ELECTRIC CHARGE AND ELECTRIC FIELD

21.1.

21.2.

21.3.

(a) IDENTIFY and SET UP: Use the charge of one electron (—1.602 x1071° C) to find the number of

electrons required to produce the net charge.
EXECUTE: The number of excess electrons needed to produce net charge ¢ is

| -9
4 _ {gUsIY ¢ =2.00x10" electrons.

—e  —1.602x107"” C/electron
(b) IDENTIFY and SET UP: Use the atomic mass of lead to find the number of lead atoms in

8.00x107° kg of lead. From this and the total number of excess electrons, find the number of excess
electrons per lead atom.
EXECUTE: The atomic mass of lead is 207x107> kg/mol, so the number of moles in 8.00x107° kg is

3
n="hot L =0.03865 mol. N, (Avogadro’s number) is the number of atoms in 1 mole,

M 207x107° kg/mol
so the number of lead atoms is N =nN, =(0.03865 mol)(6.022 x10% atoms/mol) = 2.328x10? atoms.

2.00x10' electrons

2.328 x10%* atoms

EVALUATE: Even this small net charge corresponds to a large number of excess electrons. But the
number of atoms in the sphere is much larger still, so the number of excess electrons per lead atom is very
small.

IDENTIFY: The charge that flows is the rate of charge flow times the duration of the time interval.

The number of excess electrons per lead atom is =8.59x107",

SET UP: The charge of one electron has magnitude e =1.60x 107" c.
EXECUTE: The rate of charge flow is 20,000 C/s and ¢ =100 s =1.00x 107* s,
0

1.60x107" €
EVALUATE: This is a very large amount of charge and a large number of electrons.

0 =(20,000 C/s)(1.00x10™* s) =2.00 C. The number of electrons is 1, = =1.25%10".

IDENTIFY and SET UP: A proton has charge +e and an electron has charge —e, with e= 1.60x107 C.

2
. e . L
The force between them has magnitude F = k|‘11_;12‘ = k—2 and is attractive since the charges have
r r

opposite sign. A proton has mass m,, = 1.67x107% kg and an electron has mass 9.1 1x107! kg. The

acceleration is related to the net force F by F = ma.

2 (1.60x107" C)?

EXECUTE: F:ke—2=(8.99><109N-m2/c2) ———=5.75x10" N.
r (2.0x10710 m)

F_ 575x107° N
proton: a =——7><—=3.4><1018 m/s.

P my 1.67x1077 kg
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21.4.

21.5.

21.6.

21.7.

21.8.

F  575x107° N
electron: a, =L 22X 63%102! mis?

m,  9.11x10" ke
The proton has an initial acceleration of 3.4x 10'® m/s® toward the electron and the electron has an initial

acceleration of 6.3x10?! m/s? toward the proton.

EVALUATE: The force the electron exerts on the proton is equal in magnitude to the force the proton
exerts on the electron, but the accelerations of the two particles are very different because their masses are
very different.

IDENTIFY: Use the mass m of the ring and the atomic mass M of gold to calculate the number of gold
atoms. Each atom has 79 protons and an equal number of electrons.

SETUP: N, =6.02% 10 atoms/mol. A proton has charge +e.
EXECUTE: The mass of gold is 10.8 g and the atomic weight of gold is 197 g/mol. So the number of atoms is

10.8¢g

Npn=(6.02% 10% atoms/mol)
197 g/mol

j =3.300%10% atoms. The number of protons is

ny = (79 protons/atom)(3.300 X 10% atoms) = 2.61x AL protons.
0= (n,)(1.60 % 107" C/proton) = 4.18 x 10° C.

(b) The number of electrons is n, = n, = 2.61x10%,

EVALUATE: The total amount of positive charge in the ring is very large, but there is an equal amount of
negative charge.

IDENTIFY: Each ion carries charge as it enters the axon.

SET UP: The total charge Q is the number N of ions times the charge of each one, which is e. So O = Ne,
where e=1.60x10"" C.

EXECUTE: The number N of ions is N = (5.6><1011 ions/m)(1.5><1072 m)= 8.4x10° ions. The total

charge Q carried by these ions is 0 = Ne = (8.4x10%)(1.60x107"? €)=1.3x10"° C=1.3 nC.

EVALUATE: The amount of charge is small, but these charges are close enough together to exert large
forces on nearby charges.
IDENTIFY: Apply Coulomb’s law and calculate the net charge g on each sphere.

SET UP: The magnitude of the charge of an electron is e = 1.60x107" C.

EXECUTE: F=/’c|ql—2q2| gives
r

la| = \/47r€0Fr2 = \/47580(3.33 x 10721 N)(0.200 m)? =1.217x107'® C. Therefore, the total

number of electrons required is # = |q| le=(1.217 x10716 )/ 60x107" Clelectron) =760 electrons.

EVALUATE: Each sphere has 760 excess electrons and each sphere has a net negative charge. The two like
charges repel.

and solve for r.

k
IDENTIFY: Apply F = @

B
SETUP: F =650 N.

i 9 N a2 /2 2
EXECUTE: r=1/ |q];q2|=\/(8.99><10 N-m7/C7)(1.0 €) =3.7x10° m=3.7 km

650 N

EVALUATE: Charged objects typically have net charges much less than 1 C.

IDENTIFY: Use the mass of a sphere and the atomic mass of aluminum to find the number of aluminum
atoms in one sphere. Each atom has 13 electrons. Apply Coulomb’s law and calculate the magnitude of
charge |q| on each sphere.
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21.9.

21.10.

SETUP: N, =6.02% 10?* atoms/mol. |q| =nle, where n; is the number of electrons removed from one

sphere and added to the other.
EXECUTE: (a) The total number of electrons on each sphere equals the number of protons.

ne=n, =(13)(Ny) __0.0250ke =7.25%x10** electrons.
0.026982 kg/mol
2
(b) For a force of 1.00 x10* N to act between the spheres, F = 1.00x10% N = 4;61—2 This gives
ﬂ'go r

|q| = \/47r£0(1.00 % 10% N)(0.800 m)2 =8.43x10~* C. The number of electrons removed from one sphere
and added to the other is n/, =|g|/e =5.27x10"° electrons.

() nl/n,=7.27x107"".

EVALUATE: When ordinary objects receive a net charge, the fractional change in the total number of
electrons in the object is very small.

IDENTIFY: Apply Coulomb’s law.

SET UP: Consider the force on one of the spheres.

1 [9192]_ 7

EXECUTE: (a) ¢;=¢,=¢q and F = , SO
. 4mey 1* Amgyr?

g=r|—— 0150 m\/ 0'2§0N —— =7.42x107" C (on each).

(1/4me,y) 8.988x10° N-m?*/C
(b) g, =4

AR F_ 1 [ F 1 |, .
FL 2= ~ 50 g =r =—r =—(7.42x1077 C)=3.71x107" C.

dmey 2 dzeyr 4(1/4me,) 2 \(V4me,) 2

And then ¢, =4¢, =1.48x107° C.

EVALUATE: The force on one sphere is the same magnitude as the force on the other sphere, whether the
spheres have equal charges or not.

IDENTIFY: We need to determine the number of protons in each box and then use Coulomb’s law to
calculate the force each box would exert on the other.

SET UpP: The mass of a proton is 1.67x107%7 kg and the charge of a proton is 1.60x107" C. The

|qlqz|
r2 ’

distance from the earth to the moon is 3.84x10% m. The electrical force has magnitude F.=k

m my
2
B

where & =8.99x10° N-m?/C%. The gravitational force has magnitude Foay =G , where

G=6.67x10""" N-m?/kg>.
1.0x107 kg
1.67x107%7 kg
of each box is g = Ne= (5,99><1023)(1.60><10_19 O)= 9.58x10* C. The electrical force on each box is

2 4 2
-4 (9.58x10™ C)

1_=(8.99x10° N-m?/C?)
¢ (3.84x10% m)?

EXECUTE: (a) The number of protons in each box is N = =5.99%10%. The total charge

=560 N =130 Ib. The tension in the string must equal

this repulsive electrical force. The weight of the box on earth is w=mg = 9.8x107> N and the weight of

the box on the moon is even less, since g is less on the moon. The gravitational forces exerted on the boxes
by the earth and by the moon are much less than the electrical force and can be neglected.



21-4

Chapter 21

21.11.

21.12.

21.13.

21.14.

(1.0x107> kg)?
(3.84x10% m)?

EVALUATE: Both the electrical force and the gravitational force are proportional to 1/72. But in SI units
the coefficient k in the electrical force is much greater than the coefficient G in the gravitational force. And
a small mass of protons contains a large amount of charge. It would be impossible to put 1.0 g of protons
into a small box, because of the very large repulsive electrical forces the protons would exert on each
other.

IDENTIFY: In a space satellite, the only force accelerating the free proton is the electrical repulsion of the
other proton.

SET UP: Coulomb’s law gives the force, and Newton’s second law gives the acceleration:

a=Flm=(1/4me, )€ /r*)m.

EXECUTE:

(@) a=(9.00x10° N-m?/C?)(1.60x10™" C)?/[(0.00250 m)*(1.67x107%7 kg)]=2.21x10* m/s>.

(b) The graphs are sketched in Figure 21.11.

EVALUATE: The electrical force of a single stationary proton gives the moving proton an initial
acceleration about 20,000 times as great as the acceleration caused by the gravity of the entire earth. As the

protons move farther apart, the electrical force gets weaker, so the acceleration decreases. Since the
protons continue to repel, the velocity keeps increasing, but at a decreasing rate.

nm ny

(b) Fyy =G—52=(6.67x107"" N-m’/kg?) =45x107* N.
r

a v

Figure 21.11

IDENTIFY: Apply Coulomb’s law.
SET UP: Like charges repel and unlike charges attract.
A I (0.550x107 O)|gy)|

EXECUTE: (a) F = ——= gives 0.600 N = >
dre, ? 47,y (0.30m)

and |¢,|=+1.09x107° C =

10.9 uC. The force is attractive and ¢; <0, so g, =+1.09 %X 070 = +10.9uC.

(b) F =0.600 N. The force is attractive, so is downward.
EVALUATE: The forces between the two charges obey Newton’s third law.
IDENTIFY: Apply Coulomb’s law. The two forces on g; must have equal magnitudes and opposite

directions.
SET UP: Like charges repel and unlike charges attract.

EXECUTE: The force F, that ¢, exerts on gy has magnitude F, = k—| q2(213| and is in the +x-direction.
)
F, must be in the —x-direction, so g, must be positive. F; = F, gives km = kM'
i n
2 2
A 2.00 cm
= — | =(3.00nC)] ——— | =0.750 nC.
] |q2|(er ( )(4.00 cm}

EVALUATE: The result for the magnitude of g, doesn’t depend on the magnitude of g,.

IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on Q.
SET Up: The force that ¢, exerts on Q is repulsive, as in Example 21.4, but now the force that g, exerts is

attractive.
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21.15.

21.16.

21.17.

21.18.

EXECUTE: The x-components cancel. We only need the y-components, and each charge contributes
1 (2.0x107° C)(4.0x107°C) .

47 (0.500 m)?

the total force is 2F =0.35 N, in the —y-direction.

EVALUATE: If g;is —2.0 uC and g, is +2.0 4C, then the net force is in the +y-direction.

equally. Fj, =F,, =— sina =—-0.173 N (since sina = 0.600). Therefore,

IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on ¢;.

SET Up: Like charges repel and unlike charges attract, so F, and F’3 are both in the +x-direction.
|Q1QZ| =6.749x1075 N, F} = |‘11fI3|
”12 ”13

F=1.8x10"* N and is in the +x-direction.

EXECUTE: F,=k =1.124x10* N. F=F, + F; =1.8x107* N.

EVALUATE: Comparing our results to those in Example 21.3, we see that F, ,, 3 =—F; o, 1, as required

by Newton’s third law.
IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on ¢,.

SETUP: F,,isinthe +y-direction.

. 0x10° N-m?/C?)(2.0x107° €)(2.0x107 C)
(0.60 m)*

(Fyon1), =+0.100 N. Fy o, is equal and opposite to £ o, o (Example 21.4), s0 (£ 4 1), =—0.23 N

and (Fp o 1)y =0.17N. F=(F o )y +(Fgon 1)y =—0.23N.

F,=(Fyon1)y +(Fpon1)y =0.100 N+0.17 N=0.27 N. The magnitude of the total force is

EXECUTE: F, =

=0.100N. (F, o), =0and

1023 = . .
F= \/(0.23 N)2 +(0.27 N)2 =0.35N. tan”! o7 =40°, so F is 40° counterclockwise from the +y-axis,
or 130° counterclockwise from the +x-axis.
EVALUATE: Both forces on ¢, are repulsive and are directed away from the charges that exert them.
IDENTIFY and SET UP:  Apply Coulomb’s law to calculate the force exerted by ¢, and g; on g;. Add
these forces as vectors to get the net force. The target variable is the x-coordinate of g¢;.

EXECUTE: F, is in the x-direction.

_ |‘I1‘I2|
V12

F.=F, +F,and F, =-7.00 N

B, =F.—-F,,=-700N-337N=-1037N

For F;, to be negative, q; must be on the —x-axis.

Fy= =337N,s0F,, =+3.37N

:k|91q23|’ so |x| _ k|¢1193|
B

F =0.144 m, sox=-0.144 m

EVALUATE: ¢, attracts ¢; in the +x-direction so g; must attract g, in the —x-direction, and ¢; is at

negative x.
IDENTIFY: Apply Coulomb’s law.

SET Up: Like charges repel and unlike charges attract. Let F,; be the force that ¢, exerts on ¢, and let
F;, be the force that g; exerts on g;.

EXECUTE: The charge g; must be to the right of the origin; otherwise both ¢, and g; would exert forces
in the +x-direction. Calculating the two forces:

1 |q1q2| (9.0x10° N-m?/C?)(3.00x107° C)(5.00x107° C)

F —
4z, (0.200 m)>

=3.375 N, in the +x-direction.
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9 22 -6 -6 2
£y = (9x10° N-m%/C )(3.002><1o C)(8.00x107° C) _ 0.216?1 m” L the —v-direction.
i3 i3
0216 N-m*
We need F, = Fy; — Fy; ==7.00N, 50 3.375 N -~ = _7.00 N.
Uk
0216 N-m? :
y= oo _0.144m. g5 isat x=0.144 m.
3375N+7.00N
EVALUATE: Fj; =10.4 N. Fy, is larger than F, because |g3| is larger than |g,| and also because 73 is
less than 7.
21.19. IDENTIFY: Apply Coulomb’s law to calculate the force each of the two charges exerts on the third charge.

Add these forces as vectors.
SET UP: The three charges are placed as shown in Figure 21.19a.

Y

0.400 m

g, = +5.00nC
0.200 m

q, = —1.50 nC

Figure 21.19a

EXECUTE: Like charges repel and unlike attract, so the free-body diagram for g5 is as shown in
Figure 21.19b.

1 1 |ql‘13|
2,0 Fi = __2
47[80 o
FZ Fl F2 = LM
dre, r223
Figure 21.19b
-9 -9
F, = (8.988x10° N-m>c2)1:20%10 C)(5'002XI0 ©) o 1685%107 N
(0.200 m)
-9 -9
Fy = (8.988x10° N -m?/c?) 3:20x10 C)(S'ngm ©) _5088x107 N
(0.400 m)

The resultant force is R = F, + F,.

R, =0.

R, =—(F +Fy)=—-(1.685x107° N+8.988x107" N)=-2.58x107° N.

The resultant force has magnitude 2.58 x10™° N and is in the —y-direction.

EVALUATE: The force between ¢, and g5 is attractive and the force between ¢, and g5 is replusive.
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21.20. IDENTIFY: Apply F=k——

21.21.

|qq | to each pair of charges. The net force is the vector sum of the forces due to

q and g;.
SET UpP: Like charges repel and unlike charges attract. The charges and their forces on g3 are shown in
Figure 21.20.

-9 -9
. 6.00x107 C )
EXECUTE: F = |q‘q3| —(8.99x10° N-m2/c2)&00x107 €X o ) =5394%107 N.
”1 (0.200 m)
F=k |qz‘h| —(8.99x10° N-m2/c2)&: 00x107 O)6.00x107° €) _ ) 597 156

3 (0.300 m)?
F =K., +F, =+F-F=240x 107® N. The net force has magnitude 2.40 x10™° N and is in the

+x-direction.
EVALUATE: Each force is attractive, but the forces are in opposite directions because of the placement of the
charges. Since the forces are in opposite directions, the net force is obtained by subtracting their magnitudes.

y

<—0.200m —
0.300 m P
1

9 F, a3 4

Figure 21.20

IDENTIFY: We use Coulomb’s law to find each electrical force and combine these forces to find the net
force.

SET Up: In the O-H-N combination the O~ is 0.170 nm from the H* and 0.280 nm from the N™. In the

N-H-N combination the N~ is 0.190 nm from the H" and 0.300 nm from the other N™. Like charges
repel and unlike charges attract. The net force is the vector sum of the individual forces. The force due to

|91‘12|
I"

each pair of charges is F' =k—= k

EXECUTE: (a) F = qulq2|
2

O-H-N:

mC?) (1.60x107" C)?
(0.170 x10~° m)?

%) (1.60x107" )2
(0.280x10~° m)?

O -H": F=(8.99%10° N =7.96x10"° N, attractive

O -N": F=(8.99x10° N =2.94x107 N, repulsive

N-H-N:

(1.60x107"° C)?

(0.190x107° m)?

w2y 160X 107 19°0)?
(0.300 x 107 m)

The total attractive force is 1.43x10™° N and the total repulsive force is 5.50x 107 N. The net force is

p
attractive and has magnitude 1.43x107° N —5.50x10° N=8.80x10™ N.

2 -19
(b) F=k6—2=(8.99><109 m?/C?) (1.60x10 QC)
" (0.0529 %10~ m)?

N™-H": F=(8.99x10° N-m?/C?) =6.38x107° N, attractive

N™-N": F=(8.99x10° N =2.56x10" N, repulsive

=822x107° N.
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EVALUATE: The bonding force of the electron in the hydrogen atom is a factor of 10 larger than the
bonding force of the adenine-thymine molecules.
21.22. IDENTIFY: We use Coulomb’s law to find each electrical force and combine these forces to find the net
force.
SET UP: In the O-H-O combination the O~ is 0.180 nm from the H* and 0.290 nm from the other O~.
In the N-H-N combination the N~ is 0.190 nm from the H* and 0.300 nm from the other N™. In the
O-H-N combination the O~ is 0.180 nm from the H* and 0.290 nm from the other N™. Like charges
repel and unlike charges attract. The net force is the vector sum of the individual forces. The force due to
2
. . _ |Q1 q2| _.€
each pair of charges is F = kr_2 = kr—z.
2
EXECUTE: Using F = k@ = ke—z, we find that the attractive forces are: O™ - H', 7.10x 107° N;
r 7
N™-H", 6.37x10° N; O"-H™, 7.10x10™° N. The total attractive force is 2.06 x10~° N. The repulsive
forces are: O™ -07, 2.74x107° N; N"-N~, 2.56 x 107 N; O” -N~, 2.74 x 10~ N. The total repulsive
force is 8.04x10™ N. The net force is attractive and has magnitude 1.26 x 107 N.
EVALUATE: The net force is attractive, as it should be if the molecule is to stay together.
21.23. IDENTIFY: F = |q|E . Since the field is uniform, the force and acceleration are constant and we can use a
constant acceleration equation to find the final speed.
SET UP: A proton has charge +e and mass 1.67 x 1077 kg.
EXECUTE: (a) F =(1.60x107"° C)(2.75%10° N/C)=4.40x10""° N.
-16
) a=L =w =2.63x10'! m/s2.
m  1.67x107"" kg
(©) v, = v, +a,t gives v=(2.63x10"" m/s?)(1.00x107® ) =2.63x10° mvs.
EVALUATE: The acceleration is very large and the gravity force on the proton can be ignored.
21.24. IDENTIFY: For a point charge, E = k@.
r
SETUP: E is toward a negative charge and away from a positive charge.
EXECUTE: (a) The field is toward the negative charge so is downward.
00x107°
E =(8.99%x10° N~m2/C2)M =719 N/C.
(0.250 m)
k 99x10° N-m?/C?)(5.00x 10~
o) 7 M:\/(899>< m?/C?)(5.00x10° C) _ o,
E 12.0 N/C
EVALUATE: At different points the electric field has different directions, but it is always directed toward
the negative point charge.
21.25. IDENTIFY: The acceleration that stops the charge is produced by the force that the electric field exerts on it.

Since the field and the acceleration are constant, we can use the standard kinematics formulas to find
acceleration and time.
(a) SET Up: First use kinematics to find the proton’s acceleration. v, =0 when it stops. Then find the

electric field needed to cause this acceleration using the fact that /' = gE.

EXECUTE: v =] +2a,(x—Xx,). 0=(4.50x10° m/s)? +24(0.0320 m) and a=3.16 x10"* m/s*.
Now find the electric field, with g =e. eéE =ma and

E =male=(1.67x10"27 kg)(3.16x10"* m/s?)/(1.60x107"° C) =3.30x10° N/C, to the left.
(b) SETUP: Kinematics gives v=v, +at, and v=0 when the electron stops, so ¢ =vy/a.

EXECUTE: ¢ =vp/a=(4.50x10° m/s)/(3.16x10' m/s?)=1.42x107 s =14.2 ns.
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21.26.

21.27.

21.28.

(¢) SET Up: In part (a) we saw that the electric field is proportional to m, so we can use the ratio of the
electric fields. E/E, =mc/m,and E, =(mc/m,)E,.
EXECUTE: E, =[(9.11x107>! kg)/(1.67 %1077 kg)](3.30x10° N/C)=1.80x10* N/C, to the right.

EVALUATE: Even a modest electric field, such as the ones in this situation, can produce enormous
accelerations for electrons and protons.
IDENTIFY: Use constant acceleration equations to calculate the upward acceleration a and then apply

F = ¢E to calculate the electric field.
SET UP: Let +y be upward. An electron has charge ¢ =—e.

EXECUTE: (a) vp,=0and a,=a, so y—y,= voyt+%ayt2 gives y—y, = %at2. Then

v 2(y =) _ 2(4.50 m) L 005102 /s,

12 (3.00x107° 5)?
=31 12 2
g F _ma_0.11x10 kg)(l.gogxlo sV g A
q9 q 1.60x107" C

The force is up, so the electric field must be downward since the electron has negative charge.
(b) The electron’s acceleration is ~10'! g, so gravity must be negligibly small compared to the electrical force.

EVALUATE: Since the electric field is uniform, the force it exerts is constant and the electron moves with
constant acceleration.
IDENTIFY: The equation F =gE relates the electric field, charge of the particle, and the force on the

particle. If the particle is to remain stationary the net force on it must be zero.

SET UP: The free-body diagram for the particle is sketched in Figure 21.27. The weight is mg, downward. For
the net force to be zero the force exerted by the electric field must be upward. The electric field is downward.
Since the electric field and the electric force are in opposite directions the charge of the particle is negative.

E mg=|q|E

o |

mg

Figure 21.27

mg _ (1.45x107 kg)(9.80 m/s”)
E 650 N/C
(b) SET UP: The electrical force has magnitude Fj = |q|E =¢E. The weight of a proton is w = mg.

=2.19x107> C and ¢ =—21.9 uC.

EXECUTE: (a) |¢|=

Fp=w so eE =mg.
M8 _ (1.673x107%7 kg)(9.80 m/s?)
e 1.602x107" C

This is a very small electric field.
EVALUATE: In both cases |q|E =mg and E = (m/ |q|)g. In part (b) the m/ |q| ratio is much smaller

EXECUTE: 1.02x1077 N/C.

(= 10_8) than in part (a) (~ 102) so E is much smaller in (b). For subatomic particles gravity can usually
be ignored compared to electric forces.

IDENTIFY: The electric force is F = ¢E.

SET Up: The gravity force (weight) has magnitude w = mg and is downward.
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EXECUTE: (a) To balance the weight the electric force must be upward. The electric field is downward,
so for an upward force the charge ¢ of the person must be negative. w= F gives mg = |q|E and
60 kg)(9.80 nv/s*
g =8 - (00 keX Y)_39c.
E 150 N/C
’ 2
(b) F= k|q;q2 =(8.99x10° N- mz/Cz)LC)2 =1.4x10" N. The repulsive force is immense and this is
r (100 m)
not a feasible means of flight.
EVALUATE: The net charge of charged objects is typically much less than 1 C.
21.29. IDENTIFY: The equation F =gE gives the force on the particle in terms of its charge and the electric

field between the plates. The force is constant and produces a constant acceleration. The motion is similar
to projectile motion; use constant acceleration equations for the horizontal and vertical components of the
motion.

SET UP: The motion is sketched in Figure 21.29a.

2.00 cm For an electron g =—e.

Figure 21.29a

F =g¢E and g negative gives that F and E are in opposite directions, so F is upward. The free-body
diagram for the electron is given in Figure 21.29b.

EXECUTE: (a) 2F, =ma,

eE =ma
fo

Figure 21.29b

Solve the kinematics to find the acceleration of the electron: Just misses upper plate says that
x—xy=2.00 cm when y—y,=-+0.500 cm.

X-component:

Vo, = Vo =1.60x10° m/s, a,_ =0, x— x5 = 0.0200 m, 1 =?

X=Xy =Vl + %axt2

x—xy _ 0.0200 m
vor  1.60x10° m/s

In this same time ¢ the electron travels 0.0050 m vertically.

y-component;
t=125x107" s, vy, =0, y = yy =+0.0050 m, a, =?

= =1.25%x10"%s

y=Yo=vo,t+%a,t’
_2(y—yp) _ 2(0.0050 m)
YT (1251078 5

(This analysis is very similar to that used in Chapter 3 for projectile motion, except that here the acceleration
is upward rather than downward.) This acceleration must be produced by the electric-field force: eE = ma.

