the center, the sheet looks like a point, so: 
9

3
2 2

0 0

1 1 (4.50 10  C) 4.05 10  N/C.
4 4 (100 m)

q
E

rπε πε

−
−×≈ = = ×  

(c) There would be no difference if the sheet was a conductor. The charge would automatically spread out 
evenly over both faces, giving it half the charge density on either face as the insulator but the same electric 
field. Far away, they both look like points with the same charge. 
EVALUATE:   The sheet can be treated as infinite at points where the distance to the sheet is much less than 
the distance to the edge of the sheet. The sheet can be treated as a point charge at points for which the 
distance to the sheet is much greater than the dimensions of the sheet. 
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 22.29. IDENTIFY:   Apply Gauss’s law to a Gaussian surface and calculate E. 
(a) SET UP and EXECUTE:    Consider the charge on a length l of the cylinder. This can be expressed as 

.q lλ=  But since the surface area is 2 Rlπ  it can also be expressed as 2 .q Rlσ π=  These two expressions 
must be equal, so 2l Rlλ σ π=  and 2 .Rλ π σ=  
(b) SET UP:   Apply Gauss’s law to a Gaussian surface that is a cylinder of length l, radius r, and whose 
axis coincides with the axis of the charge distribution, as shown in Figure 22.29. 

 

 EXECUTE:    
encl (2 )Q Rlσ π=  

2E rlEπΦ =  

Figure 22.29   
 

encl

0 0

(2 ) gives 2 ,E
Q Rl

rlE
σ ππ

ε ε
Φ = =  so

0
.R

E
r

σ
ε

=  

EVALUATE:   (c) Example 22.6 shows that the electric field of an infinite line of charge is   E = λ /2πε0r.  

,
2 R

λσ
π

=  so 
0 0 0

,
2 2

R R
E

r r R r
σ λ λ
ε ε π πε

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 the same as for an infinite line of charge that is along the 

axis of the cylinder. 
 22.30. IDENTIFY:   The net electric field is the vector sum of the fields due to each of the four sheets of charge. 

SET UP:   The electric field of a large sheet of charge is E = σ /2ε0.  The field is directed away from a 
positive sheet and toward a negative sheet. 

EXECUTE:   (a) At 
  
A: EA =

σ2

2ε0
+

σ3

2ε0
+

σ4

2ε0
−

σ1

2ε0
=

σ2 + σ3 + σ4 − σ1

2ε0
.  

  
EA = 1

2ε0
(5 µC/m2 + 2 µC/m2 + 4 µC/m2 − 6 µC/m2 ) = 2.82 × 105  N/C to the left.  

(b) 
  
EB =

σ1

2ε0
+

σ3

2ε0
+

σ4

2ε0
−

σ2

2ε0
=

σ1 + σ3 + σ4 − σ2

2ε0
.  

  
EB = 1

2ε0
(6 µC/m2 + 2 µC/m2 + 4 µC/m2 − 5 µC/m2 ) = 3.95 × 105 N/C to the left.  

(c) 
  
EC =

σ4

2ε0
+

σ1

2ε0
−

σ2

2ε0
−

σ3

2ε0
=

σ4 + σ1 − σ2 − σ3

2ε0
.  

  
EC = 1

2ε0
(4 µC/m2 + 6 µC/m2 − 5 µC/m2 − 2 µC/m2 ) = 1.69 × 105 N/C to the left.  

EVALUATE:   The field at C is not zero. The pieces of plastic are not conductors. 
 22.31. IDENTIFY:   The uniform electric field of the sheet exerts a constant force on the proton perpendicular to 

the sheet, and therefore does not change the parallel component of its velocity. Newton’s second law 
allows us to calculate the proton’s acceleration perpendicular to the sheet, and uniform-acceleration 
kinematics allows us to determine its perpendicular velocity component.  
SET UP:   Let x+  be the direction of the initial velocity and let y+  be the direction perpendicular to the 

sheet and pointing away from it. 0xa =  so 2
0 9.70 10  m/s.x xv v= = ×  The electric field due to the sheet is 

  
E = σ

2ε0
 and the magnitude of the force the sheet exerts on the proton is .F eE=  
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EXECUTE:   
  
E = σ

2ε0
= 2.34 × 10−9  C/m2

2(8.854 × 10−12  C2 /(N ⋅ m2 ))
= 132.1 N/C.  Newton’s second law gives 

19
10 2

27
(132.1 N/C)(1.602 10  C) 1.265 10  m/s .

1.673 10  kgy
Eq

a
m

−

−
×= = = ×

×
 Kinematics gives 

10 2 8
0 (1 265 10  m/s )(5 00 10  s) 632 7 m/s.y y yv v a y −= + = . × . × = .  The speed of the proton is the magnitude 

of its velocity, so 2 2 2 2 2 3(9 70 10  m/s) (632 7 m/s) 1 16 10  m/s.x yv v v= + = . × + . = . ×  

EVALUATE:   We can use the constant-acceleration kinematics equations because the uniform electric field 
of the sheet exerts a constant force on the proton, giving it a constant acceleration. We could not use this 
approach if the sheet were replaced with a sphere, for example. 

 22.32. IDENTIFY:   The sheet repels the charge electrically, slowing it down and eventually stopping it at its 
closest approach. 

SET UP:   Let y+  be in the direction toward the sheet. The electric field due to the sheet is 
  
E = σ

2ε0
 and 

the magnitude of the force the sheet exerts on the object is .F qE=  Newton’s second law, and the 
constant-acceleration kinematics formulas, apply to the object as it is slowing down. 

EXECUTE:   
8 2

3
12 2 2

0

5.90 10 C/m 3.332 10 N/C.
2 2[8.854 10 C /(N m )]

E
σ
ε

−

−
×= = = ×

× ⋅
 

3 9
3 2

9
(3.332 10 N/C)(6.50 10 C) 2.641 10 m/s .

8.20 10 kgy
F Eq

a
m m

−

−
× ×= − = − = − = − ×

×
 Using 2 2

0 02 ( )y y yv v a y y= + −  

gives 3 2
0 02 ( ) 2( 2.64 10  m/s )(0.300 m) 39.8 m/s.y yv a y y= − − = − − × =  

EVALUATE:   We can use the constant-acceleration kinematics equations because the uniform electric field 
of the sheet exerts a constant force on the object, giving it a constant acceleration. We could not use this 
approach if the sheet were replaced with a sphere, for example. 

 22.33. IDENTIFY:   First make a free-body diagram of the sphere. The electric force acts to the left on it since the 
electric field due to the sheet is horizontal. Since it hangs at rest, the sphere is in equilibrium so the forces 
on it add to zero, by Newton’s first law. Balance horizontal and vertical force components separately. 
SET UP:   Call T the tension in the thread and E the electric field. Balancing horizontal forces gives 

sin .T qEθ =  Balancing vertical forces we get cos .T mgθ =  Combining these equations gives 
tan / ,qE mgθ =  which means that arctan ( / ).qE mgθ =  The electric field for a sheet of charge is 

0/2 .E σ ε=  

EXECUTE:   Substituting the numbers gives us  

  
E = σ

2ε0
= 2.50 × 10−9 C/m2

2(8.85 × 10−12 C2 /N ⋅ m2 )
= 1.41× 102 N/C.  Then  

8 2

6 2
(5.00 10 C)(1.41 10 N/C)arctan 10.2 .

(4.00 10 kg)(9.80 m/s )
θ

−

−
⎡ ⎤× ×= = °⎢ ⎥

×⎢ ⎥⎣ ⎦
 

EVALUATE:   Increasing the field, or decreasing the mass of the sphere, would cause the sphere to hang at a 
larger angle. 

 22.34. IDENTIFY:   Use EΦ = ⋅E A
GG

 to calculate the flux for each surface. Use ΦE =
Qencl

ε0
 to calculate the total 

enclosed charge. 
SET UP:   ˆ ˆ( 5.00 N/C m) (3.00 N/C m) .x z= − ⋅ + ⋅E i k

G
 The area of each face is 2,L  where 0 300 m.L = .  

EXECUTE:   (a) 
1 11

ˆˆ ˆ 0.S S A= − ⇒ Φ = ⋅ =n j E n
G
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2 2

2
2

ˆˆ ˆ (3.00 N/C m)(0.300 m) (0.27 (N/C) m) .S S A z z= + ⇒ Φ = ⋅ = ⋅ = ⋅n k E n
G

 
2

2 (0.27 (N/C) m)(0.300 m) 0.081 (N/C) m .Φ =  ⋅ =  ⋅  

3 33
ˆˆ ˆ 0.S S A= + ⇒ Φ = ⋅ =n j E n

G
 

4 44
ˆˆ ˆ (0.27 (N/C) m) 0 (since 0).S S A z z= − ⇒ Φ = ⋅ = −  ⋅ = =n k E n

G
 

5 5

2
5

ˆˆ ˆ ( 5.00 N/C m)(0.300 m) (0.45 (N/C) m) .S S A x x= + ⇒ Φ = ⋅ = − ⋅ = −  ⋅n i E n
G

 
2

5 (0.45 (N/C) m)(0.300 m) (0.135 (N/C) m ).Φ = −  ⋅ = −  ⋅  

6 66
ˆˆ ˆ (0.45 (N/C) m) 0 (since 0).S S A x x= − ⇒ Φ = ⋅ = +  ⋅ =  =n i E n

G
 

(b) Total flux: 2 2
2 5 (0.081 0.135)(N/C) m 0.054 N m /C.Φ = Φ + Φ = − ⋅ = − ⋅  Therefore, 

  q = ε0Φ = −4.78 × 10−13  C.  

EVALUATE:   Flux is positive when E
G

 is directed out of the volume and negative when it is directed into 
the volume. 

 22.35. IDENTIFY:   Use EΦ = ⋅E A
GG

 to calculate the flux through each surface and use Gauss’s law to relate the 
net flux to the enclosed charge. 
SET UP:   Flux into the enclosed volume is negative and flux out of the volume is positive. 
EXECUTE:   (a) 2 2(125 N/C)(6.0 m ) 750 N m /C.EAΦ = = = ⋅  
(b) Since the field is parallel to the surface, 0.Φ =  

(c) Choose the Gaussian surface to equal the volume’s surface. Then 750 N ⋅ m2 /C − EA = q/ε0  and 

  
E = 1

6.0 m2
(2.40 × 10−8  C/ε0 + 750 N ⋅ m2 /C) = 577 N/C,  in the positive x-direction. Since 0q <  we 

must have some net flux flowing in so the flux is EA−  on second face. 
EVALUATE:   (d) 0q <  but we have E pointing away from face I. This is due to an external field that does not 
affect the flux but affects the value of E. The electric field is produced by charges both inside and outside the slab. 

 22.36. IDENTIFY:   The electric field is perpendicular to the square but varies in magnitude over the surface of the 
square, so we will need to integrate to find the flux. 
SET UP and EXECUTE:   ˆ(964 N/C m) .x= ⋅E k

G
 Consider a thin rectangular slice parallel to the y-axis and at 

coordinate x with width dx. ˆ( ) .d Ldx=A k
G

 (964 N/C m) .Ed d LxdxΦ = ⋅ = ⋅E A
GG

 
2

0 0
(964 N/C m) (964 N/C m) .

2E E
L L L

d L xdx L
⎛ ⎞

Φ = Φ = ⋅ = ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫

  
ΦE = 1

2
(964 N/C ⋅ m)(0.350 m)3 = 20.7 N ⋅ m2 /C.  

EVALUATE:   To set up the integral, we take rectangular slices parallel to the y-axis (and not the x-axis) 
because the electric field is constant over such a slice. It would not be constant over a slice parallel to the x-axis. 

 22.37. IDENTIFY:   Find the net flux through the parallelepiped surface and then use that in Gauss’s law to find 
the net charge within. Flux out of the surface is positive and flux into the surface is negative. 
(a) SET UP:   1E

G
 gives flux out of the surface. See Figure 22.37a. 

 
 
 

 EXECUTE:   1 1 .E A⊥Φ = +  
3 2(0.0600 m)(0.0500 m) 3.00 10  m .A −= = ×  

4
1 1 cos60 (2.50 10  N/C)cos60 .E E⊥ = ° = × °  

4
1 1.25 10  N/C.E ⊥ = ×  

Figure 22.37a   
 
 
 
 

1

4 3 2 2
1 (1.25 10  N/C)(3.00 10  m ) 37.5 N m /C.E E A −
⊥Φ = + = + × × = ⋅  
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SET UP:   2E
G

 gives flux into the surface. See Figure 22.37b. 
 

 EXECUTE:   2 2 .E A⊥Φ = −  
3 2(0.0600 m)(0.0500 m) 3.00 10 m .A −= = ×  

4
2 2 cos60 (7.00 10  N/C)cos60 .E E⊥ = ° = × °  

4
2 3.50 10  N/C.E ⊥ = ×  

Figure 22.37b   
 

2

4 3 2 2
2 (3.50 10  N/C)(3.00 10  m ) 105.0 N m /C.E E A −

⊥Φ = − = − × × = − ⋅  

The net flux is 
1 2

2 2 237.5 N m /C 105.0 N m /C 67.5 N m /C.E E EΦ = Φ + Φ = + ⋅ − ⋅ = − ⋅  

The net flux is negative (inward), so the net charge enclosed is negative. 

Apply Gauss’s law: ΦE =
Qencl

ε0
 

  Qencl = ΦEε0 = (−67.5 N ⋅ m2 /C)(8.854 × 10−12  C2 /N ⋅ m2 ) = −5.98 × 10−10  C.  
EVALUATE:   (b) If there were no charge within the parallelepiped the net flux would be zero. This is not 
the case, so there is charge inside. The electric field lines that pass out through the surface of the 
parallelepiped must terminate on charges, so there also must be charges outside the parallelepiped. 

 22.38. IDENTIFY:   The α  particle feels no force where the net electric field due to the two distributions of charge 
is zero. 
SET UP:   The fields can cancel only in the regions A and B shown in Figure 22.38, because only in these 
two regions are the two fields in opposite directions. 

EXECUTE:   line sheetE E=  gives λ
2πε0r

= σ
2ε0

 and 2
50 C/m/ 0.16 m 16 cm.

(100 C/m )
r

µλ πσ
π µ

= = = =  

The fields cancel 16 cm from the line in regions A and B. 
EVALUATE:   The result is independent of the distance between the line and the sheet. The electric field of 
an infinite sheet of charge is uniform, independent of the distance from the sheet. 

 

 

Figure 22.38 
 

 22.39. (a) IDENTIFY:   Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where ,a r b< <  and 
calculate E on the surface of the cylinder. 
SET UP:   The Gaussian surface is sketched in Figure 22.39a. 

 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lλ=  (the charge on the 
length l of the inner conductor 
that is inside the Gaussian surface). 

Figure 22.39a   
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encl

0 0
 gives (2 ) .E

Q l
E rl

λπ
ε ε

Φ = =  

  
E = λ

2πε0r
.  The enclosed charge is positive so the direction of E

G
 is radially outward. 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where 
,r c>  as shown in Figure 22.39b. 

 

 EXECUTE:   (2 ).E E rlπΦ =  

enclQ lλ=  (the charge on the  
length l of the inner conductor  
that is inside the Gaussian surface;  
the outer conductor carries no  
net charge). 

Figure 22.39b   
 

encl

0 0
 gives (2 ) .E

Q l
E rl

λπ
ε ε

Φ = =  

  
E = λ

2πε0r
.  The enclosed charge is positive so the direction of E

G
 is radially outward. 

(c) IDENTIFY and EXECUTE:   E = 0 within a conductor. Thus E = 0 for ;r a<  

  
E = λ

2πε0r
 for a < r < b; E = 0 for b < r < c;  

  
E = λ

2πε0r
 for r > c.  The graph of E versus r is sketched in Figure 22.39c. 

 
Figure 22.39c 

 

EVALUATE:   Inside either conductor E = 0. Between the conductors and outside both conductors the electric 
field is the same as for a line of charge with linear charge density λ  lying along the axis of the inner conductor. 
(d) IDENTIFY and SET UP:   inner surface: Apply Gauss’s law to a Gaussian cylinder with radius r, where 

.b r c< <  We know E on this surface; calculate encl.Q  
EXECUTE:   This surface lies within the conductor of the outer cylinder, where 0, so 0.EE = Φ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses charge lλ  on the inner conductor, so it must enclose charge 

lλ−  on the inner surface of the outer conductor. The charge per unit length on the inner surface of the 
outer cylinder is .λ−  
outer surface: The outer cylinder carries no net charge. So if there is charge per unit length λ−  on its 
inner surface there must be charge per unit length λ+  on the outer surface. 
EVALUATE:   The electric field lines between the conductors originate on the surface charge on the outer 
surface of the inner conductor and terminate on the surface charges on the inner surface of the outer conductor. 
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These surface charges are equal in magnitude (per unit length) and opposite in sign. The electric field lines 
outside the outer conductor originate from the surface charge on the outer surface of the outer conductor. 

 22.40. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a cylinder of radius r, length l and that has the line of charge along 
its axis. The charge on a length l of the line of charge or of the tube is .q lα=  

EXECUTE:   (a) (i) For ,r a<  Gauss’s law gives E(2πrl) =
Qencl

ε0
= α l

ε0
 and 

  
E = α

2πε0r
.  

(ii) The electric field is zero because these points are within the conducting material. 

(iii) For ,r b>  Gauss’s law gives E(2πrl) =
Qencl

ε0
= 2α l

ε0
 and E = α

πε0r
.  

The graph of E versus r is sketched in Figure 22.40. 
(b) (i) The Gaussian cylinder with radius r, for ,a r b< <  must enclose zero net charge, so the charge per 
unit length on the inner surface is .α−  (ii) Since the net charge per length for the tube is α+  and there is 

α−  on the inner surface, the charge per unit length on the outer surface must be 2 .α+  
EVALUATE:   For r b>  the electric field is due to the charge on the outer surface of the tube. 

 

 
Figure 22.40 

 

 22.41. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a cylinder of radius r and length l, and that is coaxial with the 
cylindrical charge distributions. The volume of the Gaussian cylinder is 2r lπ  and the area of its curved 
surface is 2 .rlπ  The charge on a length l of the charge distribution is ,q lλ=  where 2.Rλ ρπ=  

EXECUTE:   (a) For ,r R<  2
enclQ r lρπ=  and Gauss’s law gives E(2πrl) =

Qencl
ε0

= ρπr2l
ε0

 and E = ρr
2ε0

,  

radially outward. 

(b) For ,r R>  2
enclQ l R lλ ρπ= =  and Gauss’s law gives E(2πrl) =

Qencl
ε0

= ρπ R2l
ε0

 and 

  
E = ρR2

2ε0r
= λ

2πε0r
,  radially outward. 

(c) At ,r R=  the electric field for both regions is E = ρR
2ε0

,  so they are consistent. 

(d) The graph of E versus r is sketched in Figure 22.41 (next page). 
EVALUATE:   For r R>  the field is the same as for a line of charge along the axis of the cylinder. 
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Figure 22.41 

 

 22.42. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the conducting 
spheres. 
EXECUTE:   (a) For , 0,r a E< =  since these points are within the conducting material. 

For 
  
a < r < b, E = 1

4πε0

q

r2
,  since there is q+  inside a radius r. 

For , 0,b r c E< < =  since these points are within the conducting material. 

For 
  
r > c, E = 1

4πε0

q

r2
,  since again the total charge enclosed is .q+  

(b) The graph of E versus r is sketched in Figure 22.42a. 
(c) Since the Gaussian sphere of radius r, for ,b r c< <  must enclose zero net charge, the charge on the 
inner shell surface is – .q  
(d) Since the hollow sphere has no net charge and has charge q−  on its inner surface, the charge on the 
outer shell surface is .q+  
(e) The field lines are sketched in Figure 22.42b. Where the field is nonzero, it is radially outward. 
EVALUATE:   The net charge on the inner solid conducting sphere is on the surface of that sphere. The 
presence of the hollow sphere does not affect the electric field in the region .r b<  

 

 
Figure 22.42 

 

 22.43. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charge 
distributions. 
EXECUTE:   (a) For , 0,r R E< =  since these points are within the conducting material. For 2 ,R r R< <  

  
E = 1

4πε0

Q

r2
,  since the charge enclosed is Q. The field is radially outward. For 2 ,r R>  

  
E = 1

4πε0

2Q

r2
 

since the charge enclosed is 2Q. The field is radially outward. 
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(b) The graph of E versus r is sketched in Figure 22.43. 
EVALUATE:   For 2r R<  the electric field is unaffected by the presence of the charged shell. 

 

 

Figure 22.43 
 

 22.44. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that has the point charge at its center. 

EXECUTE:   (a) For  ,r a<  E = 1
4πε0

Q

r2
,  radially outward, since the charge enclosed is Q, the charge of 

the point charge. For ,a r b< <  0E =  since these points are within the conducting material. For ,r b>  

  
E = 1

4πε0

2Q

r2
,  radially inward, since the total enclosed charge is 2 .Q−  

(b) Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero net charge because E = 0 
inside the conductor, the total charge on the inner surface is Q−  and the surface charge density on the 

inner surface is 2 .
4

Q
a

σ
π

= −  

(c) Since the net charge on the shell is 3Q−  and there is Q−  on the inner surface, there must be 2Q−  on 

the outer surface. The surface charge density on the outer surface is 2
2 .

4
Q
b

σ
π

= −  

(d) The field lines and the locations of the charges are sketched in Figure 22.44a. 
(e) The graph of E versus r is sketched in Figure 22.44b. 

 

     

Figure 22.44 
 

EVALUATE:   For r a<  the electric field is due solely to the point charge Q. For r b>  the electric field is 
due to the charge 2Q−  that is on the outer surface of the shell. 

 22.45. IDENTIFY:   Apply Gauss’s law to a spherical Gaussian surface with radius r. Calculate the electric field at 
the surface of the Gaussian sphere. 
(a) SET UP:   (i) :r a<  The Gaussian surface is sketched in Figure 22.45a (next page). 
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 EXECUTE:   2(4 ).E EA E rπΦ = =  

encl 0;Q =  no charge is enclosed. 

ΦE =
Qencl

ε0
 says  

2(4 ) 0 and 0.E r Eπ = =  
 

Figure 22.45a   
 

(ii) :a r b< <  Points in this region are in the conductor of the small shell, so 0.E =  
(iii) SET UP:   :b r c< <  The Gaussian surface is sketched in Figure 22.45b. 
Apply Gauss’s law to a spherical Gaussian surface with radius .b r c< <  

 

 EXECUTE:   2(4 ).E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.45b   
 

  
ΦE =

Qencl
ε0

 gives E(4πr2 ) = 2q
ε0

 so E = 2q

4πε0r2
.  Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.45c. 

 

 EXECUTE:   2(4 ).E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.45c   
 

2encl

0 0

6gives (4 ) .E
Q q

E rπ
ε ε

Φ = =  

  
E = 6q

4πε0r2
.  Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.45d. 
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Figure 22.45d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 
(ii) charge on outer surface of the small shell: The total charge on the small shell is 2 .q+  We found in  
part (i) that there is zero charge on the inner surface of the shell, so all 2q+  must reside on the outer 
surface. 
(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius 

.c r d< <  The surface lies within the conductor of the large shell, where 0,E =  so 0.EΦ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses the 2q+  on the small shell so there must be charge 2q−  on 
the inner surface of the large shell to make the total enclosed charge zero. 
(iv) charge on outer surface of large shell: The total charge on the large shell is 4 .q+  We showed in  
part (iii) that the charge on the inner surface is 2 ,q−  so there must be 6q+  on the outer surface. 
EVALUATE:   The electric field lines for b r c< <  originate from the surface charge on the outer surface of 
the inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface 
charges have equal magnitude and opposite sign. The electric field lines for r d>  originate from the 
surface charge on the outer surface of the outer sphere. 

 22.46. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) For , 0,a r b E< < =  since the 

points are within the conducting material. (iii) For b < r < c, E = 1
4πε0

2q

r2
, outward, since the charge 

enclosed is 2q+ .  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 
, 0,r d E> =  since the net charge enclosed is zero. The graph of E versus r is sketched in Figure 22.46 

(next page). 
(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 2 ,q−  the charge on this surface is zero. 
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 
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Figure 22.46 
 
  

 22.47. IDENTIFY:   Use Gauss’s law to find the electric field E
G

 produced by the shell for  and r R r R< >  and 
then use q=F E

G G
 to find the force the shell exerts on the point charge. 

(a) SET UP:   Apply Gauss’s law to a spherical Gaussian surface that has radius r R>  and that is 
concentric with the shell, as sketched in Figure 22.47a. 

 

 EXECUTE:   2(4 ).E E rπΦ = −  

encl .Q Q= −  

Figure 22.47a   
 

2encl

0 0
 gives (4 ) .E

Q Q
E rπ

ε ε
−Φ = − =  

The magnitude of the field is 
  
E = Q

4πε0r2
 and it is directed toward the center of the shell. Then 

  
F = qE = qQ

4πε0r2
,  directed toward the center of the shell. (Since q is positive, and E F

G G
 are in the same 

direction.) 
(b) SET UP:   Apply Gauss’s law to a spherical Gaussian surface that has radius r R<  and that is 
concentric with the shell, as sketched in Figure 22.47b. 

 

 EXECUTE:   2(4 ).E E rπΦ =  

encl 0.Q =  

Figure 22.47b   
 

2encl

0
 gives (4 ) 0.E

Q
E rπ

ε
Φ = =  

Then 0 so 0.E F= =  
EVALUATE:   Outside the shell the electric field and the force it exerts is the same as for a point charge Q−  
located at the center of the shell. Inside the shell 0E =  and there is no force. 
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 22.48. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the sphere and 

shell. The volume of the insulating shell is 3 3 34 28[(2 ) ] .
3 3

V R R R
ππ= − =  

EXECUTE:   (a) Zero net charge requires that 
328 ,

3
R

Q
π ρ− =  so 3

3 .
28

Q
R

ρ
π

= −  

(b) For , 0r R E<  =  since this region is within the conducting sphere. For 2 , 0,r R E>  =  since the net 
charge enclosed by the Gaussian surface with this radius is zero. For 2 ,R r R< <  Gauss’s law gives 

  
E(4πr2 ) = Q

ε0
+ 4π ρ

3ε0
(r3 − R3)  and E = Q

4πε0r2
+ ρ

3ε0r2
(r3 − R3).  Substituting ρ  from part (a) gives 

  
E = 2

7πε0

Q

r2
− Qr

28πε0 R3
.  The net enclosed charge for each r in this range is positive and the electric field 

is outward. 
(c) The graph is sketched in Figure 22.48. We see a discontinuity in going from the conducting sphere to 
the insulator due to the thin surface charge of the conducting sphere. But we see a smooth transition from 
the uniform insulator to the surrounding space. 
EVALUATE:   The expression for E within the insulator gives 0E =  at 2 .r R=  

 

 
Figure 22.48 

 

 22.49. IDENTIFY:   We apply Gauss’s law in (a) and take a spherical Gaussian surface because of the spherical 
symmetry of the charge distribution. In (b), the net field is the vector sum of the field due to q and the field 
due to the sphere. 

(a) SET UP:    ( ) ,r
r
αρ =  24 ,dV r drπ=  and ( ) .

r

a
Q r dVρ= ′∫  

EXECUTE:   For a Gaussian sphere of radius r, 2 2
encl

1( ) 4 4 ( ).
2

r r

a a
Q r dV r dr r aρ πα πα= ′ = ′ ′ = −∫ ∫  Gauss’s 

law says that 
  
E(4πr2 ) = 2πα(r2 − a2 )

ε0
,  which gives 

2

2
0

1 .
2

a
E

r
α
ε

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

(b) SET UP and EXECUTE:   The electric field of the point charge is Eq = q

4πε0r2
.  The total electric field 

is
  
Etotal = α

2ε0
− α

2ε0

a2

r2
+ q

4πε0r2
.  For totalE  to be constant, − αa2

2ε0
+ q

4πε0
= 0  and 22 .q aπα=  The 

constant electric field is 
 

α
2ε0

.  

EVALUATE:   The net field is constant, but not zero. 
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 22.50. IDENTIFY:   Example 22.9 gives the expression for the electric field both inside and outside a uniformly 
charged sphere. Use e= −F E

G G
 to calculate the force on the electron. 

SET UP:   The sphere has charge .Q e= +  
EXECUTE:   (a) Only at 0r =  is 0E =  for the uniformly charged sphere. 

(b) At points inside the sphere, 
  
Er = er

4πε0 R3
.  The field is radially outward. Fr = −eE = − 1

4πε0

e2r

R3
.  The 

minus sign denotes that rF  is radially inward. For simple harmonic motion, 2 ,rF kr m rω= − = −  where 

/ 2 .k m fω π= =  
  
Fr = −mω 2r = − 1

4πε0

e2r

R3
 so ω = 1

4πε0

e2

mR3
 and f = 1

2π
1

4πε0

e2

mR3
.  

(c) If 
  
f = 4.57 × 1014  Hz = 1

2π
1

4πε0

e2

mR3
 then 

  
R = 1

4πε0

(1.60 × 10−19 C)2

4π 2 (9.11× 10−31 kg)(4.57 × 1014  Hz)2
3 = 3.13 × 10−10  m.  The atom radius in this model is the 

correct order of magnitude. 

(d) If ,r R>  
  
Er = e

4πε0r2
 and 

  
Fr = − e2

4πε0r2
.  The electron would still oscillate because the force is 

directed toward the equilibrium position at 0.r =  But the motion would not be simple harmonic, since rF  

is proportional to 21/r  and simple harmonic motion requires that the restoring force be proportional to the 
displacement from equilibrium. 
EVALUATE:   As long as the initial displacement is less than R the frequency of the motion is independent 
of the initial displacement. 

 22.51. IDENTIFY:   There is a force on each electron due to the other electron and a force due to the sphere of 
charge. Use Coulomb’s law for the force between the electrons. Example 22.9 gives E inside a uniform 

sphere and 
  
F = 1

4πε0

q1q2

r2
 gives the force. 

SET UP:   The positions of the electrons are sketched in Figure 22.51a. 
 

 If the electrons are in  
equilibrium the net force on  
each one is zero. 

Figure 22.51a   
 

EXECUTE:   Consider the forces on electron 2. There is a repulsive force 1F  due to the other electron, 
electron 1. 

F1 = 1
4πε0

e2

(2d)2
 

The electric field inside the uniform distribution of positive charge is E = Qr

4πε0 R3
 (Example 22.9), where 

2 .Q e= +  At the position of electron 2, .r d=  The force cdF  exerted by the positive charge distribution is 

  
Fcd = eE = e(2e)d

4πε0 R3
 and is attractive. 
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The force diagram for electron 2 is given in Figure 22.51b. 
 

 

Figure 22.51b 
 

Net force equals zero implies 1 cdF F=  and 1
4πε0

e2

4d2
= 2e2d

4πε0 R3
.  

Thus 2 3 3 3(1/4 ) 2 / , so /8 and /2.d d R d R d R= = =  
EVALUATE:   The electric field of the sphere is radially outward; it is zero at the center of the sphere and 
increases with distance from the center. The force this field exerts on one of the electrons is radially inward 
and increases as the electron is farther from the center. The force from the other electron is radially 
outward, is infinite when 0d =  and decreases as d increases. It is reasonable therefore for there to be a 
value of d for which these forces balance. 

 22.52. IDENTIFY:   The method of Example 22.9 shows that the electric field outside the sphere is the same as for 
a point charge of the same charge located at the center of the sphere. 
SET UP:   The charge of an electron has magnitude 191.60 10  C.e −= ×  

EXECUTE:   (a) 2 .
q

E k
r

=  For 0.150 m,r R= = 1390 N/CE = so 

2 2
9

9 2 2
(1390 N/C)(0.150 m) 3.479 10  C.
8.99 10  N m /C

Er
q

k
−= = = ×

× ⋅
 The number of excess electrons is 

9
10

19
3.479 10 C 2.17 10 electrons.

1.60 10 C/electron

−

−
× = ×

×
 

(b) 0 100 m 0 250 m.r R= + . = .  
9

9 2 2 2
2 2

3.479 10  C(8.99 10  N m /C ) 5.00 10  N/C.
(0.250 m)

q
E k

r

−×= = × ⋅ = ×  

EVALUATE:   The magnitude of the electric field decreases according to the square of the distance from the 
center of the sphere. 

 22.53. (a) IDENTIFY:   The charge density varies with r inside the spherical volume. Divide the volume up into 
thin concentric shells, of radius r and thickness dr. Find the charge dq in each shell and integrate to find the 
total charge. 
SET UP:   3

0 0( ) (1 ) for  where 3 / .r r/R r R Q Rρ ρ ρ π= − ≤ = ( ) 0 for .r r Rρ = ≥  The thin shell is sketched in 
Figure 22.53a. 

 
 

 

 EXECUTE:   The volume of such a 
shell is 24 .dV r drπ=  
The charge contained within the shell is 

2
0( ) 4 (1 / ) .dq r dV r r R drρ π ρ= = −  

Figure 22.53a   
 

The total charge Qtot in the charge distribution is obtained by integrating dq over all such shells into which 
the sphere can be subdivided: 

2 2 3
tot 0 00 0

4 (1 / ) 4 ( / )
R R

Q dq r r R dr r r R drπ ρ πρ= = − = −∫ ∫ ∫  

3 4 3 4
3 3 3

tot 0 0 0
0

4 4 4 ( /12) 4 (3 / )( /12) ,
3 4 3 4

R
r r R R

Q R Q R R Q
R R

πρ πρ πρ π π
⎡ ⎤ ⎛ ⎞

= − = − = = =⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 as was to be shown. 

(b) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where .r R>  
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SET UP:   The Gaussian surface is shown in Figure 22.53b. 
 

 

 
EXECUTE:   encl

0
.E

Q
ε

Φ =  

2

0
(4 ) .Q

E rπ
ε

=  

Figure 22.53b   
 

  
E = Q

4πε0r2
;  same as for point charge of charge Q. 

(c) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where .r R<  
SET UP:   The Gaussian surface is shown in Figure 22.53c. 

 

 

 
EXECUTE:   encl

0
.E

Q
ε

Φ =  

2(4 ).E E rπΦ =  

Figure 22.53c   
 

To calculate the enclosed charge enclQ  use the same technique as in part (a), except integrate dq out to r 
rather than R. (We want the charge that is inside radius r.) 

3
2 2

encl 0 00 0
4 1 4 .

r rr r
Q r dr r dr

R R
π ρ πρ

⎛ ⎞′ ′⎛ ⎞= ′ − ′ = ′ − ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∫ ∫  

3 4 3 4
3

encl 0 0 0
0

14 4 4 .
3 4 3 4 3 4

r
r r r r r

Q r
R R R

πρ πρ πρ
⎡ ⎤ ⎛ ⎞′ ′ ⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠

 

3 3

0 encl3 3 3
3 1 so 12 4 3 .

3 4
Q r r r r

Q Q Q
R RR R R

ρ
π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Thus Gauss’s law gives 
3

2
3

0
(4 ) 4 3 .Q r r

E r
RR

π
ε

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

3
0

34 , .
4

Qr r
E r R

RRπε
⎛ ⎞= −  ≤⎜ ⎟
⎝ ⎠

 

(d) The graph of E versus r is sketched in Figure 22.53d. 
 

 

Figure 22.53d 
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(e) Where the electric field is a maximum, 0.dE
dr

=  Thus 
234 0 so 4 6 / 0 and 2 /3.d r

r r R r R
dr R

⎛ ⎞
− = − = =⎜ ⎟⎜ ⎟

⎝ ⎠
 

At this value of r, 3 2
0 0

2 3 24 .
3 34 3

Q R R Q
E

RR Rπε πε
⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE:   Our expressions for ( )E r  for r R<  and for r R>  agree at .r R=  The results of part (e) for 
the value of r where ( )E r  is a maximum agrees with the graph in part (d). 

 22.54. IDENTIFY:   Use Gauss’s law to find the electric field both inside and outside the slab. 
SET UP:   Use a Gaussian surface that has one face of area A in the y z plane at 0,x =  and the other face at 
a general value .x  The volume enclosed by such a Gaussian surface is Ax. 
EXECUTE:   (a) The electric field of the slab must be zero by symmetry. There is no preferred direction in 
the y z plane, so the electric field can only point in the x-direction. But at the origin, neither the positive 
nor negative x-directions should be singled out as special, and so the field must be zero. 

(b) For  ,x d≤  Gauss’s law gives EA =
Qencl

ε0
=

ρ A x

ε0
 and E =

ρ x

ε0
,  with direction given by ˆx

x
i  (away 

from the center of the slab). Note that this expression does give 0E =  at 0.x =  Outside the slab, the 
enclosed charge does not depend on x and is equal to .Adρ  For ,x d≥  Gauss’s law gives 

  
EA =

Qencl
ε0

= ρ Ad
ε0

and 
  
E = ρd

ε0
,  again with direction given by ˆ.x

x
i  

EVALUATE:   At the surfaces of the slab, .x d= ±  For these values of x the two expressions for E (for 
inside and outside the slab) give the same result. The charge per unit area σ of the slab is given by 

(2 )A A dσ ρ=  and /2.dρ σ=  The result for E outside the slab can therefore be written as   E = σ /2ε0  and 
is the same as for a thin sheet of charge. 

 22.55. (a) IDENTIFY and SET UP:   Consider the direction of the field for x slightly greater than and slightly less 
than zero. The slab is sketched in Figure 22.55a. 

 
 

 2
0( ) ( / ) .x x dρ ρ=  

Figure 22.55a   
 
 

EXECUTE:   The charge distribution is symmetric about 0,x =  so by symmetry ( ) ( ).E x E x= −  But for 
0x >  the field is in the -directionx+  and for 0x <  the field is in the direct n.- iox−  At 0x =  the field 

can’t be both in the d- and - irectionsx x+ −  so must be zero. That is, ( ) ( ).x xE x E x= − −  At point 0x =  this 
gives (0) (0)x xE E= −  and this equation is satisfied only for (0) 0.xE =  
(b) IDENTIFY and SET UP:   x d> (outside the slab). 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end 
caps have area A and are the same distance x d>  from x = 0, as shown in Figure 22.55b. 

 
 

 EXECUTE:   2 .E EAΦ =  

Figure 22.55b   
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 To find enclQ  consider a thin disk at coordinate x and 
with thickness dx, as shown in Figure 22.55c.  
The charge within this disk is  

2 2
0( / ) .dq dV Adx A d x dxρ ρ ρ= = =  

Figure 22.55c   
 
 

The total charge enclosed by the Gaussian cylinder is 

2 2 2 3 2
encl 0 0 030 0

2 2 / (2 / )( /3) .
d d

Q dq A d x dx A d d Adρ ρ ρ= = ( ) = =∫ ∫  

Then 
  
ΦE =

Qencl
ε0

 gives 2EA = 2ρ0 Ad /3ε0. This gives 0 0/3 .E dρ ε=  

E
G

 is directed away from x = 0, so 0 0
ˆ( /3 )( / ) .d x xρ ε=E i

G
 

(c) IDENTIFY and SET UP:    x d< (inside the slab). 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end 
caps have area A and are the same distance x d<  from x = 0, as shown in Figure 22.55d. 

 

 EXECUTE:   2 .E EAΦ =  

Figure 22.55d   
 

enclQ  is found as above, but now the integral on dx is only from 0 to x instead of 0 do d. 

2 2 2 3
encl 0 00 0

2 2 / (2 / )( /3).
x x

Q dq A d x dx A d xρ ρ= = ( ) =∫ ∫  

Then 
  
ΦE =

Qencl
ε0

 gives 2EA = 2ρ0 Ax3 /3ε0d2.  This gives 3 2
0 0/3 .E x dρ ε=  

E
G

 is directed away from x = 0, so 3 2
0 0

ˆ( /3 ) .x dρ ε=E i
G

 
EVALUATE:   Note that E = 0 at x = 0 as stated in part (a). Note also that the expressions for x d>  and 

x d<  agree for x = d. 
 22.56. IDENTIFY:   Apply Gauss’s law. 

SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the spherical 
distribution of charge. The volume of a thin spherical shell of radius r and thickness dr is 24 .dV r drπ=  

EXECUTE:   (a) 2 2 2 3
0 00 0 0 0

4 4( ) 4 ( ) 4 1 4 .
3 3

R R Rr
Q r dV r r dr r dr r dr r dr

R R
ρ π ρ πρ πρ∞ ⎛ ⎞ ⎡ ⎤= = = − = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ ∫  

3 4

0
44 0.

3 3 4
R R

Q
R

πρ
⎡ ⎤

= − =⎢ ⎥
⎢ ⎥⎣ ⎦

 The total charge is zero. 

(b) For ,r R≥  encl

0
0,Q

d
ε

⋅ = =∫ E A
GG

v  so 0.E =  

(c) For ,r R≤  2encl
00 0

4 ( ) .
rQ

d r r dr
π ρ

ε ε
⋅ = = ′ ′ ′∫ ∫E A
GG

v  E4πr2 =
4πρ0

ε0
r′2

0

r
∫ dr′ − 4

3R
r′3

0

r
∫ dr′⎡

⎣
⎢

⎤

⎦
⎥  and 

  
E =

ρ0
ε0

1
r2

r3

3
− r4

3R

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
ρ0
3ε0

r 1− r
R

⎡

⎣
⎢

⎤

⎦
⎥.  
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(d) The graph of E versus r is sketched in Figure 22.56. 

(e) Where E is a maximum, 0.dE
dr

=  This gives
ρ0
3ε0

−
2ρ0rmax

3ε0 R
= 0  and max .

2
R

r =  At this r, 

  
E =

ρ0
3ε0

R
2

1− 1
2

⎡

⎣
⎢

⎤

⎦
⎥ =

ρ0 R
12ε0

.  

EVALUATE:   The result in part (b) for r R≤  gives 0E =  at ;r R=  the field is continuous at the surface 
of the charge distribution. 

 

 

Figure 22.56 
 

 22.57. (a) IDENTIFY:   Use ( )E r
G G

 from Example (22.9) (inside the sphere) and relate the position vector of a point 
inside the sphere measured from the origin to that measured from the center of the sphere. 
SET UP:   For an insulating sphere of uniform charge density ρ  and centered at the origin, the electric 

field inside the sphere is given by E = Qr′/4πε0 R3  (Example 22.9), where ′rG  is the vector from the center 
of the sphere to the point where E is calculated. 
But 33 /4Q Rρ π=  so this may be written as E = ρr /3ε0.  And E

G
 is radially outward, in the direction of 

0, so /3 .ρ ε′ = ′r E r
GG G

 

For a sphere whose center is located by vector ,b
G

 a point inside the sphere and located by r
G

 is located by 

the vector ′ = −r r b
GG G

 relative to the center of the sphere, as shown in Figure 22.57. 
 

 
EXECUTE:   Thus 

0

( ) .
3

ρ
ε
−= r bE
GGG

 

Figure 22.57   
 

EVALUATE:   When 0b =  this reduces to the result of Example 22.9. When ,=r b
GG

 this gives 0,E =  
which is correct since we know that 0E =  at the center of the sphere. 
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(b) IDENTIFY:   The charge distribution can be represented as a uniform sphere with charge density ρ  and 

centered at the origin added to a uniform sphere with charge density ρ−  and centered at .=r b
GG

 

SET UP:   uniform hole uniform,  where = +E E E E
G G G G

 is the field of a uniformly charged sphere with charge 

density ρ  and holeE
G

 is the field of a sphere located at the hole and with charge density .ρ−  (Within the 
spherical hole the net charge density is 0.)ρ ρ+ − =  

EXECUTE:   uniform
0

,
3
ρ
ε

= rE
GG

 where rG  is a vector from the center of the sphere. 

hole
0

( ) ,
3

ρ
ε

− −= r bE
GGG

 at points inside the hole. Then 
0 0 0

( ) .
3 3 3
ρ ρ ρ
ε ε ε

⎛ ⎞− −= + =⎜ ⎟⎜ ⎟
⎝ ⎠

r r b bE
G GG GG

 

EVALUATE:   E
G

 is independent of rG  so is uniform inside the hole. The direction of E
G

 inside the hole is in 
the direction of the vector ,b

G
 the direction from the center of the insulating sphere to the center of the hole. 

 22.58. IDENTIFY:   We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the 
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole. 
SET UP:   Let rG  locate a point within the hole, relative to the axis of the cylinder and let ′rG  locate this 
point relative to the axis of the hole. Let b

G
 locate the axis of the hole relative to the axis of the cylinder. As 

shown in Figure 22.58, .′ = −r r b
GG G

 Problem 22.41 shows that at points within a long insulating cylinder, 

0
.

2
ρ
ε

= rE
GG

 

EXECUTE:   off axis
0 0

( ) .
2 2
ρ ρ
ε ε−

′ −= =r r bE
GG GG

 hole cylinder off axis
0 0 0

( ) .
2 2 2
ρ ρ ρ
ε ε ε−

−= − = − =r r b bE E E
G GG GG G G

 

Note that E
G

 is uniform. 
EVALUATE:   If the hole is coaxial with the cylinder, 0b =  and hole 0.E =  

 

 

Figure 22.58 
 

 22.59. IDENTIFY and SET UP:   For a uniformly charged sphere, 2
| | ,Q

E k
r

=  so Er2 = k|Q| = constant. For a long 

uniform line of charge, 
0

,
2

E
r

λ
πε

=  so Er = λ
2πε0

 = constant. 
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EXECUTE:   (a) Figure 22.59a shows the graphs for data set A. We see that the graph of Er versus r is a 
horizontal line, which means that Er = constant. Therefore data set A is for a uniform straight line of 
charge. 

 

0
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Figure 22.59a 
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Figure 22.59b shows the graphs for data set B. We see that the graph of Er2 versus r is a horizontal line, so 
Er2 = constant. Thus data set B is for a uniformly charged sphere. 

0
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4000

5000

6000
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 (N •m/C)
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0
0 1 2 3 4

10

20

30

40

50

60

Er2
 (N •m2/C)

r (cm)

 

Figure 22.59b 

(b) For A: 
0

,
2

E
r

λ
πε

=  so 02 .Erλ πε=  From our graph in Figure 22.59a, Er = constant = 2690 N m/C.⋅  

Therefore 

  λ = 2πε0 Er  = 2π( –12 2 28.854 10  C /N m )× ⋅ (2690 N m/C)⋅  = 1.50 ×10–7 C/m = 0.150 µC/m. 

For B: 2
| | ,Q

E k
r

=  so kQ = Er2 = constant, which means that Q = (constant)/k. From our graph in  

Figure 22.59b, Er2 = constant = 54.1 2N m /C.⋅  Therefore  
Q =  (54.1 2N m /C)⋅ /( 9 2 28.99 10  N m /C )× ⋅  = 6.0175 ×10–9 C. 

The charge density ρ  is 

  

ρ = Q
V

= Q
4
3

π R3
 = (6.0175 ×10–9 C)/[(4π/3)(0.00800 m)3 = 2.81 ×10–3 C/m3. 
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EVALUATE:   A linear charge density of 0.150 C/m and a volume charge density of 2.81 ×10–3 C/m3 are 
both physically reasonable and could be achieved in a normal laboratory. 

 22.60. IDENTIFY and SET UP:   The electric field inside a uniform sphere of charge does not follow an inverse-

square law. Apply Gauss’s law, encl

0
,Q

d
ε

⋅ =∫ E A
GG

v  to find the field.  

SET UP:   Apply encl

0
.Q

d
ε

⋅ =∫ E A
GG

v  As the Gaussian surface, use a sphere of radius r that is centered on the 

given sphere. 

EXECUTE:   Gauss’s law gives 

3

2

0

4
3(4 ) ,

r
E r

ρ π
π

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠=  from which we get 

0
.

3
E r

ρ
ε

=  Therefore in a graph 

of E versus r, the slope is 
0

.
3
ρ
ε

 From the graph in the problem, the slope is 

slope = 
4

6
–3

(6 3) 10  N/C 7.5 10  N/m C.
(8 – 4) 10  m

− × = × ⋅
×

 Solving for ρ  gives 

ρ  = (slope)(3 0)ε = 6(7.5 10  N/m C)× ⋅ (3) –12 2 2(8.854 10  C /N m )× ⋅  = 1.99 ×10–4 C/m3. 
EVALUATE:  A sphere of volume 1.0 m3 would have only 199 µC of charge, which is physically realistic. 

 22.61. IDENTIFY and SET UP:   Apply Gauss’s law, encl

0
.Q

d
ε

⋅ =∫ E A
GG

v  The enclosed charge is Qencl = ,Vρ  where 

  
V = 4

3
πr3  for a sphere of radius r. Read the charge densities from the graph in the problem. 

EXECUTE:   Apply Gauss’s law encl

0
.Q

d
ε

⋅ =∫ E A
GG

v  As a Gaussian surface, use a sphere of radius r centered 

on the given sphere. This gives E(4πr2) = encl 0/ ,Q ε  so E = 1
4πε0

Qencl

r2
 = encl

2 .Q
k

r
 In each case, we must 

first use Qencl = Vρ to calculate Qencl and then use that result to calculate E. 
(i) First find Qencl: Qencl = Vρ = (10.0 ×10–6 C/m3)(4π/3)(0.00100 m)3 = 4.19 ×10–14 C.  

Now calculate E: E = 
  
k

Qencl

r2
 = ( 9 2 28.99 10  N m /C× ⋅ )(4.19 ×10–14 C)/(0.00100 m)2 = 377 N/C. 

(ii) Qencl =  (10.0 ×10–6 C/m3)(4π/3)(0.00200 m)3 +  (4.0 ×10–6 C/m3)(4π/3)[(0.00300 m)3 – (0.00200 m)3]  
Qencl =  6.534 ×10–13 C.  

E = 
  
k

Qencl

r2
 = ( 9 2 28.99 10  N m /C× ⋅ )(6.534 ×10–13 C)/(0.00300 m)2 = 653 N/C. 

(iii) Qencl =  (10.0 ×10–6 C/m3)(4π/3)(0.00200 m)3 + (4.0 ×10–6 C/m3)(4π/3)[(0.00400 m)3 – (0.00200 m)3]  
+ (–2.0 ×10–6 C/m3)(4π/3)[(0.00500 m)3 – (0.00400 m)3]. 
Qencl =  7.624 ×10–13 C. 

E = 
  
k

Qencl

r2
 = 9 2 2(8.99 10  N m /C )× ⋅ (7.624 ×10–13 C)/(0.00500 m)2 = 274 N/C. 

(iv) Qencl =  7.624 ×10–13 C + (–2.0 ×10–6 C/m3)(4π/3)[(0.00600 m)3 – (0.00500 m)3] = 0, so E = 0. 
EVALUATE:   We found that E = 0 at r = 7.00 mm, but E is also zero at all points beyond r = 6.00 mm 
because the enclosed charge is zero for any Gaussian surface having a radius r > 6.00 mm. 

 22.62. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region /2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  
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EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 4/2 3

0
3 6 1 34
2 4 16 32

R
i

r R
Q dr R

R R
α παπ πα= = =∫  and 

2 2 3 3
0 /2

7 31 474 (1 ( / ) ) 4 .
24 160 120

R

R
Q r R r dr R Rπα πα πα⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠∫  Therefore, 

3 33 47 233
32 120 480

Q R Rπα πα⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 and 3
480 .

233
Q
R

α
π

=  

(b) For /2,r R≤  Gauss’s law gives 
  
E4πr2 = 4π

ε0

3αr′3

2R
dr′

0

r
∫ = 3παr4

2ε0 R
 and E = 6αr2

16ε0 R
= 180Qr2

233πε0 R4
.  

For /2 ,R r R≤ ≤  
3 3 5 3

2 2 2
2/20 0 0 0

4 44 (1 ( / ) ) .
3 24 1605

ri i
R

Q Q r R r R
E r r R r dr

R
πα παπ

ε ε ε ε
⎛ ⎞

= + − ′ ′ ′ = + − − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

3 53 3
2

0 0

3 4 4 1 1 174
128 3 5 480

R R r r
E r

R R
πα παπ
ε ε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 and 

3 5

2
0

480 1 1 23 .
3 5 1920233

Q r r
E

R Rrπε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

For ,r R≥  
  
E = Q

4πε0r2
,  since all the charge is enclosed. 

(c) The fraction of Q  between /2R r R≤ ≤  is 0 47 480 0.807.
120 233

Q
Q

= =  

(d) 
  
E = 180

233
Q

4πε0 R2
 using either of the electric field expressions above, evaluated at /2.r R=  

EVALUATE:    (e) The force an electron would feel never is proportional to r−  which is necessary for 
simple harmonic oscillations. It is oscillatory since the force is always attractive, but it has the wrong 
power of r  to be simple harmonic motion. 

 22.63. IDENTIFY and SET UP:   Treat the sphere as a point-charge, so 2
| | ,q

E k
r

=  so |q| = Er2/k.  

EXECUTE:   |q| = Er2/k = (1 ×106 N/C)(25 m)2/ 9 2 2(8.99 10  N m /C )× ⋅  = 0.0695 C ≈ 0.07 C. The charge 
must be negative since the field is intended to repel negative electrons. Choice (a) is correct. 
EVALUATE:   0.07 C is quite a large amount of charge, much larger than normally encountered in typical 
college physics laboratories. 

 22.64. IDENTIFY and SET UP:   Treat the sphere as a point-charge, so 2
| | .q

E k
r

=  Use the result from the previous 

problem for the charge on the sphere. 

EXECUTE:   
  
E = k

| q |
r2

 = 9 2 2(8.99 10  N m /C )× ⋅ (0.0695 C)/(2.5 m)2 = 1.0 ×108 N/C, choice (d). 

EVALUATE:   The field strength at 2.5 m is 100 times what it is at 25 m. This is reasonable since the field 
strength obeys an inverse-square law. At 25 m, which is a distance 10 times as far as 2.5 m, the field 
strength is [(2.5 m)/(25 m)]2(1 ×106 N/C) = 1 ×106 N/C, which was given in the previous problem. 

 22.65. IDENTIFY and SET UP:   Electric field lines point away from positive charges and toward negative charges. 
For a point-charge, the lines radiated from (or to) the charge. For a uniform sphere of charge, the field lines 
look the same as those for a point-charge for points outside the sphere. 
EXECUTE:   The sphere is negative and equivalent to a negative point-charge, so at its surface the field 
lines are perpendicular to it and pointing inward, which is choice (b). 
EVALUATE:   The sphere behaves like a point-charge at or above its surface. 

 22.66. IDENTIFY and SET UP:   All the charge is on the surface of a spherical shell.  
EXECUTE:   The field inside the sphere comes from any charge that is inside, but there is none. So the field 
is zero, choice (c). 
EVALUATE:   This result is true only if the surface of the sphere is uniformly charged. 
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 23.1. IDENTIFY:   Apply a b a bW U U→ = −  to calculate the work. The electric potential energy of a pair of point 

charges is given by 1 2

0

1 .
4

q q
U

rπε
=  

SET UP:   Let the initial position of 2q  be point a and the final position be point b, as shown in Figure 23.1. 
 

 0 150 m.ar = .  
2 2(0 250 m) (0 250 m) .br = . + .  

0 3536 m.br = .  

Figure 23.1   
 

EXECUTE:   .a b a bW U U→ = −  

      

6 6
9 2 21 2

0

6 6
9 2 21 2

0

1 ( 2 40 10  C)( 4 30 10  C)(8 988 10  N m /C ) .
4 0 150 m
0 6184 J.

1 ( 2 40 10  C)( 4 30 10  C)(8 988 10  N m /C ) .
4 0 3536 m
0 2623 J.

a
a

a

b
b

b

q q
U

r
U

q q
U

r
U

πε

πε

− −

− −

+ . × − . ×= = . × ⋅
.

= − .

+ . × − . ×= = . × ⋅
.

= − .

 

    0 6184 J ( 0 2623 J) 0 356 J.a b a bW U U→ = − = − . − − . = − .  
EVALUATE:   The attractive force on 2q  is toward the origin, so it does negative work on 2q  when 2q  
moves to larger r. 

 23.2. IDENTIFY:   Apply .a b a bW U U→ = −  

SET UP:   85 4 10  J.aU −= + . ×  Solve for .bU  

EXECUTE:   8 8 8 81 9 10  J . 5.4 10  J ( 1.9 10  J) 7 3 10  J.a b a b b a a bW U U U U W− − − −
→ →= − . × = − = − = + × − − × = . ×  

EVALUATE:    When the electric force does negative work the electrical potential energy increases. 
 23.3. IDENTIFY:   The work needed to assemble the nucleus is the sum of the electrical potential energies of the 

protons in the nucleus, relative to infinity. 

ELECTRIC POTENTIAL 

23
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SET UP:   The total potential energy is the scalar sum of all the individual potential energies, where each 
potential energy is   U = (1/4πε0 )(qq0 /r).  Each charge is e and the charges are equidistant from each other, 

so the total potential energy is 
2 2 2 2

0 0

1 3 .
4 4

e e e e
U

r r r rπε πε
⎛ ⎞

= + + =⎜ ⎟⎜ ⎟
⎝ ⎠

 

EXECUTE:   Adding the potential energies gives 
2 19 2 9 2 2

13
15

0

3 3(1 60 10  C) (9 00 10  N m /C ) 3 46 10  J 2 16 MeV.
4 2 00 10  m

e
U

rπε

−
−

−
. × . × ⋅= = = . × = .

. ×
 

EVALUATE:   This is a small amount of energy on a macroscopic scale, but on the scale of atoms, 2 MeV is 
quite a lot of energy. 

 23.4. IDENTIFY:   The work required is the change in electrical potential energy. The protons gain speed after 
being released because their potential energy is converted into kinetic energy. 
(a) SET UP:   Using the potential energy of a pair of point charges relative to infinity, 

  U = (1/4πε0 )(qq0 /r),  we have 
2 2

2 1
0 2 1

1 .
4

e e
W U U U

r rπε
⎛ ⎞

= ∆ = − = −⎜ ⎟⎜ ⎟
⎝ ⎠

 

EXECUTE:   Factoring out the 2e  and substituting numbers gives  

9 2 2 19 2 14
15 10

1 1(9 00 10 N m /C )(1 60 10  C) 7 68 10  J
3 00 10 m 2 00 10  m

W − −
− −

⎛ ⎞
= . × ⋅ . × − = . ×⎜ ⎟⎜ ⎟. × . ×⎝ ⎠

 

(b) SET UP:   The protons have equal momentum, and since they have equal masses, they will have equal 

speeds and hence equal kinetic energy. 2 2
1 2

12 2 .
2

U K K K mv mv⎛ ⎞∆ = + = = =⎜ ⎟
⎝ ⎠

 

EXECUTE:   Solving for v gives 
14

6
27

7 68 10  J 6.78 10 m/s.
1 67 10  kg

U
v

m

−

−
∆ . ×= = = ×

. ×
 

EVALUATE:   The potential energy may seem small (compared to macroscopic energies), but it is enough 
to give each proton a speed of nearly 7 million m/s. 

 23.5. (a) IDENTIFY:   Use conservation of energy: other .a a b bK U W K U+ + = +  U for the pair of point charges is 

given by 1 2

0

1 .
4

q q
U

rπε
=  

SET UP:    
 

 Let point a be where 2q  is 0.800 m from 

1q  and point b be where 2q  is 0.400 m  
from 1,q  as shown in Figure 23.5a. 

Figure 23.5a   
 

EXECUTE:   Only the electric force does work, so other 0W =  and 1 2

0

1 .
4

q q
U

rπε
=  

2 3 21 1
2 2 (1 50 10  kg)(22 0 m/s) 0 3630 J.a aK mv −= = . × . = .  

6 6
9 2 21 2

0

1 ( 2 80 10  C)( 7 80 10  C)(8 988 10  N m /C ) 0 2454 J.
4 0 800 ma

a

q q
U

rεπ

− −− . × − . ×= = . × ⋅ = + .
.

 

21
2 .b bK mv=  
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6 6
9 2 21 2

0

1 ( 2 80 10  C)( 7 80 10  C)(8 988 10  N m /C ) 0 4907 J.
4 0 400 mb

b

q q
U

rεπ

− −− . × − . ×= = . × ⋅ = + .
.

 

The conservation of energy equation then gives ( ).b a a bK K U U= + −  
21

2 0 3630 J (0 2454 J 0 4907 J) 0 1177 J.bmv = + . + . − . = .  

3
2(0 1177 J) 12 5 m/s.

1 50 10  kgbv −
.= = .

. ×
 

EVALUATE:   The potential energy increases when the two positively charged spheres get closer together, 
so the kinetic energy and speed decrease. 
(b) IDENTIFY:   Let point c be where 2q  has its speed momentarily reduced to zero. Apply conservation of 
energy to points a and c: other .a a c cK U W K U+ + = +  
SET UP:   Points a and c are shown in Figure 23.5b. 

 

 EXECUTE:   0 3630 JaK = + .  (from part (a)). 
0 2454 JaU = + .  (from part (a)). 

Figure 23.5b   
 

0cK =  (at distance of closest approach the speed is zero). 

1 2

0

1 .
4c

c

q q
U

rεπ
=  

Thus conservation of energy a a cK U U+ =  gives 21

0

1 0 3630 J 0 2454 J 0 6084 J.
4 c

q q

rεπ
= + . + . = .  

  
rc = 1

4πε0

q1q2
0.6084 J

= (8.988 × 109  N ⋅ m2 /C2 ) (−2.80 × 10−6  C)(−7.80 × 10−6  C)
+0.6084 J

= 0.323 m.  

EVALUATE:   U → ∞  as 0r →  so 2q  will stop no matter what its initial speed is. 
 23.6. IDENTIFY:   The total potential energy is the scalar sum of the individual potential energies of each pair of 

charges. 

SET UP:   For a pair of point charges the electrical potential energy is .qq
U k

r
′=  In the O-H-N 

combination the O−  is 0.170 nm from the H+  and 0.280 nm from the N .−  In the N-H-N combination the 
N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  U is positive for like charges and 
negative for unlike charges. 
EXECUTE:   (a) O-H-N: 

19 2
9 2 2 18

9
(1 60 10  C)O - H : (8 99 10  N m /C ) 1 35 10  J.
0 170 10  m

U
−

− + −
−

. ×= − . × ⋅ = − . ×
. ×

 

19 2
9 2 2 19

9
(1 60 10  C)O -N : (8 99 10  N m /C ) 8 22 10  J.
0 280 10  m

U
−

− − −
−

. ×= . × ⋅ = + . ×
. ×

 

N-H-N: 
19 2

9 2 2 18
9

(1 60 10  C)N - H : (8 99 10  N m /C ) 1 21 10  J.
0 190 10  m

U
−

− + −
−

. ×= − . × ⋅ = − . ×
. ×
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19 2
9 2 2 19

9
(1 60 10  C)N -N : (8 99 10  N m /C ) 7 67 10  J.
0 300 10  m

U
−

− − −
−

. ×= . × ⋅ = + . ×
. ×

 

The total potential energy is  
18 19 18 19 19

tot 1 35 10  J 8 22 10  J 1 21 10  J 7 67 10  J 9 71 10  J.U − − − − −= − . × + . × − . × + . × = − . ×  
(b) In the hydrogen atom the electron is 0.0529 nm from the proton. 

19 2
9 2 2 18

9
(1 60 10  C)(8 99 10  N m /C ) 4 35 10  J.
0 0529 10  m

U
−

−
−

. ×= − . × ⋅ = − . ×
. ×

 

EVALUATE:   The magnitude of the potential energy in the hydrogen atom is about a factor of 4 larger 
than what it is for the adenine-thymine bond. 

 23.7. IDENTIFY:   Use conservation of energy a a b bU K U K+ = +  to find the distance of closest approach .br  

The maximum force is at the distance of closest approach, 1 2
2 .

b

q q
F k

r
=  

SET UP:   0.bK =  Initially the two protons are far apart, so 0.aU =  A proton has mass 271 67 10  kg−. ×  

and charge 191 60 10  C.q e −= + = + . ×  

EXECUTE:   .a bK U=  2 1 21
22( ) .a

b

q q
mv k

r
=  

2
2
a

b

e
mv k

r
=  and 

  
rb = ke2

mva
2

= (8.99 × 109  N ⋅ m2 /C2 )(1.60 × 10−19  C)2

(1.67 × 10−27  kg)(2.00 × 105  m/s)2
= 3.45 × 10−12  m.   

2 19 2
9 2 2 –5

2 12 2
(1 60 10  C)(8 99 10  N m /C ) 1.94 10  N.

(3.445 10  m)b

e
F k

r

−

−
. ×= = . × ⋅ = ×

×
 

EVALUATE:   The acceleration /a F m=  of each proton produced by this force is extremely large. 
 23.8. IDENTIFY:   Call the three charges 1, 2, and 3. 12 13 23.U U U U= + +  

SET UP:   12 23 13U U U= =  because the charges are equal and each pair of charges has the same separation, 
0.400 m. 

EXECUTE:   
2 6 23 3 (1 2 10  C) 0 0971 J.

0 400 m 0 400 m
kq k

U
−. ×= = = .

. .
 

EVALUATE:   When the three charges are brought in from infinity to the corners of the triangle, the 
repulsive electrical forces between each pair of charges do negative work and electrical potential energy is 
stored. 

 23.9. IDENTIFY:   The protons repel each other and therefore accelerate away from one another. As they get 
farther and farther away, their kinetic energy gets greater and greater but their acceleration keeps 
decreasing. Conservation of energy and Newton’s laws apply to these protons. 
SET UP:   Let a be the point when they are 0.750 nm apart and b be the point when they are very far apart. 
A proton has charge e+  and mass 271 67 10  kg.−. ×  As they move apart the protons have equal kinetic 

energies and speeds. Their potential energy is 2/U ke r=  and 21
2 .K mv=  .a a b bK U K U+ = +  

EXECUTE:   (a) They have maximum speed when they are far apart and all their initial electrical potential 
energy has been converted to kinetic energy. .a a b bK U K U+ = +  

0aK =  and 0,bU =  so 
2 19 2

9 2 2 19
9

(1 60 10  C)(8 99 10  N m /C ) 3 07 10  J.
0 750 10  mb a

a

e
K U k

r

−
−

−
. ×= = = . × ⋅ = . ×
. ×

 

2 21 1
2 2 ,b b bK mv mv= +  so 2

b bK mv=  and 
19

4
27

3 07 10  J 1 36 10  m/s.
1 67 10  kg

b
b

K
v

m

−

−
. ×= = = . ×

. ×
 

(b) Their acceleration is largest when the force between them is largest and this occurs at 0 750 nm,r = .  
when they are closest. 
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22 19
9 2 2 10

2 9
1 60 10  C(8 99 10  N m /C ) 4 09 10  N.
0 750 10  m

e
F k

r

−
−

−
⎛ ⎞. ×= = . × ⋅ = . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠

 

10
17 2

27
4 09 10  N 2 45 10  m/s .
1 67 10  kg

F
a

m

−

−
. ×= = = . ×
. ×

 

EVALUATE:   The acceleration of the protons decreases as they move farther apart, but the force between 
them is repulsive so they continue to increase their speeds and hence their kinetic energies. 

 23.10. IDENTIFY:   The work done on the alpha particle is equal to the difference in its potential energy when it is 
moved from the midpoint of the square to the midpoint of one of the sides. 
SET UP:   We apply the formula .a b a bW U U→ = −  In this case, a is the center of the square and b is the 
midpoint of one of the sides. Therefore center side center sideW U U→ = −  is the work done by the Coulomb force. 
There are 4 electrons, so the potential energy at the center of the square is 4 times the potential energy of a 
single alpha-electron pair. At the center of the square, the alpha particle is a distance 1 50 nmr =  from each 
electron. At the midpoint of the side, the alpha is a distance 2 5.00 nmr =  from the two nearest electrons and 

a distance 3 125 nmr =  from the two most distant electrons. Using the formula for the potential energy 

(relative to infinity) of two point charges, U = (1/4πε0 )(qq0 /r),  the total work done by the Coulomb force is 

e e e
center side center side

0 1 0 2 0 3

1 1 14 2 2 .
4 4 4

q q q q q q
W U U

r r r
α α α

ε ε επ π π→
⎛ ⎞

= − = − +⎜ ⎟
⎝ ⎠

 

Substituting eq e= −  and 2q eα =  and simplifying gives 

2
center side

0 1 2 3

1 2 1 14 .
4

W e
r r rεπ→
⎡ ⎤⎛ ⎞

= − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

EXECUTE:    Substituting the numerical values into the equation for the work gives 

19 2 9 2 2 212 1 14(1 60 10  C) (8.99 10 N m /C ) 6 08 10  J.
5 00 nm50  nm 125 nm

W − −⎡ ⎤⎛ ⎞= − . × × ⋅ − + = . ×⎢ ⎥⎜ ⎟.⎝ ⎠⎣ ⎦
 

EVALUATE:   Since the work done by the Coulomb force is positive, the system has more potential energy with 
the alpha particle at the center of the square than it does with it at the midpoint of a side. To move the alpha 
particle to the midpoint of a side and leave it there at rest an external force must do 

216.08 10  J−− ×  of work. 
 23.11. IDENTIFY:   Apply .a b a bW U U→ = −  The net work to bring the charges in from infinity is equal to the 

change in potential energy. The total potential energy is the sum of the potential energies of each pair of 

charges, calculated from 1 2

0

1 .
4

q q
U

rπε
=  

SET UP:   Let 1 be where all the charges are infinitely far apart. Let 2 be where the charges are at the 
corners of the triangle, as shown in Figure 23.11. 

 

 Let cq  be the third, unknown charge. 

Figure 23.11   
 

EXECUTE:   2 1( ),W U U U= −∆ = − −  where W is the work done by the Coulomb force. 

1 0U =  

2
2

0

1 ( 2 ).
4ab ac bc cU U U U q qq

dπε
= + + = +  



23-6   Chapter 23 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

We want 0,W =  so 2 1( )W U U= − −  gives 20 .U= −  

2

0

10 ( 2 ).
4 cq qq

dπε
= +  

2 2 0cq qq+ =  and /2.cq q= −  
EVALUATE:    The potential energy for the two charges q is positive and for each q with cq  it is negative. 
There are two of the q, cq  terms so must have .cq q<  

 23.12. IDENTIFY:   Work is done on the object by the electric field, and this changes its kinetic energy, so we can 
use the work-energy theorem. 
SET UP:    A BW K→ = ∆  and ( ).A B A BW q V V→ = −  
EXECUTE:   (a) Applying the two equations above gives  ( )A B A BW q V V→ = −  = KB – 0 = KB. 

–7 –9 –  /  30.0 V –  3.00 10 J / –6.00 10 C   80.0 ( V) .( )B A BV V K q= =×= ×  
(b) The negative charge accelerates from A to B, so the electric field must point from B toward A. Since the 

field is uniform, we have E =
∆V

∆x
 = (50.0 V)/(0.500 m) = 100 V/m. 

EVALUATE:   A positive charge is accelerated from high to low potential, but a negative charge (as we 
have here) is accelerated from low to high potential.  

 23.13. IDENTIFY and SET UP:   Apply conservation of energy to points A and B. 
EXECUTE:   .A A B BK U K U+ = +  

,U qV=  so .A A B BK qV K qV+ = +  
6( ) 0 00250 J ( 5 00 10  C)(200 V 800 V) 0 00550 J.B A A BK K q V V −= + − = . + − . × − = .  

2 / 7 42 m/s.B Bv K m= = .  
EVALUATE:   It is faster at B; a negative charge gains speed when it moves to higher potential. 

 23.14. IDENTIFY:   The work-energy theorem says .a b b aW K K→ = −  .a b
a b

W
V V

q
→ = −  

SET UP:   Point a is the starting point and point b is the ending point. Since the field is uniform, 
cos cos .a bW Fs E q sφ φ→ = =  The field is to the left so the force on the positive charge is to the left. The 

particle moves to the left so 0φ = °  and the work a bW →  is positive. 

EXECUTE:   (a) 6 62.20 10  J 0 2.20 10  J.a b b aW K K − −
→ = − = × − = ×  

(b) 
  
Va − Vb =

Wa→b
q

= 2.20 × 10−6  J
4.20 × 10−9  C

= 524 V.  Point a is at higher potential than point b. 

(c) ,a bE q s W →=  so E =
Wa→b

q s
=

Va − Vb
s

= 524 V
6.00 × 10−2  m

= 8.73 × 103  V/m.  

EVALUATE:   A positive charge gains kinetic energy when it moves to lower potential; .b aV V<  

 23.15. IDENTIFY:   Apply .
b

a b a
W q d→ = ′ ⋅∫ E l

GG
 Use coordinates where y+  is upward and x+  is to the right. Then 

ˆE=E j
G

 with 44 00 10  N/C.E = . ×  
SET UP:   (a) The path is sketched in Figure 23.15a. 
 

 

Figure 23.15a 
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EXECUTE:   ˆ ˆ( ) ( ) 0d E dx⋅ = ⋅ =E l j i
GG

 so 0.
b

a b a
W q d→ = ′ ⋅ =∫ E l

GG
 

EVALUATE:   The electric force on the positive charge is upward (in the direction of the electric field) and 
does no work for a horizontal displacement of the charge. 
(b) SET UP:   The path is sketched in Figure 23.15b. 

 

 ˆ.d dy=
G
l j  

Figure 23.15b   
 

EXECUTE:   ˆ ˆ( ) ( ) .d E dy Edy⋅ = ⋅ =E l j j
GG

 

( ).
b b

a b b aa a
W q d q E dy q E y y→ = ′ ⋅ = ′ = ′ −∫ ∫E l

GG
 

  yb − ya = +0.670 m;  it is positive since the displacement is upward and we have taken y+  to be upward. 

9 4 4( ) ( 28 0 10  C)(4 00 10  N/C)( 0 670 m) 7 50 10  J.a b b aW q E y y − −
→ = ′ − = + . × . × + . = + . ×  

EVALUATE:   The electric force on the positive charge is upward so it does positive work for an upward 
displacement of the charge. 
(c) SET UP:   The path is sketched in Figure 23.15c. 

 

 0.ay =  
sin (2.60 m) sin 45 1.838 m.by r θ= − = − ° = −  

The vertical component of the 2.60 m  
displacement is 1.838 m downward. 

Figure 23.15c   
 

EXECUTE:   ˆ ˆd dx dy= +l i j
G

 (The displacement has both horizontal and vertical components.) 
ˆ ˆ ˆ( ) ( )d E dx dy Edy⋅ = ⋅ + =E l j i j

GG
 (Only the vertical component of the displacement contributes to the 

work.) 

( ).
b b

a b b aa a
W q d q E dy q E y y→ = ′ ⋅ = ′ = ′ −∫ ∫E l

GG
 

9 4 3( ) ( 28 0 10 C)(4 00 10  N/C)( 1 838 m) 2 06 10  J.a b b aW q E y y − −
→ = ′ − = + . × . × − . = − . ×  

EVALUATE:   The electric force on the positive charge is upward so it does negative work for a 
displacement of the charge that has a downward component. 

 23.16. IDENTIFY:   Apply .a a b bK U K U+ = +  
SET UP:   Let 1 3 00 nCq = + .  and 2 2 00 nC.q = + .  At point a, 1 2 0 250 m.a ar r= = .  At point b, 

1 0 100 mbr = .  and 2 0 400 m.br = .  The electron has q e= −  and 31
e 9 11 10  kg.m −= . ×  0aK =  since the 

electron is released from rest. 
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EXECUTE:   21 2 1 2
e

1 2 1 2

1 .
2 b

a a b b

keq keq keq keq
m v

r r r r
− − = − − +  

9 9
19 17(3 00 10 C) (2 00 10 C)( 1 60 10 C) 2 88 10 J.

0 250 m 0 250 ma a aE K U k
− −

− −⎛ ⎞. × . ×= + = − . × + = − . ×⎜ ⎟⎜ ⎟. .⎝ ⎠
 

9 9
19 2 17 2

e e
(3 00 10 C) (2 00 10 C) 1 1( 1 60 10 C) 5 04 10 J .

0 100 m 0 400 m 2 2b b b b bE K U k m v m v
− −

− −⎛ ⎞. × . ×= + = − . × + + = − . × +⎜ ⎟⎜ ⎟. .⎝ ⎠

Setting a bE E=  gives 17 17 6
31

2 (5 04 10 J 2 88 10 J) 6 89 10 m/s.
9 11 10 kgbv − −

−= . × − . × = . ×
. ×

 

EVALUATE:   1 2 180 V.a a aV V V= + =   1 2 315 V.b b bV V V= + =   .b aV V>  The negatively charged electron 
gains kinetic energy when it moves to higher potential. 

 23.17. IDENTIFY:   The potential at any point is the scalar sum of the potentials due to individual charges. 
SET UP:   /V kq r=  and  ( – ).ab a bW q V V=  

EXECUTE:   (a) 2 2
1 2

1 (0 0300 m) (0 0300 m) 0 0212 m.
2a ar r= = . + . = .  1 2

1 2
0.a

a a

q q
V k

r r
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

 

(b) 1 0 0424 m,br = .  2 0 0300 m.br = .  
6 6

9 2 2 51 2

1 2

2 00 10  C 2 00 10  C(8 99 10  N m /C ) 1 75 10  V.
0 0424 m 0 0300 mb

b b

q q
V k

r r

− −⎛ ⎞⎛ ⎞ + . × − . ×= + = . × ⋅ + = − . ×⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

(c) 6 5
3( ) ( 5 00 10  C)[0 ( 1 75 10  V)] 0 875 J.ab a bW q V V −= − = − . × − − . × = − .  

EVALUATE:   Since ,b aV V<  a positive charge would be pulled by the existing charges from a to b, so they 
would do positive work on this charge. But they would repel a negative charge and hence do negative work 
on it, as we found in part (c). 

 23.18. IDENTIFY:   The total potential is the scalar sum of the individual potentials, but the net electric field is the 
vector sum of the two fields. 
SET UP:   The net potential can only be zero if one charge is positive and the other is negative, since it is a 
scalar. The electric field can only be zero if the two fields point in opposite directions. 
EXECUTE:   (a) (i) Since both charges have the same sign, there are no points for which the potential is zero. 
(ii) The two electric fields are in opposite directions only between the two charges, and midway between 
them the fields have equal magnitudes. So 0E =  midway between the charges, but V is never zero. 
(b) (i) The two potentials have equal magnitude but opposite sign midway between the charges, so 0V =  
midway between the charges, but 0E ≠  there since the fields point in the same direction. 
(ii) Between the two charges, the fields point in the same direction, so E cannot be zero there. In the other 
two regions, the field due to the nearer charge is always greater than the field due to the more distant 
charge, so they cannot cancel. Hence E is not zero anywhere. 
EVALUATE:   It does not follow that the electric field is zero where the potential is zero, or that the 
potential is zero where the electric field is zero. 

 23.19. IDENTIFY:   Apply 
0

1 .
4

i

i i

q
V

rπε
= ∑  

SET UP:   The locations of the charges and points A and B are sketched in Figure 23.19. 

 

Figure 23.19 
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EXECUTE:   (a) 1 2

0 1 2

1 .
4A

A A

q q
V

r rπε
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

9 9
9 2 2 2 40 10  C 6 50 10  C(8 988 10  N m /C ) 737 V.

0 050 m 0 050 mAV
− −⎛ ⎞+ . × − . ×= . × ⋅ + = −⎜ ⎟⎜ ⎟. .⎝ ⎠

 

(b) 1 2

0 1 2

1 .
4B

B B

q q
V

r rπε
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

9 9
9 2 2 2 40 10  C 6 50 10  C(8 988 10  N m /C ) 704 V.

0 080 m 0 060 mBV
− −⎛ ⎞+ . × − . ×= . × ⋅ + = −⎜ ⎟⎜ ⎟. .⎝ ⎠

 

(c) IDENTIFY and SET UP:   Use ( )a b a bW q V V→ = −  and the results of parts (a) and (b) to calculate W. 

EXECUTE:   [ ]9 8( ) (2 50 10  C) 704 V ( 737 V) 8 2 10  J.B A B AW q V V − −
→ = − = . × − − − = + . ×  

EVALUATE:   The electric force does positive work on the positive charge when it moves from higher 
potential (point B) to lower potential (point A). 

 23.20. IDENTIFY and SET UP:   Apply conservation of energy: .a a b bK U K U+ = +  Use =
0

/V U q  to express U 
in terms of V. 
(a) EXECUTE:   1 1 2 2,K qV K qV+ = +  2 1 1 2( ) ;q V V K K− = −  191 602 10  C.q −= − . ×  

2 181
1 e 12 4 099 10  J;K m v −= = . ×  2 171

2 e 22 2 915 10  J.K m v −= = . ×  1 2
2 1 156 V.K K

V V V
q
−∆ = − = =  

EVALUATE:   The electron gains kinetic energy when it moves to higher potential. 

(b) EXECUTE:   Now 17
1 22 915 10  J, 0.K K−= . × =  1 2

2 1 182 V.K K
V V

q
−− = = −  

EVALUATE:   The electron loses kinetic energy when it moves to lower potential.   

 23.21. IDENTIFY:   For a point charge, .kq
V

r
=  The total potential at any point is the algebraic sum of the 

potentials of the two charges. 
SET UP:   (a) The positions of the two charges are shown in Figure 23.21a. 

 

 
Figure 23.21a 

 

(b) 2 ( ): .
( )

kq kq kq x a
x a V

x x a x x a
− +> = − =

− −
 2 (3 )0 : .

( )
kq kq kq x a

x a V
x a x x x a

−< < = − =
− −

 

2 ( )0 : .
( )

kq kq kq x a
x V

x x a x x a
− +< = + =

− −
 A general expression valid for any y is 2 .q q

V k
x x a

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 

(c) The potential is zero at and /3.x a a= −  
(d) The graph of V versus x is sketched in Figure 23.21b (next page). 
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Figure 23.21b 

 

EVALUATE:   (e) For 2: ,kqx kq
x a V

xx
− −>> ≈ =  which is the same as the potential of a point charge – .q  

Far from the two charges they appear to be a point charge with a charge that is the algebraic sum of their 
two charges. 

 23.22. IDENTIFY:   For a point charge, 2
k q

E
r

=  and .kq
V

r
=   

SET UP:   The electric field is directed toward a negative charge and away from a positive charge. 

EXECUTE:   (a) 0V >  so 0.q >  
2

2
/ .
/

V kq r kq r
r

E r kqk q r

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 r = 4.98 V

16.2 V/m
= 0.307 m.  

(b) 
  
q = rV

k
= (0.307 m)(4.98 V)

8.99 × 109  N ⋅ m2 /C2
= 1.70 × 10−10  C.  

(c) 0,q >  so the electric field is directed away from the charge. 
EVALUATE:   The ratio of V to E due to a point charge increases as the distance r from the charge 
increases, because E falls off as 21/r and V falls off as 1/ .r  

 23.23. (a) IDENTIFY and EXECUTE:   The direction of E
G

 is always from high potential to low potential so point b 
is at higher potential. 

(b) IDENTIFY and SET UP:    Apply 
b

b a a
V V d− = − ⋅∫ E l

GG
 to relate b aV V−  to E. 

EXECUTE:   ( ).
b b

b a b aa a
V V d Edx E x x− = − ⋅ = = −∫ ∫E l

GG
 

240 V 800 V/m
0 90 m 0 60 m

b a

b a

V V
E

x x
− +  = = =  
− . − .

 

(c) SET UP and EXECUTE: 6 5( ) ( 0 200 10  C)( 240 V) 4 80 10  Jb a b aW q V V − −
→ = − = − . × + = − . × .  

EVALUATE:   The electric force does negative work on a negative charge when the negative charge moves 
from high potential (point b) to low potential (point a). 
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 24.24. IDENTIFY:   For a point charge, .kq
V

r
=  The total potential at any point is the algebraic sum of the 

potentials of the two charges. For a point charge, 2 .
k q

E
r

=  The net electric field is the vector sum of the 

electric fields of the two charges. 
SET UP:   E

G
produced by a point charge is directed away from the point charge if it is positive and toward 

the charge if it is negative. 
EXECUTE:   (a) 2 0,Q QV V V= + >  so V is zero nowhere except for infinitely far from the charges. The 
fields can cancel only between the charges, because only there are the fields of the two charges in opposite 
directions. Consider a point a distance x from Q and d x−  from 2Q, as shown in Figure 23.24a. 

2 2
2 2 2

(2 ) ( ) 2 .
( )Q Q

kQ k Q
E E d x x

x d x
= → = → − =

−
 .