=6.40x10" m/s>.
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21.30.

21.31.

21.32.

_ma _(9.109x107" kg)(6.40x10" m/s?)

e 1.602x107" C
Note that the acceleration produced by the electric field is much larger than g, the acceleration produced by
gravity, so it is perfectly ok to neglect the gravity force on the electron in this problem.

®) a= eE _ (1.602x107" C)(364 N/C)
my 1.673x107%" kg

This is much less than the acceleration of the electron in part (a) so the vertical deflection is less and the
proton won’t hit the plates. The proton has the same initial speed, so the proton takes the same time

E =364 N/C

=3.49x10'" m/s>.

1=125%10"% s to travel horizontally the length of the plates. The force on the proton is downward (in the

same direction as E, since g is positive), so the acceleration is downward and a,=-3.49x 10" mys?.
y=yo=vo,t +1a,* =1(-3.49x10" m/s?)(1.25x10™ 5)* ==2.73x107° m. The displacement is

2.73%107° m, downward.

EVALUATE: (c) The displacements are in opposite directions because the electron has negative charge and
the proton has positive charge. The electron and proton have the same magnitude of charge, so the force
the electric field exerts has the same magnitude for each charge. But the proton has a mass larger by a
factor of 1836 so its acceleration and its vertical displacement are smaller by this factor.

(d) In each case a > g and it is reasonable to ignore the effects of gravity.

IDENTIFY: Use the components of E from Example 21.6 to calculate the magnitude and direction of E.
Use F =¢E to calculate the force on the —2.5 nC charge and use Newton’s third law for the force on the
—8.0 nC charge.

SET UP: From Example 21.6, E= (-11 N/C)f +(14 N/C)}.

EXECUTE: (a) = \[E2 + EZ =\[(-11 NIC)? + (14 N/C)? =17.8 N/C.

E
tan~! [u] = tan_l(l 4/11)=51.8°, so #=128° counterclockwise from the +x-axis.

||
(b) (i) F=Eqgso F=(17.8N/C)2.5x107° C)=4.45x10"° N, at 52° below the +x-axis.

(i) 4.45x% 1078 N at 128° counterclockwise from the +x-axis.

EVALUATE: The forces in part (b) are repulsive so they are along the line connecting the two charges and
in each case the force is directed away from the charge that exerts it.

IDENTIFY: Apply constant acceleration equations to the motion of the electron.

SET UP: Let +x be to the right and let+y be downward. The electron moves 2.00 cm to the right and

0.50 cm downward.

EXECUTE: Use the horizontal motion to find the time when the electron emerges from the field.

x—xp=0.0200m, @, =0, vy, =1.60x10° m/s.x — xy = vyt +La,t* givest=1.25x10""s. Since

6 -8 V0y+Vy .
a, =0, v, =1.60 x10" m/s. y -y, =0.0050 m, vy, =0, 1=1.25x10"s. y -y, = 3 t gives

v, =8.00x10° m/s. Then v=\[v; +v5 =1.79 x10° m/s.
EVALUATE: v, =v,, +a,f gives a, =6.4X 10" m/s®. The electric field between the plates is

ma, (9.11x107" kg)(6.4x10" m/s?)

e 1.60x107" C
IDENTIFY: Apply constant acceleration equations to the motion of the proton. E = F/ |q|

E=

=364 N/C. This is not a very large field.

SET UP: A proton has mass m,, =1.67 X 1072 kg and charge +e. Let +x be in the direction of motion of

the proton.
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EXECUTE: (a) vy, =0. a= é. X=Xo=Vyl + laxt2 gives X —xy = lath = létz. Solving for E gives
my, 2 2 2 my,
27
_ 2(0.0160 ?1)(1.67 %10 kg)2 — 1326 N/C.
(1.60x 107" C)(3.20x107% 5)
2(x —xg)m -
M) v, =vp, +a=Ei= < (r=xo)mp ), _ 2x—x) _ 2(0.0160 zn) =1.00x10* m/s.
m,  m, et t 3.20x107° s
EVALUATE: The electric field is directed from the positively charged plate toward the negatively charged
plate and the force on the proton is also in this direction.
21.33. IDENTIFY: Find the angle 6 that # makes with the -x-axis. Then 7 = (cos8)i + (sin6) j.
SET UP: tané = y/x.
1 L. AN )%
EXECUTE: (a) tan 1(%) =—% rad. r=—j.
(12 A 2 24
(b) tan ey rad. I‘=£l +£].
12) 4 2 2
2 2.6 | . A
(c) tan wew - =1.97rad=112.9°. ¥ =-0.39i +0.92j (Second quadrant).
+1.
EVALUATE: In each case we can verify that r is a unit vector, because 7-r=1.
21.34. IDENTIFY: The net force on each charge must be zero.
SET UP: The force diagram for the —6.50 C charge is given in Figure 21.34. FE is the force exerted on
the charge by the uniform electric field. The charge is negative and the field is to the right, so the force
exerted by the field is to the left. £ is the force exerted by the other point charge. The two charges have
opposite signs, so the force is attractive. Take the +x-axis to be to the right, as shown in the figure.
EXECUTE: (a) Fj =|g|E =(6.50x107° C)(1.85x10°® N/C) =1.20x10° N
50x10%° €)(8.75x107°
F = kM = (8.99x10° N-m2/c2)&30X107 OXBTSXI07C) _¢ 10102 N
2 (0.0250 m)?
XF,=0 gives T+ F,—Fp=0 and T=Fp —F, =382 N.
(b) Now F, is to the left, since like charges repel.
S F, =0 gives T—F,—F;=0 and T=Fy + F,=2.02x10° N.
EVALUATE: The tension is much larger when both charges have the same sign, so the force one charge
exerts on the other is repulsive.
7 E
_>
Fg T
- =
F‘/
Figure 21.34
21.35. IDENTIFY and SETUP: Use E in E ==L to calculate F, F =ma to calculate @, and a constant

qo
acceleration equation to calculate the final velocity. Let +x be east.
(a) EXECUTE:  F, =|g|E =(1.602x107"° C)(1.50 N/C) =2.403x10™"" N.

a, = F,/m=(2.403x10"" N)/(9.109x107! kg) =+2.638x10"" m/s>.
Vox = +4.50x10° m/s, a, =+2.638x 10" m/s?, x —xy = 0.375 m, v, =?
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vi = vgx +2a,.(x—xy) gives v, = 6.33x10° m/s.
EVALUATE: E is west and ¢ is negative, so F is east and the electron speeds up.

(b) EXECUTE:  F, =—|g|E =~(1.602x107" C)(1.50 N/C)=-2.403x10""? N.
a, =F,/m=(-2.403x10""" N)/(1.673x107%7 kg) =—1.436x10® m/s*.

Vo, = +1.90x10* m/s, a, =—1.436x10° m/s?, x —xy =0.375m, v, =?

vf = vgx +2a,(x—xy) gives v, = 1.59%x10* my/s.

EVALUATE: ¢ >0 so F is west and the proton slows down.

21.36. IDENTIFY: The net electric field is the vector sum of the fields due to the individual charges.
SET Up: The electric field points toward negative charge and away from positive charge.

E,

(a) (b)
Figure 21.36

EXECUTE: (a) Figure 21.36a shows EQ and E +q atpoint P. EQ must have the direction shown, to

produce a resultant field in the specified direction. E, is toward O, so Q is negative. In order for the

horizontal components of the two fields to cancel, Q and g must have the same magnitude.
(b) No. If the lower charge were negative, its field would be in the direction shown in Figure 21.36b. The

two possible directions for the field of the upper charge, when it is positive ( E, ) or negative ( E_), are

shown. In neither case is the resultant field in the direction shown in the figure in the problem.

EVALUATE: When combining electric fields, it is always essential to pay attention to their directions.
21.37. IDENTIFY: Calculate the electric field due to each charge and find the vector sum of these two fields.

SET UP: At points on the x-axis only the x-component of each field is nonzero. The electric field of a

point charge points away from the charge if it is positive and toward it if it is negative.

EXECUTE: (a) Halfway between the two charges, E =0.

1 q q 4q ax
(b) For |x|<a, E, = _ = .
. Yodme ((a+x)” (a-x) 4y (x* —a?)?
2, 2
For x>a, E = ! q m_t q s = 2q x2+a22'
ey \ (a + x) (a—x) 47y (x> —a?)
-1 2 2 2
For x<—a, E, = g S+ q ~|=- q xz+azz'
dneg ((a+x)° (a—x) Arey (x* —a®)

The graph of E versus x is sketched in Figure 21.37 (next page).
EVALUATE: The magnitude of the field approaches infinity at the location of one of the point charges.
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—a a

Figure 21.37

21.38. IDENTIFY: Add the individual electric fields to obtain the net field.
SET Up: The electric field points away from positive charge and toward negative charge. The electric

fields E, and E, add to form the net field E.

EXECUTE: (a) The electric field is toward 4 at points B and C and the field is zero at 4.
(b) The electric field is away from 4 at B and C. The field is zero at 4.
(c) The field is horizontal and to the right at points 4, B, and C.
EVALUATE: Compare your results to the field lines shown in Figure 21.28a and b in the textbook.
21.39. IDENTIFY: E = 4—@ gives the electric field of each point charge. Use the principle of superposition
TTE,
o0or

. = F . .
and add the electric field vectors. In part (b) use E =—C to calculate the force, using the electric field
90

calculated in part (a).
SET UP: The placement of charges is sketched in Figure 21.39a.

y
¢ 4, = +2.00nC 9, = —5.00nC
a ' b

X

0200m 0200m  0.600m 0.400 m
Figure 21.39a

The electric field of a point charge is directed away from the point charge if the charge is positive and
toward the point charge if the charge is negative. The magnitude of the electric field is £ = 4—@,
7[80 14

where 7 is the distance between the point where the field is calculated and the point charge.

(a) EXECUTE: (i) At point a the fields E‘l of ¢, and E‘z of ¢, are directed as shown in Figure 21.39b.

y

153 q2<0
>0 4 !
‘II E——

E,

Figure 21.39b
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—9
E = |q;| (8.988x10° N-m2/c) 22200 € yu9 4\
47[80 K (0.200 m)*
—9
E,= @_(8 988x10° N-m?/C? )M_mswc
4rey 1f (0.600 m)>

E,=4494N/C, E;,, =0.
E,,=124.8 N/C, E; ), =0.
E . =E, +E, =+449.4 N/C+124.8 N/C=+574.2 N/C.
The resultant field at point a has magnitude 574 N/C and is in the +x-direction.
(ii) At point b the fields E; of g; and E, of ¢, are directed as shown in Figure 21.39¢.

5
E, E,
. ~~ .
q >0 q,<0 b
1 2
Figure 21.39¢
-9
E = |ql| =(8.988x10° N ~m2/C2)M =12.5 N/C.
4;ng W (1.20 m)
-9
E,= |q§| (8.988%x10° N ~m2/C2)M =280.9 N/C.
Amey (0.400 m)

E, =125 N/C, E;,, = 0.

E,,=-2809N/C, E,, =0.

E.=E +E, =+12.5N/C-280.9 N/C=-268.4 N/C.

E,=E,+E,,=0.

The resultant field at point b has magnitude 268 N/C and is in the —x-direction.

(iii) At point c the fields El of ¢; and Ez of ¢, are directed as shown in Figure 21.39d.

E, E,
—~———— X
¢ 511 >0 q2 <0
Figure 21.39d
—9

E = |q;| (8.988x10° N ~m2/cz)M =449.4 N/C.

4;ng " (0.200 m)
E,= |q§| (8.988x10° N -mz/cz)M =44.9 N/C.

4mey 13 (1.00 m)?

E,=-4494N/C, E;, =0.

E, =+449N/C, E,, =0.

E . =E +E, =—-449.4 N/C +44.9 N/C=-404.5 N/C.

E,=E\,+E,, =0.

The resultant field at point b has magnitude 404 N/C and is in the —x-direction.
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21.40.

(b) SET UP:  Since we have calculated E at each point the simplest way to get the force is to use
F =—¢E.

EXECUTE: (i) F =(1.602x107"° C)(574.2 N/C)=9.20x10""7 N, —x-direction.

(i) F=(1.602x107"" C)(268.4 N/C)=4.30x10""7 N, +x-direction.

(iii) F=(1.602x10""? C)(404.5 N/C)=6.48x10""" N, +x-direction.

EVALUATE: The general rule for electric field direction is away from positive charge and toward negative
charge. Whether the field is in the +x- or —x-direction depends on where the field point is relative to the
charge that produces the field. In part (a), for (i) the field magnitudes were added because the fields were in
the same direction and in (ii) and (iii) the field magnitudes were subtracted because the two fields were in
opposite directions. In part (b) we could have used Coulomb’s law to find the forces on the electron due to
the two charges and then added these force vectors, but using the resultant electric field is much easier.
IDENTIFY: E = ;M
dre, p?

gives the electric field of each point charge. Use the principle of superposition

. - I . .
and add the electric field vectors. In part (b) use E = =0 to calculate the force, using the electric field
90

calculated in part (a).
(a) SET UP: The placement of charges is sketched in Figure 21.40a.

»‘.
o ‘/1 = —4.00 nC 9, = —5.00nC
a b
0.200 mI 0.200 m 0.600 m 0.400 m

X

Figure 21.40a

The electric field of a point charge is directed away from the point charge if the charge is positive and
toward the point charge if the charge is negative. The magnitude of the electric field is £ = 4—@,
7[80 r

where 7 is the distance between the point where the field is calculated and the point charge.

(i) At point a the fields E | of ¢, and E , of g, are directed as shown in Figure 21.40b.

E, q, <0
) '—X
ql <0 -

El

Figure 21.40b
-9
EXECUTE: E, = Lm =(8.988x10° N - mz/cz)M =898.8 N/C.
aze, r? (0.200 m)?

-9

E, _ 1 ool (8.988x10° N - mz/cz)w =124.8 N/C.

drey (0.600 m)
E;, =898.8 N/C, £y, =0.

E,,=1248N/C, E,,, =0.

E =E +E, =-89088N/C+124.8 N/C=-774 N/C.

E,=E,+E,, =0.

The resultant field at point a has magnitude 774 N/C and is in the —x-direction.
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(ii) SET UP: At point b the fields E, of ¢; and E, of ¢, are directed as shown in Figure 21.40c.

Figure 21.40c

-9
EXECUTE: E, = Lm =(8.988x10° N - mz/cz)M =24.97 N/C.

g, r? (1.20 m)?

5.00x107° C
(0.400 m)?

E, = L@ =(8.988x10° N-m?/C?) =280.9 N/C.

2™ 47, r22
E,=-2497 N/C, E;,, =0.
E,,=-2809 N/C, E,, =0.
E =E_+E, =-2497 N/C-280.9 N/C=-305.9 N/C.
E,=E,+E,,=0.
The resultant field at point b has magnitude 306 N/C and is in the —x-direction.
(iii) SET UP: At point c the fields El of ¢, and E2 of g, are directed as shown in Figure 21.40d.

E, *
_
—»Ez i - ;
C 9, <0 g, <0
Figure 21.40d
-9
EXECUTE: E, = Lm =(8.988%10° N - mz/cz)M =898.8 N/C.
47y 1, (0.200 m)?
-9
E, =L@ =(8.988x10° N-mZ/Cz)M =44.9 N/C.
4mey 1 (1.00 m)

E;, =+8988 N/C, E;, =0.

E, =+449N/C, E,, =0.

E =E +E, =+8988N/C +44.9 N/C=+943.7 N/C.

Ey :Ely +E2y :0

The resultant field at point b has magnitude 944 N/C and is in the +x-direction.

(b) SET Up:  Since we have calculated E at each point the simplest way to get the force is to use
F =—¢E.

EXECUTE: (i) F =(1.602x107" C)(774 N/C) =1.24x107'® N, +x-direction.

(i) F=(1.602x107" C)(305.9 N/C)=4.90x10"'7 N, +x-direction.

(iii) F =(1.602x10"" C)(943.7 N/C)=1.51x10"'® N, — x-direction.

EVALUATE: The general rule for electric field direction is away from positive charge and toward negative
charge. Whether the field is in the +x- or —x-direction depends on where the field point is relative to the
charge that produces the field. In part (a), for (i) the field magnitudes were subtracted because the fields
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21.41.

21.42.

21.43.

were in opposite directions and in (ii) and (iii) the field magnitudes were added because the two fields were
in the same direction. In part (b) we could have used Coulomb’s law to find the forces on the electron due
to the two charges and then added these force vectors, but using the resultant electric field is much easier.

la|

1”2

SET Up: The electric field of a negative charge is directed toward the charge. Label the charges ¢, g5,

IDENTIFY: FE =k*=. The net field is the vector sum of the fields due to each charge.

and g, as shown in Figure 21.41a. This figure also shows additional distances and angles. The electric
fields at point P are shown in Figure 21.41b. This figure also shows the xy-coordinates we will use and the
x- and y-components of the fields E;, E,, and Ej.
5.00x107° C

T =4.49x10° N/C.
K m

EXECUTE: E| = E; =(8.99x10° N-m? / C?)

2.00x107% C
(0.0600 m)*

E,=E, +Ey, +Ey, =0 and E, = Ey, + E, + Ey, = E, + 2E, c0s53.1°=1.04x10" N/C.

E, =(8.99x10° N-m?/C?) =4.99x10° N/C.

E =1.04x10" N/C, toward the —2.00 UC charge.

EVALUATE: The x-components of the fields of all three charges are in the same direction.

8.0cm
q, ¢

8.0cm

Figure 21.41

IDENTIFY: The net electric field is the vector sum of the individual fields.

SET Up: The distance from a corner to the center of the square is 7 =+/(a/ 2)2 +(a/ 2)2 =a/\J2. The
magnitude of the electric field due to each charge is the same and equal to £, = k_g = 2k—621. All four
y-components add and the x-components cancel.

L = —2kq = —@. The resultant field

4
2 24? a’

EXECUTE: Each y-component is equal to E,, =—E, cos45°=—

is

42kq . L
\/—2 q’ in the —y-direction.
a

EVALUATE: We must add the y-components of the fields, not their magnitudes.

lal

IDENTIFY: For a point charge, £ =k— . The net ficld is the vector sum of the fields produced by each
r

charge. A charge ¢ in an electric field E experiences a force F = gE.
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21.44.

SET Up: The electric field of a negative charge is directed toward the charge. Point 4 is 0.100 m from ¢,
and 0.150 m from ¢;. Point B is 0.100 m from ¢; and 0.350 m from ¢,.
EXECUTE: (a) The electric fields at point 4 due to the charges are shown in Figure 21.43a.

-9

£ - |q1| —(8.99x10° N-m2/c1) 82X €5 595108 Nic.
2 (0.150 m)
-9

E = |‘12| =(8.99x10° N 2/cz)—12 >x10 " € =1.124x10* N/C.

rA2 (0.100 m)>
Since the two fields are in opposite directions, we subtract their magnitudes to find the net field.
E=E, - E =8.74x10° N/C, to the right.
(b) The electric fields at point B are shown in Figure 21.43b.

E] |ql| (8 99)(109 2/C )%_5 619)(]03 N/C.
2 (0.100 m)*
-9

E, =k |‘12| =(8.99x10° N 2/C2)M=9.17x102 N/C.

ra, (0.350 m)
Since the fields are in the same direction, we add their magnitudes to find the net field.
E=E +E, =6.54x10° N/C, to the right.
(¢) At 4, E=8.74x10° N/C, to the right. The force on a proton placed at this point would be
F =gE =(1.60x10""" C)(8.74%10° N/C) =1.40x10""> N, to the right.

EVALUATE: A proton has positive charge so the force that an electric field exerts on it is in the same
direction as the field.

«—0.150 m——<—0.100 m— <« 0.100 m 0.250 m
E;
° - - . ° BE——F e °
9 E, A E, @ E, @ o
6)) (b)

Figure 21.43

la]

IDENTIFY: Apply £ =—— 5 to calculate the electric field due to each charge and add the two field

Are,
vectors to find the resultant field.

SET UP: For ¢, 7= j. For gy, F=cos 6i +sin@j, where @ is the angle between E, and the +x-axis.

9 2 -9
EXECUTE: (2) B =—0— _ (9.0x10° N-m?/C?)(=5.00x10 )5 Ca813x10° NIC) .
4mern (0.0400 m)?
_ g (9.0x10° N-m?/C*)(3.00x107° C)

=1.080x10% N/C. The angle of E,, measured from

4reyrd (0.0300 m)? +(0.0400 m)?

the x-axis, is 180° — tan‘l(:'oo cm

j =126.9° Thus
cm

E, =(1.080x10* N/C)(i c0s126.9°+ jsin126.9°) = (—6.485x10° N/C)i +(8.64x10° N/C) j.
(b) The resultant field is E, + E, = (—6.485x 10> N/C)i +(-2.813x10% N/C +8.64 x10°> N/C) ;.
E, + E, =(-6.485x10> N/C)i —(1.95x10* N/C) j.

EVALUATE: E‘l is toward ¢, since ¢ is negative. E‘z is directed away from ¢,, since g, is positive.
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21.45. IDENTIFY: The forces the charges exert on each other are given by Coulomb’s law. The net force on the
proton is the vector sum of the forces due to the electrons.

SETUP: ¢.=-1 .60x107" C. g, =+1.60x 107!? C. The net force is the vector sum of the forces exerted

2
. e . . L
by each electron. Each force has magnitude F' = k@ = k— and is attractive so is directed toward the

r r 2
electron that exerts it.

EXECUTE: Each force has magnitude
2 9 2,2 —19 2
8.988x10” N-m~/C“)(1.60x10™"" C
Fl:Fz:k|q132|:ke_2:( . = 1)(5 2>< )
r r (1.50x107"" m)

diagram is shown in Figure 21.45.

=1.023x107® N. The vector force

65.0

Figure 21. 45

Taking components, we get £, =1.023x107° N; £, =0. Fy, = F,c0565.0°=4.32x10"" N;

Fy, =F,sin65.0°=9.27x10"° N. F, = F +F,, =146x10° N; F, =F,+F, =927x10” N.

F, 927x107°N
F=\F>+F>=1.73x10"® N. tanf=—="""""__~-0.6349 which gives
Y F, 146x10°N <

6=32.4°. The net force is 1.73x10™° N and is directed toward a point midway between the two electrons.

EVALUATE: Note that the net force is less than the algebraic sum of the individual forces.
21.46. IDENTIFY: We can model a segment of the axon as a point charge.

SET Up: If the axon segment is modeled as a point charge, its electric field is £ = k%. The electric field
r

of a point charge is directed away from the charge if it is positive.
EXECUTE: (a) 5.6% 10" Na* ions enter per meter so ina 0.10 mm =1.0x 10~* m section, 5.6 X107 Na™ ions

enter. This number of ions has charge ¢ = (5.6x1 07)(1.60 x1071° C)=9.0x 1072 C.

—12
(b) E = il 8.99x10° N-m2/c2)—- 210~ € 55 Ny, directed away from the axon.
2 (5.00x107% m)?
r 5.00x107" m
© r= kg :\/(8.99><109 N-m?/C?)(9.0x107'2 C) 2%0m
E 1.0x107° N/C

EVALUATE: The field in (b) is considerably smaller than ordinary laboratory electric fields.
21.47. IDENTIFY: The electric field of a positive charge is directed radially outward from the charge and has

, i
magnitude E = P

7[80 r
SET UP: The placement of the charges is shown in Figure 21.47a.

. The resultant electric field is the vector sum of the fields of the individual charges.



Electric Charge and Electric Field

S

d
0.200 m
%0 e

0.150 m 0150m‘ 0150m

0.400 m

ecC

Figure 21.47a

EXECUTE: (a) The directions of the two fields are shown in Figure 21.47b.

E E, | |
A A 1

A 2——1W1thr—0150m
471'80,,

E=E2 _El =O, EX =O,Ey =0.
Figure 21. 47b

(b) The two fields have the directions shown in Figure 21.47c.

A B E=FE, +E,, in the +x-direction.
EI

Figure 21. 47¢
E = |"1| — (8.988x10° N 2/cz)—6 0010 € _5396.8 N/C.

4re, rl (0.150 m

-9

E, = |q2| —(3.988x10° N-m2/c1) 2210 € 5663 w1

47[80 l"2

(0.450 m)*
E=E +E,=2396.8 N/C+266.3 N/C=2660 N/C; E, =+2660 N/C, E, = 0.
(¢) The two fields have the directions shown in Figure 21.47d.

0.300 m

sing=22400m _ 6 00,

0.500 m
056 =290 _ 6 600

m

Figure 21. 47d
-9
= |q;| = (8.988x10° N- mZ/Cz)M—337 IN/C.

47e 1. (0.400 m

21-21
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-9
E, = L@ = (8.988x10° N~m2/C2)M =215.7 N/C.
47, 2 (0.500 m)

Ey, =0,E, =—E =-337.IN/C.
E,, =+E, cos =+(215.7 N/C)(0.600) = +129.4 N/C.
E,, =~E,sin@=—(215.7 N/C)(0.800) = ~172.6 N/C.
E =E, +E,, =+129 N/C.
E,=E,+E,,=-337.1N/C~172.6 N/C =-510 N/C.

E=\E2 + E2 =\[(129 N/C)* +(~510 N/C)? =526 N/C.

E and its components are shown in Figure 21.47¢.

E
tanor =—2.

X
—510 N/C
o0=—=
+129 N/C
a =284°, counterclockwise from +x-axis.

-3.953.

Figure 21. 47e

(d) The two fields have the directions shown in Figure 21.47f.

y

sing= 22201 _ g 00,
0.250 m
El\\ / E,
/ \\
0250m,” \ 0250m
// A\
q, g
g 6\ @ . : )
0.150m | 0.150 m
Figure 21. 47f
The components of the two fields are shown in Figure 21.47g.
E, E, -
E =E, =4__2'
Ey 7
. 107°
E, =(8.988x10° N-mz/Cz)M.
(0.250 m)

E,=E,=862.8 N/C.
Figure 21. 47g
E|,=-E cos8, E, =+E,cos6.

EX :EIX +E2x =0.
Ely :+El Sine, Ezy :+E2 Sin@.
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E,=E\,+E,, =2E, =2E sin6=2(862.8 N/C)(0.800) =1380 N/C.

E =1380 N/C, in the +y-direction.

EVALUATE: Point a is symmetrically placed between identical charges, so symmetry tells us the electric
field must be zero. Point b is to the right of both charges and both electric fields are in the +x-direction and
the resultant field is in this direction. At point ¢ both fields have a downward component and the field of
q, has a component to the right, so the net E is in the fourth quadrant. At point d both fields have an
upward component but by symmetry they have equal and opposite x-components so the net field is in the

+y-direction. We can use this sort of reasoning to deduce the general direction of the net field before doing
any calculations.
Ja

1
IDENTIFY: Apply E = T 2 to calculate the field due to each charge and then calculate the vector
TTE
0or

sum of those fields.
SET Up: The fields due to ¢; and to ¢, are sketched in Figure 21.48.

1 (6.00x107° C)
47y (0.6 m)?

1

— 1 9 2 1 4 2 A
B =——(4.00x107 C)| ——(0.600) + ———(0.800) } |= (21.6/ +28.8 ))N/C.
' 4, ((1.00 m)? (1.00 m)> / j d

EXECUTE: E, = (—i)=—150i N/C.

E=E +E,=(-1284N/C)i +(28.8 N/C)j. E= \/(128.4 N/C)? +(28.8 N/C)? =131.6 N/C at
0=tan"! (%J =12.6° above the —x -axis and therefore 167.4° counterclockwise from the +x-axis.

EVALUATE: El is directed toward g; because g, is negative and E2 is directed away from ¢, because

q, 1s positive.

L X%

E,

[ ]
=

E, q2

Figure 21.48

IDENTIFY: We must use the appropriate electric field formula: a uniform disk in (a), a ring in (b) because
all the charge is along the rim of the disk, and a point-charge in (c).
(a) SET Up: First find the surface charge density (Q/A4), then use the formula for the field due to a disk of

1
charge, E_= 9 1

26| (Rx)? +1

EXECUTE: The surface charge density is 0 === ="~ —1324x107° C/m>.

0_ 0 _650x107°C
A zr* 7(0.0125 m)?
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The electric field is

AR 1 _1.324x107° C/m? 1
e | 21| 2885x10 2 CIN-m2)| 2
o JR) +1| 28.85x m?) (1.25 cm] "
2.00 cm

E . =1.14x 10° N/C, toward the center of the disk.

. . 1
(b) SET UP: For a ring of charge, the field is £ = —L
471'80 (x2 + a2)3/2

EXECUTE: Substituting into the electric field formula gives
1 Ox  (9.00x10° N-m?/C?)(6.50x10™ €)(0.0200 m)
drey (x* +a°)>? [(0.0200 m)? +(0.0125 m)? >/

E=8.92x10" N/C, toward the center of the disk.

(c) SET UP: For a point charge, £ = (1/47, )q/rz.

EXECUTE: E =(9.00x10° N-m?/C?)(6.50x10~° C)/(0.0200 m)* =1.46x10° N/C.

(d) EVALUATE: With the ring, more of the charge is farther from P than with the disk. Also with the ring
the component of the electric field parallel to the plane of the ring is greater than with the disk, and this
component cancels. With the point charge in (c), all the field vectors add with no cancellation, and all the
charge is closer to point P than in the other two cases.

A

IDENTIFY: For a long straight wire, E = ;
2meyr

SETUP: —— —1.80x10' N -m?/C2.
271'80

3.20x107'° C/m
forr: r= =

=—— =230m
ey 27€,(2.50 N/C)

EXECUTE: Solve E =

EVALUATE: For a point charge, E is proportional to 1/r2. Fora long straight line of charge, E is

proportional to 1/r.
IDENTIFY: For a ring of charge, the magnitude of the electric field is given by E, = ;%
T Aney (x“ +a”)

Use F =gE. In part (b) use Newton’s third law to relate the force on the ring to the force exerted by the

ring.
SETUP: Q=0.125x10" C, a=0.025mand x = 0.400 m.
= Qx N 2
EXECUTE: (a) E=————"-—+i =(7.0 N/O)i.
( ) 47[80 (x2 +02)3/2 ( )
(b) Fypring =—Fopq =—qE =—(-2.50x10" C)(7.0 N/C)i =(1.75x107° N)i.

EVALUATE: Charges g and Q have opposite sign, so the force that g exerts on the ring is attractive.
(a) IDENTIFY: The field is caused by a finite uniformly charged wire.
SET UP: The field for such a wire a distance x from its midpoint is

ol A 2[ 1 ] A
278y x\(xta)? +1  \ A0 ) xf(wla)? +1

(18.0x10° N-m%/C?)(175%10~ C/m)
2
(0.0600 m)\/( 6'20 ij +1

4.25 cm

EXECUTE: E = =3.03x10* N/C, directed upward.
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(b) IDENTIFY: The field is caused by a uniformly charged circular wire.

SET Up: The field for such a wire a distance x from its midpoint is E, = L% We first find
arey (x“+a”)

the radius a of the circle using 2za =1.

EXECUTE: Solving for a gives a =//27 =(8.50 cm)/27=1.353 cm.
The charge on this circle is QO = Al = (175 nC/m)(0.0850 m) =14.88 nC.
The electric field is

1 Ox  (9.00x10° N-m?/C*)(14.88 x 10~ C/m)(0.0600 m)
471'80 (xz +a2)3/2

3/2
[(0.0600 m)? +(0.01353 m)z]

E =3.45x10% N/C, upward.

EVALUATE: In both cases, the fields are of the same order of magnitude, but the values are different
because the charge has been bent into different shapes.

(a) IDENTIFY and SET UP: Use p = ¢d to relate the dipole moment to the charge magnitude and the
separation d of the two charges. The direction is from the negative charge toward the positive charge.

EXECUTE: p=qd =(4.5x107 C)(3.1x107> m)=1.4x10""" C-m. The direction of p is from g,
toward ¢,.

(b) IDENTIFY and SET UP: Use 7 = pEsing to relate the magnitudes of the torque and field.
EXECUTE: 7= pEsing, with ¢ as defined in Figure 21.53, so

T

E /5 S
¢—> psing
S > 7.2x10~° N-m

= —3 - - =860 N/C.
(1.4x107"" C-m)sin36.9

Figure 21. 53

EVALUATE: The equation 7 = pEsing gives the torque about an axis through the center of the dipole.
But the forces on the two charges form a couple and the torque is the same for any axis parallel to this one.
The force on each charge is |q|E and the maximum moment arm for an axis at the center is d/2, so the
maximum torque is 2(|q|E Wd/2)=1.2x% 10 N-m. The torque for the orientation of the dipole in the
problem is less than this maximum.
(a) IDENTIFY: The potential energy is given by U(¢)=—p- E =—pE cos.
SETUP: U(@)=—p-E =—pEcosg, where ¢ is the angle between p and E.
EXECUTE: parallel: ¢ =0 and U(0°)=—pE.
perpendicular: ¢ =90° and U(90°) =0.

AU =U(90°)—U(0°) = pE = (5.0x1072° C-m)(1.6 x10° N/C)=8.0x1072* J.
20U 2(8.0x107* ]

- 2B0AO D50k
3k 3(1.381x107 J/K)

EVALUATE: Only at very low temperatures are the dipoles of the molecules aligned by a field of this
strength. A much larger field would be required for alignment at room temperature.

IDENTIFY: The torque on a dipole in an electric field is given by 7= px E.

(b) %kT:AU so T =

SETUP: 7= pEsing, where ¢ is the angle between the direction of p and the direction of E.

EXECUTE: (a) The torque is zero when p is aligned either in the same direction as E or in the opposite

direction, as shown in Figure 21.55a (next page).
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(b) The stable orientation is when p is aligned in the same direction as E. In this case a small rotation of
the dipole results in a torque directed so as to bring p back into alignment with E. When p is directed
opposite to E, a small displacement results in a torque that takes p farther from alignment with E.

(¢) Field lines for Egp. in the stable orientation are sketched in Figure 21.55b.

EVALUATE: The field of the dipole is directed from the + charge toward the — charge.

Edipolc

®<~—0 O0—>® E

(@ (b)
Figure 21. 55

IDENTIFY: Calculate the electric field due to the dipole and then apply F = gE.

SET UP: The field of a dipole is £ dipole (x)= p——t
0
-30
EXECUTE: Eg . = (176 i, =4.11x10° N/C. The electric force is
PP 27e,(3.0x107° m)®

F =gE =(1.60x10""? C)(4.11x10° N/C) =6.58x107"* N and is toward the water molecule (negative
x-direction).
EVALUATE: E dipole 18 in the direction of p, so is in the +x-direction. The charge g of the ion is negative,

so F is directed opposite to E and is therefore in the —x-direction.

(a) IDENTIFY: Use Coulomb’s law to calculate each force and then add them as vectors to obtain the net
force. Torque is force times moment arm.

SET UP: The two forces on each charge in the dipole are shown in Figure 21.57a.

sin@=1.50/2.00 so 6 =48.6°.

- b Opposite charges attract and like charges repel.
\9\\ F.=F,+F,=0.
I
FZ
Figure 21. 57a
/| -6 -6
EXECUTE: F :qu—z _  5:00x10 C)(IO‘O;IO ©) _1.124x10° N,
r (0.0200 m)

F, =—Fsinf=-842.6 N.

F,,=—-842.6 Nso F,, = Fj,, + F,, =—1680 N (in the direction from the +5.00-4C charge toward the
—5.00-uC charge).

EVALUATE: The x-components cancel and the y-components add.
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(b) SET Up: Refer to Figure 21.57b.

The y-components have zero moment arm
and therefore zero torque.
F, and F, both produce clockwise torques.

Figure 21. 57b

EXECUTE: [, =Fcosf=T743.1N.

7 =2(F,)(0.0150 m)=22.3 N - m, clockwise.

EVALUATE: The electric field produced by the —10.00 #C charge is not uniform so 7= pEsing does

not apply.
IDENTIFY: Find the vector sum of the fields due to each charge in the dipole.

SET UP: A point on the x-axis with coordinate x is a distance r =+/(d/ 2)2 + x? from each charge.

. . 1 1
EXECUTE: (a) The magnitude of the field due to each charge is E = 1 __4 —
drey v Aney\ (d/2)” +x
where d is the distance between the two charges. The x-components of the forces due to the two charges
are equal and oppositely directed and so cancel each other. The two fields have equal y-components,
s0E=2E, = ﬂ{ 1

y

jsin 6, where @ is the angle below the x-axis for both fields.

Y dmey\ (dI2)? + x>
; d/2 2q 1 d/2 qd
s1n0=ﬁ and Edipole:(4 ][ 3 zj — |- =5+ The
V(@2) +x 7o \ (412) 4 )| J(dr2)? +x 4| (d12)° +7 |
field is the —y-direction.
(b) At large x, X2 (d/ 2)2, so the expression in part (a) reduces to the approximation E dipole = L
47[{;‘0)63
) . g d
EVALUATE: Example 21.14 shows that at points on the +y-axis far from the dipole, £ dipole = q_3
27E,y
0

The expression in part (b) for points on the x-axis has a similar form.
IDENTIFY: Apply Coulomb’s law to calculate the force exerted on one of the charges by each of the other
three and then add these forces as vectors.

SET UP: The charges are placed as shown in Figure 21.59a.

L = = = =
q1‘ 99, G1=9,=93=q4=0
0
45",
[ 45°
//K/
//
L 7/
w
A
A
7/
d
¥4
7/
L X4

Figure 21.59a

21-27



21-28

Chapter 21

21.60.

21.61.

Consider forces on g,. The free-body diagram is given in Figure 21.59b. Take the y-axis to be parallel to the

diagonal between ¢, and g4 and let +y be in the direction away from g,. Then Fz is in the +y-direction.

10
EXECUTE: (a) F3=F =——=.
dmey L

__1 o
> dme, 202
F, =—Fsin45°=—F//2.

R, =+Fcos45° =+F /2.

Fy, = +F;sin45° = +F, /2.
Fy, =+F;c0845° = +F;/2.
sz = 0, Fzy = F2

Figure 21.59b

(b) er:Fix+F2x+F3x:O'

2 2 2
! Qz+ ! Q2= Q ~(1+242).
7wy L Amey 210 8meyL

R,=F, +Fy,+F, =(2/\5)4

QZ

87&90 ?

R=

(I+ 2\/5 ). Same for all four charges.

EVALUATE: In general the resultant force on one of the charges is directed away from the opposite corner.
The forces are all repulsive since the charges are all the same. By symmetry the net force on one charge
can have no component perpendicular to the diagonal of the square.

klqq'|

IDENTIFY: Apply F'=——— to find the force of each charge on +¢. The net force is the vector sum of
r

the individual forces.
SETUP: Let ¢ =+2.50 4C and g, =—3.50 uC. The charge +¢q must be to the left of g, or to the right of

q, in order for the two forces to be in opposite directions. But for the two forces to have equal magnitudes,
+¢ must be closer to the charge ¢, since this charge has the smaller magnitude. Therefore, the two forces
can combine to give zero net force only in the region to the left of g;. Let +g be a distance d to the left of

q;, soitis a distance d +0.600 m from g,.

k 2
EXECUTE: F, = F, gives q',fl' ___ Falao| o od=t m(ar +0.600 m) = +(0.8452)(d +0.600 m).
d?  (d+0.600 m) |92
(0.8452)(0.600 m)

1-0.8452

d must be positive, so d = =3.27 m. The net force would be zero when +¢ is at

x=-327m.
EVALUATE: When +¢ is at x=-3.27 m, F, is in the —x-direction and F, is in the +x-direction.

IDENTIFY: Apply F = k@ for each pair of charges and find the vector sum of the forces that ¢; and
r

q, exerton gj.
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SET Up: Like charges repel and unlike charges attract. The three charges and the forces on g5 are shown

in Figure 21.61.

Fl
N ™ }
i
|
|
i
H 4 |
///q3 Fl.r
», 7
o S 0.030m
7 F,
.-\ 0 0.040m | 4>
L 2 2%
+l =
Figure 21.61
5.00x 10~ C)(6.00x10~° C _
EXECUTE: (a) F, = k|q‘—z3| — (8.99x10° N -m2/c2) 300 X 2X ) _1.079% 107 N.
r (0.0500 m)

1
6=36.9°. F,=+Fcos@=8.63x107° N. Fj, =+F sin6=648x10" N.

-9 -9
Fy= k@ — (8.99%10° N -m?/c?)Z00x10 C)(6'002X 1070 _y20x10* N.
E (0.0300 m)

F =0, Fy,=—F,=-120x10"* N. F,=F,+F, =8.63x107 N.
F,=F,+F,,=648%x10" N+(-1.20x107* N)=-5.52x107 N.

Yy

F
(b) F=/F}+F; =1.02x10" N. tang= -

X

=0.640. ¢=32.6°, below the +x-axis.

EVALUATE: The individual forces on g5 are computed from Coulomb’s law and then added as vectors,

using components.
IDENTIFY: Apply 2 F, =0 and 2 F, =0 to one of the spheres.

SET Up: The free-body diagram is sketched in Figure 21.62 (next page). F, is the repulsive Coulomb

force between the spheres. For small 6, sin@ = tané.

. in@ kq?
EXECUTE: TF, =Tsinf~F,=0and TF, =Tcosf-mg=0. So "2 == F, =~L-. But
COosS
d 2kq*L 2 "
tan@=sinf@=—, so d3=Land d=| -4~ .
2L mg 2meymg

EVALUATE: d increases when ¢ increases.
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T cos 6

T sin 0

mg

Figure 21.62

21.63. IDENTIFY: Use Coulomb’s law for the force that one sphere exerts on the other and apply the first
condition of equilibrium to one of the spheres.

SET UP: The placement of the spheres is sketched in Figure 21.63a.

¢g<0 120m 120m 94<0
sin25°  sin 25°

Figure 21.63a

EXECUTE: (a) The free-body diagrams for each sphere are given in Figure 21.63b.

sphere on the left: sphere on the right:
y

Figure 21.63b

F, is the repulsive Coulomb force exerted by one sphere on the other.

(b) From either force diagram in part (a): 2 F, , =ma,,.

Tc0825.0°~mg=0and T =—"2
c0s25.0°

YF. =ma,.

T'sin25.0°—F, =0 and F, =T'sin25.0°.

Use the first equation to eliminate 7 in the second: F, =(mg/c0s25.0°)(sin25.0°) = mg tan 25.0°.
£l g 1 g7 1 ¢’

¢ dmey 7 4mey r* 47 [2(1.20 m)sin25.0°]

1 q2
47€0 [2(1.20 m)sin 25.0°]

Combine this with F, = mgtan25.0° and get mgtan25.0°=
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4= (2.40 m)sin25.0° |8 1an25-0°
(1/4re,y)

(15.0x107> kg)(9.80 m/s*)tan 25.0°

8.988x10° N-m?/C?
(¢) The separation between the two spheres is given by 2Lsiné. ¢ =2.80uC as found in part (b).

=2.80x107° C.

g=(2.40 m)sin25.0°\/

F, = (1/4me,)q* (2Lsin@)* and F, = mgtan®. Thus (1/47€,)q* (2Lsin@)* = mg tan®.

2 6 (2
2.80x1
(sin@)’ tand= —— L = (8.988x10° N-m2/C?) 2( 0x 0_3C) —
47Ey 4% mg 4(0.600 m)“(15.0x10™ kg)(9.80 m/s”)
Solve this equation by trial and error. This will go quicker if we can make a good estimate of the value of
@ that solves the equation. For € small, tan 8= sin#. With this approximation the equation becomes

sin® 6=0.3328 and sin 8= 0.6930, so &=43.9°. Now refine this guess:

0.3328.

0 sin® @tan O

45.0° 0.5000

40.0° 0.3467

39.6° 0.3361

39.5° 0.3335

39.4° 0.3309 so €=39.5°.

EVALUATE: The expression in part (c) says 8 — 0 as L — o and 8 — 90° as L — 0. When L is decreased
from the value in part (a), € increases.

IDENTIFY: Apply 2 F, =0and X F, =0 to each sphere.

SET Up: (a) Free body diagrams are given in Figure 21.64 (next page). F, is the repulsive electric force

that one sphere exerts on the other.

EXECUTE: (b) T = mg/c0s20°=0.0834 N, so F, = T'sin20°=0.0285 N = kql#.
i

(Note: 7 =2(0.500 m)sin20° = 0.342 m.)
(¢) From part (b), 19, =3.71x 0 &7,
(d) The charges on the spheres are made equal by connecting them with a wire, but we still have

_ 12 _ a4, S .
F =mgtand=0.0453 N = , where Q= . But the separation r, is known:
© 4re, r22 2
— 2(0.500 m)sin30° = 0.500 m. Hence: Q= 12 = \J47E F,r; =1.12x107% C. Thi ion, al
ry, =2(0. m)sin =0. m. Hence: Q = 7 me kL, =1.12% . This equation, along

with that from part (c), gives us two equations in ¢, and g,: g, +¢q, =2.24 10° C and
419, =3.71x 1073 ¢2. By elimination, substitution and after solving the resulting quadratic equation, we

find: ¢, =2.06x10° C and ¢, =1.80x107" C.

EVALUATE: After the spheres are connected by the wire, the charge on sphere 1 decreases and the charge
on sphere 2 increases. The product of the charges on the sphere increases and the thread makes a larger
angle with the vertical.
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Figure 21.64

21.65.

21.66.

IDENTIFY: The electric field exerts a horizontal force away from the wall on the ball. When the ball hangs
at rest, the forces on it (gravity, the tension in the string, and the electric force due to the field) add to zero.
SET UP: The ball is in equilibrium, so for it 2. F, =0 and 2 F, =0. The force diagram for the ball is

given in Figure 21.65. F is the force exerted by the electric field. F =g4E. Since the electric field is

horizontal, Fy; is horizontal. Use the coordinates shown in the figure. The tension in the string has been
replaced by its x- and y-components.

y

mg

Figure 21.65

mg
cosé

EXECUTE: X F, =0 gives T, —mg=0. Tcosd—mg=0 and T = . XF,=0 gives F;-T,=0.

Fr —Tsin@=0. Combing the equations and solving for Fj gives

Fy =[ mgej sin@ = mgtan6=(12.3x 107 kg)(9.80 m/s>)(tan17.4°) =3.78x 102 N. F; =|¢|E so
COS

_Fy _378x10°N
lg) 1.11x107°C

EVALUATE: The larger the electric field £ the greater the angle the string makes with the wall.
IDENTIFY: The net force on g3 is the vector sum of the individual forces. Coulomb’s law gives the force
between any two point-charges.

=3.41x10* N/C. Since ¢ is negative and Fy, is to the right, E is to the left in the figure.

SETUP: Use F = k@. The force on g3 due to ¢ is in the —x-direction, so ¢, must be negative to
r

make the net force on ¢ in the +x-direction. We know that the x-component of the net force on g; is
F;,=+6.00 N.

(a) EXECUTE: The net force on g; is the sum of the two forces: Fs, = F, + F,, = +6.00 N. Applying
Coulomb’s law gives

6.00 N = A[—(6.00 £C)(3.00 C)/(0.200 m)* + (3.00 1C)g/(0.400 m)*], g>=-5.96x10"°C =-59.6 uC.

(b) Now F;5, =—6.00 N. In this case, assume that g, is positive, so the x-components all add. Using the same
approach as in (a), we have

—6.00 N = A[—(6.00 £C)(3.00 £C)/(0.200 m)* — (3.00 xC)q,/(0.400 m)*] = +1.16x10° C = +11.6 uC.
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EVALUATE: Is is tempting to think that the answer to (b) should be just the negative of the answer to (a),

but that is not the case. In (a) the two forces on g; were in opposite directions, but in (b) they are in the

same direction.

Jal
2

IDENTIFY: For a point charge, E =k-=. For the net electric field to be zero, E‘l and E2 must have equal

magnitudes and opposite directions.

SETUP: Let ¢, =+0.500 nC and ¢, =+8.00 nC. E is toward a negative charge and away from a

positive charge.

EXECUTE: The two charges and the directions of their electric fields in three regions are shown in Figure 21.67.

Only in region II are the two electric fields in opposite directions. Consider a point a distance x from

0.500 nC 8.00 nC
=k 2

5 (1.20 m —x)
4x =%(1.20 m —x) and x = 0.24 m is the positive solution. The electric field is zero at a point between the
two charges, 0.24 m from the 0.500 nC charge and 0.96 m from the 8.00 nC charge.

EVALUATE: There is only one point along the line connecting the two charges where the net electric field
is zero. This point is closer to the charge that has the smaller magnitude.

q; so adistance 1.20 m—x from ¢q,. E, = E, gives k . 16x% =(1.20 m—x)*.

I II I
E, 91 E, E, 9 E
E, + + E,
«— X —>
1.2m

Figure 21.67

IDENTIFY: The net electric field at the origin is the vector sum of the fields due to the two charges.

q - . _—— .. -
SETUP: E= klr_zl' E is toward a negative charge and away from a positive charge. At the origin, E;

due to the —3.00 nC charge is in the +x-direction, toward the charge.

(3.00x107° C)
(1.20 m)*

E, =E,+E),. E,=+45.0N/C,s0 E,, = E _—E, =+45.0N/C-18.73N/C=26.27 N/C. E is away

9]

1"2

EXECUTE: (a) £, =(8.99x10° N-m?/C?) =18.73 N/C, so E,, =+18.73 N/C.

from Q so Q is positive. Using E, =k gives

E,r?  (26.27 N/C)(0.600 m)*
k 8.99x10° N-m?/C?
(b) £, =-450N/C, so E, =E —E =-45.0N/C-18.73N/C=-63.73 N/C. E is toward Q' so Q is
E,r? (63.73 N/C)(0.600 m)*

=1.05x107° C = 1.05 nC. Since Q is positive, Q = +1.05 nC.

|ol=

negative. |Q|= =2.55x10"° C =2.55nC. Since Q is negative, we have

9 k 8.99x10° N-m?/C?

0=-2.55nC.

EVALUATE: The equation E = k@ gives only the magnitude of the electric field. When combining
r

fields, you still must figure out whether to add or subtract the magnitudes depending on the direction in
which the fields point.
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IDENTIFY: For equilibrium, the forces must balance. The electrical force is given by Coulomb’s law.
SET UP: Set up axes so that the charge +Q is located at x =0, the charge +4Q is located at x =d, and

the unknown charge that is required to produce equilibrium, g, is located at a position x =a. Apply

F= k% to each pair of charges to obtain eqilibrium.
r

EXECUTE: For a charge ¢ to be in equilbrium, it must be placed between the two given positive charges
(0 <a<d) and the magnitude of the force between ¢ and +Q must be equal to the magnitude of the force

between ¢ and +40: k%zk 4)q |Q2
a (d—-a)

only root in the required interval (0 <a <d). Furthermore, to conteract the repulsive force between +Q

. Solving for a we obtain (d —a)=14a, which has a :% as its

and +4Q the charge ¢ must be negative (¢ =—|¢|). The condition that +Q is in equilibrium gives us

(40 _, 40°

4
=k—-. Solving for g we obtain g =—-—0.
@3>  d? 9

EVALUATE: We have shown that both ¢ and +Q are in equilibrium provided that a =% and ¢ = —gQ. To

make sure that the problem is well posed, we should check that these conditions also place the charge +4Q is
2
in equilbrium. We can do this by showing that & @ 4qQ) 5 is equal to k% when the given values for both
—a

a and ¢ are substituted.
IDENTIFY and SET UP:  Like charges repel and unlike charges attract, and Coulomb’s law applies. The
positions of the three charges are sketched in Figure 21.70a, and each force acting on g5 is shown. The

distance between ¢; and ¢z is 5.00 cm.