1 2
d

x =
+

 The other root, ,
1 2

d
x =

−
 does not lie 

between the charges. 
(b) V can be zero in 2 places, A and B, as shown in Figure 23.24b. Point A is a distance x from Q−  and 

d x−  from 2Q. B is a distance y from Q−  and d y+ from 2Q. 
( ) (2 )At : 0 /3.k Q k Q

A x d
x d x
− + = → =

−
 

( ) (2 )At : 0 .k Q k Q
B y d

y d y
− + = → =

+
 

The two electric fields are in opposite directions to the left of Q−  or to the right of 2Q in Figure 23.24c. 
But for the magnitudes to be equal, the point must be closer to the charge with smaller magnitude of 

charge. This can be the case only in the region to the left of .Q−  2Q QE E=  gives 2 2
(2 )

( )
kQ k Q
x d x

=
+

 and 

.
2 1
d

x =
−

 

EVALUATE:   (d) E and V are not zero at the same places. E
G

 is a vector and V is a scalar. E is proportional 
to 21/r  and V is proportional to 1/ .r  E

G
 is related to the force on a test charge and V∆  is related to the 

work done on a test charge when it moves from one point to another. 
 

     

Figure 23.24 
 

  
 23.25. IDENTIFY:   The potential at any point is the scalar sum of the potential due to each shell. 

SET UP:   
kq

V
R

=  for r R≤  and 
kq

V
r

=  for .r R>  

EXECUTE:   (a) (i) 0.r =  This point is inside both shells so 
9 9

9 2 21 2

1 2

6 00 10  C 9 00 10  C(8 99 10  N m /C ) .
0 0300 m 0 0500 m

q q
V k

R R

− −⎛ ⎞⎛ ⎞ . × − . ×= + = . × ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

3 31 798 10  V ( 1 618 10  V) 180 V.V = + . × + − . × =  
(ii) 4 00 cm.r = .  This point is outside shell 1 and inside shell 2. 

9 9
9 2 21 2

2

6 00 10  C 9 00 10  C(8 99 10  N m /C ) .
0 0400 m 0 0500 m

q q
V k

r R

− −⎛ ⎞⎛ ⎞ . × − . ×= + = . × ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
3 31 348 10  V ( 1 618 10  V) 270 V.V = + . × + − . × = −  
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(iii) 6 00 cm.r = .  This point is outside both shells. 
9 2 2

9 91 2
1 2

8 99 10  N m /C( ) 6 00 10  C ( 9 00 10  C) .
0 0600 m

q q k
V k q q

r r r
− −. × ⋅⎛ ⎞ ⎡ ⎤= + = + = . × + − . ×⎜ ⎟ ⎣ ⎦.⎝ ⎠

 450 V.V = −  

(b) At the surface of the inner shell, 1 3 00 cm.r R= = .  This point is inside the larger shell, 

so 1 2
1

1 2
180 V.q q

V k
R R

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
 At the surface of the outer shell, 2 5 00 cm.r R= = .  This point is outside the 

smaller shell, so 
9 9

9 2 21 2

2

6 00 10  C 9 00 10  C(8 99 10  N m /C ) .
0 0500 m 0 0500 m

q q
V k

r R

− −⎛ ⎞⎛ ⎞ . × − . ×= + = . × ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
3 3

2 1 079 10  V ( 1 618 10  V) 539 V.V = + . × + − . × = −  The potential difference is 1 2 719 V.V V− =  The inner 
shell is at higher potential. The potential difference is due entirely to the charge on the inner shell. 
EVALUATE:   Inside a uniform spherical shell, the electric field is zero so the potential is constant (but not 
necessarily zero). 

 23.26. IDENTIFY and SET UP:   Outside a solid conducting sphere .q
V k

r
=  Inside the sphere the potential is 

constant because E = 0, and it has the same value as at the surface of the sphere. 

EXECUTE:   (a) This is outside the sphere, so 
9(3 50 10 C) 65 6 V.

0 480 m
kq k

V
r

−. ×= = = .
.

 

(b) This is at the surface of the sphere, so 
9(3 50 10 C) 131 V.

0 240 m
k

V
−. ×= =

.
 

(c) This is inside the sphere. The potential has the same value as at the surface, 131 V. 
EVALUATE:   All points of a conductor are at the same potential. 

 23.27. (a) IDENTIFY and SET UP:   The electric field on the ring’s axis is given by 2 2 3/2
0

1 .
4 ( )x

Qx
E

x aπε
=

+
 The 

magnitude of the force on the electron exerted by this field is given by F = eE. 
EXECUTE:   When the electron is on either side of the center of the ring, the ring exerts an attractive force 
directed toward the center of the ring. This restoring force produces oscillatory motion of the electron 
along the axis of the ring, with amplitude 30.0 cm. The force on the electron is not of the form F = –kx so 
the oscillatory motion is not simple harmonic motion. 
(b) IDENTIFY:   Apply conservation of energy to the motion of the electron. 
SET UP:   a a b bK U K U+ = +  with a at the initial position of the electron and b at the center of the ring. 

From Example 23.11, V = 1
4πε0

Q

x2 + a2
,  where a is the radius of the ring. 

EXECUTE:   30 0 cm, 0.a bx x= . =  

0aK =  (released from rest), 21
2 .bK mv=  

Thus 21
2 .a bmv U U= −  

And U qV eV= = −  so 
2 ( ) .b ae V V

v
m

−=  

9
9 2 2

2 2 2 20

1 24 0 10  C(8 988 10  N m /C ) .
4 (0 300 m) (0 150 m)

a
a

Q
V

x aπε

−. ×= = . × ⋅
+ . + .

 

643 V.aV =  
9

9 2 2
2 20

1 24 0 10  C(8 988 10  N m /C ) 1438 V.
4 0 150 mb

b

Q
V

x aπε

−. ×= = . × ⋅ =
.+

 



Electric Potential   23-13 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

19
7

31
2 ( ) 2(1 602 10  C)(1438 V 643 V) 1 67 10  m/s.

9 109 10  kg
b ae V V

v
m

−

−
− . × −= = = . ×

. ×
 

EVALUATE:   The positively charged ring attracts the negatively charged electron and accelerates it. The 
electron has its maximum speed at this point. When the electron moves past the center of the ring the force 
on it is opposite to its motion and it slows down. 

 23.28. IDENTIFY:   For an isolated conducting sphere, all the excess charge is on its outer surface. For points 
outside the sphere, it behaves like a point-charge at its center, and the electric field is zero inside the 
sphere. 

SET UP:   Use V at 1.20 m to find V at the surface. .q
V k

r
=  We don’t know the charge on the sphere, but 

we know the potential 1.20 m from its center. 

EXECUTE:   Take the ratio of the potentials: surface

1.20 m

/(0.400 m) 1.20 3.00,
(1.20 m) 0.400

V kq
V kq

= = =  so  

Vsurface = (3.00)(24.0 V) = 72.0 V.  
The electric field is zero inside the sphere, so the potential inside is constant and equal to the potential at 
the surface. So at the center V = 72.0 V. 
EVALUATE:   An alternative approach would be to use the given information to find the charge on the 
sphere. Then use that charge to calculate the potential at the surface. The potential is 72.0 V at all points 
inside the sphere, not just at the center. Careful! Just because the electric field inside the sphere is zero, it 
does not follow that the potential is zero there. 

 23.29. IDENTIFY:   If the small sphere is to have its minimum speed, it must just stop at 8.00 cm from the surface 
of the large sphere. In that case, the initial kinetic energy of the small sphere is all converted to electrical 
potential energy at its point of closest approach.  
SET UP:   1 1 2 2.K U K U+ = +  2 0.K =  1 0.U =  Therefore, 1 2.K U=  Outside a spherical charge 
distribution the potential is the same as for a point charge at the location of the center of the sphere, so 

21
2/ . .U kqQ r K mv= =  

EXECUTE:   2
2

,kqQ
U

r
=  with 2 12 0 cm 8 0 cm 0 200 m.r = . + . = .  2

1
2

1 .
2

kqQ
mv

r
=  

9 2 2 6 6

1 5
2

2 2(8 99 10  N m /C )(3 00 10  C)(5 00 10  C) 150 m/s.
(6 00 10  kg)(0 200 m)

kqQ
v

mr

− −

−
. × ⋅ . × . ×= = =

. × .
 

EVALUATE:   If the small sphere had enough initial speed to actually penetrate the surface of the large 
sphere, we could no longer treat the large sphere as a point charge once the small sphere was inside. 

 23.30. IDENTIFY:   For a line of charge, Va − Vb = λ
2πε0

ln(rb /ra ).  Apply conservation of energy to the motion of 

the proton. 
SET UP:   Let point a be 18.0 cm from the line and let point b be at the distance of closest approach, where 

0.bK =  

EXECUTE:   (a) 2 27 3 2 201 1
2 2 (1 67 10  kg)(3.50 10  m/s) 1 02 10 J.aK mv − −= = . × × = . ×  

(b) .a a b bK qV K qV+ = +  
  
Va − Vb =

Kb − Ka
q

= −1.02 × 10−20  J
1.60 × 10−19  C

= −0.06397 V.  

02ln( / ) ( 0 06397 V).b ar r
επ

λ
⎛ ⎞= − .⎜ ⎟
⎝ ⎠

 

0 0
12

2 ( 0 06397 V) 2 (0 06397 V)exp (0 180 m)exp 0 0883 m = 8.83 cm.
5 00 10 C/mb ar r

ε επ π
λ −

⎛ ⎞− . .⎛ ⎞= = . − = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The potential increases with decreasing distance from the line of charge. As the positively 
charged proton approaches the line of charge it gains electrical potential energy and loses kinetic energy. 
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 23.31. IDENTIFY:   The voltmeter measures the potential difference between the two points. We must relate this 
quantity to the linear charge density on the wire. 
SET UP:   For a very long (infinite) wire, the potential difference between two points is given by 

  
∆V = λ

2πε0
ln(rb /ra ).  

EXECUTE:   (a) Solving for λ  gives 

80

9 2 2

( )2 575 V = 9.49 10  C/m.
3 50 cmln( / ) (18 10 N m /C )ln
2 50 cm

b a

V
r r

πελ −∆= = ×
.⎛ ⎞× ⋅ ⎜ ⎟.⎝ ⎠

 

(b) The meter will read less than 575 V because the electric field is weaker over this 1.00-cm distance than 
it was over the 1.00-cm distance in part (a). 
(c) The potential difference is zero because both probes are at the same distance from the wire, and hence 
at the same potential. 
EVALUATE:   Since a voltmeter measures potential difference, we are actually given ,V∆  even though that 
is not stated explicitly in the problem. 

 23.32. IDENTIFY:   The voltmeter reads the potential difference between the two points where the probes are 
placed. Therefore we must relate the potential difference to the distances of these points from the center of 
the cylinder. For points outside the cylinder, its electric field behaves like that of a line of charge. 

SET UP:   Using 
  
∆V = λ

2πε0
ln (rb /ra )  and solving for ,br  we have rb = rae2πε0 ∆V /λ .  

EXECUTE:   The exponent is 
9 2 2

9

1 (175 V)
2 8.99 10  N m /C

0 648,
15 0 10  C/m−

⎛ ⎞
⎜ ⎟⎜ ⎟× × ⋅⎝ ⎠ = .

. ×
 which gives  

0.648 = (2.50 cm) = 4.78 cm.br e  

The distance above the surface is 4.78 cm 2.50 cm 2.28 cm.− =  
EVALUATE:   Since a voltmeter measures potential difference, we are actually given ,V∆  even though that 
is not stated explicitly in the problem. We must also be careful when using the formula for the potential 
difference because each r is the distance from the center of the cylinder, not from the surface. 

 23.33. IDENTIFY:   For points outside the cylinder, its electric field behaves like that of a line of charge. Since a 
voltmeter reads potential difference, that is what we need to calculate. 

SET UP:   The potential difference is 
0

ln ( / ).
2 b aV r r

λ
πε

∆ =  

EXECUTE:    (a) Substituting numbers gives  

6 9 2 2

0

10 0 cmln ( / ) (8 50 10  C/m)(2 9 00 10  N m /C ) ln .
2 6 00 cmb aV r r

λ
πε

− .⎛ ⎞∆ = = . × × . × ⋅ ⎜ ⎟.⎝ ⎠
 

4= 7.82 10  V = 78,200 V = 78.2 kV.V∆ ×  
(b)  = 0E  inside the cylinder, so the potential is constant there, meaning that the voltmeter reads zero. 
EVALUATE:   Caution! The fact that the voltmeter reads zero in part (b) does not mean that 0V =  inside 
the cylinder. The electric field is zero, but the potential is constant and equal to the potential at the surface.  

 23.34. IDENTIFY:   The work required is equal to the change in the electrical potential energy of the charge-ring 
system. We need only look at the beginning and ending points, since the potential difference is 
independent of path for a conservative field. 

SET UP:   (a) center
0

1 = ( ) 0 .
4

Q
W U q V q V V q

aπε∞
⎛ ⎞

∆ = ∆ = − = −⎜ ⎟
⎝ ⎠

 

EXECUTE:   Substituting numbers gives 
6 9 2 2 6 = (3.00 10 C)(8.99 10  N m /C )(5.00 10  C)/(0.0400 m) = 3.38 J.U − −∆ × × ⋅ ×  

(b) We can take any path since the potential is independent of path. 
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(c) SET UP:   The net force is away from the ring, so the ball will accelerate away. Energy conservation 
gives 21

0 max 2 .U K mv= =  

EXECUTE:   Solving for v gives 

02 2(3 38 J) = 67.1 m/s.
0 00150 kg

U
v

m
.= =

.
 

EVALUATE:   Direct calculation of the work from the electric field would be extremely difficult, and we 
would need to know the path followed by the charge. But, since the electric field is conservative, we can 
bypass all this calculation just by looking at the end points (infinity and the center of the ring) using the 
potential. 

 23.35. IDENTIFY:   The electric field of the line of charge does work on the sphere, increasing its kinetic energy. 

SET UP:   1 1 2 2K U K U+ = +  and 1 0.K =  U qV=  so 1 2 2.qV K qV= +  0

0
ln .

2
r

V
r

λ
πε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   0
1

0 1
ln .

2
r

V
r

λ
πε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 0

2
0 2

ln .
2

r
V

r
λ
πε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

0 0 2
2 1 2 2 1

0 1 2 0 0 1
( ) ln ln (ln ln ) ln .

2 2 2
q r r q q r

K q V V r r
r r r

λ λ λ
πε πε πε

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

6 6

2 12 2 2
(3 00 10 C/m)(8 00 10 C) 4 50ln 0 474 J.

1 502 (8 854 10 C /(N m )
K

π

− −

−
. × . × .⎛ ⎞= = .⎜ ⎟.. × ⋅ ⎝ ⎠

 

EVALUATE:   The potential due to the line of charge does not go to zero at infinity but is defined to be zero 
at an arbitrary distance 0r  from the line. 

 23.36. IDENTIFY and SET UP:   For oppositely charged parallel plates, E = σ /ε0  between the plates and the 
potential difference between the plates is .V Ed=  

EXECUTE:   (a) 
9 2

0 0

47 0 10 C/m 5310 N/CE
σ
ε ε

−. ×= = = .  

(b) (5310 N/C)(0 0220 m) 117 V.V Ed= = . =  
(c) The electric field stays the same if the separation of the plates doubles. The potential difference 
between the plates doubles. 
EVALUATE:   The electric field of an infinite sheet of charge is uniform, independent of distance from the 
sheet. The force on a test charge between the two plates is constant because the electric field is constant. 
The potential difference is the work per unit charge on a test charge when it moves from one plate to the 
other. When the distance doubles, the work, which is force times distance, doubles and the potential 
difference doubles. 

 23.37. IDENTIFY and SET UP:   Use ∆V = Ed  to relate the electric field between the plates to the potential 
difference between them and their separation. The magnitude of the force this field exerts on the particle is 

given by F = qE. Use a bW d→ = ⋅∫
b

a
F l

GG
 to calculate the work. 

EXECUTE:   (a) Using ∆V = Ed  gives 360 V 8000 V/m.
0 0450 m

abV
E

d
= = =

.
 

(b) 9 5(2 40 10  C)(8000 V/m) 1 92 10  N.F q E − −= = . × = + . ×  
(c) The electric field between the plates is shown in Figure 23.37. 

 

 

Figure 22.37 
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The plate with positive charge (plate a) is at higher potential. The electric field is directed from high 
potential toward low potential (or, E

G
 is from + charge toward −  charge), so E

G
 points from a to b. Hence 

the force that E
G

 exerts on the positive charge is from a to b, so it does positive work. 

,
b

a
W d Fd= ⋅ =∫ F l

GG
 where d is the separation between the plates. 

5 7(1 92 10  N)(0 0450 m) 8 64 10  J.W Fd − −= = . × . = + . ×  
(d) 360 Va bV V− = +  (plate a is at higher potential). 

9 7( ) (2 40 10  C)( 360 V) 8 64 10  J.b a b aU U U q V V − −∆ = − = − = . × − = − . ×  
EVALUATE:   We see that ( )a b b a a bW U U U U→ = − − = − .  

 23.38. IDENTIFY and SET UP:   abV Ed=  for parallel plates. 

EXECUTE:   6 3
6

1 5 V 1 5 10  m 1 5 10  km.
1 0 10  V/m

abV
d

E −
.= = = . × = . ×

. ×
 

EVALUATE:   The plates would have to be nearly a thousand miles apart with only a AA battery across 
them! This is a small field! 

 23.39. IDENTIFY:   The potential of a solid conducting sphere is the same at every point inside the sphere because  
E = 0 inside, and this potential has the value V = q/4πε0R  at the surface. Use the given value of E to find q. 
SET UP:   For negative charge the electric field is directed toward the charge. 
For points outside this spherical charge distribution the field is the same as if all the charge were 
concentrated at the center. 

EXECUTE:   2
04

q
E

rεπ
=  and 

  
q = 4πε0 Er2 = (3800 N/C)(0.200 m)2

8.99 × 109 N ⋅ m2 /C2
= 1.69 × 10−8  C.  

Since the field is directed inward, the charge must be negative. The potential of a point charge, taking ∞  

as zero, is 
  
V = q

4πε0r
= (8.99 × 109 N ⋅ m2 /C2 )(−1.69 × 10−8  C)

0.200 m
= −760 V  at the surface of the sphere. 

Since the charge all resides on the surface of a conductor, the field inside the sphere due to this 
symmetrical distribution is zero. No work is therefore done in moving a test charge from just inside the 
surface to the center, and the potential at the center must also be –760 V. 
EVALUATE:   Inside the sphere the electric field is zero and the potential is constant. 

 23.40. IDENTIFY:   The electric field is zero inside the sphere, so the potential is constant there. Thus the potential 
at the center must be the same as at the surface, where it is equivalent to that of a point-charge.  
SET UP:   At the surface, and hence also at the center of the sphere, the potential is that of a point-charge, 

  V = Q/(4πε0R).  
EXECUTE:   (a) Solving for Q and substituting the numbers gives 

  Q = 4πε0 RV = (0.125 m)(3750 V)/(8.99 × 109  N ⋅ m2 /C2 ) = 5.21× 10−8  C = 52.1 nC.  
(b) Since the potential is constant inside the sphere, its value at the surface must be the same as at the 
center, 3.75 kV. 
EVALUATE:   The electric field inside the sphere is zero, so the potential is constant but is not zero. 

 23.41. IDENTIFY and SET UP:   For a solid metal sphere or for a spherical shell, 
kq

V
r

=  outside the sphere and 

kq
V

R
=  at all points inside the sphere, where R is the radius of the sphere. When the electric field is radial, 

.V
E

r
∂= −
∂

 

EXECUTE:   (a) (i) :ar r<  This region is inside both spheres. 1 1 .
a b a b

kq kq
V kq

r r r r
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠
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(ii) :a br r r< <  This region is outside the inner shell and inside the outer shell. 1 1 .
b b

kq kq
V kq

r r r r
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

 

(iii) :br r>  This region is outside both spheres and 0V =  since outside a sphere the potential is the same 
as for a point charge. Therefore the potential is the same as for two oppositely charged point charges at the 
same location. These potentials cancel. 

(b) 
0

1
4a

a b

q q
V

r rεπ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 and 0,bV =  so 
0

1 1 1 .
4ab

a b
V q

r rεπ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

(c) Between the spheres a br r r< <  and 1 1 .
b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

2 2
0 0

1 1 1 1 .
4 4 1 1

ab
r

b

a b

V q q V
E

r r r r r r
r r

ε επ π
⎛ ⎞∂ ∂= − = − − = + =⎜ ⎟∂ ∂ ⎛ ⎞⎝ ⎠ −⎜ ⎟

⎝ ⎠

 

(d) Since ,r
V

E
r

∂= −
∂

 0,E =  since V is constant (zero) outside the spheres. 

(e) If the outer charge is different, then outside the outer sphere the potential is no longer zero but is 

  
V = 1

4πε0

q
r

− 1
4πε0

Q
r

= 1
4πε0

(q − Q)
r

.  All potentials inside the outer shell are just shifted by an amount 

  
V = 1

4πε0

Q
rb

.  Therefore relative potentials within the shells are not affected. Thus (b) and (c) do not 

change. However, now that the potential does vary outside the spheres, there is an electric field there: 

2 21 ( ).V kq kQ kq Q k
E q Q

r r r r qr r
⎛ ⎞∂ ∂ −⎛ ⎞= − = − + = − = −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠

 

EVALUATE:   In part (a) the potential is greater than zero for all .br r<  
 23.42. IDENTIFY:   By the definition of electric potential, if a positive charge gains potential along a path, then the 

potential along that path must have increased. The electric field produced by a very large sheet of charge is 
uniform and is independent of the distance from the sheet. 
(a) SET UP:   No matter what the reference point, we must do work on a positive charge to move it away 
from the negative sheet. 
EXECUTE:   Since we must do work on the positive charge, it gains potential energy, so the potential 
increases. 

(b) SET UP:   Since the electric field is uniform and is equal to 0/2 ,σ ε  we have 
  
∆V = Ed = σ

2ε0
d.  

EXECUTE:   Solving for d gives 
12 2 2

0
9 2

2 2(8 85 10 C /N m )(1 00 V) 0.00295 m 2.95 mm.
6 00 10 C/m

V
d

ε
σ

−

−
∆ . × ⋅ .= = = =

. ×
 

EVALUATE:   Since the spacing of the equipotential surfaces (d = 2.95 mm) is independent of the distance 
from the sheet, the equipotential surfaces are planes parallel to the sheet and spaced 2.95 mm apart. 

 23.43. IDENTIFY and SET UP:   Use ,x
V

E
x

∂= −
∂

 ,y
V

E
y

∂= −
∂

 and Ez = ∂V
∂z

 to calculate the components of .E
G

 

EXECUTE:   2 .V Axy Bx Cy= − +  

(a) 2 .x
V

E Ay Bx
x

∂= − = − +
∂

 

.y
V

E Ax C
y

∂= − = − −
∂
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0.z
V

E
z

∂= =
∂

 

(b) 0E =  requires that 0.x y zE E E = = =  

0zE =  everywhere. 
0yE =  at / .x C A = −  

And xE  is also equal to zero for this x, any value of z and 22 / (2 / )( / ) 2 / .y Bx A B A C A BC A= = − = −  
EVALUATE:   V doesn’t depend on z so 0zE =  everywhere. 

 23.44. IDENTIFY:   Apply 
 
Ex = − ∂V

∂x
 and 

 
Ey = − ∂V

∂y
 to find the components of 

G
E,  then use them to find its 

magnitude and direction. V(x, y) = Ax2y – Bxy2. 

SET UP:    2 2
x yE E E= +  and tan / .y xE Eθ =  

EXECUTE:   First find the components of E
G

: 2 2 2( ) (2 ).x
V

E Ax y Bxy Axy By
x x

∂ ∂= − = − − = − −
∂ ∂

  

Now evaluate this result at the point x = 2.00 m, y = 0.400 m using the given values for A and B. 
Ex = –[2(5.00 V/m3)(2.00 m)(0.400 m) – (8.00 V/m3)(0.400 m)2] = –6.72 V/m. 

2 2 2( ) ( 2 ).y
V

E Ax y Bxy Ax Bxy
y y

∂ ∂= − = − − = − −
∂ ∂

 At the point (2.00 m, 0.400 m), this is 

Ey = –[(5.00 V/m3)(2.00 m)2 – 2(8.00 V/m3)(2.00 m)(0.400 m)] = –7.20 V/m. 
Now use the components to find the magnitude and direction of .E

G
 

2 2
x yE E E= +  = 2 2( 6.72 V/m) ( 7.20 V/m) 9.85 V/m.− + − =  

tan /y xE Eθ =  = (–7.20 V/m)/(–6.72 V/m), which gives θ  = 47.0°. Since both components are negative, 
the vector lies in the third quadrant in the xy-plane and makes an angle of 47.0° + 180.0° = 227.0° with the 
+x-axis. 
EVALUATE:   V is a scalar but E

G
 is a vector and has components. 

 23.45. IDENTIFY:   Exercise 23.41 shows that 1 1

a b
V kq

r r
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 for ,ar r<  1 1

b
V kq

r r
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 for a br r r< <  and 

1 1 .ab
a b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

SET UP:   2 ,kq
E

r
=  radially outward, for .a br r r≤ ≤  

EXECUTE:   (a) 1 1 500 Vab
a b

V kq
r r

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 gives 10500 V 7 62 10 C

1 1
0 012 m 0 096 m

q
k

−= = . ×
⎛ ⎞−⎜ ⎟. .⎝ ⎠

 = 0.762 nC. 

(b) 0bV =  so 500 V.aV =  The inner metal sphere is an equipotential with 500 V.V =  
1 1 .

a

V
r r kq

= +  

400 VV = at 1 45 cm,r = .  300 VV =  at 1 85 cm,r = .  200 VV =  at 2 53 cm,r = .  100 VV =  at 
4 00 cm,r = .  0V =  at 9 60 cm.r = .  The equipotential surfaces are sketched in Figure 23.45. 

EVALUATE:   (c) The equipotential surfaces are concentric spheres and the electric field lines are radial, so 
the field lines and equipotential surfaces are mutually perpendicular. The equipotentials are closest at 
smaller r, where the electric field is largest. 
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Figure 23.45 
 

  
 23.46. IDENTIFY:   As the sphere approaches the point charge, the speed of the sphere decreases because it loses 

kinetic energy, but its acceleration increases because the electric force on it increases. Its mechanical 
energy is conserved during the motion, and Newton’s second law and Coulomb’s law both apply. 
SET UP:   ,a a b bK U K U+ = +  2 21

1 2 1 22 , / , / ,K mv U kq q r F kq q r= = =  and .F ma=  

EXECUTE:   Find the distance between the two charges when 2 25 0 m/s.v = .  
.a a b bK U K U+ = +  

2 3 21 1 (4 00 10  kg)(40 0 m/s) 3 20 J.
2 2a aK mv −= = . × . = .  

2 3 21 1 (4 00 10  kg)(25 0 m/s) 1 25 J.
2 2b bK mv −= = . × . = .  

  
Ua = k

q1q2
ra

= (8.99 × 109  N ⋅ m2 /C2 )(5.00 × 10−6  C)(2.00 × 10−6  C)
0.0600 m

= 1.498 J.

3 20 J 1 498 J 1 25 J 3 448 J.b a a bU K U K= + − = . + . − . = .  1 2
b

b

q q
U k

r
=  and 

9 2 2 6 6
1 2 (8 99 10  N m /C )(5 00 10  C)(2 00 10  C) 0 02607 m.

3 448 Jb
b

kq q
r

U

− −. × ⋅ . × . ×= = = .
.

9 2 2 6 6
1 2
2 2

(8 99 10  N m /C )(5 00 10  C)(2 00 10  C) 132 3 N.
(0 02607 m)b

b

kq q
F

r

− −. × ⋅ . × . ×= = = .
.

4 2
3

132 3 N 3 31 10  m/s .
4 00 10  kg

F
a

m −
.= = = . ×

. ×
 

EVALUATE:   As the sphere approaches the point charge, its speed decreases but its acceleration keeps 
increasing because the electric force on it keeps increasing. 

 23.47. IDENTIFY:   1 2 1 3 2 3

12 13 23
.q q q q q q

U k
r r r

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

SET UP:   In part (a), 12 0 200 m,r = .  23 0 100 mr = .  and 13 0 100 m.r = .  In part (b) let particle 3 have 

coordinate x, so 12 0 200 m,r = .  13r x=  and r23 = 0.200 m  − x.  

EXECUTE:   (a) 
7(4 00 nC)( 3 00 nC) (4 00 nC)(2 00 nC) ( 3 00 nC)(2 00 nC) 3 60 10  J.

(0 200 m) (0 100 m) (0 100 m)
U k −⎛ ⎞. − . . . − . .= + + = − . ×⎜ ⎟. . .⎝ ⎠
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(b) If 0,U =  then 1 2 1 3 2 3

12 12
0 .q q q q q q

k
r x r x

⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

 Solving for x we find: 

28 60 60 60 26 1 6 0 0 074 m, 0 360 m.
0 2

x x x
x x

= − + − ⇒ − + . = ⇒ = . .
. −

 Therefore, 0 074 mx = .  since it is 

the only value between the two charges. 
EVALUATE:   13U  is positive and both 23U  and 12U  are negative. If 0,U =  then 13 23 12 .U U U= +  For 

0 074 m,x = .  7
13 9 7 10  J,U −= + . ×  7

23 4 3 10  JU −= − . ×  and 7
12 5 4 10  J.U −= − . ×  It is true that 0U =  at 

this x. 
 23.48. IDENTIFY:   The electric field of the fixed charge does work on the charged object and therefore changes it 

kinetic energy. We apply the work-energy theorem. 

SET UP:   → = ∆a bW K and ( ),a b a bW q V V→ = −  .q
V k

r
=  

EXECUTE: 2– ,)–(b a ba b aK K q VK VW → = ∆ = =  which gives 2( – .)b a a bK K q V V= +  

2 21 1
2 1 2

1 1 1 1 .
2 2b a a

a b a b

kq kq
K mv q mv kq q

r r r r
⎛ ⎞ ⎛ ⎞

= + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Putting in the numbers gives 

Kb = ( )( )2 –4 –49 2 21 (8.99 10  N m0.00400 kg 800 m/s 5.00 1 0 C –3.00 1 0 C/C )( )( )
2

× ⋅ × ×+ ×  

        [1/(0.400 m) – 1/(0.200 m)]. 
Kb = 4651 J. 
vb = (2Kb/m)1/2 = [2(4651 J)/(0.00400 kg)]1/2 = 1520 m/s. 
EVALUATE:   The negatively charged small object gains kinetic energy because it is attracted by the 
positive charge q1, which does positive work on the object, so vb > va. 

 23.49. IDENTIFY and SET UP:   Treat the gold nucleus as a point charge so that .q
V k

r
=  According to 

conservation of energy we have   K1 + U1 = K2 + U2 ,  where .U qV=  
EXECUTE:   Assume that the alpha particle is at rest before it is accelerated and that it momentarily stops 
when it arrives at its closest approach to the surface of the gold nucleus. Thus we have K1 = K2 = 0, which 

implies that   U1 = U2.  Since U qV= we conclude that the accelerating voltage must be equal to the voltage 
at its point of closest approach to the surface of the gold nucleus. Therefore 

19
9 2 2

15 14
79(1 60 10  C)(8 99 10  N m C )

(7 3 10  m 2 0 10  m)a b
q

V V k /
r

−

− −
. ×= = = . × ⋅ =

. × + . ×
64 2 10  V.. ×  

EVALUATE:   Although the alpha particle has kinetic energy as it approaches the gold nucleus this is 
irrelevant to our solution since energy is conserved for the whole process. 

 23.50. IDENTIFY:   Two forces do work on the sphere as it falls: gravity and the electrical force due to the sheet. 
The energy of the sphere is conserved. 

SET UP:   The gravity force is mg, downward. The electric field of the sheet is 
02

E
σ
ε

=  upward, and the 

force it exerts on the sphere is .F qE=  The sphere gains kinetic energy 21
2

K mv=  as it falls.  

EXECUTE:   64 90 10  N.mg −= . ×  
12 2

12 2 2
0

8 00 10  C/m 0 4518 N/C.
2 2(8 854 10  C /(N m )

E
σ
ε

−

−
. ×= = = .

. × ⋅
 The electric force 

is   qE = (7.00 × 10−6  C)(0.4518 N/C) = 3.1626 × 10−6  N,  upward.  The net force is downward, so the 
sphere moves downward when released. Let 0y =  at the sheet. grav .U mgy=  For the electric force, 

.a b
a b

W
V V

q
→ = −  Let point a be at the sheet and let point b be a distance y above the sheet. Take 0.aV =  
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The force on q is ,qE  upward, so a bW
Ey

q
→ =  and .bV Ey= −  .bU Eyq= −  1 1 2 2.K U K U+ = +  1 0.K =  

1 0 400 m,y = .  2 0 100 m.y = .  2 1 2 1 2 1 2( ) ( ) .K U U mg y y E y y q= − = − − −  
7 2 6

2 (5 00 10  kg)(9 80 m/s )(0 300 m) (0 4518 N/C)(0 300 m)(7 00 10  C).K − −= . × . . − . . . ×

6 6 6
2 1 470 10  J 0 94878 10  J 0.52122 10  J.K − − −= . × − . × = ×  2

2 2
1
2

K mv=  so 

  
v2 =

2K2
m

= 2(0.52122 × 10−6  J)
5.00 × 10−7  kg

= 1.44 m/s.  

EVALUATE:   Because the weight is greater than the electric force, the sphere will accelerate downward, 
but if it were light enough the electric force would exceed the weight. In that case it would never get closer 
to the sheet after being released. We could also solve this problem using Newton’s second law and the 
constant-acceleration kinematics formulas. a = F/m = (mg – qE)/m gives the acceleration. Then we use 

2 2
0 02 ( )x x xv v a x x= + −  with v0x = 0 to find v.  

 23.51. IDENTIFY:   The remaining nucleus (radium minus the ejected alpha particle) repels the alpha particle, 
giving it 4.79 MeV of kinetic energy when it is far from the nucleus. The mechanical energy of the system 
is conserved. 

SET UP:   1 2 .q q
U k

r
=  .a a b bU K U K+ = +  The charge of the alpha particle is 2e+  and the charge of the 

radon nucleus is 86 .e+  
EXECUTE:   (a) The final energy of the alpha particle, 4.79 MeV, equals the electrical potential energy of 
the alpha-radon combination just before the decay. 134 79 MeV 7 66 10  J.U −= . = . ×  

(b) 
  
r =

kq1q2
U

= (8.99 × 109  N ⋅ m2 /C2 )(2)(86)(1.60 × 10−19  C)2

7.66×10−13  J
= 5.17 ×10−14  m.  

EVALUATE:   Although we have made some simplifying assumptions (such as treating the atomic nucleus 
as a spherically symmetric charge, even when very close to it), this result gives a fairly reasonable estimate 
for the size of a nucleus. 

 23.52. IDENTIFY:   The charged particles repel each other and therefore accelerate away from one another, 
causing their speeds and kinetic energies to continue to increase. They do not have equal speeds because 
they have different masses. The mechanical energy and momentum of the system are conserved. 
SET UP:   The proton has charge pq e= +  and mass 27

p 1 67 10  kg.m −= . ×  The alpha particle has charge 

  qa = + 2e  and mass 27
a p4 6 68 10  kg.m m −= = . ×  We can apply both conservation of energy and 

conservation of linear momentum to the system. ,F
a

m
=  where 1 2

2 .
q q

F k
r

=  

EXECUTE:   Acceleration: The maximum force and hence the maximum acceleration occurs just after they 

are released, when 0 225 nm.r = .  
19 2

9 2 2 9
9 2

(2)(1 60 10  C)(8 99 10  N m /C ) 9 09 10  N.
(0 225 10  m)

F
−

−
−

. ×= . × ⋅ = . ×
. ×

 

9
18 2

p 27
p

9 09 10  N 5 44 10  m/s ;
1 67 10  kg

F
a

m

−

−
. ×= = = . ×

. ×
 

9
18 2

a 27
a

9 09 10  N 1 36 10  m/s .
6 68 10  kg

F
a

m

−

−
. ×= = = . ×

. ×
 The 

acceleration of the proton is larger by a factor of a p/ .m m  

Speed: Conservation of energy says 1 1 2 2 .U K U K+ = +  1 0K =  and 2 0,U =  so 2 1.K U=  
19 2

9 2 2 181 2
1 9

(2)(1 60 10  C)(8 99 10  N m /C ) 2 05 10  J,
0 225 10  m

q q
U k

r

−
−

−
. ×= = . × ⋅ = . ×

. ×
 so the total kinetic energy of the 
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two particles when they are far apart is 18
2 2 05 10  J.K −= . ×  Conservation of linear momentum says how 

this energy is divided between the proton and alpha particle. 1 2.p p=  p p a a0 m v m v= −  so p
a p

a
.

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

2
p p2 2 2 2 21 1 1 1 1

2 p p a a p p a p p p2 2 2 2 2
a a

1 .
m m

K m v m v m v m v m v
m m

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
18

42
p 27 1

p p a 4

2 2(2 05 10  J) 4 43 10  m/s.
(1 ( / )) (1 67 10  kg)(1 )

K
v

m m m

−

−
. ×= = = . ×

+ . × +

p 4 41
a p 4

a
(4 43 10  m/s) 1 11 10  m/s.

m
v v

m
⎛ ⎞

= = . × = . ×⎜ ⎟
⎝ ⎠

 The maximum acceleration occurs just after they are 

released. The maximum speed occurs after a long time. 
EVALUATE:   The proton and alpha particle have equal momenum, but proton has a greater acceleration 
and more kinetic energy. 

 23.53. (a) IDENTIFY:   Apply the work-energy theorem. 
SET UP:   Points a and b are shown in Figure 23.53a. 

 

 

Figure 23.53a 
 

EXECUTE:   5
tot 4 35 10  J.b a bW K K K K −= ∆ = − = = . ×  

The electric force EF  and the additional force F  both do work, so that tot .
EF FW W W= +  

5 5 5
tot 4 35 10 J 6 50 10 J 2 15 10 J.

EF FW W W − −  −  = − = . × − . × = − . ×  

EVALUATE:   The forces on the charged particle are shown in Figure 23.53b. 
 

 

Figure 23.53b 
 

The electric force is to the left (in the direction of the electric field since the particle has positive charge). 
The displacement is to the right, so the electric force does negative work. The additional force F is in the 
direction of the displacement, so it does positive work. 
(b) IDENTIFY and SET UP:   For the work done by the electric force, ( ).a b a bW q V V→ = −  

EXECUTE:   
5

3
9

2 15 10  J 2 83 10  V.
7 60 10  C

a b
a b

W
V V

q

−
→

−
− . ×− = = = − . ×

. ×
 

EVALUATE    The starting point (point a) is at 32 83 10  V. ×  lower potential than the ending point (point b). 
We know that b aV V>   because the electric field always points from high potential toward low potential. 
(c) IDENTIFY:   Calculate E from a bV V−  and the separation d between the two points. 
SET UP:   Since the electric field is uniform and directed opposite to the displacement 

,a b EW F d qEd→ = − = −  where 8 00 cmd = .  is the displacement of the particle. 

EXECUTE:   
3

42 83 10  V 3 54 10  V/m.
0 0800 m

a b a bW V V
E

qd d
→ − − . ×= − = − = − = . ×

.
 

EVALUATE:   In part (a), totW  is the total work done by both forces. In parts (b) and (c) a bW →  is the work 
done just by the electric force. 
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 23.54. IDENTIFY:   The net force on q0 is the vector sum of the forces due to the two charges. Coulomb’s law 
applies. 

SET UP:   1 2
2

| | ,q q
F k

r
=  ( ),a b a bW q V V→ = −  .q

V k
r

=   

EXECUTE:   (a) The magnitude of the force on 0q  due to each of the two charges at opposite corners of the 

square is 1 2
2

q q
F k

r
=  = k(5.00 µC)(3.00 µC)/(0.0800 m)2 = 21.07 N. Adding the two forces vectorially 

gives the net force Fnet = (21.07 N) 2 = 29.8 N. The direction is from A to B since both charges attract q0. 
Figure 23.54 shows this force. 

 

 

Figure 23.54 
 
(b) At point B the two forces on q0 are in opposite directions and have equal magnitudes, so they add to 
zero: Fnet = 0. 

(c) For each charge, ( ),A B A BW q V V→ = −  so for both we must double this.  Using q
V k

r
=  and simplifying 

we get 0
1 12 ( ) 2 .A B A B
A B

W q V V kqq
r r→

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 Putting in q0 = –3.00 µC, q = 5.00 µC, rA  = 0.0800 m, and 

0.0 2400br =  m, we get A BW →  = +1.40 J. The work done on 0q  by the electric field is positive since it 
this charge moves from A to B in the direction of the force. The charge loses potential energy as it gains 
kinetic energy. But since 0q  is negative, it moves to a point of higher potential. 
EVALUATE:   Positive charges accelerate toward lower potential, but negative charges accelerate toward 
higher potential. 

 23.55. IDENTIFY and SET UP:   Calculate the components of E
G

 using ,x
V

E
x

∂= −
∂

 ,y
V

E
y

∂= −
∂

 and ,z
V

E
z

∂= −
∂

 

and use .q=
G G
F E  

EXECUTE:   (a) 4/3.V Cx=  

                                          4/3 3 4/3 4 4/3/ 240 V/(13 0 10  m) 7 85 10 V/m .C V x −= = . × = . ×   

(b) 1/3 5 4/3 1/34( ) (1 05 10 V/m ) .
3x

V
E x Cx x

x
∂= − = − = − . ×  
∂

 

The minus sign means that xE  is in the -direction,x−  which says that E
G

 points from the positive anode 
toward the negative cathode. 
(c) q=F E

G G
 so 1/34

3 .x xF eE eCx= − =  

Halfway between the electrodes means 36 50 10  m.x −= . ×  
19 4 4/3 3 1/3 154

3 (1 602 10  C)(7 85 10  V/m )(6 50 10  m) 3 13 10  N.xF − − −= . × . × . × = . ×  

xF  is positive, so the force is directed toward the positive anode. 
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EVALUATE:   V depends only on x, so 0.y zE E= =  E
G

 is directed from high potential (anode) to low 
potential (cathode). The electron has negative charge, so the force on it is directed opposite to the electric 
field. 

 23.56. IDENTIFY:   At each point (a and b), the potential is the sum of the potentials due to both spheres. The 
voltmeter reads the difference between these two potentials. The spheres behave like point charges since 
the meter is connected to the surface of each one. 
SET UP:   (a) Call a the point on the surface of one sphere and b the point on the surface of the other 
sphere, call r the radius of each sphere and call d the center-to-center distance between the spheres. The 
potential difference baV  between points a and b is then 

0 0

1 2 1 1– .
4 4b a ba

q q q q q
V V V

r d r r d r d r rπε πε
⎡− − ⎤⎛ ⎞ ⎛ ⎞= = + − + = −⎜ ⎟ ⎜ ⎟⎢ ⎥− − −⎝ ⎠ ⎝ ⎠⎣ ⎦

 

EXECUTE:   Substituting the numbers gives  

9 2 2 61 1– 2(250 C) (8.99 10 N m /C ) –12.0 10 V = –12.0 MV.
0.750 m 0.250 mb aV V µ ⎛ ⎞= × ⋅ − = ×⎜ ⎟

⎝ ⎠
 The meter 

reads 12.0 MV. 
(b) Since –b aV V  is negative, ,a bV V>  so point a is at the higher potential.  
EVALUATE:   An easy way to see that the potential at a is higher than the potential at b is that it would 
require positive work to move a positive test charge from b to a since this charge would be attracted by the 
negative sphere and repelled by the positive sphere. 

 23.57. IDENTIFY:   1 2 .kq q
U

r
=  

SET UP:   Eight charges means there are 8(8 1)/2 28− =  pairs. There are 12 pairs of q and q−  separated  

by d, 12 pairs of equal charges separated by 2d  and 4 pairs of q and q−  separated by 3 .d  

EXECUTE:   (a) 
2

2 2
0

12 12 4 12 1 11 1 46 / .
2 3 2 3 3

kq
U kq q d

d dd d
πε⎛ ⎞ ⎛ ⎞= − + − = − − + = − .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

EVALUATE:   (b) The fact that the electric potential energy is less than zero means that it is energetically 
favorable for the crystal ions to be together. 

 23.58. IDENTIFY:   For two small spheres, 1 2 .kq q
U

r
=  For part (b) apply conservation of energy. 

SET UP:   Let 1 2 00 Cq µ= .   and 2 3 50 C.q µ= − .   Let ra = 0.180 m  and .br → ∞  

EXECUTE:   (a) 
9 2 2 6 6(8 99 10  N m /C )(2 00 10  C)( 3 50 10  C) 0 350 J.

0 180 m
U

− −. × ⋅ . × − . ×= = − .
.

 

(b) 0.bK =  0.bU =    Ua = −0.350 J.  a a b bK U K U+ = +  gives Ka = 0.350 J.  21
2 ,a aK mv=  so 

  
va =

2Ka
m

= 2(0.350 J)
1.50 × 10−3  kg

= 21.6 m/s.  

EVALUATE:   As the sphere moves away, the attractive electrical force exerted by the other sphere does 
negative work and removes all the kinetic energy it initially had. 

 23.59. IDENTIFY:   Apply 0xF∑ =  and 0yF∑ =  to the sphere. The electric force on the sphere is e .F qE=  The 
potential difference between the plates is .V Ed=  
SET UP:   The free-body diagram for the sphere is given in Figure 23.59. 
EXECUTE:   cosT mgθ =  and esinT Fθ =  gives 

3 2
e tan (1 50 10 kg)(9 80 m/s )tan(30 ) 0 0085 N.F mg θ −= = . × . ° = .  

e
Vq

F Eq
d

= =  and 6
(0 0085 N)(0 0500 m) 47 8 V.

8 90 10 C
Fd

V
q −

. .= = = .
. ×

 

EVALUATE:   / 956 V/m.E V d= =    E = σ /ε0  and 9 2
0 8 46 10  C/m .Eσ ε −= = . ×  
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Figure 23.59 
 

 23.60. IDENTIFY:   Outside a uniform spherical shell of charge, the electric field and potential are the same as for 
a point-charge at the center. Inside the shell, the electric field is zero so the potential is constant and equal 
to its value at the surface of the shell. The net potential is the scalar sum of the individual potentials. 

SET UP:   .q
V k

r
=  Call V1 the potential due to the inner shell and V2 the potential due to the outer shell. 

Vnet = V1 + V2. 
EXECUTE:   (a) At r = 2.50 cm, we are inside both shells. V1 is the potential at the surface of the inner 
shell, so V1 = kq1/R1; and V2 is the potential at the surface of the outer shell, so V2 = kq2/R2. The net 
potential is  
Vnet = kq1/R1 + kq2/R2 = k(q1/R1 + q2/R2). 
Vnet = 2 59 2 3.00 C / 0.0500 m 5.00(8.99 10  N m / C / 0.15C )[( ) 0 m( ) ( ) ( ) 2.40 10 V 240 kV] .µ µ+ − = × =× ⋅  
(b) At r = 10.0 cm, we are outside the inner shell but still inside the outer shell. The inner shell now is 
equivalent to a point-charge at its center, so the net potential is 
Vnet = kq1/r + kq2/R2 = k(q1/r + q2/R2). 
Vnet = k[(3.00 µC)/(0.100 m) + (–5.00 µC)/(0.150 m)] = –30.0 kV. 
(c) At r = 20.0 cm, we are outside both shells, so both are equivalent to point-charges at their center. So 
Vnet = kq1/r + kq2/r = k(q1 + q2)/r = k(–2.00 µC)/(0.200 m) = –89.9 kV. 
EVALUATE:   E = 0 inside a spherically symmetric shell, but that does not necessarily mean that V = 0 
there. It only means that 0a bV V− =  for any two points in side the shell, so V is constant. 

 23.61. (a) IDENTIFY:   The potential at any point is the sum of the potentials due to each of the two charged conductors. 
SET UP:   For a conducting cylinder with charge per unit length λ  the potential outside the cylinder is 
given by   V = (λ/2πε0 )ln(r0 /r)  where r is the distance from the cylinder axis and 0r  is the distance from 
the axis for which we take 0.V =  Inside the cylinder the potential has the same value as on the cylinder 
surface. The electric field is the same for a solid conducting cylinder or for a hollow conducting tube so 
this expression for V applies to both. This problem says to take 0 .r b=  
EXECUTE:   For the hollow tube of radius b and charge per unit length :λ−  outside 

  V = −(λ /2πε0 )ln(b/r);  inside 0V =  since 0V =  at .r b=  
For the metal cylinder of radius a and charge per unit length :λ  
outside   V = (λ/2πε0 )ln(b/r),  inside V = (λ/2πε0 )ln(b/a),  the value at .r a=  

(i) ;r a< inside both 0( /2 )ln( / ).V b aλ πε=  
(ii) ;a r b< <  outside cylinder, inside tube 0( /2 )ln( / ).V b rλ πε=  
(iii) ;r b>  outside both the potentials are equal in magnitude and opposite in sign so 0.V =  

(b) For   r = a,  Va = (λ /2πε0 )ln(b/a).  

For ,  0.br b V=  =  

Thus   Vab = Va − Vb = (λ /2πε0 )ln(b/a).  

(c) IDENTIFY and SET UP:   Use Er = − ∂V
∂r

 to calculate E. 
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EXECUTE:   2
0 0

1ln .
2 2 ln( / )

abV b r b V
E

r r r b b a rr
λ λ
πε πε

∂ ∂ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(d) The electric field between the cylinders is due only to the inner cylinder, so abV  is not changed, 

  Vab = (λ/2πε0 )ln(b/a).  

EVALUATE:   The electric field is not uniform between the cylinders, so ( ).abV E b a≠ −  

 23.62. IDENTIFY:   The wire and hollow cylinder form coaxial cylinders. Problem 23.61 gives 1( ) .
ln( / )

abV
E r

b a r
=  

SET UP:   6145 10  m,a −= ×  0 0180 m.b = .  

EXECUTE:   1
ln( / )

abV
E

b a r
=  and  

4 6ln( / ) (2 00 10 N/C)(ln (0 018 m/145 10 m))0 012 m 1157 V.abV E b a r −= = . × . × . =  
EVALUATE:   The electric field at any r is directly proportional to the potential difference between the wire 
and the cylinder. 

 23.63. IDENTIFY and SET UP:   Use q=F E
G G

 to calculate F
G

 and then m=F a
G G  gives .aG  / .E V d=  

EXECUTE:   (a) .E q=F E
G G

 Since q e= −  is negative EF
G

 and E
G

 are in opposite directions; E
G

 is upward 

so EF
G

 is downward. The magnitude of E is 3 322 0 V 1 10 10  V/m 1 10 10  N/C.
0 0200 m

V
E

d
.= = = . × = . ×

.
 The 

magnitude of EF  is 19 3 16(1 602 10  C)(1 10 10  N/C) 1 76 10  N.EF q E eE − −= = = . × . × = . ×  
(b) Calculate the acceleration of the electron produced by the electric force: 

16
14 2

31
1 76 10  N 1 93 10  m/s .

9 109 10  kg
F

a
m

−

−
. ×= = = . ×

. ×
 

EVALUATE:   This acceleration is much larger than 29 80 m/s ,g = .  so the gravity force on the electron can 

be neglected. EF
G

 is downward, so aG  is downward. 
(c) IDENTIFY and SET UP:   The acceleration is constant and downward, so the motion is like that of a 
projectile. Use the horizontal motion to find the time and then use the time to find the vertical displacement. 
EXECUTE:   x-component: 6

0 6 50 10  m/s;xv = . ×  0;xa =  0 0 060 m;x x− = .  ?t =  

21
0 0 2x xx x v t a t− = +  and the xa  term is zero, so 90

6
0

0 060 m 9 231 10  s.
6 50 10  m/sx

x x
t

v
−− .= = = . ×

. ×
 

y-component: 0 0;yv =  14 21 93 10  m/s ;ya = . ×  99 231 10  m/s;t −= . ×  0 ?y y− =  
21

0 0 2 .y yy y v t a t− = +  14 2 9 21
0 2 (1 93 10  m/s )(9 231 10  s) 0 00822 m 0 822 cm.y y −− = . × . × = . = .  

(d) IDENTIFY and SET UP:    The velocity and its components as the electron leaves the plates are sketched 
in Figure 23.63. 
 

Figure 23.63 

 EXECUTE:    
6

0 6 50 10  m/sx xv v= = . ×  (since 0xa = ). 

0 .y y yv v a t= +  
14 2 90 (1 93 10  m/s )(9 231 10  s).yv −= + . × . ×  

61 782 10  m/s.yv = . ×  

6

6
1 782 10  m/stan 0 2742
6 50 10  m/s

y

x

v

v
α . ×= = = .

. ×
 so 15 3 .α = . °  
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EVALUATE:   The greater the electric field or the smaller the initial speed the greater the downward deflection. 
(e) IDENTIFY and SET UP:   Consider the motion of the electron after it leaves the region between the 
plates. Outside the plates there is no electric field, so a = 0. (Gravity can still be neglected since the 
electron is traveling at such high speed and the times are small.) Use the horizontal motion to find the time 
it takes the electron to travel 0.120 m horizontally to the screen. From this time find the distance downward 
that the electron travels. 
EXECUTE:   x-component: 6

0 6 50 10  m/s;xv = . ×  0;xa =  0 0 120 m;x x− = .  ?t =  

21
0 0 2x xx x v t a t− = +  and the xa  term is term is zero, so 80

6
0

0 120 m 1 846 10  s.
6 50 10  m/sx

x x
t

v
−− .= = = . ×

. ×
 

y-component: 6
0 1 782 10  m/syv = . ×  (from part (b)); 0;ya =  81 846 10  m/s;t −= . ×  0 ?y y− =  

2 6 81
0 0 2 (1 782 10  m/s)(1 846 10  s) 0 0329 m 3 29 cm.y yy y v t a t −− = + = . × . × = . = .  

EVALUATE:   The electron travels downward a distance 0.822 cm while it is between the plates and a 
distance 3.29 cm while traveling from the edge of the plates to the screen. The total downward deflection is 
0.822 cm + 3.29 cm = 4.11 cm. The horizontal distance between the plates is half the horizontal distance 
the electron travels after it leaves the plates. And the vertical velocity of the electron increases as it travels 
between the plates, so it makes sense for it to have greater downward displacement during the motion after 
it leaves the plates. 

 23.64. IDENTIFY:   The charge on the plates and the electric field between them depend on the potential difference 
across the plates.  

SET UP:   For two parallel plates, the potential difference between them is V = Ed = σ
ε0

d = Qd
ε0 A

.   

EXECUTE:   (a) Solving for Q gives 
12 2 2 2

0
(8 85 10  C /N m )(0 030 m) (25 0 V)/ .

0 0050 m
Q AV dε

−. × ⋅ . .= =
.

 

–113.98 10 C 39.8 pC.Q = × =  

(b) 3/ (25.0 V)/(0.0050 m) 5.00 10 V/m.E V d= = = ×  

(c) SET UP:   Energy conservation gives 21
2 .mv eV=  

EXECUTE:   Solving for v gives 
19

6
31

2 2(1 60 10 C)(25 0 V) 2 96 10 m/s.
9 11 10 kg

eV
v

m

−

−
. × .= = = . ×

. ×
 

EVALUATE:   Typical voltages in student laboratory work run up to around 25 V, so typical reasonable 
values for the charge on the plates is about 40 pC and a reasonable value for the electric field is about  
5000 V/m, as we found here. The electron speed would be about 3 million m/s. 

 23.65. (a) IDENTIFY and SET UP:   Problem 23.61 derived that 1 ,
ln( / )

abV
E

b a r
=  where a is the radius of the inner 

cylinder (wire) and b is the radius of the outer hollow cylinder. The potential difference between the two 
cylinders is .abV  Use this expression to calculate E at the specified r. 
EXECUTE:   Midway between the wire and the cylinder wall is at a radius of 

6( )/2 (90 0 10  m 0 140 m)/2 0 07004 m.r a b −= + = . × + . = .  
3

4
6

1 50 0 10  V 9 71 10  V/m.
ln( / ) ln(0 140 m/90 0 10  m)(0 07004 m)

abV
E

b a r −
. ×= = = . ×

. . × .
 

(b) IDENTIFY and SET UP:   The magnitude of the electric force is given by F =|q|E. Set this equal to ten 
times the weight of the particle and solve for ,q  the magnitude of the charge on the particle. 

EXECUTE:   10 .EF mg=  

10q E mg=  and 
9 2

11
4

10 10(30 0 10  kg)(9 80 m/s ) 3 03 10  C.
9 71 10  V/m

mg
q

E

−
−. × .= = = . ×

. ×
 

EVALUATE:   It requires only this modest net charge for the electric force to be much larger than the weight. 
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 23.66. (a) IDENTIFY:   Calculate the potential due to each thin ring and integrate over the disk to find the 
potential. V is a scalar so no components are involved. 
SET UP:   Consider a thin ring of radius y and width dy. The ring has area 2 ydyπ  so the charge on the ring 
is (2 ).dq ydyσ π=  
EXECUTE:   The result of Example 23.11 then says that the potential due to this thin ring at the point on the 
axis at a distance x from the ring is 

2 2 2 20 0

1 2 .
4 4

dq y dy
dV

x y x y

πσ
πε πε

= =
+ +

 

2 2 2 2
0 2 2 00 0 02 2 2

( ).
RR y dy

V dV x y x R x
x y

σ σ σ
ε ε ε

⎡ ⎤= = = + = + −⎢ ⎥⎣ ⎦+
∫ ∫  

EVALUATE:   For x R�  this result should reduce to the potential of a point charge with 2.Q Rσπ=  

2 2 2 2 1/2 2 2(1 / ) (1 /2 )x R x R x x R x+ = + ≈ +  so 2 2 2 /2 .x R x R x+ − ≈  

Then 
  
V ≈ σ

2ε0

R2

2x
= σπ R2

4πε0x
= Q

4πε0x
,  as expected. 

(b) IDENTIFY and SET UP:   Use 
 
Ex = − ∂V

∂x
 to calculate .xE  

EXECUTE:   
2 2 2 20 0

1 11 .
2 2x

V x x
E

x xx R x R

σ σ
ε ε

⎛ ⎞ ⎛ ⎞∂= − = − − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ + +⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Our result agrees with the results of Example 21.11. 
 23.67. IDENTIFY:   We must integrate to find the total energy because the energy to bring in more charge depends 

on the charge already present. 
SET UP:   If ρ  is the uniform volume charge density, the charge of a spherical shell of radius r and 

thickness dr is 24  ,dq r drρ π=  and 3/(4/3 ).Q Rρ π=  The charge already present in a sphere of radius r is 
3(4/3 ).q rρ π=  The energy to bring the charge dq to the surface of the charge q is Vdq, where V is the 

potential due to q, which is   q/4πε0r.  
EXECUTE:   The total energy to assemble the entire sphere of radius R and charge Q is sum (integral) of the 
tiny increments of energy. 

3
2

2
00 0 0

4
3 13 ( 4 )

4 4 5 4
R rq Q

U Vdq dq r dr
r r R

ρ π
ρ π

πε πε πε
⎛ ⎞

= = = = ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫  

where we have substituted 3 /(4/3 )Q Rρ π=  and simplified the result. 
EVALUATE:   For a point charge, 0R →  so ,U → ∞  which means that a point charge should have infinite 
self-energy. This suggests that either point charges are impossible, or that our present treatment of physics 
is not adequate at the extremely small scale, or both. 

 23.68. IDENTIFY:   Divide the rod into infinitesimal segments with charge dq. The potential dV due to the segment 

is 
  
dV = 1

4πε0

dq
r

.  Integrate over the rod to find the total potential. 

SET UP:   ,dq dlλ=  with /Q aλ π=  and .dl a dθ=  

EXECUTE:   
0 0 0 0

1 1 1 1 .
4 4 4 4

dq dl Q dl Q d
dV

r a a a a
λ θ

πε πε πε π πε π
= = = =  V = 1

4πε0

Q dθ
π a

= 1
4πε0

Q
a

.
0

π
∫  

EVALUATE:   All the charge of the ring is the same distance a from the center of curvature. 
 23.69. IDENTIFY and SET UP:   The sphere no longer behaves as a point charge because we are inside of it. We 

know how the electric field varies with distance from the center of the sphere and want to use this to find 
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the potential difference between the center and surface, which requires integration. .
b

a b a
V V d− = ⋅∫ E l

GG
 

The electric field is radially outward, so .d E dr⋅ =  E l
GG

 

EXECUTE:    For 3: .kQr
r R E

R
< =  Integrating gives 

2 2
2

3 3 3 2
1 3 .
2 2 22

R r r r

R R R

kQ kQ kQ kQ kQ kQ kQr kQ r
V d d r dr r

R R R R RR R R R∞

⎡ ⎤
= − ⋅ ′ − ⋅ ′ = − ′ ′ = − ′ = + − = −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫E r E r
G GG G  At the 

center of the sphere, 0r =  and 1
3 .
2
kQ

V
R

=  At the surface of the sphere, r R=  and 2 .kQ
V

R
=  The potential 

difference is 
9 2 2 6

5
1 2

(8 99 10  N m /C )(4 00 10  C) 3 60 10  V.
2 2(0 0500 m)
kQ

V V
R

−. × ⋅ . ×− = = = . ×
.

 

EVALUATE:   To check our answer, we could actually do the integration. We can use the fact that 3
kQr

E
R

=  

so 
2

1 2 3 30 0
.

2 2
R RkQ kQ R kQ

V V Edr rdr
RR R

⎛ ⎞
− = = = =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  

 23.70. IDENTIFY:   For ,r c<  0E =  and the potential is constant. For ,r c>  E is the same as for a point charge 

and .kq
V

r
=  

SET UP:   0.V∞ =  
EXECUTE:   (a) Points , , anda b c  are all at the same potential, so 0.a b b c a cV V V V V V− = − = − =  

9 2 2 6
6(8 99 10 N m /C )(150 10 C) 2 25 10 V.

0 60 mc
kq

V V
R

−

∞
. × ⋅ ×− = = = . ×

.
 

(b) They are all at the same potential. 
(c) Only cV V∞−  would change; it would be 62 25 10 V.− . ×  
EVALUATE:   The voltmeter reads the potential difference between the two points to which it is connected. 

 23.71. IDENTIFY:   Apply Newton's second law to calculate the acceleration. Apply conservation of energy and 
conservation of momentum to the motions of the spheres. 

SET UP:   Since the spheres behave as though all the charge were at their centers, we have 1 2
2

q q
F k

r
=  and 

1 2 ,kq q
U

r
=  where 1q  and 2q  are the charges of the objects and r is the distance between their centers. 

EXECUTE:   Maximum speed occurs when the spheres are very far apart. Energy conservation gives 
2 21 2

50 50 150 150
1 1 .
2 2

kq q
m v m v

r
= +  Momentum conservation gives 50 50 150 150 50 150and 3 .m v m v v v= =  

0 50 m.r = .  Solve for 50v  and 150 50 150: 12 7 m/s, 4 24 m/s.v v v= .  = .  Maximum acceleration occurs just 

after spheres are released. F ma∑ =  gives 1 2
150 1502 .kq q

m a
r

=  

9 2 2 5 5

1502
(9 10 N m /C )(10 C)(3 10 C) (0 15 kg) .

(0 50 m)
a

− −× ⋅ × = .
.

 2
150 72 0 m/sa = .  and 2

50 1503 216 m/s .a a= =  

EVALUATE:   The more massive sphere has a smaller acceleration and a smaller final speed.  

 23.72. IDENTIFY:   The potential at the surface of a uniformly charged sphere is .kQ
V

R
=  

SET UP:   For a sphere, 34 .
3

V Rπ=  When the raindrops merge, the total charge and volume are conserved. 
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EXECUTE:   (a) 
12

4
( 3 60 10 C) 49 8 V.
6 50 10 m

kQ k
V

R

−

−
− . ×= = = − .

. ×
 

(b) The volume doubles, so the radius increases by the cube root of two: 43
new 2 8 19 10 mR R −= = . ×  and 

the new charge is 12
new 2 7 20 10 C.Q Q −= = − . ×  The new potential is 

12
new

new 4
new

( 7 20 10 C) 79 0 V
8 19 10 m

kQ k
V

R

−

−
− . ×= = = − . .

. ×
 

EVALUATE:   The charge doubles but the radius also increases and the potential at the surface increases by 

only a factor of 2/3
1/3
2 2 1 6.

2
= ≈ .  

 23.73. IDENTIFY:   Slice the rod into thin slices and use 
0

1
4

q
V

rπε
=  to calculate the potential due to each slice. 

Integrate over the length of the rod to find the total potential at each point. 
(a) SET UP:   An infinitesimal slice of the rod and its distance from point P are shown in Figure 23.73a. 

 

 

Figure 23.73a 

Use coordinates with the origin at the left-hand end of the rod and one axis along the rod. Call the axes  
x′  and y′  so as not to confuse them with the distance x given in the problem. 
EXECUTE:   Slice the charged rod up into thin slices of width .dx′  Each slice has charge ( / )dQ Q dx a= ′  
and a distance r x a x= + − ′  from point P. The potential at P due to the small slice dQ  is  

0 0

1 1 .
4 4

dQ Q dx
dV

r a x a xπε πε
′⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ − ′⎝ ⎠ ⎝ ⎠

 

Compute the total V at P due to the entire rod by integrating dV over the length of the rod ( 0 to ):x x a′ = ′ =  

000 0 0
[ ln( )] ln .

4 ( ) 4 4
a aQ dx Q Q x a

V dV x a x
a x a x a a xπε πε πε

′ +⎛ ⎞= = = − + − ′ = ⎜ ⎟+ − ′ ⎝ ⎠∫ ∫  

EVALUATE:   As 
0

, ln 0.
4

Q x
x V

a xπε
⎛ ⎞→ ∞ → =⎜ ⎟
⎝ ⎠

 

(b) SET UP:   An infinitesimal slice of the rod and its distance from point R are shown in Figure 23.73b. 

 

Figure 23.73b 
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( / )dQ Q a dx= ′  as in part (a). 

Each slice dQ  is a distance 2 2( )r y a x= + − ′  from point R. 
EXECUTE:   The potential dV at R due to the small slice dQ  is  

2 20 0

1 1 .
4 4 ( )

dQ Q dx
dV

r a y a xπε πε
′⎛ ⎞= =⎜ ⎟

⎝ ⎠ + − ′
 

V = dV∫ = Q
4πε0a

dx′

y2 + (a − x′)20

a
∫ .  

In the integral make the change of variable ;u a x du dx= − ′ = − ′  

   

V = − Q
4πε0a

du

y2 + u2a

0
∫ = – Q

4πε0a
ln u + y2 + u2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥a

0
.  

2 2
2 2

0 0
ln ln( ) ln .

4 4
a a yQ Q

V y a y a
a a yπε πε

⎡ ⎤⎛ ⎞+ +⎡ ⎤ ⎢ ⎥⎜ ⎟= − − + + =⎢ ⎥⎣ ⎦ ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

(The expression for the integral was found in Appendix B.) 

EVALUATE:   As 
0

, ln 0.
4

Q y
y V

a yπε
⎛ ⎞→ ∞ → =⎜ ⎟
⎝ ⎠

 

(c) SET UP:   part (a): 
0 0

ln ln 1 .
4 4

Q x a Q a
V

a x a xπε πε
+⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

From Appendix B, 2ln(1 ) /2 . . . ,u u u+ = −  so 2 2ln(1 / ) / /2a x a x a x+ = −  and this becomes /a x  when x is 
large. 

EXECUTE:   Thus 
0 0

.
4 4

Q a Q
V

a x xπε πε
⎛ ⎞→ =⎜ ⎟
⎝ ⎠

 For large x, V becomes the potential of a point charge. 

part (b): 
2 2 2

2
0 0

ln ln 1 .
4 4

a a yQ Q a a
V

a y a y yπε πε

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟= = + +
⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎣ ⎦

 

From Appendix B, 2 2 2 2 1/2 2 21 / (1 / ) 1 /2 …a y a y a y+ = + = + +  

Thus 2 2 2 2/ 1 / 1 / /2 … 1 / .a y a y a y a y a y+ + → + + + → +  And then using ln(1 )u u+ ≈  gives 

0 0 0
ln(1 / ) .

4 4 4
Q Q a Q

V a y
a a y yπε πε πε

⎛ ⎞→ + → =⎜ ⎟
⎝ ⎠

 

EVALUATE:   For large y, V becomes the potential of a point charge. 
 23.74. IDENTIFY:   Apply conservation of energy, .a a b bK U K U+ = +  

SET UP:   Assume the particles initially are far apart, so 0.aU =  The alpha particle has zero speed at the 

distance of closest approach, so 0.bK =  191 eV 1 60 10  J.−= . ×  The alpha particle has charge 2e+  and the 
lead nucleus has charge 82 .e+  
EXECUTE:   Set the alpha particle’s kinetic energy equal to its potential energy: a bK U=  gives 

  
9.50 MeV = k(2e)(82e)

r
 and r = k(164)(1.60 × 10−19 C)2

(9.50 × 106 eV)(1.60 × 10−19 J/eV)
= 2.48 × 10−14 m.  

EVALUATE:   The calculation assumes that at the distance of closest approach the alpha particle is outside 
the radius of the lead nucleus. 
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 23.75. (a) IDENTIFY and SET UP:   The potential at the surface of a charged conducting sphere is: 
  
V = 1

4πε0

q
R

.  

For spheres A and B this gives 
  
VA =

QA
4πε0 RA

 and VB =
QB

4πε0 RB
.  

EXECUTE:   A BV V=  gives 0 0/4 /4A A B BQ R Q Rπε πε=  and / / .B A B AQ Q R R=  And then 3A BR R=  implies 
/ 1/3.B AQ Q =  

(b) IDENTIFY and SET UP:   The electric field at the surface of a charged conducting sphere is 

  
E = 1

4πε0

q

R2
.  

EXECUTE:   For spheres A and B this gives EA =
QA

4πε0RA
2

 and EB =
QB

4πε0RB
2

.  

2
2 20

2
0

4 / ( / ) (1/3)(3) 3.
4

BB A
B A A B

A AB

QE R
Q Q R R

E QR
πε

πε
⎛ ⎞⎛ ⎞

= = = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE:   The sphere with the larger radius needs more net charge to produce the same potential. We 
can write /E V R=  for a sphere, so with equal potentials the sphere with the smaller R has the larger E. 

 23.76. IDENTIFY and SET UP:   For points outside of them, the spheres behave as though all the charge were 
concentrated at their centers. The charge initially on sphere 1 spreads between the two spheres such as to 
bring them to the same potential. 

EXECUTE:   (a) 1
1 2

0 1

1 ,
4

Q
E

Rπε
=  1

1 1 1
0 1

1 .
4

Q
V R E

Rπε
= =  

(b) Two conditions must be met: 
1) Let 1q  and 2q  be the final charges of each sphere. Then 1 2 1q q Q+ =  (charge conservation). 
2) Let 1V  and 2V  be the final potentials of each sphere. All points of a conductor are at the same potential, 
so 1 2.V V=  

1 2V V=  requires that 
  

1
4πε0

q1
R1

= 1
4πε0

q2
R2

 and then 1 1 2 2/ / .q R q R=  

1 2 2 1 1 1 1( ) .q R q R Q q R= = −  
This gives 1 1 1 2 1( /[ ])q R R R Q= +  and 2 1 1 1 1 1 2 1 2 1 2(1 /[ ]) ( /[ ]).q Q q Q R R R Q R R R= − = − + = +  

(c) 
  
V1 = 1

4πε0

q1
R1

=
Q1

4πε0 (R1 + R2 )
 and V2 = 1

4πε0

q2
R2

=
Q1

4πε0 (R1 + R2 )
,  which equals 1V  as it should. 

(d) 1 1
1

1 0 1 1 2
.

4 ( )
V Q

E
R R R Rπε

= =
+

 
  
E2 =

V2
R2

=
Q1

4πε0 R2 (R1 + R2 )
.  

EVALUATE:   Part (a) says 2 1 2 1( / ).q q R R=  The sphere with the larger radius needs more charge to produce 
the same potential at its surface. When 1 2,R R=  1 2 1/2.q q Q= =  The sphere with the larger radius has the 
smaller electric field at its surface. 

 23.77. IDENTIFY:   Apply conservation of energy: 1 2.E E=  
SET UP:   In the collision the initial kinetic energy of the two particles is converted into potential energy at 
the distance of closest approach. 
EXECUTE:   (a) The two protons must approach to a distance of p2 ,r  where pr  is the radius of a proton. 

1 2E E=  gives 
2

2
p

p

12
2 2

ke
m v

r
⎡ ⎤ =⎢ ⎥⎣ ⎦

 and 
19 2

6
15 27

(1 60 10 C) 7 58 10 m/s.
2(1 2 10 m)(1 67 10 kg)

k
v

−

− −
. ×= = . ×

. × . ×
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(b) For a helium-helium collision, the charges and masses change from (a) and 
19 2

6
15 27
(2(1 60 10 C)) 7 26 10 m/s.

(3 5 10 m)(2 99)(1 67 10 kg)
k −

− −
. ×= = . ×

. × . . ×
v  

(c) 
23 .

2 2
kT mv

K = =  P

2 27 6 2
p 9

23
(1.67 10 kg)(7.58 10 m/s) 2.3 10 K.

3 3(1.38 10 J/K)

m v
T

k

−

−
× ×= = = ×

×
 

He

2 27 6 2
9H

23
(2 99)(1 67 10 kg)(7 26 10 m/s) 6 4 10  K.

3 3(1 38 10 J/K)
em v

T
k

−

−
. . × . ×= = = . ×

. ×
 

(d) These calculations were based on the particles’ average speed. The distribution of speeds ensures that 
there is always a certain percentage with a speed greater than the average speed, and these particles can 
undergo the necessary reactions in the sun’s core. 
EVALUATE:   The kinetic energies required for fusion correspond to very high temperatures. 

 23.78. IDENTIFY and SET UP:   Apply ˆ ˆ ˆ .V V V
x y z

⎛ ⎞∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂⎝ ⎠
E i + j + k
G

 
0

a b
a b

W
V V

q
→ = −  and .

b
a b a

V V d− = ⋅∫ E l
GG

 

EXECUTE:   (a) ˆ ˆ ˆ ˆ ˆ ˆ2 6 2 .V V V
Ax Ay Az

x y z
∂ ∂ ∂= − − − = − + −
∂ ∂ ∂

E i j k i j k
G

 

(b) A charge is moved in along the z-axis. The work done is given by 

0 0

0 0 2
0

ˆ ( 2 ) ( ) .
z z

W q dz q Az dz Aq z= ⋅ = − = +∫ ∫E k
G

 Therefore, 
5

2
2 6 2
0

6 00 10 J 640 V/m .
(1 5 10 C)(0 250 m)

a bW
A

qz

−
→

−
. ×= = =

. × .
 

(c) 2 ˆ ˆ(0,0,0.250) 2(640 V/m )(0 250 m) (320 V/m) .= − . = −E k k
G

 

(d) In every plane parallel to the -plane,xz y  is constant, so 2 2( , , ) ,V x y z Ax Az C= + −  where 23 .C Ay=  

2 2 2,V C
x z R

A
++ = =  which is the equation for a circle since R  is constant as long as we have constant 

potential on those planes. 

(e) 1280 VV =  and 2 00 m,y = .  so 
2 2

2 2 2
2

1280 V 3(640 V/m )(2 00 m) 14 0 m
640 V/m

x z
+ .+ = = .  and the radius 

of the circle is 3 74 m. .  

EVALUATE:   In any plane parallel to the xz-plane, E
G

 projected onto the plane is radial and hence 
perpendicular to the equipotential circles. 

 23.79. IDENTIFY and SET UP:   We know that the potential is of the mathematical form V(x,y,z) = Axl + Bym +  

Czn + D. We also know that ,x
V

E
x

∂= −
∂

 ,y
V

E
y

∂= −
∂

 and .z
V

E
z

∂= −
∂

 Various measurements are given in 

the table with the problem in the text. 
EXECUTE:   (a) First get A, B, C, and D using data from the table in the problem. 
V(0, 0, 0) = 10.0 V = 0 + 0 + 0 + D, so D = 10.0 V. 
V(1.00, 0, 0) = A(1.00 m)l + 0 + 0 + 10.0 V = 4.00 V, so A = –6.0 V ⋅ m–l. 
V(0, 1.00, 0) = B(1.00 m)m + 10.0 V = 6.0 V, so B = –4.0 V ⋅ m–m. 
V(0, 0, 1.00 m) = C(1.00 m)n + 10.0 V = 8.0 V, so C = –2.0 V ⋅ m–n. 
Now get l, m, and n. 

x
V

E
x

∂= −
∂

 = –lAxl–1, and from the table we know that Ex(1.00, 0, 0) = 12.0 V/m. Therefore  

–l(–6.0 V ⋅ m–l)(1.00 m)l–1 = 12.0 V/m. 
l(6.0 V ⋅ m–1) = 12.0 V/m. 
l = 2.0. 

y
V

E
y

∂= −
∂

 = –mBym–1. 

Ey(0, 1.00, 0) = –m(–4.0 V ⋅ m–m)(1.00 m)m–1 = 12.0 V/m. 
m = 3.0. 
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z
V

E
z

∂= −
∂

 = –nCzn–1. 

Ez(0, 0, 1.00) = –n(–2.0 V ⋅ m–n)(1.00 m)n–1 = 12.0 V/m. 
n = 6.0. 
Now that we have l, m, and n, we see the units of A, B, and C, so 
A = –6.0 V/m2. 
B = –4.0 V/m3. 
C = –2.0 V/m6. 
Therefore the equation for V(x,y,z) is 
V = (–6.0 V/m2)x2 + (–4.0 V/m3)y3 + (–2.0 V/m6)z6 + 10.0 V. 
(b) At (0, 0, 0): V = 0 and E = 0 (from the table with the problem). 
At (0.50 m, 0.50 m, 0.50 m): 
V = (–6.0 V/m2)(0.50 m)2 + (–4.0 V/m3)(0.50 m)3 + (–2.0 V/m6)(0.50 m)6 + 10.0 V = 8.0 V. 

x
V

E
x

∂= −
∂

 = –(–12.0 V/m2)x = (12.0 V/m2)(0.50 m) = 6.0 V/m. 

y
V

E
y

∂= −
∂

 = –3(–4.0 V/m3)y2 = (12 V/m3)(0.50 m)2 = 3.0 V/m. 

z
V

E
z

∂= −
∂

 = –(–12.0 V/m6)z5 = (12.0 V/m6)(0.50 m)5 = 0.375 V/m. 

2 2 2 2 2 2(6.0 V/m)  + (3.0 V/m)  + (0.375 V/m)x y zE E E E= + + =  = 6.7 V/m. 

At (1.00 m, 1.00 m, 1.00 m): 
Follow the same procedure as above. The results are V = –2.0 V, E = 21 V/m. 
EVALUATE:   We know that l, m, and n must be greater that 1 because the components of the electric field 
are all zero at (0, 0, 0). 

 23.80. IDENTIFY and SET UP:   Energy is conserved and the potential energy is 1 2 .q q
U k

r
=  1 1 2 2.K U K U+ = +  

EXECUTE:   (a) Energy conservation gives K1 + 0 = K2 + U2. 
2 2
0

1 1
2 2

qQ
mv mv k

x
= +  →  2 2

0
2 1kqQ

v v
m x

= − ⋅ . 

On a graph of v2 versus 1/x, the graph of this equation will be a straight line with y-intercept equal to 2
0v  

and slope equal to 
2 .kqQ

m
−  

(b) With the given equation of the line in the problem, we have 2 2 2 3 2 1400 m /s  – (15.75 m /s ) .v
x

=  As x 

gets very large, 1/x approaches zero, so 2 2
0 400 m /sv =  = 20 m/s. 

(c) The slope is  2kqQ
m

−  = –15.75 m3/s2, which gives  

4 3 2 8 6slope /2 4.00 10 kg 15.75 m /s / 2 5.00 10( ) ( )( ) [ ( )C 7.01 10 C 7.01 C.]Q m kq k µ− − −= − = − × − × = + × = +  
(d) The particle is closest when its speed is zero, so 

2 2 2 3 2 1400 m /s  – (15.75 m /s )v
x

=  = 0, which gives 23.94 10 m 3.94 cm.x −= × =  

EVALUATE:   From the graph in the problem, we see that v2 decreases as 1/x increases, so v2 decreases as x 
decreases. This means that the positively charged particle is slowing down as it gets closer to the sphere, so 
the sphere is repelling it. Therefore the sphere must be positively charged, as we found. 

 23.81. IDENTIFY:   When the oil drop is at rest, the upward force q E  from the electric field equals the 
downward weight of the drop. When the drop is falling at its terminal speed, the upward viscous force 
equals the downward weight of the drop. 

SET UP:   The volume of the drop is related to its radius r by 34 .
3

V rπ=  
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EXECUTE:   (a) 
3

g
4 .

3
r

F mg g
π ρ= =  e / .ABF q E q V d= =  e gF F=  gives 

34 .
3 AB

r gd
q

V
π ρ=  

(b) 
3

t
4 6

3
r

g rv
π ρ πη=  gives t9 .

2
v

r
g

η
ρ

=  Using this result to replace r in the expression in part (a) gives 

3 3 3
t t4 9 18 .

3 2 2AB AB

gd v d v
q

V g V g
π ρ η ηπ

ρ ρ
⎡ ⎤

= =⎢ ⎥
⎢ ⎥⎣ ⎦

  

(c) We use the values for VAB and vt given in the table in the problem and the formula 
   
q  = 18π d

VAB

η3vt
3

2ρg
 

from (c). For example, for drop 1 we get 
3 5 2 3 5 3

19
3 2

1.00 10 m (1 81 10 N s/m ) (2.54 10 m/s) 18 4 79 10 C.
9 16 V 2(824 kg/m )(9 80 m/s )

q π
− − −

−× . × ⋅ ×= = . ×
. .

 Similar calculations for 

the remaining drops gives the following results:  
Drop 1: 4.79 ×10–19 C 
Drop 2: 1.59 ×10–19 C 
Drop 3: 8.09 ×10–19 C 
Drop 4: 3.23 ×10–19 C 
(d) Use n = q/e2 to find the number of excess electrons on each drop. Since all quantities have a power of 
10–19 C, this factor will cancel, so all we need to do is divide the coefficients of 10–19 C. This gives 
Drop 1: n = q1/q2 = 4.79/1.59 = 3 excess electrons 
Drop 2: n = q2/q2 = 1 excess electron 
Drop 3: n = q3/q2 = 8.09/1.59 = 5 excess electrons 
Drop 4: n = q4/q2 = 3.23/1.59 = 2 excess electrons 
(e) Using q = –ne gives e = –q/n. All the charges are negative, so e will come out positive. Thus we get 
Drop 1: e1 = q1/n1 = (4.79 ×10–19 C)/3 = 1.60 ×10–19 C 
Drop 2: e2 = q2/n2 = (1.59 ×10–19 C)/1 = 1.59 ×10–19 C 
Drop 3: e3 = q3/n3 = (8.09 ×10–19 C)/5 = 1.62 ×10–19 C 
Drop 4: e4 = q4/n4 = (3.23 ×10–19 C)/2 = 1.61 ×10–19 C 
The average is 
eav = (e1 + e2 + e3 + e4)/4 = [(1.60 + 1.59 + 1.62 + 1.61) ×10–19 C]/4 = 1.61 ×10–19 C. 
EVALUATE:   The result e = 1.61 ×10–19 C is very close to the well-established value of 1.60 ×10–19 C. 

 23.82. IDENTIFY:   Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length 
of the cylinder to find the total potential. The electric field is along the axis of the tube and is given by 

.V
E

x
∂= −
∂

 

SET UP:   Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the 
slice be at coordinate z along the x-axis, relative to the center of the tube. 
EXECUTE:   (a) For an infinitesimal slice of the finite cylinder, we have the potential 

2 2 2 2
.

( ) ( )

k dQ kQ dz
dV

Lx z R x z R
= =

− + − +
 Integrating gives 

/2 /2

/2 /22 2 2 2
 where .

( )

L L x

L L x

kQ dz kQ du
V u x z

L Lx z R u R

−

− − −
= = = −

− + +
∫ ∫  Therefore, 

2 2

2 2

( /2 ) ( /2 )
ln

( /2 ) /2

L x R L xkQ
V

L L x R L x

⎡ ⎤− + + −⎢ ⎥=
⎢ ⎥+ + − −⎣ ⎦

 on the cylinder axis. 

(b) For ,L R<<  
2 2 2 2

2 2 2 2

( /2 ) /2 /2ln ln .
( /2 ) /2 /2

L x R L xkQ kQ x xL R L x
V

L LL x R L x x xL R L x

⎡ ⎤ ⎡ ⎤− + + − − + + −⎢ ⎥ ⎢ ⎥≈ ≈
⎢ ⎥ ⎢ ⎥+ + − − + + − −⎣ ⎦⎣ ⎦
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2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 /( ) ( /2 )/ 1 /2( ) ( /2 )/ln ln .
1 /( ) ( /2 )/ 1 /2( ) ( /2 )/

xL R x L x R xkQ kQ xL R x L x R x
V

L LxL R x L x R x xL R x L x R x

⎡ ⎤ ⎡ ⎤− + + − + − + + − +⎢ ⎥ ⎢ ⎥≈ =
⎢ ⎥ ⎢ ⎥+ + + − − + + + + − − +⎣ ⎦⎣ ⎦

2 2

2 2 2 2 2 2

1 /2ln ln 1 ln 1 .
1 /2 2 2

kQ L R x kQ L L
V

L LL R x R x R x

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎜ ⎟≈ = + − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + +⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦
 

2 2 2 2

2 ,
2

kQ L kQ
V

L x R x R
≈ =

+ +
 which is the same as for a ring. 