Figure 21.70
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-9 -9
EXECUTE: (a) F :k@:(s.%xl& N-m2/c23:00x10 C)(5.200><i0 ©) _5394%107 N.
A (5.00x10™" m)
F,, =—F cosf =—(5.394x107 N)(0.600) = -3.236x10™ N.
F, =—Fsinf=—(5.394x10"> N)(0.800) =-4.315x10™ N.
-9 -9
(2:00x107 C)(5.00x10™ C) _ g geq 1075 .

F, = k@ =(8.99x10° N-m2/C?)
]

(3.00x107% m)?

Fy, =9.989x107 N; Fy, =0.

F.=F_+F, =9.989x107 N+(-3.236x10~ N)=6.75x107 N;
F,=F,+F,=-432x10" N.

(b) F and its components are shown in Figure 21.70b.

'y

F
F=\F2+F}?=801x10° N. tan6 = =

X

=0.640 and 6=32.6°. F is 327° counterclockwise from

the +x-axis.
\LI1_1212| gives only the magnitude of the force. We must find the
B
direction by deciding if the force between the charges is attractive or repulsive.
21.71. IDENTIFY: Use Coulomb’s law to calculate the forces between pairs of charges and sum these forces as

vectors to find the net charge.
(a) SET UP: The forces are sketched in Figure 21.71a.

EXECUTE: F|+ F; =0, so the net force is F = F,.

EVALUATE: The equation F =k

1

1 q(Bg) 64

= = , away from the vacant corner.
2 2
amey (LIN2)?  4ne, L

Figure 21. 71a
(b) SET UpP: The forces are sketched in Figure 21.71b.

. q
B /’2 EXECUTE: F, = 1 ‘1(3‘1)2 __ 34 -
’ dmey (N2L)* 4rmey(21?)

2

L qGq) _ 3¢
drey, 2 Ameyl?

Fi:Fé:

The vector sum of F and F is Fj3 = \/Flz +F32.

Figure 21. 71b
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21.72.

21.73.

21.74.

Fs= \/EE = ; Fi; and F, are in the same direction.

3\/5612
4re, 2
3q2
4ﬂ'£0L2
EVALUATE: By symmetry the net force is along the diagonal of the square. The net force is only slightly

larger when the —3¢ charge is at the center. Here it is closer to the charge at point 2 but the other two

F=Hhy+Fh=

(\/5 + %J, and is directed toward the center of the square.

forces cancel.

IDENTIFY: For the acceleration (and hence the force) on Q to be upward, as indicated, the forces due to
¢, and g, must have equal strengths, so ¢; and g, must have equal magnitudes. Furthermore, for the
force to be upward, g; must be positive and ¢, must be negative.

SET UP: Since we know the acceleration of O, Newton’s second law gives us the magnitude of the force
on it. We can then add the force components using F = Foy, cosf+ o cosf = 2Fy,, cos 6. The electrical

. 1 Y
force on Q is given by Coulomb’s law, F _— Pye | Qzl | (for g;) and likewise for g,.
i TTE
olmti

EXECUTE: First find the net force: F =ma = (0.00500 kg)(324 m/sz) =1.62 N. Now add the force
components, calling @ the angle between the line connecting ¢; and g, and the line connecting ¢; and Q.
F 162N
2cosf 2(2.25 cmj

3.00 cm

by solving for ¢; in Coulomb’s law and use the fact that ¢; and g, have equal magnitudes but opposite

=1.08 N. Now find the charges

F= Fqu cosf + FQq2 cosf = ZFqu cos@ and Fqu =

2
1|0l " Foq (0.0300 m)(1.08 N)

signs. F, = and ¢, = =
L‘Q‘ (9.00x10° N-m?/C?)(1.75%x107° C)

=6.17x10"% C.
O 4me, 2
47[80

¢ =—q, =—6.17x1078 C.
EVALUATE: Simple reasoning allows us first to conclude that g; and g, must have equal magnitudes but

opposite signs, which makes the equations much easier to set up than if we had tried to solve the problem
in the general case. As Q accelerates and hence moves upward, the magnitude of the acceleration vector
will change in a complicated way.

IDENTIFY: The small bags of protons behave like point-masses and point-charges since they are
extremely far apart.

SET UP: For point-particles, we use Newton’s formula for universal gravitation (' = Gmym 2/r2) and

Coulomb’s law. The number of protons is the mass of protons in the bag divided by the mass of a single
proton.

EXECUTE: (a) (0.0010 kg)/(1.67x107>7 kg) = 6.0x10%* protons.
(b) Using Coulomb’s law, where the separation is twice the radius of the earth, we have
F =(9.00x10° N-m?/C?)(6.0x 107 x1.60x 107" C)*/(2x 6.37x10° m)> =5.1x10° N.

electrical

F, =(6.67x10""" N-m?/kg?)(0.0010 kg)* /(2 x 6.37 x 10° m)> =4.1x 107" N.

grav
EVALUATE: (c) The electrical force (200,000 1b!) is certainly large enough to feel, but the gravitational

force clearly is not since it is about 10% times weaker.

IDENTIFY: The positive sphere will be deflected in the direction of the electric field but the negative sphere
will be deflected in the direction opposite to the electric field. Since the spheres hang at rest, they are in
equilibrium so the forces on them must balance. The external forces on each sphere are gravity, the tension in
the string, the force due to the uniform electric field and the electric force due to the other sphere.
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21.75.

21.76.

2
il O
SET UP: The electric force on one sphere due to the other is Fi = k-—- in the horizontal direction, the
r
force on it due to the uniform electric field is Fp =¢E in the horizontal direction, the gravitational force is

mg vertically downward and the force due to the string is 7 directed along the string. For equilibrium
2F,=0 and 2F, =0.

EXECUTE: (a) The positive sphere is deflected in the same direction as the electric field, so the one that is
deflected to the left is positive.

(b) The separation between the two spheres is 2(0.530 m)sin29.0° = 0.5139 m.

2
H _(8.99%x10° N-m?/C?)(72.0x 107’ C)?
r (0.5139 m)?

F.=k =1.765x10* N. Fy=gE. LF,=0 gives

3 _ mg 54 . B
T¢c0s29.0° —mg =0 so T—m. 2 F, =0 gives T'sin29.0° + F, — F; = 0.

mgtan29.0° + F. = gE. Combining the equations and solving for £ gives

£d mgtan29.0° + F _ (6.80x10~° kg)(9.80 m/s*)tan29.0° +1.765x 10~* N

q 72.0x107° C
EVALUATE: Since the charges have opposite signs, they attract each other, which tends to reduce the
angle between the strings. Therefore if their charges were negligibly small, the angle between the strings
would be greater than 58.0°.
IDENTIFY: The only external force acting on the electron is the electrical attraction of the proton, and its
acceleration is toward the center of its circular path (that is, toward the proton). Newton’s second law

applies to the electron and Coulomb’s law gives the electrical force on it due to the proton.

2 2 2

: v . . . e v
SET UP: Newton’s second law gives Fo =m—. Using the electrical force for Fc gives k—=m—
r r

r

=2.96x10° N/C.

EXECUTE: Solving for v gives v = =2.19x10° m/s.

ke? _ |(899x10° N-m?/C?)(1.60x10"" C)?
(9.109x107>" kg)(5.29x10"" m)

EVALUATE: This speed is less than 1% the speed of light, so it is reasonably safe to use Newtonian
physics.

IDENTIFY: To be suspended, the electric force on the raindrop due to the earth’s electric field must be
equal to the weight of the drop.

SET UP: The weight of the raindrop is w = mg and is downward. We can calculate the mass of the

mr

. . 4 .
raindrop from the known density of water: m = pV, where p= 10° kg/m3 and V = gmf3 . The electric

force is F =gE, where E =150 N/C.

EXECUTE: To balance the weight of the raindrop the electric force must be upward. Since the electric
field is downward the net charge on the raindrop must be negative. For equilibrium we must have
w=mg =|q| E. Therefore

Iq|= % = (gzrr3pg)/E = gz(1.0x1o*5 m)>(10° kg/m?)(9.80 m/s?)/(150 N/C)=2.7x107"3 C.

. 2.7x1071 ¢
The number of excess electrons is m ==~ —1.7x10%

e 1.60x107° C
EVALUATE: Although this may appear to be a large number in absolute terms, the excess number of
electrons represents only about 10~ % of the total number of electrons in the raindrop.
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- F, . . . . . .
21.77. IpENTIFY: E ==2 gives the force exerted by the electric field. This force is constant since the electric

90
field is uniform and gives the proton a constant acceleration. Apply the constant acceleration equations for
the x- and y-components of the motion, just as for projectile motion.
SET UP: The electric field is upward so the electric force on the positively charged proton is upward and

has magnitude F = eE. Use coordinates where positive y is downward. Then applying . F = md to the
proton gives that a, =0 and a,, = —eE/m. In these coordinates the initial velocity has components

vy =+yycosar and v, =+y,sine, as shown in Figure 21.77a.

Figure 21.77a

EXECUTE: (a)Finding A, : Aty = h, . the y-component of the velocity is zero.
v, = 0, Yoy =Vo sing, a, = —eEim,y — vy = hpax =7
2_ .2
vy =Voy +2a,(y - yo)-
V2 a V2
y 0

y
Zay

Y=Yo=

_ —vg sin® o _ mvg sin o
X2 (—eE/m) 2eE
(b) Use the vertical motion to find the time #: y -y, =0,v,,, =vysine, a, =—eE/m,t =?

1o

2v0y _ 2(vysina) _ 2myysina

a, —eE/m eE

With y —y, =0 this gives t =

Then use the x-component motion to find d: a, =0,v,, =vycosa,t =2mvysina/eE, x —xg=d =?

ek ek ek
(c) The trajectory of the proton is sketched in Figure 21.77b.

| 2mvysina mvg2 sin cos o mvé sin2o
X—Xg =Vl +—a.t" gives d=v,cosx = = .
0 0x 9 0

Figure 21.77b

5 . oyy2 27
(d) Use the expression in part (a): /i, = [(3.00107 mys)(sin 30.09]7(1.673x10"" ke) =0.418 m.

2(1.602x107"? C)(500 N/C)
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21.78.

21.79.

(1.673x10727 kg)(4.00x10° m/s)?sin60.0°

=2.89 m.
(1.602x107"° C)(500 N/C)

Use the expression in part (b): d =

EVALUATE: Inpart (a), a, =—eE/m= ~4.8x10'° m/s®. This is much larger in magnitude than g, the

acceleration due to gravity, so it is reasonable to ignore gravity. The motion is just like projectile motion,
except that the acceleration is upward rather than downward and has a much different magnitude.
hmax and d increase when « or v, increase and decrease when E increases.

IDENTIFY: The electric field is vertically downward and the charged object is deflected downward, so it
must be positively charged. While the object is between the plates, it is accelerated downward by the
electric field. Once it is past the plates, it moves downward with a constant vertical velocity which is the
same downward velocity it acquired while between the plates. Its horizontal velocity remains constant at v,
throughout its motion. The forces on the object are all constant, so its acceleration is constant; therefore we
can use the standard kinematics equations. Newton’s second law applies to the object.

SET Up: Call the x-axis positive to the right and the y-axis positive downward. The equations E =—2,

D)

v = Yot ayts ©= Vil and ZFy =ma, all apply. v, = v, = constant.

_ 002
Y—Yo —voyt+5ayt n
EXECUTE: Time through the plates: t = x/v, = x/vy = (0.260 m)/(5000 m/s) = 5.20x10 " s.

2

1 1
Vertical deflection between the plates: Ay, =y —yy =vy,t +§ayt = —aqyf = - (gE/m)t

1
2
Ay, = %(800 N/C)(5.20%x10°° s)*(g/m) = (1.0816x10°° kg - m/C) (¢/m).

v, as the object just emerges from the plates:
v, =V, +a,t = (gE/m)t = (¢/m)(800 N/C)(5.20%107° s) = (0.04160 kg-m/C-s)(g/m). (This is the initial
vertical velocity for the next step.)
Time to travel 56.0 cm: t = x/v, = (0.560 m)/(5000 m/s) = 1.120x10* s.
Vertical deflection after leaving the plates:
Ay, = vyt =(0.04160 kg-m/C-s) (q/m)(1.120x10™* ) = (4.6592x10° kg-m/C) (¢/m).
Total vertical deflection:
d = Ayl + AyZ
1.25 ecm=0.0125 m = (1.0816x10° kg-m/C) (¢/m) + (4.6592x10° kg-m/C) (¢/m).
q/m = 2180 C/kg.
EVALUATE: The charge on 1.0 kg is so huge that it could not be dealt with in a laboratory. But this is a
tiny object, more likely with a mass in the range of 1.0 ug, so its charge would be (2180 C/kg)(10”° kg) =
2.18x10°° C =2 uC. That amount of charge could be used in an experiment.
IDENTIFY: Divide the charge distribution into infinitesimal segments of length dx”. Calculate E, and E,
due to a segment and integrate to find the total field.
SET UP: The charge dQ of a segment of length dx”is dQ = (Q/a)dx’. The distance between a segment
at x and a point at x on the x-axis is x—x" since x > a.
1 dQ 1 (Qla)dx

EXECUTE: (a) dE_= = . Integrating with respect to x” over the length of
X 2 "2
ATy (x—x7)" 4mEy (x—x)

the charge distribution gives
J-a(Q/a)dx_ 1 g( 1 _lj_ 1 0 a 1 0 Ey—o.

0 (x—x)? _47&90 a _47580;x(x—a) _47&90 x(x—a)

1

E =
7[6'0 X—a X

1 0 _ 1 0

(b) At the location of the charge, x =r + a,s0 E, = = .
T Amey (r+a)r+a—a) Angy r(r+a)

S = = 1 2
Using F =qE, wehave F =qF =—— 90 i.
4rey r(r+a)
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21.81.

21.82.

qu

EVALUATE: (c¢) For > a, r + a — r, so the magnitude of the force becomes F = p
TTE
o 1’

. The charge

distribution looks like a point charge from far away, so the force takes the form of the force between a pair
of point charges.

IDENTIFY: The electric field is upward, but whether it exerts an upward or downward force on the object
depends on the sign of the charge on the object, so we should first find the sign of this charge. Then apply
Newton’s second law. The forces (gravity and the electric force) are both constant, so the acceleration is
constant. Therefore the standard kinematics formulas apply.

. . - K 1
SET Up: Call the +y-axis upward. The equations E =—2, XF,=may, y—yo=vy,l +ant2 all apply.
90
EXECUTE: First find the sign of the charge of the object. If no electric field were present, only gravity

would be acting, so the distance the object would travel in 0.200 s would be
Y=Yy =Vt +%ayt2 = (1.92 m/s)(0.200 s) — %(9.80 m/s%)(0.200 s)* = 0.1880 m = 18.8 cm.

Since the object travels only 6.98 cm in 0.200 s, the force due to the electric field must be opposing its
motion, so this force must be downward. Since the electric field is upward, the charge must be negative.
Now look at the motion with the electric field present. Newton’s second law gives

XF, =ma,: mg + qE = may,. We get a, using kinematics.

Y= Yo =Voyt +%ayt2: 0.0698 m = (1.92 m/s)(0.200 s) + %ay (0.200 s)>.

a,=-15.71 m/s’, with the minus sign telling us it is downward. Now use this value in Newton’s second
law. Solve mg + qE = ma, for q/m:

q/m = (a, - g)/E = (15.71 m/s* - 9.80 m/s>)/(3.60x10* N/C) = 1.64x10* Clkg.

EVALUATE: A kilogram of the material of this obj ect would have a charge of 1.64 x 10* C = 164 uC.

IDENTIFY: E =E| +E, . Use E=
4rg, 0 12

— for the electric field due to each point charge.

SETUp: E is directed away from positive charges and toward negative charges.

-9
1 - 8.99x10° N-m?/c?) 22X10_C_ 4999 n/c,
7€ K (0.60 m)

E.=E,+E),s0ok, =E —E _=+50.0 N/C-99.9 N/C=-49.9 N/C. Since E,, is negative, g, must

EXECUTE: (a) E, =+50.0N/C. E, =

|E, |75 _ (49.9 N/C)(1.20 m)?
(1/47gy)  8.99x10° N-m?/C?
(b) E, =-50.0 N/C. E;, =+99.9 N/C, as in part (a). E,, = E, — E;, =—149.9 N/C. ¢, is negative.

=7.99%107 C. g, =-7.99x107° C.

be negative. |q2| =

=240x107% C. ¢, =-2.40x107° C.

| | _ |E2x|72 _ (149.9 N/C)(1.20 m)?
217 Waney) ” §99%10° N-m?/C?
EVALUATE: ¢, would be positive if E,, were positive.

IDENTIFY: Use E = — to calculate the electric field due to a small slice of the line of charge and

integrate as in Example 21.10. Use E = £ to calculate F
9o

SET Up: The electric field due to an infinitesimal segment of the line of charge is sketched in Figure 21.82.
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Figure 21.82

sinf=—2__
\/x2+y2
cosf = al

Slice the charge distribution up into small pieces of length dy. The charge dQ in each slice is

dQ = Q(dyl/a). The electric field this produces at a distance x along the x-axis is dE. Calculate the

components of dE and then integrate over the charge distribution to find the components of the total field.

EXECUTE: dE = ( 2dQ2 - Y ( zdy = |

dreg\ x“+y dnegqal x~ +y
dE,.=dEcosf = Ox 5 dy2 7 |

dnegal (x° +y°)
dE, =—dFsinf=——2 ydy

4reya (x +y)

E:jdE:-ij“ @ - _O |1 _ =Y !
x x 47[goa 0(x2+y2)3/z 47E4a xz \/x2+y2_ 4”80xe "

o |

Ey:.[ -

(b) F =q,E.

471'80 J.O (X +y )3/2

47[50‘% \/xz+y2 ] )

F=—qk, =12 —1 L F, =

X x 477,'80)612 >y

(¢) For x>a,

99 - a _ 9Qa
F = y — 3
4;[ng 47r€0a X X 2x 87rgox
EVALUATE: For x> a, F < F, and F = |F |— 99
47r€0

charge distribution Q acts like a point charge.
IDENTIFY: Apply E = 2i[1 (R 17V,
&

SETUP: 0=0/4=0/7R*. (1+y*) > =1-

and F isin the —x-direction. For x> a the

y2/2, when y2 <.
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EXECUTE: (a) E = 2i[1— (R*1x® +1)V2] gives
&,
0

-1/2
2 2
g = 100pC/2(0.025m)7), [ (0.025 m)2 +1 —1.56 N/C, in the +x-direction.
2¢, (0.200 m)
(o2 2 2 (o2 R2 O'7Z'R2 Q
(b)For x> R, E=-2[I-(1-R2x*+.)]=-2 2 9% _ &
2¢, 2g, 2x? 475ng2 47ze0x2

(¢) The electric field of (a) is less than that of the point charge (0.90 N/C) since the first correction term to
the point charge result is negative.

(1.58-1.56)

(d) For x=0.200 m, the percent difference is =0.01=1%. For x=0.100 m,

Eggc = 6.00 N/C and E, w

point = 6.30 N/C, so the percent difference is =0.047 = 5%.

EVALUATE: The field of a disk becomes closer to the field of a point charge as the distance from the disk
increases. At x =10.0 cm, R/x =25% and the percent difference between the field of the disk and the field

of a point charge is 5%.
IDENTIFY: Apply 2 F, =0and X F, =0 to the sphere, with x horizontal and y vertical.

SET Up: The free-body diagram for the sphere is given in Figure 21.84. The electric field E of the sheet

is directed away from the sheet and has magnitude £ = 2i.

€0
' mg . . qo
EXECUTE: X F, =0 gives Tcosa=mgand T = . 2F.=0gives T sina=—-— and
coso £
. . o
T =L. Combining these two equations we have me _ q— and tanor=—3% . Therefore,
2¢ysino cosa  2¢,sina 2gymg

qo
o = arctan N
2gymg

EVALUATE: The electric field of the sheet, and hence the force it exerts on the sphere, is independent of
the distance of the sphere from the sheet.

y

TR~——4Tcosa

|

)

| «

|

L = x
T sin a qE

mg

Figure 21.84

IDENTIFY: Divide the charge distribution into small segments, use the point charge formula for the
electric field due to each small segment and integrate over the charge distribution to find the x- and
y-components of the total field.

SET UP: Consider the small segment shown in Figure 21.85a.
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y EXECUTE: A small segment that subtends
angle d@ has length a d@ and contains charge

1
271'(1 T

a9 length of the charge distribution.)

o)

sz[ad‘g]Q:Qdﬁ. (%ﬁa is the total
adf

Figure 21.85a

The charge is negative, so the field at the origin is directed toward the small segment. The small segment is
located at angle @ as shown in the sketch. The electric field due to dQ is shown in Figure 21.85b, along

with its components.

d

oo 1l
47&‘:‘0 a

dE = %dé’.
2rtgya

Figure 21.85b

dE, = dE cos6 = (Q/27%€,a*) cos Od.

/2 - /2
E = JdEx =L2J-O cos@dﬂz%(sm&‘o )=L

27r2€0a 2;;230a 2ﬂ2goa2

dE, = dEsin6 = (0/27°€ya’)sin 0d6.

2
E,=[dE,=—2 [ sinedtsr:%(—coser”) -—2
21 gga” "0 2m°gya 0 27 gya
EVALUATE: Note that £, = E,,, as expected from symmetry.

IDENTIFY: We must add the electric field components of the positive half and the negative half.
SET UP: From Problem 21.85, the electric field due to the quarter-circle section of positive charge has

components £ = +%, Ey = —%. The field due to the quarter-circle section of negative
2z gya 2z gpa
charge has components £ = +%, E y= +%.
2r7gya 2z gpa

EXECUTE: The components of the resultant field is the sum of the x- and y-components of the fields due
to each half of the semicircle. The y-components cancel, but the x-components add, giving
E Q

=+
X

5 , in the +x-direction.

gy

EVALUATE: Even though the net charge on the semicircle is zero, the field it produces is not zero because
of the way the charge is arranged.
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IDENTIFY: Each wire produces an electric field at P due to a finite wire. These fields add by vector addition.

1 0
4ne, | [ 2+ a2
while the field due to the positive wire points downward, making the two fields perpendicular to each other
and of equal magnitude. The net field is the vector sum of these two, which is

1 o

47r50 £ /xz + a2
1 0

EXECUTE: (a) The net fieldis £ =2————
@ "t 4, . /xz P
9 2 /~2 -6 o
Enet=2(9.00><10 N-m~/C )(2.§0><10 C)C(z)s45 — 6.25%10% N/C.
(0.600 m)\/(0.600 m)“ +(0.600 m)

The direction is 225° counterclockwise from an axis pointing to the right at point P.
(b) F=eE=(1.60x10""2 C)(6.25x10* N/C)=1.00x10"'* N, opposite to the direction of the electric

field, since the electron has negative charge.

EVALUATE: Since the electric fields due to the two wires have equal magnitudes and are perpendicular to
each other, we only have to calculate one of them in the solution.

IDENTIFY: Each sheet produces an electric field that is independent of the distance from the sheet. The
net field is the vector sum of the two fields.

SET UP: The formula for each field is £ = 0/2¢,, and the net field is the vector sum of these,

SET UP: Each field has magnitude . The field due to the negative wire points to the left,

E, . =2E cos45°=2 cos45°. In part (b), the electrical force on an electron at P is eE.

cos45°.

o, 0, Ozto0y, . . ]
=—=1+ % =—2—2% where we use the + or — sign depending on whether the fields are in the
2g)  2¢, 2¢,

net
same or opposite directions and o and o, are the magnitudes of the surface charges.
EXECUTE: (a) The two fields oppose and the field of B is stronger than that of 4, so
op 04 _0Op—04 _11.6 uC/m* —8.80 uC/m’
2¢p 269 269 2(8.85x1072 C2/N.m?)
(b) The fields are now in the same direction, so their magnitudes add.
Epet = (11.6 4C/m? +8.80 C/m?)/2, =1.15x10% N/C, to the right.

Epet = =1.58x10° N/C, to the right.

(c) The fields add but now point to the left, so E o =1.15% 106 N/C, to the left.
EVALUATE: We can simplify the calculations by sketching the fields and doing an algebraic solution first.
IDENTIFY: Each sheet produces an electric field that is independent of the distance from the sheet. The
net field is the vector sum of the two fields.
SET UpP: The formula for each field is £ =o07/2¢;, and the net field is the vector sum of these.

=284 %4 95%0,

ne
2g, 2g, 2¢,

same or opposite directions and o and o, are the magnitudes of the surface charges.

, where we use the + or — sign depending on whether the fields are in the

EXECUTE: (a) The fields add and point to the left, giving £, =1.15% 10% N/C.
(b) The fields oppose and point to the left, so E o = 1.58x10° N/C.

. . .. _ 5
(¢) The fields oppose but now point to the right, giving £, =1.58x10" N/C.

EVALUATE: We can simplify the calculations by sketching the fields and doing an algebraic solution first.
IDENTIFY: The sheets produce an electric field in the region between them which is the vector sum of the
fields from the two sheets.

SET UP: The force on the negative oil droplet must be upward to balance gravity. The net electric field

between the sheets is £ = 0/¢,, and the electrical force on the droplet must balance gravity, so gE =mg.
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EXECUTE: (a) The electrical force on the drop must be upward, so the field should point downward since
the drop is negative.

(b) The charge of the drop is Se, so gE = mg. (Se)(0/¢,) = mg and

o= 880 _ (486107 kg)(9.80 m/s?)(8.85x107'2 C?/N-m?)
5e 5(1.60x107" C)
EVALUATE: Balancing oil droplets between plates was the basis of the Milliken Oil-Drop Experiment
which produced the first measurement of the mass of an electron.
IDENTIFY: Apply the formula for the electric field of a disk. The hole can be described by adding a disk
of charge density —o and radius R to a solid disk of charge density +o and radius R,.

=52.7 C/m>.

SET UP: The area of the annulus is 7[(R22 = Rlz )o. The electric field of a disk is

E =%[1—1/\/(R/x)2 +1}.

0
EXECUTE: (a) Q= Ao =7(R} - RY)o.

() E(x)= 2%0([1 — 1y (Ry/x) + 1] —[1 — U (R/x)* + 1})@1

E(x)= Zl(l/ \/ (Rl/x)2 +1-1/ \/ (Rz/x)2 +1 )M; . The electric field is in the +x-direction at points above
80 X
the disk and in the —x-direction at points below the disk, and the factor mi specifies these directions.
X
(¢) Note that 1/5/(Ry/x)* +1 =|%|(1+(x/R1)2)*” 2 =|Ri|. This gives
1 1
2

- 1 1 : 1 1) ; ;
E(x)= g |x—i s . .l xi. Sufficiently close means that (x/R1)2 <.

qgo | 1 1 .. , .
(d) F, =—qE, =———| ——— |x. The force is in the form of Hooke’s law: F, =—kx, with

260\ R R,

podo[1 L f_L\/E_L 800 (F R}
260\ R R, ) 2z\m  2z\2em\ R R, )

EVALUATE: The frequency is independent of the initial position of the particle, so long as this position is
sufficiently close to the center of the annulus for (x/R1)2 to be small.

IDENTIFY: Apply constant acceleration equations to a drop to find the acceleration. Then use F = mato
find the force and F =|g| E to find |g].

SET UP: Let D =2.0 cm be the horizontal distance the drop travels and d =0.30 mm be its vertical
displacement. Let +x be horizontal and in the direction from the nozzle toward the paper and let +y be

vertical, in the direction of the deflection of the drop. a, =0 and call a, =a.
EXECUTE: (a) Find the time of flight: 7 = D/v=(0.020 m)/(50 m/s)=4.00 x10™*s. d = %atz.

L 2d _2(3.00x 10~ m)
2 (4.00%x107 )2
(1.4 %107 kg)(3750 m/s?)

8.00 x 10* N/C

(b) Use the equations and calculations above: if v — v/2, then t — 2¢,s0 a — a/4, which means that g —
q/4,50 g = (6.56x10" s)/4=1.64x10" s, which rounds to 1.6x10 " s.
EVALUATE: Since ¢ is positive the vertical deflection is in the direction of the electric field.

=3750 m/s>. Then a = F/m = qE/m gives

=6.56x 10713 C, which rounds to 6.6x10 ™" s.

q =malE =
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IDENTIFY: The net force on the third sphere is the vector sum of the forces due to the other two charges.
Coulomb’s law gives the forces.
SETUpP: F = kM.

i’2

EXECUTE: (a) Between the two fixed charges, the electric forces on the third sphere ¢; are in opposite
directions and have magnitude 4.50 N in the +x-direction. Applying Coulomb’s law gives

4.50 N = k[q,(4.00 zC)/(0.200 m)* — ¢,(4.00 C)/(0.200 m)°].

Simplifying gives ¢; — ¢, = 5.00 uC.

With ¢; at x = +0.600 m, the electric forces on g3 are all in the +x-direction and add to 3.50 N. As before,
Coulomb’s law gives

3.50 N = k[¢,(4.00 £C)/(0.600 m)* + ¢,(4.00 C)/(0.200 m)*].

Simplifying gives ¢g; + 9¢, = 35.0 uC.

Solving the two equations simultaneously gives ¢; = 8.00 4C and ¢, = 3.00 uC.

(b) Both forces on g3 are in the —x-direction, so their magnitudes add. Factoring out common factors and
using the values for ¢; and ¢, we just found, Coulomb’s law gives

Fre = kg [¢1/(0.200 m)* + ¢/(0.600 m)*].

Foe = (8.99%10° N-m?/C?) [(8.00 £C)/(0.200 m)* + (3.00 C)/(0.600 m)*] = 7.49 N, and it is in the
—x-direction.

(¢) The forces are in opposite direction and add to zero, so

0 = kqqs/x" — kqrg3/(0.400 m — x)*.

(0.400 m — x)* = (go/q1)x".

Taking square roots of both sides gives

0.400 m—x ==£x,/q,/q, ==+0.6124x.

Solving for x, we get two values: x = 0.248 m and x = 1.03 m. The charge ¢; must be between the other
two charges for the forces on it to balance. Only the first value is between the two charges, so it is the
correct one: x = 0.248 m.
EVALUATE: Check the answers in part (a) by substituting these values back into the original equations.
8.00 uC —3.00 uC =5.00 #C and 8.00 #C + 9(3.00 xC) =35.0 uC, so the answers check in both equations.
In part (c), the second root, x = 1.03 m, has some meaning. The condition we imposed to solve the problem
was that the magnitudes of the two forces were equal. This happens at x = 0.248 mn, but it also happens at
x =1.03 m. However at the second root the forces are both in the +x-direction and therefore cannot cancel.
IDENTIFY and SET UP: The electric field E, produced by a uniform ring of charge, for points on an axis
kQOx
o2+ a2)3/2 0
x is the distance from its center along the axis, and Q is the total charge on the ring.
EXECUTE: (a) Far from the ring, at large values of x, the ring can be considered as a point-charge, so its
electric field would be E = kQ/x”. Therefore Ex” = kQ, which is a constant. From the graph (a) in the

problem, we read off that at large distances Ex” =45 N- m?/C, which is equal to kQ, so
0= (45 N-m?/C)/k=5.0x10°C=5.0nC.

perpendicular to the plane of the ring at its center, is E, = where a is the radius of the ring,

kQOx
Z+a2)?

x> << a’, so the formula becomes Ex = kQx/a’. Therefore E/x = kQ/a’, which is a constant. From graph (b)
in the problem, E/x approaches 700 N/C-m  as x approaches zero. So kQ/a’ =700 N/C-m, which gives

a = [kQA700 N/C-m )]"* =[(45 N-m?/C )/(700 N/C-m )]"* = 0.40 m = 40 cm.
EVALUATE: It is physically reasonable that a ring 40 cm in radius could carry 5.0 nC of charge.
IDENTIFY: Apply Coulomb’s law to calculate the forces that ¢; and ¢, exert on g3, and add these force

(b) The electric field along the axis a distance x from the ring is £, = Very close to the ring,

vectors to get the net force.

SET UP: Like charges repel and unlike charges attract. Let +x be to the right and +y be toward the top of
the page.

EXECUTE: (a) The four possible force diagrams are sketched in Figure 21.95a.
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Only the last picture can result in a net force in the —x-direction.
(b) ¢, =-2.00 uC, g5 =+4.00 uC, and ¢, > 0.

(¢) The forces F; and F, and their components are sketched in Figure 21.95b.

F =0= —LMQH% +—Msin92. This gives
7 47, (0.0400 m)> 47, (0.0300 m)*
_ 9, sing 9, 35 27,
q2_16|qllsin€ _16| l|4/5 64|q1| 0843 C.

la1] 4 4. |2 3
(0.0400 m)* 5 (0.0300 m)* 5

(d) F,=F,+F,and F,=0, so F =|g] =56.2N.
47[80

EVALUATE: The net force F on g is in the same direction as the resultant electric field at the location of

gz due to ¢; and g;.

F, sin 0,

\/ < /O\ > F, sin 0,
q1>0,9,>0 1<0,9,<0
ql>0,q2<0 q,<0,g,>0

(@)

Figure 21.95

IDENTIFY: Calculate the electric field at P due to each charge and add these field vectors to get the net

field.

SET UP: The electric field of a point charge is directed away from a positive charge and toward a negative

charge. Let +x be to the right and let +y be toward the top of the page.
EXECUTE: (a) The four possible diagrams are sketched in Figure 21.96a (next page).

The first diagram is the only one in which the electric field must point in the negative y-direction.

(b) ¢, =—3.00 C, and ¢, <0.

(¢) The electric fields E,and E, and their components are sketched in Figure 21.96b. cosé; = —

kg S klgo| 12
(0.050m)> 13 (0.120m)* 13’

. This gives

. 12 12 .
sing =—, cosf, =—and sm@zzi. E.=0=-
13 13 13

k|q2| = k|q1| Solving for |q2| gives |q2| 7.2 uC, so q, =—=17.2 uC. Then

(0.120m)2  (0.050 m)? 12°
k
E, = ol 12 ke . S o 1.17x107 N/C. E=1.17x107 N/C.
(0.050m)2 13 (0.120m)? 13

EVALUATE: With g, known, specifying the direction of E determines both q,and E.
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E, cos 0, E, cos 6,

A (N

q1<0,9,<0 E, q1>0,9,>0 gl
q1>0,9,<0 4, <0,g,>0 Ey Esing,

@ (b)

Figure 21.96

21.97. IDENTIFY: To find the electric field due to the second rod, divide that rod into infinitesimal segments of
length dx, calculate the field dF due to each segment and integrate over the length of the rod to find the
total field due to the rod. Use dF =dq E to find the force the electric field of the second rod exerts on

each infinitesimal segment of the first rod.
SET UP: An infinitesimal segment of the second rod is sketched in Figure 21.97. dQ = (Q/L)dx’.

EXECUTE: (a) dE = kdQ 2=kQ dx .
(x+a/2+L—-x) L (x+al2+L-x)
’ i
SRR S S T .
L (x+a2+L-x)* L|x+a2+L-x], L\x+a/2 x+a/2+L

_2k0( 1 1
UL \2x+a 2L+2x+a

(b) Now consider the force that the field of the second rod exerts on an infinitesimal segment dg of the first
rod. This force is in the +x-direction. dFF =dq E.

R _ ,[E dg IL+a/2 EQ 2kQ _[L+a/2(2x+a 1 jdx

2L+2x+a

2
([1 ( N )]L+a/2_[1n(2L+2x+ ):|L+a/2)_kL£2 n|:(a+2L+a)(2L+2a]:|.

2a 4L +2a

2 2

po k0 ((are? )
L ala+2L)

2kQ 1

0 (a2(1+L/a)2
L2

(©)Fora>»L, F=—— 5 kQ ——21In(+L/a)—In(1+2L/a)).
a“(1+2L/a) I’

2
Forsmall z, In(1+z)=z— Z? Therefore, for a> L,

2 2 2
pulfL 2 ) (o 22, )] kg
I 2a* a o a2

EVALUATE: The distance between adjacent ends of the rods is @. When a > L the distance between the
rods is much greater than their lengths and they interact as point charges.

y
ikl D
< af2
[—1—

Figure 21.97
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IDENTIFY and SET UP:  The charge of » electrons is ne.

EXECUTE: The charge on the bee is Q = ne, so the number of missing electrons is

n = Q/e=(30pC)le=(30x10"2 C)/(1.60x10™"° C) = 1.88x10% = 1.9x10® electrons, which makes choice
(a) correct.

EVALUATE: This charge is due to around 190 million electrons.

IDENTIFY and SET UP: One charge exerts a force on another charge without being in contact.

EXECUTE: Even though the bee does not touch the stem, the positive charges on the bee attract negative
charges (electrons normally) in the stem. This pulls electrons toward the bee, leaving positive charge at the
opposite end of the stem, which polarizes it. Thus choice (c) is correct.

EVALUATE: Choice (b) cannot be correct because the bee is positive and would therefore not attract the
positive charges in the stem.

IDENTIFY and SET Up: Electric field lines begin on positive charges and end on negative charges.
EXECUTE: The flower and bee are both positive, so no field lines can end on either of them. This makes
the figure in choice (c) the correct one.

EVALUATE: The net electric field is the vector sum of the field due to the bee and the field due to the
flower. Somewhere between the bee and flower the fields cancel, depending on the relative amounts of
charge on the bee and flower.

IDENTIFY and SET UP: Assume that the charge remains at the end of the stem and that the bees approach
lq]

7'2

to 15 cm from this end of the stem. The electric field is £ =k

EXECUTE: Using the numbers given, we have

E= k‘%' =(8.99x10° N-m?/C?) (40x107'"> C)/(0.15 m)’ = 16 N/C, which is choice (b).
r

EVALUATE: Even if the charge spread out a bit over the stem, the result would be in the neighborhood of
the value we calculated.
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IDENTIFY and SET UP: @ = IE cos@dA, where ¢ is the angle between the normal to the sheet 2 and

the electric field E.

(a) EXECUTE: In this problem £ and cos¢ are constant over the surface so

@y = Ecosg[ dA =Ecos g4 = (14 N/C)(cos 60°)(0250 m*) =18 N-m*/C.

EVALUATE: (b) @ is independent of the shape of the sheet as long as ¢ and E are constant at all points
on the sheet.

(c) EXECUTE: (i) @ = Ecos@A. @y is largest for ¢=0° so cos¢g=1and Oy = E4.

(ii) @ is smallest for ¢ =90°, so cos¢ =0 and Oy =0.

EVALUATE: @ is 0 when the surface is parallel to the field so no electric field lines pass through the
surface.

IDENTIFY: The field is uniform and the surface is flat, so use @y = E4cosg.

SETUP: ¢ is the angle between the normal to the surface and the direction of E, so ¢=70°.

EXECUTE: @, = (90.0 N/C)(0.400 m)(0.600 m)cos70° = 7.39 N - m?/C.

EVALUATE: If the field were perpendicular to the surface the flux would be ®, = EA=21.6 N- m?/C.

The flux in this problem is much less than this because only the component of E perpendicular to the
surface contributes to the flux.

IDENTIFY: The electric flux through an area is defined as the product of the component of the electric
field perpendicular to the area times the area.

(a) SET Up: In this case, the electric field is perpendicular to the surface of the sphere, so

@, = EA= E(47r?).
EXECUTE: Substituting in the numbers gives
@, =(1.25x10° N/C)472(0150 m)* =3.53x10° N-m?/C.
(b) IDENTIFY: We use the electric field due to a point charge.
1
dre, 12

SETUP: E =

EXECUTE: Solving for ¢ and substituting the numbers gives
1

9.00x10° N-m?/C

EVALUATE: The flux would be the same no matter how large the sphere, since the area is proportional to

q= 47[80r2E =

(0150 m)*(1.25x10° N/C) =3.13x107° C.

#* while the electric field is proportional to /2.
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22.4. IDENTIFY: Use @y = J.Ew -dA = IE cos@dA to calculate the flux through the surface of the cylinder.

22.5.

22.6.

SET Up: The line of charge and the cylinder are sketched in Figure 22.4.

! end view E

Figure 22.4

EXECUTE: (a) The area of the curved part of the cylinder is A4 =2zrl.

The electric field is parallel to the end caps of the cylinder, so E-A=0 for the ends and the flux through
the cylinder end caps is zero.

The electric field is normal to the curved surface of the cylinder and has the same magnitude E = A/27eyr
at all points on this surface. Thus ¢ =0° and

-6
@, = EAcosg = EA = (A/27e,r)(2rl) = 000> 0) BC OO

&  8854x1072 C*/N-m?
(b) In the calculation in part (a) the radius » of the cylinder divided out, so the flux remains the same,
@, =136x10° N-m?/C.

Al _ (3.00x10™° C/m)(0.800 m)

() Op=— o — 2.71x10° N- mz/C, which is twice the flux calculated in parts
& 8.854x107° C*/N-m

(a) and (b).

EVALUATE: The flux depends on the number of field lines that pass through the surface of the
cylinder.

IDENTIFY: The flux through the curved upper half of the hemisphere is the same as the flux through the
flat circle defined by the bottom of the hemisphere because every electric field line that passes through the
flat circle also must pass through the curved surface of the hemisphere.

SET UP: The electric field is perpendicular to the flat circle, so the flux is simply the product of £ and the
area of the flat circle of radius r.

EXECUTE: ®p=FEA4= E(zrrz) =r’E

EVALUATE: The flux would be the same if the hemisphere were replaced by any other surface bounded
by the flat circle.

IDENTIFY: Use ®p = E- A to calculate the flux for each surface.
SETUP: ®=FE-A=EA cos @ where A = Ah.
EXECUTE: (a) fig =—j(left). @5 =—(4x10° N/C)(0.10 m)” cos(90°—53.1°) =32 N-m?/C.

=136x10° N-m?/C.

hig, =+k(top). g =—(4x10° N/C)(0.10 m)” cos90° =0.

hg =+j(right). g =+(4x10° N/C)(0.10 m)” cos(90° - 53.1°) =+32 N-m?/C.
ig, =—k (bottom). @ =(4x10° N/C)(0.10 m)* cos90°=0.

Ag, =+i (front). g =+(4x10° N/C)(0.10 m)* cos53.1° =24 N-m?/C.

Ais, =i (back). g =—(4x10° N/C)(0.10 m)” cos53.1°=~24 N-m*/C.

EVALUATE: (b) The total flux through the cube must be zero; any flux entering the cube must also leave
it, since the field is uniform. Our calculation gives the result; the sum of the fluxes calculated in part (a)
is zero.
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22.7.

22.8.

22.9.

22.10.

IDENTIFY: Apply Gauss’s law to a Gaussian surface that coincides with the cell boundary.

Qencl )
&
Ol -865%x10712 C

&  8854x107'2 C*/(N-m?)

ST Up: CIJE =

EXECUTE: @, = =-0977 N-m?/C. Oenal 1s negative, so the flux is

inward.

EVALUATE: If the cell were positive, the field would point outward, so the flux would be positive.
IDENTIFY: Apply Gauss’s law to each surface.

SETUP: Q.. is the algebraic sum of the charges enclosed by each surface. Flux out of the volume is
positive and flux into the enclosed volume is negative.

EXECUTE: (a) ®5 = ¢,/g, = (400 107 C)/g, = 452 N -m?/C.

(b) @ =g,/g,=(-780x107 C)/g, =881 N-m?/C.

(©) @5, =(q) +q2)/€ = ((400—-780)x10~" C)/gy =—429 N-m*/C.

() Dy, =(q,+43)/&) =[(4.00+2.40)x10~ C}/g; =723 N-m*/C.

(€) @5, =(q)+q +43)/€ = (400—-780+2.40)x10™" C)/g; =—158 N-m*/C.

EVALUATE: (f) All that matters for Gauss’s law is the total amount of charge enclosed by the surface, not
its distribution within the surface.
IDENTIFY: Apply the results in Example 22.5 for the field of a spherical shell of charge.

Ja|

r2

SET Up: Example 22.5 shows that £ =0 inside a uniform spherical shell and that £ =k-= outside the

shell.
EXECUTE: (a) E=0.

-6
(b) »=0.060m and E = (899 x10° N - m%C%M =1.22x10* N/C.
(0.060 m)?
—6
(¢) ¥=0110m and E =(899x10° N - mz/cz)w =3.64x107 N/C.
(0.110 m)

EVALUATE: Outside the shell the electric field is the same as if all the charge were concentrated at the
center of the shell. But inside the shell the field is not the same as for a point charge at the center of the
shell, inside the shell the electric field is zero.

IDENTIFY: Apply Gauss’s law to the spherical surface.

SETUP: (., is the algebraic sum of the charges enclosed by the sphere.

EXECUTE: (a) No charge enclosed so @ =0.

_ -9
b @, =L 00010 € _ Genomiic,

& 885x107'2 C2/N-m?

4 tq,  (400-600)x107° C
&  885x107'2 C*/N-m?
EVALUATE: Negative flux corresponds to flux directed into the enclosed volume. The net flux depends

only on the net charge enclosed by the surface and is not affected by any charges outside the enclosed
volume.

=-226 N-m?/C.

(c) D
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22.11.

22.12.

22.13.

22.14.

22.15.

(a) IDENTIFY and SET UP: It is rather difficult to calculate the flux directly from &5 = jE -dA since the

magnitude of E and its angle with dA varies over the surface of the cube. A much easier approach is to
use Gauss’s law to calculate the total flux through the cube. Let the cube be the Gaussian surface. The

charge enclosed is the point charge. @ = %
£
0
Oenel _ 620x107% C

EXECUTE: <I>E =

T 5= 7002 x10° N-m?/C. By symmetry the flux is the
€ 8854%x107° C°/N-m

same through each of the six faces, so the flux through one face is

1(7.002x10° N-m*/C) =1.17x10° N-m*/C.

(b) EVALUATE: In part (a) the size of the cube did not enter into the calculations. The flux through one
face depends only on the amount of charge at the center of the cube. So the answer to (a) would not change

if the size of the cube were changed.
IDENTIFY: Apply the results of Examples 22.9 and 22.10.

SETUp: E= k@ outside the sphere. A proton has charge +e.
r

92(1.60x107"° C)

e =24x10*' N/C.
44X m

EXECUTE: (a) E = k@ =(8.99x10° N-m?/C?)
r

7.4x107"° m

(b) For r=1.0x10""" m, E=(24x10?! N/C) =
1.0x107% m

2
J =13x10" N/C.
(¢) E =0, inside a spherical shell.
EVALUATE: The electric field in an atom is very large.
IDENTIFY: Each line lies in the electric field of the other line, and therefore each line experiences a force
due to the other line.

SET UP: The field of one line at the location of the other is £ = . For charge dq = Adx on one line,

27e,r
the force on it due to the other line is dF = Edg. The total force is F = J.Edq =F f dg = Eq.

A 520x107° C/m
2wy 27(8854% 1072 C2/(N - m?))(0300 m)
line due to the other is F = Eq, where ¢ =A(0.0500 m) = 2.60x1077 C. The net force is
F = Eq=(3116x10° N/C)(2.60x10~7 C)=0.0810 N.

EVALUATE: Since the electric field at each line due to the other line is uniform, each segment of line
experiences the same force, so all we need to use is F = Eq, even though the line is not a point charge.

EXECUTE: E = =3.116% 10> N/C. The force on one

IDENTIFY: Apply the results of Example 22.5.
SET UP: At a point 0.100 m outside the surface, » =0.550 m.

-10
EXECUTE: (a) E = L g __1 (250x10 C):7.44 N/C.

4rmey p2 4mE, (0550 m)?
(b) E =0 inside of a conductor or else free charges would move under the influence of forces, violating
our electrostatic assumptions (i.e., that charges aren’t moving).
EVALUATE: Outside the sphere its electric field is the same as would be produced by a point charge at its
center, with the same charge.
IDENTIFY and SET UP: Example 22.5 derived that the electric field just outside the surface of a spherical
1 |q]

47y R

conductor that has net charge |¢| is E = Calculate |g| and from this the number of excess

electrons.
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22.16.

22.17.

RE (0130 m)* (1150 N/C) _

2.162x107° C.
(1/47ey)  8.988x10° N-m?/C?

EXECUTE: |q|=

Each electron has a charge of magnitude e= 1.602x107"° C, so the number of excess electrons needed is
2.162x107° C

1.602x107" ¢
EVALUATE: The result we obtained for ¢ is a typical value for the charge of an object. Such net charges
correspond to a large number of excess electrons since the charge of each electron is very small.
IDENTIFY: According to the problem, Mars’s flux is negative, so its electric field must point toward the

center of Mars. Therefore the charge on Mars must be negative. We use Gauss’s law to relate the electric
flux to the charge causing it.

=1.35x10'

Qencl

€

SET UP: Gauss’s law is @ = . The enclosed charge is negative, so the electric flux must also be
negative. The flux is @, = EAcos¢ =—E4 since ¢ = 180° and £ is the magnitude of the electric field,
which is positive.

EXECUTE: (a) Solving Gauss’s law for ¢, putting in the numbers, and recalling that ¢ is negative, gives
q =@, =(-363x10'" N-m?/C)(885x107"* C*/N-m?)=-321x10° C.

(b) Use the definition of electric flux to find the electric field. The area to use is the surface area of Mars.
o2 _ 3.63x10'° N-m?/C

= =251x10> N/C.
A4 47(3.39%10° m)

g _  -321x10°C

s 47(3.39%10° m)?
EVALUATE: Even though the charge on Mars is very large, it is spread over a large area, giving a small
surface charge density.

IDENTIFY: Add the vector electric fields due to each line of charge. E(#) for a line of charge is given by
Example 22.6 and is directed toward a negative line of charge and away from a positive line.

SET UP: The two lines of charge are shown in Figure 22.17.

(¢) The surface charge density on Mars is therefore o = =-222x10"° C/m>.

b
$o_200 m A2 = —2.40 uC/m

@ 0.400 m

0.200 m $

Ay = 480 uCfm

Figure 22.17

EXECUTE: (a) At point q, E | and E , are in the +y-direction (toward negative charge, away from
positive charge).

E = (1/27[80)[(4.80><10_6 C/m)/(0.200 m)] =4.314x10° N/C.

E, =(1/27,)[(2.40x107° C/m)/(0.200 m)] =2.157x10° N/C.

E =E, + E, =6.47x10° N/C, in the y-direction.

(b) At point b, E | is in the +y-direction and E 5 is in the —y-direction.

E, =(1/27590)[(4.80><1()_6 C/m)/(0.600 m)] =1.438x10° N/C.
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22.18.

22.19.

22.20.

E, = (1/27&5‘0)[(2.40><1076 C/m)/(0.200 m)] =2.157x10° N/C.

E=E,-E = 72x10* N/C, in the —y-direction.

EVALUATE: At point a the two fields are in the same direction and the magnitudes add. At point b the two
fields are in opposite directions and the magnitudes subtract.

IDENTIFY: Apply Gauss’s law.

SET UP: Draw a cylindrical Gaussian surface with the line of charge as its axis. The cylinder has radius
0.400 m and is 0.0200 m long. The electric field is then 840 N/C at every point on the cylindrical surface
and is directed perpendicular to the surface.