(c) 
( )2 2 2 2

2 2 2 2

2 ( 2 ) 4 ( 2 ) 4
.

( 2 ) 4 ( 2 ) 4
x

kQ L x R L x RV
E

x L x R L x R

− + − + +∂= − =
∂ − + + +

 

EVALUATE:   For L R<<  the expression for xE  reduces to that for a ring of charge, 2 2 3/2 ,
( )x

kQx
E

x a
=

+
 as 

shown in Example 23.14. 
 23.83. IDENTIFY:   Angular momentum and energy must be conserved. 

SET UP:   At the distance of closest approach the speed is not zero. .E K U= +  1 2 ,q e=  2 82 .q e=  

EXECUTE:   1 2 2.mv b mv r=  1 2E E=  gives 2 1 2
1 2

2

1 .
2

kq q
E mv

r
= +  12

1 11 MeV 1 76 10 J.E −= = . ×  2r  is the 

distance of closest approach. Substituting in for 2 1
2

b
v v

r
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 we find 
2

1 2
1 1 2

22
.b kq q

E E
rr

= +  

2 2
1 2 1 2 2 1( ) ( ) 0.E r kq q r E b− − =  For 1210 m,b −=  12

2 1 01 10 m.r −= . ×  For 1310 m,b −=  13
2 1 11 10 m.r −= . ×  

And for 1410 m,b −=  14
2 2 54 10 m.r −= . ×  

EVALUATE:   As b decreases the collision is closer to being head-on and the distance of closest approach 
decreases. Problem 23.74 shows that the distance of closest approach is 2.48 × 10−14  m  when   b = 0,  
which is very close to our value. 

 23.84. IDENTIFY and SET UP:   The He ions are first accelerated toward the center and then accelerated away from 
the center, but always in the same direction. During the first acceleration, their charge is –e, and during the 
second acceleration it is +2e. The work-energy theorem gives .K q V∆ = ∆  Call V the voltage at the center. 
EXECUTE:   (a) Toward the center: K q V∆ = ∆  = eV. 
Away from the center: K q V∆ = ∆  = 2eV. 
The ions gain 3.0 MeV of kinetic energy, so eV + 2eV = 3.0 MeV. 
3eV = 3.0 MeV. 
V = +1.0 MV, since the e cancels. This is choice (d). 
EVALUATE:   The negative He– ions are accelerating to higher potential, and the positive He++ ions are 
accelerating toward lower potential. 

 23.85. IDENTIFY and SET UP:   Conservation of energy gives K = Uelectric = 1 2 .q q
k

r
 

EXECUTE:   Solve for Q: Q = rK/kq = (10 ×10–15 m)(3.0 MeV)/(2ek) = 1.67 ×10–18 C. In terms of e, this is 
Q = (1.67 ×10–18 C)/( 1.60 ×10–19 C) = 10.4e ≈ 11e, so choice (b) is best. 
EVALUATE:   If Q = 11e, the atom is sodium (Na), which has an atomic mass of 23, compared to 4 for He. 
So it is reasonable to assume that the nucleus does not move appreciably, since it is about 6 times more 
massive than the He. 

 23.86. IDENTIFY and SET UP:   The potential changes by 6.0 MV over a distance of 12 m. av .V
E

x
∆=
∆

 

EXECUTE:   6
av ( ) ( ) 6.0 MV / 12 m 0.50 10 V/m 500,000 V/m,V

E
x

∆=
∆

= = × =  which is choice (c). 

EVALUATE:   The actual variation of the field may be somewhat complicated, but the average value gives a 
good idea of a typical electric field in such apparatus. 
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 24.1. IDENTIFY:   The capacitance depends on the geometry (area and plate separation) of the plates. 

SET UP:   For a parallel-plate capacitor, ,abV Ed=  E = Q
ε0 A

,  and .
ab

Q
C

V
=  

EXECUTE:   (a) 6 3 4(4 00 10  V/m)(2 50 10 m) 1 00 10  V.abV Ed −= = . × . × = . ×  
(b) Solving for the area gives 

  
A = Q

Eε0
= 80.0 × 10−9  C

(4.00 × 106  V/m)[8.854 × 10−12  C2 /(N ⋅ m2 )]
= 2.26 × 10−3  m2 = 22.6 cm2.  

(c) 
9

12
4

80 0 10  C 8 00 10  F 8 00 pF.
1 00 10  Vab

Q
C

V

−
−. ×= = = . × = .

. ×
 

EVALUATE:   The capacitance is reasonable for laboratory capacitors, but the area is rather large. 

 24.2. IDENTIFY and SET UP:   C =
ε0 A

d
,  Q

C
V

=  and .V Ed=  

EXECUTE:    (a) 
  
C = ε0

A
d

= ε0
0.000982 m2

0.00328 m
= 2.65 pF.  

(b) V = Q
C

= 4.35 × 10−8  C
2.65 × 10−12  F

= 16.4 kV.  

(c) 
  
E = V

d
= 16.4 × 103  V

0.00328 m
= 5.00 × 106  V/m.  

EVALUATE:   The electric field is uniform between the plates, at points that aren’t close to the edges. 
 24.3. IDENTIFY and SET UP:    It is a parallel-plate air capacitor, so we can apply the equations of Section 24.1. 

EXECUTE:   (a) 
ab

Q
C

V
=  so 

6

12
0 148 10  C 604 V.
245 10  Fab

Q
V

C

−

−
. ×= = =

×
 

(b) 
  
C =

ε0 A
d

 so 
12 3

3 2 2
12 2 2

0

(245 10  F)(0 328 10  m) 9 08 10  m 90 8 cm .
8 854 10  C /N m

Cd
A

ε

− −
−

−
× . ×= = = . × = .
. × ⋅

 

(c) abV Ed=  so 6
3

604 V 1 84 10  V/m.
0 328 10  m

abV
E

d −= = = . ×
. ×

 

(d) 
  
E = σ

ε0
 so 6 12 2 2 5 2

0 (1 84 10  V/m)(8 854 10  C /N m ) 1 63 10  C/m .Eσ ε − −= = . × . × ⋅ = . ×  

EVALUATE:   We could also calculate σ  directly as Q/A. 
6

5 2
3 2

0 148 10  C 1 63 10  C/m ,
9 08 10  m

Q
A

σ
−

−
−

. ×= = = . ×

. ×
 

which checks. 
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 24.4. IDENTIFY:   
  
C = ε0

A
d

 when there is air between the plates. 

SET UP:   2 2(3 0 10  m)A −= . ×  is the area of each plate. 

EXECUTE:   
12 2 2

12
3

(8 854 10  F/m)(3 0 10  m) 1 59 10  F 1 59 pF.
5 0 10  m

C
− −

−
−

. × . ×= = . × = .
. ×

 

EVALUATE:   C increases when A increases and C increases when d decreases. 

 24.5. IDENTIFY:   .
ab

Q
C

V
=  

  
C =

ε0 A
d

.  

SET UP:   When the capacitor is connected to the battery, 12 0 V.abV = .  

EXECUTE:   (a) 6 4(10 0 10  F)(12 0 V) 1 20 10  C 120 C.abQ CV µ− −= = . × . = . × =   
(b) When d is doubled C is halved, so Q is halved. 60 C.Q µ=   
(c) If r is doubled, A increases by a factor of 4. C increases by a factor of 4 and Q increases by a factor  
of 4. 480 C.Q µ=   
EVALUATE:   When the plates are moved apart, less charge on the plates is required to produce the same 
potential difference. With the separation of the plates constant, the electric field must remain constant to 
produce the same potential difference. The electric field depends on the surface charge density, .σ  To 
produce the same ,σ  more charge is required when the area increases. 

 24.6. IDENTIFY:   .
ab

Q
C

V
=

  
C =

ε0 A
d

.  

SET UP:   When the capacitor is connected to the battery, enough charge flows onto the plates to make 
12 0 V.abV = .  

EXECUTE:   (a) 12.0 V. 

(b) (i) When d is doubled, C is halved. ab
Q

V
C

=  and Q is constant, so V doubles. 24 0 V.V = .  

(ii) When r is doubled, A increases by a factor of 4. V decreases by a factor of 4 and 3 0 V.V = .  

EVALUATE:   The electric field between the plates is E = σ
ε0

= Q
ε0 A

.  .abV Ed=  When d is doubled E is 

unchanged and V doubles. When A is increased by a factor of 4, E decreases by a factor of 4 so V decreases 
by a factor of 4. 

 24.7. IDENTIFY:   The energy stored in a capacitor depends on its capacitance, which in turn depends on its 
geometry. 

SET UP:   /C Q V=  for any capacitor, and C =
ε0 A

d
 for a parallel-plate capacitor. 

EXECUTE:   (a) 
10

122 40 10  C 5 714 10  F.
42 0 V

Q
C

V

−
−. ×= = = . ×

.
 Using C =

ε0 A
d

 gives 

12 2 2 4 2
0

12
[8 854 10  C /(N m )](6 80 10  m ) 1 05 mm.

5 714 10  F
A

d
C

ε − −

−
. × ⋅ . ×= = = .

. ×
 

(b) 32 10 10  m.d −= . ×  
  
C =

ε0 A
d

= 5.714 × 10−12  F
2

= 2.857 × 10−12  F.  ,Q
V

C
=  so 

2(42 0 V) 84 0 V.V = . = .  
EVALUATE:   Doubling the plate separation halves the capacitance, so twice the potential difference is 
required to keep the same charge on the plates. 

 24.8. IDENTIFY:   .
ab

Q
C

V
=  .abV Ed=  

  
C =

ε0 A
d

.  

SET UP:   We want 41 00 10  N/CE = . ×  when 100 V.V =  
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EXECUTE:   (a) 
2

2
4

1 00 10  V 1 00 10  m 1 00 cm.
1 00 10  N/C

abV
d

E
−. ×= = = . × = .

. ×
 

  
A = Cd

ε0
= (5.00 × 10−12  F)(1.00 × 10−2  m)

8.854 × 10−12  C2 /(N ⋅ m2 )
= 5.65 × 10−3  m2.  2A rπ=  so 

24 24 10  m 4 24 cm.A
r

π
−= = . × = .  

(b) 12 2 10(5 00 10  F)(1 00 10  V) 5 00 10  C 500 pC.abQ CV − −= = . × . × = . × =  

EVALUATE:   
  
C =

ε0 A
d

.  We could have a larger d, along with a larger A, and still achieve the required C 

without exceeding the maximum allowed E. 
 24.9. IDENTIFY:   Apply the results of Example 24.4. / .C Q V=  

SET UP:   0 50 mm,ar = .  5 00 mm.br = .  

EXECUTE:   (a) C =
L2πε0

ln(rb /ra )
=

(0.180 m)2πε0
ln(5.00/0.50)

= 4.35 × 10−12  F.  

(b) 12 12/ (10 0 10  C)/(4 35 10  F) 2 30 V.V Q C − −= = . × . × = .  

EVALUATE:   24 2 pF.C
L

= .  This value is similar to those in Example 24.4. The capacitance is determined 

entirely by the dimensions of the cylinders. 
 24.10. IDENTIFY:   Capacitance depends on the geometry of the object. 

(a) SET UP:   The capacitance of a cylindrical capacitor is C =
2πε0 L

ln(rb /ra )
.  Solving for br  gives 

  rb = rae2πε0 L/C .  
EXECUTE:   Substituting in the numbers for the exponent gives 

12 2 2

11
2 (8 85 10  C /N m )(0 120 m) 0 182.

3 67 10  F
π −

−
. × ⋅ . = .

. ×
 

Now use this value to calculate rb: rb = rae0.182 = (0.250 cm)e0.182 = 0.300 cm.  
(b) SET UP:   For any capacitor, /C Q V=  and / .Q Lλ =  Combining these equations and substituting the 
numbers gives / / .Q L CV Lλ = =   
EXECUTE:   Numerically we get 

  
λ = CV

L
= (3.67 × 10−11 F)(125 V)

0.120 m
= 3.82 × 10−8 C/m = 38.2 nC/m.  

EVALUATE:   The distance between the surfaces of the two cylinders would be only 0.050 cm, which is just 
0.50 mm. These cylinders would have to be carefully constructed. 

 24.11. IDENTIFY:   We can use the definition of capacitance to find the capacitance of the capacitor, and then 
relate the capacitance to geometry to find the inner radius. 
(a) SET UP:   By the definition of capacitance, / .C Q V=  

EXECUTE:   C = Q
V

= 3.30 × 10−9  C
2.20 × 102  V

= 1.50 × 10−11 F = 15.0 pF.  

(b) SET UP:   The capacitance of a spherical capacitor is C = 4πε0
rarb

rb − ra
.  

EXECUTE:   Solve for ar  and evaluate using = 15.0 pFC  and = 4.00 cm,br  giving = 3.09 cm.ar  
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(c) SET UP:   We can treat the inner sphere as a point charge located at its center and use Coulomb’s law, 

  
E = 1

4πε0

q

r2
.  

EXECUTE:   
  
E = (8.99 × 109  N ⋅ m2 /C2 )(3.30 × 10−9  C)

(0.0309 m)2
= 3.12 × 104  N/C.  

EVALUATE:   Outside the capacitor, the electric field is zero because the charges on the spheres are equal 
in magnitude but opposite in sign. 

 24.12. IDENTIFY and SET UP:   Use 
  

C
L

=
2πε0

ln(rb /ra )
 which was derived in Example 24.4. Then use Q = CV to 

calculate Q. 

EXECUTE:   (a) Using 
  

C
L

=
2πε0

ln(rb /ra )
 gives 

  

C
L

= 2π (8.854 × 10−12  C2 /N ⋅ m2 )
ln[(3.5 mm)/(2.2 mm)]

= 1.2 × 10−10  F/m = 120 pF/m.  

(b)   C = (1.20 × 10−10  F/m)(2.8 m) = 3.355 × 10−10  F.  

  Q = CV = (3.355 × 10−10  F)(350 × 10−3  V) = 1.2 × 10−10  C = 120 pC.  
The conductor at higher potential has the positive charge, so there is +120 pC on the inner conductor  
and −120 pC on the outer conductor. 
EVALUATE:   C depends only on the dimensions of the capacitor. Q and V are proportional. 

 24.13. IDENTIFY:   Apply the results of Example 24.3. / .C Q V=  
SET UP:   15 0 cm.ar = .  Solve for .br  

EXECUTE:   (a) For two concentric spherical shells, the capacitance is 1 .a b

b a

r r
C

k r r
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 b a a bkCr kCr r r− =  

and 
12

12
(116 10  F)(0 150 m) 0 175 m
(116 10  F) 0 150 m

17.5 cm.a
b

a

kCr k
r

kC r k

−

−
× .= = = =.

− × − .
  

(b) 220 VV =  and 12 8(116 10  F)(220 V) 2 55 10   25.5C nC.Q CV − −= = × = . × =  

EVALUATE:   A parallel-plate capacitor with 24 0 33 ma bA r rπ= = .  and 22 5 10 mb ad r r −= − = . ×  has 

  
C =

ε0 A
d

= 117 pF,  in excellent agreement with the value of C for the spherical capacitor. 

 24.14. IDENTIFY:   Simplify the network by replacing series and parallel combinations of capacitors by their 
equivalents. 

SET UP:   For capacitors in series the voltages add and the charges are the same; 
eq 1 2

1 1 1
C C C

= + +…  For 

capacitors in parallel the voltages are the same and the charges add; eq 1 2C C C= + +…  .Q
C

V
=  

EXECUTE:   (a) The equivalent capacitance of the 5 0 Fµ.   and 8 0 Fµ.   capacitors in parallel is 13 0 F.µ.   
When these two capacitors are replaced by their equivalent we get the network sketched in Figure 24.14. 
The equivalent capacitance of these three capacitors in series is 3 47 F.µ.   
(b) tot tot (3 47 F)(50 0 V) 174 C.Q C V µ µ= = .  . =   
(c) totQ  is the same as Q for each of the capacitors in the series combination shown in Figure 24.22, so Q 
for each of the capacitors is 174 C.µ  
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EVALUATE:   The voltages across each capacitor in Figure 24.14 are tot
10

10
17 4 V,Q

V
C

= = .  

tot
13

13
13 4 V,Q

V
C

= = .  and tot
9

9
19 3 V.Q

V
C

= = .  10 13 9 17 4 V 13 4 V 19 3 V 50 1 V.V V V+ + = . + . + . = .  The sum 

of the voltages equals the applied voltage, apart from a small difference due to rounding. 
 

 

Figure 24.14 
 

 24.15. IDENTIFY:   For capacitors in series the voltage across the combination equals the sum of the voltages in 
the individual capacitors. For capacitors in parallel the voltage across the combination is the same as the 
voltage across each individual capacitor. 
SET UP and EXECUTE:   (a) Connect the capacitors in series so their voltages will add. 
(b) 1 2 3 1,V V V V NV= + + +… =  where N is the number of capacitors in the series combination, since the 

capacitors are identical. 
1

500 V 5000.
0 10 V

V
N

V
= = =

.
 

EVALUATE:   It requires many small cells to produce a large voltage surge. 
 24.16. IDENTIFY:   The capacitors between b and c are in parallel. This combination is in series with the 15 pF capacitor. 

SET UP:   Let 1 15 pF,C =  2 9 0 pFC = .  and 3 11 pF.C =  
EXECUTE:   (a) For capacitors in parallel, eq 1 2C C C= + +…  so 23 2 3 20 pF.C C C= + =  

(b) 1 15 pFC =  is in series with 23 20 pF.C =  For capacitors in series, 
eq 1 2

1 1 1
C C C

= + +…  so 

123 1 23

1 1 1
C C C

= +  and 1 23
123

1 23

(15 pF)(20 pF) 8 6 pF.
15 pF 20 pF

C C
C

C C
= = = .

+ +
 

EVALUATE:   For capacitors in parallel the equivalent capacitance is larger than any of the individual 
capacitors. For capacitors in series the equivalent capacitance is smaller than any of the individual capacitors. 

 24.17. IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. In each equivalent 
network apply the rules for Q and V for capacitors in series and parallel; start with the simplest network 
and work back to the original circuit. 
SET UP:   Do parts (a) and (b) together. The capacitor network is drawn in Figure 24.17a. 

 

 1 2 3 4 4 00 F.C C C C µ= = = = .   
28 0 V.abV = .  

Figure 24.17a   
 

EXECUTE:   Simplify the circuit by replacing the capacitor combinations by their equivalents: 1 2and C C  
are in series and are equivalent to 12C  (Figure 24.17b). 

 

 

12 1 2

1 1 1 .
C C C

= +  

Figure 24.17b   
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6 6
61 2

12 6 6
1 2

(4 00 10  F)(4 00 10  F) 2 00 10 F.
4 00 10  F 4 00 10  F

C C
C

C C

− −
−

− −
. × . ×= = = . ×

+ . × + . ×
 

12 3 and C C  are in parallel and are equivalent to 123C  (Figure 24.17c). 
 

 123 12 3.C C C= +  
6 6

123 2 00 10  F 4 00 10  F.C − −= . × + . ×  
6

123 6 00 10  F.C −= . ×  

Figure 24.17c   
 

123 4 and C C  are in series and are equivalent to 1234C  (Figure 24.17d). 
 

 

1234 123 4

1 1 1 .
C C C

= +  

Figure 24.17d   
 
 

6 6
6123 4

1234 6 6
123 4

(6 00 10  F)(4 00 10  F) 2 40 10  F.
6 00 10  F 4 00 10  F

C C
C

C C

− −
−

− −
. × . ×= = = . ×

+ . × + . ×
 

The circuit is equivalent to the circuit shown in Figure 24.17e. 
 

 1234 28 0 V.V V= = .
6

1234 1234 (2 40 10  F)(28 0 V) 67 2 C.Q C V µ−= = . × . = .   

Figure 24.17e   
Now build back up the original circuit, step by step. 1234C  represents 123 4and C C  in series  
(Figure 24.17f). 

 

 123 4 1234 67 2 CQ Q Q µ= = = .   
(charge same for capacitors in series). 

Figure 24.17f   
 

Then 123
123

123

67 2 C 11 2 V .
6 00 F

Q
V

C
µ
µ

.  = = = .
.  

 

4
4

4

67 2 C 16 8 V.
4 00 F

Q
V

C
µ
µ

.  = = = .
.

 

Note that 4 123 16 8 V 11 2 V 28 0 V, as it shouldV V+ = . + . = . .  
Next consider the circuit as written in Figure 24.17g (next page). 

 



Capacitance and Dielectrics   24-7 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

 3 12 428 0 V .V V V= = . −  

3 11 2 V.V = .  

3 3 3 (4 00 F)(11 2 V).Q C V µ= = .  .  

3 44 8 C.Q µ= .   

12 12 12 (2 00 F)(11 2 V).Q C V µ= = .  .  

12 22 4 C.Q µ= .   

Figure 24.17g   
 

Finally, consider the original circuit, as shown in Figure 24.17h. 
 

 1 2 12 22 4 CQ Q Q µ= = = .   
(charge same for capacitors in series). 

1
1

1

22 4 C 5 6 V.
4 00 F

Q
V

C
µ
µ

.  = = = .
.  

 

2
2

2

22 4 C 5 6 V.
4 00 F

Q
V

C
µ
µ

.  = = = .
.  

 

Figure 24.17h   
 

Note that 1 2 11 2 V,V V+ = .  which equals 3V  as it should. 
Summary: 1 122 4 C, 5 6 V.Q Vµ= .  = .  

2 222 4 C, 5 6 V.Q Vµ= .  = .  

3 344 8 C, 11 2 V.Q Vµ= .  = .  

4 467 2 C, 16 8 V.Q Vµ= .  = .  
(c) 3 11 2 V.adV V= = .  
EVALUATE:   1 2 4 3 4 1 2 1 3 4 4 1234, or ,  and .V V V V V V V Q Q Q Q Q Q Q+ + = + = . =  + = =  

 24.18. IDENTIFY:   The two capacitors are in series. The equivalent capacitance is given by 
eq 1 2

1 1 1 .
C C C

= +  

SET UP:   For capacitors in series the charges are the same and the potentials add to give the potential 
across the network. 

EXECUTE:   (a) 
  

1
Ceq

= 1
C1

+ 1
C2

= 1
(3.00 × 10−6  F)

+ 1
(5.00 × 10−6  F)

,  so 6
eq 1 875 10  F.C −= . ×  Then 

  
Q = VCeq = (64.0 V)(1.875 × 10−6  F) = 1.20 × 10−4  C = 120 µC.  Each capacitor has a charge of 

 1.20 × 10−4  C  = 120 µC. 
(b) 4 6

1 1/ (1.20 10  C)/(3 0 10  F) 40.0 V.V Q C − −= = × . × =  
4 6

2 2/ (1.20 10  C)/(5 0 10  F) 24.0 V.V Q C − −= = × . × =  

EVALUATE:     V1 + V2 = 64.0 V,  which is equal to the applied potential .abV  The capacitor with the smaller 
C has the larger V. 

 24.19. IDENTIFY:   The two capacitors are in parallel so the voltage is the same on each, and equal to the applied 
voltage .abV  
SET UP:   Do parts (a) and (b) together. The network is sketched in Figure 24.19 (next page). 
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 EXECUTE:   1 2 .V V V= =  

1 52 0 V.V = .  

2 52 0 V.V = .  

Figure 24.19   
 

/  so .C Q V Q CV= =  

1 1 1 (3 00 F)(52 0 V) 156 C.Q C V µ µ= = .  . =   2 2 2 (5 00 F)(52 0 V) 260 C.Q C V µ µ= = .  . =   
EVALUATE:   To produce the same potential difference, the capacitor with the larger C has the larger Q. 

 24.20. IDENTIFY:   For capacitors in parallel the voltages are the same and the charges add. For capacitors in 
series, the charges are the same and the voltages add. / .C Q V=  
SET UP:   1C  and 2C  are in parallel and 3C  is in series with the parallel combination of 1C  and 2.C  
EXECUTE:   (a) 1 2andC C  are in parallel and so have the same potential across them: 

  
V1 = V2 =

Q2
C2

= 30.0 × 10−6  C
3.00 × 10−6  F

= 10.0 V.  Therefore, Q1 = V1C1 = (10.0 V)(6.00 × 10−6  F) = 60.0 × 10−6  C.  

Since 3C  is in series with the parallel combination of 1 2and ,C C  its charge must be equal to their 

combined charge:   Q3 = 30.0 × 10−6  C + 60.0 × 10−6  C = 90.0 × 10−6  C.  

(b) The total capacitance is found from 1
Ceq

= 1
C12

+ 1
C3

= 1
9.00 × 10−6  F

+ 1
5.00 × 10−6  F

 and 

  
Ceq = 3.21 µF.  

  
Vab =

Qtot
Ceq

= 90.0 × 10−6 C
3.21× 10−6 F

= 28.0 V.  

EVALUATE:   
  
V3 =

Q3
C3

= 90.0 × 10−6  C
5.00 × 10−6  F

= 18.0 V.  Vab = V1 + V3 = 10.0 V + 18.0 V = 28.0 V, as we just found. 

 24.21. IDENTIFY:   Three of the capacitors are in series, and this combination is in parallel with the other two capacitors. 
SET UP:   For capacitors in series the voltages add and the charges are the same;  

eq 1 2

1 1 1 .
C C C

= + +…  For capacitors in parallel the voltages are the same and the charges add; 

eq 1 2 .C C C= + +…  .Q
C

V
=  

EXECUTE:   (a) The equivalent capacitance of the 18.0 nF, 30.0 nF and 10.0 nF capacitors in series is 5.29 nF. 
When these capacitors are replaced by their equivalent we get the network sketched in Figure 24.21. The 
equivalent capacitance of these three capacitors in parallel is 19.3 nF, and this is the equivalent capacitance of 
the original network. 

 

 

Figure 24.21 



Capacitance and Dielectrics   24-9 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

 

(b) tot eq (19 3 nF)(25 V) 482 nC.Q C V= = . =  
(c) The potential across each capacitor in the parallel network of Figure 24.21 is 25 V. 

6 5 6 5 6 5 (6 5 nF)(25 V) 162 nCQ C V. . .= = . = .  
(d) 25 V. 
EVALUATE:   As with most circuits, we must go through a series of steps to simplify it as we solve for the 
unknowns. 

 24.22. IDENTIFY:   Refer to Figure 24.10b in the textbook. For capacitors in parallel, eq 1 2 .C C C= + +…  For 

capacitors in series, 
eq 1 2

1 1 1 .
C C C

= + +…  

SET UP:   The 11 F,µ  4 Fµ  and replacement capacitor are in parallel and this combination is in series with 
the 9 0 Fµ.   capacitor. 

EXECUTE:   
eq

1 1 1 1 .
8 0 F (11 4 0 ) F 9 0 FC xµ µ µ

⎛ ⎞= = +⎜ ⎟.  + . + .⎝ ⎠
 (15 ) F 72 Fx µ µ+ =  and 57 F.x µ=  

EVALUATE:   Increasing the capacitance of the one capacitor by a large amount makes a small increase in 
the equivalent capacitance of the network. 

 24.23. IDENTIFY and SET UP:   The energy density is given by u = 1
2

ε0 E2. Use V = Ed  to solve  

for E. 

EXECUTE:   Calculate 4
3

400 V: 8 00 10  V/m.
5 00 10  m

V
E E

d −= = = . ×
. ×

 

Then 
  
u = 1

2
ε0 E2 = 1

2
(8.854 × 10−12  C2 /N ⋅ m2 )(8.00 × 104  V/m)2 = 0.0283 J/m3.  

EVALUATE:   E is smaller than the value in Example 24.8 by about a factor of 6 so u is smaller by about a 
factor of 26 36.=  

 24.24. IDENTIFY:   Apply / .C Q V=  C =
ε0 A

d
.  The work done to double the separation equals the change in the 

stored energy. 

SET UP:   
2

21 .
2 2

Q
U CV

C
= =  

EXECUTE:   (a)   V = Q/C = (3.90 µC)/(920 × 10−12  F) = 4240 V = 4.24 kV.  

(b) C =
ε0 A
d

 says that since the charge is kept constant while the separation doubles, that means that the 

capacitance halves and the voltage doubles to 8480 V = 8.48 kV. 

(c) 
  
Ui = Q2

2C
= (3.90 × 10−6  C)2

2(920 × 10−12  F)
= 8.27 × 10−3  J = 8.27 mJ.  If the separation is doubled while Q stays the 

same, the capacitance halves, and the energy stored doubles to 2Ui. The amount of work done to move the 
plates equals the difference in energy stored in the capacitor, so  

2 8.27 mJ.f i i i iU U U U U U =∆ = − = − =  
EVALUATE:   The oppositely charged plates attract each other so positive work must be done by an 
external force to pull them farther apart. 

 24.25. IDENTIFY:   .
ab

Q
C

V
=  

  
C =

ε0 A
d

.  .abV Ed=  The stored energy is 1
2 .QV  

SET UP:   31 50 10  m.d −= . ×  61 C 10  Cµ − =  

EXECUTE:   (a) 
6

110 0180 10  C 9 00 10  F 90 0 pF.
200 V

C
−

−. ×= = . × = .  
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(b) 
  
C =

ε0 A
d

 so 
  
A = Cd

ε0

= (9.00 × 10−11 F)(1.50 × 10−3  m)
8.854 × 10−12  C2 /(N ⋅ m2 )

= 0.0152 m2.  

(c) 6 3 3(3 0 10  V/m)(1 50 1 4.5 k0  m) 4 V5 10  V .V Ed −= = . × . × = . =×  

(d) 6 61 1
2 2Energy (0 0180 10  C)(200 V) 1 80 10  J 1 80 J.QV µ− −= = . × = . × = .   

EVALUATE:   We could also calculate the stored energy as 
2 6 2

11
(0 0180 10  C) 1 80 J.

2 2(9 00 10  F)
Q

C
µ

−

−
. ×= = .  

. ×
 

 24.26. IDENTIFY:   C =
ε0 A

d
.  The stored energy can be expressed either as 

2

2
Q

C
 or as 

2
,

2
CV  whichever is more 

convenient for the calculation. 
SET UP:   Since d is halved, C doubles. 
EXECUTE:   (a) If the separation distance is halved while the charge is kept fixed, then the capacitance 
increases and the stored energy, which was 8.38 J, decreases since 2/2 .U Q C=  Therefore the new energy 
is 4.19 J. 
(b) If the voltage is kept fixed while the separation is decreased by one half, then the doubling of the 
capacitance leads to a doubling of the stored energy to 16.8 J, using 2/2,U CV=  when V is held constant 
throughout. 
EVALUATE:   When the capacitor is disconnected, the stored energy decreases because of the positive work 
done by the attractive force between the plates. When the capacitor remains connected to the battery,  
Q = CV tells us that the charge on the plates increases. The increased stored energy comes from the battery 
when it puts more charge onto the plates. 

 24.27. IDENTIFY:   Use the rules for series and for parallel capacitors to express the voltage for each capacitor in 
terms of the applied voltage. Express U, Q, and E in terms of the capacitor voltage. 
SET UP:   Let the applied voltage be V. Let each capacitor have capacitance C. 21

2U CV=  for a single 

capacitor with voltage V. 
EXECUTE:   (a) Series: The voltage across each capacitor is /2.V  The total energy stored is 

2 21 1
s 2 42( ( /2) ) .U C V CV= =  

Parallel: The voltage across each capacitor is V. The total energy stored is  
2 21

p 22( )U CV CV= =  →  p s4 .U U=  

(b) Q CV=  for a single capacitor with voltage V. s p p s2[ ( /2)] ;  2( ) 2 ;  2 .Q C V CV Q CV CV Q Q= =  = = =  

(c) /E V d=  for a capacitor with voltage V. s p p s/2 ;   / ;   2 .E V d E V d E E=  =  =  
EVALUATE:   The parallel combination stores more energy and more charge since the voltage for each 
capacitor is larger for parallel. More energy stored and larger voltage for parallel means larger electric field 
in the parallel case. 

 24.28. IDENTIFY:   The two capacitors are in series. 
eq 1 2

1 1 1 ,
C C C

= + +…  C = Q
V

,  and 21
2 .U CV=  

SET UP:   For capacitors in series the voltages add and the charges are the same. 

EXECUTE:   (a) 
eq 1 2

1 1 1
C C C

= +  so 1 2
eq

1 2

(150 nF)(120 nF) 66 7 nF.
150 nF 120 nF

C C
C

C C
= = = .

+ +
 

6(66 7 nF)(48 V) 3.2 10  C 3.2 C.Q CV µ−= = . = × =   
(b) 3.2 CQ µ=  for each capacitor. 

(c) 2 9 21 1
eq2 2 (66 7 10  F)(48 V) 77 J.U C V µ−= = . × =   

(d) We know C and Q for each capacitor so rewrite U in terms of these quantities. 
2 2 21 1

2 2 ( / ) /2 .U CV C Q C Q C= = =  
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150 nF: 
6 2

9
(3.2 10  C) 34 J.
2(150 10  F)

U µ
−

−
×= =  

×
  

120 nF: 
6 2

9
(3.2 10  C) 43 J.
2(120 10  F)

U µ
−

−
×= =  

×
 

Note that 34 J 43 J 77 J,µ µ µ +  =   the total stored energy calculated in part (c). 

(e) 150 nF: 
6

9
3.2 10  C 21 V.
150 10  F

Q
V

C

−

−
×= = =
×

  

120 nF: 
6

9
3.2 10  C 27 V.
120 10  F

Q
V

C

−

−
×= = =
×

 

Note that these two voltages sum to 48 V, the voltage applied across the network. 
EVALUATE:   Since Q is the same, the capacitor with smaller C stores more energy 2( /2 )U Q C=  and has a 
larger voltage ( / ).V Q C=  

 24.29. IDENTIFY:   The two capacitors are in parallel. eq 1 2.C C C= +  .Q
C

V
=  21

2 .U CV=  

SET UP:   For capacitors in parallel, the voltages are the same and the charges add. 
EXECUTE:   (a) eq 1 2 35 nF 75 nF 110 nF.C C C= + = + =  9

tot eq (110 10  F)(220 V) 24 2 CQ C V µ−= = × = .   
(b) 220 VV =  for each capacitor. 
35 nF: 9

35 35 (35 10  F)(220 V) 7 7 C;Q C V µ−= = × = .   75 nF: 9
75 75 (75 10  F)(220 V) 16 5 C.Q C V µ−= = × = .   

Note that 35 75 tot .Q Q Q+ =  

(c) 2 9 21 1
tot eq2 2 (110 10  F)(220 V) 2 66 mJ.U C V −= = × = .  

(d) 35 nF: 2 9 21 1
35 352 2 (35 10  F)(220 V) 0 85 mJ;U C V −= = × = .  

75 nF: 2 9 21 1
75 752 2 (75 10  F)(220 V) 1 81 mJ.U C V −= = × = .  Since V is the same the capacitor with larger C 

stores more energy. 
(e) 220 V for each capacitor. 
EVALUATE:   The capacitor with the larger C has the larger Q. 

 24.30. IDENTIFY:   Capacitance depends on the geometry of the object. 

(a) SET UP:   The potential difference between the core and tube is V = λ
2πε0

ln(rb /ra ).  Solving for the 

linear charge density gives λ =
2πε0V

ln(rb /ra )
=

4πε0V
2ln(rb /ra )

.  

EXECUTE:   Using the given values gives 10

9 2 2

6 00 V 6 53 10 C/m.
2 002(9 00 10 N m /C ) ln
1 20

λ −.= = . ×
.⎛ ⎞. × ⋅ ⎜ ⎟.⎝ ⎠

 

(b) SET UP:   .Q Lλ=  

EXECUTE:   10 10(6 53 10  C/m)(0 350 m) 2 29 10  C.Q − −= . × . = . ×  
(c) SET UP:   The definition of capacitance is / .C Q V=  

EXECUTE:   
10

112 29 10 C 3 81 10 F.
6 00 V

C
−

−. ×  = = . ×  
.

 

(d) SET UP:   The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE:   11 2 101
2 (3 81 10  F)(6 00 V) 6 85 10  J.U − −= . × . = . ×  

EVALUATE:   The stored energy could be converted to heat or other forms of energy. 
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 24.31. IDENTIFY:   1
2 .U QV=  Solve for Q. / .C Q V=  

SET UP:   Example 24.4 shows that for a cylindrical capacitor, C
L

=
2πε0

ln(rb /ra )
.  

EXECUTE:   (a) 1
2U QV=  gives 

9
92 2(3 20 10 J) 1 60 10 C.

4 00 V
U

Q
V

−
−. ×= = = . ×

.
 

(b) C
L

=
2πε0

ln(rb /ra )
.  Solving for rb/ra gives 

9
0 0 0exp(2 / ) exp(2 / ) exp[2 (15 0 m)(4 00 V)/(1 60 10 C)] 8 05b

a

r
L C LV Q

r
πε πε πε −= = = . . . × = . .  

The radius of the outer conductor is 8.05 times the radius of the inner conductor. 
EVALUATE:   When the ratio /b ar r  increases, /C L  decreases and less charge is stored for a given potential 
difference. 

 24.32. IDENTIFY:   Apply 21
02 .u Eε =  

SET UP:   Example 24.3 shows that 
  
E = Q

4πε0r2
 between the conducting shells and that 

0
.

4
a b

ab
b a

Q r r
V

r rπε
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

EXECUTE:   2 2 2
(0 125 m)(0 148 m) 120 V 96 5 V m .
0 148 m 0 125 m

a b ab

b a

r r V
E

r r r r r

⎛ ⎞ . . . ⋅⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− . − .⎝ ⎠⎝ ⎠
 

(a) For 0 126 m,r = .  36 08 10  V/m.E = . ×  u = 1
2

ε0 E2 = 1.64 × 10−4  J/m3.  

(b) For 0 147 m,r = .  34 47 10  V/m.E = . ×  u = 1
2

ε0 E2 = 8.85 × 10−5  J/m3.  

EVALUATE:   (c) No, the results of parts (a) and (b) show that the energy density is not uniform in the 
region between the plates. E decreases as r increases, so u decreases also. 

 25.33. IDENTIFY:   0.C KC=  21
2 .U CV=  

SET UP:   0 12 5 FC µ= .   is the value of the capacitance without the dielectric present. 
EXECUTE:   (a) With the dielectric, (3 75)(12 5 F) 46 9 F.C µ µ= . .  = .   

Before: 2 6 21 1
02 2 (12 5 10  F)(24 0 V) 3 60 mJ.U C V −= = . × . = .  

After: 2 6 21 1
2 2 (46 9 10  F)(24 0 V) 13 5 mJ.U CV −= = . × . = .  

(b) 13 5 mJ 3 6 mJ 9 9 mJ.U∆ = . − . = .  The energy increased. 
EVALUATE:   The power supply must put additional charge on the plates to maintain the same potential 
difference when the dielectric is inserted. 1

2 ,U QV=  so the stored energy increases. 

 24.34. IDENTIFY:   V Ed=  and / .C Q V=  With the dielectric present, 0.C KC=  
SET UP:   V Ed=  holds both with and without the dielectric. 
EXECUTE:   (a) 4 3(3 00 10  V/m)(1 50 10  m) 45 0 V.V Ed −= = . × . × = .  

  Q = C0V = (8.00 × 10−12  F)(45.0 V) = 3.60 × 10−10  C = 360 pC.  

(b) With the dielectric,   C = KC0 = (2.70)(8.00 pF) = 21.6 pF.  V is still 45.0 V, so 

  Q = CV = (21.6 × 10−12  F)(45.0 V) = 9.72 × 10−10  C = 972 pC.  
EVALUATE:   The presence of the dielectric increases the amount of charge that can be stored for a given 
potential difference and electric field between the plates. Q increases by a factor of K. 
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 24.35. IDENTIFY and SET UP:   Q is constant so we can apply Eq. (24.14). The charge density on each surface of 
the dielectric is given by i (1 1/ ).Kσ σ= −  

EXECUTE:   
5

0 0
5

3 20 10  V/m so 1 28.
2 50 10  V/m

E E
E K

K E
. ×= = = = .
. ×

 

(a) i (1 1/ ).Kσ σ= −  
12 2 2 5 6 2

0 0 (8 854 10  C /N m )(3 20 10  N/C) 2 833 10  C/m .Eσ ε − −= = . × ⋅ . × = . ×  
6 2 7 2

i (2 833 10  C/m )(1 1/1 28) 6 20 10  C/m .σ − −= . × − . = . ×  
(b) As calculated above, 1 28.K = .  
EVALUATE:   The surface charges on the dielectric produce an electric field that partially cancels the 
electric field produced by the charges on the capacitor plates. 

 24.36. IDENTIFY:   Capacitance depends on geometry, and the introduction of a dielectric increases the 
capacitance. 
SET UP:   For a parallel-plate capacitor with dielectric, C = Kε0 A/d.  
EXECUTE:   (a) Solving for d gives 

  
d =

Kε0 A
C

= (3.0)(8.85 × 10−12 C2 /N ⋅ m2 )(0.22 m)(0.28 m)
1.0 × 10−9  F

= 1.64 × 10−3  m = 1.64 mm.  

Dividing this result by the thickness of a sheet of paper gives 1 64 mm 8 sheets.
0 20 mm/sheet

. ≈
.

 

(b) Solving for the area of the plates gives A = Cd
Kε0

= (1.0 × 10−9  F)(0.012 m)
(3.0)(8.85 × 10−12  C2 /N ⋅ m2 )

= 0.45 m2.  

(c) Teflon has a smaller dielectric constant (2.1) than the posterboard, so she will need more area to 
achieve the same capacitance. 
EVALUATE:   The use of dielectric makes it possible to construct reasonable-sized capacitors since the 
dielectric increases the capacitance by a factor of K. 

 24.37. IDENTIFY and SET UP:   For a parallel-plate capacitor with a dielectric we can use the equation 

  C = Kε0 A/d.  Minimum A means smallest possible d. d is limited by the requirement that E be less than 
71 60 10  V/m. ×  when V is as large as 5500 V. 

EXECUTE:   4
7

5500 V so 3 44 10  m.
1 60 10  V/m

V
V Ed d

E
−= = = = . ×

. ×
 

Then 
  
A = Cd

Kε0
= (1.25 × 10−9  F)(3.44 × 10−4  m)

(3.60)(8.854 × 10−12  C2 /N ⋅ m2 )
= 0.0135 m2.  

EVALUATE:   The relation V Ed= applies with or without a dielectric present. A would have to be larger if 
there were no dielectric. 

 24.38. IDENTIFY:   We can model the cell wall as a large sheet carrying equal but opposite charges, which makes 
it equivalent to a parallel-plate capacitor. 

SET UP:   With air between the layers, E0 = Q
ε0 A

= σ
ε0

 and 0 0 .V E d=  The energy density in the electric 

field is 
  
u = 1

2
ε0 E2.  The volume of a shell of thickness t and average radius R is 24 .R tπ  The volume of a 

solid sphere of radius R is 34
3 .Rπ  With the dielectric present, 0E

E
K

=  and 0 .V
V

K
=  

EXECUTE:   (a) 
  
E0 = σ

ε0
= 0.50 × 10−3  C/m2

8.854 × 10−12  C2 /(N ⋅ m2 )
= 5.6 × 107  V/m.  

(b) 7 9
0 0 (5 6 10  V/m)(5 0 10  m) 0 28 V.V E d −= = . × . × = .  The outer wall of the cell is at higher potential, 

since it has positive charge. 
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(c) For the cell, 34
cell 3 ,V Rπ=  which gives 

1/31/3 16 3
6cell3 3(10  m ) 2 9 10  m.

4 4
V

R
π π

−
−⎛ ⎞⎛ ⎞= = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 The volume 

of the cell wall is 2 6 2 9 19 3
wall 4 4 (2 9 10 m) (5 0 10  m) 5 3 10  m .V R tπ π − − −= = . × . × = . ×  The energy density in 

the cell wall is 
  
u0 = 1

2
ε0 E0

2 = 1
2
[8.854 × 10−12  C2 /(N ⋅ m2 )](5.6 × 107  V/m)2 = 1.39 × 104  J/m3.  The total 

electric-field energy in the cell wall is 4 3 19 3 15(1 39 10  J/m )(5 3 10  m ) 7 10  J.− −. × . × = ×  

(d) 
7

70 5 6 10  V/m 1 0 10  V/m
5 4

E
E

K
. ×= = = . ×

.
 and 0 0 28 V 0 052 V.

5 4
V

V
K

.= = = .
.

 

EVALUATE:   To a first approximation, many biological structures can be modeled as basic circuit 
elements.  

 24.39. IDENTIFY:   / .C Q V=  0.C KC=  .V Ed=  
SET UP:   Table 24.1 gives 3 1K = .  for mylar. 
EXECUTE:   (a) 7 6

0 0 0 0( 1) ( 1) (2 1)(2 5 10 F)(12 V) 6 3 10 C.Q Q Q K Q K C V − −∆ = − = − = − = . . × = . ×  

(b) i (1 1/ )Kσ σ= −  so 6 6
i (1 1/ ) (9 3 10  C)(1 1/3 1) 6 3 10  C.Q Q K − −= − = . × − . = . ×  

(c) The addition of the mylar doesn’t affect the electric field since the induced charge cancels the 
additional charge drawn to the plates. 
EVALUATE:   /E V d= and V is constant so E doesn’t change when the dielectric is inserted. 

 24.40. IDENTIFY and SET UP:   The energy density is due to the electric field in the dielectric. 21
2 ,u Eε =  where 

ε ε= 0.K  .V Ed=  In this case, E = 0.800Em.  

EXECUTE:   (a) Using 
  
 u = 1

2
ε E2  with ε ε= 0 ,K  we have  

u = (1/2)(2.6) –1 7 2 32 2 2 0.800 2.0 10(8.854 10  C /N m )[( )( )V/m 2945 J/ ,] m× ⋅ × =  which rounds to 2900 J/m3. 
(b) First get the plate separation d: V = Ed gives 

7 5/ (500 )/ 0.800 2.0 10 V/m[( )( )] 3.125 10 m.d V E V −×= = = ×   
The stored energy is volume ,U u uAd×= =  so  

3 3 –5 –3 2 2( ) [( )/ 0.200 10 J / 2945 J/m 3.125 10 m 2.2 10 m 22( ) cm] .A U ud −= = × × = × =   
EVALUATE:   If this capacitor has square plates, their dimensions would be x = (22 cm2)1/2 = 4.7 cm on 
each side. This is considerably larger than ordinary laboratory capacitors used in circuits. 

 24.41. (a) IDENTIFY and SET UP:   Since the capacitor remains connected to the power supply the potential 
difference doesn’t change when the dielectric is inserted. Use  U = 1

2
CV 2  to calculate V and combine it 

with 0/K C C=  to obtain a relation between the stored energies and the dielectric constant and use this to 
calculate K. 

EXECUTE:   Before the dielectric is inserted 21
0 02U C V=  so 

5
0

9
0

2 2(1 85 10  J) 10 1 V.
360 10  F

U
V

C

−

−
. ×= = = .

×
 

(b) 0/ .K C C=  
2 21 1

0 0 0 02 2,  so / / .U C V U CV C C U U=  = =  
5 5

5
0

1 85 10  J 2 32 10  J 2 25.
1 85 10  J

U
K

U

− −

−
. × + . ×= = = .

. ×
 

EVALUATE:   K increases the capacitance and then from 21
2 ,U CV=  with V constant an increase in C 

gives an increase in U. 
 24.42. IDENTIFY:   0.C KC=  / .C Q V=  .V Ed=  

SET UP:   Since the capacitor remains connected to the battery the potential between the plates of the 
capacitor doesn’t change. 
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EXECUTE:   (a) The capacitance changes by a factor of K when the dielectric is inserted. Since V is 

unchanged (the battery is still connected), after after

before before

45 0 pC 1 80.
25 0 pC

C Q
K

C Q
.= = = = .
.

 

(b) The area of the plates is 2 2 3 2(0 0300 m) 2 827 10 mrπ π −= . = . ×  and the separation between them is 

thus 
12 2 2 3 2

30
12

(8 85 10 C /N m )(2 827 10  m ) 2 00 10 m.
12 5 10  F

A
d

C
ε − −

−
−

. ×  ⋅ . ×= = = . ×
. ×

 Before the dielectric is inserted, 

  
C =

ε0 A
d

= Q
V

 and 
12 3

12 2 2 3 2
0

(25 0 10  C)(2 00 10  m) 2 00 V.
(8 85 10  C /N m )(2 827 10  m )

Qd
V

Aε

− −

− −
. × . ×= = = .

. × ⋅ . ×
 The battery remains 

connected, so the potential difference is unchanged after the dielectric is inserted. 

(c) Before the dielectric is inserted, 
12

12 2 2 3 2
0

25 0 10  C 1000 N/C.
(8 85 10  C /N m )(2 827 10  m )

Q
E

Aε

−

− −
. ×= = =

. × ⋅ . ×
 

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is also unchanged. 

EVALUATE:   3
2 00 V 1000 N/C,

2 00 10  m
V

E
d −

.= = =
. ×

 whether or not the dielectric is present. This agrees with 

the result in part (c). The electric field has this value at any point between the plates. We need d to 
calculate E because V is the potential difference between points separated by distance d. 

 24.43. IDENTIFY:   Apply encl-free

0

Q
K d

ε
⋅ =∫ E A
GG

v  to calculate .E V Ed=  and /C Q V=  apply whether there is a 

dielectric between the plates or not. 

(a) SET UP:   Apply encl-free

0

Q
K d

ε
⋅ =∫ E A
GG

v  to the dashed surface in Figure 24.43. 

 

 
EXECUTE:   encl-free

0
.Q

K d
ε

⋅ =∫ E A
GG

v  

.K d KEA′⋅ =∫ E A
GG

v   

since 0E =  outside the plates 
encl-free ( / ) .Q A Q A Aσ= ′ = ′  

Figure 24.43 
  

Thus 
0 0

( / )  and .Q A A Q
KEA E

AKε ε
′′ = =  

SET UP and EXECUTE:   (b) 
0

.Qd
V Ed

AKε
= =  

(c) 
  
C = Q

V
= Q

Qd /ε0 AK
= K

ε0 A
d

= KC0.  

EVALUATE:   Our result shows that 0/ ,K C C=  which is Eq. (24.12). 
 24.44. IDENTIFY:   Gauss’s law in dielectrics has the same form as in vacuum except that the electric field is 

multiplied by a factor of K and the charge enclosed by the Gaussian surface is the free charge. The 
capacitance of an object depends on its geometry. 
(a) SET UP:   The capacitance of a parallel-plate capacitor is C = Kε0 A/d  and the charge on its plates is 

.Q CV=  
EXECUTE:   First find the capacitance: 

  
C =

Kε0 A
d

= (2.1)(8.85 × 10−12  C2 /N ⋅ m2 )(0.0225 m2 )
1.00 × 10−3  m

= 4.18 × 10−10  F.  

Now find the charge on the plates: 10 9(4 18 10  F)(12 0 V) 5 02 10  C.Q CV − −= = . × . = . ×  
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(b) SET UP:   Gauss’s law within the dielectric gives KEA = Qfree /ε0.  
EXECUTE:   Solving for E gives 

9
4free

2 12 2 2
0

5 02 10  C 1 20 10  N/C.
(2 1)(0 0225 m )(8 85 10  C /N m )

Q
E

KAε

−

−
. ×= = = . ×

. . . × ⋅
 

(c) SET UP:   Without the Teflon and the voltage source, the charge is unchanged but the potential 
increases, so 0 /C A dε=  and Gauss’s law now gives EA = Q/ε0.  
EXECUTE:   First find the capacitance: 

  
C =

ε0 A
d

= (8.85 × 10−12  C2 /N ⋅ m2 )(0.0225 m2 )
1.00 × 10−3  m

= 1.99 × 10−10  F.  

The potential difference is 
9

10
5 02 10  C 25 2 V.
1 99 10  F

Q
V

C

−

−
. ×= = = .
. ×

 From Gauss’s law, the electric field is 

  
E = Q

ε0 A
= 5.02 × 10−9  C

(8.85 × 10−12  C2 /N ⋅ m2 )(0.0225 m2 )
= 2.52 × 104  N/C.  

EVALUATE:   The dielectric reduces the electric field inside the capacitor because the electric field due to 
the dipoles of the dielectric is opposite to the external field due to the free charge on the plates. 

 24.45. IDENTIFY:   / ,P E t=  where E is the total light energy output. The energy stored in the capacitor is 21
2 .U CV=  

SET UP:   0 95 .E U= .  
EXECUTE:   (a) The power output is 52.70 10  W,×  and 95% of the original energy is converted, so 

5 3(2 70 10  W)(1 48 10  s) 400 J.E Pt −= = . × . × =  400 J 421 J.
0 95

U = =
.

 

(b) 21
2U CV= so 2 2

2 2(421 J) 0 054 F.
(125 V)

U
C

V
= = = .  

EVALUATE:   For a given V, the stored energy increases linearly with C. 

 24.46. IDENTIFY and SET UP:   
  
C =

ε0 A
d

.  / .C Q V=  .V Ed=  21
2 .U CV=  With the battery disconnected,  

Q is constant. When the separation d is doubled, C is halved. 

EXECUTE:   (a) 
  
C =

ε0 A
d

=
ε0 (0.12 m)2

3.7 × 10−3  m
= 3.446 × 10−11 F,  which rounds to 34 pF. 

(b)   Q = CV = (3.446 × 10−11 F)(12 V) = 4.135 × 10−10  C,  which rounds to 410 pC. 

(c) 3/ (12 V)/(3 7 10  m) 3200 V/m.E V d −= = . × =  

(d) 
  
U = 1

2
CV 2 = 1

2
(3.446 × 10−11 F)(12 V)2 = 2.48 × 10−9  J,  which rounds to 2.5 nJ. 

(e) If the battery is disconnected, so the charge remains constant, and the plates are pulled farther apart to 
0.0074 m, then the calculations above can be carried out just as before, and we find:  
(a) 111.7 10   17  pF.FC − == ×   

(b) 104.1 10   410 pC.CQ − == ×   
(c) 3200 V/m.E =  

(d) 
  
U = Q2

2C
= (4.1× 10−10 C)2

2(1.7 × 10−11 F)
= 5.0 × 10−9 J = 5.0 nJ.  

EVALUATE:   Q is unchanged. 
  
E = Q

ε0 A
 so E is therefore unchanged. U doubles because C is halved with 

Q unchanged. The additional stored energy comes from the work done by the force that pulled the plates 
apart.  
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 24.47. IDENTIFY:   0 .A
C

d
ε=  

SET UP:   5 24 2 10  m .A −= . ×  The original separation between the plates is 30 700 10  m.d −= . ×  d ′  is the 
separation between the plates at the new value of C. 

EXECUTE:   
5 2

130 0
0 4

(4 20 10  m ) 5 31 10  F.
7 00 10  m

A
C

d
ε ε−

−
−

. ×= = = . ×
. ×

 The new value of C is 

13
0 0 25 pF 7 81 10 F.C C −= + . = . ×  But C =

Aε0
d ′

,  so 
5 2

40 0
13

(4 20 10  m ) 4 76 10 m.
7 81 10  F

A
d

C
ε ε−

−
−

. ×′ = = = . ×
. ×

 

Therefore the key must be depressed by a distance of 4 47 00 10 m 4 76 10 m 0 224 mm.− −. × − . × = .  
EVALUATE:   When the key is depressed, d decreases and C increases. 

 24.48. IDENTIFY:   
  
C = KC0 = Kε0

A
d

.  V Ed=  for a parallel plate capacitor; this equation applies whether or 

not a dielectric is present. 
SET UP:   2 4 21 0 cm 1 0 10  m .A −= . = . ×  

EXECUTE:   (a) 
12 4 2

2
9

(8 85 10  F/m)(1 0 10  m )(10) 1 18 F per cm .
7 5 10  m

C µ
− −

−
. × . ×= = .  

. ×
 

(b) 7
9

85 mV 1 13 10  V/m.
7 5 10  m

V
E

d −= = = . ×
. ×

 

EVALUATE:   The dielectric material increases the capacitance. If the dielectric were not present, the same 
charge density on the faces of the membrane would produce a larger potential difference across the 
membrane. 

 24.49. IDENTIFY:   Some of the charge from the original capacitor flows onto the uncharged capacitor until the 
potential differences across the two capacitors are the same.  

SET UP:   .
ab

Q
C

V
=  Let 1 20 0 FC µ= .   and 2 10 0 F.C µ= .   The energy stored in a capacitor is 

  
1
2

QVab = 1
2

CVab
2 = Q2

2C
.  

EXECUTE:   (a) The initial charge on the 20.0 Fµ  capacitor is 
6

1(800 V) (20 0 10  F)(800 V) 0 0160 C.Q C −= = . × = .  
(b) In the final circuit, charge Q is distributed between the two capacitors and 1 2 .Q Q Q+ =  The final 

circuit contains only the two capacitors, so the voltage across each is the same, 1 2 .V V=  Q
V

C
=  so 1 2V V=  

gives 1 2

1 2
.Q Q

C C
=  1

1 2 2
2

2 .C
Q Q Q

C
= =  Using this in 1 2 0 0160 CQ Q+ = .  gives 23 0 0160 CQ = .  and 

3
2 5 33 10  C.Q −= . ×  2

22 1 066 10  C.Q Q −= = . ×  
2

1
1 6

1

1 066 10  C 533 V.
20 0 10  F

Q
V

C

−

−
. ×= = =

. ×
 

23
2

2 26
2

5 33 10  C 533 V.
10 0 10  F

Q
V

C
. ×= = =
. ×

 The potential differences across the capacitors are the same, as they 

should be. 
(c) 2 2 21 1 1

1 2 1 22 2 2Energy ( )C V C V C C V= + = +  gives 
6 6 21

2Energy (20 0 10  F 10 0 10  F)(533 V) 4 26 J.− −= . × + . × = .  

(d) The 20 0 Fµ.   capacitor initially has 2 6 21 1
12 2energy (20 0 10  F)(800 V) 6 40 J.C V −= = . × = .  The decrease 

in stored energy that occurs when the capacitors are connected is 6 40 J 4 26 J 2 14 J.. − . = .  
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EVALUATE:   The decrease in stored energy is because of conversion of electrical energy to other forms 
during the motion of the charge when it becomes distributed between the two capacitors. Thermal energy is 
generated by the current in the wires and energy is emitted in electromagnetic waves. 

 24.50. IDENTIFY:   Initially the capacitors are connected in parallel to the source and we can calculate the charges 1Q  

and 2Q on each. After they are reconnected to each other the total charge is 2 1.Q Q Q= −  
2

21
2 .

2
Q

U CV
C

= =  

SET UP:   After they are reconnected, the charges add and the voltages are the same, so eq 1 2,C C C= +  as 
for capacitors in parallel. 
EXECUTE:   Originally 4

1 1 1 (9 0 F) (64 V) 5.8 10 C = 580 C,Q C V µ µ−= = . = ×  and 
4

2 2 2 (4 0 F)(64 V) 2.6 10 C = 260 C.Q C V µ µ−= = . = ×  eq 1 2 13 0 F.C C C µ= + = .  The original energy stored 

is 2 6 2 21 1
eq2 2 (13 0 10 F)(64 V) 2.662 10  J.U C V − −= = . × = ×  Disconnect and flip the capacitors, so now the 

total charge is 4
2 1 3.20 10 CQ Q Q −= − = ×  and the equivalent capacitance is still the same, eq 13 0 F.C µ= .  

The new energy stored is 
2 4 2

3
6

eq

(3.20 10 C) 3.983 10 J.
2 2(13 0 10 F)
Q

U
C

−
−

−
×= = = ×

. ×
 The change in stored energy is 

3 2 23.983 10 J 2.662 10 J 2.3 10 J = –0.023 J.U − − −∆ = × − × = − ×  
EVALUATE:   When they are reconnected, charge flows and thermal energy is generated and energy is 
radiated as electromagnetic waves. 

 24.51. IDENTIFY:   Simplify the network by replacing series and parallel combinations by their equivalent. The 
stored energy in a capacitor is 21

2 .U CV=  

SET UP:   For capacitors in series the voltages add and the charges are the same; 
eq 1 2

1 1 1 .
C C C

= + +…  For 

capacitors in parallel the voltages are the same and the charges add; eq 1 2C C C= + +…  .Q
C

V
=  21

2 .U CV=  

EXECUTE:   (a) Find eqC  for the network by replacing each series or parallel combination by its 
equivalent. The successive simplified circuits are shown in Figure 24.51. 

2 6 2 41 1
tot eq2 2 (2 19 10  F)(12 0 V) 1 58 10  J 158 J.U C V µ− −= = . × . = . × =   

(b) From Figure 24.51c, 6 5
tot eq (2 19 10  F)(12 0 V) 2 63 10  C.Q C V − −= = . × . = . ×  From Figure 24.51b, 

5
4 8 2 63 10  C.Q −

. = . ×  
5

4 8
4 8 6

4 8

2 63 10  C 5 48 V.
4 80 10  F

Q
V

C

−
.

. −
.

. ×= = = .

. ×
 

2 6 2 51 1
4 8 2 2 (4 80 10  F)(5 48 V) 7 21 10  J 72 1 J.U CV µ− −

. = = . × . = . × = .   

This one capacitor stores nearly half the total stored energy. 

EVALUATE:   
2

.
2
Q

U
C

=  For capacitors in series the capacitor with the smallest C stores the greatest amount 

of energy. 
 

     

Figure 24.51 
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 24.52. IDENTIFY and SET UP:   The charge Q is the same on capacitors in series, and the potential V is the same 
for capacitors in parallel. C1 is in series with C2, and that combination is in parallel with C3. The C1-C2-C3 
combination is in series with C4.  V = Q/C.  
EXECUTE:   (a) Since C1 and C2 are in series, and that combination is in parallel with C3, the potential 
difference across the C1-C2 combination is the same as the potential difference across C3, which is 40.0 V. 
Also, Q1 = Q2 = Q. 
V1 + V2 = 40.0 V. 
Q/C1 + Q/C2 = 40.0 V. 
Q/(6.00 µF) + Q/(3.00 µF) = 40.0 V. 
Q = 80.0 µC. 
Therefore  
V1 = Q/C1 = (80.0 µC)/(6.00 µF) = 13.3 V. 
V2 = Q/C2 = (80.0 µC)/(3.00 µF) = 26.7 V. 
(b) First get the charge Q4 on C4. We know that Q1 = Q2 = Q = 80.0 µC. We also have  
Q3 = C3V3 = (4.00 µF)(40.0 V) = 160 µC. 
Q4 = Q + Q3 = 80.0 µC + 160 µC = 240 µC. 
V4 = Q4/C4 = (240 µC)/(8.00 µF) = 30.0 V. 
(c) Vab = V3 + V4 = 40.0 V + 30.0 V = 70.0 V. 
EVALUATE:   C3 and C4 are not in parallel, so V3 ≠ V4. 

 24.53. (a) IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. 
SET UP:   The network is sketched in Figure 24.53a. 

 

 1 5 8 4 F.C C µ= = .   

2 3 4 4 2 F.C C C µ= = = .   

Figure 24.53a   
 

EXECUTE:   Simplify the circuit by replacing the capacitor combinations by their equivalents: 3 4and C C  
are in series and can be replaced by 34C  (Figure 24.53b): 

 

 

34 3 4

1 1 1 .
C C C

= +  

3 4

34 3 4

1 .C C
C C C

+=  

Figure 24.53b   
 

3 4
34

3 4

(4 2 F)(4 2 F) 2 1 F.
4 2 F 4 2 F

C C
C

C C
µ µ µ
µ µ

.  .  = = = .  
+ .  + .  

 

2 34 and C C  are in parallel and can be replaced by their equivalent (Figure 24.53c): 
 

 234 2 34.C C C= +  

234 4 2 F 2 1 F.C µ µ= .  + .   

234 6 3 F.C µ= .   

Figure 24.53c   
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1 5 234, , and C C C  are in series and can be replaced by eqC  (Figure 24.53d): 
 

 

eq 1 5 234

1 1 1 1 .
C C C C

= + +  

eq

1 2 1 .
8 4 F 6 3 FC µ µ

= +
.  .  

 

eq 2 5 F.C µ= .   

Figure 24.53d   
 

EVALUATE:   For capacitors in series the equivalent capacitor is smaller than any of those in series. For 
capacitors in parallel the equivalent capacitance is larger than any of those in parallel. 
(b) IDENTIFY and SET UP:   In each equivalent network apply the rules for Q and V for capacitors in series 
and parallel; start with the simplest network and work back to the original circuit. 
EXECUTE:   The equivalent circuit is drawn in Figure 24.53e. 

 

 eq eq .Q C V=  

eq (2 5 F)(220 V) 550 C.Q µ µ= .  =   

Figure 24.53e   
 

1 5 234 550 CQ Q Q µ= = =   (capacitors in series have same charge). 

1
1

1

550 C 65 V.
8 4 F

Q
V

C
µ
µ
 = = =

.  
 

5
5

5

550 C 65 V.
8 4 F

Q
V

C
µ
µ
 = = =

.  
 

234
234

234

550 C 87 V.
6 3 F

Q
V

C
µ
µ
 = = =

.  
 

Now draw the network as in Figure 24.53f. 
 

 2 34 234 87 VV V V= = =  
capacitors in parallel have the same potential. 

Figure 24.53f   
 

2 2 2 (4 2 F)(87 V) 370 C.Q C V µ µ= = .  =   

34 34 34 (2 1 F)(87 V) 180 C.Q C V µ µ= = .  =   
Finally, consider the original circuit (Figure 24.53g). 

 

 3 4 34 180 CQ Q Q µ= = =   
capacitors in series have the same charge. 

Figure 24.53g   
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3
3

3

180 C 43 V.
4 2 F

Q
V

C
µ
µ
 = = =

.  
 

4
4

4

180 C 43 V.
4 2 F

Q
V

C
µ
µ

 = = =
.

 

Summary: 1 1550 C, 65 V.Q Vµ=  =  

2 2370 C, 87 V.Q Vµ=  =  

3 3180 C, 43 V.Q Vµ=  =  

4 4180 C, 43 V.Q Vµ=  =  

5 5550 C, 65 V.Q Vµ=  =  
EVALUATE:   3 4 2 1 2 5 and 220 VV V V V V V+ = + + =  (apart from some small rounding error) 

1 2 3 5 2 4 and .Q Q Q Q Q Q= + = +  

 24.54.  IDENTIFY and SET UP:   The total stored energy is 21
2 ,U CV =  and the energy density is u = U/(volume). 

The volume of a cylinder is πr2l. 21
2 ,u Eε =  where ε ε= 0.K  

EXECUTE:   (a) 2 2 41
2 1/2 3000 F( )( )( )2.7 V 1.09 10 J,U CV = = × =  which rounds to 41.1 10 J.×  

(b) 43.0 Wh 3.0 J/s 3600 s 1.1( )( ) 10 J,= = ×  which agrees with our result in (a) within the accuracy of the 
given numbers. 
(c) 2 4 2 7 3( ) ( ) ( ) [/ volume / r 1.09 10 J / 0.030 m 0.135( ) ( )]m 2.9 10 J/m .u U U π l π= = = × = ×  

(d) For polyester, K = 3.3 and 7
m 6 10 V/m,E = ×  so  

2 –12 2 2 7 2 4 31
02 ( )( )(8.854 10  C /N m )(6 10 V/m1/2 3.3 ) 5.3 10 J/m .u K Eε == × ⋅ × = ×   

7 3 4 3
polyester/ 2.9 10 J/m / 5.3 10 J/m( ) 5 0,( ) 4u u = × × =  so this capacitor can have over 500 times the energy 

density of a polyester capacitor. 
EVALUATE:   It requires only 2.7 V to give this capacitor a stored energy of 41.1 10 J.×  For a typical  

1.0-µF capacitor, the voltage would be 1/2 4 –6 5( ) [ ( )2 / 2 1.11 0 J / 1.0 10 F 1 5( . 10 V)]V U C= = × × = × =  
150 kV.  That’s quite a difference from 2.7 V! 

 24.55. IDENTIFY:   Capacitors in series carry the same charge, while capacitors in parallel have the same potential 
difference across them. 
SET UP:   150 V,abV =  1 150 C,Q µ=   3 450 C,Q µ=   and / .V Q C=  

EXECUTE:   1 3 00 FC µ= .   so 1
1

1

150 C 50 0 V
3 00 F

Q
V

C
µ
µ

 = = = .
.  

 and 1 2 50 0 V.V V= = .  1 3 abV V V+ =  so 

3 100 V.V =  3
3

3

450 C 4 50 F.
100 V

Q
C

V
µ µ = = = .   1 2 3Q Q Q+ =  so 2 3 1 450 C 150 C 300 CQ Q Q µ µ µ= − =  −  =   

and 2
2

2

300 C 6 00 F.
50 0 V

Q
C

V
µ µ = = = .  

.
 

EVALUATE:   Capacitors in parallel only carry the same charge if they have the same capacitance. 
 24.56. IDENTIFY:   Apply the rules for combining capacitors in series and in parallel. 

SET UP:   With the switch open, each pair of 3 00 Fµ.   and 6 00 Fµ.   capacitors are in series with each other 
and each pair is in parallel with the other pair. When the switch is closed, each pair of 3 00 Fµ.   and 
6 00 Fµ.   capacitors are in parallel with each other and the two pairs are in series. 

EXECUTE:   (a) With the switch open 
1 1

eq
1 1 1 1 4 00 F.

3 F 6 F 3 F 6 F
C µ

µ µ µ µ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + + + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

4
total eq (4 00 F)(210 V) 8 40 10 C.Q C V µ −= = . = . ×  By symmetry, each capacitor carries 44 20 10  C.−. ×  The 
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voltages are then calculated via / .V Q C=  This gives 3/ 140 VadV Q C= =  and 6/ 70 V.acV Q C= =  
70 V.cd ad acV V V= − =  

(b) When the switch is closed, the points c and d must be at the same potential, so the equivalent 

capacitance is 
1

eq
1 1 4 5 F.

(3 00 6 00) F (3 00 6 00) F
C µ

µ µ

−
⎛ ⎞= + = .⎜ ⎟. + . . + .⎝ ⎠

 

4
total eq (4 50 F)(210 V) 9 5 10 C,Q C V µ −= = . = . ×  and each capacitor has the same potential difference of 

105 V (again, by symmetry). 
(c) Consider the 3 3.00 FC µ= and 6 6.00 FC µ=  capacitors in the upper branch of the network.  The 
only way for the net charge netQ  on the negative plate of C3 and the positive plate of C6 to change is 
by charge to flow through the switch.  With the switch open all four capacitors have the same charge 
and Qnet = 0.  With the switch closed the charge on C3 is 3 (3.00 F)(105 V) 315 CQ µ µ= =  and the 
charge on C6 is 6 (6.00 F)(105 V) 630 CQ µ µ= =  and net 2 1 315 C.Q Q Q µ= − =  Therefore, the change in 

netQ  is 315 Cµ  and this is the amount of charge that flowed through the switch when it was closed. 
EVALUATE:   When the switch is closed the charge must redistribute to make points c and d be at the same 
potential. 

 24.57. (a) IDENTIFY:   Replace the three capacitors in series by their equivalent. The charge on the equivalent 
capacitor equals the charge on each of the original capacitors. 
SET UP:   The three capacitors can be replaced by their equivalent as shown in Figure 24.57a. 

 

 

Figure 24.57a 
 

EXECUTE:   3 1
eq 1 2 3

1 1 1 1 4/2 so 
8 4 F

C C
C C C C µ

= = + + =
.  

 and eq 8 4 F/4 2 1 F.C µ µ= .  = .   

eq (2 1 F)(36 V) 76 C.Q C V µ µ= = .  =   

The three capacitors are in series so they each have the same charge: 1 2 3 76 C.Q Q Q µ= = =   
EVALUATE:   The equivalent capacitance for capacitors in series is smaller than each of the original 
capacitors. 
(b) IDENTIFY and SET UP:   Use 1

2 .U QV=  We know each Q and we know that 1 2 3 36 V.V V V+ + =  

EXECUTE:   1 1 1
1 1 2 2 3 32 2 2 .U Q V Q V Q V= + +  

But 1 2 3Q Q Q Q= = =  so 1
1 2 32 ( ).U Q V V V= + +  

But also 31 1
1 2 3 2 236 V, so (76 C)(36 V) 1 4 10  J.V V V V U QV µ −+ + = = = =  = . ×  

EVALUATE:   We could also use 2/2U Q C=  and calculate U for each capacitor. 
(c) IDENTIFY:   The charges on the plates redistribute to make the potentials across each capacitor the same. 
SET UP:   The capacitors before and after they are connected are sketched in Figure 24.57b. 

 

 

Figure 24.57b 
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EXECUTE:   The total positive charge that is available to be distributed on the upper plates of the three 
capacitors is 0 01 02 03 3(76 C) 228 C.Q Q Q Q µ µ= + + =  =   Thus 1 2 3 228 C.Q Q Q µ+ + =   After the circuit is 
completed the charge distributes to make 1 2 3.V V V= =  1 2 1 1 2 2/ and  so / /V Q C V V Q C Q C= = =  and then 

1 2C C=  says 1 2.Q Q=  1 3V V=  says 1 1 3 3 1 3 1 3 3 3/ /  and ( / ) (8 4 F 4 2 F) 2 .Q C Q C Q Q C C Q Qµ µ= = = .  / . =  
Using 2 1 1 3 and 2Q Q Q Q= =  in the above equation gives 3 3 32 2 228 C.Q Q Q µ+ + =   

3 3 1 25 228 C and 45 6 C, 91 2 CQ Q Q Qµ µ µ=  = .  = = .   

Then 1 2
1 2

1 2

91 2 C 91 2 C11 V, 11 V, and
8 4 F 8 4 F

Q Q
V V

C C
µ µ
µ µ

.  .  = = = = = =
.  .  

 3
3

3

45 6 C 11 V.
4 2 F

Q
V

C
µ
µ

.  = = =
.  

 

The voltage across each capacitor in the parallel combination is 11 V. 
(d) 1 1 1

1 1 2 2 3 32 2 2 .U Q V Q V Q V= + +  

But 31 1
1 2 3 1 1 2 32 2 so ( ) (11 V)(228 C) 1 3 10  J.V V V U V Q Q Q µ −= = = + + =  = . ×  

EVALUATE:   This is less than the original energy of 31 4 10  J.−. ×  The stored energy has decreased, as in 
Example 24.7. 

 24.58. IDENTIFY:   
  
C =

ε0 A
d

.  .Q
C

V
=  .V Ed=  1

2 .U QV=  

SET UP:   33 0 10  m.d = . ×  2,A rπ=  with 31 0 10  m.r = . ×  

EXECUTE:   (a) 
  
C =

ε0 A
d

= (8.854 × 10−12  C2 /N ⋅ m2 )π (1.0 × 103  m)2

3.0 × 103  m
= 9.3 × 10−9  F.  

(b) 9
9

20 C 2 2 10  V.
9 3 10  F

Q
V

C −= = = . ×
. ×

 

(c) 
9

5
3

2 2 10  V 7 3 10  V/m.
3 0 10  m

V
E

d
. ×= = = . ×
. ×

 

(d) 9 101 1
2 2 (20 C)(2 2 10  V) 2 2 10  J.U QV= = . × = . ×  

EVALUATE:   Thunderclouds involve very large potential differences and large amounts of stored energy. 
 24.59. IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. In each equivalent 

network apply the rules for Q and V for capacitors in series and parallel; start with the simplest network 
and work back to the original circuit. 
(a) SET UP:   The network is sketched in Figure 24.59a. 

 

 1 6 9 F.C µ= .   

2 4 6 F.C µ= .   

Figure 24.59a   
 

EXECUTE:   Simplify the network by replacing the capacitor combinations by their equivalents. Make the 
replacement shown in Figure 24.59b. 

 

 

eq 1

1 3 .
C C

=  

1
eq

6 9 F 2 3 F.
3 3

C
C

µ µ.  = = = .   

Figure 24.59b   
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Next make the replacement shown in Figure 24.59c. 
 

 eq 22 3 F .C Cµ= .  +  

eq 2 3 F 4 6 F 6 9 F.C µ µ µ= .  + .  = .   

Figure 24.59c   

Make the replacement shown in Figure 24.59d. 

 

eq 1

1 2 1 3 .
6 9 F 6 9 FC C µ µ

= + =
.  .  

 

eq 2 3 F.C µ= .   

Figure 24.59d   

Make the replacement shown in Figure 24.59e. 

 eq 2 2 3 F 4 6 F 2 3 F.C C µ µ µ= + .  = .  + .   

eq 6 9 F.C µ= .   

Figure 24.59e   
 

Make the replacement shown in Figure 24.59f. 
 

 

eq 1

1 2 1 3 .
6 9 F 6 9 FC C µ µ

= + =
.  .  

 

eq 2 3 F.C µ= .   

Figure 24.59f   
 

(b) SET UP and EXECUTE:   Consider the network as drawn in Figure 24.59g. 
 

 From part (a) 2 3 Fµ.   is the equivalent  
capacitance of the rest of the network. 

Figure 24.59g   

The equivalent network is shown in Figure 24.59h. 

 The capacitors are in series, so all  
three capacitors have the same Q. 

Figure 24.59h   
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But here all three have the same C, so by /V Q C=  all three must have the same V. The three voltages must 
add to 420 V, so each capacitor has 140 V.V =  The 6 9 Fµ.   to the right is the equivalent of 2C  and the 
2 3 Fµ.   capacitor in parallel, so 2 140 V.V =  (Capacitors in parallel have the same potential difference.) 

Hence 4
1 1 1 (6 9 F)(140 V) 9 7 10  CQ C V µ −= = .  = . ×  and 4

2 2 2 (4 6 F)(140 V) 6 4 10  C.Q C V µ −= = .  = . ×  
(c) From the potentials deduced in part (b) we have the situation shown in Figure 24.59i. 

 

 From part (a) 6 9 Fµ.   is the equivalent  
capacitance of the rest of the network. 

Figure 24.59i   
 

The three right-most capacitors are in series and therefore have the same charge. But their capacitances are 
also equal, so by /V Q C=  they each have the same potential difference. Their potentials must sum 
to140 V,  so the potential across each is 47 V and 47 V.cdV =  
EVALUATE:   In each capacitor network the rules for combining V for capacitors in series and parallel are 
obeyed. Note that ,cdV V<  in fact 2(140 V) 2(47 V) .cdV V− − =  

 24.60. IDENTIFY:   Find the total charge on the capacitor network when it is connected to the battery. This is the 
amount of charge that flows through the signal device when the switch is closed. 
Circuit (a): 
SET UP:   For capacitors in parallel, eq 1 2 3C C C C= + + +…  

EXECUTE:   equiv 1 2 3 60 0 F.C C C C µ= + + = .  (60 0 F)(120 V) 7200 C.Q CV µ µ= = . =  
EVALUATE:   More charge is stored by the three capacitors in parallel than would be stored in each 
capacitor used alone. 
Circuit (b): 

SET UP:   
1

equiv
1 2 3

1 1 1 .C
C C C

−
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

 

EXECUTE:   equiv 5 45 F. (5 45 F)(120V) 654 C.C Qµ µ µ= . = . =  
EVALUATE:   Less charge is stored by the three capacitors in series than would be stored in each capacitor 
used alone. 

 24.61. (a) IDENTIFY and SET UP:   Q is constant. 0;C KC=  use C = Q/Vab to relate the dielectric constant K to 
the ratio of the voltages without and with the dielectric. 
EXECUTE:   With the dielectric: 0/ /( ).V Q C Q KC= =  
without the dielectric: 0 0/ .V Q C=  

0 / , so (45 0 V)/(11 5 V) 3 91.V V K K= = . . = .  
EVALUATE:   Our analysis agrees with Eq. (24.13). 
(b) IDENTIFY:   The capacitor can be treated as equivalent to two capacitors 1 2and C C  in parallel, one 
with area 2 /3A  and air between the plates and one with area /3A  and dielectric between the plates. 
SET UP:   The equivalent network is shown in Figure 24.61 (next page). 
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Figure 24.61 
 

EXECUTE:   Let   C0 = ε0 A/d  be the capacitance with only air between the plates. 1 0 2 0/3, 2 /3;C KC C C=  =  

eq 1 2 0( /3)( 2).C C C C K= + = +  

0
eq 0

3 3 3(45 0 V) 22 8 V.
2 2 5 91

Q Q
V V

C C K K
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = . = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The voltage is reduced by the dielectric. The voltage reduction is less when the dielectric 
doesn’t completely fill the volume between the plates. 

 24.62. IDENTIFY:   This situation is analogous to having two capacitors 1C  in series, each with separation 
1
2 ( ).d a−  

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 .
C C C

= +  

EXECUTE:   (a) 
1

0 01 1
12 2

1 1

1 1 .
( )/2

A A
C C

C C d a d a
ε ε−

⎛ ⎞
= + = = =⎜ ⎟ − −⎝ ⎠

 

(b) 
  
C =

ε0 A
d − a

=
ε0 A

d
d

d − a
= C0

d
d − a

.  

EVALUATE:     (c) As 0,a →  0.C C→  The metal slab has no effect if it is very thin. And as ,a d→  
.C → ∞  / .V Q C=  V Ey=  is the potential difference between two points separated by a distance y parallel 

to a uniform electric field. When the distance is very small, it takes a very large field and hence a large Q 
on the plates for a given potential difference. Since Q CV=  this corresponds to a very large C. 

 24.63. IDENTIFY:   Capacitors in series carry the same charge, but capacitors in parallel have the same potential 
difference across them. 

SET UP:   48 0 V.abV = .  /C Q V=  and 21 .
2

U CV=  For capacitors in parallel, 1 2,C C C= +  and for 

capacitors in series, 1 21/ 1/ 1/ .C C C= +  

EXECUTE:   Using 21
2

U CV=  gives 
3

6
2 2

2 2(2 90 10  J) 2 517 10  F,
(48 0 V)

U
C

V

−
−. ×= = = . ×

.
 which is the equivalent 

capacitance of the network. The equivalent capacitance for 1C  and 2C  in series is 

12
1 (4 00 F) 2 00 F.
2

C µ µ= .  = .   If 123C  is the equivalent capacitance for 12C  and 3C  in parallel, then 

123 4

1 1 1 .
C C C

+ =  Solving for 123C  gives 

5 1
6 6

123 4

1 1 1 1 1 2 722 10  F ,
2 517 10  F 8 00 10  FC C C

−
− −= − = − = . ×

. × . ×
 so 6

123 3 673 10  F.C −= . ×  

12 3 123.C C C+ =  3 123 12 3 673 F 2 00 F 1 67 F.C C C µ µ µ= − = .  − .  = .   
EVALUATE:   As with most circuits, it is necessary to solve them in a series of steps rather than using a 
single step. 
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 24.64. IDENTIFY:   The electric field energy density is u = 1
2

ε0 E2.  
2

.
2
Q

U
C

=  

SET UP:   For this charge distribution, 0E =  for ,ar r<  E = λ
2πε0r

 for a br r r< <  and 0E =  for .br r>   

Example 24.4 shows that C
L

=
2πε0

ln(rb /ra )
 for a cylindrical capacitor. 

EXECUTE:   (a) 
2 2

21 1
0 02 2 2 2

0 0
.

2 8
u E

r r
λ λε ε

πε π ε
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

(b) 
  
U = udV∫ = 2π L urdr∫ = Lλ2

4πε0

dr
rra

rb∫  and U
L

= λ2

4πε0
ln(rb /ra ).  

(c) 
  
U = Q2

2C
= Q2

4πε0 L
ln(rb /ra ) = λ2 L

4πε0
ln(rb /ra ).  This agrees with the result of part (b). 

EVALUATE:   We could have used the results of part (b) and 
2

2
Q

U
C

=  to calculate /C L  and would obtain 

the same result as in Example 24.4. 
 24.65. IDENTIFY:   The two slabs of dielectric are in series with each other. 

SET UP:   The capacitor is equivalent to 1C  and 2C  in series, so 
1 2

1 1 1 ,
C C C

+ =  which gives 1 2

1 2
.C C

C
C C

=
+

 

EXECUTE:   With 1 90 mm,d = .  C1 =
K1ε0 A

d
 and C2 =

K2ε0 A
d

.  