EXECUTE: <j>E +dA = EAygjpger = E(270rL) = (840 N/C)(27)(0.400 m)(0.0200 m) =422 N-m*/C.
The field is parallel to the end caps of the cylinder, so for them gSE -dA=0. From Gauss’s law,

q=¢€,®, =(8854x107"2 C*/N-m*)(422 N-m?/C) =3.74x 107" C.
EVALUATE: We could have applied the result in Example 22.6 and solved for A.Then g =AL.

IDENTIFY: The electric field inside the conductor is zero, and all of its initial charge lies on its outer
surface. The introduction of charge into the cavity induces charge onto the surface of the cavity, which
induces an equal but opposite charge on the outer surface of the conductor. The net charge on the outer
surface of the conductor is the sum of the positive charge initially there and the additional negative charge
due to the introduction of the negative charge into the cavity.

(a) SET Up: First find the initial positive charge on the outer surface of the conductor using ¢; = 0’4,

where 4 is the area of its outer surface. Then find the net charge on the surface after the negative charge
has been introduced into the cavity. Finally, use the definition of surface charge density.
EXECUTE: The original positive charge on the outer surface is

¢ =0A=0(4mr*)=(637x10"% C/m?)47(0.250 m)? =5.00x107° C.
After the introduction of —0.500 4C into the cavity, the outer charge is now
5.00 #C—0.500 uC =4.50 uC.
g g _ 450x10°C

The surface charge density is now o ===

- - =5.73x107° C/m>.
A 4zr® 470250 m)

. g . Qg q q
(b) SET UP: Using Gauss’s law, the electric field is E = = =——=

£yA & 47r?

EXECUTE: Substituting numbers gives

450x107° C

E= = 5 5 =6.47x10° N/C.
(885x107'2 C*/N-m?)(47)(0.250 m)

— Qencl
€

(¢) SET UpP: We use Gauss’s law again to find the flux. &

EXECUTE: Substituting numbers gives

_ —0500x107° C
885x107"2 C*/N-m

EVALUATE: The excess charge on the conductor is still +5.00 4C, as it originally was. The introduction

of the —0.500 #C inside the cavity merely induced equal but opposite charges (for a net of zero) on the

. - =-5.65x10* N-m*/C.

surfaces of the conductor.

IDENTIFY: Apply the results of Examples 22.5, 22.6, and 22.7.

SET UP: Gauss’s law can be used to show that the field outside a long conducting cylinder is the same as
for a line of charge along the axis of the cylinder.

EXECUTE: (a) For points outside a uniform spherical charge distribution, all the charge can be considered
to be concentrated at the center of the sphere. The field outside the sphere is thus inversely proportional to
the square of the distance from the center. In this case,
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22.21.

22.22.

0.200 cm

2
=53 N/C.
0.600 cm

E = (480 N/C){

(b) For points outside a long cylindrically symmetrical charge distribution, the field is identical to that of a

long line of charge: E = , that is, inversely proportional to the distance from the axis of the cylinder.

72'801"
0.200 cm

In this case E = (480 N/C)
0.600 cm

j =160 N/C.

(¢) The field of an infinite sheet of charge is £ = 0/2¢; i.e., it is independent of the distance from the

sheet. Thus in this case E =480 N/C.

EVALUATE: For each of these three distributions of charge the electric field has a different dependence on
distance.

IDENTIFY: The magnitude of the electric field is constant at any given distance from the center because
the charge density is uniform inside the sphere. We can use Gauss’s law to relate the field to the charge
causing it.

q - q q
—, and the charge density is givenby p=—=——""——.
& V. (4/3)zR’

EXECUTE: Solving for ¢ and substituting numbers gives
q = EAg, = E(47r*)g, = (1750 N/C)(47)(0.500 m)* (8.85x 107> C*/N-m?) = 4866 x 10~ C. Using the

(a) SET UP: Gauss’s law tells us that E4 =

-8
formula for charge density we get p = q_ g |e: =2.60x10"" C/m>.

Vo (@3RS (4/3)7(0355 m)®
(b) SET UP: Take a Gaussian surface of radius » =0.200 m, concentric with the insulating sphere. The

W : 4 . .
charge enclosed within this surface is g, = pV = p(gmﬁ} and we can treat this charge as a point-

. 1
charge, using Coulomb’s law £ = ——

qe—‘;d. The charge beyond » =0.200 m makes no contribution to

the electric field.
EXECUTE: First find the enclosed charge:

Genel = p(%nﬁj =(2.60x1077 C/m3)E7z(o.2oo m)ﬂ =870x107 C

Now treat this charge as a point-charge and use Coulomb’s law to find the field:

870107 C
(0.200 m)?

EVALUATE: Outside this sphere, it behaves like a point-charge located at its center. Inside of'it, at a
distance r from the center, the field is due only to the charge between the center and .
IDENTIFY: We apply Gauss’s law, taking the Gaussian surface beyond the cavity but inside the solid.

E =(9.00x10° N-m?/C?) =1.96x10> N/C

qtota]

SET UP: Because of the symmetry of the charge, Gauss’s law gives us E| = , where 4 is the surface

£,
0
area of a sphere of radius R =9.50 cm centered on the point-charge, and g, is the total charge
contained within that sphere. This charge is the sum of the —3.004C point charge at the center of the
cavity plus the charge within the solid between » =6.50 cm and R =9.50 cm. The charge within the solid
is gypiq = PV = plA3)YTR® — (413) 1= (4n/3)p(R® - 1°).
EXECUTE: First find the charge within the solid between » =6.50 cm and R =9.50 cm:

Golid = 47”(7.35x10*‘ C/m*)[(0.0950 m)* — (0.0650 m)*1=1.794x107° C.
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22.23.

22.24.

22.25.

Now find the total charge within the Gaussian surface:
Grotal = Gsolid t point = —3.00 uC+1.794 uC=-1.206 uC.
Now find the magnitude of the electric field from Gauss’s law:
pold __ld_ 1 |gq]_(8.99x10° N-m?/C?)1.206x10° C)
gd  gy4nr?  4mey r* (0.0950 m)?
The fact that the charge is negative means that the electric field points radially inward.
EVALUATE: Because of the uniformity of the charge distribution, the charge beyond 9.50 cm does not
contribute to the electric field.

IDENTIFY: The charged sheet exerts a force on the electron and therefore does work on it.
SET Up: The electric field is uniform so the force on the electron is constant during the displacement. The

=1.20x10° N/C.

electric field due to the sheetis E = % and the magnitude of the force the sheet exerts on the electron is
F =¢qE. The work the force does on thg electron is W = Fs. In (b) we can use the work-energy theorem,
VVtOt =AK=K2 _Kl
EXECUTE: (a) W =Fs, where s =0.250 m. F = Eq, where
c 290x10™"? C/m?
T2 2(8.854x10712 C%/(N-m?))
F =(0.1638 N/C)(1.602x107"? C)=2.624x1072° N. The work this force does is W = Fs = 6.56x1072! J.

=0.1638 N/C. Therefore the force is

1 1 .
(b) Use the work-energy theorem: W, =AK =K, —K|. K;=0. K, = Emvg So, Emv% =W, which

21
gives v, = & _ 2(6'559;1?31J)=1.2><105 m/s.
\'m \ 9109x107" kg

EVALUATE: If the field were not constant, we would have to integrate in (a), but we could still use the
work-energy theorem in (b).

IDENTIFY: The charge distribution is uniform, so we can readily apply Gauss’s law. Outside a spherically
symmetric charge distribution, the electric field is equivalent to that of a point-charge at the center of the
sphere.

SET UP: Gauss’s law: @ﬁE -dA =%, E= k|i2| outside the sphere.
€O v

EXECUTE: (a) Outside the sphere, E = k@, so Q = Er’/k, which gives
r

0 = (940 N/C)(0.0800 m)*/ (8.99x10° N-m?/C?) =6.692x10""° C. The volume charge density is

p= e__¢0 . (6.692x107° C)/(41/3)(0.0400 m)’ = 2.50x107° C/m’.

vV 4
g
3

(b) Apply Gauss’s law: (ﬁE dA= %, with the Gaussian surface being a sphere of radius » = 0.0200 m
€

centered on the sphere of charge. This gives

E(47r") = Qend/ £y, where Qg = 4/3 arp. Solving for E and simplifying gives

E =rp/3 g, = (0.0200 m)(2.50x10"° C/m’)/[3(8.854x10™'* C*/N-m?)] = 1880 N/C.

EVALUATE: Outside the sphere of charge, the electric field obeys an inverse-square law, but inside the
field is proportional to the distance from the center of the sphere.

IDENTIFY: Apply Gauss’s law and conservation of charge.

SET UP: Use a Gaussian surface that lies wholly within the conducting material.
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22.26.

22.27.

22.28.

EXECUTE: (a) Positive charge is attracted to the inner surface of the conductor by the charge in the cavity.
Its magnitude is the same as the cavity charge: g;,,.. =+6.00 nC, since £ =0 inside a conductor and a

Gaussian surface that lies wholly within the conductor must enclose zero net charge.
(b) On the outer surface the charge is a combination of the net charge on the conductor and the charge “left
behind” when the +6.00 nC moved to the inner surface:

dtot = Dinner T Youter = outer = dtot ~ Jinner = 5.00 nC—6.00 nC=-1.00 nC.

EVALUATE: The electric field outside the conductor is due to the charge on its surface.

IDENTIFY: If the sphere is to remain motionless, the downward force of gravity must be balanced by the
upward electric force due to the sheet. The nonconducting sheet produces a uniform electric field that is
perpendicular to the sheet and independent of the distance from the sheet.

SETUp: XF, =0, E= 21 for a large nonconducting sheet, F= qE' .
£
0

EXECUTE: (a) ZFy =0:gE—mg =0. Solving for g and using E = % gives
0
_mg _mg 280mg
- .00
2¢,

q=2.78x10""C.
(b) The electric field does not depend on the distance from the sheet, so the field, and therefore the charge,
would be the same as in (a).
EVALUATE: If the object were to be very far from the sheet, the field would not be uniform. And if the
object were extremely far away compared to the dimensions of the sheet, the sheet would resemble a point
charge.
IDENTIFY: Apply Gauss’s law to each surface.
SET UP: The field is zero within the plates. By symmetry the field is perpendicular to a plate outside the
plate and can depend only on the distance from the plate. Flux into the enclosed volume is positive.
EXECUTE: S, and S; enclose no charge, so the flux is zero, and electric field outside the plates is zero.

=2(8.854x107"? C%/N-m?)(8.00x10° kg)(9.80 m/s?)/(5.00x10 ® C/m?).

Between the plates, S, shows that —EA=-q/ey=-0A/g, and E = o/¢,.

EVALUATE: Our result for the field between the plates agrees with the result stated in Example 22.8.
IDENTIFY: Close to a finite sheet the field is the same as for an infinite sheet. Very far from a finite sheet
the field is that of a point charge.

L lgf

. . o .. .
SET UP: For an infinite sheet, £ = e For a positive point charge, E = 5

80 4%‘0 v
EXECUTE: (a) At a distance of 0.100 mm from the center, the sheet appears “infinite,” so

-9
_ O _ g _450x107C oo

2e, 26,4 2£,(0.800 m)’
(b) At a distance of 100 m from the center, the sheet looks like a point, so:

-9
E=-L 4 _ 1 G300 O 450007 Nic.

drey r*  4Amey (100 m)?
(¢) There would be no difference if the sheet was a conductor. The charge would automatically spread out
evenly over both faces, giving it half the charge density on either face as the insulator but the same electric
field. Far away, they both look like points with the same charge.
EVALUATE: The sheet can be treated as infinite at points where the distance to the sheet is much less than
the distance to the edge of the sheet. The sheet can be treated as a point charge at points for which the
distance to the sheet is much greater than the dimensions of the sheet.
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22.29. IDENTIFY: Apply Gauss’s law to a Gaussian surface and calculate E.

22.30.

22.31.

(a) SET Up and EXECUTE: Consider the charge on a length / of the cylinder. This can be expressed as
q = Al. But since the surface area is 2R/ it can also be expressed as ¢ = 027 RI. These two expressions
must be equal, so A/ =027zRl and A=27Ro.

(b) SET UP: Apply Gauss’s law to a Gaussian surface that is a cylinder of length /, radius r, and whose
axis coincides with the axis of the charge distribution, as shown in Figure 22.29.

L EXECUTE:
N _T_ - \\ Qencl =0(27RI)
v |r
. ! b, =27xrlE
0 LV 1 IR ) 2

[ L
00 /
o T,

Figure 22.29

Dy = Denct gives 27rlE = m, s0E=O-—R.

€ & &

EVALUATE: (c) Example 22.6 shows that the electric field of an infinite line of charge is £ = A/ 27e,yr.

A OR R(/l

o=——,50 E=—= — =
27R 27R) 27meyr

, the same as for an infinite line of charge that is along the
V4 Egr &

axis of the cylinder.
IDENTIFY: The net electric field is the vector sum of the fields due to each of the four sheets of charge.

SET UP: The electric field of a large sheet of charge is £ = 0/2¢;. The field is directed away from a
positive sheet and toward a negative sheet.
1 zl l03| 1041 1611 l"zMasMaA |01‘

EXECUTE: (a) At 4 E

2¢, 250 250 2¢, 2¢,
EA=%(5 4C/m? +2 pC/m? + 4 uC/m?* — 6 uC/m?) =282 x10° N/C to the left.
0
w £, O e A
280 280 250 2¢, 2¢,

Ey= %(6 4C/m? +2 uC/m? +4 pC/m? -5 uC/m?) =3.95x10° N/C to the left.

£
© E :u m_@_@ ARARCAR |°'3|
€ 2g 2¢, 2¢ 2 2¢,

E.= %(Mcmz +64C/m? —51C/m? - 2C/m?) = 1.69 x 10° N/C to the left.
EVALUATE: The field at C is not zero. The pieces of plastic are not conductors.

IDENTIFY: The uniform electric field of the sheet exerts a constant force on the proton perpendicular to
the sheet, and therefore does not change the parallel component of its velocity. Newton’s second law
allows us to calculate the proton’s acceleration perpendicular to the sheet, and uniform-acceleration
kinematics allows us to determine its perpendicular velocity component.

SET UP: Let +x be the direction of the initial velocity and let +y be the direction perpendicular to the

sheet and pointing away from it. a, =0 so v, =v,, = 9.70x10? m/s. The electric field due to the sheet is

o . .
E = —— and the magnitude of the force the sheet exerts on the proton is F =eE.
£
0
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22.32.

22.33.

22.34.

o 234%107 C/m?
EXECUTE: E=—-= T 5
28, 2(8854x107'% C*/(N-m?))
. _Fq _(321N0)0 602x107"° C)
T om 1.673x107% kg

v, =V, ta,y= (1.265><1010 rn/sz)(5.00><10_8 s)=632.7 m/s. The speed of the proton is the magnitude

=132.1 N/C. Newton’s second law gives

=1.265x10'" m/s. Kinematics gives

ofits velocity, so v=[v2 +v2 =1/(9.70x10> m/s)? + (632.7 m/s)? =1.16x10° ms.

EVALUATE: We can use the constant-acceleration kinematics equations because the uniform electric field
of the sheet exerts a constant force on the proton, giving it a constant acceleration. We could rot use this
approach if the sheet were replaced with a sphere, for example.

IDENTIFY: The sheet repels the charge electrically, slowing it down and eventually stopping it at its
closest approach.

SET UP: Let +y be in the direction toward the sheet. The electric field due to the sheet is £ = 21 and
£
0

the magnitude of the force the sheet exerts on the object is /' =¢gE. Newton’s second law, and the
constant-acceleration kinematics formulas, apply to the object as it is slowing down.

-8 2
EXECUTE: E=i— SISO =3332x10° N/C.

2¢,  2[8854x107'2 CH/(N-m?)]

3 -9
a, = _E = Eq = (3'332X1§2§/?3Eg'10X10 © =-2.641x10° m/s%. Using vﬁ = vgy +2ay(y—J’0)
m m 20 g

gives vy, =.[-2a,(y—yp) = \/—2(—2.64><103 m/s?)(0.300 m) =39.8 m/s.

EVALUATE: We can use the constant-acceleration kinematics equations because the uniform electric field
of the sheet exerts a constant force on the object, giving it a constant acceleration. We could not use this
approach if the sheet were replaced with a sphere, for example.

IDENTIFY: First make a free-body diagram of the sphere. The electric force acts to the left on it since the
electric field due to the sheet is horizontal. Since it hangs at rest, the sphere is in equilibrium so the forces
on it add to zero, by Newton’s first law. Balance horizontal and vertical force components separately.

SET UP: Call T the tension in the thread and E the electric field. Balancing horizontal forces gives

T sin@ = gE. Balancing vertical forces we get T cos@ =mg. Combining these equations gives

tan @ = gE/mg, which means that 8 = arctan (¢E/mg). The electric field for a sheet of charge is

E = 0'/280.
EXECUTE: Substituting the numbers gives us
-9 2
=2 250x10 ZCm™ 41510 N/C. Then

26, 2(885x1072 C2/N-m?)
(5.00x107° C)(1.41x10* N/C) |
(4.00x107° kg)(9.80 m/s?)

EVALUATE: Increasing the field, or decreasing the mass of the sphere, would cause the sphere to hang at a
larger angle.

@ = arctan 10.2°.

IDENTIFY: Use ®f = E- A4 to calculate the flux for each surface. Use D, = % to calculate the total
£,
0
enclosed charge.
SETUP: E = (—5.00 N/C- m)xf +(3.00 N/C- m)zlg. The area of each face is I?, where L =0.300 m.

EXECUTE: (a) ng =——j= =E~ﬁS]A=0.
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22.35.

22.36.

22.37.

hg =+k = ®, = E g A=(3.00 N/C-m)(0300 m)*z = (0.27 (N/C) -m)z.

@, =(0.27 (N/C) - m)(0.300 m) = 0.081 (N/C)-m?.

hg =+j=>®y=E hig A=0.

hg, =—k = ®, = E kg A=—(027 (N/C)-m)z =0 (since z = 0).

hig, =+ = @5 =E -fig A=(~5.00 N/C-m)(0.300 m)”x =—(0.45 (N/C) - m)x.

@5 =—(0.45 (N/C)-m)(0.300 m) =—(0.135 (N/C)- m?).

hig, =—i = ®g = E -fig A=+(0.45 (N/C)-m)x =0 (since x = 0).

(b) Total flux: & =®, + P =(0.081-0.135)(N/C)-m? =—0.054 N-m?/C. Therefore,
q=¢g,®=-478x10"" C.

EVALUATE: Flux is positive when E is directed out of the volume and negative when it is directed into
the volume.
IDENTIFY: Use @ = E - A to calculate the flux through each surface and use Gauss’s law to relate the

net flux to the enclosed charge.
SET Up: Flux into the enclosed volume is negative and flux out of the volume is positive.

EXECUTE: (a) ® = E4=(125 N/C)(6.0 m*)=750 N-m?/C.

(b) Since the field is parallel to the surface, ® =0.

(c¢) Choose the Gaussian surface to equal the volume’s surface. Then 750 N - m?/C— EA= q/€, and
1

6.0 m?
must have some net flux flowing in so the flux is —\EA\ on second face.

E= (2.40%10™ C/g, +750 N -m*/C) = 577 N/C, in the positive x-direction. Since ¢ <0 we

EVALUATE: (d) ¢ <0 but we have E pointing away from face 1. This is due to an external field that does not
affect the flux but affects the value of £. The electric field is produced by charges both inside and outside the slab.
IDENTIFY: The electric field is perpendicular to the square but varies in magnitude over the surface of the
square, so we will need to integrate to find the flux.

SET UP and EXECUTE: E = (964 N/C- m)xlg. Consider a thin rectangular slice parallel to the y-axis and at

coordinate x with width dx. dA = (de)le. dd, = E-dA= (964 N/C- m)Lxdx.

2
D, = jOdebE = (964 N/C-m)L | OLxdx — (964 N/C- m)L[%J.

1
;= (964 N/C - m)(0.350 m)* = 20.7 N -m?/C.

EVALUATE: To set up the integral, we take rectangular slices parallel to the y-axis (and not the x-axis)
because the electric field is constant over such a slice. It would not be constant over a slice parallel to the x-axis.
IDENTIFY: Find the net flux through the parallelepiped surface and then use that in Gauss’s law to find
the net charge within. Flux out of the surface is positive and flux into the surface is negative.

(a) SETUP: E, gives flux out of the surface. See Figure 22.37a.

o EXECUTE: @ =+E| A
/
L (w0d A=(0.0600 m)(0.0500 m) =3.00x10"> m”>.
l\ N 30°,
h \(3(3)0% E|| =E cos60°= (2.50><104 N/C)cos60°.

E, =125x10* N/C.
Figure 22.37a

Dy =+E A=+(125x10* N/C)(3.00x10~> m*)=375N-m*/C.
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22.38.

22.39.

SET UP: Ez gives flux into the surface. See Figure 22.37b.

By, <300 EXECUTE: ®,=-F, A
El/ (60 A=(0.0600 m)(0.0500 m) =3.00x107> m2.
2 0
o E,| = E,c0s60° = (7.00x10* N/C)cos 60°.

E,, =3.50x10* N/C.

Figure 22.37b

Dy, =—E,; A=—(350x10* N/C)(3.00x10~> m*)=—105.0 N-m*/C.
The net flux is @ =P, +®; =+37.5 N-m*/C—1050 N-m*/C=—67.5 N-m*/C.

The net flux is negative (inward), so the net charge enclosed is negative.

Apply Gauss’s law: @, = %
£
0

0, = Pp€, = (=675 N-m*/C)(8854x107"* C*/N-m*)=-598x107"" C.

EVALUATE: (b) If there were no charge within the parallelepiped the net flux would be zero. This is not
the case, so there is charge inside. The electric field lines that pass out through the surface of the
parallelepiped must terminate on charges, so there also must be charges outside the parallelepiped.
IDENTIFY: The « particle feels no force where the net electric field due to the two distributions of charge
is zero.

SET UP: The fields can cancel only in the regions A and B shown in Figure 22.38, because only in these
two regions are the two fields in opposite directions.

=9 and r=Ano= 0O/
2meyr 26, 7(100 4C/m?)
The fields cancel 16 cm from the line in regions 4 and B.

EVALUATE: The result is independent of the distance between the line and the sheet. The electric field of

an infinite sheet of charge is uniform, independent of the distance from the sheet.

EXECUTE: Ej. = Eg..; gives =016 m=16 cm.

=
B
=1
a

®

[ I I B

++++++++
®

Figure 22.38

(a) IDENTIFY: Apply Gauss’s law to a Gaussian cylinder of length / and radius », where a <r <b, and

calculate £ on the surface of the cylinder.
SET UP: The Gaussian surface is sketched in Figure 22.39a.

\ e EXECUTE: @ = E(27rl)
0 "/l L Qenel = Al (the charge on the
_______ length [ of the inner conductor
l that is inside the Gaussian surface).

Figure 22.39a
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D, = Qenat gives E(2zrl) = ﬂ
o &
E= 7 A . The enclosed charge is positive so the direction of E is radially outward.
e

(b) IDENTIFY and SET UP: Apply Gauss’s law to a Gaussian cylinder of length / and radius », where
r>c, as shown in Figure 22.39b.

e« EXECUTE: @ = EQ27rl).
/ 1_\l R QOenct = Al (the charge on the
| " \ length / of the inner conductor
{ : l' " that is inside the Gaussian surface;
l\ , ; the outer conductor carries no
Lo y net charge).
Figure 22.39b
. Al
Oy = Qenet gives EQrrl)=—.
€0 o

E= . The enclosed charge is positive so the direction of E is radially outward.

27, r
(c) IDENTIFY and EXECUTE: E = 0 within a conductor. Thus £ = 0 for r < a;

E= fora<r<bE=0forb<r<c;
2meyr
E= for » > c¢. The graph of E versus r is sketched in Figure 22.39c.
27eyr
E
: )\/27T€0r
|
|
|
I ; I )\/2776 r
I | 0
! | I\l
| | | |
.
a b c
Figure 22.39¢

EVALUATE: Inside either conductor E = 0. Between the conductors and outside both conductors the electric
field is the same as for a line of charge with linear charge density A4 lying along the axis of the inner conductor.
(d) IDENTIFY and SET UP: inner surface: Apply Gauss’s law to a Gaussian cylinder with radius », where
b <r<c. We know E on this surface; calculate O, ;.

EXECUTE: This surface lies within the conductor of the outer cylinder, where E =0, so ®; =0. Thus by
Gauss’s law Q.. =0. The surface encloses charge A/ on the inner conductor, so it must enclose charge
—Al on the inner surface of the outer conductor. The charge per unit length on the inner surface of the
outer cylinder is —A.

outer surface: The outer cylinder carries no net charge. So if there is charge per unit length —A4 on its
inner surface there must be charge per unit length +4 on the outer surface.

EVALUATE: The electric field lines between the conductors originate on the surface charge on the outer
surface of the inner conductor and terminate on the surface charges on the inner surface of the outer conductor.
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These surface charges are equal in magnitude (per unit length) and opposite in sign. The electric field lines

outside the outer conductor originate from the surface charge on the outer surface of the outer conductor.
22.40. IDENTIFY: Apply Gauss’s law.

SET UP: Use a Gaussian surface that is a cylinder of radius 7, length / and that has the line of charge along

its axis. The charge on a length / of the line of charge or of the tube is g = a.

. . al o
EXECUTE: (a) (i) For r <a, Gauss’s law gives EQxrl) = % =—and £ = .
& & 27eyr
(ii) The electric field is zero because these points are within the conducting material.
. 2al a
(iii) For r > b, Gauss’s law gives E(2zrl) = % =— and E = .
80 80 71'801”

The graph of E versus r is sketched in Figure 22.40.

(b) (i) The Gaussian cylinder with radius 7, for a <r <b, must enclose zero net charge, so the charge per
unit length on the inner surface is —«. (ii) Since the net charge per length for the tube is +¢ and there is
—a on the inner surface, the charge per unit length on the outer surface must be +2¢r.

EVALUATE: For r>b the electric field is due to the charge on the outer surface of the tube.

E

Figure 22.40

22.41. IDENTIFY: Apply Gauss’s law.
SET UP: Use a Gaussian surface that is a cylinder of radius » and length /, and that is coaxial with the
cylindrical charge distributions. The volume of the Gaussian cylinder is 7r*1 and the area of its curved

surface is 27zrl. The charge on a length [ of the charge distribution is ¢ = A/, where A= pﬂ'R2.

2
EXECUTE: (a)For r<R, Q.= pizrzl and Gauss’s law gives E(2zrl) = @ = M and E = 2p_r,
0 € €
radially outward.
2 , . Oua  prR?1
(b) For r >R, Qg =Al = prRl and Gauss’s law gives E(2zrl) = == = ——— and
£ £
0 0
PR’
=—= , radially outward.
28 27Eyr
. L R .
(c) At » =R, the electric field for both regions is E = 5—, so they are consistent.
£
0

(d) The graph of E versus r is sketched in Figure 22.41 (next page).
EVALUATE: For >R the field is the same as for a line of charge along the axis of the cylinder.
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22.42.

22.43.

~

Figure 22.41

IDENTIFY: Apply Gauss’s law.

SET UP: Use a Gaussian surface that is a sphere of radius » and that is concentric with the conducting
spheres.

EXECUTE: (a) For r<a, E =0, since these points are within the conducting material.

1 A . AN ]
Fora<r<b, E= —i, since there is +¢ inside a radius r.

4re, 2
For b<r<c, E=0, since these points are within the conducting material.

1 4 . .
For r>c¢, E = —i, since again the total charge enclosed is +g¢.

4re, 2
(b) The graph of E versus r is sketched in Figure 22.42a.
(¢) Since the Gaussian sphere of radius r, for b <r <c, must enclose zero net charge, the charge on the
inner shell surface is —q.
(d) Since the hollow sphere has no net charge and has charge —¢q on its inner surface, the charge on the
outer shell surface is +g¢.

(e) The field lines are sketched in Figure 22.42b. Where the field is nonzero, it is radially outward.
EVALUATE: The net charge on the inner solid conducting sphere is on the surface of that sphere. The
presence of the hollow sphere does not affect the electric field in the region » < b.

E

(@) (b)
Figure 22.42

IDENTIFY: Apply Gauss’s law.
SET UP: Use a Gaussian surface that is a sphere of radius » and that is concentric with the charge
distributions.
EXECUTE: (a) For r <R, E =0, since these points are within the conducting material. For R <r <2R,
1 0 . . . . 1 20
= ——=, since the charge enclosed is Q. The field is radially outward. For » >2R, EF=———
are, 12 dre, 2

since the charge enclosed is 2Q. The field is radially outward.
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22.44.

22.45.

(b) The graph of E versus r is sketched in Figure 22.43.
EVALUATE: For r<2R the electric field is unaffected by the presence of the charged shell.

E

Figure 22.43

IDENTIFY: Apply Gauss’s law and conservation of charge.
SET UP: Use a Gaussian surface that is a sphere of radius » and that has the point charge at its center.

1 ] . .
EXECUTE: (a)For r<a, E= 4—%, radially outward, since the charge enclosed is Q, the charge of
TTE,
0r
the point charge. For a <r<b, E =0 since these points are within the conducting material. For » > b,

1 2 . . . :
E= ——Q, radially inward, since the total enclosed charge is —20Q.
dre, 2
(b) Since a Gaussian surface with radius 7, for a <r» <b, must enclose zero net charge because £ =0

inside the conductor, the total charge on the inner surface is —Q and the surface charge density on the

inner surface is o =— 0 =
4ra
(¢) Since the net charge on the shell is =30 and there is —Q on the inner surface, there must be —2Q on
. . 2
the outer surface. The surface charge density on the outer surface is o =— iz .
47

(d) The field lines and the locations of the charges are sketched in Figure 22.44a.
(e) The graph of E versus r is sketched in Figure 22.44b.

E
—( spread on
inner surface
—20Q spread on outer ’\ r
surface a b
@ ()

Figure 22.44

EVALUATE: For r<a the electric field is due solely to the point charge Q. For » > b the electric field is
due to the charge —2Q that is on the outer surface of the shell.
IDENTIFY: Apply Gauss’s law to a spherical Gaussian surface with radius ». Calculate the electric field at

the surface of the Gaussian sphere.
(a) SETUP: (i) r <a: The Gaussian surface is sketched in Figure 22.45a (next page).
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EXECUTE: @y =FEA4A= E(472'r2).
Oenel = 0; no charge is enclosed.
O, = Qe says

%

E(4zr*)=0and E =0.

Figure 22.45a

(i) a <r <b: Points in this region are in the conductor of the small shell, so £ =0.
(iii) SET UP: b <r <c: The Gaussian surface is sketched in Figure 22.45b.
Apply Gauss’s law to a spherical Gaussian surface with radius b <r <c.

EXECUTE: @y =FEA4= E(47zr2).
The Gaussian surface encloses all
of the small shell and none of the
large shell, so O, =+24.

Figure 22.45b
Qencl . 2 2q 2q : : - . .
@, =—" gives E(4nr")=—so E = . Since the enclosed charge is positive the electric field is
& & dneyr

radially outward.

(iv) ¢ <r<d: Points in this region are in the conductor of the large shell, so E =0.

(v)SETUP: r>d: Apply Gauss’s law to a spherical Gaussian surface with radius » > d, as shown in
Figure 22.45c.

EXECUTE: ®f = EA=E(47nr?%).

The Gaussian surface encloses all
of the small shell and all of the
large shell, so O, =+2q +4q = 6q.

Figure 22.45¢

@, = Lol gives E(am?) =4,
&

0 €
E= 64 . Since the enclosed charge is positive the electric field is radially outward.
4re,r
0

The graph of E versus r is sketched in Figure 22.45d.
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22.46.

6qfameqd? +

2qf4megh? + \

~

Figure 22.45d

(b) IDENTIFY and SET UP: Apply Gauss’s law to a sphere that lies outside the surface of the shell for
which we want to find the surface charge.

EXECUTE: (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian
surface with radius a <7 <b. This surface lies within the conductor of the small shell, where £ =0, so
@, =0. Thus by Gauss’s law O,,; =0, so there is zero charge on the inner surface of the small shell.

(i) charge on outer surface of the small shell: The total charge on the small shell is +2g. We found in
part (i) that there is zero charge on the inner surface of the shell, so all +2g must reside on the outer
surface.

(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius
¢ <r<d. The surface lies within the conductor of the large shell, where E =0, so ®; =0. Thus by
Gauss’s law O, =0. The surface encloses the +2q on the small shell so there must be charge —2g on
the inner surface of the large shell to make the total enclosed charge zero.

(iv) charge on outer surface of large shell: The total charge on the large shell is +4q. We showed in

part (iii) that the charge on the inner surface is —2¢, so there must be +6¢ on the outer surface.
EVALUATE: The electric field lines for b <r <c¢ originate from the surface charge on the outer surface of
the inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface
charges have equal magnitude and opposite sign. The electric field lines for » >d originate from the
surface charge on the outer surface of the outer sphere.

IDENTIFY: Apply Gauss’s law.

SET UP: Use a Gaussian surface that is a sphere of radius  and that is concentric with the charged shells.
EXECUTE: (a) (i) For r<a, E =0, since the charge enclosed is zero. (ii) For a <r <b, E =0, since the

points are within the conducting material. (iii) For b<r <c¢, E = ﬁZ_q’ outward, since the charge

or
enclosed is +2¢. (iv) For ¢ <r <d, E =0, since the points are within the conducting material. (v) For
r>d, E =0, since the net charge enclosed is zero. The graph of E versus r is sketched in Figure 22.46
(next page).
(b) (i) small shell inner surface: Since a Gaussian surface with radius 7, for a < <b, must enclose zero
net charge, the charge on this surface is zero. (ii) small shell outer surface: +2¢. (iii) large shell inner
surface: Since a Gaussian surface with radius 7, for ¢ <r <d, must enclose zero net charge, the charge on
this surface is —2¢. (iv) large shell outer surface: Since there is —2¢ on the inner surface and the total
charge on this conductor is —2¢, the charge on this surface is zero.
EVALUATE: The outer shell has no effect on the electric field for » <c. For » >d the electric field is due
only to the charge on the outer surface of the larger shell.
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Figure 22.46

22.47. IDENTIFY: Use Gauss’s law to find the electric field E produced by the shell for » <R and » > R and
then use F = qE' to find the force the shell exerts on the point charge.

(a) SET UP: Apply Gauss’s law to a spherical Gaussian surface that has radius » > R and that is
concentric with the shell, as sketched in Figure 22.47a.

EXECUTE: @p = —E(47rr2).

Qencl = Q

Figure 22.47a
O, = Qenat gives —E(47r?) -2
€ €o
The magnitude of the field is £ = and it is directed toward the center of the shell. Then
dmeyr
F=qF = 90 > directed toward the center of the shell. (Since ¢ is positive, E and F are in the same
4me,r

0
direction.)
(b) SET UP: Apply Gauss’s law to a spherical Gaussian surface that has radius » < R and that is
concentric with the shell, as sketched in Figure 22.47b.

EXECUTE: ®p=F (4zrr2).
Qencl =0.

Figure 22.47b

©, =2l gives £(47r?) =0,
&
Then E=0so F=0.
EVALUATE: Outside the shell the electric field and the force it exerts is the same as for a point charge —Q

located at the center of the shell. Inside the shell £ =0 and there is no force.
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22.48.

22.49.

IDENTIFY: Apply Gauss’s law.
SET UP: Use a Gaussian surface that is a sphere of radius » and that is concentric with the sphere and

. . . 4 2
shell. The volume of the insulating shell is V' = E/Z'[(ZR)3 -R]= %R?
: 287 pR®
EXECUTE: (a) Zero net charge requires that —Q = L, SO p=-— 30 3
3 287R

(b) For r < R, E =0 since this region is within the conducting sphere. For » > 2R, E =0, since the net
charge enclosed by the Gaussian surface with this radius is zero. For R <r <2R, Gauss’s law gives

E(4ﬂ'r2) = Q + ﬂ(r3 - R3) and E = 0 + L(r3 - R3). Substituting p from part (a) gives

& 35 Amey®  3gyr’
2 Q0 Oor S . .. .
E= = - . The net enclosed charge for each r in this range is positive and the electric field
T7Ey 12 287e,R®
0

is outward.

(c) The graph is sketched in Figure 22.48. We see a discontinuity in going from the conducting sphere to
the insulator due to the thin surface charge of the conducting sphere. But we see a smooth transition from
the uniform insulator to the surrounding space.

EVALUATE: The expression for £ within the insulator gives £ =0 at r=2R.

E

70/(28me R

Figure 22.48

IDENTIFY: We apply Gauss’s law in (a) and take a spherical Gaussian surface because of the spherical
symmetry of the charge distribution. In (b), the net field is the vector sum of the field due to ¢ and the field
due to the sphere.

@ SETUP:  p(r)=2, aV =4zr’dr, and 0 =" p(r)dv.
r a
EXECUTE: For a Gaussian sphere of radius r, O, = I " p(rYdV = 47raJ' "rdr = 47[&%(;’2 —a?%). Gauss’s
a a

271'0{(1"2 - az)

2
law says that E(47rr2) = , which gives E = 2&[1 —a—J.

80 &o }”2
(b) SET UP and EXECUTE: The electric field of the point charge is Eq =9 The total electric field
4neyr
a a da® q aa® q
SE_ =——-—— . For E,, tobe constant, ———+——=0 and q:27r05a2. The
total 2 2 total
2gy 2¢, r dre,r 2g)  Ang,

. .
constant electric field is —.
&
EVALUATE: The net field is constant, but not zero.
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22.50. IDENTIFY: Example 22.9 gives the expression for the electric field both inside and outside a uniformly

22.51.

charged sphere. Use F =—¢E to calculate the force on the electron.
SET Up: The sphere has charge O = +e.

EXECUTE: (a)Only at »=0 is £ =0 for the uniformly charged sphere.

er 1 &

. The field is radially outward. F, = —e£'=—-————. The
47ey R Amey B3

(b) At points inside the sphere, £, =

minus sign denotes that F, is radially inward. For simple harmonic motion, F, =—kr=— ma’r, where

1
w=\kim=2xf. F.=—-mw’ r———— —_— — ==
S E dre, R3 \/ 47r£0 mR3 Y \I 47r€0 mR3
1
©If f=457x10" Hz = —— X then
2z \ 4rey mR>

I (1.60x 1072 C)?
47y 472 (9.11x 107! kg)(4.57 x 10'* Hz)?

correct order of magnitude.

=3.13% 107! m. The atom radius in this model is the

2

@If r>R, E, =—— and F, =
dmeyr dneyr

. The electron would still oscillate because the force is

directed toward the equilibrium position at 7 = 0. But the motion would not be simple harmonic, since F,

is proportional to 1/7* and simple harmonic motion requires that the restoring force be proportional to the
displacement from equilibrium.

EVALUATE: As long as the initial displacement is less than R the frequency of the motion is independent
of the initial displacement.

IDENTIFY: There is a force on each electron due to the other electron and a force due to the sphere of
charge. Use Coulomb’s law for the force between the electrons. Example 22.9 gives E inside a uniform

sphere and F = LM

gives the force.
dre, 2

SET UP: The positions of the electrons are sketched in Figure 22.51a.

+2e If the electrons are in
equilibrium the net force on
each one is zero.

Figure 22.51a
EXECUTE: Consider the forces on electron 2. There is a repulsive force F; due to the other electron,
electron 1.
1 ¢
' 4w, (2ay

The electric field inside the uniform distribution of positive charge is £ = (Example 22.9), where

47r£0R
Q =+2e. At the position of electron 2, » =d. The force F4 exerted by the positive charge distribution is
e(2e)d
4m€0R3

F =eE= and is attractive.
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The force diagram for electron 2 is given in Figure 22.51b.

ch F]
>
Figure 22.51b
1 & 26%d

Net force equals zero implies F| = F4 and T, T
ATy 4d>  Ame,R

Thus (1/4d*)=2d/R>, so d*> =R*/8 and d = R/2.

EVALUATE: The electric field of the sphere is radially outward; it is zero at the center of the sphere and
increases with distance from the center. The force this field exerts on one of the electrons is radially inward

and increases as the electron is farther from the center. The force from the other electron is radially
outward, is infinite when d =0 and decreases as d increases. It is reasonable therefore for there to be a
value of d for which these forces balance.

IDENTIFY: The method of Example 22.9 shows that the electric field outside the sphere is the same as for
a point charge of the same charge located at the center of the sphere.

SET Up: The charge of an electron has magnitude e =1.60x .l

EXECUTE: (a) E= k@. For r=R=0.150 m, E=1390 N/Cso
r

=3.479x10~° C. The number of excess electrons is

- Er® _ (1390 N/C)(0.150 m)?
kK 899%10° N-m?/C?
3479%x107° C

5 =217x10'° electrons.
1.60x107"" C/electron

3.479x10™ C
(0.250 m)?
EVALUATE: The magnitude of the electric field decreases according to the square of the distance from the

center of the sphere.

(a) IDENTIFY: The charge density varies with 7 inside the spherical volume. Divide the volume up into
thin concentric shells, of radius 7 and thickness dr. Find the charge dg in each shell and integrate to find the
total charge.

SETUP:  p(r) = py(1—r/R) for r < R where p, = 3Q/7£R3. p(r)=0 for » = R. The thin shell is sketched in
Figure 22.53a.

(b) =R +0.100 m=0.250 m. E=k@=(899x109 N-m?/C?) =5.00%10> N/C.
r

EXECUTE: The volume of such a

shell is dV = 4zrdr.
The charge contained within the shell is

dq = p(r)dV = 4zr? py(1 - r/R)dr.

Figure 22.53a

The total charge Q. in the charge distribution is obtained by integrating dg over all such shells into which
the sphere can be subdivided:

Ot = qu = j: 470r? py(1 - r/R)dr = 4ﬂp0j: = IR)ydr

3 4 3 4
Qi =470, {% _:_R} = 47p, [RT - f—R] = 47zp0(R3/12) = 47r(3Q/7rR3)(R3/12) =(, as was to be shown.
0

(b) IDENTIFY: Apply Gauss’s law to a spherical surface of radius », where » > R.
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SET UP: The Gaussian surface is shown in Figure 22.53b.

EXECUTE: @ = Genct,

€
E(4nr?) = 2
€o
Figure 22.53b
E= 0 ; same as for point charge of charge Q.
dre,r

(c) IDENTIFY: Apply Gauss’s law to a spherical surface of radius , where » < R.
SET UP: The Gaussian surface is shown in Figure 22.53c.

EXECUTE: ®f = Qenel.
£

®, = E(4nr?).
Figure 22.53¢

To calculate the enclosed charge Q.. use the same technique as in part (a), except integrate dg out to »

rather than R. (We want the charge that is inside radius 7.)

4 13
" /. r ’ L | s v R
Qencl =.[0 4zr 2/00(1—Ejdr =47[p0.[0 {rz_ Jdr.

R

P S L 3 4
r 7 r r 3(1 r
=4 - =4mpy| ———— |=4mpyr’| ——— |.
Qencl pOl: 3 4R:|O p0(3 4R] 720 (3 4RJ

30 (1 r 3 r
Po="5 0 Oencl =12QF(§ - Ej= Q[FJ[4—3EJ~

3
Thus Gauss’s law gives E(4ﬂ'7’2) = 2[%}(4 - 31}
£

0
PR 3(4—2),41{
4re R R

(d) The graph of E versus r is sketched in Figure 22.53d.

E

3megR2 |

4me R?

Figure 22.53d
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2
(e) Where the electric field is a maximum, fj—E =0. Thus 1[41” - %J =0s0o4—-6r/R=0and r=2R/3.

r dr
At this value of r, £ =—2 3(2_Rj(4_32_R)= Q
4mey R\ 3 R 3 ) 3meR

EVALUATE: Our expressions for E(r) for » <R and for » > R agree at r = R. The results of part (e) for
the value of » where E(r) is a maximum agrees with the graph in part (d).

IDENTIFY: Use Gauss’s law to find the electric field both inside and outside the slab.
SET UP: Use a Gaussian surface that has one face of area 4 in the yz plane at x =0, and the other face at

a general value x. The volume enclosed by such a Gaussian surface is Ax.

EXECUTE: (a) The electric field of the slab must be zero by symmetry. There is no preferred direction in
the yz plane, so the electric field can only point in the x-direction. But at the origin, neither the positive

nor negative x-directions should be singled out as special, and so the field must be zero.
Qencl — pA|x| and E = M

£ £, £
from the center of the slab). Note that this expression does give £ =0 at x=0. Outside the slab, the
enclosed charge does not depend on x and is equal to pAd. For |x| >d, Gauss’s law gives

, with direction given by X (away

(b) For |x|<d, Gauss’s law gives EA = ¥
x

EA= % = e and E = ﬁ, again with direction given by 25
% 0 0 [

EVALUATE: At the surfaces of the slab, x =+d. For these values of x the two expressions for £ (for
inside and outside the slab) give the same result. The charge per unit area ¢ of the slab is given by

0A4=pAQ2d) and pd =o0/2. The result for E outside the slab can therefore be written as £ = 0/2¢; and

is the same as for a thin sheet of charge.
(a) IDENTIFY and SET UP: Consider the direction of the field for x slightly greater than and slightly less
than zero. The slab is sketched in Figure 22.55a.

i p(x) = py(x/d)*.

Figure 22.55a

EXECUTE: The charge distribution is symmetric about x =0, so by symmetry E(x)= E(—x). But for
x>0 the field is in the +x-direction and for x <0 the field is in the —x-direction. At x=0 the field
can’t be both in the +x- and — x-directions so must be zero. That is, £, (x)=—FE (—x). At point x=0 this

gives E,(0)=-E (0) and this equation is satisfied only for E (0)=0.
(b) IDENTIFY and SET UP:  |x| > d (outside the slab).

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end
caps have area 4 and are the same distance |x| >d from x =0, as shown in Figure 22.55b.

EXECUTE: @ =2FA.
[A™)
Kl

1
|
1
T
o w
I 1

Figure 22.55b
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i i To find Q. consider a thin disk at coordinate x and

with thickness dx, as shown in Figure 22.55c.
The charge within this disk is

dg = pdV = pAdx = (pyAld*) x*dx.

Figure 22.55¢

The total charge enclosed by the Gaussian cylinder is

d d
Ounel = 2]0 dq = (2pyAld* )jo Xdx = (2pyAld*)d*/3) =2 pyAd.

Then @, = Q;—‘;Cl gives 2EA =2, Ad/3€,. This gives E = pyd/3&.

E is directed away from x = 0, so E= (pod/3€0)(x/|x|)f.
(c) IDENTIFY and SET UP: x| < d (inside the slab).

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end
caps have area 4 and are the same distance |x| <d from x =0, as shown in Figure 22.55d.

l EXECUTE: @ =2FA.

Figure 22.55d

Oene 18 found as above, but now the integral on dx is only from 0 to x instead of 0 do d.

Oenet =2 ;“dq =(2pyald*)| :xzdx = (2pyAld*)(x>13).

Then @, Q;zd gives 2FE4 = 2p0Ax /3€0d This gives E = pyx /3€0d

E is directed away from x =0, so E = (p0x3/3£0d2)f.

EVALUATE: Note that £ =0 at x =0 as stated in part (a). Note also that the expressions for |x| >d and
|x|<d agree forx=d.

22.56. IDENTIFY: Apply Gauss’s law.
SET UP: Use a Gaussian surface that is a sphere of radius » and that is concentric with the spherical

distribution of charge. The volume of a thin spherical shell of radius 7 and thickness dr is dV = 4rrtdr.
EXECUTE: (a) 0= [ p(r)dV =4z j p(r)dr = 4mp, j [1 -—j 2dr = 4np, { j rdr -—j }

R 4 R*
4 — — ——|=0. The total charge is zero.
0= Po{ IR 4 } g

(b) For >R, qS dd=Lenel _o o E=0,
&o

- 4
(c) For <R, (j)E dA = Genel _ 47[.[ P2 dr'. E4mr? =ﬂ{j rr'zdr'—ijrr’3dr’} and
& & g 70 3R70
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(d) The graph of E versus r is sketched in Figure 22.56.

2p,r
(e) Where E is a maximum, d—E=0. This gives&—M =0 and r, =£. At this 7,
d 3g,R )
r £ &
po Lo R 1 AR
3¢, 2| 2] l2¢,

EVALUATE: The result in part (b) for » <R gives £ =0 at » =R; the field is continuous at the surface
of the charge distribution.

poR[12€o |-

N|w —
=

Figure 22.56

(a) IDENTIFY: Use E (¥) from Example (22.9) (inside the sphere) and relate the position vector of a point

inside the sphere measured from the origin to that measured from the center of the sphere.
SET UP: For an insulating sphere of uniform charge density p and centered at the origin, the electric

field inside the sphere is given by E = Qr'/ 47[80R3 (Example 22.9), where ¥’ is the vector from the center
of the sphere to the point where E is calculated.

But p=30/ 47R® so this may be written as £ = pr/3¢,. And E is radially outward, in the direction of
7, s0E = PF'/3g,.

For a sphere whose center is located by vector b, a point inside the sphere and located by 7 is located by

the vector #'=7—b relative to the center of the sphere, as shown in Figure 22.57.

p(F—b)
3gy,

EXECUTE: Thus E =

A

b

Figure 22.57

EVALUATE: When b =0 this reduces to the result of Example 22.9. When ¥ = b , this gives £ =0,
which is correct since we know that £ =0 at the center of the sphere.
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(b) IDENTIFY: The charge distribution can be represented as a uniform sphere with charge density p and
centered at the origin added to a uniform sphere with charge density —p and centered at ¥ = b.

SETUP: E=E + Ehole, where E is the field of a uniformly charged sphere with charge

uniform uniform
density p and Ehole is the field of a sphere located at the hole and with charge density —p. (Within the
spherical hole the net charge density is +p—p =0.)

-

¥ S
EXECUTE: E  ;pm = ;;, where ¥ is a vector from the center of the sphere.
2

E‘hole = M, at points inside the hole. Then E = L —pr-b) | ﬂ
3&, 3g, 3&, 3g,

EVALUATE: E is independent of ¥ so is uniform inside the hole. The direction of E inside the hole is in

the direction of the vector b, the direction from the center of the insulating sphere to the center of the hole.

IDENTIFY: We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole.
SETUP: Let ¥ locate a point within the hole, relative to the axis of the cylinder and let ¥’ locate this

point relative to the axis of the hole. Let b locate the axis of the hole relative to the axis of the cylinder. As
shown in Figure 22.58, ¥’ =F — b. Problem 22.41 shows that at points within a long insulating cylinder,

B=2r
2¢&,

Y NN SR SR e DU
off —axis 280 280 hole cylinder off —axis 280 280 280

EXECUTE: E

Note that E is uniform.
EVALUATE: If the hole is coaxial with the cylinder, =0 and £, =0.

'
r

Figure 22.58

IDENTIFY and SET UP: For a uniformly charged sphere, E = k%, s0 Er* = k|Q| = constant. For a long
r

. . A A
uniform line of charge, £ =——, so Er = —— = constant.
”80]" 71'80
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EXECUTE: (a) Figure 22.59a shows the graphs for data set A. We see that the graph of Er versus 7 is a
horizontal line, which means that Er = constant. Therefore data set A is for a uniform straight line of
charge.