0
12 2 2 2

111 2
3

1 2

(4 7)(2 6) (8 854 10  C /N m )(0 0800 m) 4 992 10  F.
4 7 2 6 1 90 10  m

K K A
C

K K d
ε −

−
−

⎛ ⎞ . . . × ⋅ .⎛ ⎞= = = . ×⎜ ⎟ ⎜ ⎟+ . + . . ×⎝ ⎠⎝ ⎠

2 11 2 71 1 (4 992 10  F)(86 0 V) 1 85 10  J.
2 2

U CV − −= = . × . = . ×  

EVALUATE:   The dielectrics increase the capacitance, allowing the capacitor to store more energy than if it 
were air-filled. 

 24.66. IDENTIFY:   The capacitor is equivalent to two capacitors in parallel, as shown in Figure 24.66. 
 

 

Figure 24.66 
 

SET UP:   Each of these two capacitors have plates that are 12.0 cm by 6.0 cm. For a parallel-plate 

capacitor with dielectric filling the volume between the plates, C = Kε0
A
d

.  For two capacitors in parallel, 

1 2 .C C C= +  The energy stored in a capacitor is 21
2 .U CV=  
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EXECUTE:   (a) 1 2.C C C= +  

  
C2 = ε0

A
d

= (8.854 × 10−12  F/m)(0.120 m)(0.060 m)
4.50 × 10−3  m

= 1.42 × 10−11 F.

11 11
1 2 (3 40)(1 42 10  F) 4 83 10  F.C KC − −= = . . × = . ×  11

1 2 6 25 10  F 62 5 pF.C C C −= + = . × = .  

(b) 2 11 2 81 1
2 2 (6 25 10  F)(18 0 V) 1 01 10  J.U CV − −= = . × . = . ×  

(c) Now 1 2C C=  and 11 112(1 42 10  F) 2 84 10  F.C − −= . × = . ×  
2 11 2 91 1

2 2 (2 84 10  F)(18 0 V) 4 60 10  J.U CV − −= = . × . = . ×  

EVALUATE:   The plexiglass increases the capacitance and that increases the energy stored for the same 
voltage across the capacitor.  

 24.67. IDENTIFY:   The object is equivalent to two identical capacitors in parallel, where each has the same area A, 
plate separation d and dielectric with dielectric constant K. 

SET UP:   For each capacitor in the parallel combination, C =
ε0 A

d
.  

EXECUTE:   (a) The charge distribution on the plates is shown in Figure 24.67. 

(b) 
2

90 0
4

2(4 2) (0 120 m)2 2 38 10  F.
4 5 10  m

A
C

d
ε ε −

−
. .⎛ ⎞= = = . ×⎜ ⎟ . ×⎝ ⎠

 

EVALUATE:   If two of the plates are separated by both sheets of paper to form a capacitor, 

  
C =

ε0 A
2d

= 2.38 × 10−9  F
4

,  smaller by a factor of 4 compared to the capacitor in the problem. 

 

 

Figure 24.67 
 
 24.68. IDENTIFY:   The system is equivalent to two capacitors in parallel. One of the capacitors has plate 

separation d, plate area ( )w L h−  and air between the plates. The other has the same plate separation d, 
plate area wh and dielectric constant K. 

SET UP:   Define effK  by 
  
Ceq =

Keff ε0 A
d

,  where .A wL=  For two capacitors in parallel, eq 1 2.C C C= +  

EXECUTE:   (a) The capacitors are in parallel, so 0 0 0( ) 1 .w L h K wh wL Kh h
C

d d d L L
ε ε ε− ⎛ ⎞= + = + −⎜ ⎟

⎝ ⎠
 This 

gives eff 1 .Kh h
K

L L
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

(b) For gasoline, with 1 95:K = .  1
4  full: eff 1 24;

4
L

K h⎛ ⎞= = .⎜ ⎟
⎝ ⎠

 1
2  full: eff 1 48;

2
L

K h⎛ ⎞= = .⎜ ⎟
⎝ ⎠

 

3
4  full: eff

3 1 71.
4
L

K h⎛ ⎞= = .⎜ ⎟
⎝ ⎠

 

(c) For methanol, with 33:K =  1
4  full: eff 9;

4
L

K h⎛ ⎞= =⎜ ⎟
⎝ ⎠

 1
2  full: eff 17;

2
L

K h⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

3
4  full: eff

3 25.
4
L

K h⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(d) This kind of fuel tank sensor will work best for methanol since it has the greater range of effK  values. 
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EVALUATE:   When 0,h =  eff 1.K =  When ,h L=  eff .K K=  

 24.69. IDENTIFY and SET UP:   For two capacitors in series, 
1 2 eq

1 1 1 ,
C C C

+ =  which gives 1 2
eq

1 2
.C C

C
C C

=
+

 For two 

capacitors in parallel, Ceq = C1 + C2. C = Q/V.   The stored energy can be written as 
  
 U = 1

2
CV 2  or 

2
.

2
Q

U
C

=  

EXECUTE:    (a) When connected in series, the stored energy is 0.0400 J, so 

  
 U = 1

2
CV 2  = 21 21

2
1 2

C C
V

C C
⎛ ⎞

 ⎜ ⎟+⎝ ⎠
 = 21 21

2
1 2

(200.0 V)C C
C C

⎛ ⎞
⎜ ⎟+⎝ ⎠

 = 0.0400 J, which gives 

  

C1C2
C1 + C2

 = 2.00 µF. 

When connected in parallel, the stored energy is 0.180 J, so 

  
 U = 1

2
CV 2  = 

  
 1
2

(C1 + C2 )V 2  = 1
2

(C1 + C2 )(200.0 V)2  = 0.180 J. 

C1 + C2 = 9.00 µF.  
Solving the two equations for C1 and C2 gives C1 = 6.00 µF and C2 = 3.00 µF. 

(b) When the capacitors are in series, both have the same charge. The stored energy is 
2

,
2
Q

U
C

=  so the 

capacitor with the smaller capacitance stores more energy, which is C2. 
(c) When the capacitors are in parallel, the potential across them is the same. The stored energy is 

21
2 ,U CV =  so the capacitor with the larger capacitance stores the most energy, which is C1.  

EVALUATE:    When the two capacitors are connected in parallel, they can store considerably more energy 
than when in series. 

 24.70. IDENTIFY and SET UP:   The presence of the dielectric affects the charge and energy in the capacitor for a 
given potential difference. V = Ed, Q = CV, 0/ ,K C C=  21

2 .U CV =  We use the values for K and Em from 

Table 24.2. In this case, E = 0.500Em and d = 2.50 mm = 0.00250 m.  
EXECUTE:    (a) Using 21

2 ,U CV =  C = KC0, V = Ed, and E = 0.500Em, the stored energy is 

  
 U = 1

2
CV 2  = 

  
 1
2

KC0 (Ed)2  = 21
0 m2 (0.500 ) .KC E d  

For polycarbonate, K = 2.8 and 7
m 3 10 V/m.E = ×  Therefore the stored energy is 

–12 7 2 –2( )[( )( )][( )( )(1/2 2.8 6.00 10 F 0.500 3 10 V/m 0.00250 m 1.18)] 10 J,U = × × = ×  which rounds to 12 mJ. 
Using similar calculations for the other materials, the results for U are: 
12 mJ (polycarbonate) 
56 mJ (polyester) 
51 mJ (polypropylene) 
4.9 mJ (polystyrene) 
2.2 mJ (pyrex) 
(b) Q = CV = KC0(Ed) = KC0(0.500Em)d. 
For polycarbonate we have 

–12 7 –72.8 6.00 10 F 0.500 3 10 V/m 0.00250 m 6.3 10 C 0.63 C( )( )( .)( )( )Q µ= × × = × =  
Similar calculations for the other materials yield: 
0.63 µC (polycarbonate) 
1.5 µC (polyester) 
1.2 µC (polypropylene) 
0.39 µC (polystyrene) 
0.35 µC (pyrex) 
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(c) V = Ed = 0.500Emd. For polycarbonate this gives 
7 40.500 3 10 V/m 0.00250 m 3.8( 10 V 38 kV.)( )( )V = × = × =  

Similar calculations for the other materials yield: 
38 kV (polycarbonate) 
75 kV (polyester) 
88 kV (polypropylene) 
25 kV (polystyrene) 
13 kV (pyrex) 
EVALUATE:    (d) Polyester is best for maximum energy storage and maximum charge, but polypropylene 
is best for maximum voltage. No single material is best for all three categories. As so often occurs, the 
choice of materials is a trade-off. 

 24.71. IDENTIFY and SET UP:   For a parallel-plate capacitor, 0 .A
C

d
ε=  The stored energy can be expressed as 

21
2U CV =  or  

2
.

2
Q

U
C

=  

EXECUTE:    (a) If the battery remains connected, V remains constant, so it is useful to write the energy in 
terms of V and C: 

21
2U CV =  = 

2
20 01

2
1 .

2
A AV

V
d d

ε ε⎛ ⎞ = ⋅⎜ ⎟
⎝ ⎠

 

If the battery is disconnected, Q remains constant, so it is useful to write the energy in terms of Q and C: 
2

2
Q

U
C

=  = 
2 2

0 0
.

22

Q Q
d

A A
d

ε ε
⎛ ⎞

= ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟
⎝ ⎠

 

The graph shows a linear relationship between U and 1/d, so it must represent the case where the battery 
remains connected to the capacitor. 

(b) In a graph of U versus 1/d for the equation U = 
2

0 1 ,
2
AV

d
ε ⋅  the slope should be equal to 

2
0 .

2
AVε  

Choosing points on the graph in the problem, the slope is 11
–9

–1 –1

(73 –18) 10 J
20.0 cm –

3.67 1
5. m

m
c

0 J .
0

−= × ⋅×  

Solving for A gives 
A = 2(slope)/ 2 –12 2 2

0
–11 2 2 2( J m) (8.854 10  2 3.67 10 / 24.0 V 0.C /N m 014 m) 144 cm( .) ]Vε ⋅ × ⋅ == × =  

(c) With the battery connected: U = 
2

0 1 ,
2
AV

d
ε ⋅  so as we increase d from 0.0500 cm to 0.400 cm, the 

energy decreases since V remains constant. 

With the battery disconnected: U = 
2

0
,

2
Q

d
Aε

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 so as we increase d, the energy increases since Q does not 

change. Therefore there is more energy stored with the battery disconnected as d is increased. 
EVALUATE:    If this capacitor were square, its plates would be 12 cm 12 cm.×  This is a reasonable size 
for a piece of apparatus for use in a laboratory and could easily be manufactured. 

 24.72. IDENTIFY:   The system can be considered to be two capacitors in parallel, one with plate area ( )L L x−  
and air between the plates and one with area Lx  and dielectric filling the space between the plates. 

SET UP:   C =
Kε0 A

d
 for a parallel-plate capacitor with plate area A. 

EXECUTE:   (a) 
  
C =

ε0
D

(L − x)L + xKL⎡⎣ ⎤⎦ =
ε0 L
D

L + (K − 1)x⎡⎣ ⎤⎦.  
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(b) 21
2 ( ) ,dU dC V=  where C = C0 +

ε0 L
D

(−dx + dxK ),  with C0 =
ε0 L
D

L + (K − 1)x⎡⎣ ⎤⎦.  This gives 

2
20 01

2
( 1)( 1) .

2
Ldx K V L

dU K V dx
D D

ε ε−⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

(c) If the charge is kept constant on the plates, then Q =
ε0 LV

D
L + (K − 1)x⎡⎣ ⎤⎦  and 

2 21 1
02 2

0
.C

U CV C V
C

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

2
0 0

0
1 ( 1)

2
C V L

U K dx
DC
ε⎛ ⎞

≈ − −⎜ ⎟
⎝ ⎠

 and ∆U = U − U0 = −
(K − 1)ε0V

2 L
2D

dx.  

(d) Since 
  
dU = −Fdx = −

(K −1)ε
0
V 2 L

2D
dx,  the force is in the opposite direction to the motion ,dx  

meaning that the slab feels a force pushing it out. 
EVALUATE:   (e) When the plates are connected to the battery, the plates plus slab are not an isolated 
system. In addition to the work done on the slab by the charges on the plates, energy is also transferred 
between the battery and the plates. Comparing the results for dU in part (c) to dU Fdx= −  gives 

  
F =

(K − 1)ε0V
2 L

2D
.   

 24.73. IDENTIFY and SET UP:   The potential difference is V = 30 mV – (–70 mV) = 100 mV, and Q = CV. 
EXECUTE:    Q = CV gives Q/cm2 = (C/cm2)V = (1 µF/cm2)(100 mV)(1 mol/105 C) = 10–12 mol/cm2, 
which is choice (c). 
EVALUATE:    This charge produces a potential difference of 100 mV = 0.1 V, which is certainly 
measurable using ordinary laboratory meters. 

 24.74. IDENTIFY and SET UP:   The change in concentration of Na+ ions is equal to the added charge divided by 
the volume of the spherical egg. The original concentration of ions is given as 30 mmol/L. We use the 
answer from Problem 24.73 to get the added charge. 
EXECUTE:    The added charge is (10–12 mol/cm2)(surface area of egg) = (10–12 mol/cm2)(4πR2), and the 
original volume of the egg is (4π/3)R3. Therefore the change in concentration is 

–12 2 2 3 12 2 –12 2 410 mol/cm 4 / 4 /3 3 10 mol/cm / 3 10 mol/cm / 10( )( ) ( ) ( ) ( ) ( 0 cm)0 1πR π R R− −⎡ = ×⎣ =⎤⎦ =   
10 3 53 10 mol/cm 3 10 mmol/L.−=× ×   

The fractional change in the concentrations is 5 53 10 mmol/L / 30 mmol( ) ( )/L 10 ,− −× =  which is 1 part  
in 105. Therefore choice (b) is correct.  
EVALUATE:    As a percent, this change is 10–3% = 0.001%, which is quite small yet certainly important for 
the organism. 

 24.75. IDENTIFY and SET UP:   The calcium Ca2+ ions carry twice the charge of the Na+ ions. 
EXECUTE:    The charge to produce the given voltage change would be the same as with Na+, so we would 
need only half as many Ca2+ ions to accomplish this. Thus choice (a) is correct. 
EVALUATE:    Ca+2 ions are nearly twice as heavy as Na+ ions, so they may not move as readily as the 
sodium ions. 

 24.76. IDENTIFY and SET UP:   The energy is needed to change the potential from 30 mV to –70 mV. 
21

2 .U CV =  The capacitance is (1 µF/cm2)(surface area of egg). 

EXECUTE:    For a spherical egg, the surface area is 4πR2, so the capacitance is 
2 2 2 4 2 –91 F/cm 4 1 F/cm 4 100 10 cm 1.26 10( )( ) ( ( F.) )( )C µ πR µ π −= = × = ×  

The change in stored energy is 
2 2 2 21 1 1

2 1 2 12 2 2 ( ).U CV CV C V V ∆ = − = −   
–9 3 2 –3 2 12( )( )[( ) (1/2 1.26 10 F 70 10 V 30 10 V 2.5 10 J 2.5 pJ 3 pJ] ,)U − −= × − × − × = × ≈∆ =  which makes 

choice (d) the correct one. 
EVALUATE:    The actual energy required would probably be greater than 2.5 pJ, depending on the process 
by which the charging is accomplished, but our value is the minimum energy needed. 
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 25.1. IDENTIFY and SET UP:   The lightning is a current that lasts for a brief time. .Q
I

t
∆=
∆

 

EXECUTE:   6(25,000 A)(40 10  s) 1 0 C.Q I t −∆ = ∆ = × = .  
EVALUATE:   Even though it lasts for only 40 µs, the lightning carries a huge amount of charge since it is 
an enormous current. 

 25.2. IDENTIFY:   / .I Q t=  Use dI n q v A=  to calculate the drift velocity d.v  

SET UP:   28 35 8 10  m .n −= . ×  191 60 10 C.q −= . ×  

EXECUTE:   (a) 2420 C 8 75 10 A.
80(60 s)

Q
I

t
−= = = . ×  

(b) d .I n q v A=  This gives 
2

6
d 28 19 3 2

8 75 10 A 1 78 10 m/s.
(5 8 10 )(1 60 10 C)( (1 3 10 m) )

I
v

n q A π

−
−

− −
. ×= = = . ×

. × . × . ×
 

EVALUATE:   dv  is smaller than in Example 25.1, because I is smaller in this problem. 
 25.3. IDENTIFY:   / .I Q t=  / .J I A=  d.J n q v=  

SET UP:   2( /4) ,A Dπ=  with 32 05 10  m.D −= . ×  The charge of an electron has magnitude 
191 60 10  C.e −+ = . ×  

EXECUTE:   (a) (5 00 A)(1 00 s) 5 00 C.Q It= = . . = .  The number of electrons is 193 12 10 .Q
e

= . ×  

(b) 6 2
2 3 2

5 00 A 1 51 10  A/m .
( /4) ( /4)(2 05 10  m)

I
J

Dπ π −
.= = = . ×

. ×
 

(c) 
6 2

4
d 28 3 19

1 51 10  A/m 1 11 10  m/s 0 111 mm/s.
(8 5 10  m )(1 60 10  C)

J
v

n q
−

− −
. ×= = = . × = .

. × . ×
 

EVALUATE:   (d) If I is the same, /J I A=  would decrease and dv  would decrease. The number of 
electrons passing through the light bulb in 1.00 s would not change. 

 25.4. (a) IDENTIFY:   By definition, /J I A=  and radius is one-half the diameter. 
SET UP:   Solve for the current: 2( /2)I JA J Dπ= =  

EXECUTE:   6 2 2(3.20 10 A/m )( )[(0.00102 m)/2] 2.61 A.I π= × =  
EVALUATE:   This is a realistic current. 
(b) IDENTIFY:   The current density is d.J n q v=  

SET UP:   Solve for the drift velocity: d /v J n q=  
EXECUTE:   We use the value of n for copper, giving 

6 2 28 3 19 4
d (3.20 10  A/m )/[(8.5 10 /m )(1.60 10 C)] 2.4 10 m/s 0.24 mm/s.v − −= × × × = × =  

EVALUATE:   This is a typical drift velocity for ordinary currents and wires. 
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 25.5. IDENTIFY and SET UP:   Use dJ n q v=  to calculate the drift speed and then use that to find the time to 
travel the length of the wire. 
EXECUTE:   (a) Calculate the drift speed d:v  

6 2
2 3 2

4 85 A 1 469 10  A/m .
(1 025 10  m)

I I
J

A rπ π −
.= = = = . ×

. ×
 

6 2
4

d 28 3 19
1 469 10  A/m 1 079 10  m/s.

(8 5 10 /m )(1 602 10 C)
J

v
n q

−
−

. ×= = = . ×
. × . ×

 

3
4

d

0 710 m 6 58 10  s 110 min.
1 079 10  m/s

L
t

v −
.= = = . × =

. ×
 

(b) d 2 .I
v

r n qπ
=  

2

d

.
r n q LL

t
v I

π
= =  

t is proportional to 2r  and hence to 2d  where 2d r=  is the wire diameter. 
2

3 44 12 mm(6 58 10  s) 2 66 10  s 440 min.
2 05 mm

t
.⎛ ⎞= . × = . × =⎜ ⎟.⎝ ⎠

 

(c) EVALUATE:   The drift speed is proportional to the current density and therefore it is inversely 
proportional to the square of the diameter of the wire. Increasing the diameter by some factor decreases the 
drift speed by the square of that factor. 

 25.6. IDENTIFY:   The resistance depends on the length, cross-sectional area, and material of the wires.  

SET UP:   ,L
R

A
ρ=  2 2/4.A r dπ= =  The resistivities come from Table 25.1. 

EXECUTE:   (a) Combining L
R

A
ρ=  and A= πd 

2/4, gives 22

4 .

4

L L
R

dd

ρ ρ
π π

= =  Solving for L gives 

2
.

4
R d

L
π

ρ
=  Using this formula gives the length of each type of metal. 

Gold: 
3 2

8
(1.00 ) (1.00 10 m) 32.2 m.

4(2.44 10  m)
L

π −

−
Ω ×= =

× Ω ⋅
 

Copper: Using 81.72 10  mρ −= × Ω ⋅  we get L = 45.7 m. 

Aluminum: Using 82.75 10  m,ρ −= × Ω ⋅  we get L = 28.6 m. 
(b) The mass of the gold is the product of its mass density and its volume, so 

2 4 3 3 2( )( /4) (1.93 10 kg/m ) (1.00 10 m) (32.2 m)/4 0.488 kg 488 .m density d L gπ π −= = × × = =  
If gold is currently worth $40 per gram, the cost of the gold wire would be ($40/g)(488 g) = $19,500. At 
this price, you wouldn’t want to wire your house with gold wires! 
EVALUATE:   The resistivities of the three metals are all fairly close to each other, so it is reasonable to 
expect that the lengths of the wires would also be fairly close to each other, which is just what we find. 

 25.7. IDENTIFY and SET UP:   Apply dQ
I

dt
=  to find the charge dQ in time dt. Integrate to find the total charge 

in the whole time interval. 
EXECUTE:   (a) .dQ I dt=   

2 2 8 0 s8.0s 2 3
0 0

(55 A (0 65 A/s ) ) (55 A) (0 217 A/s ) .Q t dt t t
.

⎡ ⎤= − . = − .⎣ ⎦∫  

2 3(55 A)(8 0 s) (0 217 A/s )(8 0 s) 330 C.Q = . − . . =  
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(b) 330 C 41 A.
8 0 s

Q
I

t
= = =

.
 

EVALUATE:   The current decreases from 55 A to 13.4 A during the interval. The decrease is not linear and 
the average current is not equal to (55A 13.4 A)/2.+  

 25.8. IDENTIFY:   / .I Q t=  Positive charge flowing in one direction is equivalent to negative charge flowing in 

the opposite direction, so the two currents due to Cl−  and Na+  are in the same direction and add. 
SET UP:   Na+  and Cl−  each have magnitude of charge .q e= +  

EXECUTE:   (a) 16 16 19
total Cl Na( ) (3 92 10 2 68 10 )(1 60 10 C) 0 0106 C.Q n n e −= + = . × + . × . × = .  Then 

total 0 0106 C 0 0106A 10 6 mA.
1 00 s

Q
I

t
.= = = . = .

.
 

(b) Current flows, by convention, in the direction of positive charge. Thus, current flows with Na+  toward 
the negative electrode. 
EVALUATE:   The Cl−  ions have negative charge and move in the direction opposite to the conventional 
current direction. 

 25.9. IDENTIFY and SET UP:   The number of ions that enter gives the charge that enters the axon in the specified 

time. .Q
I

t
∆=
∆

 

EXECUTE:   11 19 8(5 6 10  ions)(1 60 10  C/ion) 9 0 10  C.Q − −∆ = . × . × = . ×  
8

3
9 0 10  C 9 0 A.
10 10  s

Q
I

t
µ

−

−
∆ . ×= = = .  
∆ ×

 

EVALUATE:   This current is much smaller than household currents but are comparable to many currents in 
electronic equipment. 

 25.10. (a) IDENTIFY:   Start with the definition of resistivity and solve for E. 
SET UP:   2/ .E J I rρ ρ π= =  

EXECUTE:   8 2 2(1.72 10 m)(4.50 A)/[ (0.001025 m) ] 2.345 10 V/m,E π− −= × Ω ⋅ = ×  which rounds to 
0.0235 V/m. 
EVALUATE:   The field is quite weak, since the potential would drop only a volt in 43 m of wire. 
(b) IDENTIFY:   Take the ratio of the field in silver to the field in copper. 
SET UP:   Take the ratio and solve for the field in silver: S C S C( / ).E E ρ ρ=  

EXECUTE:   S
2(0.02345 V/m)[(1.47)/(1.72)] 2.00 10 V/m.E −= = ×  

EVALUATE:   Since silver is a better conductor than copper, the field in silver is smaller than the field in 
copper. 

 25.11. IDENTIFY:   First use Ohm’s law to find the resistance at 20.0°C; then calculate the resistivity from the 
resistance. Finally use the dependence of resistance on temperature to calculate the temperature coefficient 
of resistance. 
SET UP:   Ohm’s law is / ,R V I=  / ,R L Aρ=  0 0[1 ( – )],R R T Tα= +  and the radius is one-half the 
diameter. 
EXECUTE:   (a) At 20.0°C, / (15.0 V)/(18.5 A) 0.811 .R V I= = = Ω  Using /R L Aρ=  and solving for ρ  

gives 2 2 5/ ( /2) / (0.811 ) [(0.00500 m)/2] /(1.50 m) 1.06 10 m.RA L R D Lρ π π −= = = Ω = × Ω ⋅  
(b) At 0 092.0 C, / (15.0 V)/(17.2 A) 0.872 . Using [1 ( – )]R V I R R T Tα° = = = Ω = +  with 0T  taken as 

20.0°C, we have 0.872 (0.811 )[1 (92.0 C – 20.0 C)].αΩ = Ω + ° °  This gives 10.00105 (C ) .α −= °  
EVALUATE:   The results are typical of ordinary metals. 

 25.12. IDENTIFY:   ,E Jρ=  where / .J I A=  The drift velocity is given by d .I n q v A=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  28 38 5 10 /m .n = . ×  

EXECUTE:   (a) 5 2
3 2

3 6 A 6 81 10 A/m .
(2 3 10 m)

I
J

A −
.= = = . ×

. ×
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(b) 8 5 2(1 72 10 m)(6 81 10 A/m ) 0 012 V/m.E Jρ −= = . × Ω ⋅ . × = .  
(c) The time to travel the wire’s length l is 

28 3 19 3 2
4

d

(4 0 m)(8 5 10 /m )(1 6 10 C)(2 3 10 m) 8 0 10 s.
3 6 A

ln q Al
t

v I

− −. . × . × . ×= = = = . ×
.

 

1333 min 22 hrs!t = ≈  
EVALUATE:   The currents propagate very quickly along the wire but the individual electrons travel very 
slowly. 

 25.13. IDENTIFY:   Knowing the resistivity of a metal, its geometry and the current through it, we can use Ohm’s 
law to find the potential difference across it. 
SET UP:   .V IR=  For copper, Table 25.1 gives that 81 72 10  mρ −= . × Ω ⋅  and for silver, 

81 47 10  m.ρ −= . × Ω ⋅  .L
R

A
ρ=  

EXECUTE:   (a) 
8

2
3 2

(1 72 10  m)(2 00 m) 1 65 10  .
(0 814 10  m)

L
R

A
ρ

π

−
−

−
. × Ω ⋅ .= = = . × Ω

. ×
 

3 2 4(12 5 10  A)(1 65 10  ) 2 06 10  V.V − − −= . × . × Ω = . ×  

(b) .I L
V

A
ρ=  constant,V IL

Aρ
= =  so s c

s c
.V V

ρ ρ
=  

8
4 4s

s c 8
c

1 47 10  m(2 06 10  V) 1 76 10  V.
1 72 10  m

V V
ρ
ρ

−
− −

−
⎛ ⎞⎛ ⎞ . × Ω ⋅= = . × = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟. × Ω ⋅⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The potential difference across a 2-m length of wire is less than 0.2 mV, so normally we do 
not need to worry about these potential drops in laboratory circuits. 

 25.14. IDENTIFY:   The resistivity of the wire should identify what the material is. 
SET UP:   /R L Aρ=  and the radius of the wire is half its diameter. 
EXECUTE:   Solve for ρ  and substitute the numerical values. 

2
2 8([0 00205 m]/2) (0 0290 )/ ( /2) / 1.47 10 m

6 50 m
AR L D R L

πρ π −. .  Ω= = = = × Ω ⋅
.

 

EVALUATE:   This result is the same as the resistivity of silver, which implies that the material is silver. 
 25.15. (a) IDENTIFY:   Start with the definition of resistivity and use its dependence on temperature to find the 

electric field. 

SET UP:   20 0 2[1 ( )] .I
E J T T

r
ρ ρ α

π
= = + −  

EXECUTE:   8 2(5.25 10 m)[1 (0.0045/C )(120 C – 20 C)](12.5 A)/[ (0.000500 m) ] 1.21 V/m.E π−= × Ω ⋅ + ° ° ° =  

(Note that the resistivity at 120°C turns out to be 87.61 10  m.)−× Ω ⋅  
EVALUATE:   This result is fairly large because tungsten has a larger resistivity than copper. 
(b) IDENTIFY:   Relate resistance and resistivity. 
SET UP:   2/ / .R L A L rρ ρ π= =  

EXECUTE:   8 2(7.61 10 m)(0.150 m)/[ (0.000500 m) ] 0.0145 .R π−= × Ω ⋅ = Ω  
EVALUATE:   Most metals have very low resistance. 
(c) IDENTIFY:   The potential difference is proportional to the length of wire. 
SET UP:   .V EL=  
EXECUTE:   (1.21 V/m)(0.150 m) 0.182 V.V = =  
EVALUATE:   We could also calculate (12 5 A)(0 0145 ) 0 181 V,V IR= = . .  Ω = .  in agreement with part (c). 

 25.16. IDENTIFY:   The geometry of the wire is changed, so its resistance will also change. 

SET UP:   .L
R

A
ρ=  new 3 .L L=  The volume of the wire remains the same when it is stretched. 
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EXECUTE:   Volume LA=  so new new .LA L A=  new
new

.
3

L A
A A

L
=  =  

new
new

new

(3 ) 9 9 .
/3

L L L
R R

A A A
ρ ρ ρ= = = =  

EVALUATE:   When the length increases the resistance increases and when the area decreases the resistance 
increases. 

 25.17. IDENTIFY:   .L
R

A
ρ=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  2.A rπ=  

EXECUTE:   
8

3 2
(1 72 10 m)(24 0 m) 0 125 .

(1 025 10  m)
R

π

−

−
. ×  Ω ⋅ .= = .  Ω

. ×
 

EVALUATE:   The resistance is proportional to the length of the piece of wire. 

 25.18. IDENTIFY:   2 .
/4

L L
R

A d
ρ ρ

π
= =  

SET UP:   For aluminum, 8
al 2 75 10 m.ρ −= . ×  Ω ⋅  For copper, 8

c 1 72 10 m.ρ −= . ×  Ω ⋅  

EXECUTE:   2  constant,
4
R

Ld
ρ π= = so al c

2 2
al c

.
d d
ρ ρ=  

8
c

c al 8
al

1 72 10 m(2.14 mm) 1.69 mm.
2 75 10 m

d d
ρ
ρ

−

−
. ×  Ω ⋅= = =
. ×  Ω ⋅

 

EVALUATE:   Copper has a smaller resistivity, so the copper wire has a smaller diameter in order to have 
the same resistance as the aluminum wire. 

 25.19. IDENTIFY and SET UP:   Apply L
R

A
ρ=  to determine the effect of increasing A and L. 

EXECUTE:   (a) If 120 strands of wire are placed side by side, we are effectively increasing the area of the 
current carrier by 120. So the resistance is smaller by that factor: 6 8(5.60 10 )/120 4.67 10 .R − −= ×  Ω = ×  Ω  
(b) lf 120 strands of wire are placed end to end, we are effectively increasing the length of the wire by 120, 
and so 6 4(5.60 10 )(120) 6.72 10 .R − −= ×  Ω = ×  Ω  
EVALUATE:   Placing the strands side by side decreases the resistance and placing them end to end 
increases the resistance. 

 25.20. IDENTIFY:   Apply L
R

A
ρ=  and .V IR=  

SET UP:   2.A rπ=  

EXECUTE:   
4 2

7(4.50 V) (6.54 10 m) 1.37 10 m.
(17.6 A)(2.50 m)

RA VA
L IL

πρ
−

−×= = = = × Ω ⋅  

EVALUATE:   Our result for ρ shows that the wire is made of a metal with resistivity greater than that of 
good metallic conductors such as copper and aluminum. 

 25.21. IDENTIFY and SET UP:   The equation ρ = E /J  relates the electric field that is given to the current density. 
 V EL=  gives the potential difference across a length L of wire and V = IR allows us to calculate R. 

EXECUTE:   (a) /  so / .E J J Eρ ρ= =  

From Table 25.1 the resistivity for gold is 82 44 10 m.−. ×  Ω ⋅  

7 2
8

0.49 V/m 2.008 10  A/m .
2.44 10 m

E
J

ρ −= = = ×
×  Ω ⋅

 

2 7 2 3 2(2.008 10  A/m ) (0.42 10  m) 11 A.I JA J rπ π −= = = × × =  
(b) (0 49 V/m)(6 4 m) 3 1 V.V EL= = . . = .  
(c) We can use Ohm’s law: .V IR=  

3 1 V 0 28 .
11 A

V
R

I
.= = = .  Ω  



25-6   Chapter 25 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EVALUATE:   We can also calculate R from the resistivity and the dimensions of the wire: 
8

2 3 2
(2.44 10 m)(6.4 m) 0.28 ,

(0.42 10  m)
L L

R
A r

ρ ρ
π π

−

−
×  Ω ⋅= = = =  Ω

×
 which checks. 

 25.22. IDENTIFY:   When the ohmmeter is connected between the opposite faces, the current flows along its length, 
but when the meter is connected between the inner and outer surfaces, the current flows radially outward. 
(a) SET UP:   For a hollow cylinder, / ,R L Aρ=  where 2 2( ).A b aπ= −  

EXECUTE:   
8

5
2 2 2 2

(2.75 10 m)(2.50 m)/ 1.61 10 .
( ) [(0.0460 m) (0.0275 m) ]

L
R L A

b a
ρρ

π π

−
−×  Ω ⋅= = = = × Ω

− −
 

(b) SET UP:   For a thin cylindrical shell of inner radius r and thickness dr, the resistance is .
2

dr
dR

rL
ρ
π

=  

For radial current flow from 1 to ,  ( /2 ) ln( / ).
2

b

a
r a r b R dR dr L b a

L r
ρ ρ π
π

= = = = =∫ ∫  

EXECUTE:   
8

102 75 10 m 4 60 cmln( / ) ln 9.01 10 .
2 2 (2 50 m) 2.75 cm

R b a
L

ρ
π π

−
−. ×  Ω ⋅ .⎛ ⎞= = = × Ω⎜ ⎟. ⎝ ⎠

 

EVALUATE:   The resistance is much smaller for the radial flow because the current flows through a much 
smaller distance and the area through which it flows is much larger. 

 25.23. IDENTIFY:   Apply 0 0[1 ( )]R R T Tα= + −  to calculate the resistance at the second temperature. 

(a) SET UP:   10.0004 (C )α −=  °  (Table 25.2). Let 0 be 0 0 C and  be 11 5 C.T T. ° . °  

EXECUTE:   0 1
0

100.0 99.54 .
1 ( ) 1 (0.0004 (C ) (11.5 C ))

R
R

T Tα −
 Ω= = =  Ω

+ − + ° °
 

(b) SET UP:   10 0005 (C )α −= − .  °  (Table 25.2). Let 0 0 0 C and 25 8 C.T T= . ° = . °  

EXECUTE:   1
0 0[1 ( )] 0 0160 [1 ( 0 0005 (C ) )(25 8 C )] 0 0158 .R R T Tα −= + − = .  Ω + − .  ° . ° = .  Ω  

EVALUATE:   Nichrome, like most metallic conductors, has a positive α  and its resistance increases with 
temperature. For carbon, α  is negative and its resistance decreases as T increases. 

 25.24. IDENTIFY:   0 0[1 ( )].TR R T Tα= + −  

SET UP:   0 217 3 .R = .  Ω  215 8 .TR = .  Ω  For carbon, 10.00050(C ) .α −= − °  

EXECUTE:   0
0 1

( / ) 1 (215 8 /217 3 ) 1 13 8 C .
0 00050 (C )

TR R
T T

α −
− .  Ω .  Ω −− = = = . °

− . °
 13 8 C 4 0 C 17 8 C.T = . ° + . ° = . °  

EVALUATE:   For carbon, α  is negative so R decreases as T increases. 

 25.25. IDENTIFY:   Use L
R

A
ρ=  to calculate R and then apply .V IR=  P VI=  and energy .Pt=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  2,A rπ=  where 0 050 m.r = .  

EXECUTE:   (a) 
8 3

2
(1.72 10 m)(100 10 m) 0.219 .

(0.050 m)
L

R
A

ρ
π

−× Ω ⋅ ×= = =  Ω  (125 A)(0 219 ) 27 4 V.V IR= = .  Ω = .  

(b) (27 4 V)(125 A) 3422 W 3422 J/sP VI= = . = =  and 7energy (3422 J/s)(3600 s) 1 23 10 J.Pt= = = . ×  
EVALUATE:   The rate of electrical energy loss in the cable is large, over 3 kW. 

 25.26. IDENTIFY:   When current passes through a battery in the direction from the −  terminal toward the  
+ terminal, the terminal voltage abV  of the battery is .abV Irε= −  Also, ,abV IR=  the potential across the 
circuit resistor. 
SET UP:   24 0 V.ε = .  4 00 A.I = .  

EXECUTE:   (a) abV Irε= −  gives 24 0 V 21 2 V 0 700 .
4 00 A

abV
r

I
ε − . − .= = = .  Ω

.
 



Current, Resistance, and Electromotive Force   25-7 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

(b) 0abV IR− =  so 21 2 V 5 30 .
4 00 A

abV
R

I
.= = = .  Ω

.
 

EVALUATE:   The voltage drop across the internal resistance of the battery causes the terminal voltage of 
the battery to be less than its emf. The total resistance in the circuit is 6 00 .R r+ = .  Ω  

24 0 V 4 00 A,
6 00

I
.= = .

.  Ω
 which agrees with the value specified in the problem. 

 25.27. IDENTIFY:   The terminal voltage of the battery is .abV Irε= −  The voltmeter reads the potential difference 
between its terminals. 
SET UP:   An ideal voltmeter has infinite resistance. 
EXECUTE:   (a) Since an ideal voltmeter has infinite resistance, so there would be NO current through the 
2 0 resistor.. Ω  
(b) 5 0 V;abV ε= = .  Since there is no current there is no voltage lost over the internal resistance. 
(c) The voltmeter reading is therefore 5.0 V since with no current flowing there is no voltage drop across 
either resistor. 
EVALUATE:   This not the proper way to connect a voltmeter. If we wish to measure the terminal voltage of 
the battery in a circuit that does not include the voltmeter, then connect the voltmeter across the terminals 
of the battery. 

 25.28. IDENTIFY:   The idealized ammeter has no resistance so there is no potential drop across it. Therefore it 
acts like a short circuit across the terminals of the battery and removes the 4.00-Ω  resistor from the circuit. 
Thus the only resistance in the circuit is the 2.00-Ω  internal resistance of the battery. 
SET UP:   Use Ohm’s law: / .I rε=  
EXECUTE:   (a) (10.0 V)/(2.00 ) 5.00 A.I = Ω =  
(b) The zero-resistance ammeter is in parallel with the 4.00-Ω  resistor, so all the current goes through the 
ammeter. If no current goes through the 4.00-Ω  resistor, the potential drop across it must be zero. 
(c) The terminal voltage is zero since there is no potential drop across the ammeter. 
EVALUATE:   An ammeter should never be connected this way because it would seriously alter the circuit! 

 25.29. IDENTIFY:   The voltmeter reads the potential difference abV  between the terminals of the battery. 
SET UP:   open circuit: 0.I =  The circuit is sketched in Figure 25.29a. 

 

 EXECUTE:   3 08 V.abV ε= = .  

Figure 25.29a   
 

SET UP:   switch closed: The circuit is sketched in Figure 25.29b. 
 

 EXECUTE:   2 97 V.abV Irε= − = .  
2 97 V .r
I

ε − .=  

3 08 V 2 97 V 0 067 .
1 65 A

r
. − .= = .  Ω

.
 

Figure 25.29b   
 

And 2 97 V so 1 80 .
1 65 A

ab
ab

V
V IR R

I
.= = = = .  Ω
.

 

EVALUATE:   When current flows through the battery there is a voltage drop across its internal resistance 
and its terminal voltage V is less than its emf. 
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 25.30. IDENTIFY:   The sum of the potential changes around the circuit loop is zero. Potential decreases by IR 
when going through a resistor in the direction of the current and increases by ε when passing through an 
emf in the direction from the −  to +  terminal. 
SET UP:   The current is counterclockwise, because the 16-V battery determines the direction of current flow. 
EXECUTE:   16 0 V 8 0 V (1 6 5 0 1 4 9 0 ) 0.I+ . − . − .  Ω + .  Ω + .  Ω + .  Ω =  

16 0 V 8 0 V 0 47 A.
1 6 5 0 1 4 9 0

I
. − .= = .

. Ω + . Ω + . Ω + . Ω
 

(b) 16 0 V (1 6 ) ,b aV I V+ . − .  Ω =  so 16 0 V (1 6 )(0 47 A) 15 2 V.a b abV V V− = = . − . Ω . = .  
(c) 8 0 V (1 4 5 0 )c aV I V+ . + .  Ω + .  Ω = so (5 0 )(0 47 A) (1 4 )(0 47 A) 8 0 V 11 0 V.acV = . Ω . + . Ω . + . = .  
(d) The graph is sketched in Figure 25.30. 
EVALUATE:   (0 47 A)(9 0 ) 4 2 V.cbV = . .  Ω = .  The potential at point b is 15.2 V below the potential at point 
a and the potential at point c is 11.0 V below the potential at point a, so the potential of point c is 
15 2 V 11 0 V 4 2 V. − . = .  above the potential of point b. 

 

 

Figure 25.30 
 

 25.31.  (a) IDENTIFY and SET UP:   Assume that the current is clockwise. The circuit is sketched in Figure 25.31a. 
 

 

Figure 25.31a 
 

Add up the potential rises and drops as travel clockwise around the circuit. 
EXECUTE:   16 0 V (1 6 ) (9 0 ) 8 0 V (1 4 ) (5 0 ) 0.I I I I. − .  Ω − .  Ω + . − .  Ω − .  Ω =  

16 0 V 8 0 V 24 0 V 1 41 A,
9 0 1 4 5 0 1 6 17 0 

I
. + . .= = = .

.  Ω + .  Ω + .  Ω + .  Ω . Ω
 clockwise. 

EVALUATE:   The 16.0-V battery and the 8.0-V battery both drive the current in the same direction. 
(b) IDENTIFY and SET UP:   Start at point a and travel through the battery to point b, keeping track of the 
potential changes. At point b the potential is .bV  
EXECUTE:   16 0 V (1 6 ) .a bV I V+ . − .  Ω =  

16 0 V (1 41 A)(1 6 ).a bV V− = − . + . .  Ω  
16 0 V 2 3 V 13 7 VabV = − . + . = − .  (point a is at lower potential; it is the negative terminal). Therefore, 

13 7V.baV = .  
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EVALUATE:   Could also go counterclockwise from a to b: 
(1 41 A)(5 0 ) (1 41 A)(1 4 ) 8 0 V (1 41 A)(9 0 ) .a bV V+ . .  Ω + . .  Ω − . + . .  Ω =  

13 7 V,abV = − .  which checks. 
(c) IDENTIFY and SET UP:   Start at point a and travel through the battery to point c, keeping track of the 
potential changes. 
EXECUTE:   16 0 V (1 6 ) (9 0 ) .a cV I I V+ . − .  Ω − .  Ω =  

16 0 V (1 41 A)(1 6 9 0 ).a cV V− = − . + . .  Ω + .  Ω  
16 0 V 15 0 V 1 0 VacV = − . + . = − .  (point a is at lower potential than point c). 

EVALUATE:   Could also go counterclockwise from a to c: 
(1 41 A)(5 0 ) (1 41 A)(1 4 ) 8 0 V .a cV V+ . .  Ω + . .  Ω − . =  

1 0 V,acV = − .  which checks. 
(d) Call the potential zero at point a. Travel clockwise around the circuit. The graph is sketched in  
Figure 25.31b. 

 

 

Figure 25.31b 
 

 25.32. IDENTIFY:   The sum of the potential changes around the loop is zero. 
SET UP:   The voltmeter reads the IR voltage across the 9.0-Ω resistor.  The current in the circuit is 
counterclockwise because the 16-V battery determines the direction of the current flow. 
EXECUTE:   (a) 1 9 VbcV = .  gives / 1 9 V/9 0 0 21 A.bc bcI V R= = . . Ω = .  

(b) 16 0 V 8 0 V (1 6 9 0 1 4 )(0 21 A)R. − . = .  Ω + .  Ω + .  Ω + .  and 5 48 V 26 1 .
0 21 A

R
.= = . Ω
.

 

(c) The graph is sketched in Figure 25.32. 
EVALUATE:   In Exercise 25.30 the current is 0.47 A. When the 5.0-Ω resistor is replaced by the 26.1-Ω 
resistor the current decreases to 0.21 A. 

 

 

Figure 25.32 
  
 

 25.33. IDENTIFY and SET UP:   There is a single current path so the current is the same at all points in the circuit. 
Assume the current is counterclockwise and apply Kirchhoff’s loop rule. 
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EXECUTE:   (a) Apply the loop rule, traveling around the circuit in the direction of the current. 

16 0 V (1 6 5 0 1 4 9 0 ) 8 0 V 0.I+ . − . Ω + . Ω + . Ω + . Ω − . =  16 0 V 8 0 V 0 471 A.
17 0 

I
. − .= = .

. Ω
 Our calculated  

I is positive so I is counterclockwise, as we assumed. 
(b) 16 0 V (1 6 ) .b aV I V+ . − . Ω =  16 0 V (0 471 A)(1 6 ) 15 2 V.abV = . − . . Ω = .  
EVALUATE:   If we traveled around the circuit in the direction opposite to the current, the final answers 
would be the same. 

 25.34. IDENTIFY and SET UP:   The resistance is the same in both cases, and 2/ .P V R=  
EXECUTE:   (a) Solving 2/P V R=  for R, gives 2/ .R V P=  Since the resistance is the same in both cases, 

we have 
2 2

1 2

1 2

.V V
P P

=  Solving for P2 gives P2 = P1(V2/V1)2 = (0.0625 W)[(12.5 V)/(1.50 V)]2 = 4.41 W. 

(b) Solving for V2 gives 2
2 1

1

5.00 W(1.50 V) 13.4 V.
0.0625 W

P
V V

P
= = =  

EVALUATE:   These calculations are correct assuming that the resistor obeys Ohm’s law throughout the 
range of currents involved. 

 25.35. IDENTIFY:   The bulbs are each connected across a 120-V potential difference. 
SET UP:   Use 2/P V R=  to solve for R and Ohm’s law ( / )I V R=  to find the current. 

EXECUTE:   (a) 2 2/ (120 V) /(100 W) 144 .R V P= = = Ω  

(b) 2 2/ (120 V) /(60 W) 240 .R V P= = = Ω  
(c) For the 100-W bulb: / (120 V)/(144 ) 0.833 A.I V R= = Ω =  
For the 60-W bulb: (120 V)/(240 ) 0.500 A.I = Ω =  
EVALUATE:   The 60-W bulb has more resistance than the 100-W bulb, so it draws less current. 

 25.36. IDENTIFY:   Across 120 V, a 75-W bulb dissipates 75 W. Use this fact to find its resistance, and then find 
the power the bulb dissipates across 220 V. 
SET UP:   2 2/ , so / .P V R R V P= =  

EXECUTE:   Across 120 V: 2(120 V) /(75 W) 192 .R = = Ω  Across a 220-V line, its power will be 
2 2/ (220 V) /(192 ) 252 W.P V R= = Ω =  

EVALUATE:   The bulb dissipates much more power across 220 V, so it would likely blow out at the higher 
voltage. An alternative solution to the problem is to take the ratio of the powers. 

2 22
220 220 220

2
120 120120

/ 220 .
120/

P V R V
P VV R

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 This gives 
2

220
220(75 W) 252 W.
120

P ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 25.37. IDENTIFY:   A “100-W” European bulb dissipates 100 W when used across 220 V. 
(a) SET UP:   Take the ratio of the power in the U.S. to the power in Europe, as in the alternative method 
for Problem 25.36, using 2 / .P V R=  

EXECUTE:   
2 22

US US US
2

E EE

/ 120 V .
220 V/

P V R V
P VV R

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 This gives US

2120 V(100 W) 29.8 W.
220 V

P ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) SET UP:   Use P IV=  to find the current. 
EXECUTE:   / (29.8 W)/(120 V) 0.248 A.I P V= = =  
EVALUATE:   The bulb draws considerably less power in the U.S., so it would be much dimmer than in 
Europe. 

 25.38. IDENTIFY:   .P VI=  Energy .Pt=  
SET UP:   (9 0 V)(0 13 A) 1 17 W.P = . . = .  
EXECUTE:    Energy = (1.17 W)(30 min)(60 s/min) = 2100 J.  
EVALUATE:   The energy consumed is proportional to the voltage, to the current and to the time. 

 25.39. IDENTIFY:   Calculate the current in the circuit. The power output of a battery is its terminal voltage times 
the current through it. The power dissipated in a resistor is 2 .I R  
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SET UP:   The sum of the potential changes around the circuit is zero. 

EXECUTE:   (a) 8 0 V 0 47 A.
17

I
.= = .

 Ω
 Then 2 2

5 (0 47 A) (5 0 ) 1 1 WP I RΩ = = . .  Ω = .  and 

2 2
9 (0 47 A) (9 0 ) 2 0 W,P I RΩ = = . . Ω = .  so the total is 3.1 W. 

(b) 2 2
16V (16 V)(0 47 A) (0 47 A) (1 6 ) 7 2 W.P I I rε= − = . − . . Ω = .  

(c) 2 2
8V (8 0 V)(0 47 A) (0 47 A) (1 4 ) 4 1 W.P I Irε= + = . . + . .  Ω = .  

EVALUATE:   (d) (b) (a) (c).= +  The rate at which the 16.0-V battery delivers electrical energy to the 
circuit equals the rate at which it is consumed in the 8.0-V battery and the 5.0-Ω and 9.0-Ω resistors. 

 25.40. IDENTIFY:   Knowing the current and potential difference, we can find the power. 
SET UP:   P VI=  and energy is the product of power and time. 
EXECUTE:   3(500 V)(80 10  A) 40 W.P −= × =  

3Energy (40 W)(10 10  s) 0 40 J.Pt −= = × = .  
EVALUATE:   The energy delivered depends not only on the voltage and current but also on the length of 
the pulse. The pulse is short but the voltage is large. 

 25.41. IDENTIFY:   We know the current, voltage and time the current lasts, so we can calculate the power and the 
energy delivered. 
SET UP:   Power is energy per unit time. The power delivered by a voltage source is .abP V I=  
EXECUTE:   (a) (25 V)(12 A) 300 W.P = =  

(b) 3Energy (300 W)(3 0 10  s) 0 90 J.Pt −= = . × = .  
EVALUATE:   The energy is not very great, but it is delivered in a short time (3 ms) so the power is large, 
which produces a short shock.  

 25.42. IDENTIFY and SET UP:   The average power delivered by the battery can be calculated in two different 

ways: energy
time

P =  or .P VI=   The time is 5.25 h, which in seconds is 

45 25 h (5 25 h)(3600 s/h) 1 89 10  s.. = . = . ×   

EXECUTE:   The average power delivered by the battery is 
4

4

energy 3 15 10  J 1.6667 W.
time 1 89 10  s

P
. ×= = =
. ×

 Thus, 

the current must be 1.6667 W 0 450 A.
3 70 V

P
I

V
= = = .

.
 

EVALUATE:    The energy stored in the battery can be expressed in joules or watt-hours. The energy is 
equal to Pt, so we can express the stored energy as either 43 15 10  J. ×  or (1.6667 W)(5.25 h) =  
 8.75 W ⋅ h.  

 25.43. (a) IDENTIFY and SET UP:   P VI=  and energy (power) (time).= ×  
EXECUTE:   (12 V)(60 A) 720 W.P VI= = =  
The battery can provide this for 1.0 h, so the energy the battery has stored is 

6(720 W)(3600 s) 2 6 10  J.U Pt= = = . ×  

(b) IDENTIFY and SET UP:   For gasoline the heat of combustion is 6
c 46 10  J/kg.L = ×  Solve for the  

mass m required to supply the energy calculated in part (a) and use density /m Vρ =  to calculate V. 

EXECUTE:   The mass of gasoline that supplies 
6

6
6

2 6 10  J2 6 10  J is 0 0565 kg.
46 10  J/kg

m
. ×. × = = .
×

 

The volume of this mass of gasoline is 
5 3

3 3
0 0565 kg 1000 L6 3 10  m 0 063 L.
900 kg/m 1 m

m
V

ρ
−. ⎛ ⎞= = = . × = .⎜ ⎟

⎝ ⎠
 

(c) IDENTIFY and SET UP:   Energy (power) (time);= ×  the energy is that calculated in part (a). 

EXECUTE:   
62 6 10  J, 5800 s 97 min 1 6 h.

450 W
U

U Pt t
P

. ×=  = = = = = .  
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EVALUATE:   The battery discharges at a rate of 720 W (for 1.0 h) and is charged at a rate of 450 W (for 
1.6 h), so it takes longer to charge than to discharge. 

 25.44. IDENTIFY:   The voltmeter reads the terminal voltage of the battery, which is the potential difference across 
the appliance. The terminal voltage is less than 15.0 V because some potential is lost across the internal 
resistance of the battery. 
(a) SET UP:   2 /P V R=  gives the power dissipated by the appliance. 

EXECUTE:     P = (11.9 V)2 /(75.0 Ω) = 1.888 W,  which rounds to 1.89 W. 
(b) SET UP:   The drop in terminal voltage ( – )abVε  is due to the potential drop across the internal 
resistance r. Use –  abIr Vε=  to find the internal resistance r, but first find the current using .P IV=  
EXECUTE:     I = P/V = (1.888 W)/(11.9 V) = 0.1587 A.  Then –  abIr Vε=  gives 
(0.1587 A) 15.0 V –11.9 V and 19.5 .r r= = Ω  
EVALUATE:   The full 15.0-V of the battery would be available only when no current (or a very small current) 
is flowing in the circuit. This would be the case if the appliance had a resistance much greater than 19.5 Ω. 

 25.45. IDENTIFY:   Some of the power generated by the internal emf of the battery is dissipated across the 
battery’s internal resistance, so it is not available to the bulb. 
SET UP:   Use 2P I R=  and take the ratio of the power dissipated in the internal resistance r to the total 
power. 

EXECUTE:   
2

2
Total

3 5 0 123 12 3%.
28 5( )

rP I r r
P r RI r R

.  Ω= = = = . = .
+ .  Ω+

 

EVALUATE:   About 88% of the power of the battery goes to the bulb. The rest appears as heat in the 
internal resistance. 

 25.46. IDENTIFY:   The power delivered to the bulb is 2 .I R  Energy .Pt=  
SET UP:   The circuit is sketched in Figure 25.46. totalr  is the combined internal resistance of both batteries. 
EXECUTE:   (a) total 0.r =  The sum of the potential changes around the circuit is zero, so 

1 5 V 1 5 V (17 ) 0.I. + . −  Ω =  0 1765 A.I = .  2 2(0 1765 A) (17 ) 0 530 W.P I R= = .  Ω = .  This is also 
(3 0 V)(0 1765 A).. .  
(b) Energy (0 530 W)(5 0 h)(3600 s/h) 9540 J.= . . =  

(c) 0 530 W 0 265 W.
2

P
.= = .  2P I R=  so 0 265 W 0 125 A.

17
P

I
R

.= = = .
 Ω

 

The sum of the potential changes around the circuit is zero, so total1 5 V 1 5 V 0.IR Ir. + . − − =  

total
3 0 V (0 125 A)(17 ) 7 0 .

0 125 A
r

. − .  Ω= = .  Ω
.

 

EVALUATE:   When the power to the bulb has decreased to half its initial value, the total internal resistance 
of the two batteries is nearly half the resistance of the bulb. Compared to a single battery, using two 
identical batteries in series doubles the emf but also doubles the total internal resistance. 

 

 

Figure 25.46 
 

 25.47. IDENTIFY:   Solve for the current I in the circuit. Apply 2P VI I R= =  to the specified circuit elements to 
find the rates of energy conversion. 
SET UP:   The circuit is sketched in Figure 25.47 (next page). 
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 EXECUTE:   Compute I: 
0.Ir IRε − − =  

12 0 V 2 00 A.
1 0 5 0

I
r R

ε .= = = .
+ . Ω + .  Ω

 

Figure 25.47   
 

(a) The rate of conversion of chemical energy to electrical energy in the emf of the battery is 
(12 0 V)(2 00 A) 24 0 W.P Iε= = . . = .  

(b) The rate of dissipation of electrical energy in the internal resistance of the battery is 
2 2(2 00 A) (1 0 ) 4 0 W.P I r= = . .  Ω = .  

(c) The rate of dissipation of electrical energy in the external resistor R 
2 2is (2 00 A) (5 0 ) 20 0 W.P I R= = . .  Ω = .  

  EVALUATE:   The rate of production of electrical energy in the circuit is 24.0 W. The total rate of 
consumption of electrical energy in the circuit is 4.00 W 20.0 W 24.0 W.+ =  Equal rates of production 
and consumption of electrical energy are required by energy conservation. 

 25.48. IDENTIFY:   
2

2 .V
P I R VI

R
= = =  .V IR=  

SET UP:   The heater consumes 540 W when 120 V.V =  Energy .Pt=  

EXECUTE:   (a) 
2V

P
R

=  so 
2 2(120 V) 26 7 .

540 W
V

R
P

= = = .  Ω  

(b) P VI=  so 540 W 4 50 A.
120 V

P
I

V
= = = .  

(c) Assuming that R remains 26 7 ,.  Ω
2 2(110 V) 453 W.

26 7
V

P
R

= = =
.  Ω

 P is smaller by a factor of 2(110/120) .  

EVALUATE:   (d) With the lower line voltage the current will decrease and the operating temperature will 
decrease. R will be less than 26 7.  Ω  and the power consumed will be greater than the value calculated in 
part (c). 

 25.49. IDENTIFY:   The resistivity is 2 .m
ne

ρ
τ

=  

SET UP:   For silicon, 2300 m.ρ =  Ω ⋅  

EXECUTE:   (a) 
31

12
2 16 3 19 2

9 11 10 kg 1 55 10 s.
(1 0 10 m )(1 60 10  C) (2300 m)

m
ne

τ
ρ

−
−

− −
. ×= = = . ×

. × . × Ω ⋅
 

EVALUATE:   (b) The number of free electrons in copper 28 3(8 5 10 m )−. ×  is much larger than in pure 

silicon 16 3(1 0 10 m ).−. ×  A smaller density of current carriers means a higher resistivity. 
 25.50. IDENTIFY:   Negative charge moving from A to B is equivalent to an equal magnitude of positive charge 

going from B to A.  

SET UP:   Q
I

t
∆= .
∆

 The current direction is the direction of flow of positive charge. 

EXECUTE: The total positive charge moving from B to A is  
18 18 19[5 11 10 2(3 24 10 )](1 60 10  C) 1 85 CQ −∆ = . × + . × . × = . .  1 85 C 62 mA

30 s
Q

I
t

∆ .= = = .
∆

 Positive charge 

flows from B to A so the current is in this direction. 
EVALUATE:   The charges flowing in opposite directions do not cancel each other out because one is 
positive and the other is negative. 
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 25.51. (a) IDENTIFY and SET UP:   Use .L
R

A
ρ=  

EXECUTE:   
3 2

8(0 104 ) (1 25 10  m) 3 65 10 m.
14 0 m

RA
L

πρ
−

−.  Ω . ×= = = . × Ω ⋅
.

 

EVALUATE:   This value is similar to that for good metallic conductors in Table 25.1. 
(b) IDENTIFY and SET UP:   Use V = EL to calculate E and then Ohm’s law gives I. 
EXECUTE:   (1 28 V/m)(14 0 m) 17 9 V.V EL= = . . = .  

17 9 V 172 A.
0 104 

V
I

R
.= = =

. Ω
 

EVALUATE:   We could do the calculation another way: 
7 2

8
1 28 V/m so 3 51 10  A/m .

3 65 10 m
E

E J Jρ
ρ −

.= = = = . ×
. ×  Ω ⋅

 

7 2 3 2(3 51 10  A/m ) (1 25 10  m) 172 A,I JA π −= = . × . × =  which checks. 
(c) IDENTIFY and SET UP:   Calculate /  or /J I A J E ρ= =  and then use Eq. (25.3) for the target variable d.v  
EXECUTE:   d d.J n q v nev= =  

7 2
3

d 28 3 19
3 51 10  A/m 2 58 10  m/s 2 58 mm/s.

(8 5 10  m )(1 602 10  C)
J

v
ne

−
− −

. ×= = = . × = .
. × . ×

 

EVALUATE:   Even for this very large current the drift speed is small. 

 25.52. IDENTIFY and SET UP:   Use L
R

A
ρ=  and V = RI. Call x the distance from point A to the short. The 

distance from B to the short is 2000 m – x. V is the same in both measurements since we use the same 
9.00-V battery.  

EXECUTE:    Since V is the same in both measurements, V = R1I1 = R2I2. Also 1
x

R
A

ρ=  and 

2
(2000 m ) .x

R
A

ρ −=  Combining these two conditions gives   1
x

I
A

ρ  = 2
(2000 m ) .x

I
A

ρ −  This gives 

(2.86 A)x = (1.65 A)(2000 m – x), so x = 732 m from point A. 
EVALUATE:   Our result assumes that the wire has uniform thickness with no kinks in it. These would 
affect the cross-sectional area and hence the resistance. 

 25.53. IDENTIFY and SET UP:   With the voltmeter connected across the terminals of the battery there is no 
current through the battery and the voltmeter reading is the battery emf; 12 6 V.ε = .  
With a wire of resistance R connected to the battery current I flows and 0,Ir IRε − − =  where r is the internal 
resistance of the battery. Apply this equation to each piece of wire to get two equations in the two unknowns. 
EXECUTE:   Call the resistance of the 20.0-m piece 1;R  then the resistance of the 40.0-m piece is 

2 12 .R R=  

1 1 1 10; 12 6 V (7 00 A) (7 00 A) 0.I r I R r Rε − − = . − . − . =  

2 2 2 1(2 ) 0; 12 6 V (4 20 A) (4.20 A)(2 ) 0.I r I R r Rε − − = . − . − =  
Solving these two equations in two unknowns gives 1 1.20 .R = Ω  This is the resistance of 20.0 m, so the 
resistance of one meter is [1 20 /(20 0 m)](1 00 m) 0 060 ..  Ω . . = . Ω  
EVALUATE:   We can also solve for r and we get 0 600 .r = . Ω  When measuring small resistances, the 
internal resistance of the battery has a large effect. 

 25.54. IDENTIFY:   Conservation of charge requires that the current is the same in both sections. The voltage 
drops across each section add, so Cu Ag.R R R= +  The total resistance is the sum of the resistances of each 

section. The electric field in a conductor is ,V IR
E

L L
= =  where R is the resistance of a section and L is its 

length. 
SET UP:   For copper, 8

Cu 1 72 10 m.ρ −= . ×  Ω ⋅  For silver, 8
Ag 1 47 10 m.ρ −= . ×  Ω ⋅  
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EXECUTE:   (a) 
Cu Ag

.V V
I

R R R
= =

+
 

8
Cu Cu

Cu 4 2
Cu

(1 72 10 m)(0 8 m) 0 049
( /4)(6 0 10 m)

L
R

A
ρ

π

−

−
. × Ω ⋅ .= = = . Ω

. ×
 and 

8
Ag Ag

Ag 4 2
Ag

(1 47 10 m)(1 2 m) 0 062 .
( /4)(6 0 10 m)

L
R

A

ρ
π

−

−
. × Ω ⋅ .= = = . Ω

. ×
 This gives 9 0 V 81.1 A,

0 049 0 062
I

.= =
. Ω + . Ω

 which 

rounds to 81 A, so the current in the copper wire is 81 A. 
(b) The current in the silver wire is 81.1 A, the same as that in the copper wire or else charge would build 
up at their interface. 

(c) Cu Cu
Cu

Cu Cu

(81.1 A)(0 049 ) 4.97 V/m,
0 80 m

V IR
E

L L
. Ω= = = =

.
 which rounds to 5.0 V/m. 

(d) Ag Ag
Ag

Ag Ag

(81.1 A)(0 062 ) 4.19 V/m,
1 2 m

V IR
E

L L
. Ω= = = =

.
 which rounds to 4.2 V/m. 

(e) Ag Ag (81.1 A)(0 062 ) 5.03 V,V IR= = . Ω =  which rounds to 5.0 V. 

EVALUATE:   For the copper section, Cu CuV IR= = (81.1 A)(0.049 Ω) = 3.97 V. Note that 

Cu Ag 3.97 V + 5.03 V = 9 0 V,V V+ = .  the voltage applied across the ends of the composite wire. 
 25.55. IDENTIFY:   Conservation of charge requires that the current be the same in both sections of the wire. 

.I
E J

A
ρρ= =  For each section, .EA L

V IR JAR EL
A

ρ
ρ

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 The voltages across each section add. 

SET UP:   2( /4) ,A Dπ=  where D is the diameter. 
EXECUTE:   (a) The current must be the same in both sections of the wire, so the current in the thin end is 
2.5 mA. 

(b) 
8 3

5
1 6mm 3 2

(1 72 10 m)(2 5 10 A) 2 14 10 V/m.
( /4)(1 6 10 m)

I
E J

A
ρρ

π

− −
−

. −
. × Ω ⋅ . ×= = = = . ×

. ×
 

(c) 
8 3

5
0 8mm 3 2

(1 72 10 m)(2 5 10 A) 8 55 10 V/m.
( /4)(0 80 10 m)

I
E J

A
ρρ

π

− −
−

. −
. × Ω ⋅ . ×= = = = . ×

. ×
 This is 1 6mm4 .E .  

(d) 5 5 4
1 6mm 1 6 mm 0 8 mm 0 8 mm (2 14 10  V/m)(1 20 m) (8 55 10  V/m)(1 80 m) 1 80 10  V.V E L E L V − − −
. . . .= + . = . × . + . × . = . ×  

EVALUATE:   The currents are the same but the current density is larger in the thinner section and the 
electric field is larger there. 

 25.56. IDENTIFY and SET UP:   The voltage is the same at both temperatures since the same battery is used. The 
power is 2/P V R=  and 0(1 ).R R Tα= + ∆  

EXECUTE:    Since the voltage is the same, we have 2
80 80 150 150.V P R P R= =  Therefore 

80 0 80 0 150 0 150 0[1 ( )] [1 ( )].P R T T P R T Tα α+ − = + −  Solving for P150 and putting in the numbers gives 
–1

80 0
150 80 –1

150 0

1 ( ) 1 + (0.0045 K )(80°C – 20°C)(480 W) 385 W.
1 ( ) 1 + (0.0045 K )(150°C – 20°C)

T T
P P

T T
α
α

+ −= = =
+ −

 

EVALUATE:   This result assumes that α  is the same at all the temperatures. 
 25.57. IDENTIFY:   Knowing the current and the time for which it lasts, plus the resistance of the body, we can 

calculate the energy delivered. 
SET UP:   Electric energy is deposited in his body at the rate 2 .P I R=  Heat energy Q produces a 
temperature change T∆  according to ,Q mc T= ∆  where 4190 J/kg C .c = ⋅ °  

EXECUTE:   (a) 2 2 11(25,000 A) (1.0 k ) 6.25 10 W.P I R= = Ω = ×  The energy deposited is 
11 6 7(6 15 10  W)(40 10  s) 2 5 10  J.Pt −= . × × = . ×  Find T∆  when 72 5 10  J.Q = . ×  

72 5 10  J 80 C .
(75 kg)(4190 J/kg C )

Q
T

mc
. ×∆ = = = °

⋅ °
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(b) An increase of only 63 C°  brings the water in the body to the boiling point; part of the person’s body 
will be vaporized. 
EVALUATE:   Even this approximate calculation shows that being hit by lightning is very dangerous. 

 25.58. IDENTIFY:   The current in the circuit depends on R and on the internal resistance of the battery, as well as 
the emf of the battery. It is only the current in R that dissipates energy in the resistor R. 

SET UP:   ,I
R r

ε=
+

 where ε  is the emf of the battery, and 2 .P I R=  

EXECUTE:   
2

2
2 ,

( )
P I R R

R r
ε= =
+

 which gives 2 2 2( 2 ) .R R Rr r Pε = + +  

2
2 22 0.R r R r

P
ε⎛ ⎞

+ − + =⎜ ⎟⎜ ⎟
⎝ ⎠

 
22 2

21 2 2 4 .
2

R r r r
P P

ε ε
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − ± − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

22 2
21 (12 0 V) (12 0 V)2(0 40 ) 2(0 40 ) 4(0 40 ) .

2 80 0 W 80 0 W
R

⎡ ⎤⎛ ⎞ ⎛ ⎞. .⎢ ⎥= − . Ω ± − .  Ω − .  Ω⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

0 50 0 30 .R = .  Ω ± .  Ω  0 20R = .  Ω  and 0 80 .R = . Ω  
EVALUATE:   There are two values for R because there are two ways for the power dissipated in R to be  
80 W. The power is 2 ,P I R=  so we can have a small (0.20 )R Ω  and large current, or a larger (0.80 )R Ω  
and a smaller current. 

 25.59. (a) IDENTIFY:   Apply L
R

A
ρ=  to calculate the resistance of each thin disk and then integrate over the 

truncated cone to find the total resistance. 
SET UP:    

 

 EXECUTE:   The radius of a truncated  
cone a distance y above the bottom is  
given by 2 1 2 2( / )( )r r y h r r r yβ= + − = +  
with 1 2( )/ .r r hβ = −  

Figure 25.59   
 

Consider a thin slice a distance y above the bottom. The slice has thickness dy and radius r (see  

Figure 25.59.) The resistance of the slice is 2 2
2

.
( )

dy dy dy
dR

A r r y
ρ ρ ρ

π π β
= = =

+
 

The total resistance of the cone if obtained by integrating over these thin slices: 

1
220 2 22 0

1 1 1( ) .
( )

h
h dy

R dR r y
r h rr y

ρ ρ ρβ
π π β πβ ββ

− ⎡ ⎤⎡ ⎤= = = − + = − −⎢ ⎥⎢ ⎥ ++ ⎣ ⎦ ⎣ ⎦
∫ ∫  

But 2 1.r h rβ+ =  

1 2

2 1 1 2 1 2 1 2

1 1 .h r r h
R

r r r r r r r r
ρ ρ ρ

πβ π π
⎡ ⎤ ⎛ ⎞⎛ ⎞−= − = =⎜ ⎟⎜ ⎟⎢ ⎥ −⎣ ⎦ ⎝ ⎠⎝ ⎠

 

(b) EVALUATE:   Let 1 2 .r r r= =  Then 2 2/ /  where  and .R h r L A A r L hρ π ρ π= = = =  This agrees with 

.L
R

A
ρ=  

 25.60. IDENTIFY:   Divide the region into thin spherical shells of radius r and thickness dr. The total resistance is 
the sum of the resistances of the thin shells and can be obtained by integration. 
SET UP:   /I V R=  and 2/4 ,J I rπ=  where 24 rπ  is the surface area of a shell of radius r. 
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EXECUTE:   (a) 2 2
1 1 1 .

4 4 4 44

b
b

a
a

dr dr b a
dR R

r a b abr r
ρ ρ ρ ρ ρ

π π π ππ
−⎛ ⎞ ⎛ ⎞= ⇒ = = − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫  

(b) 4
( )

ab abV V ab
I

R b a
π

ρ
= =

−
 and 2 2

4 .
( )4 ( )

ab abI V ab V ab
J

A b a r b a r
π

ρ π ρ
= = =

− −
 

(c) If the thickness of the shells is small, then 24 4ab aπ π≈  is the surface area of the conducting material.  

2
1 1 ( ) ,

4 4 4
b a L L

R
a b ab Aa

ρ ρ ρ ρ
π π π

−⎛ ⎞= − = ≈ =⎜ ⎟
⎝ ⎠

 where .L b a= −  

EVALUATE:   The current density in the material is proportional to 21/r .  
 25.61. IDENTIFY:   In each case write the terminal voltage in terms of ,ε I, and r. Since I is known, this gives two 

equations in the two unknowns ε and r. 
SET UP:   The battery with the 1.50-A current is sketched in Figure 25.61a. 

 

 8 40 V.abV = .  
.abV Irε= −  

(1 50 A) 8 40 V.rε − . = .  

Figure 25.61a   
 

The battery with the 3.50-A current is sketched in Figure 25.61b. 
 

 10.2 V.abV =  
.abV Irε= +  

(3 50 A) 10.2 V.rε + . =  

Figure 25.61b   
 

EXECUTE:   (a) Solve the first equation for ε  and use that result in the second equation: 
8 40 V (1 50 A) .rε = . + .  

8 40 V (1 50 A) (3 50 A) 10.2 V.r r. + . + . =  
1 8 V(5 00 A) 1 8 V so 0 36 .
5 00 A

r r
.. = . = = . Ω
.

 

(b) Then 8 40 V (1 50 A) 8 40 V (1 50 A)(0 36 ) 8 94 V.rε = . + . = . + . . Ω = .  
EVALUATE:   When the current passes through the emf in the direction from  to ,− +  the terminal voltage 
is less than the emf and when it passes through from to ,+ −  the terminal voltage is greater than the emf. 

 25.62. IDENTIFY:   Consider the potential changes around the circuit. For a complete loop the sum of the potential 
changes is zero. 
SET UP:   There is a potential drop of IR when you pass through a resistor in the direction of the current. 

EXECUTE:   (a) 8 0 V 4 0 V 0 167 A.
24 0

I
. − .= = .

. Ω
 8 00 V (0 50 8 00 ) ,d aV I V+ . − . Ω + . Ω =  so 

8 00 V (0 167 A)(8 50 ) 6 58 V.adV = . − . . Ω = .  
(b) The terminal voltage is .bc b cV V V= −  4 00 V (0 50 )c bV I V+ . + . Ω =  and 

4 00 V (0 167 A)(0 50 ) 4 08 V.bcV = + . + . . Ω = + .  
(c) Adding another battery at point d in the opposite sense to the 8.0-V battery produces a counterclockwise 

current with magnitude 10 3 V 8 0 V 4 0 V 0 257 A.
24 5

I
. − . + .= = .

. Ω
 Then 4 00 V (0 50 )c bV I V+ . − .  Ω =  and 

4.00 V (0.257 A) (0.50 ) 3.87 V.bcV = − Ω =  
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EVALUATE:   When current enters the battery at its negative terminal, as in part (c), the terminal voltage is 
less than its emf.  When current enters the battery at the positive terminal, as in part (b), the terminal 
voltage is greater than its emf. 

 25.63. IDENTIFY:   .L
R

A
ρ=  .V IR=  2 .P I R=  

SET UP:   The area of the end of a cylinder of radius r is 2.rπ  

EXECUTE:   (a) 3
2

(5 0 m)(1 6 m) 1 0 10 .
(0 050 m)

R
π
. Ω ⋅ .= = . × Ω

.
 

(b) 3 3(100 10 A)(1 0 10 ) 100 V.V IR −= = × . ×  Ω =  

(c) 2 3 2 3(100 10 A) (1 0 10 ) 10 W.P I R −= = × . ×  Ω =  
EVALUATE:   The resistance between the hands when the skin is wet is about a factor of ten less than when 
the skin is dry (Problem 25.64). 

 25.64. IDENTIFY:   .V IR=  2 .P I R=  
SET UP:   The total resistance is the resistance of the person plus the internal resistance of the power 
supply. 

EXECUTE:   (a) 
3

3
tot

14 10  V 1 17 A.
10 10 2000

V
I

R
×= = = .

× Ω +  Ω
 

(b) 2 2 3 4(1 17 A) (10 10 ) 1 37 10  J 13 7 kJ.P I R= = . × Ω = . × = .  

(c) 
3

6
tot 3

14 10  V 14 10 .
1 00 10  A

V
R

I −
×= = = ×  Ω

. ×
 The resistance of the power supply would need to be 

6 3 614 10 10 10 14 10 14 M .× Ω − ×  Ω = ×  Ω = Ω  
EVALUATE:   The current through the body in part (a) is large enough to be fatal. 

 25.65. IDENTIFY:   The cost of operating an appliance is proportional to the amount of energy consumed. The 
energy depends on the power the item consumes and the length of time for which it is operated. 
SET UP:   At a constant power, the energy is equal to Pt, and the total cost is the cost per kilowatt-hour 
(kWh) times the energy (in kWh). 
EXECUTE:   (a) Use the fact that 61.00 k Wh (1000 J/s)(3600 s) 3.60 10 J,= = ×  and one year contains 

73 156 10 s.. ×  

7

6
3 156 10  s $0 120(75 J/s) $78.90.

1 yr 3 60 10  J

⎛ ⎞. × .⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟ . ×⎝ ⎠⎝ ⎠
 

(b) At 8 h/day,  the refrigerator runs for 1/3 of a year. Using the same procedure as above gives 

7

6
1 3 156 10  s $0 120(400 J/s) $140.27.
3 1 yr 3 60 10  J

⎛ ⎞. × .⎛ ⎞ ⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ . ×⎝ ⎠ ⎝ ⎠⎝ ⎠
 

EVALUATE:   Electric lights can be a substantial part of the cost of electricity in the home if they are left on 
for a long time! 

 25.66. IDENTIFY:   As the resistance R varies, the current in the circuit also varies, which causes the potential drop 
across the internal resistance of the battery to vary.  The largest current will occur when 0,R =  and the 
smallest current will occur when .R → ∞  The largest terminal voltage will occur when the current is zero 
( R → ∞ ) and the smallest terminal voltage will be when the current is a maximum ( 0R = ). 
SET UP:   If ε  is the internal emf of the battery and r is its internal resistance, then .abV rIε= −  
EXECUTE: (a) As ,R → ∞  0,I →  so 15 0 V,abV ε→ = .  which is the largest reading of the voltmeter. 
When 0,R =  the current is largest at (15 0 V)/(4 00 ) 3 75 A,. .  Ω = .  so the smallest terminal voltage is 

15 0 VabV rIε= − = . −  (4 00 )(3 75 A) 0..  Ω . =  
(b) From part (a), the maximum current is 3 75 A . when 0,R =  and the minimum current is 0 00 A . when 

.R → ∞  
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(c) The graphs are sketched in the Figure 25.66. 
EVALUATE:  Increasing the resistance R increases the terminal voltage, but at the same time it decreases 
the current in the circuit. 
 

 

Figure 25.66 
 

 25.67. IDENTIFY:   The ammeter acts as a resistance in the circuit loop. Set the sum of the potential rises and 
drops around the circuit equal to zero. 
(a) SET UP:   The circuit with the ammeter is sketched in Figure 25.67a. 

 

 
EXECUTE:   .A

A
I

r R R
ε=

+ +
 

( ).A AI r R Rε = + +  

Figure 25.67a   
 

SET UP:   The circuit with the ammeter removed is sketched in Figure 25.67b. 
 

 
EXECUTE:   .I

R r
ε=
+

 

Figure 25.67b   
 

Combining the two equations gives 
1 ( ) 1 .A

A A A
R

I I r R R I
R r r R

⎛ ⎞ ⎛ ⎞= + + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

(b) Want 0 990AI I= . .  Use this in the result for part (a). 

0 990 1 .AR
I I

r R
⎛ ⎞= . +⎜ ⎟+⎝ ⎠

 

0 010 0 990 .AR
r R

⎛ ⎞. = . ⎜ ⎟+⎝ ⎠
 

( )(0 010/0 990) (0 45 3 80 )(0 010/0 990) 0 0429 .AR r R= + . . = . Ω + . Ω . . = . Ω  

(c) .A
A

I I
r R r R R

ε ε− = −
+ + +

 

.
( )( ) ( )( )

A A
A

A A

r R R r R R
I I

r R r R R r R r R R
εε ⎛ ⎞+ + − −− = =⎜ ⎟+ + + + + +⎝ ⎠
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EVALUATE:   The difference between I and AI  increases as AR  increases. If AR  is larger than the value 
calculated in part (b) then AI  differs from I by more than 1.0%. 

 25.68. (a) IDENTIFY:   The rate of heating (power) in the cable depends on the potential difference across the 
cable and the resistance of the cable. 
SET UP:   The power is 2 /P V R=  and the resistance is / .R L Aρ=  The diameter D of the cable is twice its 

radius. 
2 2 2 2 2

.
( / )

V V AV r V
P

R L A L L
π

ρ ρ ρ
= = = =  The electric field in the cable is equal to the potential 

difference across its ends divided by the length of the cable: / .E V L=  
EXECUTE:   Solving for r and using the resistivity of copper gives 

8
4

2 2
(90 0 W)(1 72 10 m)(1500 m) 1.236 10 m = 0.1236 mm.

(220 0 V)
P L

r
V
ρ

π π

−
−. . ×  Ω ⋅= = = ×

.
 D = 2r = 0.247 mm.  

(b) IDENTIFY and SET UP:   / .E V L=  
EXECUTE:   (220 V)/(1500 m) 0.147 V/m.E = =  
EVALUATE:   This would be an extremely thin (and hence fragile) cable. 

 25.69. (a) IDENTIFY:   Since the resistivity is a function of the position along the length of the cylinder, we must 
integrate to find the resistance. 
SET UP:   The resistance of a cross-section of thickness dx is / .dR dx Aρ=  
EXECUTE:   Using the given function for the resistivity and integrating gives 

2 3

2 20
( ) /3.

Ldx a bx dx aL bL
R

A r r
ρ

π π
+ += = =∫ ∫  

Now get the constants a and b: 8(0) 2.25 10 maρ −= = × Ω ⋅  and 2( )L a bLρ = +  gives 
8 8 28.50 10 m 2.25 10 m (1.50 m)b− −× Ω ⋅ = × Ω ⋅ +  which gives 82.78 10 /m.b −= × Ω  Now use the above 

result to find R. 
8 8 3

4
2

(2 25 10 m)(1 50 m) (2 78 10 /m)(1 50 m) /3 1.71 10 171 .
(0 0110 m)

R µ
π

− −
−. ×  Ω ⋅ . + . ×  Ω .= = × Ω = Ω

.
 

(b) IDENTIFY:   Use the definition of resistivity to find the electric field at the midpoint of the cylinder, 
where /2.x L=  
SET UP:   .E Jρ=  Evaluate the resistivity, using the given formula, for /2.x L=  

EXECUTE:   At the midpoint, /2,x L=  giving 
2

2 2
[ ( /2) ] .I a b L I

E
r r

ρ
π π

+= =  

8 8 2
4

2
[2 25 10 m (2 78 10 /m)(0 750 m) ](1 75 A) 1.76 10 V/m

(0 0110 m)
E

π

− −
−. ×  Ω ⋅ + . ×  Ω . .= = ×

.
 = 176 µV/m 

(c) IDENTIFY:   For the first segment, the result is the same as in part (a) except that the upper limit of the 
integral is /2L  instead of L. 

SET UP:   Integrating using the upper limit of /2L  gives 
3

1 2
( /2) ( /3)( /8) .a L b L

R
rπ

+=  

EXECUTE:   Substituting the numbers gives 
8 8 3

5
1 2

(2 25 10 m)(0 750 m) (2 78 10 /m)/3((1 50 m) /8) 5 47 10
(0 0110 m)

R
π

− −
−. ×  Ω ⋅ . + . ×  Ω .= = . ×  Ω

.
 = 54.7 µΩ. 

The resistance 2R  of the second half is equal to the total resistance minus the resistance of the first half. 
4 5 4

2 1 1.71 10 5.47 10 1.16 10R R R − − −= − = × Ω − × Ω = × Ω  = 116 µΩ. 
EVALUATE:   The second half has a greater resistance than the first half because the resistance increases 
with distance along the cylinder. 

 25.70. IDENTIFY:   Compact fluorescent bulbs draw much less power than incandescent bulbs and last much 
longer. Hence they cost less to operate. 



Current, Resistance, and Electromotive Force   25-21 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

SET UP:   A kWh is power of 1 kW for a time of 1 h. 
2

.V
P

R
=  

EXECUTE:   (a) In 3.0 yr the bulbs are on for 3(3 0 yr)(365 24 days/yr)(4 0 h/day) 4 38 10  h.. . . = . ×  

Compact bulb: The energy used is 3 5(23 W)(4 38 10  h) 1 01 10  Wh 101 kWh.. × = . × =  The cost of this 
energy is ($0.080/kWh) (101 kWh) $8.08.=  One bulb will last longer than this. The bulb cost is $11.00, so 
the total cost is $19.08. 
Incandescent bulb: The energy used is 3 5(100 W)(4 38 10 h) 4 38 10  Wh 438 kWh.. × = . × =  The cost of this 
energy is ($0 080/kWh)(438 kWh) $35 04.. = .  Six bulbs will be used during this time and the bulb cost will 
be $4.50. The total cost will be $39.54. 
(b) The compact bulb will save $39 54 $19 08 $20 46.. − . = .  

(c) 
2 2

.
(120 V) 626 

23 W
V

R
P

= = = Ω  

EVALUATE:   The initial cost of the bulb is much greater for the compact fluorescent bulb but the savings 
soon repay the cost of the bulb. The compact bulb should last for over six years, so over a 6-year period the 
savings per year will be even greater. The cost of compact fluorescent bulbs has come down dramatically, 
so the savings today would be considerably greater than indicated here. 

 25.71. IDENTIFY:   Apply L
R

A
ρ=  for each material. The total resistance is the sum of the resistances of the rod 

and the wire.  The rate at which energy is dissipated is 2 .I R  
SET UP:   For steel, 72 0 10 m.ρ −= . ×  Ω ⋅  For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  

EXECUTE:   (a) 
7

3
steel 2

(2 0 10 m)(2 0 m) 1 57 10
( /4)(0 018 m)

L
R

A
ρ

π

−
−. × Ω ⋅ .= = = . × Ω

.
 and 

8

Cu 2
(1 72 10 m)(35 m) 0 012 .

( /4)(0 008 m)
L

R
A

ρ
π

−. × Ω ⋅= = = . Ω
.

 This gives 

3
steel Cu( ) (15000 A) (1 57 10 0 012 ) 204 V.V IR I R R −= = + = . × Ω + . Ω =  

(b) 2 2 6(15000 A) (0 0136 )(65 10 s) 199 J.E Pt I Rt −= = = . Ω × =  

EVALUATE:   2I R  is large but t is very small, so the energy deposited is small.  The wire and rod each 
have a mass of about 1 kg, so their temperature rise due to the deposited energy will be small. 

 25.72. IDENTIFY:   No current flows to the capacitors when they are fully charged. 
SET UP:   RV RI=  and / .CV Q C=  

EXECUTE:   (a) 1
1

1

18 0 C 6 00 V.
3 00 FC

Q
V

C
µ
µ

.  = = = .
.  

 2 1 6 00 V.C CV V= = .  

2 2 2 (6 00 F)(6 00 V) 36 0 C.CQ C V µ µ= = .  . = .  

(b) No current flows to the capacitors when they are fully charged, so 1 2.IR IRε = +  

2 1 6 00 V.R CV V= = .  2

2

6 00 V 3 00 A.
2 00

RV
I

R
.= = = .
.  Ω

 

2
1

72 0 V 6 00 V 22 0 .
3 00 A

IR
R

I
ε − . − .= = = .  Ω

.
 

EVALUATE:   When a capacitor is fully charged, it acts like an open circuit and prevents any current from 
flowing though it. 

 25.73. IDENTIFY:   No current flows through the capacitor when it is fully charged. 

SET UP:   With the capacitor fully charged, 
1 2

.I
R R

ε=
+

 RV IR=  and / .CV Q C=  
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EXECUTE:   36 0 C 4 00 V.
9 00 FC

Q
V

C
µ
µ

.  = = = .
.  

 1 4 00 VR CV V= = .  and 1

1

4 00 V 0 667 A.
6 00

RV
I

R
.= = = .
.  Ω

 

22 (0 667 A)(4 00 ) 2 668 V.RV IR= = . .  Ω = .  1 2 4 00 V 2 668 V 6 67 V.R RV Vε = + = . + . = .  

EVALUATE:   When a capacitor is fully charged, it acts like an open circuit and prevents any current from 
flowing though it. 

 25.74. IDENTIFY and SET UP:   Ohm’s law applies. The terminal voltage abV  is less than the internal emf ε  due to 
voltage losses in the internal resistance r of the battery when current I is flowing in the circuit. .abV rIε= −  
EXECUTE:   (a) The equation abV rIε= −  applies to this circuit, so a graph of abV  versus I should be a 
straight line with a slope equal to –r and a y-intercept equal to .ε  Using points where the graph crosses 

grid lines, the slope is:  22.0 V – 30.0 Vslope –2.00 V/A.
7.00 A – 3.00 A

= =  Therefore r = –(–2.00 V/A) = 2.00 Ω. 

The equation of the graph is ,abV rIε= −  so we can solve for ε  and use a point on the graph to calculate 
.ε  This gives 

ε  = abV  + rI = 30.0 V + (2.00 Ω)(3.00 A) = 36.0 V. 

(b) R = abV /I and ,abV
I

r
ε −=  so  .ab ab

ab ab

V rV
R

V V
r

ε ε
= =− −

 Putting in the numbers gives 

R = (2.00 Ω)(0.800)(36.0 V)/[36.0 V – (0.800)(36.0 V)] = 8.00 Ω. 
EVALUATE:   For large currents, the terminal voltage can be much less than the internal emf, as shown by 
the graph with the problem. 

 25.75. IDENTIFY:   According to Ohm’s law, abV
R

I
=  = constant, and a graph of abV  versus I will be a straight 

line with positive slope passing through the origin. 
SET UP and EXECUTE:   (a) Figure 25.75a shows the graphs of abV  versus I and R versus I for resistor A. 
Figure 25.75b shows these graphs for resistor B. 

      

Figure 25.75a 

(b) In Figure 25.75a, the graph of abV  versus I is not a straight line so resistor A does not obey Ohm’s law. 
In the graph of R versus I, R is not constant; it decreases as I increases. 

      

1.00

2.00

3.00

4.00

0.00

R
(Ohms)

1.00 2.00 3.00 4.00
I(A)

Figure 25.75b 
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(c) In Figure 25.75b, the graph of abV  versus I is a straight line with positive slope passing through the 
origin, so resistor B obeys Ohm’s law. The graph of R versus I is a horizontal line. This means that R is 
constant, which is consistent with Ohm’s law. 
(d) We use P = IV. From the graph of abV  versus I in Figure 25.75a, we read that I = 2.35 A when 
V = 4.00 V. Therefore P = IV = (2.35 A)(4.00 V) = 9.40 W. 
(e) We use 2/P V R= .   From the graph of R versus I in Figure 25.75b, we find that R = 3.88 Ω. Thus 

2 2/ = (4.00 V) /(3.88 ) 4.12 W.P V R= Ω =  
EVALUATE:   Since resistor B obeys Ohm’s law ,  abV RI R=  is the slope of the graph of abV  versus I in 
Figure 25.75b. The given data points lie on the line, so we use them to calculate the slope.  

slope = 15 52 V 1 94 V 3 88 .
4 00 A 0 50 A

R
. − .= = . Ω
. − .

 This value is the same as the one we got from the graph of R 

versus I in Figure 25.75b, so our results agree. 
 25.76. IDENTIFY:   The power supplied to the house is P VI= .  The rate at which electrical energy is dissipated in 

the wires is 2 ,I R  where .L
R

A
ρ=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  
EXECUTE:   (a) The line voltage, current to be drawn, and wire diameter are what must be considered in 
household wiring. 

(b) P VI=  gives 4200 W 35 A,
120 V

P
I

V
= = =  so the 8-gauge wire is necessary, since it can carry up to 40 A. 

(c) 
2 2 8

2
2

(35 A) (1 72 10 m)(42 0 m) 106 W.
( /4)(0 00326 m)

I L
P I R

A
ρ

π

−. × Ω ⋅ .= = = =
.

 

(d) If 6-gauge wire is used, 
2 2 8

2
(35 A) (1 72 10 m) (42 m) 66 W.

( /4 (0 00412 m)
I L

P
A
ρ

π

−. × Ω ⋅= = =
.)

 The decrease in energy 

consumption is (40 W)(365 days/yr) (12 h/day) 175 kWh/yrE Pt∆ = ∆ = =  and the savings is 
(175 kWh/yr)($0 11/kWh) $19 25 per year.. = .  
EVALUATE:   The cost of the 4200 W used by the appliances is $2020. The savings is about 1%. 

 25.77. IDENTIFY:   Apply L
R

A
ρ=  to find the resistance of a thin slice of the rod and integrate to find the total R. 

.V IR=  Also find ( ),R x  the resistance of a length x of the rod. 
SET UP:   ( ) ( )E x x Jρ=  

EXECUTE:   (a) 0 exp[ / ]dx x L dx
dR

A A
ρ ρ −= =  so 

[ ] 10 0 0
00

exp / [ exp( / )] (1 )
L L L

R x L dx L x L e
A A A
ρ ρ ρ −= − = − − = −∫  and 0 0

1
0

.
(1 )

V V A
I

R L eρ −= =
−

 With an upper 

limit of x rather than L in the integration, /0( ) (1 ).x LL
R x e

A
ρ −= −  

(b) 
/ /

0 0
1( ) ( ) .

(1 )

x L x LI e V e
E x x J

A L e
ρρ

− −

−= = =
−

 

(c) 0 ( ).V V IR x= −  
/ 1

/0 0
0 01 1

0

( )(1 ) .
[1 ] (1 )

x L
x LV A L e e

V V e V
AL e e

ρ
ρ

− −
−

− −
⎛ ⎞ −⎛ ⎞= − − =⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

 

(d) Graphs of resistivity, electric field, and potential from 0 tox L=  are given in Figure 25.77 (next page). 
Each quantity is given in terms of the indicated unit. 
EVALUATE:   The current is the same at all points in the rod.  Where the resistivity is larger the electric 
field must be larger, in order to produce the same current density. 
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Figure 25.77 
 

 25.78. IDENTIFY and SET UP:   The power output P of the source is the power delivered to the resistor R, so P is 
the power output of the internal emf ε  minus the power consumed by the internal resistance r. Therefore 

2 .P I I rε= −  For the entire circuit, ε  = (R + r)I. 

EXECUTE:   (a) Combining 2/P I R=  and ε  = (R + r)I gives 
2 2

2 .
( )

R
P R

R r R r
ε ε⎛ ⎞= =⎜ ⎟+ +⎝ ⎠

 From this result, 

we can see that as  0,R →    0.P →  

(b) Using the same equation as in (a), we see that as ,R → ∞   P →  
2

R
ε  →  0. 

(c) In (a) we showed that P = 
2

2 .
( )

R
R r
ε
+

 For maximum power, dP/dR = 0. 

2
3 2

2 1 0
( ) ( )

dP R
dR R r R r

ε
⎡ ⎤

= − + =⎢ ⎥
+ +⎣ ⎦

 →  2 1R
R r

=
+

      →      R = r.  

The maximum power is therefore 

Pmax = 
2

2( ) R r

R
R r

ε

=+
 = 

2

2(2 )
r

r
ε  = 

2
.

4r
ε  

(d) Use  P = 
2

2( )
R

R r
ε
+

 to calculate P. 

For R = 2.00 Ω:  P2 = (64.0 V)2(2.00 Ω)/(6.00 Ω)2 = 228 W. 
For R = 4.00 Ω:  P4 = (64.0 V)2(4.00 Ω)/(8.00 Ω)2 = 256 W. 
For R = 6.00 Ω:  P6 = (64.0 V)2(6.00 Ω)/(10.0 Ω)2 = 246 W. 
EVALUATE:   The maximum power in (d) occurred when R = r = 4.00 Ω, so it is consistent with the result 

from (c).  The equation we found, Pmax = 
2

,
4r
ε  gives Pmax = (64.0 V)2/[4(4.00 Ω)] = 256 W, which agrees 

with our calculation in (d). When R is smaller than r, I is large and the 2I r  losses in the battery are large. 
When R is larger than r, I is small and the power output Iε  of the battery emf is small. 
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 25.79. IDENTIFY and SET UP:   .L
R

A
ρ=   

EXECUTE:   From the equation ,L
R

A
ρ=  if we double the length of a resistor and change nothing else, the 

resistance will double. But from the data table given in the problem, we see that doubling the length of the 
thread causes its resistance to do much more than double. For example, at 5 mm the resistance is 99 10× Ω  

and at 11 mm (approximately double) the resistance is 963 10 ,× Ω  which is much more than twice the 
resistance at 5 mm. Therefore as the thread stretches, its coating gets thinner, which decreases its cross-
sectional area. This decreased area contributes significantly to the increase in resistance. Therefore choice (c) 
is correct. 
EVALUATE:   The cross-sectional area of the coating depends on the square of the radius of the thread, so a 
decrease in the radius has a very large effect on the resistance.  

 25.80. IDENTIFY and SET UP:   Use data from the table for 5 mm and 13 mm to compare the resistance. .L
R

A
ρ=  

EXECUTE:    13 5 5

5 13

13

(13 mm)
102 13 .(5 mm)9 5

R A A
R A

A

ρ

ρ= = =  Solving for A13 gives 

13 5
13 9 10.23 ,
5 102 4

A A ⎛ ⎞⎛ ⎞= = ≈⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 which is choice (b).  

EVALUATE:   It is reasonable that A13 < A5 because the thread and its coating stretch out and get thinner.  
 25.81. IDENTIFY and SET UP:   Apply Ohm’s law, V = RI. The minimum resistance will give the maximum 

current. Get data from the table in the problem. 
EXECUTE:    Imax = V/Rmin = (9 V)/(9 ×109 Ω) = 1 ×10–9 A = 1 nA, which is choice (d). 
EVALUATE:   This is a very small current, but the thread of a spider web is very thin.  

 25.82. IDENTIFY and SET UP:   An electrically neutral conductor contains equal amounts of positive and negative 
charge, and these charges can move if a charged object comes near to them.  
EXECUTE:    If a positively charged object comes near to the web, it attracts negative charges in the web. 
The attraction between these negative charges in the web and the positive charges in the charged object 
pull the web toward the object. If a negatively charged object comes near the web, it repels negative 
charges in the web, leaving the web positively charged near the object. The attraction between the 
negatively charged object and the positive side of the web pulls the web toward the object. This is best 
explained by choice (d). 
EVALUATE:   This is similar to the principle of charging by induction. The amounts of charge are small, 
but the web is moved because it is extremely light. 
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 26.1. IDENTIFY:   The newly-formed wire is a combination of series and parallel resistors. 
SET UP:   Each of the three linear segments has resistance /3.R The circle is two /6R  resistors in parallel.  
EXECUTE:   The resistance of the circle is /12R  since it consists of two /6R  resistors in parallel. The 
equivalent resistance is two /3R  resistors in series with an /12R  resistor, giving 

equiv /3 /3 /12 3 /4.R R R R R= + + =  
EVALUATE:   The equivalent resistance of the original wire has been reduced because the circle’s 
resistance is less than it was as a linear wire. 

 26.2. IDENTIFY:   It may appear that the meter measures X directly. But note that X is in parallel with three other 
resistors, so the meter measures the equivalent parallel resistance between ab. 
SET UP:   We use the formula for resistors in parallel. 
EXECUTE:   1/(2.00 ) 1/ 1/(15.0 ) 1/(5.0 ) 1/(10.0 ), so 7.5 .X XΩ = + Ω + Ω + Ω = Ω  
EVALUATE:   X is greater than the equivalent parallel resistance of 2.00 .Ω  

 26.3. IDENTIFY:   The emf of the battery remains constant, but changing the resistance across it changes its 
power output. 

SET UP:   The power consumption in a resistor is 
2

.V
P

R
=  

EXECUTE:   With just 1,R  
2

1
1

VP
R

=  and 1 1 (36 0 W)(25 0 ) 30 0 VV P R= = .  .  Ω = .  is the battery voltage. 

With 2R  added, tot 40 0 .R = .  Ω  
2 2

tot

(30 0 V) 22 5 W.
40 0

V
P

R
.= = = .
.  Ω

 

EVALUATE:   The two resistors in series dissipate electrical energy at a smaller rate than 1R  alone. 
 26.4. IDENTIFY:   For resistors in parallel the voltages are the same and equal to the voltage across the equivalent 

resistance. 

SET UP:   .V IR=  
eq 1 2

1 1 1 .
R R R

= +  

EXECUTE:   (a) 
1

eq
1 1 13.548 ,

42 20  
R

−
⎛ ⎞= + = Ω⎜ ⎟ Ω  Ω⎝ ⎠

 which rounds to 13 Ω. 

(b) 
  
I = V

Req
= 240 V

13.548 Ω
= 17.7 A,  which rounds to 18 A. 

(c) 42 20
240 V 240 V5.7 A;   12 A.
42 20

V VI I
R RΩ Ω= = = = = =

Ω Ω
 

EVALUATE:   More current flows through the resistor that has the smaller R. 
 26.5. IDENTIFY:   The equivalent resistance will vary for the different connections because the series-parallel 

combinations vary, and hence the current will vary. 
SET UP:   First calculate the equivalent resistance using the series-parallel formulas, then use Ohm’s law 
( )V RI=  to find the current. 

DIRECT-CURRENT CIRCUITS 
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EXECUTE:   (a) 1/ 1/(15.0 ) 1/(30.0 )R = Ω + Ω  gives 10.0 . / (35.0 V)/(10.0 ) 3.50 A.R I V R= Ω = = Ω =  
(b) 1/ 1/(10.0 ) 1/(35.0 ) gives 7.78 . (35.0 V)/(7.78 ) 4.50 A.R R I= Ω + Ω = Ω = Ω =  
(c) 1/ 1/(20.0 ) 1/(25.0 ) gives 11.11 , so (35.0 V)/(11.11 ) 3.15 A.R R I= Ω + Ω = Ω = Ω =  
(d) From part (b), the resistance of the triangle alone is 7.78 Ω. Adding the 3.00-Ω internal resistance of 
the battery gives an equivalent resistance for the circuit of 10.78 Ω. Therefore the current is 

(35.0V)/(10.78 ) 3.25 A.I = Ω =  
EVALUATE:   It makes a big difference how the triangle is connected to the battery. 

 26.6. IDENTIFY:   The potential drop is the same across the resistors in parallel, and the current into the parallel 
combination is the same as the current through the 45.0-Ω resistor. 
(a) SET UP:   Apply Ohm’s law in the parallel branch to find the current through the 45.0-Ω resistor. Then 
apply Ohm’s law to the 45.0-Ω resistor to find the potential drop across it. 
EXECUTE:   The potential drop across the 25.0-Ω  resistor is 25 (25.0 )(1.25 A) 31.25 V.V = Ω =  The 
potential drop across each of the parallel branches is 31.25 V. For the 15.0-Ω  resistor: 

15 (31.25V)/(15.0 ) 2.083 A.I = Ω =  The resistance of the 10.0- 15.0-Ω + Ω  combination is 25.0 ,Ω  so the 
current through it must be the same as the current through the upper 25.0-Ω  resistor: 10 15 1.25 A.I + =  The 
sum of currents in the parallel branch will be the current through the 45.0-Ω  resistor. 

Total 1.25 A 2.083 A 1.25 A 4.58 A.I = + + =  
Apply Ohm’s law to the 45.0-Ω  resistor: 45 (4.58 A)(45.0 ) 206 V.V = Ω =  
(b) SET UP:   First find the equivalent resistance of the circuit and then apply Ohm’s law to it. 
EXECUTE:   The resistance of the parallel branch is 1/ 1/(25.0 ) 1/(15.0 ) 1/(25.0 ),R = Ω + Ω + Ω  so 

6.82 .R = Ω  The equivalent resistance of the circuit is 6.82 45.0 35.00 86.82 .Ω + Ω + Ω = Ω  Ohm’s law 
gives Bat (86.62 )(4.58 A) 398 V.V = Ω =  
EVALUATE:   The emf of the battery is the sum of the potential drops across each of the three segments 
(parallel branch and two series resistors). 

 26.7. IDENTIFY:   First do as much series-parallel reduction as possible. 
SET UP:   The 45.0-Ω and 15.0-Ω resistors are in parallel, so first reduce them to a single equivalent 
resistance. Then find the equivalent series resistance of the circuit. 
EXECUTE:   p p1/ 1/(45.0 ) 1/(15.0 ) and 11.25 .R R= Ω + Ω = Ω  The total equivalent resistance is 
18.0 11.25 3.26 32.5 .Ω + Ω + Ω = Ω  Ohm’s law gives (25.0 V)/(32.5 ) 0.769 A.I = Ω =  
EVALUATE:   The circuit appears complicated until we realize that the 45.0-Ω and 15.0-Ω resistors are in 
parallel. 

 26.8. IDENTIFY:   The equivalent resistance of the resistors in parallel is given by 
eq 1 2

1 1 1 .
R R R

= + +…  For 

resistors in parallel, the voltages are the same and the currents add. 
SET UP:   The circuit is sketched in Figure 26.8a. 

 EXECUTE:   (a) parallel 

eq 1 2 3

eq

eq

1 1 1 1 .

1 1 1 1 .
1 60 2 40 4 80

0 800 .

R R R R

R

R

= + +

= + +
.  Ω .  Ω .  Ω

= .  Ω

 

Figure 26.8a   

(b) For resistors in parallel the voltage is the same across each and equal to the applied voltage; 
1 2 3 28 0 V.V V V ε= = = = .  

1
1

1

28 0 V so 17 5 A.
1 60 

VV IR I
R

.= = = = .
. Ω
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2 3
2 3

2 3

28 0 V 28 0 V11 7 A and 5 8 A.
2 40 4 8 

V VI I
R R

. .= = = . = = = .
. Ω . Ω

 

(c) The currents through the resistors add to give the current through the battery: 
1 2 3 17 5 A 11 7 A 5 8 A 35 0 A.I I I I= + + = . + . + . = .  

EVALUATE:   Alternatively, we can use the equivalent resistance eqR  as shown in Figure 26.8b. 
 

 eq 0.IRε − =  

eq

28 0 V 35 0 A,
0 800 

I
R
ε .= = = .

. Ω
 which checks. 

Figure 26.8b   
 

(d) As shown in part (b), the voltage across each resistor is 28.0 V. 
(e) IDENTIFY and SET UP:   We can use any of the three expressions for 2 2: / .P P VI I R V R = = =  They will 
all give the same results, if we keep enough significant figures in intermediate calculations. 

EXECUTE:   Using 2 / ,P V R=  
2 2

2 2
1 1 1 2 2 2

(28 0 V) (28 0 V)/ 490 W, / 327 W, and
1 60 2 40

P V R P V R
. .= = = = = =

.  Ω .  Ω
 

2
2

3 3 3
(28.0 V)/ 163W.

4.80
P V R= = =

Ω
 

(f) 2 / .P V R=  The resistors in parallel each have the same voltage, so the power P is largest for the one 
with the least resistance. 
EVALUATE:   The total power dissipated is out 1 2 3 980 W.P P P P= + + =  This is the same as the power 

  Pin = ε I = (28.0 V)(35.0 A) = 980 W  delivered by the battery. 
 26.9. IDENTIFY:   For a series network, the current is the same in each resistor and the sum of voltages for each 

resistor equals the battery voltage. The equivalent resistance is eq 1 2 3.R R R R= + +  2 .P I R=  

SET UP:   Let 1 1 60 ,R = .  Ω  2 2 40 ,R = .  Ω  3 4 80 .R = .  Ω   
EXECUTE:   (a) eq 1 60 2 40 4 80 8 80 .R = .  Ω + .  Ω + .  Ω = .  Ω  

(b) 
eq

28 0 V 3 18 A.
8 80

VI
R

.= = = .
.  Ω

 

(c) 3 18 A,I = .  the same as for each resistor. 
(d) 1 1 (3 18 A)(1 60 ) 5 09 V.V IR= = . .  Ω = .  2 2 (3 18 A)(2 40 ) 7 63 V.V IR= = . .  Ω = .  

3 3 (3 18 A)(4 80 ) 15 3 V.V IR= = . .  Ω = .  Note that 1 2 3 28 0 V.V V V+ + = .  

(e) 2 2
1 1 (3 18 A) (1 60 ) 16 2 W.P I R= = . .  Ω = .  2 2

2 2 (3 18 A) (2 40 ) 24 3 W.P I R= = . .  Ω = .  
2 2

3 3 (3 18 A) (4 80 ) 48 5 W.P I R= = . .  Ω = .  

(f) Since 2P I R=  and the current is the same for each resistor, the resistor with the greatest R dissipates 
the greatest power. 
EVALUATE:   When resistors are connected in parallel, the resistor with the smallest R dissipates the 
greatest power. 

 26.10. IDENTIFY:   The current, and hence the power, depends on the potential difference across the resistor.  
SET UP:   2 / .P V R=  
EXECUTE:   (a) (5 0 W)(15,000 ) 274 V.V PR= = .  Ω =  

(b) 2 2/ (120 V) /(9,000 ) 1 6 W.P V R= =  Ω = .  
(c)   SET UP: If the larger resistor generates 2.00 W, the smaller one will generate less and hence will be safe. 
Therefore the maximum power in the larger resistor must be 2.00 W. Use 2P I R=  to find the maximum current 
through the series combination and use Ohm’s law to find the potential difference across the combination. 
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EXECUTE:   2P I R=  gives    I = P/R = (2.00 W)/(150 Ω) = 0.115 A.  The same current flows through 
both resistors, and their equivalent resistance is 250 .Ω  Ohm’s law gives 

(0.115 A)(250 ) 28.8 V.V IR= = Ω =  Therefore 150 2.00 WP =  and 
2 2

100 (0.115 A) (100 ) 1.32 W.P I R= = Ω =  
EVALUATE:   If the resistors in a series combination all have the same power rating, it is the largest 
resistance that limits the amount of current. 

 26.11. IDENTIFY and SET UP:   Ohm’s law applies to the resistors, the potential drop across resistors in parallel is 
the same for each of them, and at a junction the currents in must equal the currents out. 
EXECUTE:   (a) 2 2 2 (4 00 A)(6 00 ) 24 0 V.V I R= = . .  Ω = .  1 2 24 0 V.V V= = .  

1
1

1

24 0 V 8 00 A.
3 00

V
I

R
.= = = .

.  Ω
 3 1 2 4 00 A 8 00 A 12 0 A.I I I= + = . + . = .  

(b) 3 3 3 (12 0 A)(5 00 ) 60 0 V.V I R= = . .  Ω = .  1 3 24 0 V 60 0 V 84 0 V.V Vε = + = . + . = .  
EVALUATE:   Series/parallel reduction was not necessary in this case. 

 26.12. IDENTIFY and SET UP:   Ohm’s law applies to the resistors, and at a junction the currents in must equal the 
currents out. 
EXECUTE:   1 1 1 (1 50 A)(5 00 ) 7 50 V.V I R= = . .  Ω = .  2 7 50 V.V = .  1 2 3I I I+ =  so 

2 3 1 4 50 A 1 50 A 3 00 A.I I I= − = . − . = .  2
2

2

7 50 V 2 50 .
3 00 A

VR
I

.= = = .  Ω

.
 

  V3 = ε − V1 = 35.0 V − 7.50 V = 27.5 V.  3
3

3

27 5 V 6.11 .
4 50 A

VR
I

.= = =  Ω
.

 

EVALUATE:   Series/parallel reduction was not necessary in this case. 

 26.13. IDENTIFY:   For resistors in parallel, the voltages are the same and the currents add. 
eq 1 2

1 1 1
R R R

= +  so 

1 2
eq

1 2
,R R

R
R R

=
+

 For resistors in series, the currents are the same and the voltages add. eq 1 2.R R R= +  

SET UP:   The rules for combining resistors in series and parallel lead to the sequences of equivalent 
circuits shown in Figure 26.13. 

EXECUTE:   eq 5 00 .R = .  Ω  In Figure 26.13c, 60 0 V 12 0 A.
5 00

I
.= = .

.  Ω
 This is the current through each of the 

resistors in Figure 26.13b. 12 12 (12 0 A)(2 00 ) 24 0 V.V IR= = . .  Ω = .  

34 34 (12 0 A)(3 00 ) 36 0 V.V IR= = . .  Ω = .  Note that 12 34 60 0 V.V V+ = .  12V  is the voltage across 1R  and 

across 2,R  so 12
1

1

24 0 V 8 00 A
3 00

V
I

R
.= = = .

.  Ω
 and 12

2
2

24 0 V 4 00 A.
6 00

V
I

R
.= = = .

.  Ω
 34V  is the voltage across 3R  

and across 4,R  so 34
3

3

36 0 V 3 00 A
12 0 

V
I

R
.= = = .
. Ω

 and 34
4

4

36 0 V 9 00 A.
4 00 

V
I

R
.= = = .

. Ω
 

EVALUATE:   Note that 1 2 3 4.I I I I+ = +  

       

Figure 26.13 
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 26.14. IDENTIFY:   Replace the series combinations of resistors by their equivalents. In the resulting parallel 
network the battery voltage is the voltage across each resistor. 
SET UP:   The circuit is sketched in Figure 26.14a. 

 

 EXECUTE:   1 2and R R  in series have an 
equivalent resistance of 12 1 2 4 00 .R R R= + = .  Ω  

3 4and R R  in series have an equivalent resistance 
of 34 3 4 12 0 .R R R= + = .  Ω  

Figure 26.14a   
 

The circuit is equivalent to the circuit sketched in Figure 26.14b. 
 

 12 34and R R  in parallel are equivalent to eqR  

given by 12 34

eq 12 34 12 34

1 1 1 .R R
R R R R R

+= + =  

12 34
eq

12 34
.R RR

R R
=

+
 

eq
(4 00 )(12 0 ) 3 00 .
4 00 12 0

R .  Ω .  Ω= = .  Ω
.  Ω + .  Ω

 

Figure 26.14b   
 

The voltage across each branch of the parallel combination is ,ε  so 12 12 0.I Rε − =  

12
12

48 0 V 12 0 A.
4 00 

I
R
ε .= = = .

. Ω
 

34 34 0I Rε − =  so 34
34

48 0 V 4 0 A.
12 0 

I
R
ε .= = = .

. Ω
 

The current is 12.0 A through the 1.00-Ω  and 3.00 -Ω resistors, and it is 4.0 A through the 7.00 -Ω  and 
5.00 -Ω  resistors. 
EVALUATE:   The current through the battery is 12 34 12 0 A 4 0 A 16 0 A,I I I= + = . + . = .  and this is equal to 

eq/ 48 0 V/3 00 16 0 A.Rε = . .  Ω = .  

 26.15. IDENTIFY:   In both circuits, with and without 4,R  replace series and parallel combinations of resistors by 
their equivalents. Calculate the currents and voltages in the equivalent circuit and infer from this the 
currents and voltages in the original circuit. Use 2P I R=  to calculate the power dissipated in each bulb. 
(a) SET UP:   The circuit is sketched in Figure 26.15a. 

 EXECUTE:   2 3 4, , and R R R  are in parallel, so 
their equivalent resistance eqR  is given by 

eq 2 3 4

1 1 1 1 .
R R R R

= + +  

Figure 26.15a   
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eq
eq

1 3  and 1 50 .
4 50

R
R

= = .  Ω
.  Ω

 

The equivalent circuit is drawn in Figure 26.15b. 
 

 1 eq( ) 0.I R Rε − + =  

1 eq
.I

R R
ε=
+

 

Figure 26.15b   

1
9 00 V 1 50 A and 1 50 A.

4 50 1 50
I I.= = . = .

. Ω + .  Ω
 

Then 1 1 1 (1 50 A)(4 50 ) 6 75 V.V I R= = . .  Ω = .  

eq eq eq eq1 50 A, (1 50 A)(1 50 ) 2 25 V.I V I R= . = = . .  Ω = .  
For resistors in parallel the voltages are equal and are the same as the voltage across the equivalent resistor, 
so 2 3 4 2 25 V.V V V= = = .  

2 3 4
2 3 4

2 3 4

2 25 V 0 500 A,  0 500 A, 0 500 A.
4 50 

V V VI I I
R R R

.= = = . = = . = = .

. Ω
 

EVALUATE:   Note that 2 3 4 1 50 A,I I I+ + = .  which is eq.I  For resistors in parallel the currents add and 
their sum is the current through the equivalent resistor. 
(b) SET UP:   2 .P I R=  
EXECUTE:   2

1 (1 50 A) (4 50 ) 10 1 W.P = . .  Ω = .  
2

2 3 4 (0 500 A) (4 50 ) 1 125 W,P P P= = = . .  Ω = .  which rounds to 1.12 W. 1R  glows brightest. 

EVALUATE:   Note that 2 3 4 3 37 W.P P P+ + = .  This equals 2 2
eq eq eq (1 50 A) (1 50 ) 3 37 W,P I R= = . .  Ω = .  the 

power dissipated in the equivalent resistor. 
(c) SET UP:   With 4R  removed the circuit becomes the circuit in Figure 26.15c. 

 

 EXECUTE:   2 3and R R  are in parallel and their 
equivalent resistance eqR  is given by 

eq 2 3

1 1 1 2
4 50R R R

= + =
.  Ω

 and eq 2 25 .R = .  Ω  

Figure 26.15c   

The equivalent circuit is shown in Figure 26.15d. 
 

 1 eq( ) 0.I R Rε − + =  

1 eq
.I

R R
ε=
+

 

9 00 V 1 333 A.
4 50 2 25

I .= = .
. Ω + .  Ω

 

Figure 26.15d   

1 1 1 11 33 A, (1 333 A)(4 50 ) 6 00 V.I V I R= . = = . .  Ω = .  

eq eq eq eq 2 31 33 A, (1 333 A)(2 25 ) 3 00 V and 3 00 V.I V I R V V= . = = . .  Ω = . = = .  
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2 3
2 3

2 3

3 00 V 0 667 A, 0 667 A.
4 50 

V VI I
R R

.= = = . = = .

. Ω
 

(d) SET UP:   2 .P I R=  
EXECUTE:   2

1 (1 333 A) (4 50 ) 8 00 W.P = . .  Ω = .  
2

2 3 (0 667 A) (4 50 ) 2 00 W.P P= = . .  Ω = .  
EVALUATE:   (e) When 4R  is removed, 1P  decreases and 2P  and 3P  increase. Bulb 1R  glows less 
brightly and bulbs 2R  and 3R  glow more brightly. When 4R  is removed the equivalent resistance of the 
circuit increases and the current through 1R  decreases. But in the parallel combination this current divides 
into two equal currents rather than three, so the currents through 2R  and 3R  increase. Can also see this by 
noting that with 4R  removed and less current through 1R  the voltage drop across 1R  is less so the voltage 
drop across 2R  and across 3R  must become larger. 

 26.16. IDENTIFY:   Apply Ohm’s law to each resistor. 
SET UP:   For resistors in parallel the voltages are the same and the currents add. For resistors in series the 
currents are the same and the voltages add.  
EXECUTE:   From Ohm’s law, the voltage drop across the 6.00-Ω  resistor is (4.00 A)(6.00 )V IR= = Ω =  
24.0 V.  The voltage drop across the 8.00-Ω  resistor is the same, since these two resistors are wired in 
parallel. The current through the 8.00-Ω  resistor is then / 24.0 V/8.00 3.00 A.I V R= = Ω =  The current 
through the 25.0-Ω  resistor is the sum of the current through these two resistors: 7.00 A. The voltage drop 
across the 25.0-Ω  resistor is (7.00 A)(25.0 ) 175 V,V IR= = Ω =  and total voltage drop across the top 
branch of the circuit is 175 V 24.0 V 199 V,+ =  which is also the voltage drop across the 20.0-Ω  resistor. 
The current through the 20.0-Ω  resistor is then / 199 V/20 9 95 A.I V R= = Ω = .  
EVALUATE:   The total current through the battery is 7 00 A 9 95 A 16 95 A.. + . = .  Note that we did not need 
to calculate the emf of the battery. 

 26.17. IDENTIFY:   Apply Ohm’s law to each resistor. 
SET UP:   For resistors in parallel the voltages are the same and the currents add. For resistors in series the 
currents are the same and the voltages add. 
EXECUTE:   The current through the 2.00-Ω  resistor is 6.00 A. Current through the 1.00-Ω  resistor also is 
6.00 A and the voltage is 6.00 V. Voltage across the 6.00-Ω  resistor is 12.0 V 6.0 V 18.0 V.+ = Current 
through the 6.00-Ω  resistor is (18.0 V)/(6.00 ) 3.00 A.Ω =  The battery emf is 18.0 V. 
EVALUATE:   The current through the battery is 6.00 A 3.00 A 9.00 A.+ =  The equivalent resistor of the 
resistor network is 2.00 ,Ω  and this equals (18.0 V)/(9.00 A).  

 26.18. IDENTIFY:   Ohm’s law applies to each resistor. In one case, the resistors are connected in series, and in the 
other case they are in parallel. 

SET UP:   V = RI, 
eq 1 2

1 1 1
R R R

= + +…  (in parallel), = + + …eq 1 2R R R  (in series). Figure 26.18 shows the 

equivalent circuit when S is open and when S is closed. 

 

Figure 26.18 
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EXECUTE:   (a) S open: We use the circuit in Figure 26.18a. R2 and R3 are in series. Ohm’s law gives  
2 3( ) .R R Iε = +  

2 3/( ) (36.0 ) /(9.00 ) 4.00 A.I R R Vε= + = Ω =  
Vab = R2I = (6.00 Ω)(4.00 A) = 24.0 V. 
S closed: We use the circuit in Figure 26.18b. R1 and R2 are in parallel, and this combination is in series 
with R3. For the parallel branch 

eq 1 2

1 1 1
R R R

= + +…  = 1/(4.00 Ω) + 1/(6.00 Ω), which gives Req = 2.40 Ω. The equivalent resistance R of 

the circuit is 2.40 Ω + 3.00 Ω = 5.40 Ω. The current is I = /Rε = (36.0 V)/(5.40 Ω) = 6.667 A. Therefore  
Vab = IReq = (6.667 A)(2.40 Ω) = 16.0 V. 
(b) S open: From part (a), we know that I2 = 4.00 A through R2. Since S is open, no current can flow 
through R1, so I1 = 0, I2 = I3 = 4.00 A. 
S closed: I1 = Vab/R1 = (16.0 V)/(4.00 Ω) = 4.00 A.  I2 = Vab/R2 = (16.0 V)/(6.00 Ω) = 2.67 A. 
I3 = I1 + I2 = 4.00 A + 2.67 A = 6.67 A. 
I1 increased from 0 to 4.00 A. 
I2 decreased from 4.00 A to 2.67 A. 
I3 increased from 4.00 A to 6.67 A. 
EVALUATE:   With S closed, Vab + V3 = 16.0 V + (3.00 Ω)(6.67 A) = 36.0 V, which is equal to ,ε  as it 
should be. 

 26.19. IDENTIFY and SET UP:   Replace series and parallel combinations of resistors by their equivalents until the 
circuit is reduced to a single loop. Use the loop equation to find the current through the 20 0-. Ω  resistor. 
Set 2P I R=  for the 20 0-. Ω  resistor equal to the rate Q/t at which heat goes into the water and set 

.Q mc T= ∆  
EXECUTE:   Replace the network by the equivalent resistor, as shown in Figure 26.19. 

 

 

Figure 26.19 
 

30 0 V (20 0 5 0 5 0 ) 0; 1 00 A.I I. − .  Ω + .  Ω + .  Ω =  = .  

For the 20 0-. Ω  resistor thermal energy is generated at the rate 2 20 0 W.P I R= = .   and Q Pt Q mc T= = ∆  

gives 3(0 100 kg)(4190 J/kg  K)(48 0 C ) 1 01 10  s.
20 0 W

mc Tt
P
∆ . ⋅ . °= = = . ×

.
 

EVALUATE:   The battery is supplying heat at the rate 30 0 W.P Iε= = .  In the series circuit, more energy 
is dissipated in the larger resistor (20 0 ).  Ω  than in the smaller ones (5 00 )..  Ω  

 26.20. IDENTIFY:   2P I R=  determines 1 1 2. , ,R R R  and the 10 0-. Ω  resistor are all in parallel so have the same 
voltage. Apply the junction rule to find the current through 2.R  

SET UP:   2P I R=  for a resistor and P Iε=  for an emf. The emf inputs electrical energy into the circuit 
and electrical energy is removed in the resistors. 
EXECUTE:   (a) 2

1 1 1.P I R=    15.0 W = (2.00 A)2 R1  so 1 3.75 .R =  Ω  R1 and 10.0 Ω  are in parallel, so 

  (10.0 Ω)I10 = (3.75 Ω)(2.00 A)  so   I10 = 0.750 A.  So I2 = 3.50 A − I1 − I10 =  3.50 A – 2.00 A – 0.750 A 

= 0.750 A. 1R  and 2R  are in parallel, so (0.750 A)R2 = (2.00 A)(3.75 Ω)  which gives   R2 = 10.0 Ω.  
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(b) 1 (2 00 A)(3.75 ) 7.50 V.Vε = = .  Ω =  

(c) From part (a),  I2 = 0.750 A, I10 = 0.750 A.  

(d)   P1 = 15.0 W  (given).   P2 = I2
2 R2 = (0.750 A)2 (10.0 Ω) = 5.625 W,  which rounds to 5.63 W. 

  P10 = I10
2 R10 = (0.750 A)2 (10.0 Ω) = 5.625 W.  The total rate at which the resistors remove electrical 

energy is   PResist = 15.0 W + 5.625 W + 5.625 W = 26.25 W,  which rounds to 26.3 W.  

The total rate at which the battery inputs electrical energy is PBattery = Iε = (3.50 A)(7.50 V) =  

Resist Battery26.3 W Therefore ,P P⋅ =  which agrees with conservation of energy. 
EVALUATE:   The three resistors are in parallel, so the voltage for each is the battery voltage, 7.50 V. The 
currents in the three resistors add to give the current in the battery. 

 26.21. IDENTIFY:   For resistors in series, the voltages add and the current is the same. For resistors in parallel, the 
voltages are the same and the currents add. 2 .P I R=  
(a) SET UP:   The circuit is sketched in Figure 26.21a. 

 

 For resistors in series the current is  
the same through each. 

Figure 26.21a   
 

EXECUTE:   eq 1 2 1200 .R R R= + =  Ω  
eq

120 V 0 100 A.
1200 

V
I

R
= = = .

Ω
 This is the current drawn from the line. 

(b) 2 2
1 1 1 (0 100 A) (400 ) 4 0 W.P I R= = .  Ω = .  

2 2
2 2 2 (0 100 A) (800 ) 8 0 W.P I R= = .  Ω = .  

(c) out 1 2 12 0 W,P P P= + = .  the total power dissipated in both bulbs. Note that 

in (120 V)(0 100 A) 12 0 W,abP V I= = . = .  the power delivered by the potential source, equals out .P  
(d) SET UP:   The circuit is sketched in Figure 26.21b. 

 

 For resistors in parallel the voltage across 
each resistor is the same. 

Figure 26.21b   
 

EXECUTE:   1 2
1 2

1 2

120 V 120 V0 300 A, 0 150 A.
400 800 

V VI I
R R

= = = . = = = .
Ω Ω

 

EVALUATE:   Note that each current is larger than the current when the resistors are connected in series. 
EXECUTE:   (e) 2 2

1 1 1 (0 300 A) (400 ) 36 0 W.P I R= = .  Ω = .  
2 2

2 2 2 (0 150 A) (800 ) 18 0 W.P I R= = .  Ω = .  
(f) out 1 2 54 0 W.P P P= + = .  
EVALUATE:   Note that the total current drawn from the line is 1 2 0 450 A.I I I= + = .  The power input from 
the line is in (120 V)(0 450 A) 54 0 W,abP V I= = . = . which equals the total power dissipated by the bulbs. 
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(g) The bulb that is dissipating the most power glows most brightly. For the series connection the currents 
are the same and by 2P I R=  the bulb with the larger R has the larger P; the 800-Ω  bulb glows more 
brightly. For the parallel combination the voltages are the same and by 2 /P V R=  the bulb with the smaller 
R has the larger P; the 400-Ω  bulb glows more brightly. 
(h) The total power output outP  equals in out, so abP V I P=  is larger for the parallel connection where the 
current drawn from the line is larger (because the equivalent resistance is smaller.) 

 26.22. IDENTIFY:   Use 2 /P V R=  with 120 VV =  and the wattage for each bulb to calculate the resistance of 
each bulb. When connected in series the voltage across each bulb will not be 120 V and the power for each 
bulb will be different. 
SET UP:   For resistors in series the currents are the same and eq 1 2.R R R= +  

EXECUTE:    (a) 
2 2

60W
(120 V) 240 ;

60 W
V

R
P

= = =  Ω  
2 2

200W
(120 V) 72 .
200 W

V
R

P
= = =  Ω  

Therefore, 60W 200W
240 V 0 769 A.

(240 72 )
I I

R
ε= = = = .

 Ω +  Ω
 

(b) 2 2
60W (0 769 A) (240 ) 142 W;P I R= = .  Ω =  2 2

200W (0 769 A) (72 ) 42 6 W.P I R= = .  Ω = .   
(c) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times its rated value. 
EVALUATE:   In series the largest resistance dissipates the greatest power. 

 26.23. IDENTIFY:   Apply Kirchhoff’s rules.  
SET UP:   Figure 26.23 shows the loops taken. When we go around loop (1) in the direction shown there is 
a potential rise across the 200.0 V battery, so there must be a drop across R and the current in R must be in 
the direction shown in the figure. Similar analysis of loops (2) and (3) tell us that currents 2I  and 5I  must 
be in the directions shown. The junction rule has been used to label the currents in all the other branches of 
the circuit. 

 

 

Figure 26.23 
 

EXECUTE:   (a) Apply the Kirchhoff loop rule to loop (1): +200.0 V − I1R = 0.  Solving for R gives 

1

200 0 V 200 0 V 20 0 .
10 0 A

R
I

+ . + .= = = .  Ω
.

 

(b) Loop (2): 2160 0 V (40 0 ) 0I+ . − .  Ω = . 2
160 0 V 4 00 A.
40 0

I .= = .
.  Ω

 

Loop (3): 5160 0 V (20 0 ) 0I+ . − .  Ω = . 5
160 0 V 8 00 A.
20 0

I .= = .
.  Ω

 

2A  reads 2 4 00 AI = . . 3A  reads 2 5 12 0 AI I+ = . . 4A  reads 1 2 14 0 AI I+ = . . 5A  reads 5 8 00 AI = . .  
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EVALUATE:   The sum of potential changes around the outer loop (4) is 
1 2 5200 0 V (40 0 ) (20 0 ) 200 0 V (10 0 A)(20 0 ) (4 00 A)(40 0 )I R I I+ . − + . Ω − . Ω = . − . . Ω + . . Ω −  

(8 00 A)(20 0 ) 200 0 V 200 0 V 160 0 V 0. . Ω = . − . − . = .  
The loop rule is satisfied for loop (4) and this is a good check of our calculations. 

 26.24. IDENTIFY:   This circuit cannot be reduced using series/parallel combinations, so we apply Kirchhoff’s 
rules. The target variables are the currents in each segment. 
SET UP:   Assume the unknown currents have the directions shown in Figure 26.24. We have used the 
junction rule to write the current through the 10.0 V battery as 1 2 .I I+  There are two unknowns, 1I  and 

2 ,I  so we will need two equations. Three possible circuit loops are shown in the figure. 
 

 

Figure 26.24 
 

EXECUTE:   (a) Apply the loop rule to loop (1), going around the loop in the direction shown: 
110 0 V (30 0 ) 0I+ . − . Ω =  and 1 0 333 A.I = .  

(b) Apply the loop rule to loop (3): 210 0 V (20 0 ) 5 00 V 0I+ . − . Ω − . =  and 2 0 250 A.I = .  
(c) 1 2 0 333 A 0 250 A 0 583 A.I I+ = . + . = .  
EVALUATE:   For loop (2) we get 

2 15 00 V (20 0 ) (30 0 ) 5 00 V (0 250 A)(20 0 ) (0 333 A)(30 0 )I I+ . + . Ω − . Ω = . + . . Ω − . . Ω =
5 00 V 5 00 V 10 0 V 0,. + . − . =  so that with the currents we have calculated the loop rule is satisfied for this 
third loop. 

 26.25. IDENTIFY:   Apply Kirchhoff’s junction rule at point a to find the current through R. Apply Kirchhoff’s 
loop rule to loops (1) and (2) shown in Figure 26.25a to calculate R and .ε  Travel around each loop in the 
direction shown. 
SET UP:    

 

 

Figure 26.25a 
 

EXECUTE:   (a) Apply Kirchhoff’s junction rule to point a: 0 so 4 00 A 6 00 A 0I I∑ = + . − . =  
2.00 AI =  (in the direction shown in the diagram). 
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(b) Apply Kirchhoff’s loop rule to loop (1): (6 00 A)(3 00 ) (2 00 A) 28 0 V 0R− . .  Ω − . + . =  
18 0 V (2 00 ) 28 0 V 0.R− . − .  Ω + . =  

28 0 V 18 0 V 5 00 .
2 00 A

R . − .= = .  Ω
.

 

(c) Apply Kirchhoff’s loop rule to loop (2): (6 00 A)(3 00 ) (4 00 A)(6 00 ) 0.ε− . .  Ω − . .  Ω + =  
18 0 V 24 0 V 42 0 V.ε = . + . = .  

EVALUATE:   We can check that the loop rule is satisfied for loop (3), as a check of our work: 
28 0 V (4 00 A)(6 00 ) (2 00 A) 0.Rε. − + . .  Ω − . =  
28 0 V 42 0 V 24 0 V (2 00 A)(5 00 ) 0.. − . + . − . .  Ω =  
52 0 V 42 0 V 10 0 V.. = . + .  
52 0 V 52 0 V, . = .  so the loop rule is satisfied for this loop. 
(d) IDENTIFY:   If the circuit is broken at point x there can be no current in the 6 00-. Ω  resistor. There is 
now only a single current path and we can apply the loop rule to this path. 
SET UP:   The circuit is sketched in Figure 26.25b. 

 

 

 

Figure 26.25b 
 

EXECUTE:   28 0 V (3 00 ) (5 00 ) 0.I I+ . − .  Ω − .  Ω =  
28 0 V 3 50 A.
8 00 

I .= = .
. Ω

 

EVALUATE:   Breaking the circuit at x removes the 42.0-V emf from the circuit and the current through the 
3 00-. Ω  resistor is reduced. 

 26.26. IDENTIFY:   Apply Kirchhoff’s loop rule and junction rule. 
SET UP:   The circuit diagram is given in Figure 26.26. The junction rule has been used to find the 
magnitude and direction of the current in the middle branch of the circuit. There are no remaining 
unknown currents. 
EXECUTE:   The loop rule applied to loop (1) gives: 

120 0V (1 00 A)(1 00 ) (1 00 A)(4 00 ) (1 00 A)(1 00 ) (1 00 A)(6 00 ) 0.ε+ . − . .  Ω + . .  Ω + . .  Ω − − . .  Ω =  

1 20 0 V 1 00 V 4 00 V 1 00 V 6 00 V 18 0 V.ε = . − . + . + . − . = .  The loop rule applied to loop (2) gives: 

220 0 V (1 00 A)(1 00 ) (2 00 A)(1 00 ) (2 00 A)(2 00 ) (1 00 A)(6 00 ) 0.ε+ . − . .  Ω − . .  Ω − − . .  Ω − . .  Ω =

2 20 0 V 1 00 V 2 00 V 4 00 V 6 00 V 7 0 V.ε = . − . − . − . − . = .  Going from b to a along the lower branch, 
(2 00 A)(2 00 ) 7 0 V (2 00 A)(1 00 ) 13 0 V;b a b aV V V V+ . .  Ω + . + . .  Ω = ⋅ − = − .  point b is at 13.0 V lower 

potential than point a. 
EVALUATE:   We can also calculate b aV V−  by going from b to a along the upper branch of the circuit. 

(1 00 A)(6 00 ) 20 0 V (1 00 A)(1 00 )b aV V− . .  Ω + . − . .  Ω =  and 13 0 V.b aV V− = − .  This agrees with b aV V−  
calculated along a different path between b and a. 
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Figure 26.26 

 26.27. IDENTIFY:   Apply Kirchhoff’s junction rule at points a, b, c, and d to calculate the unknown currents. 
Then apply the loop rule to three loops to calculate 1 2, , and .Rε ε  
SET UP:   The circuit is sketched in Figure 26.27. 

 

Figure 26.27 

(a) EXECUTE:   Apply the junction rule to point a: 33 00 A 5 00 A 0.I. + . − =  

3 8 00 A.I = .  
Apply the junction rule to point b: 42 00 A 3 00 A 0.I. + − . =  

4 1 00 A.I = .  
Apply the junction rule to point c: 3 4 5 0.I I I− − =  

5 3 4 8 00 A 1 00 A 7 00 A.I I I= − = . − . = .  
EVALUATE:   As a check, apply the junction rule to point d: 5 2 00 A 5 00 A 0.I − . − . =  

5 7 00 A.I = .  
(b) EXECUTE:   Apply the loop rule to loop (1): 1 3(3 00 A)(4 00 ) (3 00 ) 0.Iε − . .  Ω − .  Ω =  

1 12 0 V (8 00 A)(3 00 ) 36 0 V.ε = . + . .  Ω = .  
Apply the loop rule to loop (2): 2 3(5 00 A)(6 00 ) (3 00 ) 0.Iε − . .  Ω − .  Ω =  

2 30 0 V (8 00 A)(3 00 ) 54 0 V.ε = . + . .  Ω = .  
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(c) EXECUTE:   Apply the loop rule to loop (3): 1 2(2 00 A) 0.R ε ε− . − + =  

2 1 54 0 V 36 0 V 9 00 .
2 00 A 2 00 A

R ε ε− . − .= = = .  Ω
. .

 

EVALUATE:   Apply the loop rule to loop (4) as a check of our calculations: 
(2 00 A) (3 00 A)(4 00 ) (5 00 A)(6 00 ) 0.R− . − . .  Ω + . .  Ω =  
(2 00 A)(9 00 ) 12 0 V 30 0 V 0.− . .  Ω − . + . =  
18 0 V 18 0 V 0.− . + . =  

 26.28. IDENTIFY:   Use Kirchhoff’s rules to find the currents. 
SET UP:   Since the 10.0-V battery has the larger voltage, assume 1I  is to the left through the 10-V battery, 

2I  is to the right through the 5-V battery, and 3I  is to the right through the 10-Ω  resistor. Go around each 
loop in the counterclockwise direction. 
EXECUTE:   (a) Upper loop: 1 210 0 V (2 00 3 00 ) (1 00 4 00 ) 5 00 V 0.I I. − . Ω + . Ω − . Ω + . Ω − . =  This gives 

1 25 0 V (5 00 ) (5 00 ) 0,I I. − . Ω − . Ω =  and 1 2 1 00 A.I I⇒ + = .  
Lower loop: 2 35 00 V (1 00 4 00 ) (10 0 ) 0.I I. + . Ω + . Ω − . Ω =  This gives 

2 35 00 V (5 00 ) (10 0 ) 0,I I. + . Ω − . Ω =  and 2 32 1 00 A.I I− = − .  
Along with 1 2 3,I I I= +  we can solve for the three currents and find: 

1 2 30 800 A, 0 200 A, 0 600 A.I I I= . = . = .  
(b) (0 200 A)(4 00 ) (0 800 A)(3 00 ) 3 20 V.abV = − . . Ω − . . Ω = − .  
EVALUATE:   Traveling from b to a through the 4 00-. Ω  and 3 00-. Ω  resistors you pass through the resistors 
in the direction of the current and the potential decreases. Therefore point b is at higher potential than  
point a. 

 26.29. IDENTIFY:   Apply the junction rule to reduce the number of unknown currents. Apply the loop rule to two 
loops to obtain two equations for the unknown currents 1 2and .I I  
(a) SET UP:   The circuit is sketched in Figure 26.29. 

 

 

Figure 26.29 
 

Let 1I  be the current in the 3 00-. Ω  resistor and 2I  be the current in the 4 00-. Ω  resistor and assume that 
these currents are in the directions shown. Then the current in the 3 1 210 0-  resistor is ,I I I. Ω = −  in the 
direction shown, where we have used Kirchhoff’s junction rule to relate 3 1 2to  and .I I I  If we get a 
negative answer for any of these currents we know the current is actually in the opposite direction to what 
we have assumed. Three loops and directions to travel around the loops are shown in the circiut diagram in 
Figure 26.29. Apply Kirchhoff’s loop rule to each loop. 
EXECUTE:   Loop (1): 

1 2 2 110 0 V (3 00 ) (4 00 ) 5 00 V (1 00 ) (2 00 ) 0.I I I I+ . − .  Ω − .  Ω + . − .  Ω − .  Ω =  

1 215 00 V (5 00 ) (5 00 ) 0.I I. − .  Ω − .  Ω =  

1 23 00 A 0.I I. − − =  
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Loop (2): 
2 1 2 25 00 V (1 00 ) ( )10 0 (4 00 ) 0.I I I I+ . − .  Ω + − .  Ω − .  Ω =  

1 25 00 V (10 0 ) (15 0 ) 0.I I. + .  Ω − .  Ω =  

1 21 00 A 2 00 3 00 0.I I. + . − . =  
The first equation says 2 13 00 A .I I= . −  
Use this in the second equation: 1 11 00 A 2 00 9 00 A 3 00 0.I I. + . − . + . =  

1 15 00 8 00 A, 1 60 A.I I. = . = .  
Then 2 13 00 A 3 00 A 1 60 A 1 40 A.I I= . − = . − . = .  

3 1 2 1 60 A 1 40 A 0 20 A.I I I= − = . − . = .  
EVALUATE:   Loop (3) can be used as a check. 

10 0 V (1 60 A)(3 00 ) (0 20 A)(10 00 ) (1 60 A)(2 00 ) 0.+ . − . .  Ω − . .  Ω − . .  Ω =  
10 0 V 4 8 V 2 0 V 3 2 V.. = . + . + .  
10 0 V 10 0 V.. = .  
We find that with our calculated currents the loop rule is satisfied for loop (3). Also, all the currents came 
out to be positive, so the current directions in the circuit diagram are correct. 
(b) IDENTIFY and SET UP:   To find ab a bV V V= −  start at point b and travel to point a. Many different 
routes can be taken from b to a and all must yield the same result for .abV  
EXECUTE:   Travel through the 4 00-. Ω  resistor and then through the 3 00-. Ω  resistor: 

2 1(4 00 ) (3 00 ) .b aV I I V+ .  Ω + .  Ω =  
(1.40 A)(4 00 ) (1 60 A)(3 00 ) 5 60 V 4 8 V 10 4 Va bV V− = .  Ω + . .  Ω = . + . = .  (point a is at higher potential 

than point b). 
EVALUATE:   Alternatively, travel through the 5.00-V emf, the 1 00-. Ω  resistor, the 2 00-. Ω  resistor, and 
the 10.0-V emf. 

2 15 00 V (1 00 ) (2 00 ) 10 0 V .b aV I I V+ . − .  Ω − .  Ω + . =  
15 0 V (1 40 A)(1 00 ) (1 60 A)(2 00 ) 15 0 V 1 40 V 3 20 V 10 4 V,a bV V− = . − . .  Ω − . .  Ω = . − . − . = .  the same as 

before. 
 26.30. IDENTIFY:   Use Kirchhoff’s rules to find the currents. 

SET UP:   Since the 15.0-V battery has the largest voltage, assume 1I  is to the right through the 10.0-V 
battery, 2I  is to the left through the 15.0-V battery, and 3I  is to the right through the  10.00-Ω  resistor. 
Go around each loop in the counterclockwise direction.    
EXECUTE:   (a) Upper loop: 10.0 V + (2.00 Ω + 3.00 Ω)I1 + (1.00 Ω + 4.00 Ω)I2 − 15.00 V = 0.  

  −5.00 V + (5.00 Ω)I1 + (5.00 Ω)I2 = 0,  so I1 + I2 = +1.00A.  

Lower loop:   15.00 V − (1.00 Ω + 4.00 Ω)I2 − (10.0 Ω)I3 = 0.  

  15.00 V − (5.00 Ω)I2 − (10.0 Ω)I3 = 0,  so I2 + 2I3 = 3.00 A.  

Along with 2 1 3,I I I= +  we can solve for the three currents and find 

  I1 = 0.00 A, I2 = +1.00 A (to the left), I3 = +1.00 A (to the right).  

(b)   Vab = I2 (4.00 Ω) + I1(3.00 Ω) = (1.00 A)(4.00 Ω) + (0.00 A)(3.00 Ω) = 4.00 V.  
EVALUATE:   Traveling from b to a through the 4 00-. Ω  and 3 00-. Ω  resistors you pass through each 
resistor opposite to the direction of the current and the potential increases; point a is at higher potential 
than point b. 

 26.31. (a) IDENTIFY:   With the switch open, the circuit can be solved using series-parallel reduction. 
SET UP:   Find the current through the unknown battery using Ohm’s law. Then use the equivalent 
resistance of the circuit to find the emf of the battery. 
EXECUTE:   The 30.0-Ω  and 50.0-Ω  resistors are in series, and hence have the same current. Using 
Ohm’s law 50 30(15.0 V)/(50.0 ) 0.300 A .I I= Ω = =  The potential drop across the 75.0-Ω  resistor is the 
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same as the potential drop across the 80.0-Ω  series combination. We can use this fact to find the current 
through the 75.0-Ω  resistor using Ohm’s law: 75 80 (0.300 A)(80.0 ) 24.0 V andV V= = Ω =  

75  (24.0 V)/(75.0 ) 0.320 A.I = Ω =  
The current through the unknown battery is the sum of the two currents we just found: 

Total 0.300 A 0.320 A 0.620 A.I = + =  
The equivalent resistance of the resistors in parallel is p1/ = 1/(75.0 ) 1/(80.0 ).R Ω + Ω  This gives 

p 38 7 .R = . Ω  The equivalent resistance “seen” by the battery is equiv 20.0 38.7 58.7 .R = Ω + Ω = Ω  

Applying Ohm’s law to the battery gives equiv Total (58.7 )(0.620 A) 36.4 V.R Iε = = Ω =  
(b) IDENTIFY:   With the switch closed, the 25.0-V  battery is connected across the 50.0-Ω  resistor. 
SET UP:   Take a loop around the right part of the circuit. 
EXECUTE:   Ohm’s law gives (25.0 V)/(50.0 ) 0.500 A.I = Ω =  
EVALUATE:   The current through the 50.0-  resistor,Ω  and the rest of the circuit, depends on whether or 
not the switch is open.  

 26.32. IDENTIFY:   We need to use Kirchhoff’s rules.  
SET UP:   Take a loop around the outside of the circuit, apply the junction rule at the upper junction, and 
then take a loop around the right side of the circuit. 
EXECUTE:   The outside loop gives 48 4875.0 V – (12.0 )(1.50 A) – (48.0 ) 0, so 1.188 A.I IΩ Ω = =  At a 
junction we have 1.50A 1.188 A, and 0.313 A.ε ε= + =I I  A loop around the right part of the circuit gives 

(48 )(1.188 A) (15.0 )(0.313 A).ε − Ω + Ω  52.3 V,ε = with the polarity shown in the figure in the problem. 
EVALUATE:   The unknown battery has a smaller emf than the known one, so the current through it goes 
against its polarity. 

 26.33. (a) IDENTIFY:   With the switch open, we have a series circuit with two batteries. 
SET UP:   Take a loop to find the current, then use Ohm’s law to find the potential difference between  
a and b. 
EXECUTE:   Taking the loop: (40.0 V)/(175 ) 0.229 A.I = Ω =  The potential difference between a and b is 

– 15.0 V – (75.0 )(0.229 A) 2.14 V.b aV V = + Ω = −  
EVALUATE:   The minus sign means that a is at a higher potential than b. 
(b) IDENTIFY:   With the switch closed, the ammeter part of the circuit divides the original circuit into two 
circuits. We can apply Kirchhoff’s rules to both parts. 
SET UP:   Take loops around the left and right parts of the circuit, and then look at the current at the 
junction. 
EXECUTE:   The left-hand loop gives 100 (25.0 V)/(100.0 ) 0.250 A.I = Ω =  The right-hand loop gives 

75 (15.0 V)/(75.0 ) 0.200 A.I = Ω =  At the junction just above the switch we have 100 0.250 AI =  (in) and 

75 A0.200 A (out) , so 0.250 A – 0.200 A 0.050 A,I I= = =  downward. The voltmeter reads zero because 
the potential difference across it is zero with the switch closed. 
EVALUATE:   The ideal ammeter acts like a short circuit, making a and b at the same potential. Hence the 
voltmeter reads zero. 

 26.34. IDENTIFY:   We first reduce the parallel combination of the 20.0-Ω  resistors and then apply Kirchhoff’s 
rules. 
SET UP:   2P I R=  so the power consumption of the 6.0-Ω  resistor allows us to calculate the current 
through it. Unknown currents 1 2 3, , and I I I  are shown in Figure 26.34. The junction rule says that 

1 2 3 .I I I= +  In Figure 26.34 the two 20.0-Ω  resistors in parallel have been replaced by their equivalent 
(10.0 ).Ω  
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Figure 26.34 
 

EXECUTE:   (a) 2P I R=  gives 1
24 J/s 2 0 A.
6 0 

P
I

R
= = = .

. Ω
 The loop rule applied to loop (1) gives: 

2(2 0 A)(3 0 ) (2 0 A)(6 0 ) 25 V (10 0 19 0 1 0 ) 0.I− . . Ω − . . Ω + − . Ω + . Ω + . Ω =  2
25 V 18 V 0 233 A.

30 0 
I

−= = .
. Ω

 

(b) 3 1 2 2 0 A 0 233 A 1 77 A.I I I= − = . − . = .  The loop rule applied to loop (2) gives: 
(2 0 A)(3 0 6 0 ) 25 V (1 77 A)(17 ) (1 77 A)(13 ) 0.ε− . . Ω + . Ω + − . Ω − − . Ω =  

25 V 18 V 53 1 V 46 1 V.ε = − − . = − .  The emf is 46.1 V.  
EVALUATE:   Because of the minus sign for the emf, the polarity of the battery is opposite to what is shown 
in the figure in the problem; the + terminal is adjacent to the 13-Ω resistor. 

 26.35. IDENTIFY:   To construct an ammeter, add a shunt resistor in parallel with the galvanometer coil. To 
construct a voltmeter, add a resistor in series with the galvanometer coil. 
SET UP:   The full-scale deflection current is 500 Aµ  and the coil resistance is 25 0 .. Ω  
EXECUTE:   (a) For a 20-mA ammeter,  the two resistances are in parallel and the voltages across each are 

the same. c sV V=  gives c c s s.I R I R=  6 3 6
s(500 10 A)(25 0 ) (20 10 A 500 10 A)R− − −× . Ω = × − ×  and 

s 0.641 .R = Ω  
(b) For a 500-mV voltmeter, the resistances are in series and the current is the same through each: 

c s( )abV I R R= +  and 
3

s c 6
500 10 V 25 0 975 .
500 10 A

abV
R R

I

−

−
×= − = − . Ω = Ω
×

 

EVALUATE:   The equivalent resistance of the voltmeter is eq s c 1000 .R R R= + =  Ω  The equivalent 

resistance of the ammeter is given by 
eq sh c

1 1 1
R R R

= +  and eq 0 625 .R = .  Ω  The voltmeter is a high-

resistance device and the ammeter is a low-resistance device. 
 26.36. IDENTIFY:   The galvanometer is represented in the circuit as a resistance G.R  Use the junction rule to 

relate the current through the galvanometer and the current through the shunt resistor. The voltage drop 
across each parallel path is the same; use this to write an equation for the resistance R. 
SET UP:   The circuit is sketched in Figure 26.36. 
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Figure 26.36 

We want that a 20 0 AI = .  in the external circuit to produce fs 0 0224 AI = .  through the galvanometer coil. 
EXECUTE:   Applying the junction rule to point a gives a fs sh 0.I I I− − =  

sh a fs 20 0 A 0 0224 A 19 98 A.I I I= − = . − . = .  
The potential difference abV  between points a and b must be the same for both paths between these two 
points: fs G sh sh( ) .I R R I R+ =  

sh sh
G

fs

(19 98 A)(0 0250 ) 9 36 22 30 9 36 12 9 .
0 0224 A

I RR R
I

. .  Ω= − = − .  Ω = .  Ω − .  Ω = .  Ω
.

 

EVALUATE:     Rsh << R + RG ;  most of the current goes through the shunt. Adding R decreases the fraction 

of the current that goes through G.R  
 26.37. IDENTIFY:   The meter introduces resistance into the circuit, which affects the current through the 5.00-kΩ  

resistor and hence the potential drop across it. 
SET UP:   Use Ohm’s law to find the current through the 5.00-kΩ  resistor and then the potential drop across it. 
EXECUTE:   (a) The parallel resistance with the voltmeter is 3.33 k ,Ω  so the total equivalent resistance 
across the battery is 9.33 k ,Ω  giving (50.0 V)/(9.33 k ) 5.36 mA.I = Ω =  Ohm’s law gives the potential 
drop across the 5.00-kΩ  resistor: 5 k (3.33 k )(5.36 mA) 17.9 V.V Ω = Ω =  
(b) The current in the circuit is now (50 0 V)/(11.0 k ) mI = . Ω = 4.55 Α.  

5 k (5.00 k )(4.55 mA) 22.7 V.V Ω = Ω =  

(c) % error (22.7 V –17.9 V)/(22.7 V) 0.214 21.4%.= = =  (We carried extra decimal places for accuracy 
since we had to subtract our answers.) 
EVALUATE:   The presence of the meter made a very large percent error in the reading of the “true” 
potential across the resistor. 

 26.38. IDENTIFY:   The resistance of the galvanometer can alter the resistance in a circuit. 
SET UP:   The shunt is in parallel with the galvanometer, so we find the parallel resistance of the ammeter. 
Then use Ohm’s law to find the current in the circuit. 
EXECUTE:   (a) The resistance of the ammeter is given by  

A1/ 1/(1.00 ) 1/(25.0 ), so 0.962 .AR R= Ω + Ω = Ω  The current through the ammeter, and hence the current it 
measures, is / (25.0 V)/(15.96 ) 1.57 A.I V R= = Ω =  
(b) Now there is no meter in the circuit, so the total resistance is only 15.0 . (25.0 V)/(15.0 ) 1.67 A.IΩ = Ω =  
(c) (1.67 A –1.57 A)/(1.67 A) 0.060 6.0%.= =  
EVALUATE:   A 1-Ω  shunt can introduce noticeable error in the measurement of an ammeter. 

 26.39. IDENTIFY:   The capacitor discharges exponentially through the voltmeter. Since the potential difference 
across the capacitor is directly proportional to the charge on the plates, the voltage across the plates 
decreases exponentially with the same time constant as the charge. 
SET UP:   The reading of the voltmeter obeys the equation – /

0 ,t RC
eV V=  where RC is the time constant. 

EXECUTE:   (a) Solving for C and evaluating the result when 4.00 st =  gives 
7

60

4 00 s 8.49 10 F.
12 0 Vln( / ) (3 40 10 )ln
3 00 V

tC
R V V

−.= = = ×
.⎛ ⎞. ×  Ω ⎜ ⎟.⎝ ⎠

 

(b) 6 7(3.40 10  )(8.49 10  F) 2.89 s.RCτ −= = × Ω × =  
EVALUATE:   In most laboratory circuits, time constants are much shorter than this one. 
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 26.40. IDENTIFY:   When S is closed, charge starts to flow and charge the capacitor until the potential difference 
across the capacitor is equal to the emf of the battery. 
SET UP:   VR = RI, VC = ε (1 – e–t/RC), and UC = Q2/2C. 
EXECUTE:   (a) Kirchhoff’s loop rule gives VC + VR = ,ε  so I = ( ε  – VC)/R = (36.0 V – 8.00 V)/(120 Ω) = 
0.2333 A, which rounds to 0.233 A. 
(b) From VC = ε (1 – e–t/RC), we get e–t/RC = 1 – ./CV ε  Taking logs gives  –t/RC = ln(1 – )./CV ε  Solving for 
t gives  
t = –(120 Ω)(5.00 µF) ln[1 – (8.00 V)/(36.0 V)] = 151 µs. 
(c) UC = Q2/2C, so PC = dUC/dt = (Q/C) dQ/dt = VCI = (8.00 V)(0.2333 A) = 1.87 W. 
EVALUATE:   PC + PR = PC + I2R = 1.87 W + (0.2333 A)2(120 Ω) = 8.40 W.  ε ε=P I  = (0.2333 A) 
(36.0 V) = 8.40 W. These results for the power agree, as they should by conservation of energy. 

 26.41. IDENTIFY:   An uncharged capacitor is placed into a circuit. Apply the loop rule at each time. 
SET UP:   The voltage across a capacitor is / .CV q C=  
EXECUTE:   (a) At the instant the circuit is completed, there is no voltage across the capacitor, since it has 
no charge stored. 
(b) Since 0,CV =  the full battery voltage appears across the resistor 245 V.RV ε= =  
(c) There is no charge on the capacitor. 

(d) The current through the resistor is i = ε
Rtotal

= 245 V
7500 Ω

= 0.0327 A  = 32.7 mA. 

(e) After a long time has passed the full battery voltage is across the capacitor and 0.i =  The voltage 
across the capacitor balances the emf: 245 V.CV =  The voltage across the resistor is zero. The capacitor’s 

charge is 6 3(4 60 10 F) (245 V) 1 13 10 C.Cq CV − −= = . × = . ×  The current in the circuit is zero. 
EVALUATE:   The current in the circuit starts at 0.0327 A and decays to zero. The charge on the capacitor 
starts at zero and rises to 31 13 10  C.q −= . ×  

 26.42. IDENTIFY:   Once the switch S is closed, current starts to flow and charge the capacitor. 
SET UP:    P = IV, VR = RI, 2/2 ,CU Q C=  – /(1 ),t RCQ C eε= −  (1 – e–t/RC), and – /( / ) .t RCI R eε=  
EXECUTE:   (a) ε  = VR + VC = IR + Q/C = (3.00 A)(12.0 Ω) + (40.0 µC)/(5.00 µF) = 44.0 V. 
(b) The current is – /( / ) .t RCI R eε=  The current is 3.00 A when Q = 40.0 µC, so 

– /3.00 A [(44.0 ) /(12.0 )] .t RCV e= Ω  Taking logs and solving for t gives 
–t/RC = ln(36.0/44.0). 
t = –(12.0 Ω)(5.00 µF) ln(36.0/44.0) = 12.0 µs. 
(c) (i) The power in the capacitor is 2/ ( /2 )/ ( / ) / / ,CP dU dt d Q C dt Q C dQ dt QI C= = = =  so 

(40.0 )(3.00 )/(5.00 ) 24.0 W.CP µC A µF= =  

(ii) ε ε=P I  = (3.00 A)(44.0 V) = 132 W. 

EVALUATE: In (c), when I = 3.00 A, 2 2(3.00 ) (12.0 ) 108 .RP I R A W= = Ω =  Therefore PR + PC = 108 W 

+ 24.0 W = 132 W, which is equal to ,εP  as it should be by energy conservation. In (b), we can use the 

equation Q = C /(1 )t RCeε −−  to calculate Q when t = 12.0 µs; it should be 40.0 µC. We have 
(12.0 ) /[(12.0 )(5.00 )](44.0 V)(5.00 F)(1 ) 40.0 C,µs µFQ µ e µ− Ω= − =   as expected. 

 26.43. IDENTIFY:   The capacitors, which are in parallel, will discharge exponentially through the resistors. 
SET UP:   Since V is proportional to Q, V must obey the same exponential equation as Q,  

– /
0 .t RCV V e=  The current is – /

0( / ) .t RCI V R e=  
EXECUTE:   (a) Solve for time when the potential across each capacitor is 10.0 V: 

0 ln( / ) –(80.0 )(35.0 F) ln(10/45) 4210 s 4.21 ms.t RC V V µ µ= − = Ω = =  

(b) – /
0(  / ) .t RCI V R e=  Using the above values, with 0 45.0 V, gives 0.125 A.V I= =  
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EVALUATE:   Since the current and the potential both obey the same exponential equation, they are both 
reduced by the same factor (0.222) in 4.21 ms. 

 26.44. IDENTIFY:   For a charging capacitor /( ) (1 )tq t C e τε −= −  and /( ) .ti t e
R

τε −=  

SET UP:   The time constant is 6 6(0 895 10 ) (12 4 10 F) 11.1s.RC −= . × Ω . × =  

EXECUTE:   (a) At /0 s:  (1 ) 0.t RCt q C eε −= = − =  

At / 6 (5 0 s)/(11 1 s) 45 s:  (1 ) (12 4 10  F)(60 0 V)(1 ) 2 70 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (10 0 s)/(11 1 s) 410 s:  (1 ) (12 4 10  F)(60 0 V)(1 ) 4 42 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (20 0 s)/(11 1 s) 420 s :  (1 ) (12 4 10  F)(60 0 V)(1 ) 6 21 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (100 s)/(11 1 s) 4100 s :  (1 ) (12 4 10  F)(60 0 V)(1 ) 7 44 10  C.t RCt q C e eε − − − . −= = − = . × . − = . ×  

(b) The current at time t is given by: / .t RCi e
R
ε −=  

At 0/11 1 5
5

60 0 V0 s :  6 70 10  A.
8 95 10

− . −.= = = . ×
. ×  Ω

t i e  

At 5 11 1 5
5

60 0 V5 s :  4 27 10  A.
8 95 10

/t i e− . −.= = = . ×
. ×  Ω

 

At 10/11 1 5
5

60 0 V10 s :  2 72 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 20/11 1 5
5

60 0 V20 s :  1 11 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 100/11 1 9
5

60 0 V100 s :  8 20 10 A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

(c) The graphs of ( )q t  and ( )i t  are given in Figure 26.44a and b. 
EVALUATE:   The charge on the capacitor increases in time as the current decreases. 

 

  
Figure 26.44 

 

 26.45. IDENTIFY and SET UP:   Apply Kirchhoff’s loop rule. The voltage across the resistor depends on the 
current through it and the voltage across the capacitor depends on the charge on its plates. 
EXECUTE:   0.R CV Vε − − =  

120 V, (0 900 A)(80 0 ) 72 V, so 48 V.R CV IR Vε = = = . .  Ω = =  
6(4 00 10  F)(48 V) 192 C.Q CV µ−= = . × =   

  EVALUATE:   The initial charge is zero and the final charge is 480 C.Cε µ=   Since current is flowing at the 
instant considered in the problem the capacitor is still being charged and its charge has not reached its final 
value.  
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 26.46. IDENTIFY:   In RCτ =  use the equivalent capacitance of the two capacitors. 

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 .
C C C

= +  For capacitors in parallel, eq 1 2.C C C= +  Originally, 

  τ = RC = 0.780 s.  
EXECUTE:   (a) The combined capacitance of the two identical capacitors in series is given by 

eq

1 1 1 2 ,
C C C C

= + =  so eq .
2
C

C =  The new time constant is thus R(C /2) = 0.780 s
2

= 0.390 s.  

(b) With the two capacitors in parallel the new total capacitance is simply 2C. Thus the time constant is 

  R(2C) = 2(0.780 s) = 1.56 s.  
EVALUATE:   The time constant is proportional to eq.C  For capacitors in series the capacitance is 
decreased and for capacitors in parallel the capacitance is increased. 

 26.47. IDENTIFY:   The stored energy is proportional to the square of the charge on the capacitor, so it will obey 
an exponential equation, but not the same equation as the charge. 
SET UP:   The energy stored in the capacitor is 2 /2U Q C=  and the charge on the plates is – /

0 .t RCQ e  The 

current is – /
0 .t RCI I e=  

EXECUTE:   2 – / 2 –2 /
0 0/2 ( ) /2C .t RC t RCU Q C Q e U e= = =  When the capacitor has lost 80% of its stored 

energy, the energy is 20% of the initial energy, which is –2 /
0 0 0/5. /5  t RCU U U e=  gives 

( /2) ln 5 (25.0 )(4.62 pF)(ln 5)/2 92.9 ps.t RC= = Ω =  

At this time, the current is – / – /
0 0( / ) ,t RC t RCI I e Q RC e= =  so 

–(92.9 ps)/[(25.0 )(4.62 pF)](3.5 nC)/[(25.0 )(4.62 pF)] e 13.6 A.I Ω= Ω =  
EVALUATE:   When the energy is reduced by 80%, neither the current nor the charge are reduced by that 
percent. 

 26.48. IDENTIFY:   The charge is increasing while the current is decreasing. Both obey exponential equations, but 
they are not the same equation.  
SET UP:   The charge obeys the equation /

max (1 ),t RCQ Q e−= −  but the equation for the current is 
– /

max .t RCI I e=  

EXECUTE:   When the charge has reached 1
4  of its maximum value, we have – /

max max/4 (1 – ),t RCQ Q e=  

which says that the exponential term has the value – / 3
4 .t RCe =  The current at this time is 

– /
max max (3/4) (3/4)[(10.0 V)/(12.0 )] 0.625 A.= = = Ω =t RCI I e I  

EVALUATE:   Notice that the current will be 3
4 ,  not 1

4 ,  of its maximum value when the charge is 1
4  of its 

maximum. Although current and charge both obey exponential equations, the equations have different 
forms for a charging capacitor. 

 26.49. IDENTIFY:   In both cases, simplify the complicated circuit by eliminating the appropriate circuit elements. 
The potential across an uncharged capacitor is initially zero, so it behaves like a short circuit. A fully 
charged capacitor allows no current to flow through it. 
(a) SET UP:   Just after closing the switch, the uncharged capacitors all behave like short circuits, so any 
resistors in parallel with them are eliminated from the circuit. 
EXECUTE:   The equivalent circuit consists of 50 Ω  and 25 Ω  in parallel, with this combination in series 
with 75 ,Ω  15 ,Ω and the 100-V  battery. The equivalent resistance is 90 16.7 106.7 ,Ω + Ω = Ω  which 
gives (100 V)/(106.7 ) 0.937 A.= Ω =I  
(b) SET UP:   Long after closing the switch, the capacitors are essentially charged up and behave like open 
circuits since no charge can flow through them. They effectively eliminate any resistors in series with them 
since no current can flow through these resistors. 
EXECUTE:   The equivalent circuit consists of resistances of 75 ,Ω  15 ,Ω  and three 25-Ω  resistors, all in 
series with the 100-V  battery, for a total resistance of 165 .Ω  Therefore (100V)/(165 ) 0.606 A.I = Ω =  
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EVALUATE:   The initial and final behavior of the circuit can be calculated quite easily using simple series-
parallel circuit analysis. Intermediate times would require much more difficult calculations! 

 26.50. IDENTIFY:   Both the charge and energy decay exponentially, but not with the same time constant since the 
energy is proportional to the square of the charge. 
SET UP:   The charge obeys the equation – /

0
t RCQ Q e=  but the energy obeys the equation  

2 – / 2 –2 /
0 0/2 ( ) /2C .= = =t RC t RCU Q C Q e U e  

EXECUTE:   (a) The charge is reduced by half: – /
0 0/2 .t RCQ Q e=  This gives 

  t = RC  ln 2 = (225 Ω)(12.0 µF)(ln 2) = 1.871 ms,  which rounds to 1.87 ms. 

(b) The energy is reduced by half: –2 /
0 0/2 .t RCU U e=  This gives 

  t = (RC  ln 2)/2 = (1.871 ms)/2 = 0.936 ms.  
EVALUATE:   The energy decreases faster than the charge because it is proportional to the square of the 
charge. 

 26.51. IDENTIFY:   When the capacitor is fully charged the voltage V across the capacitor equals the battery emf 
and .Q CV=  For a charging capacitor, /(1 ).t RCq Q e−= −  

SET UP:   ln .xe x=  

EXECUTE:   (a)   Q = CV = (5.90 × 10−6 F)(28.0 V) = 1.65 × 10−4 C  = 165 µC. 

(b) /(1 ),t RCq Q e−= −  so / 1t RC q
e

Q
− = −  and .

ln(1 / )
t

R
C q Q

−=
−

 After 

3
3

6
3 10  s3 10  s: 463 .

(5 90 10  F)(ln(1 110/165))
t R

−
−

−
− ×= × = =  Ω

. × −
 

(c) If the charge is to be 99% of final value: /(1 )t RCq
e

Q
−= − gives 

6ln(1 / ) (463 ) (5 90 10 F) ln(0 01) 0 0126 s−= − − = − Ω . × . = .t RC q Q  = 12.6 ms. 
EVALUATE:   The time constant is 2 73 ms.RCτ = = .  The time in part (b) is a bit more than one time 
constant and the time in part (c) is about 4.6 time constants. 

 26.52. IDENTIFY:   2P VI I R= =  
SET UP:   Problem 25.76 says that for 12-gauge wire the maximum safe current is 25 A. 

EXECUTE:   (a) 4100 W 17 1 A.
240 V

P
I

V
= = = .  So we need at least 14-gauge wire (good up to 18 A). 12-gauge 

is also ok (good up to 25 A). 

(b) 
2V

P
R

=  and 
2 2(240 V) 14 .

4100 W
V

R
P

= = = Ω  

(c) At 11 c  per kWh, for 1 hour the cost is (11c/kWh)(1 h)(4 1 kW) 45c.. =/ /  
EVALUATE:   The cost to operate the device is proportional to its power consumption. 

 26.53. IDENTIFY and SET UP:   The heater and hair dryer are in parallel so the voltage across each is 120 V and 
the current through the fuse is the sum of the currents through each appliance. As the power consumed by 
the dryer increases, the current through it increases. The maximum power setting is the highest one for 
which the current through the fuse is less than 20 A. 
EXECUTE:   Find the current through the heater. P = VI  so I = P/V = (1500 W)/(120 V) = 12.5 A.  The 
maximum total current allowed is 20 A, so the current through the dryer must be less than 
20 A 12 5 A 7 5 A.− . = .  The power dissipated by the dryer if the current has this value is P = VI = 
(120 V)(7 5 A) 900 W.. =  For P at this value or larger the circuit breaker trips. 

EVALUATE:   2 /P V R=  and for the dryer V is a constant 120 V. The higher power settings correspond to a 
smaller resistance R and larger current through the device. 
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 26.54. IDENTIFY:   We need to do series/parallel reduction to solve this circuit. 

SET UP:   
2

,P
R
ε=  where R is the equivalent resistance of the network. For resistors in series, 

eq 1 2,R R R= +  and for resistors in parallel P 1 21/ 1/ 1/ .R R R= +  

EXECUTE:   
2 2(48 0 V) 7 810 .

295 W
R

P
ε .= = = .  Ω  12 1 2 8 00 .R R R= + = .  Ω  123 4.R R R= +  

123 4 7 810 3 00 4 810 .R R R= − = .  Ω − .  Ω = .  Ω  
312 123

1 1 1 .+ =
R R R

 12 123

3 123 12 123 12

1 1 1 .−= − = R R
R R R R R

 

123 12
3

12 123

(4 810 )(8 00 ) 12 1 .
8 00 4 810

.  Ω .  Ω= = = .  Ω
− .  Ω − .  Ω

R RR
R R

 

EVALUATE:   The resistance 3R  is greater than R, since the equivalent parallel resistance is less than any 
of the resistors in parallel. 

 26.55. IDENTIFY:   The terminal voltage of the battery depends on the current through it and therefore on the 
equivalent resistance connected to it. The power delivered to each bulb is 2 ,P I R=  where I is the current 
through it. 
SET UP:   The terminal voltage of the source is .Irε −  
EXECUTE:   (a) The equivalent resistance of the two bulbs is 1 0 .. Ω  This equivalent resistance is in series 
with the internal resistance of the source, so the current through the battery is 

total

8 0 V 4 4 A.
1 0 0 80

V
I

R
.= = = .

. Ω + . Ω
 and the current through each bulb is 2.2 A. The voltage applied to 

each bulb is 8 0 V (4 4 A)(0 80 ) 4 4 V.Irε − = . − . .  Ω = .  Therefore, 2 2
bulb (2 2 A) (2 0 ) 9 7 W.P I R= = . .  Ω = .  

(b) If one bulb burns out, then 
total

8 0 V 2 9 A
2 0 0 80

V
I

R
.= = = . .

.  Ω + .  Ω
 The current through the remaining bulb 

is 2.9 A, and 2 2(2 9 A) (2 0 ) 16 3 W.P I R= = . . Ω = .  The remaining bulb is brighter than before, because it is 
consuming more power. 
EVALUATE:   In Example 26.2 the internal resistance of the source is negligible and the brightness of the 
remaining bulb doesn’t change when one burns out. 

 26.56. IDENTIFY:   Half the current flows through each parallel resistor and the full current flows through the 
third resistor, that is in series with the parallel combination. Therefore, only the series resistor will be at its 
maximum power. 
SET UP:   2 .P I R=  
EXECUTE:   The maximum allowed power is when the total current is the maximum allowed value of 

  I = P/R = (48 W)/(2.4 Ω) = 4.47 A.  Then half the current flows through the parallel resistors and the 

maximum power is 2 2 2 2 23 3
max 2 2( /2) ( /2) (4.47 A) (2.4 ) 72 W.= + + = = Ω =P I R I R I R I R  

EVALUATE:   If all three resistors were in series or all three were in parallel, then the maximum power 
would be 3(48 W) 144 W.=  For the network in this problem, the maximum power is half this value. 

 26.57. (a) IDENTIFY:   Break the circuit between points a and b means no current in the middle branch that 
contains the 3.00-Ω resistor and the 10.0-V battery. The circuit therefore has a single current path. Find  
the current, so that potential drops across the resistors can be calculated. Calculate abV  by traveling from  
a to b, keeping track of the potential changes along the path taken. 
SET UP:   The circuit is sketched in Figure 26.57a. 
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Figure 26.57a 
 

EXECUTE:   Apply Kirchhoff’s loop rule to loop (1). 
12 0 V (1 00 2 00 2 00 1 00 ) 8 0 V (2 00 1 00 ) 0.I I+ . − .  Ω + .  Ω + .  Ω + .  Ω − . − .  Ω + .  Ω =  

12 0 V 8 0 V 0 4444 A.
9 00

I
. − .= = .

.  Ω
 

To find abV  start at point b and travel to a, adding up the potential rises and drops. Travel on path (2) 
shown on the diagram. The 1 00-  and 3 00-. Ω . Ω  resistors in the middle branch have no current through 
them and hence no voltage across them. Therefore, 

10 0 V 12 0 V (1 00 1 00 2 00 ) ;b aV I V− . + . − .  Ω + .  Ω + .  Ω =  thus 
2 0 V (0 4444 A)(4 00 ) 0 22 Va bV V− = . − . .  Ω = + .  (point a is at higher potential). 

EVALUATE:   As a check on this calculation we also compute abV  by traveling from b to a on path (3). 
10 0 V 8 0 V (2 00 1 00 2 00 ) .b aV I V− . + . + .  Ω + .  Ω + .  Ω =  

2 00 V (0 4444 A)(5 00 ) 0 22 V,abV = − . + . .  Ω = + .  which checks. 
(b) IDENTIFY and SET UP:   With points a and b connected by a wire there are three current branches, as 
shown in Figure 26.57b.  

 

 

Figure 26.57b 
 

The junction rule has been used to write the third current (in the 8.0-V battery) in terms of the other 
currents. Apply the loop rule to loops (1) and (2) to obtain two equations for the two unknowns 1 2 and .I I  
EXECUTE:   Apply the loop rule to loop (1). 

1 1 2 2 112 0 V (1 00 ) (2 00 ) (1 00 ) 10 0 V (3 00 ) (1 00 ) 0I I I I I. − .  Ω − .  Ω − .  Ω − . − .  Ω − .  Ω =  

1 22 0 V (4 00 ) (4 00 ) 0I I. − .  Ω − .  Ω =  

1 2(2 00 ) (2 00 ) 1 0 VI I.  Ω + .  Ω = .   eq. (1) 
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Apply the loop rule to loop (2). 
1 2 1 2 1 2 2 2( )(2 00 ) ( )(1 00 ) 8 0 V ( )(2 00 ) (3 00 ) 10 0 V (1 00 ) 0I I I I I I I I− − .  Ω − − .  Ω − . − − .  Ω + .  Ω + . + .  Ω =

1 22 0 V (5 00 ) (9 00 ) 0I I. − .  Ω + .  Ω =   eq. (2) 
Solve eq. (1) for 2I  and use this to replace 2I  in eq. (2). 

2 10 50 AI I= . −  

1 12 0 V (5 00 ) (9 00 )(0 50 A ) 0I I. − .  Ω + .  Ω . − =  

1 1(14 0 ) 6 50 V so (6 50 V)/(14 0 ) 0 464 AI I.  Ω = . = . .  Ω = .  

2 0 500 A 0 464 A 0 036 A.I = . − . = .  
The current in the 12.0-V battery is 1 0 464 AI = .  
EVALUATE:   We can apply the loop rule to loop (3) as a check. 

1 1 212 0 V (1 00 2 00 1 00 ) ( )(2 00 1 00 2 00 ) 8 0 V 4 0 V 1 86 VI I I+ . − .  Ω + .  Ω + .  Ω − − .  Ω + .  Ω + .  Ω − . = . − . −  
2 14 V 0,. =  as it should. 

 26.58. IDENTIFY:   Heat, which is generated in the resistor, melts the ice. 
SET UP:   Find the rate at which heat is generated in the 20.0-Ω  resistor using 2/ .=P V R  Then use the 
heat of fusion of ice to find the rate at which the ice melts. The heat dH to melt a mass of ice dm is 

FdH L=  dm, where FL  is the latent heat of fusion. The rate at which heat enters the ice, / ,dH dt  is the 
power P in the resistor, so F / .P L dm dt=  Therefore the rate of melting of the ice is F/ / .=dm dt P L  
EXECUTE:   The equivalent resistance of the parallel branch is 5.00 ,Ω  so the total resistance in the circuit 
is 35.0 .Ω  Therefore the total current in the circuit is Total (45.0 V)/(35.0 ) 1.286 A.I = Ω =  The potential 
difference across the 20.0-Ω  resistor in the ice is the same as the potential difference across the parallel 
branch: ice Total p (1.286 A)(5.00 ) 6.429 V.V I R= = Ω =  The rate of heating of the ice is 

2 2
ice ice / (6.429 V) /(20.0 ) 2.066 W.P V R= = Ω =  This power goes into to heat to melt the ice, so 

5 –6 –3 
F/ / (2.066 W)/(3.34 10  J/kg) 6.19 10  kg/s 6.19 10 g/s.dm dt P L= = × = × = ×  

EVALUATE:   The melt rate is about 6 mg/s,  which is not much. It would take 1000 s to melt just  
6 g of ice. 

 25.59. IDENTIFY:   Apply Kirchhoff’s junction rule to express the currents through the 5 00-  and 8 00-. Ω . Ω  
resistors in terms of 1 2 3, , and .I I I  Apply the loop rule to three loops to get three equations in the three 
unknown currents. 
SET UP:   The circuit is sketched in Figure 26.59. 

 

 

Figure 26.59 
 

The current in each branch has been written in terms of 1 2 3, , and I I I  such that the junction rule is satisfied 
at each junction point. 
EXECUTE:   Apply the loop rule to loop (1).  

2 2 312 0 V (1 00 ) ( )(5 00 ) 0I I I− . + .  Ω + − .  Ω =  

2 3(6 00 ) (5 00 ) 12 0 VI I.  Ω − .  Ω = .     eq. (1) 
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Apply the loop rule to loop (2).  
1 1 3(1 00 ) 9 00 V ( )(8 00 ) 0I I I− .  Ω + . − + .  Ω =  

1 3(9 00 ) (8 00 ) 9 00 VI I.  Ω + .  Ω = .     eq. (2) 
Apply the loop rule to loop (3). 

3 1 2(10 0 ) 9 00 V (1 00 ) (1 00 ) 12 0 V 0I I I− .  Ω − . + .  Ω − .  Ω + . =  

1 2 3(1 00 ) (1 00 ) (10 0 ) 3 00 VI I I− .  Ω + .  Ω + .  Ω = .   eq. (3) 

Eq. (1) gives 5 8
2 3 1 36 92 00 A ; eq (2) gives 1 00 A .I I I I= . + . = . −  

Using these results in eq. (3) gives 
8 5

3 3 39 6(1 00 A )(1 00 ) (2 00 A )(1 00 ) (10 0 ) 3 00 V.I I I− . − .  Ω + . + .  Ω + .  Ω = .  
16 15 180 18

3 318 211( ) 2 00 A; (2 00 A) 0 171 A.I I+ + = . = . = .  
Then 5 5

2 36 62 00 A 2 00 A (0 171 A) 2 14 AI I= . + = . + . = .  and 
8 8

1 39 91 00 A 1 00 A (0 171 A) 0 848 A.I I= . − = . − . = .  
EVALUATE:   We could check that the loop rule is satisfied for a loop that goes through the 
5 00- , 8 00-. Ω . Ω  and 10 0-. Ω  resistors. Going around the loop clockwise: 

2 3 1 3 3( )(5 00 ) ( )(8 00 ) (10 0 ) 9 85 V 8 15 V 1 71 V,I I I I I− − .  Ω + + .  Ω + .  Ω = − . + . + .  which does equal zero, 
apart from rounding. 

 26.60. IDENTIFY:   Apply the junction rule and the loop rule to the circuit. 
SET UP:   Because of the polarity of each emf, the current in the 7 00-. Ω  resistor must be in the direction 
shown in Figure 26.60a. Let I be the current in the 24.0-V battery. 
EXECUTE:   The loop rule applied to loop (1) gives: 24 0 V (1 80 A)(7 00 ) (3 00 ) 0.I+ . − . .  Ω − .  Ω =  

3 80 A.I = .  The junction rule then says that the current in the middle branch is 2.00 A, as shown in  
Figure 26.64b. The loop rule applied to loop (2) gives: (1 80 A)(7 00 ) (2 00 A)(2 00 ) 0ε+ − . .  Ω + . .  Ω =   
and 8 6 V.ε = .  
EVALUATE:   We can check our results by applying the loop rule to loop (3) in Figure 26.60b: 

24 0 V (2 00 A)(2 00 ) (3 80 A)(3 00 ) 0ε+ . − − . .  Ω − . .  Ω =  and 24 0 V 4 0 V 11 4 V 8 6 V,ε = . − . − . = .  which 
agrees with our result from loop (2). 

 

   

Figure 26.60 
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 26.61. IDENTIFY and SET UP:   The circuit is sketched in Figure 26.61. 
 

 

Two unknown currents 1I  (through 
the 2 00-. Ω  resistor) and 2I  
(through the 5 00-. Ω  resistor) are 
labeled on the circuit diagram. The 
current through the 4 00-. Ω  resistor 
has been written as 2 1I I−  using the 
junction rule. 

Figure 26.61   
 

Apply Kirchhoff’s loop rule to loops (1) and (2) to get two equations for the unknown currents, 1 2and .I I  
Loop (3) can then be used to check the results. 
EXECUTE:   Loop (1): 1 2 120 0 V (2 00 ) 14 0 V ( )(4 00 ) 0I I I+ . − .  Ω − . + − .  Ω =  

1 26 00 4 00 6 00 AI I. − . = .  

1 23 00 2 00 3 00 AI I. − . = .    eq. (1) 
Loop (2): 2 2 136 0 V (5 00 ) ( )(4 00 ) 0I I I+ . − .  Ω − − .  Ω =  

1 24 00 9 00 36 0 AI I− . + . = .    eq. (2) 

Solving eq. (1) for 2
1 1 23 gives 1 00 A .I I I= . +  

Using this in eq. (2) gives 2
2 234 00(1 00 A ) 9 00 36 0 A.I I− . . + + . = .  

( )8
2 23 9 00 40 0 A and 6 32 A.− + . = . = .I I   

Then 2 2
1 23 31 00 A 1 00 A (6 32 A) 5 21 A.I I= . + = . + . = .  

In summary then  
Current through the 2 00-. Ω  resistor: 1 5 21 A.I = .  
Current through the 5 00-. Ω  resistor: 2 6 32 A.I = .  
Current through the 4 00-. Ω  resistor: 2 1 6 32 A 5 21 A 1 11 A.I I− = . − . = .  
EVALUATE:   Use loop (3) to check. 1 220 0 V (2 00 ) 14 0 V 36 0 V (5 00 ) 0.I I+ . − .  Ω − . + . − .  Ω =  
(5 21 A)(2 00 ) (6 32 A)(5 00 ) 42 0 V.. .  Ω + . .  Ω = .  
10 4 V 31 6 V 42 0 V,. + . = .  so the loop rule is satisfied for this loop. 

 26.62. IDENTIFY:   Apply the loop and junction rules. 
SET UP:   Use the currents as defined on the circuit diagram in Figure 26.62 and obtain three equations to 
solve for the currents. 
EXECUTE:   (a) 1 1 2Left loop: 14 2( ) 0I I I− − − =  and 1 23 2 14.I I− =   

1 2 1Top loop: 2( ) 0I I I I− − + + =  and 1 22 3 0.I I I− + + =  
Bottom loop: 1 2 1 2 2( ) 2( ) 0I I I I I I− − + + − − =  and 1 23 4 0.I I I− + − =  
Solving these equations for the currents we find: 

1 3battery 1 210.0 A; 6.0 A; 2.0 A.R RI I I I I I= = = = = =  

So the other currents are: 
2 4 51 1 2 1 24 0 A; 4 0 A; 6 0 A.R R RI I I I I I I I I I= − = . = − = . = − + = .  

(b) eq
14 0 V 1 40 .
10 0 A

V
R

I
.= = = . Ω
.

 

EVALUATE:   It isn’t possible to simplify the resistor network using the rules for resistors in series and 
parallel. But the equivalent resistance is still defined by eq.V IR=  
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Figure 26.62 
 

 26.63. IDENTIFY:   Simplify the resistor networks as much as possible using the rule for series and parallel 
combinations of resistors. Then apply Kirchhoff’s laws. 
SET UP:   First do the series/parallel reduction. This gives the circuit in Figure 26.63. The rate at which the 
10 0-. Ω  resistor generates thermal energy is 2 .P I R=  
EXECUTE:   (a) Apply Kirchhoff’s laws and solve for .ε  adefa 20: (20 )(2 A) 5 V (20 ) 0.V I∆ = − Ω − − Ω =  
This gives 2 2 25 A.I = − .  Then 1 2 2 AI I+ =  gives 1 2 A ( 2 25 A) 4 25 A.I = − − . = .  

abcdefa 0: (15 )(4 25 A) (20 )( 2 25 A) 0.V ε∆ =  Ω . + −  Ω − . =  This gives 109 V.ε = −  Since ε  is calculated to 
be negative, its polarity should be reversed. 
(b) The parallel network that contains the 10 0-. Ω  resistor in one branch has an equivalent resistance of 
10 . Ω  The voltage across each branch of the parallel network is par (10 )(2A) 20 V.V RI= = Ω =  The 

current in the upper branch is 20 V 2 A.30 3
VI R= = =Ω  ,Pt E=  so 2 ,I Rt E=  where 60 0 J.E = .  

( )22
3 A (10 ) 60 J,Ω =t  and 13 5 s.t = .  

EVALUATE:   For the 10 0-. Ω  resistor, 2 4 44 W.P I R= = .  The total rate at which electrical energy is 
inputted to the circuit in the emf is (5 0 V)(2 0 A) (109 V)(4 25 A) 473 J.. . + . =  Only a small fraction of the 
energy is dissipated in the 10 0-. Ω  resistor. 

 

 

Figure 26.63 

 26.64. IDENTIFY:   The resistor R2 can vary between 3.00 Ω and 24.0 Ω. R2 is in parallel with R1, so as R2 is changed 
it affects the current in R1 and hence the power dissipated in R1. Ohm’s law and Kirchhoff’s rules apply. 

SET UP:    
eq 1 2

1 1 1
R R R

= + +…  , VR = IR, PR = I2R. 

EXECUTE:  2
1 1 1/ ,=P V R  so P1 is largest when V1 is largest. By Kirchhoff’s loop rule, 

ε  – V1 – V3 = 0, so V1 = ε  – V3, which means that V1 is largest when V3 is smallest.  
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V3 = IR3 = ε /(Req + R3), where Req is the equivalent resistance of the R1-R2 combination. Since they are in 

parallel, 
eq 1 2

1 1 1 ,= +
R R R

 which gives 1 2
eq

1 2
.=

+
R RR

R R
 The smallest V3 is for the smallest I, which occurs 

for the largest 
  
Req =

R1R2
R1 + R2

 = 1

1

2

.
1

R
R
R

+
  

As we can see, the largest Req occurs when R2 is largest, which is R2 = 24.0 Ω.  
The equivalent parallel resistance is then 

  
Req =

R1R2
R1 + R2

 = (6.00 Ω)(24.0 Ω)/(6.00 Ω + 24.0 Ω) = 4.80 Ω. 

The current I is then 
I = ε /(Req + R3) = (24.0 V)/(4.80 Ω + 12.0 Ω) = 1.429 A.  
V3 = IR3 = (1.429 A)(12.0 Ω) = 17.148 V. 
The potential difference across R1 is 
V1 = ε  – V3 = 24.0 V – 17.148 V = 6.852 V. 
The power dissipated in R1 is 

2
1 1 1/P V R=  = (6.852 V)2/(6.00 Ω) = 7.83 W. 

EVALUATE:   Since all the circuit elements except for R2 are fixed, varying R2 affects the current in the 
circuit as well as the current through R1.  

 26.65. IDENTIFY and SET UP:   Simplify the circuit by replacing the parallel networks of resistors by their 
equivalents. In this simplified circuit apply the loop and junction rules to find the current in each branch. 
EXECUTE:   The 20.0-Ω and 30.0-Ω resistors are in parallel and have equivalent resistance 12.0 Ω. The two 
resistors R are in parallel and have equivalent resistance R/2. The circuit is equivalent to the circuit 
sketched in Figure 26.65. 

 

 

Figure 26.65 
 

(a) Calculate caV  by traveling along the branch that contains the 20.0-V battery, since we know the current 
in that branch. 

(5 00 A)(12 0 ) (5 00 A)(18 0 ) 20 0 V .a cV V− . .  Ω − . .  Ω − . =  
20 0 V 90 0 V 60 0 V 170 0 V.a cV V− = . + . + . = .  

16 0 V.b a abV V V− = = .  
170 0 V so 186 0 V,baX V X− = . = .  with the upper terminal .+  

(b) 1 (16 0 V)/(8 0 ) 2 00 A.I = . .  Ω = .  
The junction rule applied to point a gives 2 1 25 00 A, so 3 00 A.I I I+ = . = .  The current through the 200.0-V 
battery is in the direction from the – to the + terminal, as shown in the diagram. 
(c) 2200 0 V ( /2) 170 0 V.I R. − = .  
(3 00 A)( /2) 30 0 V so 20 0 .R R. = . = .  Ω  
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EVALUATE:   We can check the loop rule by going clockwise around the outer circuit loop. This gives 
20 0 V (5 00 A)(18 0 12 0 ) (3 00 A)(10 0 ) 200 0 V 20 0 V 150 0 V 30 0 V 200 0 V,+ . + . .  Ω + .  Ω + . .  Ω − . = . + . + . − .  

which does equal zero. 
 26.66. IDENTIFY:   The current through the 40.0-Ω resistor equals the current through the emf, and the current through 

each of the other resistors is less than or equal to this current. So, set 40 2 00 W,P = .  and use this to solve for the 
current I through the emf. If 40 2 00 W,P = .  then P for each of the other resistors is less than 2.00 W. 
SET UP:   Use the equivalent resistance for series and parallel combinations to simplify the circuit. 
EXECUTE:   2I R P=  gives 2(40 ) 2 00 W,I Ω = .  and 0 2236 A.I = .  Now use series/parallel reduction to 
simplify the circuit. The upper parallel branch is 6.38 Ω  and the lower one is 25 .Ω  The series sum is now 
126 .Ω  Ohm’s law gives (126 )(0 2236 A) 28 2 V.ε =  Ω . = .  
EVALUATE:   The power input from the emf is 6 30 W,Iε = .  so nearly one-third of the total power is 
dissipated in the 40 0-. Ω  resistor. 

 26.67. (a) IDENTIFY and SET UP:   The circuit is sketched in Figure 26.67a. 
 

 With the switch open there is no current 
through it and there are only the two  
currents 1 2and I I  indicated in the sketch. 

Figure 26.67a   
 

The potential drop across each parallel branch is 36.0 V. Use this fact to calculate 1 2and .I I  Then travel 
from point a to point b and keep track of the potential rises and drops in order to calculate .abV  
EXECUTE:   1(6 00 3 00 ) 36 0 V 0.I− .  Ω + .  Ω + . =  

1
36 0 V 4 00 A.

6 00 3 00
I .= = .

. Ω + .  Ω
 

2(3 00 6 00 ) 36 0 V 0.I− .  Ω + .  Ω + . =  

2
36 0 V 4 00 A.

3 00 6 00
I .= = .

. Ω + .  Ω
 

To calculate ab a bV V V= −  start at point b and travel to point a, adding up all the potential rises and drops 
along the way. We can do this by going from b up through the 3 00-. Ω  resistor: 

2 1(3 00 ) (6 00 ) .b aV I I V+ .  Ω − .  Ω =  
(4 00 A)(3 00 ) (4 00 A)(6 00 ) 12 0 V 24 0 V 12 0 V.a bV V− = . .  Ω − . .  Ω = . − . = − .  

12 0 VabV = − .  (point a is 12.0 V lower in potential than point b). 
EVALUATE:   Alternatively, we can go from point b down through the 6 00-. Ω  resistor. 

2 1(6 00 ) (3 00 ) .b aV I I V− .  Ω + .  Ω =  
(4 00 A)(6 00 ) (4 00 A)(3 00 ) 24 0 V 12 0 V 12 0 V,a bV V− = − . .  Ω + . .  Ω = − . + . = − .  which checks. 

(b) IDENTIFY:   Now there are multiple current paths, as shown in Figure 26.67b. Use the junction rule to 
write the current in each branch in terms of three unknown currents 1 2 3, , and .I I I  Apply the loop rule to 
three loops to get three equations for the three unknowns. The target variable is 3,I  the current through the 
switch. eqR  is calculated from eq ,V IR=  where I is the total current that passes through the network. 
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SET UP:    
 The three unknown currents 1 2 3, , and I I I   

are labeled on Figure 26.67b. 

Figure 26.67b   
 

EXECUTE:   Apply the loop rule to loops (1), (2) and (3). 
Loop (1): 1 3 2(6 00 ) (3 00 ) (3 00 ) 0I I I− .  Ω + .  Ω + .  Ω =  

2 1 32I I I= −      eq. (1) 
Loop (2): 1 3 2 3 3( )(3 00 ) ( )(6 00 ) (3 00 ) 0I I I I I− + .  Ω + − .  Ω − .  Ω =  

2 3 1 2 3 16 12 3 0 so 2 4 0I I I I I I− − = − − =  
Use eq (1) to replace 2:I  

1 3 3 14 2 4 0I I I I− − − =  

1 3 1 33 6  and 2I I I I= =     eq. (2) 
Loop (3): This loop is completed through the battery (not shown), in the direction from the  

 to the− +  terminal. 
1 1 3(6 00 ) ( )(3 00 ) 36 0 V 0I I I− .  Ω − + .  Ω + . =  

1 3 1 39 3 36 0 A and 3 12 0 AI I I I+ = . + = .  eq. (3) 
Use eq. (2) in eq. (3) to replace 1:I  

3 33(2 ) 12 0 AI I+ = .  

3 12 0 A/7 1 71 AI = . = .  

1 32 3 42 AI I= = .  

2 1 32 2(3 42 A) 1 71 A 5 13 AI I I= − = . − . = .  
The current through the switch is 3 1 71 A.I = .  
(c) SET UP and EXECUTE:   From the results in part (a) the current through the battery is 

1 2 3 42 A 5 13 A 8 55 A.I I I= + = . + . = .  The equivalent circuit is a single resistor that produces the same 
current through the 36.0-V battery, as shown in Figure 26.67c. 

 

 36 0 V 0.IR− + . =  
36 0 V 36 0 V 4 21 .

8 55 A
R

I
. .= = = .  Ω

.
 

Figure 26.67c   
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EVALUATE:   With the switch open (part a), point b is at higher potential than point a, so when the switch is 
closed the current flows in the direction from b to a. With the switch closed the circuit cannot be simplified 
using series and parallel combinations but there is still an equivalent resistance that represents the network. 

 26.68. IDENTIFY:   
2

tot
eq

.V
P

R
=  

SET UP:   Let R be the resistance of each resistor.  

EXECUTE:   When the resistors are in series, eq 3R R=  and 
2

s .
3

= VP
R

 When the resistors are in parallel, 

eq /3.R R=  
2 2

p s3 9 9(45.0 W) 405 W.
/3

= = = = =V VP P
R R

 

EVALUATE:   In parallel, the voltage across each resistor is the full applied voltage V. In series, the voltage 
across each resistor is /3V  and each resistor dissipates less power. 

 26.69. IDENTIFY and SET UP:   For part (a) use that the full emf is across each resistor. In part (b), calculate the power 
dissipated by the equivalent resistance, and in this expression express 1 2and R R  in terms of 1 2, , and .P P ε  

EXECUTE:   2 2
1 1 1 1/  so / .P R R Pε ε= =  

2 2
2 2 2 2/  so / .P R R Pε ε= =  

(a) When the resistors are connected in parallel to the emf, the voltage across each resistor is ε and the 
power dissipated by each resistor is the same as if only the one resistor were connected. tot 1 2.P P P= +  
(b) When the resistors are connected in series the equivalent resistance is eq 1 2.R R R= +  

2 2
1 2

tot 2 2
1 2 1 21 2

.
/ /

P P
P

R R P PP P
ε ε

ε ε
= = =

+ ++
 

EVALUATE:   The result in part (b) can be written as 
tot 1 2

1 1 1 .= +
P P P

 Our results are that for parallel the 

powers add and that for series the reciprocals of the power add. This is opposite the result for combining 
resistance. Since 2/P Rε=  tells us that P is proportional to 1/R, this makes sense. 

 26.70. IDENTIFY and SET UP:   Just after the switch is closed the charge on the capacitor is zero, the voltage 
across the capacitor is zero and the capacitor can be replaced by a wire in analyzing the circuit. After a 
long time the current to the capacitor is zero, so the current through 3R  is zero. After a long time the 
capacitor can be replaced by a break in the circuit. 
EXECUTE:   (a) Ignoring the capacitor for the moment, the equivalent resistance of the two parallel 

resistors is eq
eq

1 1 1 3 ; 2 00 .
6 00 3 00 6 00

= + = = . Ω
. Ω . Ω . Ω

R
R

 In the absence of the capacitor, the total 

current in the circuit (the current through the 8 00-. Ω  resistor) would be 
42 0 V 4 20 A,

8 00 2 00
i

R
ε .= = = .

. Ω + . Ω
 of which 2/3, or 2.80 A, would go through the 3 00-. Ω  resistor and 

1/3, or 1.40 A, would go through the 6.00-Ω resistor. Since the current through the capacitor is given by 
/ ,t RCV

i e
R

−=  at the instant 0t =  the circuit behaves as through the capacitor were not present, so the 

currents through the various resistors are as calculated above. 
(b) Once the capacitor is fully charged, no current flows through that part of the circuit. The 8.00-Ω and 
the 6.00-Ω resistors are now in series, and the current through them is / (42 0 V)/(8 00i Rε= = . . Ω +  
6 00 ) 3 00 A.. Ω = .  The voltage drop across both the 6 00-. Ω  resistor and the capacitor is thus 

(3 00 A)(6 00 ) 18 0 V.V iR= = . . Ω = .  (There is no current through the 3 00-. Ω  resistor and so no voltage 

drop across it.) The charge on the capacitor is 6 5(4 00 10  F)(18 0 V) 7 2 10  C.Q CV − −= = . × . = . ×  
EVALUATE:   The equivalent resistance of 2R  and 3R  in parallel is less than 3,R  so initially the current 
through 1R  is larger than its value after a long time has elapsed. 
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 26.71. IDENTIFY:   An initially uncharged capacitor is charged up by an emf source. The current in the circuit and 
the charge on the capacitor both obey exponential equations. 

SET UP:   
2

,
2C
q

U
C

=  2 ,RP i R=  /
f (1 ),t RCq Q e−= −  and /

0 .t RCi I e−=  

EXECUTE:   (a) Initially, 0q =  so RV ε=  and 3
90 0 V 0 0150 A.

6 00 10
I

R
ε .= = = .

. ×  Ω
 2 1 35 W.RP I R= = .  

(b) 
2

.
2C
q

U
C

=  .C
C

dU qi
P

dt C
= =  2 .RP i R=  C RP P=  gives 2 .qi

i R
C

=  .q
i

RC
=  

/ /
f (1 ) (1 ).t RC t RCq Q e C eε− −= − = −  / /

0 .t RC t RCi I e e
R
ε− −= =  q

i
RC

=  gives  

/ /(1 ).t RC t RCCe e
R RC
ε ε− −= −  / /1t RC t RCe e− −= −  and / 2.t RCe =  

3 6 3ln 2 (6 00 10 )(2 00 10  F)ln 2 8 31 10  s ms.t RC − −= = . ×  Ω . × = . × = 8.31  

(c) 
3 3 6/ (8 318 10  s)/[(6 00 10 )(2 00 10  F)] 3

3
90 0 V 7 50 10  A.

6 00 10
ε − −− − . × . ×  Ω . × −.= = = . ×

. ×  Ω
t RCi e e

R
 

2 3 2 3(7 50 10  A) (6 00 10 ) 0 337 W.RP i R −= = . × . ×  Ω = .  
EVALUATE:   Initially energy is dissipated in the resistor at a higher rate because the current is high, but as 
time goes by the current deceases, as does the power dissipated in the resistor. 

 26.72. IDENTIFY and SET UP:   2 ,RP i R=  0,qiR
C

ε − − =  and 
2

.
2C
q

U
C

=  

EXECUTE:   2
RP i R=  so 300 W 7 746 A.

5 00
= = = .

.  Ω
RP

i
R

 0qiR
C

ε − − =  so 

6 5( ) (6 00 10  F)[50 0 V (7.746 A)(5.00 Ω)] 6.762 10  C.q C iRε − −= − = . × . − = ×  
2 5 2

4
6

(6.762 10  C) 3.81 10  J.
2 2(6.00 10  F)C
qU
C

−
−

−
×= = = ×
×

 

EVALUATE:   The energy stored in the capacitor can be returned to a circuit as current, but the energy 
dissipated in a resistor cannot. 

 26.73. IDENTIFY:   Connecting the voltmeter between point b and ground gives a resistor network and we can 
solve for the current through each resistor. The voltmeter reading equals the potential drop across the  
200-kΩ resistor. 

SET UP:   For two resistors in parallel, 
eq 1 2

1 1 1 .
R R R

= +  For two resistors in series, eq 1 2.R R R= +  

EXECUTE:   (a) 
1

eq
1 1100 k 140 k .

200 k 50 k

−
⎛ ⎞

= Ω + + = Ω⎜ ⎟Ω Ω⎝ ⎠
R  The total current is 

30 400 kV 2 86 10 A.
140 k

−.= = . ×
Ω

I  The voltage across the 200-kΩ  resistor is 

1
3

200 k
1 1(2 86 10 A) 114 4 V.

200 k 50 k

−
−

Ω
⎛ ⎞

= = . × + = .⎜ ⎟Ω Ω⎝ ⎠
V IR  

(b) If the resistance of the voltmeter is 5.00 × 106 Ω,  then we carry out the same calculations as above to 

find eq 292 k ,R = Ω  31 37 10 AI −= . ×  and 200 k 263 V.Ω =V  

(c) If the resistance of the voltmeter is infinite, then we find eq 300 k ,R = Ω  31 33 10 AI −= . ×  and 

200k 266 V.Ω =V  
EVALUATE:   When a voltmeter of finite resistance is connected to a circuit, current flows through the 
voltmeter and the presence of the voltmeter alters the currents and voltages in the original circuit. The 
effect of the voltmeter on the circuit decreases as the resistance of the voltmeter increases. 
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 26.74. IDENTIFY and SET UP:   Zero current through the galvanometer means the current 1I  through N is also the 
current through M and the current 2I  through P is the same as the current through X. And it means that 
points b and c are at the same potential, so 1 2 .I N I P=  

EXECUTE:   (a) The voltage between points a and d is ,ε  so 1I N M
ε=
+

 and 2 .I
P X

ε=
+

 Using these 

expressions in 1 2I N I P=  gives .N P
N M P X

ε ε=
+ +

 ( ) ( ).N P X P N M+ = +  NX PM=  and 

/ .X MP N=  

(b) (850 0 )(33 48 ) 1897
15 00

MPX
N

.  Ω .  Ω= = =  Ω
.  Ω

 

EVALUATE:   The measurement of X does not require that we know the value of the emf. 
 26.75. IDENTIFY:   With S open and after equilibrium has been reached, no current flows and the voltage across 

each capacitor is 18.0 V. When S is closed, current I flows through the 6 00-. Ω  and 3 00-. Ω  resistors. 
SET UP:   With the switch closed, a and b are at the same potential and the voltage across the 6 00-. Ω  
resistor equals the voltage across the 6 00- Fµ.  capacitor and the voltage is the same across the 3 00- Fµ.  
capacitor and 3 00-. Ω  resistor. 
EXECUTE:   (a) With an open switch: 18 0 V.abV ε= = .  
(b) Point a is at a higher potential since it is directly connected to the positive terminal of the battery. 
(c) When the switch is closed 18 0 V (6 00 3 00 ).I. = . Ω + . Ω  2 00 AI = .  and 

(2 00 A)(3 00 ) 6 00 V.bV = . . Ω = .  

(d) Initially the capacitor’s charges were 6 5
3 (3 00 10 F)(18 0 V) 5 40 10 CQ CV − −= = . × . = . ×  and  

6 4
6 (6 00 10  F)(18 0 V) 1 08 10  C.Q CV − −= = . × . = . ×  After the switch is closed 

6 5
3 (3 00 10  F)(18 0 V 12 0 V) 1 80 10  CQ CV − −= = . × . − . = . ×  and 

6 5
6 (6 00 10 F)(18 0 V 6 0 V) 7 20 10 C.Q CV − −= = . × . − . = . ×  Both capacitors lose 3.60 × 10−5 C  = 36.0 µC. 

EVALUATE:   The voltage across each capacitor decreases when the switch is closed, because there is then 
current through each resistor and therefore a potential drop across each resistor. 

 26.76. IDENTIFY:   Just after the connection is made, 0q =  and the voltage across the capacitor is zero. After a 
long time 0.i =  
SET UP:   The rate at which the resistor dissipates electrical energy is 2 / ,RP V R=  where V is the voltage 

across the resistor. The energy stored in the capacitor is 2 /2 .q C  The power output of the source is .P iε ε=  

EXECUTE:   (a) (i) 
2 2(120 V) 2460 W.

5 86R
V

P
R

= = =
. Ω

 

(ii) 
21 ( ) 0.

2C
dU d q iq

P
dt C dt C

= = = =  

(iii) 120 V(120 V) 2460 W.
5 86

P Iε ε= = =
. Ω

 

The power output of the source is the sum of the power dissipated in the resistor and the power stored in 
the capacitor. 
(b) After a long time, 0,i =  so 0, 0, 0.R CP P Pε= = =  

(c) (i) Since /
max (1 ),t RCq q e−= −  when / 21

max 2/2, . ,t RC
Rq q e P i R−= = =  so  

2 2 2 2
/ 2 2 / 2 2 0

0 0 0
1 ( / )( ) ( ) ( ) ,
2 4 4 4

ε ε− − ⎛ ⎞= = = = = =⎜ ⎟
⎝ ⎠

t RC t RC
R

i R R RP i e R i R e i R
R

 which gives 

2(120 V) 614 W.
4(5 86 )

= =
. ΩRP  
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(ii) 
2 2

/ 2max (1 ) 614 W.
2 4

t RCCdU d q e
dt dt C R

ε−⎡ ⎤
= − = =⎢ ⎥

⎢ ⎥⎣ ⎦
 

(iii) /
0

120 V 1( ) (120 V) 1230 W.
5 86 2ε ε ε − ⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟. Ω⎝ ⎠⎝ ⎠

t RCP i i e  

The power output of the source is the sum of the power dissipated in the resistor and the power stored in 
the capacitor. 
EVALUATE:   Initially all the power output of the source is dissipated in the resistor. After a long time 
energy is stored in the capacitor but the amount stored isn’t changing. For intermediate times, part of the 
energy of the power source is dissipated in the resistor and part of it is stored in the capacitor. Conservation  
of energy tells us that the power output of the source should be equal to the power dissipated in the resistor 
plus the power stored in the capacitor, which is exactly what we have found in part (iii). 

 26.77. IDENTIFY and SET UP:   Without the meter, the circuit consists of the two resistors in series. When the 
meter is connected, its resistance is added to the circuit in parallel with the resistor it is connected across. 
(a) EXECUTE:   1 2.I I I= =  

1 2

90 0 V 90 0 V 0 1107 A.
224 589

I
R R

. .= = = .
+ Ω +  Ω

 

1 1 1 2 2 2(0 1107 A)(224 ) 24 8 V; (0 1107 A)(589 ) 65 2 V.V I R V I R= = .  Ω = . = = .  Ω = .  
(b) SET UP:   The resistor network is sketched in Figure 26.77a. 

 

 The voltmeter reads the potential difference 
across its terminals, which is 23.8 V. 
If we can find the current 1I  through the voltmeter 
then we can use Ohm’s law to find its resistance. 

Figure 26.77a   
 
 

EXECUTE:   The voltage drop across the 589-Ω  resistor is 90 0 V 23 8 V 66 2 V,. − . = .  so 
66 2 V 0 1124 A.
589 

VI
R

.= = = .
Ω

 The voltage drop across the 224-Ω  resistor is 23.8 V, so 

2
23 8 V 0 1062 A.
224 

VI
R

.= = = .
Ω

 Then 1 2 1 2gives 0 1124 A 0 1062 A 0 0062 AI I I I I I= + = − = . − . = . .  

1

23 8 V 3840 .
0 0062 V

VR
I A

.= = =  Ω
.

 

(c) SET UP:   The circuit with the voltmeter connected is sketched in Figure 26.77b. 
 

 

Figure 26.77b 
 

 

EXECUTE:   Replace the two resistors in parallel by their equivalent, as shown in Figure 26.77c. 
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eq

1 1 1 ;
3840 589R

= +
Ω  Ω

 

eq
(3840 )(589 ) 510 7 .
3840 589

R  Ω  Ω= = .  Ω
 Ω +  Ω

 

Figure 26.77c   

90 0 V 0 1225 A.
224 510 7

I .= = .
Ω + .  Ω

 

The potential drop across the 224-Ω  resistor then is (0 1225 A)(224 ) 27 4 V,IR = .  Ω = .  so the potential 
drop across the 589-Ω  resistor and across the voltmeter (what the voltmeter reads) is 
90 0 V 27 4 V 62 6 V.. − . = .  
EVALUATE:   (d) No, any real voltmeter will draw some current and thereby reduce the current through the 
resistance whose voltage is being measured. Thus the presence of the voltmeter connected in parallel with the 
resistance lowers the voltage drop across that resistance. The resistance of the voltmeter in this problem is only 
about a factor of ten larger than the resistances in the circuit, so the voltmeter has a noticeable effect on the circuit. 

 26.78. IDENTIFY:   The energy stored in a capacitor is 2/2 .=U q C  The electrical power dissipated in the resistor 

is 2 .=P i R  

SET UP:   For a discharging capacitor, .qi
RC

= −  

EXECUTE:   (a) 
2 2

0
0 6

(0 0069 C) 5 15 J.
2 2(4 62 10 F)−

.= = = .
. ×

Q
U

C
 

(b) 
2 2

2 0
0 0 6 2

(0 0069 C) 2620 W.
(850 )(4 62 10 F)−

.⎛ ⎞= = = =⎜ ⎟ Ω . ×⎝ ⎠

QP I R R
RC

 

(c) Since 2 /2 ,U q C=  when 0 0/2, / 2.U U q Q→ →  Since /
0 ,t RCq Q e−=  this means that / 1/ 2.t RCe− =  

Therefore the current is /
0 0 / 2.t RCi i e i−= =  Therefore 

2 2 2 2
0 0 0 0 01 1 1 .

2 2 22

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
R

i V Q Q UP R R R
R RC RC C RC

 Putting in the numbers gives 

5.15 J 1310 W.
(850 )(4.62 F)RP

µ
= =

Ω
 

EVALUATE:   All the energy originally stored in the capacitor is eventually dissipated as current flows 
through the resistor. 

 26.79. IDENTIFY:   Apply the loop rule to the circuit. The initial current determines R. We can then use the time 
constant to calculate C. 
SET UP:   The circuit is sketched in Figure 26.79. 

 

 
Initially, the charge of the capacitor is  
zero, so by /V q C=  the voltage across  
the capacitor is zero. 

Figure 26.79   

EXECUTE:   The loop rule therefore gives 0iRε − =  and 6
5

110 V 1 7 10 .
6 5 10  A

R
i
ε

−= = = . ×  Ω
. ×

 

The time constant is given by   τ = RC,  so 6
5 2 s 3 1 F.

1 7 10
C

R
τ µ.= = = .  

. ×  Ω
 

EVALUATE:   The resistance is large so the initial current is small and the time constant is large. 
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 26.80. IDENTIFY and SET UP:   When the switch S is closed, current begins to flow as the capacitor plates 
discharge. The current in the circuit is /

0( / ) .t RCi Q RC e−=  
EXECUTE:    (a) Taking logs of the equation for i gives ln(i) = ln(Q0/RC) – t/RC. A graph of ln(i) versus t 
will be a straight line with slope equal to –1/RC.  
(b) Using the points (1.50 ms, –3.0) and (3.00 ms, –4.0) on the graph in the problem, the slope is 

slope = –1 –14.0 ( 3.0) 0.667 (ms)  = –667 s .
3.00 ms – 1.50 ms

− − − = −  Therefore 

–1/RC = –667 s–1. 
C = 1/[(196 Ω)(667 s–1)] = 7.65 ×10–6 F, which rounds to 7.7 µF. 
Using point (1.50 ms, –3.0) on the graph, the equation of the graph gives 
–3.0 = ln(Q0/RC) – (1.50 ms)/RC. 
Simplifying and rearranging gives 
–2.0 = ln(Q0/RC). 

2.0 2.0
0  (196 )(7.65 ) 203 ,Q RC e µF e µC− −= = Ω =  which rounds to 200 µC. 

(c) Taking a loop around the circuit gives 
VR + VC = 0. 
–IR + Q/C = 0. 
Q = RCI = (196 Ω)(7.65 µF)(0.0500 A) = 75 µC. 
(d) From (c), we have Q = RCI, so I = Q/RC = (500 µC)/[(196 Ω)(7.65 µF)] = 0.33 A. 
EVALUATE:   The accuracy of the answers depends on how well we can get information from the graph 
with the problem, so answers may differ slightly from those given here. 

 26.81. IDENTIFY and SET UP:   Kirchhoff’s rules apply to the circuit. Taking a loop around the circuit gives 
ε  – Ri – q/C = 0. 
EXECUTE:   (a) Solving the loop equation for q gives q = .q C RCiε= −  A graph of q as a function of i 
should be a straight line with slope equal to –RC and y-intercept equal to .Cε  Figure 26.81 shows this 
graph. 

 

10.0

10.00.0 20.0 30.0 40.0 50.0 60.0

20.0

30.0

40.0

50.0

i (mA)

q 
(  

 C
)

 

Figure 26.81 
 

The best-fit slope of this graph is –1.233 ×  10–3 C/A, and the y-intercept is 7.054 ×10–5 C. 
(b) RC = –slope = –(–1.233 ×10–3 C/A), which gives  
R = (–1.233 ×10–3 C/A)/(5.00 ×10–6 F) = 246.6 Ω, which rounds to 247 Ω. 
The y-intercept is ,εC  so 
7.054 ×  10–5 C = ε (5.00  × 10–6 F).  
ε  = 15.9 V. 
(c) /(1 ).t RC

CV eε −= −  
// 1 (10.0 V)(15.9 V).t RC

CV eε −= − =  
Solving for t gives 
t = (247 Ω)(5.00 µF) ln(0.3714) = 1223 µs, which rounds to 1.22 ms. 
(d) VR = ε  – VC = 15.9 V – 4.00 V = 11.9 V. 
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EVALUATE:   As time increases, the potential difference across the capacitor increases as it gets charged, 
but the potential difference across the resistor decreases as the current decreases. 

 26.82. IDENTIFY and SET UP:   When connected in series across a 48.0-V battery, R1 and R2 dissipate 48.0 W of 
power, and when in parallel across the same battery, they dissipate a total of 256 W. PR = I2R = V2/R. 
EXECUTE:   (a) In series: 1 2/( ).I R Rε= +  

22
1 2 1 2 1 2 1 2( ) [ / ( )]2( ) /( ).sP I R R R R R R R Rε ε= + = + + = +  

1
2

248.0 W (48.0 V) /( ).R R= +  

1 2 48.0 .R R+ = Ω  

In parallel: 
2 2

2 2 2 2 1 2
p 1 1 2 2 1 22 2

1 2 1 21 2

1 1 256 W.R RP I R I R R R
R R R RR R

ε ε ε ε⎛ ⎞ ⎛ ⎞+= + = + = + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Therefore   2 1 2

1 2
(48.0 V) 256 W.R R

R R
⎛ ⎞

=⎜ ⎟+⎝ ⎠
 Using 1 2 48.0 ,R R+ = Ω  this becomes 1

2
2 432 .R R = Ω  

Solving the two equations for R1 and R2 simultaneously, we get two sets of answers:  1 36.0 ,R = Ω   

2 12.0 R = Ω  and 1 212.0 ,  36.0 .R R= Ω = Ω  But we are told that that 1 2,R R>  so the solution to use is 

1 236.0 ,  12.0 .R R= Ω = Ω  

(b) In series, both resistors have the same current. 2 ,P I R=  so the larger resistor, which is 1,R  consumes 
more power. 
(c) In parallel, the potential difference across both resistors is the same. 2 ,P V R=  so the smaller resistor, 
which is 2,R  consumes more power. 
EVALUATE:   If we did not know which resistor was larger, we would know that one resistor was 12.0 Ω 
and the other was 36.0 Ω, but we would not know which one was the larger of the two. 

 26.83. IDENTIFY:   Consider one segment of the network attached to the rest of the network. 
SET UP:   We can re-draw the circuit as shown in Figure 26.83. 

EXECUTE:   
1

2
1 1

2 2

1 12 2 .
−

⎛ ⎞
= + + = +⎜ ⎟ +⎝ ⎠

T
T

T T

R RR R R
R R R R

 2
1 1 22 2 0.− − =T TR R R R R  

2
1 1 1 22 .= ± +TR R R R R  0,>TR  so 2

1 1 1 22 .= + +TR R R R R  
EVALUATE:   Even though there are an infinite number of resistors, the equivalent resistance of the 
network is finite. 

 

 

Figure 26.83 
 

 26.84. IDENTIFY:   Assume a voltage V applied between points a and b and consider the currents that flow along 
each path between a and b. 
SET UP:   The currents are shown in Figure 26.84. 
EXECUTE:   Let current I enter at a and exit at b. At a  there are three equivalent branches, so current is 

/3I  in each. At the next junction point there are two equivalent branches so each gets current /6.I  Then at 
b  there are three equivalent branches with current /3I  in each. The voltage drop from toa b  then is 

5
6 .

3 6 3
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

I I IV R R R IR  This must be the same as 5
eq eq 6, so .V IR R R= =  

EVALUATE:   The equivalent resistance is less than R, even though there are 12 resistors in the network. 
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Figure 26.84 
 

 26.85. IDENTIFY:   The network is the same as the one in Challenge Problem 26.83, and that problem shows that 

the equivalent resistance of the network is 2
1 1 22 .TR R R R= +  

SET UP:   The circuit can be redrawn as shown in Figure 26.85. 

EXECUTE:   (a) eq

1 eq 1 eq

1
2 2 / 1cd ab ab

R
V V V

R R R R
= =

+ +
 and 2

eq
2

.T

T

R R
R

R R
=

+
 But 1 2 1

2 eq

2 ( ) 2 ,T

T

R R R R
R R R

β += =  

so 1 .
1cd abV V

β
=

+
 

(b) 0 1 0 1 0
1 2 2 .

(1 ) (1 ) (1 )(1 ) (1 )
n

n n
V V V V V

V V V
β β ββ β

−= ⇒ = = ⇒ = =
+ + ++ +

 

If 1 2,R R=  then 2
1 1 1 1 12 (1 3)TR R R R R R= + + = +  and 2(2 3) 2 73.

1 3
β += = .

+
 So, for the nth segment 

to have 1% of the original voltage, we need: 1 1 0 01.
(1 ) (1 2 73)β

= ≤ .
+ + .n n  This says 4,n =  and then 

4 00 005 .V V= .  

(c) 2
1 1 1 22TR R R R R= + +  gives 2 8 66400 (6400 ) 2(6400 )(8 0 10 ) 3 2 10TR = Ω + Ω + Ω . × Ω = . × Ω  and 

6 8
3

6 8
2(6400 )(3 2 10 8 0 10 ) 4 0 10 .

(3 2 10 )(8 0 10 )
β −Ω . × Ω + . × Ω= = . ×

. × Ω . × Ω
 

(d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 mµ  long. The voltage therefore 

attenuates by 0
2000 2000 ,

(1 )
V

V
β

=
+

 so 42000
3 2000

0

1
3 4 10 .

(1 4 0 10 )
V

V
−

−= = . ×
+ . ×

 

(e) If 12
2 3 3 10 ,R = . × Ω  then 82 1 10TR = . × Ω  and 56 2 10 .β −= . ×  This gives  

2000
5 2000

0

1 0 88.
(1 6 2 10 )

V
V −= = .

+ . ×
 

EVALUATE:   As 2R  increases, β  decreases and the potential difference decrease from one section to the 
next is less. 

 

 

Figure 26.85 
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 26.86. IDENTIFY and SET UP:   .
L

R
A

ρ=  

EXECUTE:   Solve for :ρ  
2 2 11(0.3 nm) (1 10  ) 2.4 m 2 m,

12 nm
AR r R
L L

π πρ × Ω= = = = Ω ⋅ Ω ≈ Ω ⋅  which is 

choice (c). 
EVALUATE:   According to the information in Table 25.1, this resistivity is much greater than that of 
conductors but much less than that of insulators. It is closer to that of semiconductors. 

 26.87. IDENTIFY and SET UP:   The channels are all in parallel. For n identical resistors R in parallel,  

eq 1 2

1 1 1 1 1 ,n
R R R R R R

= + +… = + +… =  so eq / . .R R n I jA= =  

EXECUTE:   eq/ R /( / ) / .I jA V V R n nV R= = = =  
2 11 10 2 2/ / (5 mA/cm )(10  )/(50 mV) 10 /cm 100/ m ,  jR V n A µ= = Ω = =  which is choice (d).  

EVALUATE:   A density of 100 per µm2 seems plausible, since these are microscopic structures. 
 26.88. IDENTIFY and SET UP:   .RCτ =  The resistance is 111 10  .× Ω  C is the capacitance per area divided by the 

number density of channels, which is 100/µm2 from Problem 26.87. 
EXECUTE:   2 2 16(1 F/cm ) /(100/ m ) 10  F.C µ µ −= =  The time constant is 

11 16 5(1 10  )(10  F) 1 10  s 10 ,RC µsτ − −= = × Ω = × =   which is choice (b). 
EVALUATE:   This time constant is comparable to that of typical laboratory RC circuits. 
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 27.1. IDENTIFY and SET UP:   Apply ×qF = v B
G GG

 to calculate .F
G

 Use the cross products of unit vectors from 

Chapter 1. 4 4ˆ ˆ( 4 19 10  m/s) ( 3 85 10  m/s) .= + . × + − . ×Gv i j  

(a) EXECUTE:    ˆ(1 40 T) .= .B i
G

 
8 4 4ˆ ˆ ˆ ˆ( 1 24 10  C)(1 40 T)[(4 19 10  m/s) (3 85 10  m/s) ]q .−= × = − . × . . × × − . × ×

G GGF v B i i j i  
ˆ ˆ ˆ ˆ ˆ0, .× = × = −i i j i k  

8 4 4ˆ ˆ( 1 24 10  C)(1 40 T)( 3 85 10  m/s)( ) ( 6 68 10  N) .− −= − . × . − . × − = − . ×
G
F k k  

EVALUATE:   The directions of and v B
GG  are shown in Figure 27.1a. 

 

 The right-hand rule gives that ×v B
GG  is  

directed out of the paper ( -direction).z+  

The charge is negative so F
G

 is opposite  
to .×v B

GG  

Figure 27.1a   
 

F
G

 is in the -direction.z−  This agrees with the direction calculated with unit vectors. 
(b) EXECUTE:   ˆ(1 40 T) .= .

G
B k  

8 4 4ˆ ˆ ˆ ˆ( 1 24 10  C)(1 40 T)[( 4 19 10  m/s) (3 85 10  m/s) ].q −= × = − . × . + . × × − . × ×
G GGF v B i k j k  
ˆ ˆ ˆ ˆ ˆ ˆ, .× = − × =i k j j k i  

4 4 4 4ˆ ˆ ˆ ˆ( 7 27 10  N)( ) (6 68 10  N) [(6 68 10  N) (7 27 10  N) ].− − − −= − . × − + . × = . × + . ×
G
F j i i j  

EVALUATE:   The directions of and v B
GG  are shown in Figure 27.1b. 

 

 The direction of F
G

 is opposite to ×v B
GG  since  

q is negative. The direction of F
G

 computed  
from the right-hand rule agrees qualitatively  
with the direction calculated with unit vectors. 

Figure 27.1b   
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 27.2. IDENTIFY:   The net force must be zero, so the magnetic and gravity forces must be equal in magnitude and 
opposite in direction. 
SET UP:   The gravity force is downward so the force from the magnetic field must be upward. The 
charge’s velocity and the forces are shown in Figure 27.2. Since the charge is negative, the magnetic force 
is opposite to the right-hand rule direction. The minimum magnetic field is when the field is perpendicular 
to .vG  The force is also perpendicular to ,B

G
 so B

G
 is either eastward or westward. 

EXECUTE:   If B
G

 is eastward, the right-hand rule direction is into the page and BF
G

 is out of the page, as 

required. Therefore, B
G

 is eastward. | | sin .mg q vB φ=  90φ = °  and 
3 2

4 8
(0 195 10  kg)(9 80 m/s ) 1 91 T.

| | (4 00 10  m/s)(2 50 10  C)
mg

B
v q

−

−
. × .= = = .

. × . ×
 

EVALUATE:   The magnetic field could also have a component along the north-south direction, that would 
not contribute to the force, but then the field wouldn’t have minimum magnitude. 

 

 

Figure 27.2 
 

 27.3. IDENTIFY:   The force F
G

 on the particle is in the direction of the deflection of the particle. Apply the 
right-hand rule to the directions of vG  and .B

G
 See if your thumb is in the direction of ,F

G
 or opposite to 

that direction. Use | | sinF q v B φ=  with 90φ = °  to calculate F. 

SET UP:   The directions of ,vG ,
G
B and F

G
are shown in Figure 27.3. 

EXECUTE:   (a) When you apply the right-hand rule to vG and ,B
G

 your thumb points east. F
G

is in this 
direction, so the charge is positive. 
(b) 6 3| | sin (8 50 10  C)(4 75 10  m/s)(1 25 T)sin90 0 0505 NF q v B φ −= = . × . × . ° = .  

EVALUATE:   If the particle had negative charge and vG  and B
G

 are unchanged, the particle would be 
deflected toward the west. 

 

 

Figure 27.3 
 

 27.4. IDENTIFY:   Apply Newton’s second law, with the force being the magnetic force. 
SET UP:   ˆ ˆ ˆ.× = −j i k  
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EXECUTE:   m q= = ×F a v B
G GG G

 gives q
m
×= v Ba
GGG  and  

8 4
2

3

ˆ ˆ(1 22 10  C)(3 0 10  m/s)(1 63 T)( ) ˆ(0 330 m/s ) .
1 81 10  kg

−

−
. × . × . ×= = − .

. ×
G j ia k  

EVALUATE:   The acceleration is in the -directionz−  and is perpendicular to both vG  and .B
G

 
 27.5. IDENTIFY:   Apply sinF q v B φ=  and solve for v. 

SET UP:   An electron has 191 60 10  C.q −= − . ×  

EXECUTE:   
15

6
19 3
4 60 10  N 9 49 10 m/s.

sin (1 6 10  C)(3 5 10  T)sin60
F

v
q B φ

−

− −
. ×= = = . ×

. × . × °
 

EVALUATE:   Only the component sinB φ  of the magnetic field perpendicular to the velocity contributes to 
the force. 

 27.6. IDENTIFY:   Apply Newton’s second law and sin .F q v B φ=  

SET UP:   φ  is the angle between the direction of vG and the direction of .B
G

 
EXECUTE:   (a) The smallest possible acceleration is zero, when the motion is parallel to the magnetic 
field. The greatest acceleration is when the velocity and magnetic field are at right angles: 

19 6 2
16 2

31
| | (1 6 10 C)(1.40 10 m/s)(7 4 10 T) 1.82 10 m/s .

(9 11 10 kg)
q vB

a
m

− −

−
. × × . ×= = = ×

. ×
 

 (b) If 
  
a = 1

4
(1.82 × 1016  m/s2 ) = |q|vBsinφ

m
,  then sin 0 25φ = .  and 14 5 .φ = . °  

EVALUATE:   The force and acceleration decrease as the angle φ  approaches zero. 
 27.7. IDENTIFY:   Apply .q= ×F v B

G GG  

SET UP:   ˆ,yv=v jG  with 33 80 10 m/s.yv = − . ×  37 60 10 N, 0,x yF F−= + . × =  and 35 20 10 N.zF −= − . ×  

EXECUTE:   (a) ( ) .x y z z y y zF q v B v B qv B= − =  
3 6 3/ (7 60 10 N)/[(7 80 10 C)( 3 80 10 m/s)] 0 256 T.z x yB F qv − −= = . × . × − . × = − .  

( ) 0,y z x x zF q v B v B= − =  which is consistent with F
G

 as given in the problem. There is no force 
component along the direction of the velocity. 

( ) .z x y y x y xF q v B v B qv B= − = −  / 0 175 T.x z yB F qv= − = − .  

(b) yB  is not determined. No force due to this component of B
G

 along ;vG  measurement of the force tells 

us nothing about .yB  

(c) 3 3( 0 175 T)( 7 60 10  N) ( 0 256 T)( 5 20 10  N)x x y y z zB F B F B F − −⋅ = + + = − . + . × + − . − . ×B F
G G

 

0.⋅ =B F
G G

 B
G

 and F
G

 are perpendicular (angle is 90 ).°  

EVALUATE:   The force is perpendicular to both vG  and ,B
G

 so ⋅v F
GG  is also zero. 

 27.8. IDENTIFY and SET UP:   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] [ ( ) ( )].z x y z z x yq qB v v v qB v v= × = × + × + × = − +F v B i k j k k k j i
G GG

 

EXECUTE:   (a) Set the expression for F
G

 equal to the given value of F
G

 to obtain: 
7

9
(7 40 10 N) 106 m/s.

( 5 60 10 C)( 1 25 T)
y

x
z

F
v

qB

−

−
. ×= = = −

− − − . × − .
 

7

9
(3 40 10 N) 48 6 m/s.

( 5 60 10 C)( 1 25 T)
x

y
z

F
v

qB

−

−
− . ×= = = − .

− . × − .
 

(b) zv  does not contribute to the force, so is not determined by a measurement of .F
G
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(c) 0; 90 .y x
x x y y z z x y

z z

F F
v F v F v F F F

qB qB
θ⋅ = + + = + = = °

−
v F
GG  

EVALUATE:   The force is perpendicular to both vG  and ,B
G

 so ⋅B F
G G

 is also zero. 
 27.9. IDENTIFY:   Apply q= ×F v B

G GG  to the force on the proton and to the force on the electron. Solve for the 

components of B
G

 and use them to find its magnitude and direction. 
SET UP:   F

G
 is perpendicular to both vG  and .B

G
 Since the force on the proton is in the -direction,y+  

0yB =  and ˆ ˆ.x zB B= +B i k
G

 For the proton, p p
ˆ ˆ(1 50 km/s) v= . =v i iG  and 16

p p
ˆ ˆ(2 25 10  N) .F−= . × =F j j

G
 For 

the electron, e e
ˆ ˆ4 75 km/s v= − . = −v k kG

( )  and 16
e e

ˆ ˆ(8 50 10  N) .F−= . × =F j j
G

 The magnetic force is 

.q= ×F v B
G GG  

EXECUTE:   (a) For the proton, p pq= ×F v B
G GG  gives p p p

ˆ ˆ ˆ ˆ ˆ( ) .x z zF ev B B ev B= × + = −j i i k j  Solving for zB  

gives 
16

p
19

p

2 25 10  N 0 9375 T.
(1 60 10  C)(1500 m/s)z

F
B

ev

−

−
. ×= − = − = − .

. ×
 For the electron, e e ,e= − ×F v B

G GG  which gives 

e e e
ˆ ˆ ˆ ˆ ˆ( )( ) ( ) .= − − × + =x z xF e v B B ev Bj k i k j  Solving for xB  gives 

16
e

19
e

8 50 10  N 1 118 T.
(1 60 10  C)(4750 m/s)x

F
B

ev

−

−
. ×= = = .

. ×
 Therefore ˆ ˆ1 118 T 0 9375 T .= . − .B i k

G
 The magnitude of 

the field is 2 2 2 2(1 118 T) ( 0 9375 T) 1 46 T.x zB B B= + = . + − . = .  Calling θ  the angle that the magnetic 

field makes with the -axis,x+  we have 0 9375 Ttan 0 8386,
1 118 T

z

x

B
B

θ − .= = = − .
.

 so 40.0 .θ = − °  Therefore the 

magnetic field is in the xz-plane directed at 40.0° from the -axisx+  toward the – -axis,z  having a 
magnitude of 1.46 T. 
(b) ˆ ˆ

x zB B= +B i k
G

 and ˆ(3 2 km/s)( ).= . −v jG  
3ˆ ˆ ˆ ˆ ˆ( )(3 2 km/s)( ) ( ) (3 2 10  m/s)[ ( ) ].x z x zq e B B e B B= × = − . − × + = . × − +F v B j i k k i

G GG  
3 16 16ˆ ˆ ˆ ˆ(3 2 10  m/s)( 1 118 T 0 9375 T ) 4 80 10  N 5 724 10  N .e − −= . × − . − . = − . × − . ×F k i i k

G

2 2 167 47 10  N.x zF F F −= + = . ×  Calling θ  the angle that the force makes with the – -axis,x  we have 
16

16
5 724 10  Ntan ,
4 800 10  N

z

x

F
F

θ
−

−
− . ×= =
− . ×

 which gives 50 0 .θ = . °  The force is in the -planexz  and is directed at 

50.0° from the – -axisx  toward either the – -axis.z  
EVALUATE:   The force on the electrons in parts (a) and (b) are comparable in magnitude because the 
electron speeds are comparable in both cases. 

 27.10. IDENTIFY:   Knowing the area of a surface and the magnetic field it is in, we want to calculate the flux 
through it. 
SET UP:   ˆ,d dA=A k

G
 so .B zd d B dAΦ = ⋅ =B A

GG
 

EXECUTE:   2 4 2( 0 500 T)(0 0340 m) 5 78 10  T m .B zB A −Φ = = − . . = − . × ⋅  45.78 10  Wb.B
−Φ = ×  

EVALUATE:   Since the field is uniform over the surface, it is not necessary to integrate to find the flux. 
 27.11. IDENTIFY and SET UP:   .B dΦ = ⋅∫

GG
B A  

Circular area in the xy-plane, so 2 2 2(0 0650 m) 0 01327 mA rπ π= = . = .  and dA
G

 is in the -direction.z  Use 
Eq. (1.18) to calculate the scalar product. 
EXECUTE:   (a) ˆ(0 230 T) ;  and d= .B k B A

GG G
 are parallel ( 0 )φ = °  so .d B dA⋅ =  B A

GG
 

B is constant over the circular area so 
2 3(0 230 T)(0 01327 m ) 3 05 10  Wb.B d B dA B dA BA −Φ = ⋅ =  = = = . . = . ×∫ ∫ ∫

GG
B A  
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(b) The directions of  and dB A
GG

 are shown in Figure 27.11a. 
 

 cos
with 53 1 .

d B dAφ
φ

⋅ =
= . °

GG
B A  

Figure 27.11a   
 

B and φ  are constant over the circular area so cos cos cosB d B dA B dA B Aφ φ φΦ = ⋅ = = =∫ ∫ ∫B A
GG

 
2 3(0 230 T)cos53 1 (0 01327 m ) 1 83 10  Wb.B

−Φ = . . ° . = . ×  

(c) The directions of  and dB A
GG

 are shown in Figure 27.11b. 
 

 0 since  and  are perpendicular ( 90 ). d d φ⋅ = = °
G GG G

B A A B  

0.B dΦ = ⋅ =∫B A
GG

 

Figure 27.11b   
 

EVALUATE:   Magnetic flux is a measure of how many magnetic field lines pass through the surface. It is 
maximum when B

G
 is perpendicular to the plane of the loop (part a) and is zero when B

G
 is parallel to the 

plane of the loop (part c). 
 27.12. IDENTIFY:   Knowing the area of a surface and the magnetic flux through it, we want to find the magnetic 

field needed to produce this flux. 
SET UP:   cosB BA φΦ =  where 60 0 .φ = . °  

EXECUTE:   Solving cosB BA φΦ =  for B gives 
43.10 10  Wb 0 692 T.

cos (0 0280 m)(0 0320 m)cos60 0
BB

A φ

−Φ ×= = = .
. . . °

 

EVALUATE:   This is a fairly strong magnetic field, but not impossible to achieve in modern laboratories. 
 27.13. IDENTIFY:   The total flux through the bottle is zero because it is a closed surface.  

SET UP:   The total flux through the bottle is the flux through the plastic plus the flux through the open cap, 
so the sum of these must be zero. plastic cap 0.Φ + Φ =  

2
plastic cap cos ( )cos .B A B rφ π φΦ = −Φ = − = −  

EXECUTE:   Substituting the numbers gives 2 –4
plastic (1.75 T) (0.0125 m)  cos 25 –7.8 10  Wb.πΦ = − ° = ×  

EVALUATE:   It would be very difficult to calculate the flux through the plastic directly because of the 
complicated shape of the bottle, but with a little thought we can find this flux through a simple calculation. 

 27.14. IDENTIFY:   When B
G

 is uniform across the surface, cos .B BA φΦ = ⋅ =B A
GG

 

SET UP:   A
G

 is normal to the surface and is directed outward from the enclosed volume. For surface abcd, 
ˆ.A= −A i

G
 For surface befc, ˆ.A= −

G
A k  For surface aefd, cos 3/5φ =  and the flux is positive. 

EXECUTE:   (a) ( ) 0.B abcdΦ = ⋅ =B A
GG

 

(b) ( ) (0 128 T)(0 300 m)(0 300 m) 0 0115 Wb.B befcΦ = ⋅ = − . . . = − .B A
GG

 

(c) 3
5( ) cos (0 128 T)(0 500 m)(0 300 m) 0 0115 Wb.φΦ = ⋅ = = . . . = + .B aefd BAB A

GG
 

(d) The net flux through the rest of the surfaces is zero since they are parallel to the x-axis. The total flux is 
the sum of all parts above, which is zero. 
EVALUATE:   The total flux through any closed surface, that encloses a volume, is zero. 

 27.15. (a) IDENTIFY:   Apply q ×
G GGF = v B  to relate the magnetic force F

G
 to the directions of  and .v B

GG  The 

electron has negative charge so F
G

 is opposite to the direction of .×v B
GG  For motion in an arc of a circle the 

acceleration is toward the center of the arc so F
G

 must be in this direction. 2/ .a v R=  
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SET UP:    
 

 As the electron moves in the semicircle, 
its velocity is tangent to the circular path. 
The direction of 0 ×v B

GG  at a point along  
the path is shown in Figure 27.15. 

Figure 27.15   
 

EXECUTE:   For circular motion the acceleration of the electron radaG  is directed in toward the center of the 

circle. Thus the force BF
G

 exerted by the magnetic field, since it is the only force on the electron, must be 

radially inward. Since q is negative, BF
G

 is opposite to the direction given by the right-hand rule for 

0 .×v B
GG  Thus B

G
 is directed into the page. Apply Newton’s second law to calculate the magnitude of :B

G
 

rad gives m F ma∑ = ∑ =F a
G G  2( / ).BF m v R=  

2sin , so ( / ).BF q v B q v B q v B m v Rφ= = =  
31 6

4
19

(9 109 10  kg)(1 41 10  m/s) 1 60 10  T.
(1 602 10  C)(0 050 m)

mv
B

q R

−
−

−
. × . ×= = = . ×

. × .
 

(b) IDENTIFY and SET UP:   The speed of the electron as it moves along the path is constant. ( BF
G

 changes 
the direction of vG  but not its magnitude.) The time is given by the distance divided by 0.v  

EXECUTE:   The distance along the semicircular path is ,Rπ  so 7
6

0

(0 050 m) 1 11 10  s.
1 41 10  m/s

R
t

v
π π −.= = = . ×

. ×
 

EVALUATE:   The magnetic field required increases when v increases or R decreases and also depends on 
the mass to charge ratio of the particle. 

 27.16. IDENTIFY:   Newton’s second law gives 2/ .q vB mv R=  The speed v is constant and equals 0.v  The 
direction of the magnetic force must be in the direction of the acceleration and is toward the center of the 
semicircular path. 
SET UP:   A proton has 191 60 10  Cq −= + . ×  and 271 67 10  kg.m −= . ×  The direction of the magnetic force 
is given by the right-hand rule. 

EXECUTE:   (a) 
27 6

19
(1 67 10 kg)(1 41 10 m/s) 0 294 T.

(1 60 10 C)(0 0500 m)
mv

B
qR

−

−
. × . ×= = = .

. × .
 

The direction of the magnetic field is out of the page (the charge is positive), in order for F
G

to be directed 
to the right at point A. 
(b) The time to complete half a circle is 7

0/ 1 11 10 s.t R vπ −= = . ×  
EVALUATE:   The magnetic field required to produce this path for a proton has a different magnitude 
(because of the different mass) and opposite direction (because of opposite sign of the charge) than the 
field required to produce the path for an electron. 

 27.17. IDENTIFY and SET UP:   Use conservation of energy to find the speed of the ball when it reaches the 
bottom of the shaft. The right-hand rule gives the direction of F

G
 and φ= | | sinF q v B  gives its 

magnitude. The number of excess electrons determines the charge of the ball. 
EXECUTE:   8 19 11(4 00 10 )( 1 602 10  C) 6 408 10  C.q − −= . × − . × = − . ×  

speed at bottom of shaft: 21
2 ; 2 49 5 m/s.mv mgy v gy= = = .  

vG  is downward and B
G

 is west, so ×v B
GG  is north. Since 0,q < F

G
 is south. 

11 10sin (6 408 10  C)(49 5 m/s)(0 250 T)sin90 7 93 10 N.F q v B θ − −= = . × . . ° = . ×  
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EVALUATE:   Both the charge and speed of the ball are relatively small so the magnetic force is small, 
much less than the gravity force of 1.5 N. 

 27.18. IDENTIFY:   Since the particle moves perpendicular to the uniform magnetic field, the radius of its path is 

.mv
R

q B
=  The magnetic force is perpendicular to both vG  and .B

G
 

SET UP:   The alpha particle has charge 192 3 20 10  C.q e −= + = . ×  

EXECUTE:   (a) 
327

4
19

(6.64 10 kg)(35.6 10 m/s) 4.104 10 m 0.4104 mm.
(3.20 10 C)(1.80 T)

R
−

−
−

× ×= = × =
×

The alpha particle 

moves in a circular arc of diameter 2R = 2(0.4104 mm) = 0.821 mm.  
(b) For a very short time interval the displacement of the particle is in the direction of the velocity.  
The magnetic force is always perpendicular to this direction so it does no work. The work-energy theorem 
therefore says that the kinetic energy of the particle, and hence its speed, is constant. 
(c) The acceleration is 

19 3
12 2

27
sin (3 20 10  C)(35 6 10  m/s)(1 80 T)sin90 3.09 10  m/s .

6 64 10  kg
B q v BF

a
m m

φ −

−
. × . × . °= = = = ×

. ×
 We can also use 

2v
a

R
=  and the result of part (a) to calculate 

3 2
12 2

4
(35 6 10  m/s) 3.09 10  m/s ,
4.104 10  m

a −
. ×= = ×

×
 the same result. The 

acceleration is perpendicular to vG and B
G

and so is horizontal, toward the center of curvature of the 
particle’s path. 
EVALUATE:   (d) The unbalanced force ( )BF

G
 is perpendicular to ,vG  so it changes the direction of vG but 

not its magnitude, which is the speed. 

 27.19. IDENTIFY:   For motion in an arc of a circle, 
2v

a
R

=  and the net force is radially inward, toward the center 

of the circle. 
SET UP:   The direction of the force is shown in Figure 27.19. The mass of a proton is 271 67 10  kg.−. ×  

EXECUTE:   (a) F
G

 is opposite to the right-hand rule direction, so the charge is negative. m=F a
G G  gives 

2
sin .v

q v B m
R

φ =  90φ = °  and 
19

6
27

3(1 60 10  C)(0 250 T)(0 475 m) 2 84 10  m/s.
12(1 67 10  kg)

q BR
v

m

−

−
. × . .= = = . ×

. ×
 

(b) 19 6 13sin 3(1 60 10  C)(2 84 10  m/s)(0 250 T)sin90 3 41 10  N.BF q v B φ − −= = . × . × . ° = . ×  
27 2 2512(1 67 10  kg)(9 80 m/s ) 1 96 10  N.w mg − −= = . × . = . ×  The magnetic force is much larger than the 

weight of the particle, so it is a very good approximation to neglect gravity. 
EVALUATE:   (c) The magnetic force is always perpendicular to the path and does no work. The particles 
move with constant speed. 

 

 

Figure 27.19 
 

 27.20. IDENTIFY:    The magnetic field acts perpendicular to the velocity, causing the ion to move in a circular 
path but not changing its speed. 

SET UP:   
| |

= mv
R

q B
 and 21

2 .=K mv  K = 5.0 MeV = 138.0 10 J.−×  



27-8   Chapter 27 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

EXECUTE:   (a) Solving 
  
K = 1

2
mv2  for v gives 2 / .v K m=  

v = 13 27 1/2 7[2(8.0 10 J)/(1.67 10 kg)] 3.095 10 m/s,− −× × = ×  which rounds to 73.1 10  m/s.×  

(b) Using 
| |
mv

R
q B

=  = 27 7 19(1.67 10 kg)(3.095 10 m/s)/[(1.602 10 C)(1.9 T)] 0.17 m 17 cm.− −× × × = =  

EVALUATE:    If the hydride ions were accelerated to 20 MeV, which is 4 times the value used here, their 
speed would be twice as great, so the radius of their path would also be twice as great. 

 27.21. (a) IDENTIFY and SET UP:   Apply Newton’s second law, with 2/a v R=  since the path of the particle is 
circular. 
EXECUTE:    m∑ =F a

G G  says 2( / ).q v B m v R=  
19 3

5
27

(1 602 10  C)(2 50 T)(6 96 10  m) 8 35 10  m/s.
3 34 10  kg

q BR
v

m

− −

−
. × . . ×= = = . ×

. ×
 

(b) IDENTIFY and SET UP:   The speed is constant so distance/ .t v=  

EXECUTE:   
3

8
5

(6 96 10  m) 2 62 10  s.
8 35 10  m/s

R
t

v
π π −

−. ×= = = . ×
. ×

 

(c) IDENTIFY and SET UP:   kinetic energy gained electric=  potential energy lost. 

EXECUTE:   21
2 .mv q V=  

2 27 5 2
3

19
(3 34 10  kg)(8 35 10  m/s) 7 27 10  V 7 27 kV.

2 2(1 602 10  C)
mv

V
q

−

−
. × . ×= = = . × = .

. ×
 

EVALUATE:   The deutron has a much larger mass to charge ratio than an electron so a much larger B is 
required for the same v and R. The deutron has positive charge so gains kinetic energy when it goes from 
high potential to low potential. 

 27.22. IDENTIFY:    An alpha particle has twice as much charge and about 4 times as much mass as a proton. 

SET UP:   
| |
mv

R
q B

=  and 
  
K = 1

2
mv2.  K = (mv)2/2m = p2/2m, so 2 .mv mK=  

EXECUTE:   The kinetic energy is the same in both cases, so express the radius in terms of it. 
2 .

| | | |
mv mK

R
q B q B

= =  Now take ratios of the radii for an alpha particle and a proton. 

2
12
22p pp

m K
R meB
R mm K

eB

α
α α= =  = 1 6.64 0.997,

2 1.67
=  which gives  

Rα  = 0.997Rp = (0.997)(16.0 cm) = 16.0 cm, which is the same as for the proton. 

EVALUATE:   The radius is proportional to .
| |
m
q

 The  alpha particle has twice the charge of the proton and 

about 4 times its mass, so the result is the same for both particles. 
 27.23. IDENTIFY:   When a particle of charge e−  is accelerated through a potential difference of magnitude V, it 

gains kinetic energy eV. When it moves in a circular path of radius R, its acceleration is 
2

.v
R

 

SET UP:   An electron has charge 191 60 10  Cq e −= − = − . ×  and mass 319 11 10  kg.−. ×  

EXECUTE:   21
2 mv eV=  and 

19 3
7

31
2 2(1 60 10  C)(2 00 10  V) 2 65 10  m/s.

9 11 10  kg
eV

v
m

−

−
. × . ×= = = . ×

. ×
 m=F a
G G  

gives 
2

sin .v
q v B m

R
φ =  90φ = °  and 

31 7
4

19
(9 11 10  kg)(2 65 10  m/s) 8 38 10  T.

(1 60 10  C)(0 180 m)
mv

B
q R

−
−

−
. × . ×= = = . ×

. × .
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EVALUATE:   The smaller the radius of the circular path, the larger the magnitude of the magnetic field that 
is required. 

 27.24. IDENTIFY:   The magnetic force on the beam bends it through a quarter circle. 
SET UP:   The distance that particles in the beam travel is ,s Rθ=  and the radius of the quarter circle is / .R mv qB=  
EXECUTE:   Solving for R gives / /( /2) 1.18 cm/( /2) 0.751 cm.R s sθ π π= = = =  Solving for the magnetic 

field: –27 –19 –3/ (1.67 10  kg)(1200 m/s)/[(1.60 10  C)(0.00751 m)] 1.67 10  T.B mv qR= = × × = ×  
EVALUATE:   This field is about 10 times stronger than the earth’s magnetic field, but much weaker than 
many laboratory fields. 

 27.25. IDENTIFY and SET UP:   ( )q + ×
G G GGF = E v B  gives the total force on the proton. At 0,t =  

ˆ ˆ ˆ ˆ( ) .x z x z xq q v v B qv B= × = + × =
G GGF v B i k i j  c)  

EXECUTE: (a)   19 5 14ˆ ˆ(1 60 10  C)(2 00 10  m/s)(0 500 T) (1 60 10  N) .− −= . × . × . = . ×F j j
G

 
(b) Yes. The electric field exerts a force in the direction of the electric field, since the charge of the proton 
is positive, and there is a component of acceleration in this direction. 
(c) In the plane perpendicular to B

G
 (the -plane)yz  the motion is circular. But there is a velocity 

component in the direction of ,B
G

 so the motion is a helix. The electric field in the direcˆ on- ti+i  exerts a 

force in the directˆ n.- io+i  This force produces an acceleration in the direcˆ on- ti+i  and this causes the pitch 
of the helix to vary. The force does not affect the circular motion in the yz-plane, so the electric field does 
not affect the radius of the helix. 
(d) IDENTIFY and SET UP:   Use /q B mω =  and 2 /T π ω=  to calculate the period of the motion. 

Calculate xa  produced by the electric force and use a constant acceleration equation to calculate the 
displacement in the -directionx  in time /2.T  
EXECUTE:   Calculate the period T: / .q B mω =  

27
7

19
2 2 2 (1 67 10  kg) 1 312 10  s.

(1 60 10  C)(0 500 T)
m

T
q B

π π π
ω

−
−

−
. ×= = = = . ×

. × .
 Then 8/2 6 56 10  s.t T −= = . ×  

5
0 1 50 10  m/s.xv = . ×  

19 4
12 2

27
(1 60 10  C)(2 00 10  V/m) 1 916 10  m/s .

1 67 10  kg
x

x
F

a
m

−

−
. × . ×= = = + . ×

. ×
 

21
0 0 2 .x xx x v t a t− = +  

5 8 12 2 8 21
0 2(1 50 10  m/s)(6 56 10 s) (1 916 10  m/s )(6 56 10  s) 1 40 cm.x x − −− = . × . × + . × . × = .  

EVALUATE:   The electric and magnetic fields are in the same direction but produce forces that are in 
perpendicular directions to each other. 

 27.26. IDENTIFY:   After being accelerated through a potential difference V the ion has kinetic energy qV. The 
acceleration in the circular path is 2/v R.  
SET UP:   The ion has charge .q e= +  

EXECUTE:   .K qV eV= = +  21
2 mv eV=  and 

19
4

26
2 2(1 60 10  C)(220 V) 7 79 10  m/s.

1 16 10  kg
eV

v
m

−

−
. ×= = = . ×

. ×
 

sin .BF q v B φ=  90 .φ = °  m=F a
G G  gives 

2
.v

q v B m
R

=  

26 4
3

19
(1 16 10  kg)(7 79 10  m/s) 6.46 10  m 6.46 mm.

(1 60 10  C)(0 874 T)
mv

R
q B

−
−

−
. × . ×= = = × =

. × .
 

EVALUATE:   The larger the accelerating voltage, the larger the speed of the particle and the larger the 
radius of its path in the magnetic field. 

 27.27. IDENTIFY:   For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
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SET UP:   /v E B=  for no deflection. 
EXECUTE:   To pass undeflected in both cases, 3(5 85 10 m/s)(1 35 T) 7898 N/C.E vB= = . × . =  

(a) If 90 640 10 C,q −= . ×  the electric field direction is given by ˆ ˆ ˆ( ( )) ,− × − =j k i  since it must point in the 
opposite direction to the magnetic force. 
(b) If 90 320 10 C,q −= − . ×  the electric field direction is given by ˆ ˆ ˆ(( ) ( )) ,− × − =j k i  since the electric force 
must point in the opposite direction as the magnetic force. Since the particle has negative charge, the 
electric force is opposite to the direction of the electric field and the magnetic force is opposite to the 
direction it has in part (a). 
EVALUATE:   The same configuration of electric and magnetic fields works as a velocity selector for both 
positively and negatively charged particles. 

 27.28. IDENTIFY:   For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP:   /v E B=  for no deflection. With only the magnetic force, 2/ .q v B mv R=  

EXECUTE:   (a) 4 3 6/ (1 56 10 V/m)/(4 62 10 T) 3 38 10 m/s.v E B −= = . × . × = . ×  

(b) The directions of the three vectors ,vG ,
G
E  and B

G
 are sketched in Figure 27.28. 

(c) 
31 6

3
19 3

(9 11 10  kg)(3 38 10  m/s) 4 17 10  m.
(1 60 10  C)(4 62 10  T)

mv
R

q B

−
−

− −
. × . ×= = = . ×
. × . ×

 

3
9

6
2 2 2 (4 17 10 m) 7 74 10 s.

(3 38 10 m/s)
m R

T
q B v
π π π −

−. ×= = = = . ×
. ×

 

EVALUATE:   For the field directions shown in Figure 27.28, the electric force is toward the top of the page 
and the magnetic force is toward the bottom of the page. 

 

 

Figure 27.28 
  

 27.29. IDENTIFY:   For the alpha particles to emerge from the plates undeflected, the magnetic force on them must 
exactly cancel the electric force. The battery produces an electric field between the plates, which acts on 
the alpha particles. 
SET UP:   First use energy conservation to find the speed of the alpha particles as they enter the region between 
the plates: 21/2 .qV mv= The electric field between the plates due to the battery is b/ .E V d=  For the alpha 
particles not to be deflected, the magnetic force must cancel the electric force, so ,qvB qE=  giving / .B E v=  
EXECUTE:   Solve for the speed of the alpha particles just as they enter the region between the plates. Their 
charge is 2e. 

19
5

27
2(2 ) 4(1 60 10 C)(1750V) 4 11 10 m/s.

6 64 10 kg
e V

v
mα

−

−
. ×= = = . ×

. ×
 

The electric field between the plates, produced by the battery, is 

b / (150 V)/(0.00820 m) 18,300 V/m.E V d= = =  

The magnetic force must cancel the electric force: 
5/ (18,300 V/m)/(4.11 10  m/s) 0.0445 T.B E vα= = × =  

The magnetic field is perpendicular to the electric field. If the charges are moving to the right and the 
electric field points upward, the magnetic field is out of the page. 
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EVALUATE:   The sign of the charge of the alpha particle does not enter the problem, so negative charges 
of the same magnitude would also not be deflected. 

 27.30. IDENTIFY:   The velocity selector eliminates all ions not having the desired velocity. Then the magnetic 
field bends the ions in a circular arc.  
SET UP:   In a velocity selector, .E vB=  For motion in a circular arc in a magnetic field of magnitude ,B′  

.mv
R

q B
=

′
 The ion has charge .e+  

EXECUTE:   (a) 3(4 50 10  m/s)(0 0250 T) 112 V/m.E vB= = . × . =  

(b) 
26 3

2
19

(6 64 10  kg)(4 50 10  m/s) 1 49 10  T.
(1 60 10  C)(0 125 m)

mv
B

q R

−
−

−
. × . ×′ = = = . ×

. × .
 

EVALUATE:   By laboratory standards, both the electric field and the magnetic field are rather weak and 
should easily be achievable. 

 27.31. IDENTIFY:   The velocity selector eliminates all ions not having the desired velocity. Then the magnetic 
field bends the ions in a circular arc. 
SET UP:   In a velocity selector, .E vB=  For motion in a circular arc in a magnetic field of magnitude B, 

.mv
R

q B
=  The ion has charge .e+  

EXECUTE:   (a) 3155 V/m 4 92 10  m/s.
0 0315 T

E
v

B
= = = . ×

.
 

(b) 
19

26
3

(0 175 m)(1 60 10  C)(0 0175 T) 9 96 10  kg.
4 92 10  m/s

R q B
m

v

−
−. . × .= = = . ×

. ×
 

EVALUATE:   Ions with larger ratio m
q

 will move in a path of larger radius. 

 27.32. IDENTIFY and SET UP:   For a velocity selector, .E vB=  For parallel plates with opposite charge, .V Ed=  
EXECUTE:   (a) 6 5(1 82 10 m/s)(0 510 T) 9.28 10 V/m.E vB= = . × . = ×  

(b) 5 3(9.28 10 V/m)(5 20 10 m) 4.83 kV.V Ed −= = × . × =  

EVALUATE:   Any charged particle with 61 82 10 m/sv = . ×  will pass through undeflected, regardless of the 
sign and magnitude of its charge. 

 27.33. IDENTIFY:   A mass spectrometer separates ions by mass. Since 14 15N and N  have different masses they 
will be separated and the relative amounts of these isotopes can be determined. 

SET UP:   .mv
R

q B
=  For 261 99 10  kgm −= . × 12( C), 12 12 5 cm.R = .  The separation of the isotopes at the 

detector is 15 142( ).R R−  

EXECUTE:   Since ,mv
R

q B
=  constant.R v

m q B
= =  Therefore 14 12

14 12

R R
m m

=  which gives 

26
14

14 12 26
12

2 32 10  kg(12 5 cm) 14 6 cm
1 99 10  kg

m
R R

m

−

−
⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

 and 

26
15

15 12 26
12

2 49 10  kg(12 5 cm) 15 6 cm.
1 99 10  kg

m
R R

m

−

−
⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

 The separation of the isotopes at the detector is 

15 142( ) 2(15 6 cm 14 6 cm) 2 0 cm.R R− = . − . = .  
EVALUATE:   The separation is large enough to be easily detectable. Since the diameter of the ion path is 
large, about 30 cm, the uniform magnetic field within the instrument must extend over a large area. 
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 27.34. IDENTIFY:   The earth’s magnetic field exerts a force on the moving charges in the wire. 
SET UP:   sin .F IlB φ=  The direction of F

G
 is determined by applying the right-hand rule to the directions 

of I and .B
G

 41 gauss 10  T.−=  

EXECUTE:   (a) The directions of I and B
G

 are sketched in Figure 27.34a. 90φ = °  so 
4 4(1 5 A)(2 5 m)(0 55 10  T) 2 1 10  N.F − −= . . . × = . ×  The right-hand rule says that F

G
 is directed out of the 

page, so it is upward. 
 

 

Figure 27.34 
 

(b) The directions of I and B
G

 are sketched in Figure 27.34b. 90φ = °  and 42 1 10  N.F −= . ×  F
G

 is directed 
east to west. 
(c) B

G
 and the direction of the current are antiparallel. 180φ = °  so 0.F =  

(d) The magnetic force of 42 1 10  N−. ×  is not large enough to cause significant effects. 
EVALUATE:   The magnetic force is a maximum when the directions of I and B

G
 are perpendicular and it is 

zero when the current and magnetic field are either parallel or antiparallel. 
 27.35. IDENTIFY:   Apply sin .F IlB φ=  

SET UP:   Label the three segments in the field as a, b, and c. Let x be the length of segment a. Segment b has 
length 0.300 m and segment c has length 0 600 m x. − .  Figure 27.35a shows the direction of the force on each 
segment. For each segment, 90 .φ = °  The total force on the wire is the vector sum of the forces on each segment. 
EXECUTE:   (4 50 A) (0 240 T).aF IlB x= = . .  (4 50 A)(0 600 m )(0 240 T).cF x= . . − .  Since aF

G
 and cF

G
 are 

in the same direction their vector sum has magnitude 
(4 50 A)(0 600 m)(0 240 T) 0 648 Nac a cF F F= + = . . . = .  and is directed toward the bottom of the page in 

Figure 27.35a. (4 50 A)(0 300 m)(0 240 T) 0 324 NbF = . . . = .  and is directed to the right. The vector 

addition diagram for acF
G

 and bF
G

 is given in Figure 27.35b. 

2 2 2 2(0 648 N) (0 324 N) 0 724 N.ac bF F F= + = . + . = .  0 648 Ntan
0 324 N

ac

b

F
F

θ .= =
.

 and 63 4 .θ = . °  The net 

force has magnitude 0.724 N and its direction is specified by 63 4θ = . ° in Figure 27.35b. 
EVALUATE:   All three current segments are perpendicular to the magnetic field, so 90φ = °  for each in the 
force equation. The direction of the force on a segment depends on the direction of the current for that segment. 
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Figure 27.35 

 
 

 27.36. IDENTIFY:   Apply sin .F IlB φ=  
SET UP:   0 0500 ml = .  is the length of wire in the magnetic field. Since the wire is perpendicular to ,B

G
 

90 .φ = °  
EXECUTE:   (10 8 A)(0 0500 m)( 550 T) 0 297 N0F IlB= = . . . = . .  
EVALUATE:   The force per unit length of wire is proportional to both B and I.  

 27.37. IDENTIFY and SET UP:   The magnetic force is given by sin .F IlB φ= IF mg=  when the bar is just ready 
to levitate. When I becomes larger,  and I IF mg F mg> −  is the net force that accelerates the bar upward. 
Use Newton’s second law to find the acceleration. 

EXECUTE:    (a) 
2(0 750 kg)(9 80 m/s ), 32 67 A.

(0 500 m)(0 450 T)
mg

IlB mg I
lB

. .= = = = .
. .

 

  V = IR = (32.67 A)(25.0 Ω) = 817 V.  
(b) 2 0 , / (816 7 V)/(2 0 ) 408 A.R I Rε= .  Ω  = = . .  Ω =  

92 N.IF IlB= =  
2( )/ 113 m/s .Ia F mg m= − =  

EVALUATE:   I increases by over an order of magnitude when R changes to IF mg>>  and a is an order of 
magnitude larger than g. 

 27.38. IDENTIFY and SET UP:   sin .F IlB φ=  The direction of F
G

is given by applying the right-hand rule to the 
directions of I and .B

G
 

EXECUTE:   (a) The current and field directions are shown in Figure 27.38a (next page). The right-hand 
rule gives that F

G
 is directed to the south, as shown. 90φ = °  and 

2(2.60 A)(1.00 10 m)(0.588 T) 0.0153 N.F −= × =  

(b) The right-hand rule gives that F
G

 is directed to the west, as shown in Figure 27.38b. 90φ = °  and 

  F = 0.0153 N,  the same as in part (a). 
(c) The current and field directions are shown in Figure 27.38c. The right-hand rule gives that F

G
 is 60 0. °  

north of west. 90φ = °  so F = 0.0153 N,  the same as in part (a). 
EVALUATE:   In each case the current direction is perpendicular to the magnetic field. The magnitude of 
the magnetic force is the same in each case but its direction depends on the direction of the magnetic field. 
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Figure 27.38 

 

 27.39. IDENTIFY:   The magnetic force BF
G

 must be upward and equal to mg. The direction of BF
G

 is determined 
by the direction of I in the circuit. 

SET UP:   sin ,BF IlB φ=  with 90 .φ = ° ,V
I

R
=  where V is the battery voltage. 

EXECUTE:   (a) The forces are shown in Figure 27.39. The current I in the bar must be to the right to 
produce BF

G
 upward. To produce current in this direction, point a must be the positive terminal of the 

battery. 

(b) .BF mg=  .IlB mg=  2
(175 V)(0 600 m)(1 50 T) 3 21 kg.

(5 00 )(9 80 m/s )
IlB VlB

m
g Rg

. .= = = = .
.  Ω .

 

EVALUATE:   If the battery had opposite polarity, with point a as the negative terminal, then the current 
would be clockwise and the magnetic force would be downward. 

 

 

Figure 27.39 
 

 27.40. IDENTIFY:   sin .IABτ φ=  The magnetic moment of the loop is .IAµ =  
SET UP:   Since the plane of the loop is parallel to the field, the field is perpendicular to the normal to the 
loop and 90 .φ = °  

EXECUTE:   (a) 3(6 2 A)(0 050 m)(0 080 m)(0 19 T) 4 7 10  N m.IABτ −= = . . . . = . × ⋅  

(b) 2(6 2 A)(0 050 m)(0 080 m) 0 025 A m .IAµ = = . . . = . ⋅  

(c) Maximum area is when the loop is circular. 0 050 m 0 080 m 0 0414 m.R
π

. + .= = .  

2 3 25 38 10 mA Rπ −= = . ×  and 3 2 3(6 2 A)(5 38 10 m )(0 19 T) 6 34 10 N m.τ − −= . . × . = . × ⋅  
EVALUATE:   The torque is a maximum when the field is in the plane of the loop and 90 .φ = °  

 27.41. IDENTIFY:   The wire segments carry a current in an external magnetic field. Only segments ab and cd will 
experience a magnetic force since the other two segments carry a current parallel (and antiparallel) to the 
magnetic field. Only the force on segment cd will produce a torque about the hinge. 
SET UP:   sin .F IlB φ=  The direction of the magnetic force is given by the right-hand rule applied to the 

directions of I and .B
G

 The torque due to a force equals the force times the moment arm, the perpendicular 
distance between the axis and the line of action of the force. 
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EXECUTE:   (a) The direction of the magnetic force on each segment of the circuit is shown in Figure 27.41. 
For segments bc and da the current is parallel or antiparallel to the field and the force on these segments is zero. 

 

 

Figure 27.41 
 

(b) abF
G

 acts at the hinge and therefore produces no torque. cdF
G

 tends to rotate the loop about the hinge so 
it does produce a torque about this axis. sin (5 00 A)(0 200 m)(1 20 T)sin90 1 20 NcdF IlB φ= = . . . ° = .  
(c) (1 20 N)(0 350 m) 0 420 N m.Flτ = = . . = . ⋅  
EVALUATE:   The torque is directed so as to rotate side cd out of the plane of the page in Figure 27.41. 

 27.42. IDENTIFY:   sin ,IABτ φ=  where φ  is the angle between B
G

 and the normal to the loop. 
SET UP:   The coil as viewed along the axis of rotation is shown in Figure 27.42a for its original position 
and in Figure 27.42b after it has rotated 30 0 .. °  
EXECUTE:   (a) The forces on each side of the coil are shown in Figure 27.42a. 1 2 0+ =F F

G G
 and 

3 4 0.+ =F F
G G

 The net force on the coil is zero. 0φ = °  and sin 0,φ =  so 0.τ =  The forces on the coil 
produce no torque. 
(b) The net force is still zero. 30.0φ = °  and the net torque is 

 τ = (1)(1.95 A)(0.220 m)(0.350 m)(1.50 T)sin30.0° = 0.113 N ⋅ m.  The net torque is clockwise in  
Figure 27.42b and is directed so as to increase the angle .φ  
EVALUATE:   For any current loop in a uniform magnetic field the net force on the loop is zero. The torque 
on the loop depends on the orientation of the plane of the loop relative to the magnetic field direction. 

 

    
Figure 27.42 

 

 27.43. IDENTIFY:   The magnetic field exerts a torque on the current-carrying coil, which causes it to turn. We can 
use the rotational form of Newton’s second law to find the angular acceleration of the coil. 
SET UP:   The magnetic torque is given by ,= ×B

GG Gτ µ  and the rotational form of Newton’s second law is 
.Iτ α∑ =  The magnetic field is parallel to the plane of the loop. 

EXECUTE:   (a) The coil rotates about axis 2A  because the only torque is along top and bottom sides of the coil. 
(b) To find the moment of inertia of the coil, treat the two 1.00-m segments as point-masses (since all the 
points in them are 0.250 m from the rotation axis) and the two 0.500-m segments as thin uniform bars 
rotated about their centers. Since the coil is uniform, the mass of each segment is proportional to its 
fraction of the total perimeter of the coil. Each 1.00-m segment is 1/3 of the total perimeter, so its mass is 
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(1/3)(210 g) 70 g 0.070 kg.= =  The mass of each 0.500-m segment is half this amount, or 0.035 kg.  
The result is 

2 2 21
122(0 070 kg)(0 250 m) 2 (0 035 kg)(0 500 m) 0 0102 kg m .I = . . + . . = . ⋅  

The torque is 

sin90 (2 00A)(0 500m)(1 00m)(3 00T) 3 00 N m.IAB= × = ° = . . . . = . ⋅
GG G Bτ µ  

Using the above values, the rotational form of Newton’s second law gives 

2290 rad/s .
I
τα = =  

EVALUATE:   This angular acceleration will not continue because the torque changes as the coil turns. 
 27.44. IDENTIFY and SET UP:   Both coils A and B have the same area A and N turns, but they carry current in 

opposite directions in a magnetic field. The torque is = ×B
GG Gτ µ  and the potential energy is cos .µ φ= −U B  

The magnetic moment is µ = IA.
GG

 
EXECUTE:   (a) Using the right-hand rule for the magnetic moment, 

Gµ  points in the –z-direction (into the 
page) for coil A and in the +z-direction (out of the page) for coil B. 
(b) The torque is = ×B

GG Gτ µ  which has magnitude sin .Bτ µ φ=  For coil A, φ  = 180°, and for coil B,  
φ  = 0°. In both cases, sinφ  = 0, making the torque zero. 
(c) For coil A: A cos cos180 .U B NIAB NIABµ φ= − = − ° =  
For coil B: B cos cos0 .U B NIAB NIABµ φ= − = − ° = −  
(d) If coil A is rotated slightly from its equilibrium position, the magnetic field will flip it 180°, so its 
equilibrium is unstable. But if the same thing it done to coil B, the magnetic field will return it to its 
original equilibrium position, which makes its equilibrium stable. 
EVALUATE:   For the stable equilibrium (coil B), its potential energy is a minimum, while for the unstable 
equilibrium (coil A), its potential energy is a maximum. 

 27.45. IDENTIFY:   = ×B
GG Gτ µ  and cos ,U Bµ φ= −  where µ = NIA.  sin .Bτ µ φ=  

SET UP:   φ  is the angle between B
G

 and the normal to the plane of the loop. 

EXECUTE:   (a) ˆ ˆ ˆ90 . sin(90 ) , direction . cos 0.NIAB NIAB U Bφ τ µ φ= ° = ° = × = − = − =k j i  
(b) 0. sin(0) 0, no direction. cos .NIAB U B NIABφ τ µ φ= = = = − = −  

(c) ˆ ˆ ˆ90 . sin(90 ) , direction . cos 0.NIAB NIAB U Bφ τ µ φ= ° = ° = − × = = − =k j i  
(d) 180 : sin(180 ) 0, no direction, cos(180 ) .NIAB U B NIABφ τ µ= ° = ° = = − ° =  
EVALUATE:   When τ  is maximum, 0.U =  When U  is maximum, 0.τ =  

 27.46. IDENTIFY and SET UP:   The potential energy is given by .U = − ⋅B
GGµ  The scalar product depends on the 

angle between  and .B
GGµ  

EXECUTE:   For  and  parallel, 0  and cos .B Bφ µ φ µ= ° ⋅ = =B B
G GG Gµ µ  For and  antiparallel,B

GGµ  

180  and cos .B Bφ µ φ µ= ° ⋅ = = −B
GGµ  

1 2, .U B U Bµ µ= + = −  
2

2 1 2 2(1 45 A m )(0 835 T) 2 42 J.U U U Bµ∆ = − = − = − . ⋅ . = − .  

EVALUATE:   U is maximum when  and B
GGµ  are antiparallel and minimum when they are parallel. When 

the coil is rotated as specified its magnetic potential energy decreases. 
 27.47. IDENTIFY:   The circuit consists of two parallel branches with the potential difference of 120 V applied 

across each. One branch is the rotor, represented by a resistance rR  and an induced emf that opposes the 
applied potential. Apply the loop rule to each parallel branch and use the junction rule to relate the currents 
through the field coil and through the rotor to the 4.82 A supplied to the motor. 
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SET UP:   The circuit is sketched in Figure 27.47. 
 

 ε is the induced emf developed by the motor. 
It is directed so as to oppose the current 
through the rotor. 

Figure 27.47   
 

EXECUTE:   (a) The field coils and the rotor are in parallel with the applied potential difference 

f f, so .V V I R= f
f

120 V 1 13 A.
106 

V
I

R
= = = .

Ω
 

(b) Applying the junction rule to point a in the circuit diagram gives f r 0.I I I− − =  

r f 4 82 A 1 13 A 3 69 A.I I I= − = . − . = .  
(c) The potential drop across the rotor, r r ,I R ε+  must equal the applied potential difference 

r r:V V I R ε= +  

r r 120 V (3 69 A)(5 9 ) 98 2 VV I Rε = − = − . .  Ω = .  
(d) The mechanical power output is the electrical power input minus the rate of dissipation of electrical 
energy in the resistance of the motor: 
electrical power input to the motor 

in (4 82 A)(120 V) 578 W.P IV= = . =  
electrical power loss in the two resistances 

2 2 2 2
loss f f r r (1 13 A) (106 ) (3 69 A) (5 9 ) 216 W.P I R I R= + = .  Ω + . .  Ω =  

mechanical power output 
out in loss 578 W 216 W 362 W.P P P= − = − =  

The mechanical power output is the power associated with the induced emf .ε  
rout (98 2 V)(3 69 A) 362 W,P P Iε ε= = = . . =  which agrees with the above calculation. 

EVALUATE:   The induced emf reduces the amount of current that flows through the rotor. This motor 
differs from the one described in Example 27.11. In that example the rotor and field coils are connected in 
series and in this problem they are in parallel. 

 27.48. IDENTIFY:   Apply Vab = ε + Ir in order to calculate I. The power drawn from the line is supplied .abP IV=  

The mechanical power is the power supplied minus the 2I r  electrical power loss in the internal resistance 
of the motor. 
SET UP:   120 V,abV =  105 V,ε =  and 3 2 .r = .  Ω  

EXECUTE:   (a) 120 V 105 V 4 7 A.
3 2 

ab
ab

V
V Ir I

r
εε − −= + ⇒ = = = .

. Ω
 

(b) supplied (4 7 A)(120 V) 564 W.abP IV= = . =  

(c) 2 2
mech 564 W (4 7 A) (3 2 ) 493 W.abP IV I r= − = − . . Ω =  

EVALUATE:   If the rotor isn’t turning, when the motor is first turned on or if the rotor bearings fail, then 

0ε =  and 120V 37 5 A.
3 2

I = = .
.  Ω

 This large current causes large 2I r  heating and can trip the circuit breaker. 

 27.49. IDENTIFY:   The drift velocity is related to the current density by d| | .=xJ n q v  The electric field is 
determined by the requirement that the electric and magnetic forces on the current-carrying charges are 
equal in magnitude and opposite in direction. 
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SET UP and EXECUTE:   (a) The section of the silver ribbon is sketched in Figure 27.49a. 
 

 d.xJ n q v=   

so d .
| |
xJ

v
n q

=  

Figure 27.49a   
 

EXECUTE:   7 2
3

1 1

120 A 4 42 10  A/m .
(0 23 10  m)(0 0118 m)x

I I
J

A y z −= = = = . ×
. × .

 

7 2
3

d 28 3 19
4 42 10  A/m 4 7 10  m/s 4 7 mm/s.

(5 85 10 /m )(1 602 10  C)
xJ

v
n q

−
−

. ×= = = . × = .
. × . ×

 

(b) magnitude of :
G
E  

d .z yq E q v B=  
3 3

d (4.7 10 m/s)(0.95 T) 4.5 10 V/m.z yE v B − −= = × = ×  

direction of :
G
E  

The drift velocity of the electrons is in the opposite direction to the current, as shown in Figure 27.49b. 
 

 .× ↑
GGv B  

.B q e= × = − × ↓
G G GG GF v B v B  

Figure 27.49b   
 

The directions of the electric and magnetic forces on an electron in the ribbon are shown in Figure 27.49c. 
 

 EF
G

 must oppose BF
G

 so EF
G

 is in  
the -direction.z−  

Figure 27.49c   
 

 so E q e= = −F E E E
G G G G

 is opposite to the direction of EF
G

 and thus E
G

 is in the -direction.z+  
(c) The Hall emf is the potential difference between the two edges of the strip 1(at 0 and )z z z= =  that 

results from the electric field calculated in part (b). 3
Hall 1 (4 5 10  V/m)(0 0118 m) 53 V.Ezε µ−= = . × . =   

EVALUATE:   Even though the current is quite large the Hall emf is very small. Our calculated Hall emf is 
more than an order of magnitude larger than in Example 27.12. In this problem the magnetic field and 
current density are larger than in the example, and this leads to a larger Hall emf. 

 27.50. IDENTIFY:   Apply .
−

= x y

z

J B
qn

E
 

SET UP:   1 1.A y z=  1/ .E zε=  .q e=  

EXECUTE:   1

1
.x y y y y

z z

J B IB IB z IB
n

q E A q E A q y qε ε
= = = =  

28 3
4 19 4

(78 0 A)(2 29 T) 3 7 10 electrons/m .
(2 3 10 m)(1 6 10 C)(1 31 10 V)− − −

. .= = . ×
. × . × . ×

n  
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EVALUATE:   The value of n for this metal is about one-third the value of n calculated in Example 27.12 
for copper. 

 27.51. IDENTIFY:   Use q ×
G GGF = v B  to relate , , and . 

G GGv B F  

SET UP:   The directions of 1 1and v F
GG  are shown in Figure 27.51a. 

 

 q= ×F v B
G GG  says that F

G
 is perpendicular  

to and .v B
GG  The information given here  

means that B
G

 can have no z-component. 

Figure 27.51a   
 

The directions of 2 2 and v F
GG  are shown in Figure 27.51b. 

 

 F
G

 is perpendicular to and ,v B
GG  

so B
G

 can have no x-component. 

Figure 27.51b   
 

Both pieces of information taken together say that B
G

 is in the y-direction; ˆ.yB=B j
G

 

EXECUTE:   (a) Use the information given about 2F
G

 to calculate 2 2 2 2
ˆ ˆ ˆ: , , .y yB F v B=  =  =F i v k B j

G GG  

2 2 2 2 2 2 2
ˆ ˆ ˆ ˆ says ( ) and .y y yq F qv B qv B F qv B= × = × = − = −

G GGF v B i k j i  

2 2 2 1 2 1/( ) /( )   has the magnitude /( )yB F qv F qv F qv= − = − . B
G

 and is in the −y-direction. 

(b) 1 1 2sin / 2 / 2.yF qvB qv B Fφ= = =  

EVALUATE:   1 2 2.v v= vG  is perpendicular to B
G

 whereas only the component of 1v
G  perpendicular to B

G
 

contributes to the force, so it is expected that 2 1,F F>  as we found. 

 27.52. IDENTIFY:   Apply .q= ×F v B
G GG  

SET UP:   0 650 T.xB = .  0yB =  and 0.zB =  

EXECUTE:   ( ) 0.x y z z yF q v B v B= − =  

  
Fy = q(vz Bx − vx Bz ) = (7.26 × 10−8  C)(5.85 × 104  m/s)(0.650 T) = 2.76 × 10−3  N.  

  
Fz = q(vx By − vy Bx ) = −(7.26 × 10−8  C)(−3.11× 104  m/s)(0.650 T) = 1.47 × 10−3  N.  

EVALUATE:   F
G

 is perpendicular to both vG  and .B
G

 We can verify that 0.⋅ =F v
G G  Since B

G
 is along the  

x-axis, xv  does not affect the force components. 
 27.53. IDENTIFY:   In part (a), apply conservation of energy to the motion of the two nuclei. In part (b) apply 

2/ .q vB mv R=  
SET UP:   In part (a), let point 1 be when the two nuclei are far apart and let point 2 be when they are at 
their closest separation. 
EXECUTE:   (a) 1 1 2 2.K U K U+ = +  1 2 0,U K= =  so 1 2.K U=  There are two nuclei having equal kinetic 

energy, so 2 2 21 1
2 2 / .mv mv ke r+ =  Solving for v gives 

9 2 2
19 6

27 15
8 99 10 N m /C(1 602 10 C) 8 3 10 m/s.

(3 34 10 kg)(1 0 10 m)
k

v e
mr

−
− −

. × ⋅= = . × = . ×
. × . ×
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(b) m∑ =F a
G G  gives 2/ .qvB mv r=  

27 6

19
(3 34 10 kg)(8 3 10 m/s) 0 14 T.

(1 602 10 C)(1 25 m)
mv

B
qr

−

−
. × . ×= = = .

. × .
 

EVALUATE:   The speed calculated in part (a) is large, nearly 3% of the speed of light. 
 27.54. IDENTIFY:   The period is 2 / ,T r vπ=  the current is /Q t  and the magnetic moment is .IAµ =  

SET UP:   The electron has charge .e−  The area enclosed by the orbit is 2.rπ  
EXECUTE:   (a) 162 / 1 5 10 s.T r vπ −= = . ×  
(b) Charge e−  passes a point on the orbit once during each period, so / / 1 1 mA.I Q t e t= = = .  

(c) 2 24 29 3 10 A m .IA I rµ π −= = = . × ⋅  
EVALUATE:   Since the electron has negative charge, the direction of the current is opposite to the direction 
of motion of the electron. 

 27.55. IDENTIFY:   The sum of the magnetic, electrical and gravitational forces must be zero to aim at and hit the 
target. 
SET UP:   The magnetic field must point to the left when viewed in the direction of the target for no net 
force. The net force is zero, so 0B EF F F mg∑ = − − =  and – – 0.qvB qE mg =  
EXECUTE:   Solving for B gives 

6 2

6
(2500 10 C)(27 5 N/C) (0 00425 kg)(9 80 m/s ) 3 45 T.

(2500 10 C)(12 8 m/s)
qE mg

B
qv

−

−
+ × . + . .= = = .

× .
 

The direction should be perpendicular to the initial velocity of the coin. 
EVALUATE:   This is a very strong magnetic field, but achievable in some labs. 

 27.56. IDENTIFY and SET UP:   The maximum radius of the orbit determines the maximum speed v of the protons. 
Use Newton’s second law and 2

rad /a v R=  for circular motion to relate the variables. The energy of the 

particle is the kinetic energy 21
2 .K mv=  

EXECUTE:   (a) m∑ =F a
G G  gives 2( / ).q vB m v R=  

19
7

27
(1 60 10  C)(0 85 T)(0 40 m) 3 257 10  m/s.

1 67 10  kg
q BR

v
m

−

−
. × . .= = = . ×

. ×
 The kinetic energy of a proton moving 

with this speed is 2 27 7 2 131 1
2 2 (1 67 10  kg)(3 257 10  m/s) 8 9 10  J 5 5 MeV.K mv − −= = . × . × = . × = .  

(b) The time for one revolution is the period 8
7

2 2 (0 40 m) 7 7 10  s.
3 257 10  m/s

R
T

v
π π −.= = = . ×

. ×
 

(c) 
2 2 2 2

21 1 1
2 2 2

2. Or, .
q BR q B R Km

K mv m B
m m q R

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 B is proportional to ,K  so if K is increased 

by a factor of 2 then B must be increased by a factor of 2.  2(0 85 T) 1 2 T.B = . = .  

(d) 
19

7
27

(3 20 10  C)(0 85 T)(0 40 m) 1 636 10  m/s
6 65 10  kg

q BR
v

m

−

−
. × . .= = = . ×

. ×
 

2 27 7 2 131 1
2 2 (6 65 10  kg)(1 636 10  m/s) 8 9 10  J 5 5 MeV,K mv − −= = . × . × = . × = .  the same as the maximum 

energy for protons. 
EVALUATE:   We can see that the maximum energy must be approximately the same as follows: From 

part (c), 
2

1
2 .

q BR
K m

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 For alpha particles q  is larger by a factor of 2 and m is larger by a factor of 4 

(approximately). Thus 2 /q m  is unchanged and K is the same. 

 27.57. IDENTIFY and SET UP:   Use q ×F = v B
G GG

 to relate , , and .q v B F
G GG  The force and F a

G G  are related by 

Newton’s second law. 6ˆ ˆ ˆ ˆ0 120 T , (1 05 10  m/s)( 3 4 12 ), 2 45 N.F= − . = . × − + + = .B k v i j k
G G

( )  

EXECUTE:   (a) .q= ×F v B
G GG  6 ˆ ˆ ˆ ˆ ˆ ˆ( 0 120 T)(1 05 10  m/s)( 3 4 12 ).q= − . . × − × + × + ×

G
F i k j k k k  
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , 0.× = − × = × =i k j j k i k k  5 5ˆ ˆ ˆ ˆ(1 26 10  N/C)( 3 4 ) (1 26 10  N/C)( 4 3 ).q q= − . × + + = − . × + +F j i i j
G

 The 

magnitude of the vector 2 2ˆ ˆ4 3  is 3 4 5.+ + + =i j  Thus 5(1 26 10  N/C)(5).F q= − . ×  

6
5 5

2 45 N 3 89 10  C.
5(1 26 10  N/C) 5(1 26 10  N/C)

F
q −.= − = − = − . ×

. × . ×
 

(b)  so / .m mΣ = =F a a F
G GG G  

5 6 5ˆ ˆ ˆ ˆ ˆ ˆ(1 26 10  N/C)( 4 3 ) ( 3 89 10  C)(1 26 10  N/C)( 4 3 ) 0 490 N( 4 3 ).q −= − . × + + = − − . × . × + + = + . + +F i j i j i j
G

 
Then 

14 2 14 2 14 2
15

0 490 N ˆ ˆ ˆ ˆ ˆ ˆ/ ( 4 3 ) (1 90 10  m/s )( 4 3 ) 7 60 10  m/s 5 70 10 m/s .
2 58 10  kg

m −
⎛ ⎞.= = + + = . × + + = . × + . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠

a F i j i j i j
GG

(c) IDENTIFY and SET UP:   F
G

 is in the xy-plane, so in the z-direction the particle moves with constant 
speed 612 6 10  m/s.. ×  In the xy-plane the force F

G
 causes the particle to move in a circle, with F

G
 directed in 

toward the center of the circle. 
EXECUTE:   2 2 gives ( / ) and / .m F m v R R mv F∑ = = =F a

G G  
2 2 2 6 2 6 2 13 2 2( 3 15 10  m/s) ( 4 20 10  m/s) 2 756 10  m /s .x yv v v= + = − . × + + . × = . ×  

2 2 2 2(0 490 N) 4 3 2 45 N.x yF F F= + = . + = .  
2 15 13 2 2(2 58 10  kg)(2 756 10  m /s ) 0 0290 m 2 90 cm.

2 45 N
mv

R
F

−. × . ×= = = . = .
.

 

(d) IDENTIFY and SET UP:   The cyclotron frequency is /2 /2 .f v Rω π π= =  

EXECUTE:   The circular motion is in the xy-plane, so 2 2 65 25 10  m/s.x yv v v= + = . ×  
6

75 25 10  m/s 2 88 10  Hz,
2 2 (0 0290 m)

v
f

Rπ π
. ×= = = . ×

.
 and 82 1 81 10  rad/s.fω π= = . ×  

(e) IDENTIFY and SET UP:   Compare t to the period T of the circular motion in the xy-plane to find the  
x- and y-coordinates at this t. In the z-direction the particle moves with constant speed, so 0 .zz z v t= +  

EXECUTE:   The period of the motion in the xy-plane is given by 8
7

1 1 3 47 10  s.
2 88 10  Hz

T
f

−= = = . ×
. ×

 In 

2t T=  the particle has returned to the same x- and y-coordinates. The z-component of the motion is 
motion with a constant velocity of 612 6 10  m/s.zv = + . ×  Thus 

6 8
0 0 (12 6 10  m/s)(2)(3 47 10  s) 0 874 m.zz z v t −= + = + . × . × = + .  The coordinates at 2t T=  are 

0 0290 m,x R= = . 0, 0 874 m.y z= = + .  

EVALUATE:   The circular motion is in the plane perpendicular to .B
G

 The radius of this motion gets 
smaller when B increases and it gets larger when v increases. There is no magnetic force in the direction of 
B
G

 so the particle moves with constant velocity in that direction. The superposition of circular motion in 
the xy-plane and constant speed motion in the z-direction is a helical path. 

 27.58. IDENTIFY:   Apply .q= ×F v B
G GG  

SET UP:   ˆ.v=Gv k  
EXECUTE:   (a) ˆ ˆ.y xqvB qvB= − +F i j

G
 But 0 0

ˆ ˆ3 4 ,F F= +F i j
G

 so 03 yF qvB= −  and 04 .xF qvB=  

Therefore, 03 ,y
F

B
qv

= −  04
x

F
B

qv
=  and zB  is undetermined. 

(b) 
2 2

2 2 2 2 20 0 0

0 0

6 9 16 25 ,x y z z z
F F qv F qv

B B B B B B
qv qv F qv F

⎛ ⎞ ⎛ ⎞
= = + + = + + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 so 011 .z

F
B

qv
= ±  

EVALUATE:   The force doesn’t depend on ,zB  since vG  is along the z-direction. 



27-22   Chapter 27 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

 27.59. IDENTIFY:   For the velocity selector, .E vB=  For circular motion in the field ,B′  .mv
R

q B
=

′
 

SET UP:   0 682 T.B B= ′ = .  

EXECUTE:   
4

41 88 10  N/C 2 757 10  m/s.
0 682 T

E
v

B
. ×= = = . ×

.
 ,mv
R

qB
=

′
 so 

27 4

82 19
82(1 66 10  kg)(2 757 10  m/s) 0 0344 m 3 44 cm.

(1 60 10  C)(0 682 T)
R

−

−
. × . ×= = . = .

. × .
 

27 4

84 19
84(1 66 10  kg)(2 757 10  m/s) 0 0352 m 3 52 cm.

(1 60 10  C)(0 682 T)
R

−

−
. × . ×= = . = .

. × .
 

27 4

86 19
86(1 66 10  kg)(2 757 10  m/s) 0 0361 m 3 61 cm.

(1 60 10  C)(0 682 T)
R

−

−
. × . ×= = . = .

. × .
 

The distance between two adjacent lines is 2 2(3 52 cm 3 44 cm) 0 16 cm 1 6 mm.R∆ = . − . = . = .  

EVALUATE:   The distance between the 82Kr  line and the 84Kr  line is 1.6 mm and the distance between 
the 84Kr  line and the 86Kr  line is 1.6 mm. Adjacent lines are equally spaced since the 82 Kr  versus 84 Kr  
and 84Kr  versus 86Kr  mass differences are the same. 

 27.60. IDENTIFY:   Apply conservation of energy to the acceleration of the ions and Newton’s second law to their 
motion in the magnetic field. 
SET UP:   The singly ionized ions have .q e= +  A 12C  ion has mass 12 u and a 14C  ion has mass 14 u, 

where 271 u 1 66 10  kg.−= . ×  

EXECUTE:   (a) During acceleration of the ions, 21
2qV mv=  and 2 .qV

v
m

=  In the magnetic field, 

2 /m qV mmv
R

qB qB
= =  and 

2 2
.

2
qB R

m
V

=  

(b) 
2 2 19 2 2

4
27

(1 60 10 C)(0 150 T) (0 500 m) 2 26 10 V.
2 2(12)(1 66 10 kg)

qB R
V

m

−

−
. × . .= = = . ×

. ×
 

(c) The ions are separated by the differences in the diameters of their paths. 2
22 2 ,Vm

D R
qB

= =  so 

14 12 2 2 2
14 12

2 2 2 (1 u)2 2 2 ( 14 12).Vm Vm V
D D D

qB qB qB
∆ = − = − = −  

4 27
2

19 2
2(2 26 10  V)(1 66 10  kg)2 ( 14 12) 8 01 10  m.

(1 6 10  C)(0 150 T)
D

−
−

−
. × . ×∆ = − = . ×

. × .
 This is about 8 cm and is easily 

distinguishable. 

EVALUATE:   The speed of the 12C  ion is 
19 4

5
27

2(1 60 10  C)(2 26 10 V) 6 0 10  m/s.
12(1 66 10  kg)

v
−

−
. × . ×= = . ×

. ×
 This is 

very fast, but well below the speed of light, so relativistic mechanics is not needed. 
 27.61. IDENTIFY:   The force exerted by the magnetic field is given by sin .F IlB φ=  The net force on the wire 

must be zero. 
SET UP:   For the wire to remain at rest the force exerted on it by the magnetic field must have a 
component directed up the incline. To produce a force in this direction, the current in the wire must be 
directed from right to left in the figure with the problem in the textbook. Or, viewing the wire from its left-
hand end the directions are shown in Figure 27.61a. 
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Figure 27.61a 
 

The free-body diagram for the wire is given in Figure 27.61b. 
 

 EXECUTE:   0.yF∑ =  

cos sin 0.IF Mgθ θ− =  
sin .IF ILB φ=  

90  since  isφ = ° B
G

 perpendicular to the  
current direction. 

Figure 27.61b   
 

Thus (ILB) cos sin 0Mgθ θ− =  and tan .Mg
I

LB
θ=  

EVALUATE:   The magnetic and gravitational forces are in perpendicular directions so their components 
parallel to the incline involve different trig functions. As the tilt angle θ  increases there is a larger 
component of Mg down the incline and the component of IF  up the incline is smaller; I must increase with 
θ  to compensate. As 0, 0 and as 90 , .I Iθ θ→ → → ° → ∞  

 27.62. IDENTIFY:   In the figure shown with the problem in the text, the current in the bar is toward the bottom of 
the page, so the magnetic force is toward the right. Newton’s second law gives the acceleration. The bar is 
in parallel with the 10.0-Ω  resistor, so we must use circuit analysis to find the initial current through the 
bar. 
SET UP:   First find the current. The equivalent resistance across the battery is 30.0 ,Ω  so the total current 
is 4.00 A,  half of which goes through the bar. Applying Newton’s second law to the bar gives 

  ∑F = ma = FB = ILB.  
EXECUTE:   Equivalent resistance of the 10 0-.  Ω  resistor and the bar is 5 0 ..  Ω  Current through the 

25 0-. Ω  resistor is tot
120 0 V 4 00 A.
30 0

I
.= = .
.  Ω

 The current in the bar is 2.00 A, toward the bottom of the 

page. The force IF
G

 that the magnetic field exerts on the bar has magnitude IF IlB=  and is directed to the 

right. 2
2

(2 00 A)(0.850 m)(1 60 T) 10.3 m/s .
(2 60 N)/(9 80 m/s )

IF IlB
a

m m
. .= = = =

. .
aG  is directed to the right. 

EVALUATE:   Once the bar has acquired a non-zero speed there will be an induced emf (Chapter 29) and 
the current and acceleration will start to decrease. 

 27.63. IDENTIFY:   .mv
R

q B
=  

SET UP:   After completing one semicircle the separation between the ions is the difference in the 
diameters of their paths, or 13 122( ).R R−  A singly ionized ion has charge .e+  

EXECUTE:   (a) 
26 3

3
19

(1 99 10  kg)(8 50 10  m/s) 8 46 10  T.
(1 60 10  C)(0 125 m)

mv
B

q R

−
−

−
. × . ×= = = . ×

. × .
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(b) The only difference between the two isotopes is their masses. constantR v
m q B

= =  and 12 13

12 13
.R R

m m
=  

26
13

13 12 26
12

2 16 10  kg(12 5 cm) 13 6 cm.
1 99 10  kg

m
R R

m

−

−
⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

 The diameter is 27.2 cm. 

(c) The separation is 13 122( ) 2(13 6 cm 12 5 cm) 2 2 cm.R R− = . − . = .  This distance can be easily observed. 
EVALUATE:   Decreasing the magnetic field increases the separation between the two isotopes at the detector. 

 27.64. IDENTIFY:   Turning the charged loop creates a current, and the external magnetic field exerts a torque on 
that current. 
SET UP:   The current is / /(1/ ) ( /2 ) /2 .I q T q f q f q qω π ω π= = = = =  The torque is sin .Bτ µ φ=  
EXECUTE:   In this case,φ = 90° and µ = IA,  giving .IABτ =  Combining the results for the torque and 

current and using 2A rπ=  gives 2 21
2 .

2
q

r B q r B
ωτ π ω
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE:   Any moving charge is a current, so turning the loop creates a current causing a magnetic 
force. 

 27.65. IDENTIFY:   The force exerted by the magnetic field is sin .F ILB φ=  /a F m=  and is constant. Apply a 
constant acceleration equation to relate v and d. 
SET UP:   90 .φ = °  The direction of F

G
 is given by the right-hand rule. 

EXECUTE:   (a) ,F ILB=  to the right. 

(b) 2 2
0 02 ( )x x xv v a x x= + −  gives 2 2v ad=  and 

2 2
.

2 2
v v m

d
a ILB

= =  

(c) 
4 2

6(1 12 10 m/s) (25 kg) 1 96 10 m 1960 km.
2(2000 A)(0 50 m)(0 80 T)

d
. ×= = . × =

. .
 

EVALUATE:   
3

2(2 0 10  A)(0 50 m)(0 80 T) 32 m/s .
25 kg

ILB
a

m
. × . .= = =  The acceleration due to gravity is not 

negligible. Since the bar would have to travel nearly 2000 km, this would not be a very effective launch 
mechanism using the numbers given. 

 27.66. IDENTIFY:   Apply .I= ×F l B
GG G

 
SET UP:   ˆ.l=

G
l k  

EXECUTE:   (a) ˆ ˆ ˆ( ) [( ) ( ) ].y xI l Il B B= × = − +F k B i j
G G

 This gives 

(7 40 A)(0 250 m)( 0 985 T) 1 82 Nx yF IlB= − = − . . − . = .  and 

(7 40 A)(0 250 m)( 0 242 T) 0 448 N.y xF IlB= = . . − . = − .  0,zF =  since the wire is in the -direction.z  

(b) 2 2 2 2(1 82 N) (0 448 N) 1 88 N.x yF F F= + = . + . = .  

EVALUATE:   F
G

 must be perpendicular to the current direction, so F
G

 has no z-component. 
 27.67. IDENTIFY:   The magnetic field exerts a force on each of the three segments of the wire due to the current 

in them. The net force on the wire is the vector sum of these three forces. 
SET UP:   Label the three segments in the magnetic field 1, 2, and 3, as shown in Figure 27.67. The force 
on a current carrying conductor is sin ,F IlB φ=  where φ  is the angle between the direction of the current 
and the direction of the magnetic field. The direction of the force on each segment is given by the right-
hand rule and is shown in the figure. The sum of 1F

G
 and 3F

G
 is the same as the force 13F

G
 on a wire 

0.307 m long. Section 2 has length 0.800 m. The current in each segment is perpendicular to the magnetic 
field, so 90φ = °.  
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Figure 27.67 
 
 

EXECUTE:  13 sin (6 50 A)(0 307 m)(0 280 T)sin90 0 559 NF IlB φ= = . . . ° = . .  

2 sin (6 50 A)(0 800 m)(0 280 T)sin90 1 46 NF IlB φ= = . . . ° = . .  The forces and a coordinate system are 

shown in Figure 27.67b. 2F
G

 has been resolved into its x- and y-components. 

  Fx = F2x + F13x = −F2 cos60.0° = −(1.46 N)(cos60.0°) = −0.730 N.  

2 13 2 13sin60 0 (1 46 N)(sin60 0 ) 0 559 N 1 83 Ny y yF F F F F= + = . ° + = + . . ° + . = + . .  

,xF  
  
Fy ,  and the resultant total force F

G
 are shown in Figure 27.67c. The resultant force has magnitude 

1.97 N and is at 68 3. °  clockwise from the left-hand straight segment. 
EVALUATE:   Even though all three segments are perpendicular to the magnetic field, the direction of the 
force on the segments is not the same. Therefore we must use vector addition to find the force on the wire. 

 27.68. IDENTIFY:   The torque exerted by the magnetic field is .= ×Bτ µ
GG G  The torque required to hold the loop in 

place is .− Gτ  
SET UP:   .IAµ =  Gµ  is normal to the plane of the loop, with a direction given by the right-hand rule that is 
illustrated in Figure 27.32 in the textbook. sin ,IABτ φ=  where φ  is the angle between the normal to the 
loop and the direction of .B

G
 

EXECUTE:   (a) sin 60 (15 0 A)(0 060 m)(0 080 m)(0 48 T)sin 60 0 030 N m,IABτ = ° = . . . . ° = . ⋅  in the 

directˆ n.- io− j  To keep the loop in place, you must provide a torque in the directˆ n.- io+ j   

(b) sin 30 (15 0 A)(0 60 m)(0 080 m)(0 48 T)sin30 0 017 N m,IABτ = ° = . . . . ° = . ⋅  in the directˆ n.- io+ j  You 

must provide a torque in the direcˆ on- ti− j  to keep the loop in place. 
EVALUATE:   (c) If the loop was pivoted through its center, then there would be a torque on both sides of 
the loop parallel to the rotation axis. However, the lever arm is only half as large, so the total torque in 
each case is identical to the values found in parts (a) and (b). 

 27.69. IDENTIFY:   For the loop to be in equilibrium the net torque on it must be zero. Use = ×Bτ µ
GG G  to calculate 

the torque due to the magnetic field and sinmg mgrτ φ=  for the torque due to gravity. 
SET UP:   See Figure 27.69a (next page). 
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 Use 0,Aτ∑ =  where  
point A is at the origin. 

Figure 27.69a   
 

EXECUTE:   See Figure 27.69b. 
 

 sin (0 400 m)sin30 0 .mg mgr mgτ φ= = . . °  

The torque is clockwise; mg
Gτ  is 

directed into the paper. 

Figure 27.69b   
For the loop to be in equilibrium the torque due to B

G
 must be counterclockwise (opposite to mg

Gτ ) and it 

must be that .B mgτ τ=  See Figure 27.69c. 
 

 .B = ×B
GG Gτ µ  For this torque to be counter- 

clockwise ( B
Gτ  directed out of the paper),  

B
G

 must be in the -direction.y+  

Figure 27.69c   
 

sin sin 60 0 .B B IABτ µ φ= = . °  
 gives sin 60 0 (0 0400 m)sin30 0 .B mg IAB mgτ τ= . ° = . . °  

3(0 15 g/cm)2(8 00 cm 6 00 cm) 4 2 g 4 2 10  kg.m −= . . + . = . = . ×  
3 2(0 0800 m)(0 0600 m) 4 80 10  m .A −= . . = . ×  

(0 0400 m)(sin30 0 ) .
sin 60 0

mg
B

IA
. . °=

. °
 

3 2

3 2
(4 2 10  kg)(9 80 m/s )(0 0400 m)sin30 0 0 024 T.

(8 2 A)(4 80 10  m )sin 60 0
B

−

−
. × . . . °= = .

. . × . °
 

EVALUATE:   As the loop swings up the torque due to B
G

 decreases to zero and the torque due to mg 
increases from zero, so there must be an orientation of the loop where the net torque is zero. 

 27.70. IDENTIFY and SET UP:   The force on a current-carrying bar of length l is F = IlB if the field is 
perpendicular to the bar. The torque is sin .z Bτ µ φ=  
EXECUTE:   (a) The force on the infinitesimal segment is dF = IBdl = IBdx. The torque about point a is 

sin .zd xdF xIBdxτ φ= =  In this case, sinφ  = 1 because the force is perpendicular to the bar. 

(b) We integrate to get the total torque: 2
0

1 .
2

L
z xIBdx IBLτ = =∫  

(c) For F = ILB at the center of the bar, the torque is 21 ,
2 2 2z
L L

F ILB IBLτ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 which is the same 

result we got by integrating. 
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EVALUATE:   We can think of the magnetic force as all acting at the center of the bar because the magnetic 
field is uniform. This is the same reason we can think of gravity acting at the center of a uniform bar. 

 27.71. IDENTIFY:   Apply I= ×F l B
GG G

 to calculate the force on each side of the loop. 
SET UP:   The net force is the vector sum of the forces on each side of the loop. 
EXECUTE:   (a) (5 00 A)(0 600 m)(3 00 T)sin(0 ) 0 N.PQF = . . . ° =  

(5 00 A)(0 800 m)(3 00 T) sin(90 ) 12 0 N,RPF = . . . ° = .  into the page. 
(5 00 A)(1 00 m)(3 00 T)(0 800/1 00) 12 0 N,QRF = . . . . . = .  out of the page. 

(b) The net force on the triangular loop of wire is zero. 
(c) For calculating torque on a straight wire we can assume that the force on a wire is applied at the wire’s 
center. Also, note that we are finding the torque with respect to the PR-axis (not about a point), and 
consequently the lever arm will be the distance from the wire’s center to the x-axis. sinrFτ φ=  gives 

(0 N) 0,PQ rτ = =  (0 m) sin 0RP Fτ φ= =  and (0 300 m)(12 0 N)sin(90 ) 3 60 N m.QRτ = . . ° = . ⋅  The net 
torque is 3 60 N m.. ⋅  
(d) Using τ = NIAB sinφ  gives 

( )1
2sin (1)(5 00 A) (0 600 m)(0 800 m)(3 00 T)sin(90 ) 3 60 N m,NIABτ φ= = . . . . ° = . ⋅   which agrees with our 

result in part (c). 
(e) Since QRF  is out of the page and since this is the force that produces the net torque, the point Q will be 
rotated out of the plane of the figure. 
EVALUATE:   In the expression sin ,NIABτ φ=  φ  is the angle between the plane of the loop and the 
direction of .B

G
 In this problem, 90 .φ = °  

 27.72. IDENTIFY:   For rotational equilibrium, the torques due to gravity and the magnetic field must balance 
around point a. 

SET UP:    From Problem 27.70 we have 21 .
2z IBLτ =  

EXECUTE:   (a) Balancing the two torques gives: 21cos .
2 2
L

mg IBLθ =  Simplifying gives θ= cos .ILB mg  

Putting in the numbers gives  
I(0.150 T)(0.300 m) = (0.0120 kg)(9.80 m/s2)cos(30.0°), so I = 2.26 A.  
(b) Gravity tends to rotate the bar clockwise about point a, so the magnetic force must be upward and to 
the left to tend to rotate the bar clockwise. Therefore the current must flow from a to b. 
EVALUATE:   If the current were from b to a, the bar could not balance. 

 27.73. IDENTIFY:   Use   dF = Idl Bsinφ  to calculate the force on a short segment of the coil and integrate over the 
entire coil to find the total force. 
SET UP:   See Figures 27.73a and 27.73b. The two sketches show that the x-components cancel and that the 
y-components add. This is true for all pairs of short segments on opposite sides of the coil. The net 
magnetic force on the coil is in the y-direction and its magnitude is given by .yF dF= ∫  

 

 Consider the force dF
G

 on a short segment  
dl at the left-hand side of the coil, as viewed in  
the figure with the problem in the textbook. The  
current at this point is directed out of the page. dF

G
  

is perpendicular both to B
G

 and to the direction of I. 

Figure 27.73a   
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 Consider also the force d ′F
G

 on a short  
segment on the opposite side of the coil,  
at the right-hand side of the coil in the figure  
with the problem in the textbook. The current  
at this point is directed into the page. 

Figure 27.73b   
 

EXECUTE:   sin .dF Idl B φ=  But B
G

 is perpendicular to the current direction so 90 .φ = °  
cos30 0 cos30 0 .ydF dF IB dl= . = . °  

cos30 0 .yF dF IB dl= = . °∫ ∫  

But (2 ),dl N rπ=∫  the total length of wire in the coil.  

ˆcos30 0 (2 ) (0 950 A)(0 220 T)(cos30 0 )(50)2 (0 0078 m) 0 444 N and 0 444 NF IB N rπ π= . ° = . . . ° . = . = − .F j
G

( )

EVALUATE:   The magnetic field makes a constant angle with the plane of the coil but has a different 
direction at different points around the circumference of the coil so is not uniform. The net force is 
proportional to the magnitude of the current and reverses direction when the current reverses direction. 

 27.74. IDENTIFY and SET UP:   The rod is in rotational equilibrium, so the torques must balance. Take torques 

about point P and use 21
2z IBLτ =  from Problem 27.70. 

EXECUTE:   Balancing torques gives 21cos sin ,
2 2
L

mg IBL T Lθ θ+ =  where L is the length of the bar and T 

is the tension in the string. Solving for T and putting in the numbers gives 
T = [(0.0840 kg)(9.80 m/s2) cos(53.0°) + (12.0 A)(0.120 T)(0.180 m)]/[2 sin(53.0°)] = 0.472 N. 
EVALUATE:   If the current were reversed, the tension would be less than 0.472 N. 

 27.75. IDENTIFY:   Apply d Id= ×F l B
GG G

 to each side of the loop. 
SET UP:   For each side of the loop, dl

G
 is parallel to that side of the loop and is in the direction of I. Since 

the loop is in the xy-plane, 0z =  at the loop and 0yB =  at the loop. 
EXECUTE:   (a) The magnetic field lines in the yz-plane are sketched in Figure 27.75. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
020 0

ˆ ˆ.
L L B y dy

Id I B LI
L

= × = =∫ ∫
GG G

F l B i i  

Side 2, that runs from (0,L) to (L,L): 0
00, 0,

ˆ ˆ.
L L

y L y L

B y dx
Id I IB L

L= =
= × = = −∫ ∫F l B j j

GG G
 

Side 3, that runs from (L,L) to (L,0): 
0 0 0 1

02, ,
ˆ ˆ( ) .

L x L L x L

B y dy
Id I IB L

L= =
= × = − = −∫ ∫F l B i i

GG G
 

Side 4, that runs from (L,0) to (0,0): 
0 0 0
, 0 , 0

ˆ 0.
L y L y

B y dx
Id I

L= =
= × = =∫ ∫F l B j

GG G
 

(c) The sum of all forces is total 0
ˆ.IB L= −F j

G
 

EVALUATE:   The net force on sides 1 and 3 is zero. The force on side 4 is zero, since 0y =  and 0z =  at 
that side and therefore 0B =  there. The net force on the loop equals the force on side 2. 
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Figure 27.75 

 27.76. IDENTIFY:   q
I

t
∆=
∆

 and .IAµ =  

SET UP:   The direction of Gµ  is given by the right-hand rule that is illustrated in Figure 27.32 in the 
textbook. I is in the direction of flow of positive charge and opposite to the direction of flow of negative 
charge. 

EXECUTE:   (a) .
2 3

u
u

dq q q v ev
I

dt t r rπ π
∆= = = =
∆

 

(b) 2 .
3 3u u
ev evr

I A r
r

µ π
π

= = =  

(c) Since there are two down quarks, each of half the charge of the up quark, .
3d u

evrµ µ= =  Therefore, 

total
2 .

3
evrµ =  

(d) 
27 2

7
19 15

3 3(9 66 10 A m ) 7 55 10 m/s.
2 2(1 60 10 C)(1 20 10 m)

v
er
µ −

− −
. × ⋅= = = . ×

. × . ×
 

EVALUATE:   The speed calculated in part (d) is 25% of the speed of light.  
 27.77. IDENTIFY:   Use U = − ⋅

GG Bµ  to relate , ,  and U µ 
G
B  and use = ×B

GG Gτ µ  to relate , , and . 
GG G Bτ µ  We also know 

that 2 2 2 2
0 .x y zB B B B= + +  This gives three equations for the three components of .B

G
 

SET UP:   The loop and current are shown in Figure 27.77. 
 

 
Gµ  is into the plane of the paper,  

in the -direction.z−  

Figure 27.77   

EXECUTE:   (a) ˆ ˆ.IAµ= − = −G k kµ  

(b) ˆ ˆ( 4 3 ),D= + −i jGτ  where 0.D >  
ˆ ˆ ˆ ˆ, .x y yIA B B B= −  = + +
GG k B i j kµ  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ) .x y z y xIA B B B IAB IAB= × = − × + × + × = −
GG G B k i k j k k i jτ µ  

Compare this to the expression given for :Gτ 4  so 4 /  and 3  so 3 / .y y x xIAB D B D IA IAB D B D IA= = − = − =  

zB  doesn’t contribute to the torque since Gµ  is along the z-direction. But 0B B=  and 2 2 2 2
0 ;x y zB B B B+ + =  

with 0 13 / .B D IA=  Thus 2 2 2
0 ( / ) 169 9 16 12( / ).z x yB B B B D IA D IA= ± − − = ± − − = ±  

That .U = − B
GGµ  is negative determines the sign of :zB ˆ ˆ ˆ ˆ( ) ( ) .x y z zU IA B B B IAB= − ⋅ = − − ⋅ + + = +B k i j k

GGµ  

So U negative says that zB  is negative, and thus 12 / .zB D IA= −  
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EVALUATE:    Gµ  is along the z-axis so only and x yB B  contribute to the torque. xB  produces a  

y-component of Gτ  and yB  produces an x-component of .Gτ  Only zB  affects U, and U is negative when 

 and zB
GGµ  are parallel. 

 27.78. IDENTIFY:   The ions are accelerated from rest. When they enter the magnetic field, they are bent into a 
circular path. Newton’s second law applies to the ions in the magnetic field. 

SET UP:    
  
K = 1

2
mv2 = qV. ,mv

R
qB

=  where q is the magnitude of the charge. 

EXECUTE:   (a) As the ions are accelerated through the potential difference V, we have 
  
K = 1

2
mv2  = qV, 

which gives 2 .qV
v

m
=  In the magnetic field, .mv

R
qB

=  Using the v we just found gives 

2 2 1 2 .= = = =mv m qV m V m
R V

qB qB m q B B q
 From this result we see that a graph of R versus V  

should be a straight line with a slope equal to 1 2 .m
B q

 

(b) The graph of R versus V  is shown in Figure 27.78. The slope of the best-fit line is 

–1/2(6.355 cm)/ kV (0.06355 m)/ 1000 V 0.00201 m V .= = ⋅  We know that 1 2m
B q

 = slope, so 

6
2 1/2 2

2 2 7.924 10  C/kg,
[ (slope)] [(0.250 T)(0.00201 m V ]

q
m B

−
−= = = ×

⋅
 which rounds to × 67.92 10  C/kg.  

 

19
3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60

21

20

25

24

23

22

26

27

28

29

R 
 (cm)

V (kV)½  

Figure 27.78 
 

(c) Use our result for q/m: 2qV
v

m
=  = 3 6 52(20.0 10  V)(7.924 10  C/kg) 5.63 10  m/s.× × = ×  

(d) Since 1 2 ,m
R V

B q
=  doubling q means that R is smaller by a factor of 2.  Therefore  

(21.1 cm)/ 2 15.0 cm.R = =  
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EVALUATE:   Besides the approach we have taken, the equation 1 2m
R V

B q
=  can be graphed in other 

ways to obtain a straight line. For example, we could graph R2 versus V, or even logR versus logV. Ideally 
they should all give the same result for q/m. But differences can arise because we are dealing with less-
than-ideal data points. 

 27.79. IDENTIFY and SET UP:   The analysis in the text of the Thomson e/m experiment gives 
2

2 .
2

e E
m VB

=  For a 

particle of charge e and mass m accelered through a potential V, eV = 21
2 .mv  

EXECUTE:   (a) Solving the equation  
2

22
e E
m VB

=  for E2 gives 2 22 .e
E B V

m
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Therefore a graph of 2E  

versus V should be a straight line with slope equal to 2(e/m)B2. 
(b) We can find the slope using two easily-read points on the graph. Using (100, 200) and (300, 600), we 

get 
8 2 2 8 2 2

8 2600 10  V /m  – 200 10  V /m 2.00 10  V/m
300 V – 100 V

× × = ×  for the slope. This gives 

e/m = (slope)/2B2 = 8 2(2.00 10 V/m )× /[2(0.340 T)2] = 88.65 10 C/kg,×  which gives 281.85 10 kg.m −= ×  

(c) V = Ed = 5(2.00 10 V/m)× (0.00600 m) = 1.20 kV. 

(d) Using eV =
  
1
2

mv2  to find the muon speed gives 

8 52 2(8.65 10  C/kg)(400 V) 8.32 10  m/s.eV
v

m
= = × = ×  

EVALUATE:   Results may vary due to inaccuracies in determining the slope of the graph. 

 27.80. IDENTIFY and SET UP:   If q is the magnitude of the charge, the cyclotron frequency is ,qB
m

ω =  where  

ω  = 2πf, and R = mv/qB. 

EXECUTE:   (a) Combining qB
m

ω =  and ω  = 2πf gives 1 .
2

q
f B

mπ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Therefore a graph of f versus B 

should be a straight line having slope equal to q/2πm  = (2e)/2πm = e/πm. Solving for m gives 

.
(slope)

e
m

π
=  We use two points on the graph to calculate the slope, giving 67.667 10 Hz/T.×  Therefore 

(slope)
e

m
π

=  = e/ 6 27[ (7.667 10 Hz/T)] 6.65 10 kg.π −× = ×  

(b) Apply 1
2

q
f B

mπ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 = qB/2πm  to the electron and the proton.  

Electron: 19 31 9
e (1.602 10 C)(0.300 T)/[2 (9.11 10 kg)] 8.40 10 Hz 8.40 GHz.f π− −= × × = × =  

Proton: 19 27 6
p (1.602 10 C)(0.300 T)/[2 (1.67 10 kg)] 4.58 10 Hz 4.58 MHz.f π− −= × × = × =  

For an alpha particle, q = 2e and m ≈ 4mp, so q/m for an alpha particle is (2e)/(4mp) = 1
2  of what it is for a 

proton. Therefore p
1
2

f fα =  = 2.3 MHz. 

For an alpha particle, q = 2e and m = 4(1836)me, so q/m for an alpha particle is 2/[4(1836)] = 1/[2(1836)] 

what it is for an electron. Therefore e e
1 1

2(1836) 3672
f f fα = =  = 2.3 MHz. 

(c) R = mv/qB gives v = RqB/m = (0.120 m) 19 27(3.2 10 C)(0.300 T)/(6.65 10 kg)− −× ×  = 61.73 10 m/s.×  
2 27 6 2 14 51

2 (1/2)(6.65 10 kg)(1.73 10 m/s)  = 1.0 10 J 6.25 10 eV 625 keV 0.625 MeV.K mv − −= = × × × = × = =

EVALUATE:   We could use v = Rω to find v in part (c), where ω = 2πf. 
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 27.81. IDENTIFY and SET UP:   In the magnetic field, .mv
R

qB
=  Once the particle exits the field it travels in a 

straight line. Throughout the motion the speed of the particle is constant. 

EXECUTE:   (a) 
11 5

6
(3 20 10 kg)(1 45 10 m/s) 5 14 m.

(2 15 10 C)(0 420 T)
mv

R
qB

−

−
. × . ×= = = .

. × .
 

(b) See Figure 27.81. The distance along the curve, ,d  is given by .d Rθ=  0 25 msin ,
5 14 m

θ .=
.

 so 

2 79 0 0486 rad.θ = . ° = .  (5 14 m)(0 0486 rad) 0 25 m.d Rθ= = . . = .  And 

6
5

0 25 m 1 72 10 s.
1 45 10  m/s

d
t

v
−.= = = . ×

. ×
 

(c) 3
1 tan( /2) (0 25 m)tan(2 79 /2) 6 08 10 m.x d θ −∆ = = . . ° = . ×  

(d) 1 2,x x x∆ = ∆ + ∆  where 2x∆  is the horizontal displacement of the particle from where it exits the field 
region to where it hits the wall. 2 (0 50 m) tan 2 79 0 0244 m.x∆ = . . ° = .  Therefore, 

36 08 10  m 0 0244 m 0 0305 m.x −∆ = . × + . = .  
EVALUATE:   d is much less than R, so the horizontal deflection of the particle is much smaller than the 
distance it travels in the y-direction. 

 

 
Figure 27.81 

 

 27.82. IDENTIFY:   The electric and magnetic fields exert forces on the moving charge. The work done by the 

electric field equals the change in kinetic energy. At the top point, 
2

y
v

a
R

=  and this acceleration must 

correspond to the net force. 
SET UP:   The electric field is uniform so the work it does for a displacement y in the y-direction is 

.W Fy qEy= =  At the top point, BF
G

 is in the -directiony−  and EF
G

 is in the +y-direction. 
EXECUTE:   (a) The maximum speed occurs at the top of the cycloidal path, and hence the radius of 
curvature is greatest there. Once the motion is beyond the top, the particle is being slowed by the electric 
field. As it returns to 0,y =  the speed decreases, leading to a smaller magnetic force, until the particle 
stops completely. Then the electric field again provides the acceleration in the -directiony  of the particle, 
leading to the repeated motion. 

(b) 21
2

W qEy mv= =  and 2 .qEy
v

m
=  

(c) At the top, 
2 2 .

2y
mv m qEy

F qE qvB qE
R y m

= − = − = − = −  2qE qvB=  and 2 .E
v

B
=  

EVALUATE:   The speed at the top depends on B because B determines the y-displacement and the work 
done by the electric force depends on the y-displacement. 

 27.83. IDENTIFY and SET UP:   The torque on a magnetic moment is sin .Bτ µ φ=  

EXECUTE:     τ = µBsinφ = 26 26(1.4 10 J/T)(2 T)(sin90°) 2.8 10 N m,− −× = × ⋅   which is choice (c). 
EVALUATE:   The value we have found is the maximum torque. It could be less, depending on the 
orientation of the proton relative to the magnetic field. 

 27.84. IDENTIFY and SET UP:   For the nucleus to have a net magnetic moment, it must have an odd number of 
protons and neutrons. 
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EXECUTE:   Only 31
15P has an odd number of protons and neutrons, so choice (d) is correct. 

EVALUATE:   All the other choices have an even number of protons and an even number of neutrons. 
 27.85. IDENTIFY and SET UP:   Model the nerve as a current-carrying bar in a magnetic field. The resistance of the 

nerve is ,L
R

A
ρ=  the current through it is I = V/R (by Ohm’s law), and the maximum magnetic force on it 

is F = ILB. 

EXECUTE:   The resistance is 2(0.6 m)(0.001 m)/[ (0.0015/2 m) ] 340 .L
R

A
ρ π= = Ω ⋅ = Ω   

The current is I = V/R = (0.1 V)/(340 Ω) = 42.9 10 A.−×   

The maximum force is F = ILB = 4 7 7(2.9 10 A)(0.001 m)(2 T) 5.9 10 N 6 10 N,− − −× = × ≈ ×  which is  
choice (a). 
EVALUATE:   This is the force on a 1-mm segment of nerve. The force on the entire nerve would be 
somewhat larger, depending on the length of the nerve.  
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 28.1. IDENTIFY and SET UP:   Use 0
2

ˆ
4

q
r

µ
π

×= v rB
GG

 to calculate B
G

 at each point. 

0 0
2 3

ˆ ˆ, since .
4 4

q q
rr r

µ µ
π π

× ×= = =v r v r rB r
G G G GG

 

6 ˆ(8 00 10  m/s)= . ×v jG  and rG  is the vector from the charge to the point where the field is calculated. 

EXECUTE:   (a) ˆ(0 500 m) , 0 500 m.r= .  = .Gr i  
ˆ ˆ ˆvr vr .× = × = −G Gv r j i k  

6 6
70

2 2
(6 00 10  C)(8 00 10  m/s)ˆ ˆ(1 10  T m/A)

4 (0 500 m)
qv

.
r

µ
π

−
− . × . ×= − = − × ⋅

.

G
B k k  

5 ˆ(1 92 10  T) .−= − . ×
G
B k  

(b) ˆ(0 500 m) , 0 500 mr .= − .  = .Gr j  
ˆ ˆ 0 and 0.vr× = − × = =v r j j B

GG G  

(c) ˆ(0 500 m) , 0 500 m.r= .  = .Gr k  
ˆ ˆ ˆvr vr .× = × =G Gv r j k i  

6 6
7 5

2
(6 00 10  C)(8 00 10  m/s) ˆ ˆ(1 10  T m/A) (1 92 10  T)

(0 500 m)
.

−
− −. × . ×= × ⋅ = + . ×

.

G
B i i  

(d) 2 2ˆ ˆ(0 500 m) (0 500 m) , (0 500 m) (0 500 m) 0 7071 mr .= − . + .  = . + . = .Gr j k  
6 2ˆ ˆ ˆ ˆ ˆ(0.500 m)( ) (4.00 10 m /s)v .× = − × + × = ×G Gv r j j j k i  

6 6 2
7 6

3
(6 00 10  C)(4 00 10  m /s) ˆ ˆ(1 10  T m/A) (6 79 10  T)

(0 7071 m)
.

−
− −. × . ×= × ⋅ = + . ×

.

G
B i i  

EVALUATE:   At each point B
G

 is perpendicular to both vG  and .rG  0B =  along the direction of .vG  
 28.2. IDENTIFY:   A moving charge creates a magnetic field as well as an electric field. 

SET UP:   The magnetic field caused by a moving charge is 0
2

sin ,
4

qv
B

r
µ φ
π

=  and its electric field is 

  
E = 1

4πε0

e

r2
 since .q e=  

EXECUTE:   Substitute the appropriate numbers into the above equations. 
7 19 6

0
2 11 2

sin 4 10  T m/A (1 60 10 C)(2 2 10 m/s)sin90 13 T,
4 4 (5 3 10 m)

qv
B

r
µ φ π
π π

− −

−
× ⋅ . × . × °= = =

. ×
 out of the page. 

SOURCES OF MAGNETIC FIELD 

28
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9 2 2 19
11

2 11 2
0

1 (9 00 10 N m /C )(1 60 10 C) 5 1 10 N/C,
4 (5 3 10 m)

e
E

rπ

−

−
. × ⋅ . ×= = = . ×

. ×
 toward the electron. 

EVALUATE:   There are enormous fields within the atom! 
 28.3. IDENTIFY:   A moving charge creates a magnetic field. 

SET UP:   The magnetic field due to a moving charge is 0
2

sin .
4

qv
B

r
µ φ
π

=  

EXECUTE:   Substituting numbers into the above equation gives 

(a) 
7 19 7

0
2 6 2

sin 4 10  T m/A (1 6 10 C)(3 0 10 m/s)sin30 .
4 4 (2 00 10 m)

qv
B

r
µ φ π
π π

− −

−
× ⋅ . × . × °= =

. ×
 

–86.00 10 T, out of the paper,  and it is the same at point .B B= ×  

(b) –7 –19 7 –6 2(1.00 10  T m/A)(1.60 10  C)(3.00 10  m/s)/(2.00 10  m)B .= × ⋅ × × ×   
–71.20 10  T,B = ×  out of the page. 

(c) 0 T since sin(180 ) 0.B = ° =  
EVALUATE:   Even at high speeds, these charges produce magnetic fields much less than the earth’s 
magnetic field. 

 28.4. IDENTIFY:   Both moving charges produce magnetic fields, and the net field is the vector sum of the two 
fields. 
SET UP:   Both fields point out of the paper, so their magnitudes add, giving 

0
alpha el 2 ( sin 40 2 sin140 )

4
v

B B B e e .
r

µ
π

= + = ° + °  

EXECUTE:   Factoring out an e and putting in the numbers gives 
7 19 5

9 2
4 10  T m/A (1 60 10 C)(2 50 10 m/s) (sin 40 2sin140 )

4 (8.65 10 m)
B .

π
π

− −

−
× ⋅ . × . ×= ° + °

×
 

  B = 1.03 × 10−4  T = 0.103 mT, out of the page.  
EVALUATE:   At distances very close to the charges, the magnetic field is strong enough to be important. 

 28.5. IDENTIFY:   Apply 0
3 .

4
q

r
µ
π

×= v rB
G GG

 

SET UP:   Since the charge is at the origin, ˆ ˆ ˆ.x y z= + +r i j kG  

EXECUTE:   (a) ˆ, ;v r= =v i r i
GG G 0, 0.B× = =v rG G  

(b) ˆ ˆ, ;v r= =v i r jG G ˆ, 0 500 m.vr r× =  = .v r kG G  

7 2 2 6 5
60

2 2
(1 0 10  N s /C )(4 80 10  C)(6 80 10  m/s) 1 31 10  T.

4 (0 500 m)
q v

B
r

µ
π

− −
−. × ⋅ . × . ×⎛ ⎞= = = . ×⎜ ⎟ .⎝ ⎠

 

q is negative, so 6 ˆ(1 31 10  T) .−= − . ×B k
G

 

(c) ˆ ˆ ˆ, (0 500 m)( );v= = . +v i r i jG G ˆ(0 500 m) , 0 7071 m.v r× = .  = .v r kG G  

( )
7 2 2 6 5

30
3

(1 0 10  N s /C )(4 80 10  C)(0 500 m)(6 80 10  m/s)/ .
4 (0 7071 m)

B q r
µ
π

− −. × ⋅ . × . . ×⎛ ⎞= × =⎜ ⎟ .⎝ ⎠
v rG G  

74 62 10  T.B −= . ×  7 ˆ(4 62 10  T) .−= − . ×B k
G

 

(d) ˆ ˆ, ;v r= =v i r kG G ˆ, 0 500 mvr r .× = − = .G Gv r j  

7 2 2 6 5
60

2 2
(1 0 10  N s /C )(4 80 10  C)(6 80 10  m/s) 1 31 10  T.

4 (0 500 m)
q v

B
r

µ
π

− −
−. × ⋅ . × . ×⎛ ⎞= = = . ×⎜ ⎟ .⎝ ⎠
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6 ˆ(1 31 10  T) .−= . ×B j
G

 

EVALUATE:   In each case, B
G

 is perpendicular to both rG  and .vG  

 28.6. IDENTIFY:   Apply 0
3 .

4
q

r
µ
π

×= v rB
G GG

 For the magnetic force, apply the results of Example 28.1, except here 

the two charges and velocities are different. 

SET UP:   In part (a), r d=  and rG  is perpendicular to vG  in each case, so 3 2 .v
r d

×
=

v rG G
 For calculating the 

force between the charges, 2 .r d=  

EXECUTE:   (a) 0
total 2 2 .

4
qv q v

B B B
d d

µ
π

′ ′⎛ ⎞= + ′ = +⎜ ⎟
⎝ ⎠

 

6 6 6 6
40

2 2
(8 0 10  C)(4 5 10  m/s) (3 0 10  C)(9 0 10  m/s) 4 38 10  T.

4 (0 120 m) (0 120 m)
B

µ
π

− −
−⎛ ⎞. × . × . × . ×= + = . ×⎜ ⎟⎜ ⎟. .⎝ ⎠

 

The direction of B
G

 is into the page. 
(b) Following Example 28.1 we can find the magnetic force between the charges: 

6 6 6 6
70

2 2
(8 00 10 C)(3 00 10 C)(4 50 10 m/s)(9 00 10 m/s)(10 T m/A)

4 (0 240 m)B
qq vv

F .
r

µ
π

− −
−′ ′ . × . × . × . ×= = ⋅

.
 

31 69 10  N.BF −= . ×  The force on the upper charge points up and the force on the lower charge points 
down. The Coulomb force between the charges is 

6 6
9 2 21 2

C 2 2
(8.0 10  C)(3.0 10 C)(8.99 10 N m /C ) 3.75 N.

(0.240 m)
q q

F k
r

− −× ×= = × ⋅ =  The force on the upper charge 

points up and the force on the lower charge points down. The ratio of the Coulomb force to the magnetic 

force is 
2

3C
3

1 2

3 75 N 2 22 10 ;
1 69 10  NB

F c
F v v −

.= = = . ×
. ×

 the Coulomb force is much larger. 

(c) The magnetic forces are reversed in direction when the direction of only one velocity is reversed but the 
magnitude of the force is unchanged. 
EVALUATE:   When two charges have the same sign and move in opposite directions, the force between 
them is repulsive. When two charges of the same sign move in the same direction, the force between them 
is attractive. 

 28.7. IDENTIFY:   A moving charge creates a magnetic field. 

SET UP:   Apply 0
3 .

4
q

r
µ
π

×= v rB
G GG

 ˆ ˆ(0 200 m) ( 0 300 m) ,= . + − .r i jG  and 0 3606 m.r = .  

EXECUTE:   4 4ˆ ˆ ˆ ˆ[(7 50 10 m/s) ( 4 90 10 m/s) ] [(0 200 m) ( 0 300 m) ],× = . × + − . × × . + − .v r i j i jG G
 which simplifies to 

4 2 3 2 4 2ˆ ˆ ˆ( 2 25 10  m /s) (9 80 10  m /s) ( 1 27 10  m /s) .× = − . × + . × = − . ×v r k k kG G

6 4 2
7 8

3
( 3 00 10  C)( 1 27 10  m /s) ˆ ˆ(1 00 10  T m/A) (9 75 10  T) .

(0 3606 m)

−
− −− . × − . ×= . × ⋅ = . ×

.
B k k
G

 

EVALUATE:   We can check the direction of the magnetic field using the right-hand rule, which shows  
that the field points in the  +z-direction. 

 28.8. IDENTIFY:   Both moving charges create magnetic fields, and the net field is the vector sum of the two. The 
magnetic force on a moving charge is mag sinF qvB φ=  and the electrical force obeys Coulomb’s law. 

SET UP:   The magnetic field due to a moving charge is 0
2

sin .
4

qv
B

r
µ φ
π

=  

EXECUTE:   (a) Both fields are into the page, so their magnitudes add, giving 

0
e p 2 2

e p
sin90

4
ev ev

B B B .
r r

µ
π
⎛ ⎞
⎜ ⎟= + = + °
⎜ ⎟
⎝ ⎠
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190
9 2 9 2

1 1(1 60 10 C)(735,000 m/s)
4 (5 00 10 m) (4 00 10 m)

B .
µ
π

−
− −

⎡ ⎤
= . × +⎢ ⎥

. × . ×⎣ ⎦
 

–31.21 10  T 1.21 mT, into the page.B = × =  

(b) Using 0
2

sin ,
4

qv
B

r
µ φ
π

=  where 41 nm and 180 arctan(5/4) 128.7 ,r φ= = ° − = °  we get 

  
B = 4π × 10−7  T ⋅ m/A

4π
(1.6 × 10−19 C)(735,000 m/s)sin128.7°

( 41 × 10−9 m)2
= 2.24 × 10−4  T,  into the page. 

(c) 
  
Fmag = qvBsin90° = (1.60 × 10−19  C)(735,000 m/s)(2.24 × 10−4  T) = 2.63 × 10−17  N,  in the   

+x-direction. 

  
Felec = (1/4πε0 )e2 /r2 = (9.00 × 109 N ⋅ m2 /C2 )(1.60 × 10−19 C)2

( 41 × 10−9 m)2
= 5.62 × 10−12  N,  at 129° 

counterclockwise from the +x-axis.  
EVALUATE:   The electric force is over 200,000 times as strong as the magnetic force. 

   28.9. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

Idl
dB

r
µ φ
π

=  

EXECUTE:   Applying the law of Biot and Savart gives 

(a) 
7

–7 
2

4 10  T m/A (10 0 A)(0 00110 m) sin90 4.40 10 T,
4 (0 0500 m)

dB
π

π

−× ⋅ . . °= = ×
.

 out of the paper. 

(b) The same as above, except 2 2(5.00 cm) (14.0 cm)r = +  and arctan(5/14) 19.65 ,φ = = °  giving 
–81.67 10  T,dB = ×  out of the page. 

(c) 0 since 0 .dB φ= = °  
EVALUATE:   This is a very small field, but it comes from a very small segment of current. 

 28.10. IDENTIFY:   Apply the Biot-Savart law. 

SET UP:   Apply 0
3 .

4
qd

d
r

µ
π

×= l rB
G GG

   r = (−0.730 m)2 + (0.390 m)2 = 0.8276 m.  

EXECUTE:    
3 4 2 4 2ˆ ˆ ˆ ˆ ˆ[0 500 10  m] [( 0 730 m) (0 390 m) ] ( 3 65 10  m ) ( 1 95 10  m )d .− − −× = . × × − . + . = + . × + + . ×

G Gl r j i k k i

7 4 2 4 2
3

5.40 A ˆ ˆ(1 00 10  T m/A) [(3 65 10  m ) (1 95 10  m ) ].
(0 8276 m)

d − − −= . × ⋅ . × + . ×
.

B k i
G

10 10ˆ ˆ(1.86 10  T) (3.48 10  T) .d − −= × + ×B i k
G

 
EVALUATE:   The magnetic field lies in the xz-plane. 

 

 28.11. IDENTIFY and SET UP:  The magnetic field produced by an infinitesimal current element is given 

by 0
2

ˆ
.

4
I

d
r

µ
π

×= l rB
G

G
 

As in Example 28.2, use 0
2

ˆ
4

I
d

r
µ
π

×= l rB
GG

 for the finite 0.500-mm segment of wire since the 

0 500-mml∆ = .  length is much smaller than the distances to the field points. 

0 0
2 3

ˆ
4 4

I I
r r

µ µ
π π

∆ × ∆ ×= =l r l rB
G G GG

 

I is in the 3 ˆ-direction, so (0 500 10  m)z l .−+ ∆ = . ×
G

k  
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EXECUTE:   (a) The field point is at 2.00 m, 0,  0x y z= = =  so the vector rG  from the source point  

(at the origin) to the field point is ˆ(2 00 m) .= .r iG  
3 3 2ˆ ˆ ˆ(0 500 10  m)(2 00 m) (1 00 10  m ) .− −∆ × = . × . × = + . ×

G Gl r k i j  
7 3 2

11
3

(1 10  T m/A)(4 00 A)(1 00 10  m ) ˆ ˆ(5 00 10  T)
(2 00 m)

.
− −

−× ⋅ . . ×= = . ×
.

G
B j j  

(b) ˆ(2 00 m) , 2 00 m.r= . = .r jG  
3 3 2ˆ ˆ ˆ(0 500 10  m)(2 00 m) (1 00 10  m ) .− −∆ × = . × . × = − . ×

G Gl r k j i  
7 3 2

11
3

(1 10  T m/A)(4.00 A)( 1.00 10  m ) ˆ ˆ( .00 10  T)
(2.00 m)

.
− −

−× ⋅ − ×= = − ×
G
B i i5  

(c) ˆ ˆ(2 00 m)( ), 2(2 00 m).r= . + = .r i jG  
3 3 2ˆ ˆ ˆ ˆ ˆ(0 500 10  m)(2 00 m) ( ) (1 00 10  m )( ).− −∆ × = . × . × = . × −

G Gl r k i + j j i  
7 3 2

11
3

(1 10  T m/A)(4 00 A)(1 00 10  m ) ˆ ˆ ˆ ˆ( ) ( 1.77 10  T)( )
[ 2(2 00 m)]

.
− −

−× ⋅ . . ×= − = − × −
.

B j i i j
G

 

(d) ˆ(2 00 m) , 2 00 m.r= . = .r kG  
3 ˆ ˆ(0 500 10  m)(2 00 m) 0; 0.−∆ × = . × . × = =l r k k B

G GG  

EVALUATE:   At each point B
G

 is perpendicular to both and .∆r l
GG  0B =  along the length of the wire. 

 28.12. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

Idl
dB

r
µ φ
π

=  

Both fields are into the page, so their magnitudes add. 
EXECUTE:   Applying the law of Biot and Savart for the 12.0-A current gives 

7
–8

2

2 50 cm(12 0 A)(0 00150 m)
4 10  T m/A 8 00 cm 8.79 10  T

4 (0 0800 m)
dB .

π
π

−
.⎛ ⎞. . ⎜ ⎟× ⋅ .⎝ ⎠= = ×

.
 

The field from the 24.0-A segment is twice this value, so the total field is –72.64 10  T,× into the page. 
EVALUATE:   The rest of each wire also produces field at P. We have calculated just the field from the two 
segments that are indicated in the problem. 

 28.13. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

Idl
dB

r
µ φ
π

=  Both fields are into the page, so their 

magnitudes add. 

EXECUTE:   Applying the Biot and Savart law, where 2 21
2 (3 00 cm) (3 00 cm) 2.121cm,r = . + . =  we have 

7
–5

2
4 10  T m/A (28 0 A)(0 00200 m)sin 45 02 1.76 10  T,

4 (0 02121 m)
dB

π
π

−× ⋅ . . . °= = ×
.

 into the paper. 

EVALUATE:   Even though the two wire segments are at right angles, the magnetic fields they create are in 
the same direction. 

 28.14. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

Idl
dB

r
µ φ
π

=  All four fields are of equal magnitude and 

into the page, so their magnitudes add. 
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EXECUTE:   
7

–6
2

4 10  T m/A (8 00 A)(0 00120 m) sin904 1.54 10  T = 1.54 T,
4 (0 0500 m)

dB
π µ

π

−× ⋅ . . °= = ×
.

 into  

the page. 
EVALUATE:   A small current element causes a small magnetic field. 

 28.15. IDENTIFY:   We can model the lightning bolt and the household current as very long current-carrying wires. 

SET UP:   The magnetic field produced by a long wire is 0 .
2

I
B

r
µ
π

=  

EXECUTE:   Substituting the numerical values gives 

(a) 
7

–4(4 10  T m/A)(20,000 A) 8 10  T
2 (5 0 m)

B .
π

π

−× ⋅= = ×
.

 

(b) 
7

–5(4 10  T m/A)(10 A) 4.0 10  T.
2 (0 050 m)

B
π

π

−× ⋅= = ×
.

 

EVALUATE:   The field from the lightning bolt is about 20 times as strong as the field from the household 
current. 

 28.16. IDENTIFY:   The long current-carrying wire produces a magnetic field. 

SET UP:   The magnetic field due to a long wire is 0 .
2

I
B

r
µ
π

=  

EXECUTE:   First find the current: 18 –19(8.20 10  el/s)(1.60 10  C/el) 1.312 A.I = × × =  

Now find the magnetic field: 
7

–6 (4 10  T m/A)(1.312 A) 6.56 10 T = 6.56 T.
2 (0 0400 m)

π µ
π

−× ⋅ = ×
.

 

Since electrons are negative, the conventional current runs from east to west, so the magnetic field above 
the wire points toward the north. 
EVALUATE:   This magnetic field is much less than that of the earth, so any experiments involving such a 
current would have to be shielded from the earth’s magnetic field, or at least would have to take it into 
consideration. 

 28.17. IDENTIFY:   We can model the current in the heart as that of a long straight wire. It produces a magnetic 
field around it. 

SET UP:   For a long straight wire, 7 40
0. 4 10 T m/A. 1 gauss 10 T.

2
I

B
r

µ µ π
π

− −= = × ⋅ =  

EXECUTE:   Solving for the current gives 

  
I = 2πrB

µ0
= 2π (0.050 m)(1.0 × 10−9 T)

4π × 10−7 T ⋅ m/A
= 25 × 10−5 A = 250 µA.  

EVALUATE:   By household standards, this is a very small current. But the magnetic field around the heart 

 (≈ 10 µG)  is also very small. 
 28.18. IDENTIFY:   The current in the transmission line creates a magnetic field. If this field is greater than 5% of 

the earth’s magnetic field, it will interfere with the navigation of the bacteria.  

SET UP:   0
2

I
B

r
µ
π

=  due to a long straight wire.  

EXECUTE:   We know the field is 5 6(0 05)(5 10  T) 2 5 10  T.B − −= . × = . ×  Solving 0
2

I
B

r
µ
π

=  for r gives 

70
6

100 A(2 10  T m/A) 8 m.
2 2 5 10  T

I
r

B
µ
π

−
−= = × ⋅ =

. ×
 

EVALUATE:   If the bacteria are within 8 m ( 25 ft)≈  of the cable, its magnetic field may be strong enough 
to affect their navigation. 

 28.19. IDENTIFY:   The long current-carrying wire produces a magnetic field. 

SET UP:   The magnetic field due to a long wire is 0 .
2

I
B

r
µ
π

=  

EXECUTE:   First solve for the current, then substitute the numbers using the above equation. 
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(a) Solving for the current gives 
4 7

02 / 2 (0.0200 m)(1.00 10 T)/(4 10 T m/A) 10.0 A.I rBπ µ π π− −= = × × ⋅ =  
(b) The earth’s horizontal field points northward, so at all points directly above the wire the field of the 
wire would point northward. 
(c) At all points directly east of the wire, its field would point northward. 
EVALUATE:   Even though the earth’s magnetic field is rather weak, it requires a fairly large current to 
cancel this field. 

 28.20. IDENTIFY:   For each wire 0 ,
2

I
B

r
µ
π

=  and the direction of B
G

 is given by the right-hand rule (Figure 28.6 in 

the textbook). Add the field vectors for each wire to calculate the total field. 
(a) SET UP:   The two fields at this point have the directions shown in Figure 28.20a. 

 

 EXECUTE:   At point P midway between  
the two wires the fields 1 2 and B B

G G
 due to  

the two currents are in opposite directions,  
so 2 1.B B B= −  

Figure 28.20a   
 

But 0
1 2 , so 0.

2
I

B B B
a

µ
π

= = =  

(b) SET UP:   The two fields at this point have the directions shown in Figure 28.20b. 
 

 EXECUTE:   At point Q above the upper  
wire 1 2and B B

G G
 are both directed out of  

the page ( -direction),z+  so 1 2.B B B= +  

Figure 28.20b   
 

0 0
1 2,

2 2 (3 )
I I

B B .
a a

µ µ
π π

= =  

( )0 0 01
3

2 2 ˆ1 ;
2 3 3

I I I
B .

a a a
µ µ µ
π π π

= + = =
G
B k  

(c) SET UP:   The two fields at this point have the directions shown in Figure 28.20c (next page). 
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 EXECUTE:   At point R below the lower  
wire 1 2and B B

G G
 are both directed into the  

page ( -direction),z−  so 1 2.B B B= +  

Figure 28.20c   
 

0 0
1 2,

2 (3 ) 2
I I

B B .
a a

µ µ
π π

= =  

( )0 0 01
1 3

2 2 ˆ1 ; .
2 3 3

I I I
B

a a a
µ µ µ
π π π

= + = = −B k
G

 

EVALUATE:   In the figures we have drawn, B
G

 due to each wire is out of the page at points above the wire 
and into the page at points below the wire. If the two field vectors are in opposite directions the magnitudes 
subtract. 

 28.21. IDENTIFY:   The total magnetic field is the vector sum of the constant magnetic field and the wire’s 
magnetic field. 

SET UP:   For the wire, 0
wire 2

I
B

r
µ
π

=  and the direction of wireB  is given by the right-hand rule that is 

illustrated in Figure 28.6 in the textbook. 6
0

ˆ(1 50 10  T) .−= . ×B i
G

 

EXECUTE:   (a) At (0, 0, 1 m), 6 70 0
0

(8 00 A)ˆ ˆ ˆ ˆ(1 50 10  T) (1 0 10  T) .
2 2 (1 00 m)

I
r

µ µ
π π

− −.= − = . × − = − . ×
.

B B i i i i
G G

 

(b) At (1 m, 0, 0), 60 0
0

(8 00 A)ˆ ˆ ˆ(1 50 10  T) .
2 2 (1 00 m)

I
r

µ µ
π π

− .= + = . × +
.

B B k i k
G G

 

6 6 6ˆ ˆ(1 50 10  T) (1 6 10  T) 2 19 10  T, at 46 8θ− − −= . × + . × = . × = . °B i k
G

 from x to z. 

(c) At (0, 0, –0.25 m),  6 60 0
0

(8 00 A)ˆ ˆ ˆ ˆ(1 50 10  T) (7 9 10  T) .
2 2 (0 25 m)

I
r

µ µ
π π

− −.= + = . × + = . ×
.

B B i i i i
G G

 

EVALUATE:   At point c the two fields are in the same direction and their magnitudes add. At point a they 
are in opposite directions and their magnitudes subtract. At point b the two fields are perpendicular. 

 28.22. IDENTIFY:   The magnetic field is that of a long current-carrying wire. 

SET UP:   0 .
2

I
B

r
µ
π

=  

EXECUTE:   
7

60 (2 0 10  T m/A)(150 A) 3 8 10  T.
2 8 0 m

I
B

r
µ
π

−
−. × ⋅= = = . ×

.
 This is 7.5% of the earth’s field.  

EVALUATE:   Since this field is much smaller than the earth’s magnetic field, it would be expected to have 
less effect than the earth’s field. 

 28.23. IDENTIFY:   0 .
2

I
B

r
µ
π

=  The direction of B
G

 is given by the right-hand rule. 

SET UP:   Call the wires a and b, as indicated in Figure 28.23. The magnetic fields of each wire at points 
1P  and 2P  are shown in Figure 28.23a. The fields at point 3 are shown in Figure 28.23b. 

EXECUTE:   (a) At 1,P  a bB B=  and the two fields are in opposite directions, so the net field is zero. 

(b) 0 .
2a

a

I
B

r
µ
π

=  0 .
2b

b

I
B

r
µ
π

=  aB
G

 and bB
G

 are in the same direction so 
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7
60 1 1 (4 10  T m/A)(4 00 A) 1 1 6 67 10  T

2 2 0 300 m 0 200 ma b
a b

I
B B B .

r r
µ π

π π

−
−⎛ ⎞ × ⋅ . ⎡ ⎤= + = + = + = . ×⎜ ⎟ ⎢ ⎥. .⎣ ⎦⎝ ⎠

 

B
G

 has magnitude 6 67 Tµ.   and is directed toward the top of the page. 

(c) In Figure 28.25b, aB
G

 is perpendicular to ar
G  and bB

G
 is perpendicular to .br

G  5 cmtan
20 cm

θ =  and 

14 04 .θ = . °  2 2(0 200 m) (0 050 m) 0 206 ma br r= = . + . = .  and .a bB B=  
7

0 2(4 10  T m/A)(4 0 A)cos14 04cos cos 2 cos 2 cos 7 54 T
2 2 (0 206 m)a b a

a

I
B B B B

r
µ πθ θ θ θ µ
π π

−⎛ ⎞ × ⋅ . . °= + = = = = .  ⎜ ⎟ .⎝ ⎠
 

B has magnitude 7 53 Tµ.   and is directed to the left. 
EVALUATE:   At points directly to the left of both wires the net field is directed toward the bottom of  
the page. 

 

    

 Figure 28.23 
 

 28.24. IDENTIFY:   Each segment of the rectangular loop creates a magnetic field at the center of the loop, and all 
these fields are in the same direction. 

SET UP:   The field due to each segment is 
0

2 2

2 .
4

I a
B

x x a

µ
π

=
+

 B
G

 is into paper so I is clockwise around  

the loop. 
EXECUTE:   Long sides: 4 75 cm.a = . 2 10 cm.x = .  For the two long sides, 

2
7 5

2 2 2

2(4 75 10  m)2(1 00 10  T m/A) (1 742 10  T/A)
(2 10 10  m) (0 0210 m) (0 0475 m)

B I I
−

− −
−

. ×= . × ⋅ = . × .
. × . + .

 

Short sides: 2 10 cm.a = . 4 75 cm.x = .  For the two short sides, 
2

7 6
2 2 2

2(2 10 10  m)2(1 00 10  T m/A) (3 405 10  T/A)
(4 75 10  m) (0 0475 m) (0 0210 m)

B I I
−

− −
−

. ×= . × ⋅ = . × .
. × . + .

 

Using the known field, we have 5 5(2 082 10  T/A) 5 50 10  T,B I− −= . × = . ×  which gives 2 64 A.I = .  
EVALUATE:   This is a typical household current, yet it produces a magnetic field which is about the same 
as the earth’s magnetic field. 

 28.25. IDENTIFY:   The net magnetic field at the center of the square is the vector sum of the fields due to  
each wire. 

SET UP:   For each wire, 0
2

I
B

r
µ
π

=  and the direction of B
G

is given by the right-hand rule that is illustrated 

in Figure 28.6 in the textbook. 
EXECUTE:   (a) and (b) 0B =  since the magnetic fields due to currents at opposite corners of the square 
cancel. 
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(c) The fields due to each wire are sketched in Figure 28.25. 
0cos45 cos45 cos45 cos 45 4 cos45 4 cos45 .

2a b c d a
I

B B B B B B
r

µ
π

⎛ ⎞= ° + ° + ° + ° = ° = °⎜ ⎟
⎝ ⎠

 

2 2(10 cm) (10 cm) 10 2 cm 0 10 2 m,r = + = = .  so 
7

4(4 10 T m/A)(100 A)4 cos 45 4 0 10 T, to the left.
2 (0 10 2 m)

B
π

π

−
−× ⋅= ° = . ×

.
 

EVALUATE:   In part (c), if all four currents are reversed in direction, the net field at the center of the 
square would be to the right. 

 

 

Figure 28.25 
 

 28.26. IDENTIFY:   Use 
  
B =

µ0 I
2πr

 and the right-hand rule to determine the field due to each wire. Set the sum of 

the four fields equal to zero and use that equation to solve for the field and the current of the fourth wire. 
SET UP:   The three known currents are shown in Figure 28.26. 

 

 
1 2 3, ,⊗   ⊗   B B B
G G G

:  

0 ; 0 200 m
2

I
B r

r
µ
π

= = .  for each wire. 

Figure 28.26   
 

EXECUTE:   Let :  be the positive -direction.z 1 2 310 0 A, 8 0 A, 20 0 A.I I I= .  = .  = .  Then 
5

1 1 00 10  T,B −= . ×  5
2 0 80 10  T,B −= . ×  and 5

3 2 00 10  T.B −= . ×  
5 5 5

1z 2z 3z1 00 10  T, 0 80 10  T, 2 00 10  T.B B B− − −= − . × = − . × = + . ×  

1 2 3 4 0.z z z zB B B B+ + + =  
6

4 1 2 3( ) 2 0 10  T.z z z zB B B B −= − + + = − . ×  

To give 4  in the ⊗B
G

 direction the current in wire 4 must be toward the bottom of the page. 
6

0 4
4 4 7

0

(0 200 m)(2 0 10  T) so 2 0 A.
2 ( /2 ) (2 10  T m/A)

I rB
B I

r
µ
π µ π

−

−
. . ×= = = = .

× ⋅
 

EVALUATE:   The fields of wires #2 and #3 are in opposite directions and their net field is the same as due 
to a current 20.0 A – 8.0 A 12.0 A=  in one wire. The field of wire #4 must be in the same direction as that 
of wire #1, and 410 0 A 12 0 A.I. + = .  
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 28.27. IDENTIFY:   The net magnetic field at any point is the vector sum of the magnetic fields of the two wires. 

SET UP:   For each wire 0
2

I
B

r
µ
π

=  and the direction of B
G

 is determined by the right-hand rule described in 

the text. Let the wire with 12.0 A be wire 1 and the wire with 10.0 A be wire 2. 

EXECUTE:   (a) Point Q: 
7

50 1
1

1

(4 10 T m/A)(12.0 A) 1.6 10 T.
2 2 (0.15 m)

I
B

r
µ π

π π

−
−× ⋅= = = ×  

The direction of 1B
G

 is out of the page.
7

50 2
2

2

(4 10 T m/A)(10.0 A) 2.5 10 T.
2 2 (0.080 m)

I
B

r
µ π
π π

−
−× ⋅= = = ×  

The direction of 2B
G

 is out of the page. Since 1B
G

 and 2B
G

 are in the same direction, 
5

1 2 4 1 10  TB B B −= + = . ×  and B
G

 is directed out of the page. 

Point P: 5
1 1 6 10  T,B −= . ×  directed into the page. 5

2 2 5 10  T,B −= . ×  directed into the page. 
5

1 2 4 1 10  TB B B −= + = . ×  and B
G

 is directed into the page. 

(b) 1B
G

 is the same as in part (a), out of the page at Q and into the page at P. The direction of 2B
G

 is 
reversed from what it was in (a) so is into the page at Q and out of the page at P. 
Point Q: 1B

G
 and 2B

G
 are in opposite directions so 5 5 6

2 1 2 5 10  T 1 6 10  T 9 0 10  TB B B − − −= − = . × − . × = . ×  

and B
G

 is directed into the page. 
Point P: 1B

G
 and 2B

G
 are in opposite directions so 6

2 1 9 0 10  TB B B −= − = . ×  and B
G

 is directed out of  
the page. 
EVALUATE:   Points P and Q are the same distances from the two wires. The only difference is that the 
fields point in either the same direction or in opposite directions. 

 28.28. IDENTIFY:   Apply 
  

F
L

=
µ0 ′I I
2πr

 for the force from each wire. 

SET UP:   Two parallel conductors carrying current in the same direction attract each other. Parallel 
conductors carrying currents in opposite directions repel each other. 

EXECUTE:   On the top wire 
2 2

0 01 1 ,
2 2 4

F I I
L d d d

µ µ
π π

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 upward. On the middle wire, the magnetic 

forces cancel so the net force is zero. On the bottom wire 
2 2

0 01 1 ,
2 2 4

F I I
L d d d

µ µ
π π

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 downward. 

EVALUATE:   The net force on the middle wire is zero because at the location of the middle wire the net 
magnetic field due to the other two wires is zero. 

 28.29. IDENTIFY:   Apply 0 .
2

F I I
L r

µ
π

′
=  

SET UP:   Two parallel conductors carrying current in the same direction attract each other. Parallel 
conductors carrying currents in opposite directions repel each other. 

EXECUTE:   (a) 60 1 2 0(5 00 A)(2 00 A)(1 20 m) 6 00 10 N,
2 2 (0 400 m)
I I L

F
r

µ µ
π π

−. . .= = = . ×
.

 and the force is repulsive 

since the currents are in opposite directions. 
(b) Doubling the currents makes the force increase by a factor of four to 52 40 10 N.F −= . ×  
EVALUATE:   Doubling the current in a wire doubles the magnetic field of that wire. For fixed magnetic 
field, doubling the current in a wire doubles the force that the magnetic field exerts on the wire. 

 28.30. IDENTIFY:   Apply 0 .
2

F I I
L r

µ
π

′
=  

SET UP:   Two parallel conductors carrying current in the same direction attract each other. Parallel 
conductors carrying currents in opposite directions repel each other. 

EXECUTE:   (a) 0 1 2
2

F I I
L r

µ
π

=  gives 5
2

0 1 0

2 2 (0 0250 m)(4 0 10 N/m) 8 33 A.
(0 60 A)

F r
I

L I
π π

µ µ
− .= = . × = .

.
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(b) The two wires repel so the currents are in opposite directions. 
EVALUATE:   The force between the two wires is proportional to the product of the currents in the wires. 

 28.31. IDENTIFY:   The lamp cord wires are two parallel current-carrying wires, so they must exert a magnetic 
force on each other. 
SET UP:   First find the current in the cord. Since it is connected to a light bulb, the power consumed by the 

bulb is .P IV=  Then find the force per unit length using 0 .
2

F I I
L r

µ
π

′
=  

EXECUTE:   For the light bulb, 100 W (120 V) gives 0.833 A.I I= =  The force per unit length is 
7 2

54 10  T m/A (0 833 A)/ 4 6 10 N/m
2 0 003 m

F L
π

π

−
−× ⋅ .= = . ×

.
 

Since the currents are in opposite directions, the force is repulsive. 
EVALUATE:   This force is too small to have an appreciable effect for an ordinary cord. 

 28.32. IDENTIFY:   The wire CD rises until the upward force IF  due to the currents balances the downward force 
of gravity. 
SET UP:   The forces on wire CD are shown in Figure 28.32. 

 

 Currents in opposite directions so the force  
is repulsive and IF  is upward, as shown. 

Figure 28.32   
 

  

F
L

=
µ0 ′I I
2πr

 says 
2

0
2I

I L
F

h
µ

π
=  where L is the length of wire CD and h is the distance between the wires. 

EXECUTE:   .mg Lgλ=  

Thus 
2 2

0 00 says  and .
2 2I

I L I
F mg Lg h

h g
µ µλ

π π λ
− = = =  

EVALUATE:   The larger I is or the smaller λ  is, the larger h will be. 
 28.33. IDENTIFY:   We can model the current in the brain as a ring. Since we know the magnetic field at the center 

of the ring, we can calculate the current. 

SET UP:   At the center of a ring, 
0 .

2
I

B
R

µ=  In this case, 8 cm.R =  
41gauss 1 10  T.−= ×  

EXECUTE:   Solving for I gives 
2 12

7
7

0

2 2(8 10 m)(3.0 10 T) 3.8 10 A.
4 10 T m/A

RB
I

µ

− −
−

−
× ×= = = ×

× ⋅
 

EVALUATE:   This current is about a third of a microamp, which is a very small current by household 
standards. However, the magnetic field in the brain is a very weak field, about a hundreth of the earth’s 
magnetic field. 

 28.34. IDENTIFY:   The magnetic field at the center of a circular loop is 0 .
2

I
B

R
µ=  By symmetry each segment of 

the loop that has length l∆ contributes equally to the field, so the field at the center of a semicircle is 1
2  

that of a full loop. 

SET UP:   Since the straight sections produce no field at P, the field at P is 0 .
4

I
B

R
µ=  
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EXECUTE:   0 .
4

I
B

R
µ=  The direction of B

G
 is given by the right-hand rule: B

G
 is directed into the page. 

EVALUATE:   For a quarter-circle section of wire the magnetic field at its center of curvature is 0 .
8

I
B

R
µ=  

 28.35. IDENTIFY:   Calculate the magnetic field vector produced by each wire and add these fields to get the total 
field. 
SET UP:   First consider the field at P produced by the current 1I  in the upper semicircle of wire. See 
Figure 28.35a. 

 

 Consider the three parts of this wire: 
a: long straight section 
b: semicircle 
c: long, straight section 

Figure 28.35a   
 

Apply the Biot-Savart law 0 0
2 3

ˆ
4 4

Id Id
d

r r
µ µ
π π

× ×= =l r l rB
G G GG

 to each piece. 

EXECUTE:   part a: See Figure 28.35b. 
 

 0,d × =l r
G G  

so 0.dB =  

Figure 28.35b   
 

The same is true for all the infinitesimal segments that make up this piece of the wire, so 0B =  for this 
piece. 
part c: See Figure 28.35c. 

 

 0,d × =l r
G G  

so 0 and 0dB B= =  for this piece. 

Figure 28.35c   
 

part b: See Figure 28.35d. 
 

 d ×l r
G G  is directed into the paper for all  

infinitesimal segments that make up this  
semicircular piece, so B

G
 is directed into  

the paper and B dB= ∫  (the vector sum  

of the dB
G

 is obtained by adding their  
magnitudes since they are in the same direction). 

Figure 28.35d   
 

sin .d rdl θ× =l r
G G  The angle θ  between and  is 90  and ,d r R° =l r

G G  the radius of the semicircle. Thus 

.d Rdl× =
G Gl r  

0 0 1 0 1
3 3 2 .

4 4 4

I d I R I
dB dl dl

r R R
µ µ µ
π π π

× ⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

G Gl r
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0 1 0 1 0 1
2 2 ( ) .

44 4
I I I

B dB dl R
RR R

µ µ µπ
π π

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

(We used that dl∫  is equal to ,Rπ  the length of wire in the semicircle.) We have shown that the two 

straight sections make zero contribution to ,B
G

 so 1 0 1/4B I Rµ=  and is directed into the page. 
 

 For current in the direction shown in  
Figure 28.35e, a similar analysis gives  

2 0 2/4 ,B I Rµ=  out of the paper. 

Figure 28.35e   
 

1 2 and B B
G G

 are in opposite directions, so the magnitude of the net field at P is 0 1 2
1 2 .

4
I I

B B B
R

µ −
= − =  

EVALUATE:   When 1 2, 0.I I B= =  

 28.36. IDENTIFY:   Apply 
2

0
2 2 3/2 .

2( )x
NIa

B
x a
µ=

+
 

SET UP:   At the center of the coil, 0.x =  a is the radius of the coil, 0.0240 m. 

EXECUTE:   (a) 0 /2 ,xB NI aµ=  so 
  
I =

2aBx
µ0 N

= 2(0.024 m) (0.0770 T)
(4π × 10−7 T ⋅ m/A)(800)

= 3.68 A.  

(b) At the center, c 0 /2 .B NI aµ=  At a distance x from the center, 
2 3 3

0 0
c2 2 3/2 2 2 3/2 2 2 3/2 .

22( ) ( ) ( )x
NIa NI a a

B B
ax a x a x a

µ µ ⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠
 1

c2xB B=  says 
3

1
2 2 3/2 2 ,

( )
a

x a
=

+
 and 

2 2 3 6( ) 4 .x a a+ =  Since   a = 0.024 m, x = 0.0184 m = 1.84 cm.  
EVALUATE:   As shown in Figure 28.14 in the textbook, the field has its largest magnitude at the center of 
the coil and decreases with distance along the axis from the center. 

 28.37. IDENTIFY:   We use the equation for the magnetic field at the center of a single circular loop and then use 
the equation for the magnetic field inside a solenoid.  

SET UP:   The magnetic field at the center of a circular loop is 0
loop 2

I
B

R
µ= .  The magnetic field at the 

center of a solenoid is solenoid 0 ,B nIµ=  where N
n

L
=  is the number of turns per meter. 

EXECUTE:   (a) 
7

50
loop

(4 10  T m/A)(2 00 A) 2 51 10  T
2 2(0 050 m)

I
B

R
µ π −

−× ⋅ .= = = . × .
.

  

(b) 11000 200 m
5 00 m

N
n

L
−= = = .

.
 

7 1 4
solenoid 0 (4 10  T m/A)(200 m )(2 00 A) 5 03 10  TB nIµ π − − −= = × ⋅ . = . × .  solenoid loop20B B= .  The field at 

the center of a circular loop depends on the radius of the loop. The field at the center of a solenoid depends 
on the length of the solenoid, not on its radius. 
EVALUATE:   The equation   B = µ0 nI  for the field at the center of a solenoid is only correct for a very 
long solenoid, one whose length L is much greater than its radius R. We cannot consider the limit that L 
gets small and expect the expression for the solenoid to go over to the expression for N circular loops. 

 28.38. IDENTIFY and SET UP:   The magnetic field at a point on the axis of N circular loops is given by 
2

0
2 2 3/2 .

2( )x
NIa

B
x a
µ=

+
 Solve for N and set 0.0600 m.x =  
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EXECUTE:   
2 2 3/2 4 2 2 3/2

2 7 2
0

2 ( ) 2(6 39 10  T)[(0 0600 m) (0 0600 m) ] 69.
(4 10  T m/A)(2 50 A)(0 0600 m)

xB x a
N

Iaµ π

−

−
+ . × . + .= = =

× ⋅ . .
 

EVALUATE:   At the center of the coil the field is 30 1 8 10  T.
2x
NI

B
a

µ −= = . ×  The field 6.00 cm from the 

center is a factor of 3/21/2  times smaller. 
 28.39. IDENTIFY:   The field at the center of the loops is the vector sum of the field due to each loop. They must 

be in opposite directions in order to add to zero. 
SET UP:   Let wire 1 be the inner wire with diameter 20.0 cm and let wire 2 be the outer wire with diameter 
30.0 cm. To produce zero net field, the fields 1B

G
 and 2B

G
 of the two wires must have equal magnitudes 

and opposite directions. At the center of a wire loop 0 .
2

I
B

R
µ=  The direction of B

G
 is given by the right-

hand rule applied to the current direction. 

EXECUTE:   0 0
1 2

1 2
, .

2 2
I I

B B
R R

µ µ= = 1 2B B=  gives 0 1 0 2

1 2
.

2 2
I I

R R
µ µ=  Solving for I2 gives 

2
2 1

1

15 0 cm (12 0 A) 18 0 A.
10 0 cm

R
I I

R
⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 The directions of 1I  and of its field are shown in Figure 28.39. 

Since 1B
G

 is directed into the page, 2B
G

 must be directed out of the page and 2I  is counterclockwise. 
 

 

Figure 28.39 
 

EVALUATE:   The outer current, 2,I  must be larger than the inner current, 1,I  because the outer ring is 
larger than the inner ring, which makes the outer current farther from the center than the inner current is. 

 28.40. IDENTIFY:   Apply Ampere’s law. 
SET UP:   From the right-hand rule, when going around the path in a counterclockwise direction currents 
out of the page are positive and currents into the page are negative. 
EXECUTE:   Path a: encl 0 0.I d= ⇒ ⋅ =B l

GG
r  

Path b: 6
encl 1 04 0 A (4 0 A) 5 03 10  T m.I I d µ −= − = − . ⇒ ⋅ = − . = − . × ⋅B l

GG
r  

Path c: 6
encl 1 2 04 0 A 6 0 A 2 0 A (2 0 A) 2 51 10  T mI I I d µ −= − + = − . + . = . ⇒ ⋅ = . = . × ⋅B l

GG
r  

Path d: 6
encl 1 2 3 04 0 A (4 0 A) 5 03 10  T m.I I I I d µ −= − + + = . ⇒ ⋅ = + . = . × ⋅B l

GG
r  

EVALUATE:   If we instead went around each path in the clockwise direction, the sign of the line integral 
would be reversed. 

 28.41. IDENTIFY:   Apply Ampere’s law. 
SET UP:   7

0 4 10  T m/A.µ π −= × ⋅  
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EXECUTE:   (a) 4
0 encl 3 83 10  T md Iµ −⋅ = = . × ⋅B l

GG
r  and encl 305 A.I =  

(b) 43 83 10  T m−− . × ⋅  since at each point on the curve the direction of dl
G

 is reversed. 

EVALUATE:   The line integral d⋅B l
GG

r  around a closed path is proportional to the net current that is 
enclosed by the path. 

 28.42. IDENTIFY and SET UP:   At the center of a long solenoid 0 0 .N
B nI I

L
µ µ= =  

EXECUTE:   
  
I = BL

µ0 N
= (0.150 T)(0.550 m)

(4π × 10−7  T ⋅ m/A)(4000)
=16.4 A.  

EVALUATE:   The magnetic field inside the solenoid is independent of the radius of the solenoid, if the 
radius is much less than the length, as is the case here. 

 28.43. IDENTIFY:   Apply Ampere’s law. 
SET UP:   To calculate the magnetic field at a distance r from the center of the cable, apply Ampere’s law 
to a circular path of radius r. By symmetry, (2 )d B rπ⋅ =B l

GG
r  for such a path. 

EXECUTE:   (a) For 0
encl 0 0, 2 .

2
I

a r b I I d I B r I B
r

µµ π µ
π

< <  = ⇒ ⋅ = ⇒ = ⇒ =B l
GG

r  

(b) For ,r c>  the enclosed current is zero, so the magnetic field is also zero. 
EVALUATE:   A useful property of coaxial cables for many applications is that the current carried by the 
cable doesn’t produce a magnetic field outside the cable. 

 28.44. IDENTIFY:   Apply Ampere’s law to calculate .B
G

 
(a) SET UP:   For a r b< <  the end view is shown in Figure 28.44a. 

 

 Apply Ampere’s law to a circle of radius  
r, where .a r b< <  Take currents 1 2and I I   
to be directed into the page. Take this  
direction to be positive, so go around the  
integration path in the clockwise direction. 

Figure 28.44a   
 

EXECUTE:   0 encl.d Iµ⋅ =B l
GG

r  

encl 1(2 ), .d B r I Iπ⋅ =  =B l
GG

r  

Thus 0 1
0 1(2 )  and .

2
I

B r I B
r

µπ µ
π

= =  

(b) SET UP:   :r c>  See Figure 28.44b. 
 

 Apply Ampere’s law to a circle of  
radius r, where .r c>  Both  
currents are in the positive  
direction. 

Figure 28.44b   
 

EXECUTE:   0 encl.d Iµ⋅ =B l
GG

r  
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encl 1 2(2 ), .d B r I I Iπ⋅ =  = +B l
GG

r  

Thus 0 1 2
0 1 2

( )(2 ) ( ) and .
2
I I

B r I I B
r

µπ µ
π

+= + =  

EVALUATE:   For a r b< <  the field is due only to the current in the central conductor. For r c>  both 
currents contribute to the total field. 

 28.45. IDENTIFY:   We treat the solenoid as being ideal.  

SET UP:   At the center of an ideal solenoid, Bsolenoid = µ0 nI = µ0
N
L

I.  A distance r from a long straight 

wire, 
  
Bwire =

µ0 I
2πr

.  

EXECUTE:   (a) 7 3
solenoid

450(4 10  T m/A) (1 75 A) 2 83 10  T
0 35 m

B π − −⎛ ⎞= × ⋅ . = . × .⎜ ⎟⎝ ⎠.
 

(b) 
7

5
wire 2

(4 10  T m/A)(1 75 A) 3 50 10  T
2 (1 0 10  m)

B
π

π

−
−

−
× ⋅ .= = . × .

. ×
 

EVALUATE:   The magnetic field due to the wire is much less than the field at the center of the solenoid. 
For the solenoid, the fields of all the wires add to give a much larger field. 

 28.46. IDENTIFY:   0
0 .NI

B nI
L

µµ= =  

SET UP:   0 150 m.L = .  

EXECUTE:   0 (600)(8 00 A) 0 0402 T.
(0 150 m)

B
µ .= = .

.
 

EVALUATE:   The field near the center of the solenoid is independent of the radius of the solenoid, as long 
as the radius is much less than the length, as it is here. 

 28.47. IDENTIFY and SET UP:   The magnetic field near the center of a long solenoid is given by 0 .B nIµ=  

EXECUTE:   (a) Turns per unit length 7
0

0 0270 T 1790 turns/m.
(4 10  T m/A)(12 0 A)

B
n

Iµ π −
.= = =

× ⋅ .
 

(b) (1790 turns/m)(0 400 m) 716 turns.N nL= = . =  
Each turn of radius R has a length 2 Rπ  of wire. The total length of wire required is 

2(2 ) (716)(2 )(1 40 10  m) 63 0 m.N Rπ π −= . × = .  
EVALUATE:   A large length of wire is required. Due to the length of wire the solenoid will have 
appreciable resistance. 

 28.48. IDENTIFY:   Knowing the magnetic field at the center of the toroidal solenoid, we can find the current 
causing that field. 

SET UP:   0 .
2

NI
B

r
µ

π
=  0 140 mr = .  is the distance from the center of the torus to the point where B is to be 

calculated. This point must be between the inner and outer radii of the solenoid, but otherwise the field 
doesn’t depend on those radii. 

EXECUTE:   Solving for N gives 
3

7
0

2 2 (0.140 m)(3.75 10 T) 1750 turns.
(4 10  T m/A)(1.50 A)

rB
N

I
π π
µ π

−

−
×= = =

× ⋅
 

EVALUATE:   With an outer radius of 15 cm, the outer circumference of the toroid is about 100 cm, or 
about a meter. It is reasonable that the toroid could have 1750 turns spread over a circumference of one 
meter. 

 28.49. IDENTIFY and SET UP:   Use the appropriate expression for the magnetic field produced by each current 
configuration. 

EXECUTE:   (a) 0
2

I
B

r
µ
π

=  so I = 2πrB
µ0

= 2π (2.00 × 10−2  m)(37.2 T)
4π × 10−7  T ⋅ m/A

= 3.72 × 106 A = 3.72 MA.  
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(b) 0
2

N I
B

R
µ=  so 

  
I = 2RB

N µ0
= 2(0.420 m)(37.2 T)

(100)(4π × 10−7  T ⋅ m/A)
= 2.49 × 105  A = 249 kA.  

(c) 0
N

B I
L

µ=  so 7
0

(37 2 T)(0 320 m) 237 A.
(4 10  T m/A)(40,000)

BL
I

Nµ π −
. .= = =

× ⋅
 

EVALUATE:   Much less current is needed for the solenoid, because of its large number of turns per unit 
length. 

 28.50. IDENTIFY:   Outside an ideal toroidal solenoid there is no magnetic field and inside it the magnetic field is 

given by 0 .
2

NI
B

r
µ

π
=  

SET UP:   The torus extends from 1 15 0 cmr = .  to 2 18 0 cm.r = .  
EXECUTE:   (a) 0.12 m,r =  which is outside the torus, so 0.B =  

(b) 0.16 m,r =  so 30 0(250)(8 50 A) 2 66 10  T.
2 2 (0 160 m)

NI
B

r
µ µ

π π
−.= = = . ×

.
 

(c) 0.20 m,r =  which is outside the torus, so 0.B =  
EVALUATE:   The magnetic field inside the torus is proportional to 1/ ,r  so it varies somewhat over the 
cross-section of the torus. 

 28.51. IDENTIFY:   Inside an ideal toroidal solenoid, 0 .
2

NI
B

r
µ

π
=  

SET UP:   0 070 m.r = .  

EXECUTE:   30 0(600)(0 650 A) 1 11 10  T.
2 2 (0 070 m)

NI
B

r
µ µ

π π
−.= = = . ×

.
 

EVALUATE:   If the radial thickness of the torus is small compared to its mean diameter, B is approximately 
uniform inside its windings. 

 28.52. IDENTIFY:   Use 0 ,
2

NI
B

r
µ

π
=  with 0µ  replaced by m 0,Kµ µ=  with m 80.K =  

SET UP:   The contribution from atomic currents is the difference between B calculated with µ  and B 
calculated with 0.µ  

EXECUTE:   (a) m 0 0(80)(400)(0 25 A) 0 0267 T.
2 2 2 (0 060 m)

NI K NI
B

r r
µ µ µ

π π π
.= = = = .

.
 

(b) The amount due to atomic currents is 79 79 (0 0267 T) 0 0263 T.80 80B B′ = = . = .  

EVALUATE:   The presence of the core greatly enhances the magnetic field produced by the solenoid. 
 28.53. IDENTIFY:   The magnetic field from the solenoid alone is 0 0 .B nIµ=  The total magnetic field is 

m 0.B K B=  M is given by µ= +0 0 .B B M
G G G

 
SET UP:   6000 turns/m.n =  
EXECUTE:   (a) (i) 1 3

0 0 0(6000 m )(0 15 A) 1 13 10 T.B nIµ µ − −= = . = . ×  

(ii) 3 6m
0

0 0

1 5199 (1 13 10 T) 4 68 10 A/m.K
M B

µ µ
−−= = . × = . ×  

(iii) 3
m 0 (5200)(1 13 10 T) 5 88 T.B K B −= = . × = .  

(b) The directions of ,B
G

 0B
G

 and M
G

 are shown in Figure 28.53. Silicon steel is paramagnetic and  

0B
G

 and M
G

 are in the same direction. 
EVALUATE:   The total magnetic field is much larger than the field due to the solenoid current alone. 
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Figure 28.53 
 
 
 

 28.54. IDENTIFY:   Apply m 0 .
2

K NI
B

r
µ
π

=  

SET UP:   mK  is the relative permeability and m m 1Kχ = −  is the magnetic susceptibility. 

EXECUTE:   (a) m
0 0

2 2 (0 2500 m)(1 940 T) 2021.
(500)(2 400 A)

rB
K

NI
π π

µ µ
. .= = =

.
 

(b) m m 1 2020.Kχ = − =  
EVALUATE:   Without the magnetic material the magnetic field inside the windings would be 

4/2021 9 6 10  T.B −= . ×  The presence of the magnetic material greatly enhances the magnetic field inside 
the windings. 

 28.55. IDENTIFY:   Moving charges create magnetic fields. The net field is the vector sum of the two fields. A 
charge moving in an external magnetic field feels a force. 

(a) SET UP:   The magnitude of the magnetic field due to a moving charge is 0
2

| | sin .
4

q v
B

r
µ φ
π

=  Both fields 

are into the paper, so their magnitudes add, giving 0
net 2 2

| | sin | | sin .
4

q v q v
B B B

r r
µ φ φ
π

′ ′ ′⎛ ⎞′= + = +⎜ ⎟′⎝ ⎠
 

EXECUTE:   Substituting numbers gives 
4 4

0
net 2 2

(8.00 C)(9.00 10 m/s)sin90 (5.00 C)(6.50 10 m/s)sin90 .
4 (0.300 m) (0.400 m)

B
µ µ µ
π
⎡ ⎤× ° × °= +⎢ ⎥
⎢ ⎥⎣ ⎦

 

6
net 1 00 10  T 1 00 T,B µ−= . × = .  into the paper. 

(b) SET UP:   The magnetic force on a moving charge is ,q= ×F v B
G GG  and the magnetic field of charge q′  

at the location of charge q is into the page. The force on q is  

0 0 0
2 2 2

ˆ sin sinˆ ˆ ˆ ˆ( ) ( ) ( )
4 4 4

q qv' qq vv
q qv qv

r r r
µ µ φ µ φ
π π π

′ ′ ′× ⎛ ⎞ ⎛ ⎞′= × = × = × − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v rF v B i i k j
GG GG  

where φ  is the angle between ′vG  and ˆ .′r  
EXECUTE:   Substituting numbers gives  

6 6 4 4
0

2
(8.00 10 C)(5.00 10 C)(9.00 10 m/s)(6.50 10 m/s) 0.400 ˆ

4 0.500(0.500 m)
.

µ
π

− −⎡ ⎤× × × × ⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

G
F = j  

8 ˆ(7 49 10 N) .−= . ×F j
G

 
EVALUATE:   These are small fields and small forces, but if the charge has small mass, the force can affect 
its motion. 

 28.56. IDENTIFY:   Charge 1q  creates a magnetic field due to its motion. This field exerts a magnetic force on 2,q  
which is moving in that field. 

SET UP:   Find 1,B
G

the field produced by 1q  at the location of 2.q 0 1 1 1 2
1 3

1 2
,

4
q

r
µ
π

→

→

×=
G GG v rB  since ˆ / .r=r rG  
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EXECUTE:   1 2
ˆ ˆ(0 150 m) ( 0 250 m) ,→ = . + − .r i j

G
 so r1→2 = 0.2915 m.  

5 5
1 1 2

ˆ ˆ ˆ ˆ[(9 20 10  m/s) ] [(0 150 m) ( 0 250 m) ] (9 20 10  m/s)( 0 250 m) .→× = . × × . + − . = . × − .v r i i j k
G G

6 5
7 6

1 3
(4 80 10  C)(9 20 10  m/s)( 0 250 m) ˆ ˆ(1 00 10  T m/A) (4 457 10  T) .

(0 2915 m)

−
− −. × . × − .= . × ⋅ = − . ×

.
B k k
G

 

The force that 1B
G

 exerts on 2q  is 
6 5 6 6

2 2 2 1
ˆ ˆ ˆ( 2 90 10  C)( 5 30 10  m/s)( 4 457 10  T) 6 85 10  N .F q − − −= × = − . × − . × − . × × = − . ×v B j k i( )

GG
 

EVALUATE:   If we think of the moving charge 1q  as a current, we can use the right-hand rule for the  
direction of the magnetic field due to a current to find the direction of the magnetic field it creates in the 
vicinity of 2.q  Then we can use the cross product right-hand rule to find the direction of the force  
this field exerts on 2,q  which is in the  −x-direction, in agreement with our result. 

 28.57. IDENTIFY:   Use B =
µ0 I
2πr

 and the right-hand rule to determine points where the fields of the two wires cancel. 

(a) SET UP:   The only place where the magnetic fields of the two wires are in opposite directions is 
between the wires, in the plane of the wires. Consider a point a distance x from the wire carrying 

2 tot75 0 A  I B= . .  will be zero where 1 2.B B=  

EXECUTE:   0 1 0 2 .
2 (0 400 m ) 2

I I
x x

µ µ
π π

=
. −

 

2 1 1 2(0 400 m ) ; 25 0 A, 75 0 A.I x I x I I. − = = . = .  

tot0 300 m; 0x B= . =  along a line 0.300 m from the wire carrying 75.0 A and 0.100 m from the wire 
carrying current 25.0 A. 
(b) SET UP:   Let the wire with 1 25 0 AI = .  be 0.400 m above the wire with 2 75 0 A.I = .  The magnetic 
fields of the two wires are in opposite directions in the plane of the wires and at points above both wires or 
below both wires. But to have 1 2B B=  must be closer to wire #1 since 1 2,I I<  so can have tot 0B =  only 
at points above both wires. Consider a point a distance x from the wire carrying 1 tot25 0 A  .I B= .  will be 
zero where 1 2.B B=  

EXECUTE:   0 1 0 2 .
2 2 (0 400 m )

I I
x x

µ µ
π π

=
. +

 

2 1(0 400 m ); 0 200 m.I x I x x= . +  = .  

tot 0B =  along a line 0.200 m from the wire carrying current 25.0 A and 0.600 m from the wire carrying 
current 2 75 0 A.I = .  
EVALUATE:   For parts (a) and (b) the locations of zero field are in different regions. In each case the 
points of zero field are closer to the wire that has the smaller current. 

 28.58. IDENTIFY:   The wire creates a magnetic field near it, and the moving electron feels a force due to this field. 

SET UP:   The magnetic field due to the wire is 0 ,
2

I
B

r
µ
π

=  and the force on a moving charge is 

sin .F q vB φ=  

EXECUTE:   0sin ( sin )/2 .F q vB ev I rφ µ φ π= =  Substituting numbers gives 

  F = (1.60 × 10−19  C)(6.00 × 104  m/s)(4π × 10−7  T ⋅ m/A)(8.60 A)(sin90°)/[2π (0.0450 m)].  
–19 3.67 10 N.F = ×  From the right-hand rule for the cross product, the direction of ×v B

GG  is opposite to 
the current, but since the electron is negative, the force is in the same direction as the current. 
EVALUATE:   This force is small at an everyday level, but it would give the electron an acceleration of over 

11 210 m/s .  
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 29.59. IDENTIFY:   Find the force that the magnetic field of the wire exerts on the electron. 
SET UP:   The force on a moving charge has magnitude sinF q vB φ=  and direction given by the right-

hand rule. For a long straight wire, 0
2

I
B

r
µ
π

=  and the direction of B
G

 is given by the right-hand rule. 

EXECUTE:   (a) 0sin
.

2
q vBF ev I

a
m m m r

φ µ
π

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 Substituting numbers gives 

19 5 7
12 2

31
(1 6 10 C)(2 50 10  m/s)(4 10  T m/A)(13 0 A) 5 7 10  m/s ,

(9 11 10  kg)(2 )(0 0200 m)
a

π
π

− −

−
. × . × × ⋅ .= = . ×

. × .
 away from the wire. 

(b) The electric force must balance the magnetic force. ,eE evB=  and 
7

0 (250,000 m/s)(4 10 T m/A)(13 0 A) 32 5 N/C.
2 2 (0 0200 m)

I
E vB v

r
µ π
π π

−× ⋅ .= = = = .
.

 The magnetic force is directed 

away from the wire so the force from the electric field must be toward the wire. Since the charge of the 
electron is negative, the electric field must be directed away from the wire to produce a force in the desired 
direction. 
EVALUATE:   (c) 31 2 29(9 11 10 kg)(9 8 m/s ) 10 N.mg − −= . × . ≈  

19 18
el (1 6 10 C)(32 5 N/C) 5 10 N.F eE − −= = . × . ≈ ×  11

el grav5 10 ,F F≈ ×  so we can neglect gravity. 
 28.60. IDENTIFY:   The current in the wire creates a magnetic field, and that field exerts a force on the moving 

electron. 

SET UP:   The magnetic field due to the current in the wire is 0 .
2

I
B

r
µ
π

=  The force the field exerts on the 

electron is ,q ×F = v B
G GG

 where q = –e. The magnitude of a vector is 2 2 2 .x y zA A A A= + +  The electron is on 

the +y-axis. The current is in the –x-direction so, by the right-hand rule, the magnetic field it produces at 

the location of the electron is in the –z-direction, so B
G

= –
µ0 I
2πr

ˆ.k  

EXECUTE:   The magnitude of the magnetic field is B =
µ0 I
2πr

 = 60(9.00 A) 9.00 10 T,
2 (0.200 m)
µ
π

−= ×  so 

B
G

 = –9.00 × 10–6 T ˆ.k  The force on the electron is ,q ×F = v B
G GG

 so 

q ×
G GGF = v B  = 4 4 6ˆ ˆ ˆ(5.00 10  m/s 3.00 10 m/s ) ( 9.00 10  T ).e −− × − × × − ×i j k  

Taking out common factors gives –2 ˆ ˆ ˆ= (9 10  T m/s)(5 3 )e× ⋅ − ×F i j k.
G

 Using the fact that i × k = − j  and 

× = ,j k i  we get –2 ˆ ˆ= (9 10  T m/s)( 5 3 ).e× ⋅ − −F j i
G

 Using e = 1.60 × 10–19 C  gives 
–20 –20ˆ ˆ4.32 10  N 7.20 10  N .= − × − ×F i j

G
 

The magnitude of this force is 
2 2 2 20 2 –20 2 20( 4.32 10  N) ( 7.20 10  N) 8.40 10  N.x y zF F F F − −= + + = − × + − × = ×  

EVALUATE:   This is a small force on an everyday scale, but it would give the electron an acceleration of 
20 31 10 2/ (8.40 10 N)/(9.11 10 kg) 9 10  m/s .a F m − −= = × × ≈ ×  

 28.61. IDENTIFY and SET UP:   The power input of the motor is 65 hp. We know that 1 hp 746 W.=  The relation 
between power, voltage, and current is .P VI=  The attractive force between two parallel wires is 

0 1 2 .
2
LI I

F
r

µ
π

=  

EXECUTE:   (a) We find the current from I = P
V

= (65 hp)(746 W/hp)
600 V

= 80.8 A,  which rounds to 81 A. 

(b) The attractive force between the wires per unit length is 
7 2

3(4 10  T m/A)(80 8 A)/ 2 4 10  N/m.
2 (0 55 m)

F L
π

π

−
−× ⋅ .= = . ×

.
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EVALUATE:   If the current from the cables is in the same direction, the force will be attractive; however, if 
the current runs in opposite directions the force will be repulsive.  

 28.62. IDENTIFY:   Find the vector sum of the magnetic fields due to each wire. 

SET UP:   For a long straight wire 0 .
2

I
B

r
µ
π

=  The direction of B
G

 is given by the right-hand rule and is 

perpendicular to the line from the wire to the point where the field is calculated. 
EXECUTE:   (a) The magnetic field vectors are shown in Figure 28.62a. 

(b) At a position on the x-axis 0 0 0
net 2 22 2 2 2

2 sin ,
2 ( )

I I a Ia
B

r x ax a x a

µ µ µθ
π ππ

= = =
++ +

 in the positive 

-direction.x  
(c) The graph of B versus /x a  is given in Figure 28.62b. 
EVALUATE:   (d) The magnetic field is a maximum at the origin, 0.x =  

(e) When 0
2, .Ia

x a B
x

µ
π

≈�  
 

Figure 28.62 

 28.63. IDENTIFY:   Use 
  
B =

µ0 I
2πr

 and the right-hand rule to calculate the magnitude and direction of the magnetic 

field at P produced by each wire. Add these two field vectors to find the net field. 
(a) SET UP:   The directions of the fields at point P due to the two wires are sketched in Figure 28.63a. 

 

 EXECUTE:   1 2and B B
G G

 must be equal and  
opposite for the resultant field at P to be zero.  

2B
G

 is to the upward so 2I  is out of the page. 

Figure 28.63a   
 

0 1 0 0 2 0 2
1 2

1 2

6 00 A .
2 2 1 50 m 2 2 0 50 m

I I I
B B

r r
µ µ µ µ
π π π π

.⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

0 0 2
1 2

6 00 A says .
2 1 50 m 2 0 50 m

I
B B

µ µ
π π

.⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

2
0 50 m (6 00 A) 2 00 A.
1 50 m

I
.⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

(b) SET UP:   The directions of the fields at point Q are sketched in Figure 28.63b. 
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Figure 28.63b 

 
EXECUTE:   0 1

1
1

.
2

I
B

r
µ
π

=  

7 6
1

6 00 A(2 10  T m/A) 2 40 10  T.
0 50 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

0 2
2

2
.

2
I

B
r

µ
π

=  

7 7
2

2 00 A(2 10  T m/A) 2 67 10  T.
1 50 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

 

1 2 and B B
G G

 are in opposite directions and 1 2B B>  so 
6 7 6

1 2 2 40 10  T 2 67 10  T 2 13 10  T, and B B B − − −= − = . × − . × = . × B
G

 is upward. 
(c) SET UP:   The directions of the fields at point S are sketched in Figure 28.63c. 
 

 
Figure 28.63c 

 
EXECUTE:   0 1

1
1

.
2

I
B

r
µ
π

=  

7 6
1

6 00 A(2 10  T m/A) 2 00 10  T.
0 60 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

0 2
2

2
.

2
I

B
r

µ
π

=  

7 7
2

2 00 A(2 10  T m/A) 5 00 10  T.
0 80 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

 

1 2 and B B
G G

 are right angles to each other, so the magnitude of their resultant is given by 
2 2 6 2 7 2 6
1 2 (2 00 10  T) (5 00 10  T) 2 06 10  T.B B B − − −= + = . × + . × = . ×  

EVALUATE:   The magnetic field lines for a long, straight wire are concentric circles with the wire at the 
center. The magnetic field at each point is tangent to the field line, so B

G
 is perpendicular to the line from 

the wire to the point where the field is calculated. 
 28.64. IDENTIFY:   Consider the forces on each side of the loop. 

SET UP:   The forces on the left and right sides cancel. The forces on the top and bottom segments of the 
loop are in opposite directions, so the magnitudes subtract. 

EXECUTE:   0 wire 0 wire
t b

t b t b

1 1 .
2 2
I Il Il IlI

F F F
r r r r

µ µ
π π

⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

50(5 00 A)(0 200 m)(14 0 A) 1 1 7 97 10 N.
2 0 100 m 0 026 m

F
µ

π
−⎛ ⎞. . .= − + = . ×⎜ ⎟. .⎝ ⎠

 The force on the top segment is 

toward the wire, so the net force is toward the wire. 
EVALUATE:   The net force on a current loop in a uniform magnetic field is zero, but the magnetic field of 
the wire is not uniform; it is stronger closer to the wire. 

 28.65. IDENTIFY:   Apply 0∑ =F
G

 to one of the wires. The force one wire exerts on the other depends on I so 
0∑ =F

G
 gives two equations for the two unknowns and .T I  

SET UP:   The force diagram for one of the wires is given in Figure 28.65 (next page). 
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The force one wire exerts on the other is 

2
0 ,

2
I

F L
r

µ
π

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 where 

32(0 040 m)sin 8 362 10  mr θ −= . = . ×  is the distance between the  
two wires. 

Figure 28.65   
 

EXECUTE:   0 gives cos  and / cos .yF T mg T mgθ θ∑ = = =  

0 gives sin ( / cos )sin tan .xF F T mg mgθ θ θ θ∑ = = = =  
And , so tan .m L F Lgλ λ θ= =  

2
0 tan .

2
I

L Lg
r

µ λ θ
π

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 

0

tan .
( /2 )
gr

I
λ θ

µ π
=  

2 3

7
(0 0125 kg/m)(9 80 m/s )(tan 6 00 )(8 362 10  m) 23 2 A.

2 10 T m/A
I

−

−
. . . ° . ×= = .

× ⋅
 

EVALUATE:   Since the currents are in opposite directions the wires repel. When I is increased, the angle θ  
from the vertical increases; a large current is required even for the small displacement specified in this problem. 

 29.66. IDENTIFY:   Apply 0
2

ˆ
.

4
Id

d
r

µ
π

×= l rB
GG

 

SET UP:   The two straight segments produce zero field at P. The field at the center of a circular loop of 

radius R is 0 ,
2

I
B

R
µ=  so the field at the center of curvature of a semicircular loop is 0 .

4
I

B
R

µ=  

EXECUTE:   The semicircular loop of radius a produces field out of the page at P and the semicircular loop of 

radius b produces field into the page. Therefore, 
0 01 1 1 1 ,

2 2 4a b
I I a

B B B
a b a b

µ µ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 out of page. 

EVALUATE:   If ,a b=  0.B =  
 28.67. IDENTIFY:   Find the vector sum of the fields due to each loop. 

SET UP:   For a single loop 
  
Bx =

µ0 Ia2

2(x2 + a2 )3/2
.  Here we have two loops, each of N turns, and measuring 

the field along the x-axis from between them means that the “x” in the formula is different for each case. 
EXECUTE:   (a) 

Left coil: 
2

0
l 2 2 3/2 .

2 2[( /2) ]
a NIa

x x B
x a a

µ→ + ⇒ =
+ +

 

Right coil: 
2

0
r 2 2 3/2 .

2 2[( /2) ]
a NIa

x x B
x a a

µ→ − ⇒ =
− +

 

So, the total field at a point a distance x from the point between them is 
2

0
2 2 3/2 2 2 3/2
1 1 .

2 [( /2) ] [( /2) ]
NIa

B
x a a x a a

µ ⎛ ⎞
= +⎜ ⎟⎜ ⎟+ + − +⎝ ⎠

 

(b) B versus x is graphed in Figure 28.67. Figure 28.67a is the total field and Figure 28.67b is the field 
from the right-hand coil. 

(c) At point P, 0x =  and 
3/22 2

0 0 0
2 2 3/2 2 2 3/2 2 3/2
1 1 4 .

2 5[( /2) ] [( /2) ] (5 /4)
NIa NIa NI

B
aa a a a a

µ µ µ⎛ ⎞ ⎛ ⎞= + = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + ⎝ ⎠⎝ ⎠
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(d) 
3/2 3/2

0 04 4 (300)(6 00 A) 0 0202 T.
5 5 (0 080 m)

NI
B

a
µ µ .⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟ .⎝ ⎠ ⎝ ⎠

 

(e) 
2

0
2 2 5/2 2 2 5/2

3( /2) 3( /2) .
2 [( /2) ] [( /2) ]

dB NIa x a x a
dx x a a x a a

µ ⎛ ⎞− + − −= +⎜ ⎟⎜ ⎟+ + − +⎝ ⎠
 At 0,x =  

2
0

2 2 5/2 2 2 5/2
0

3( /2) 3( /2) 0.
2 [( /2) ] [( /2) ]x

dB NIa a a
dx a a a a

µ
=

⎛ ⎞− − −= + =⎜ ⎟⎜ ⎟+ − +⎝ ⎠
 

2 2 2 2
0

2 2 2 5/2 2 2 7/2 2 2 5/2 2 2 7/2
3 6( /2) (5/2) 3 6( /2) (5/2) .

2 [( /2) ] [( /2) ] [( /2) ] [( /2) ]
d B NIa x a x a
dx x a a x a a x a a x a a

µ ⎛ ⎞− + − −= + + +⎜ ⎟⎜ ⎟+ + + + − + − +⎝ ⎠
 

At 0,x =  
2 2 2 2

0
2 2 2 5/2 2 2 7/2 2 2 5/2 2 2 7/2

0

3 6( /2) (5/2) 3 6( /2) (5/2) 0.
2 [( /2) ] [( /2) ] [( /2) ] [( /2) ]x

d B NIa a a
dx a a a a a a a a

µ

=

⎛ ⎞− − −= + + + =⎜ ⎟⎜ ⎟+ + + +⎝ ⎠
 

EVALUATE:   Since both first and second derivatives are zero, the field can only be changing very slowly. 
 

   

Figure 28.67 
 

 28.68. IDENTIFY:   Both arcs produce magnetic fields at point P perpendicular to the plane of the page. The field 
due to arc DA points into the page, and the field due to arc BC points out of the page. The field due to DA 
has a greater magnitude than the field due to arc BC. The net field is the sum of these two fields. 

SET UP:   The magnitude field at the center of a circular loop of radius a is 0 .
2

I
B

a
µ
π

=  Each arc is 

120°/360° = 1/3 of a complete loop, so the field due to each of them is 0 01 .
3 2 6

I I
B

a a
µ µ
π π

= =   

EXECUTE:   The net field is  

Bnet = B20 – B30 = 60(12.0 A) 1 1 4.19 10  T = 4.19 T.
6 0.200 m 0.300 m

µ µ
π

−⎛ ⎞− = ×⎜ ⎟
⎝ ⎠

 Since B20 > B30, the net 

field points into the page at P. 
EVALUATE:   The current in segments CD and AB produces no magnetic field at P because its direction is 
directly toward (or away from) point P. 

 28.69. (a) IDENTIFY:   Consider current density J for a small concentric ring and integrate to find the total current 
in terms of α  and R. 
SET UP:   We can’t say 2,I JA J Rπ= =  since J varies across the cross section. 
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 To integrate J over the cross section of the wire,  
divide the wire cross section up into thin concentric  
rings of radius r and width dr, as shown in Figure 28.69. 

Figure 28.69   
 

EXECUTE:   The area of such a ring is dA, and the current through it is ;dI J dA=  2dA rdrπ=  and 
2(2 ) 2 .dI J dA r r dr r drα π πα= =  =  

2 3
30

32 2 ( /3) so .
2

R I
I dI r dr R

R
πα πα α

π
= = = =∫ ∫  

(b) IDENTIFY and SET UP:   (i) .r R≤  
Apply Ampere’s law to a circle of radius .r R<  Use the method of part (a) to find the current enclosed by 
Ampere’s law path. 
EXECUTE:   (2 ),d B dl B dl B rπ⋅ = = =B l

GG
r r r  by the symmetry and direction of .B

G
 The current passing 

through the path is encl ,I dl= ∫  where the integration is from 0 to r. 
3 3

2 3
encl 3 30

2 2 32 .
3 3 2

r r I Ir
I r dr r

R R
πα ππα

π
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫  Thus 0 encld Iµ⋅ =B l

GG
r  gives 

3 2
0

0 3 3(2 )  and .
2

Ir Ir
B r B

R R
µπ µ
π

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 

(ii) IDENTIFY and SET UP:   .r R≥  
Apply Ampere’s law to a circle of radius .r R>  
EXECUTE:   (2 ).d B dl B dl B rπ⋅ = = =B l

GG
r r r  

encl ;I I=  all the current in the wire passes through this path. Thus 0 encld Iµ⋅ =B l
GG

r  gives 0(2 )B r Iπ µ=  

and 0 .
2

I
B

r
µ
π

=  

EVALUATE:   Note that at r R=  the expression in (i) (for )r R≤  gives 0 .
2

I
B

R
µ
π

=  At r R=  the 

expression in (ii) (for )r R≥  gives 0 ,
2

I
B

R
µ
π

=  which is the same. 

 28.70. IDENTIFY:   Apply 0
2

ˆ
.

4
Id

d
r

µ
π

×= l rB
GG

 

SET UP:   The horizontal wire yields zero magnetic field since 0.d × =l r
G G  The vertical current provides the 

magnetic field of half of an infinite wire. (The contributions from all infinitesimal pieces of the wire point 
in the same direction, so there is no vector addition or components to worry about.) 

EXECUTE:   0 01
2 2 4

I I
B

a a
µ µ
π π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 and is directed out of the page. 

EVALUATE:   In the equation preceding Eq. (28.8) the limits on the integration are 0 to a rather than a−  to 
a and this introduces a factor of 1

2  into the expression for B. 

 28.71. IDENTIFY:   Use the current density J to find dI through a concentric ring and integrate over the appropriate 
cross section to find the current through that cross section. Then use Ampere’s law to find B

G
 at the 

specified distance from the center of the wire. 
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(a) SET UP:    
 

 Divide the cross section of the cylinder into thin  
concentric rings of radius r and width dr, as shown  
in Figure 28.71a. The current through each ring is 

2 .dI J dA J r drπ= =   

Figure 28.71a   
 

EXECUTE:   2 20 0
2 2

2 4[1 ( / ) ]2 [1 ( / ) ] .I I
dI r a r dr r a r dr

a a
π

π
= −  = −   The total current I is obtained by integrating 

dI over the cross section 2 2 2 4 20 0
02 20 0 0

4 4 1 1(1 / ) / ,
2 4

a
a aI I

I dI r a r dr r r a I
a a

⎛ ⎞ ⎛ ⎞⎡ ⎤= = −  = − =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫  as was to be 

shown. 
(b) SET UP:   Apply Ampere’s law to a path that is a circle of radius ,r a>  as shown in Figure 28.71b. 

 

 (2 ).d B rπ⋅ =B l
GG

r  

encl 0I I=  (the path encloses the entire cylinder). 

Figure 28.71b   
 

EXECUTE:    0 encld Iµ⋅ =B l
GG

r  says 0 0(2 )B r Iπ µ=  and 0 0 .
2

I
B

r
µ

π
=  

(c) SET UP:    
 

 Divide the cross section of the cylinder into  
concentric rings of radius r′  and width ,dr′  as  
was done in part (a). See Figure 28.71c. The current  

dI through each ring is 
2

0
2

4 1 .I r
dI r dr

aa

⎡ ⎤′⎛ ⎞= − ′ ′⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

Figure 28.71c   
 

EXECUTE:   The current I is obtained by integrating dI from 0 to :r r r′ = ′ =  
2

2 4 20 0 1 1
2 2 2 40 0

4 41 ( ) ( ) / .
rrI r I

I dI r dr r r a
aa a

⎡ ⎤′⎛ ⎞ ⎡ ⎤= = − ′ ′ = ′ − ′⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫  

2 2
2 4 20 0

2 2 2
4 ( /2 /4 ) 2 .I I r r

I r r a
a a a

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

(d) SET UP:   Apply Ampere’s law to a path that is a circle of radius ,r a<  as shown in Figure 28.71d. 
 

 (2 ).d B rπ⋅ =B l
GG

r  
2 2

0
encl 2 22I r r

I
a a

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (from part (c)). 

Figure 28.71d   
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EXECUTE:   
2

2 20
0 encl 0 2 says (2 ) (2 / )I r

d I B r r a
a

µ π µ⋅ = = −B l
GG

r  and 2 20 0
2 (2 / ).

2
I r

B r a
a

µ
π

= −  

EVALUATE:   Result in part (b) evaluated at 0 0: .
2

I
r a B

a
µ

π
= =  Result in part (d) evaluated at 

2 20 0 0 0
2: (2 / ) .

2 2
I a I

r a B a a
aa

µ µ
π π

= = − =  The two results, one for r a>  and the other for ,r a<  agree at 

.r a=  
 28.72. IDENTIFY:   The net field is the vector sum of the fields due to the circular loop and to the long straight wire. 

SET UP:   For the long wire, 0 1 ,
2

I
B

D
µ
π

=  and for the loop, 0 2 .
2

I
B

R
µ=  

EXECUTE:   At the center of the circular loop the current 2I  generates a magnetic field that is into the 
page, so the current 1I  must point to the right. For complete cancellation the two fields must have the same 

magnitude: 0 1 0 2 .
2 2

I I
D R

µ µ
π

=  Thus, 1 2.D
I I

R
π=  

EVALUATE:   If 1I  is to the left the two fields add. 
 28.73. IDENTIFY:   Use what we know about the magnetic field of a long, straight conductor to deduce the 

symmetry of the magnetic field. Then apply Ampere’s law to calculate the magnetic field at a distance a 
above and below the current sheet. 
SET UP:   Do parts (a) and (b) together. 

 

 Consider the individual currents in pairs, where 
the currents in each pair are equidistant on either 
side of the point where B

G
 is being calculated. 

Figure 28.73a shows that for each pair the  
z-components cancel, and that above the sheet  
the field is in the – -directionx  and that below  
the sheet it is in the -direction.x+  

Figure 28.73a   
 

Also, by symmetry the magnitude of B
G

 a distance a above the sheet must equal the magnitude of B
G

 a 
distance a below the sheet. Now that we have deduced the symmetry of ,B

G
 apply Ampere’s law. Use a 

path that is a rectangle, as shown in Figure 28.73b. 
 

 
0 encl.d Iµ⋅ =B l

GG
r  

Figure 28.73b   
 

I is directed out of the page, so for I to be positive the integral around the path is taken in the 
counterclockwise direction. 
EXECUTE:   Since B

G
 is parallel to the sheet, on the sides of the rectangle that have length 2 ,a  0.d⋅ =B l

GG
r  

On the long sides of length ,L B
G

 is parallel to the side, in the direction we are integrating around the path, 
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and has the same magnitude, ,B  on each side. Thus 2 .d BL⋅ =B l
GG

r  n conductors per unit length and 
current I out of the page in each conductor gives encl .I InL=  Ampere’s law then gives 

1
0 022  and .BL InL B Inµ µ= =  

EVALUATE:   Note that B is independent of the distance a from the sheet. Compare this result to the 
electric field due to an infinite sheet of charge in Chapter 22. 

 28.74. IDENTIFY:   Find the vector sum of the fields due to each sheet. 
SET UP:   Problem 28.73 shows that for an infinite sheet 1

02 .B Inµ=  If I is out of the page, B
G

 is to the left 

above the sheet and to the right below the sheet. If I is into the page, B
G

is to the right above the sheet and 
to the left below the sheet. B is independent of the distance from the sheet. The directions of the two fields 
at points P, R and S are shown in Figure 28.74. 
EXECUTE:   (a) Above the two sheets, the fields cancel (since there is no dependence upon the distance 
from the sheets). 
(b) In between the sheets the two fields add up to yield 0 ,B nIµ=  to the right. 
(c) Below the two sheets, their fields again cancel (since there is no dependence upon the distance from the 
sheets). 
EVALUATE:   The two sheets with currents in opposite directions produce a uniform field between the 
sheets and zero field outside the two sheets. This is analogous to the electric field produced by large 
parallel sheets of charge of opposite sign. 

 

 

Figure 28.74 
 
 

 28.75. IDENTIFY:   Apply Ampere’s law to a circle of radius r. 
SET UP:   The current within a radius r is ,I d= ⋅∫J A

GG
 where the integration is over a disk of radius r. 

EXECUTE:   (a) ( )/ ( )/ ( )/ /
0 00

2 2 2 (1 ).
aar a r a r a ab

I d e rdrd b e dr b e b e
r

δ δ δ δθ π π δ π δ− − − −⎛ ⎞= ⋅ = = =  = −⎜ ⎟
⎝ ⎠∫ ∫ ∫J A

GG
 

(0 050/0 025)
0 2 (600 A/m)(0 025 m)(1 ) 81 5 A.I eπ . .= . − = .  

(b) For 0 encl 0 0, 2r a d B r I Iπ µ µ≥  ⋅ = = =B l
GG

r  and 0 0 .
2

I
B

r
µ

π
=  

(c) For ,r a≤  ( )/ ( )/ ( )/
00

( ) 2 2 .
r rr a r a r ab

I r d e r dr d b e dr b e
r

δ δθ π π δ′− − ′− δ⎛ ⎞= ⋅ = ′ ′ = =⎜ ⎟′⎝ ⎠∫ ∫ ∫J A
GG

 

( )/ / / /( ) 2 ( ) 2 ( 1)r a a a rI r b e e b e eδ δ δ δπ δ π δ− − −= − = −  and 
/

0 /
( 1)( ) .
( 1)

r

a
e

I r I
e

δ

δ
−=
−

 

(d) For ,r a≤  
/

0 encl 0 0 /
( 1)( )2
( 1)

r

a
e

d B r r I I
e

δ

δπ µ µ −⋅ = = =
−

B l
GG

r  and 
/

0 0
/

( 1) .
2 ( 1)

r

a
I e

B
r e

δ

δ
µ

π
−=
−

 

(e) At 0 025 m,r δ= = .  40 0 0
/ 0 050/0 025

( 1) (81 5 A) ( 1) 1 75 10 T.
2 (0 025 m)2 ( 1) ( 1)a

I e e
B

e eδ
µ µ

ππδ
−

. .
− . −= = = . ×

.− −
 

At 0 050 m,r a= = .  
/

40 0 0
/

( 1) (81 5 A) 3 26 10 T.
2 2 (0 050 m)( 1)

a

a
I e

B
a e

δ

δ
µ µ

π π
−− .= = = . ×

.−
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At 2 0 100 m,r a= = .  40 0 0(81 5 A) 1 63 10 T.
2 2 (0 100 m)

I
B

r
µ µ

π π
−.= = = . ×

.
 

EVALUATE:   At points outside the cylinder, the magnetic field is the same as that due to a long wire 
running along the axis of the cylinder. 

 28.76. IDENTIFY and SET UP:   We assume that both solenoids are ideal, in which case the field due to each one is 

given by 0 0 .N
B nI I

L
µ µ= =  The net field inside is the sum of both the fields. 

EXECUTE:   (a) The net field is 1 2 0
0 1 0 2 1 1 2 2[ ].N N

B I I N I N I
L L L

µµ µ= + = +  For the numbers in this 

problem, we have 0 1 2 2/ (0.00200 A) .BL N N Iµ = +  Therefore a graph of µ0/BL  versus I2 should be a 
straight line with slope equal to N2 and y-intercept equal to (0.00200 A)N1. 
(b) Using the graph given with the problem, we calculate the slope using the points (5.00 mA, 16.00 A) 
and (2.00 mA, 8.00 A), which gives slope = (16.00 A – 8.00 A)/(5.00 mA – 2.00 mA) = 2667. Therefore 
N2 = 2667 turns, which rounds to 2670 turns. To find the y-intercept, we use the point (5.00 mA, 16.00 A) 

and the slope to deduce the equation of the line. This gives 16.00 A 2667,
0.00500 A

y
x

− =
−

 which simplifies to  

y = 2667x + 2.67. When x = 0, y = 2.67 A. As we saw, the y-intercept is equal to (0.00200 A)N1, so N1 = 
(2.67 A)/(0.00200 A) = 1335 turns, which rounds to 1340 turns. 

(c) Now the fields are in opposite directions, so 1 2 0
0 1 0 2 1 1 2 2[ ].N N

B I I N I N I
L L L

µµ µ= − = −  

B = [( µ0 )/(0.400 m)][(0.00200 A)(1335) – (0.00500 A)(2667)] 53.35 10 T.−= − ×  The minus sign just tells 
us that the field due to I2 is stronger than the field due to I1. So the magnitude of the net field is  

53.35 0 T 33.5 T.B µ−= × =  
EVALUATE:   As a check for N1 in part (b), we could use a ruler to extrapolate the graph in the textbook 
back to its intersection with the y-axis to find the y-intercept. This method is not particularly accurate, but 
it should give reasonable agreement with the result for N1 from part (b). 

 28.77. IDENTIFY and SET UP:   The magnitude of the magnetic a distance r from the center of a very long current-

carrying wire is 0 .
2

I
B

r
µ
π

=  In this case, the measured quantity x is the distance from the surface of the 

cable, not from the center. 
EXECUTE:   (a) Multiplying the quantities given in the table in the problem, we get the following values 
for Bx in units of ⋅T cm, starting with the first pair: 0.812, 1.00, 1.09, 1.13, 1.16. As we can see, these 
values are not constant. However the last three values are nearly constant. Therefore Bx is not truly 
constant. The reason for this is that x is the distance from the surface of the cable, not from the center. In 

the formula 0 ,
2

I
B

r
µ
π

=  r is the distance from the center of the cable. In that case, we would expect Br to be 

constant. For the last three points, it does appear that Bx is nearly constant. The reason for this is that the 

proper formula for the magnetic field for this cable is 0 ,
2 ( )

I
B

R x
µ

π
=

+
 where R is the radius of the cable. 

As x gets large compared to R, r ≈ x and the magnitude approaches 0 .
2

I
r

µ
π

 

(b) Using the equation appropriate for the cable and solving for x gives 0
1( /2 ) .x I R
B

µ π= −  A graph of  

x versus 1/B should have a slope equal to 0 /2Iµ π  and a y-intercept equal to –R. Figure 28.77 shows the 
graph of x versus 1/B.  
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Figure 28.77 

(c) The best-fit equation for this graph is x = (1.2981 mT cm⋅ ) 1
B

 – 1.1914 cm. The slope is 

1.2981 mT cm⋅  = 51.2981 10 T m.−× ⋅  Since the slope is equal to 0 /2 ,Iµ π  we have 

0 /2Iµ π  = slope, which gives 52 slope / 2 1.2981 10  T m / 64.9 A,I π µ π µ−
0 0= ( ) = ( × ⋅ ) =  which rounds to 

65 A. The y-intercept is –R, so R = –(–1.1914 cm) = 1.2 cm. 
EVALUATE:   As we can see, the field within 2 cm or so of the surface of the cable would vary 

considerably from the value given by 0 .
2

I
B

r
µ
π

=  

 28.78. IDENTIFY and SET UP:   The wires repel each other since they carry currents in opposite directions, so the 
wires will move away from each other until the magnetic force is just balanced by the force due to the 
spring. The force per unit length between two parallel current-carrying wires of equal length and separation 

r is 
  

F
L

=
µ0
2π

′I I
r

.  In this case, the currents are the same and the distance between the wires is l0 + x, where 

x is the distance the spring stretches. Therefore the force is 
2

0

0
.

2 ( )
I L

F
l x

µ
π

=
+

 The magnitude of the force 

that each spring exerts is F = kx, by Hooke’s law. On each wire, spr mag ,F F=  and there are two spring 

forces on each wire. Therefore 
2

0

0
2 .

2 ( )
I L

kx
l x

µ
π

=
+

 

EXECUTE:   (a) We are given two cases with values for I and x, and each one leads to an equation 
involving l0 and k. If we take the ratio of these two equations, common factors such as L will cancel. This 
gives us 

2
0

2
0

(13.1 A) ( 0.40 m) 0.80 cm 2.0.
0.40 cm(8.05 A) ( 0.80 m)

l
l

+ = =
+

 Solving for l0 gives l0 = 0.834 cm, which rounds to 0.83 cm. 

Now we can solve for k using this value for l0 using 
2

0

0
2 .

2 ( )
I L

kx
l x

µ
π

=
+

 

2
0(13.1 A) (0.50 m) 2 (0.0080 m).

2 (0.0080 m 0.00834 m)
k

µ
π

=
+

 k = 0.0656 N/m, which rounds to 0.066 N/m. 
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(b) For a 12.0-A current, we have 
2

0(12.0 A) (0.50 m) 2(0.0656 N/m) .
2 ( 0.00834 m)

x
x

µ
π

=
+

 Carrying out the 

multiplication and division and simplifying we get the quadratic equation 
x2 + (0.00834 m)x – 4 21.097 10 m 0.−× =  
Using the quadratic formula and taking the positive solution gives x = 0.0071 m = 0.71 cm. 
(c) To stretch the spring by 1.00 cm, the current must satisfy the equation 

2
0 (0.50 m) 2(0.0656 N/m)(0.0100 m).

2 (0.0100 m 0.00834 m)
Iµ

π
=

+
 This gives I = 15.5 A, which rounds to 16 A. 

EVALUATE:   The spring force in part (c) is kx =(0.0656 N/m)(0.0100 m) = 46.56 10 N.−×  This is a very 
small force resulting from a rather large 16-A current. This tells us that magnetic forces between parallel 
wires, such as extension cords, are not very significant for typical household currents. 

 28.79. IDENTIFY:   The current-carrying wires repel each other magnetically, causing them to accelerate 
horizontally. Since gravity is vertical, it plays no initial role. 

SET UP:   The magnetic force per unit length is 
2

0 ,
2

F I
L d

µ
π

=  and the acceleration obeys the equation 

/ /  .F L m L a=  The rms current over a short discharge time is 0/ 2.I  
EXECUTE:   (a) First get the force per unit length: 

2 2 22
0 0 0 0 0 0 .

2 2 4 42
F I I V Q
L d d d R d RC

µ µ µ µ
π π π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Now apply Newton’s second law using the result above:
2

0 0 .
4

F m Q
a a

L L d RC
µλ
π

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 Solving for a gives 

2
0 0

2 2 .
4

Q
a

R C d
µ

πλ
=  From the kinematics equation 0 ,x x xv v a t= +  we have 

2
0 0

0 .
4

Q
v at aRC

RCd
µ
πλ

= = =  

(b) Conservation of energy gives 21
02 mv mgh=  and 

22
0 0

22 2
0 0 04 1 .

2 2 2 4

Q
RCdv Q

h
g g g RCd

µ
πλ µ

πλ

⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠= = = ⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   Once the wires have swung apart, we would have to consider gravity in applying Newton’s 
second law. 

 28.80. IDENTIFY:   Approximate the moving belt as an infinite current sheet. 
SET UP:   Problem 28.73 shows that 1

02B Inµ=  for an infinite current sheet. Let L be the width of the 

sheet, so 1/ .n L=  

EXECUTE:   The amount of charge on a length x∆  of the belt is ,Q L xσ∆ = ∆  so .Q x
I L Lv

t t
σ σ∆ ∆= = =

∆ ∆
 

Approximating the belt as an infinite sheet 0 0 .
2 2

I v
B

L
µ µ σ= =  B

G
 is directed out of the page, as shown in 

Figure 28.80. 
EVALUATE:   The field is uniform above the sheet, for points close enough to the sheet for it to be 
considered infinite. 

 

 

Figure 28.80 
  



Sources of Magnetic Field   28-33 

© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

 28.81. IDENTIFY and SET UP:   This solenoid is not ideal since its width is fairly large compared to its length. But 
we can get a rough estimate using the ideal formula, 0 .B nIµ=  

EXECUTE:     B = µ0 nI  = µ0 (1000 m–1)I = 6150 10 T,−×  which gives I = 0.12 A, choice (b). 
EVALUATE:    This is a reasonable laboratory current of 120 mA. 

 28.82. IDENTIFY and SET UP:   The magnetic field of an ideal solenoid is 0 .B nIµ=  
EXECUTE:   Both solenoids have the same current, the same length, and the same number of turns, so the 
magnetic field inside both of them should be the same, which is choice (c). 
EVALUATE:    This answer is somewhat of an approximation. Even though both solenoids have the same 
current and same length and number of turns, the second (larger) solenoid is even farther from the ideal 
case than the first one. Therefore there would be some difference in the magnetic fields inside. 

 28.83. IDENTIFY and SET UP:   The enclosure is no longer present to shield the solenoid from the earth’s magnetic 
field of 50 T,µ  so net field inside is a sum of the solenoid field and the earth’s field. Whether the earth’s 
field adds or subtracts from the solenoid’s field depends on the orientation of the solenoid. The magnetic 
field due to the solenoid is 150 T.µ  
EXECUTE:    When the solenoid field is parallel to the earth’s field, the net field is 150 T 50 Tµµ + =  
200 T.µ  When the field’s are antiparallel (opposite), the net field is 150 T 50 T 100 T.µ µ µ− =  So the 
field that the bacteria experience is between  100 Tµ  and 200 T,µ  which is choice (c).  
EVALUATE:    Since the earth’s field is quite appreciable compared to the solenoid’s field, it is important to 
shield the solenoid from external fields, such as that of the earth. The earth’s field can make a difference of 
up to a factor of 2 in the field experienced by the bacteria. 