(N+m/C)
3000

2500

2000

1500

1000

500

Ir(cm)

Er?
(N+m?/C)

120

100

80

60

40

20

r (cm)

Figure 22.59a
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Figure 22.59b shows the graphs for data set B. We see that the graph of Er* versus 7 is a horizontal line, so
Er* = constant. Thus data set B is for a uniformly charged sphere.
Er
(N+m/C)
6000

5000

4000

3000

2000

1000

0 T T T T r (em)

Er?
(N+m?/C)

60

50

40

30

20

0 T T T T r(em)

Figure 22.59b

(b) For A: E= 2 A , 80 A =27m¢eyEr. From our graph in Figure 22.59a, Er = constant = 2690 N-m/C.

7115‘07’
Therefore
A=27g,Er =2n(8.854x10"% C*/N-m?) (2690 N-m/C) = 1.50x10"’ C/m = 0.150 xC/m.

ForB: F= k|—Q2‘, so kO = Er* = constant, which means that Q = (constant)/k. From our graph in
r

Figure 22.59b, Er* = constant = 54.1 N - m?/C. Therefore
0= (54.1 N-m?/C)/(8.99x10° N-m?/C?) =6.0175x10" C.

The charge density p is p= e__2 . (6.0175x107° C)/[(4n/3)(0.00800 m)* = 2.81x10" C/m’.

Vo4
“rR?
3
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EVALUATE: A linear charge density of 0.150 C/m and a volume charge density of 2.81x10° C/m’ are
both physically reasonable and could be achieved in a normal laboratory.
IDENTIFY and SET UP: The electric field inside a uniform sphere of charge does not follow an inverse-

square law. Apply Gauss’s law, 4)173 dA= %, to find the field.
£o

SET UP: Apply 4)173 -dA = % As the Gaussian surface, use a sphere of radius r that is centered on the
given sphere.
P

&
p(;‘maj
—=—~2_ from which we get £ =——r. Therefore in a graph
o €0

EXECUTE: Gauss’s law gives E (47rr2) —

of E versus r, the slope is 3L From the graph in the problem, the slope is
€0

- 4
slope = M =7.5%10° N/m-C. Solving for p gives
8—4)x10" m
p = (slope)(3 &) = (7.5x10° N/m-C) (3) (8.854x10 "2 C*/N-m?) =1.99x10"* C/m’.
EVALUATE: A sphere of volume 1.0 m® would have only 199 xC of charge, which is physically realistic.

IDENTIFY and SET UP:  Apply Gauss’s law, (j)E dA= % The enclosed charge is Qc,g = pV, where
€o

4 . > .
V= 57[)”3 for a sphere of radius . Read the charge densities from the graph in the problem.

EXECUTE: Apply Gauss’s law @E -dA= @ As a Gaussian surface, use a sphere of radius 7 centered
€

1 Qencl — erncl
2

on the given sphere. This gives E(4rr”) = Oencl/€g> S0 E =
dre, 2 r

. In each case, we must

first use Qen = PV to calculate Q.. and then use that result to calculate E.
(i) First find Qunetz Oenet = PV = (10.0x10°° C/m*)(4773)(0.00100 m)* = 4.19x10 ™ C.

Now calculate E: E = er—fzfcl =(8.99%x10° N-m?/C? )(4.19x10" C)/(0.00100 m)* = 377 N/C.

r
(ii) Qenar = (10.0%10°° C/m*)(477/3)(0.00200 m)* + (4.0x10°° C/m’*)(42/3)[(0.00300 m)* — (0.00200 m)’]
O = 6.534x107" C.

E= er—YZ’C‘ =(8.99%x10° N-m?/C? )(6.534x10""* C)/(0.00300 m)* = 653 N/C.

.
(iil) Oent = (10.0x10°° C/m’)(4/3)(0.00200 m)* + (4.0x10°° C/m’)(4/3)[(0.00400 m)* — (0.00200 m)’]
+ (=2.0x10™° C/m*)(4773)[(0.00500 m)’ — (0.00400 m)?].

Ouna = 7.624x107" C.

E= er—;d = (8.99x10° N-m?/C?) (7.624x10™" C)/(0.00500 m)* = 274 N/C.

p
(iV) Qe = 7.624x10" C + (-2.0x10°° C/m’)(4 /3)[(0.00600 m)’ — (0.00500 m)’] = 0, so E = 0.
EVALUATE: We found that £ = 0 at » = 7.00 mm, but £ is also zero at all points beyond » = 6.00 mm
because the enclosed charge is zero for any Gaussian surface having a radius » > 6.00 mm.

IDENTIFY: The charge in a spherical shell of radius 7 and thickness dr is dQ = ,0(}’)47172 dr. Apply
Gauss’s law.

SET UP: Use a Gaussian surface that is a sphere of radius r. Let Q; be the charge in the region r < R/2

and let O, be the charge in the region where R/2<r<R.
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R230r® | 6mx1R* 3,
EXECUTE: (a) The total charge is + (Q,, where 4r _—— oR” and
(@) geis 0=0,+0, O =dn "= ===
1) 4
0 4mj (= (R dr = draR®| - 3LV A7 RS, Therefore,
24160 120
4 2 48
Q=(i+—7j R’ =ﬁ7mtR3 and o= 0Q3.
32 120 480 2337zR
4 2 2
18
(b) For r<R/2, Gauss’s law gives E4r? ar? L = Sror = G = 0o T
30 0 2R 2¢y)R l6gyR 2337, R
3 3 5 3
For RI2<r<R, Ednr* =%+—4wj’ (=R ar =L 4w\ " R - S
& & °“R2 & & \ 3 24 sR° 160
3 3 3 5 3 5
Fag? o 3 4moR  4maR l(ij _l[ij JERRN N g S50 . l(ij _1(1) 23
128 & & 3\R S5\R 480 2337eyr= | 3\ R S5\ R 1920 |
For r2R, E = 0 , since all the charge is enclosed.
dreyr
47 4
(¢) The fraction of O between R/2<r<R is QO 1 80 =0.807.
0 7120233
180 .. . .
d E= using either of the electric field expressions above, evaluated at » = R/2.
233 ﬂ'g R2
EVALUATE: (e) The force an electron would feel never is proportional to —» which is necessary for
simple harmonic oscillations. It is oscillatory since the force is always attractive, but it has the wrong
power of r to be simple harmonic motion.

22.63. IDENTIFY and SET Up: Treat the sphere as a point-charge, so E = k g l, so lg| = Er’/k.

EXECUTE: |g| = Er*/k = (1x10° N/C)(25 m)*/ (8.99x10° N - m2/C2) =0.0695 C = 0.07 C. The charge
must be negative since the field is intended to repel negative electrons. Choice (a) is correct.
EVALUATE: 0.07 C is quite a large amount of charge, much larger than normally encountered in typical
college physics laboratories.

22.64. IDENTIFY and SET Up: Treat the sphere as a point-charge, so £ = k@. Use the result from the previous

r
problem for the charge on the sphere.
EXECUTE: E = qu - (8.99%10° N-m?/C?) (0.0695 C)/(2.5 m)* = 1.0x10® N/C, choice (d).
r?
EVALUATE: The field strength at 2.5 m is 100 times what it is at 25 m. This is reasonable since the field
strength obeys an inverse-square law. At 25 m, which is a distance 10 times as far as 2.5 m, the field
strength is [(2.5 m)/(25 m)]*(1x10° N/C) = 1x10° N/C, which was given in the previous problem.

22.65. IDENTIFY and SET Up: Electric field lines point away from positive charges and toward negative charges.
For a point-charge, the lines radiated from (or to) the charge. For a uniform sphere of charge, the field lines
look the same as those for a point-charge for points outside the sphere.
EXECUTE: The sphere is negative and equivalent to a negative point-charge, so at its surface the field
lines are perpendicular to it and pointing inward, which is choice (b).
EVALUATE: The sphere behaves like a point-charge at or above its surface.

22.66. IDENTIFY and SET UP: All the charge is on the surface of a spherical shell.

EXECUTE: The field inside the sphere comes from any charge that is inside, but there is none. So the field
is zero, choice (c).
EVALUATE: This result is true only if the surface of the sphere is uniformly charged.
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23.1. IDENTIFY: Apply W,_,, =U,—-U, to calculate the work. The electric potential energy of a pair of point

1
charges is given by U = BV iy

47[80 r

SET UP: Let the initial position of g, be point a and the final position be point b, as shown in Figure 23.1.

Y 7,=0.150 m.

bO i \/ 2 2
1, =4/(0.250 m)~ +(0.250 m)~.
1, =0.3536 m.

"y
0.250 m
a
@ X
q1 Tq %)
0.250 m

Figure 23.1
EXECUTE: W,_,,=U,-U,.

6 -6
U, = L 492 _ (g oggn10” N m2/c2) (H2A0X107¢ O)430x10¢ )

4”“"0 7 0.150 m
U,=-0.6184 1.
—6 _ —6
Uy =L 992 _ (g oggrc1o? N m2/c2) (240107 OX430x10 ©)
drey 1, 0.3536 m
U,=-0.26231].

W,,=U,-U,=-0.6184J—(-0.2623 J) =-0.356 J.
EVALUATE: The attractive force on ¢, is toward the origin, so it does negative work on g, when ¢,
moves to larger .
23.2. IDENTIFY: Apply W, ., =U,-U,.
SETUP: U, =+5.4x107 I. Solve for U,.

EXECUTE: W, ., =—1.9x107° J=U, ~U,. Uy =U, W, ,, =+5.4x1075 J—(-1.9x107 1)=7.3x1078 I.
EVALUATE: When the electric force does negative work the electrical potential energy increases.

23.3. IDENTIFY: The work needed to assemble the nucleus is the sum of the electrical potential energies of the
protons in the nucleus, relative to infinity.
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23.5.

SET UP: The total potential energy is the scalar sum of all the individual potential energies, where each
potential energy is U = (1/47€,)(qq, /7). Each charge is e and the charges are equidistant from each other,

. . 1 (& & & 3¢?
so the total potential energy is U =——| —+—+— |= .
drmeg\ v v 1 4reyr

EXECUTE: Adding the potential energies gives
_3¢r 3(1.60x107"7 ©)2(9.00x10° N-m?/C?)
4reyr 2.00x107"° m
EVALUATE: This is a small amount of energy on a macroscopic scale, but on the scale of atoms, 2 MeV is
quite a lot of energy.
IDENTIFY: The work required is the change in electrical potential energy. The protons gain speed after

being released because their potential energy is converted into kinetic energy.
(a) SET UP: Using the potential energy of a pair of point charges relative to infinity,

2 2
U = (1/47,)(qq, /r), we have W =AU =U, ~U, = L[e— - e—].
47[80 7"2 7"1

=3.46x107"% J=2.16 MeV.

EXECUTE: Factoring out the ¢’ and substituting numbers gives

1 1
3.00x107° m  2.00x107'" m

(b) SET UP: The protons have equal momentum, and since they have equal masses, they will have equal

W =(9.00x10°N - m?/C?)(1.60x107"° C)z( j =7.68x10714 ]

1
speeds and hence equal kinetic energy. AU =K; +K, =2K = 2[Emv2 J =mv?.

—14
EXECUTE: Solving for v gives v = /A—U = %027] =6.78x10° m/s.
m 1.67x107°" kg

EVALUATE: The potential energy may seem small (compared to macroscopic energies), but it is enough
to give each proton a speed of nearly 7 million m/s.
(a) IDENTIFY: Use conservation of energy: K, + U, + W .. = K, +U,,. U for the pair of point charges is

. 1
given by U = 49
47[80 r
SET UP:
v, = 22.0 mfs Let point a be where ¢, is 0.800 m from
/vf - q; and point b be where ¢, is 0.400 m
a O 92 by 19 O q1 R
- from ¢, as shown in Figure 23.5a.
r, = 0.800 m

-—r
r, = 0.400 m

Figure 23.5a

. 1
EXECUTE: Only the electric force does work, so Wy, =0 and U = — 9%

47[80 r

K,=1mv; =1(1.50x107 kg)(22.0 m/s)* =0.3630 J.
_ —6 _ -6
U - L a4 _ (3988x10° N-rnz/Cz)( 2.80x107° C)(~7.80x107° C)

= =+40.2454 .
dme, 7, 0.800 m

1,2
Ky =5 mvj.
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=+0.4907 J.

—6 —6
v, = L0 _ (5 088510° N. m? /) 280X107° O7.80x107 ©)
amey 1, 0.400 m

The conservation of energy equation then gives K, =K, + (U, -U,).

Lmv} =+0.3630 J+(0.2454 1-0.4907 1) =0.1177 J.

e [POITD s
1.50x10~ kg

EVALUATE: The potential energy increases when the two positively charged spheres get closer together,
so the kinetic energy and speed decrease.
(b) IDENTIFY: Let point ¢ be where ¢, has its speed momentarily reduced to zero. Apply conservation of

energy to points a and c: K, +U, + Wy, =K, +U..
SET UP: Points @ and ¢ are shown in Figure 23.5b.

v, = 22.0mfs . EXECUTE: K, =+0.3630J (from part (a)).
v U, =+0.2454  (from part (a)).
a O %) C\ 19 O 91
r, = 0.800 m
Figure 23.5b

K. =0 (at distance of closest approach the speed is zero).

U, = 99,
47[80 7.

99, 103630 1+02454 1=0.6084 1.

TEy T

Thus conservation of energy K, +U, =U, gives

— —6 . —6
R  (8.988%10° Nlmz/Cz)( 2.80x107° C)(=7.80x 107 C)
¢ 4, 0.6084 ] +0.6084 J

EVALUATE: U — o0 as r — 0 so g, will stop no matter what its initial speed is.

=0.323m.

IDENTIFY: The total potential energy is the scalar sum of the individual potential energies of each pair of
charges.

99 Iy the O-H-N
"

SET UP: For a pair of point charges the electrical potential energy is U =k

combination the O~ is 0.170 nm from the H* and 0.280 nm from the N™. In the N-H-N combination the

N~ is 0.190 nm from the H" and 0.300 nm from the other N™. U'is positive for like charges and
negative for unlike charges.
EXECUTE: (a) O-H-N:

-19 2
O -H":U =—(8.99x10° N - mz/c2)% —_1.35x10718 J.
. X m

(1.60x107" C)?

- =+8.22x107" J.
0.280x10™ m

O™ -N":U =(8.99%x10° N-m?/C?)
N-H-N:

(1.60x107" C)?

- =-121x10""% J.
0.190x10™° m

N™-H": U=—(8.99x10° N-m?/C?)
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23.8.

23.9.

(1.60x107" C)?

- =+7.67x107" J.
0.300x10~° m

N™-N":U =(8.99x10° N -m?/C?)

The total potential energy is
Ut =—1.35x107"% 748.22x107"7 T-1.21x1078 J+7.67x107"° J=—9.71x107" J.
(b) In the hydrogen atom the electron is 0.0529 nm from the proton.

-19 2
U =—(8.99x10° N~m2/Cz)w=—4.35x10_18 J.
0.0529%10™° m

EVALUATE: The magnitude of the potential energy in the hydrogen atom is about a factor of 4 larger
than what it is for the adenine-thymine bond.
IDENTIFY: Use conservation of energy U, + K, =U, + K, to find the distance of closest approach 7.

The maximum force is at the distance of closest approach, F' = k|q]—zz|.

Tp
SET UP: K, =0. Initially the two protons are far apart, so U, =0. A proton has mass 1.67x107%7 kg
and charge g =+e= +1.60x107" C.
2
EXECUTE: K, =U,. 2(%mv§) =92 mv? =k< and
Ty Ty
ke (8.99x10° N-m?/C?)(1.60x 107" C)?

r, = =3.45x107"% m.
my’ (1.67 10727 kg)(2.00 X 10° m/s)*
2 -19 2
F=k6—2=(8.99><109 N-m?/C?) (1.60x10 12C) - =1.94x10 N.
i (3.445x107"2 m)

EVALUATE: The acceleration a = F/m of each proton produced by this force is extremely large.
IDENTIFY: Call the three charges 1,2, and 3. U =U}, +U;3 +Ujs.

SET UP: U;, =U,; =U,3 because the charges are equal and each pair of charges has the same separation,
0.400 m.

3k’ 3k(1.2x107° C)?
0.400 m 0.400 m
EVALUATE: When the three charges are brought in from infinity to the corners of the triangle, the
repulsive electrical forces between each pair of charges do negative work and electrical potential energy is
stored.
IDENTIFY: The protons repel each other and therefore accelerate away from one another. As they get
farther and farther away, their kinetic energy gets greater and greater but their acceleration keeps
decreasing. Conservation of energy and Newton’s laws apply to these protons.
SET UP: Let a be the point when they are 0.750 nm apart and b be the point when they are very far apart.

EXECUTE: U = =0.09711J.

A proton has charge +e¢ and mass 1.67 X 107 kg. As they move apart the protons have equal kinetic
energies and speeds. Their potential energy is U = ke*/r and K = % mv?. K,+U,=K,+U,.
EXECUTE: (a) They have maximum speed when they are far apart and all their initial electrical potential
energy has been converted to kinetic energy. K, +U, =K, +U,.
K,=0 and U, =0, so

2 (1.60x107" C)?

K,=U,= ki— =(8.99x10° N - m%/C?)

5 =3.07x107"7 J.
a 0.750x10~° m

-19
m 67%x107 g

(b) Their acceleration is largest when the force between them is largest and this occurs at » =0.750 nm,
when they are closest.
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F =k =(899%10° N-m?/C?) 5
0.750x10° m

2 1.60x107"° C
P

2
J =4.09x10710 N.

F_ 409x107"" N
4= 027 1o
m 1.67x107" kg
EVALUATE: The acceleration of the protons decreases as they move farther apart, but the force between
them is repulsive so they continue to increase their speeds and hence their kinetic energies.
IDENTIFY: The work done on the alpha particle is equal to the difference in its potential energy when it is
moved from the midpoint of the square to the midpoint of one of the sides.
SET UP: We apply the formula W,_,, =U, —U,. In this case, a is the center of the square and b is the

=2.45%x10"7 m/s?.

midpoint of one of the sides. Therefore W o _sside = Ucenter — Uside 15 the work done by the Coulomb force.
There are 4 electrons, so the potential energy at the center of the square is 4 times the potential energy of a
single alpha-electron pair. At the center of the square, the alpha particle is a distance 7 = V50 nm from each
electron. At the midpoint of the side, the alpha is a distance 7, =5.00 nm from the two nearest electrons and
a distance 73 = V125 nm from the two most distant electrons. Using the formula for the potential energy

(relative to infinity) of two point charges, U = (1/47¢,)(qq,/r), the total work done by the Coulomb force is

174 = Center_Uside =441 C]a% _[2 1 qaqe +2 1 qaqu.

center—side
7[80 rl 47[80 }’2 47%‘0 I’3

Substituting g, =—e and g, =2e and simplifying gives

> 1|2 (1 1
chenter—)side =—4e ml:: a (r_ + r_ .
01" . 3

EXECUTE: Substituting the numerical values into the equation for the work gives

W=—4(1.60><10‘19C)2(8.99><109N-m2/c2){ 2 —[ | ——-— H:6.08x10_211

«/% nm \5.00 nm /125 nm

EVALUATE: Since the work done by the Coulomb force is positive, the system has more potential energy with
the alpha particle at the center of the square than it does with it at the midpoint of a side. To move the alpha

particle to the midpoint of a side and leave it there at rest an external force must do —6.08 < 1072 J of work.
IDENTIFY: Apply W,_,, =U, —U,. The net work to bring the charges in from infinity is equal to the
change in potential energy. The total potential energy is the sum of the potential energies of each pair of

1
charges, calculated from U = — 992

4”80 r

SET UP: Let 1 be where all the charges are infinitely far apart. Let 2 be where the charges are at the
corners of the triangle, as shown in Figure 23.11.

begd Let g, be the third, unknown charge.

qc

Figure 23.11
EXECUTE: W =-AU =—(U, —U,), where W is the work done by the Coulomb force.

Ulz()

1
U2=Uab+Uac+ch=4
TTE

(4% +24q,).
Od
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We want W =0, so W=—U,-U)) gives 0=-U,.

0= (¢* +24q,).

4negd
q2 +2qq.=0 and g, =—q/2.
EVALUATE: The potential energy for the two charges ¢ is positive and for each ¢ with g, it is negative.

There are two of the g, ¢, terms so must have ¢, <gq.
23.12. IDENTIFY: Work is done on the object by the electric field, and this changes its kinetic energy, so we can
use the work-energy theorem.
SETUP: W, . p=AK and W,_,p=q(V,—Vp).
EXECUTE: (a) Applying the two equations above gives W,_,p,=q(V,—Vp) =Kz—0=Kj,.
Vg=Vy— Kglg= 300V — (3.00x107 1)/(-6.00x10° C) = 80.0 V.

(b) The negative charge accelerates from A4 to B, so the electric field must point from B toward 4. Since the
AV

field is uniform, we have £ = — =(50.0 V)/(0.500 m) = 100 V/m.
Ax

EVALUATE: A positive charge is accelerated from high to low potential, but a negative charge (as we
have here) is accelerated from low to high potential.
23.13. IDENTIFY and SET UP: Apply conservation of energy to points A and B.
U=qV, so K,+qV,=Kg+qVp.
Kp=K,+q(V,—V5)=0.00250 J + (—5.00><10_6 C)(200 V —800 V) =0.00550J.
vp =+/2Kp/m =7.42 m/s.
EVALUATE: It is faster at B; a negative charge gains speed when it moves to higher potential.

23.14. IDENTIFY: The work-energy theorem says W,_,, =K, —K,,. Wamsh _ V,=V,.
q
SET UP: Point a is the starting point and point b is the ending point. Since the field is uniform,
W,_,=Fscosp=E |q|scos @. The field is to the left so the force on the positive charge is to the left. The

a

particle moves to the left so ¢ =0° and the work W,_,, is positive.
EXECUTE: (a) W, ,, =K, —K,=2.20x107% J-0=2.20x107° J.
Wossy _ 220x107° 7

m) V. —V, =
“ b g 420%x107° C

=524 V. Point a is at higher potential than point b.

w V.-V,
(©) Elg|ls=W,_,, so E=—4=2b=-a b 524 V2 =8.73x10° V/m.
lals s 6.00x1072 m

EVALUATE: A positive charge gains kinetic energy when it moves to lower potential; V, <V,.
b~ -
23.15. IDENTIFY: Apply W,_,,=q J. E -dl. Use coordinates where +y is upward and +x is to the right. Then
a

E = Ej with E=4.00x10* N/C.
SET UP: (a) The path is sketched in Figure 23.15a.

q
=

3
e
at

Figure 23.15a
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.- ~ A b -
Execute:  E -dl = (Ej)- (i) =0 so W,_,=¢[ E-dl =0.
a

EVALUATE: The electric force on the positive charge is upward (in the direction of the electric field) and
does no work for a horizontal displacement of the charge.
(b) SET UpP: The path is sketched in Figure 23.15b.

y dl = dyj.

Figure 23.15b
EXECUTE: E -dI =(Ej)- (dyj) = Edy.
’ b 7 ’ b ’
Wasp =4[ E-di =q'E[ 'dy=q'E(y, = 7,).
¥, — ¥, =+0.670 m; it is positive since the displacement is upward and we have taken +y to be upward.

W, = E(yy—y,)=(+28.0x107 C)(4.00x10* N/C)(+0.670 m)=+7.50x10"* J.

EVALUATE: The electric force on the positive charge is upward so it does positive work for an upward
displacement of the charge.
(¢) SET Up: The path is sketched in Figure 23.15¢.

' Ya=0.
g v, =—rsinf =—(2.60 m) sin45°=—-1.838 m.
\ The vertical component of the 2.60 m
) displacement is 1.838 m downward.

Figure 23.15¢

EXECUTE: dI =dxi + dy} (The displacement has both horizontal and vertical components.)

E-dl = (E}) . (dxf + dy}) = Edy (Only the vertical component of the displacement contributes to the

work.)
’ b - 7 ’ b ’
Wasp =4[ E-dl =q'E[ 'dy=gE(v~y,).

W, p=qE(yy—y,)=(+28.0x107C)(4.00x10* N/C)(~1.838 m) =—2.06x10 J.

a
EVALUATE: The electric force on the positive charge is upward so it does negative work for a
displacement of the charge that has a downward component.
23.16. IDENTIFY: Apply K, +U, =K, +U,.

SETUP: Let ¢ =+3.00 nC and g, =+2.00 nC. At pointa, 1, =1, =0.250 m. At point b,
#ip =0.100 m and 7y, =0.400 m. The electron has ¢ =—e and m, =9.1 1x107" kg. K, =0 since the

electron is released from rest.
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EXECUTE: - —— =t —mV}.
Na Na b Py 2
(3.00x107° C) . (2.00x107° C)
0.250 m 0.250 m

E, =K, +U, =k(-1.60x107" C)[ J:—z.gsxlo‘” J.

-9 -9
Eszb+Ub:k(_1.60X10_19C)[(3.00><10 Q) , (200x10 C)J . >

+—mgvj = —5.04x107"7 J+lmev§.
0.100 m 0.400 m 2 2

2

XTI (5.04x1077 7-2.88x107"7 J) =6.89x10° mys.
A1x g

Setting £, = E, gives v, :\/
EVALUATE: V, =V, +V,,=180V. V, =V, +V,, =315V. V, >V,. The negatively charged electron

gains kinetic energy when it moves to higher potential.
IDENTIFY: The potential at any point is the scalar sum of the potentials due to individual charges.
SETUP: V =kq/r and W, = q(V,—V}).

1
EXECUTE: (a) 7, =7,y = E\/(0.0300 m)? +(0.0300 m)> =0.0212 m. 7, = l{i + ‘I_z} =0.
Tal Ta2

(b) 7,, =0.0424 m, 7, =0.0300 m.

+2.00x107° C . —2.00x10"° C
0.0424 m 0.0300 m

v, = l{ﬁ+q—2j =(8.99x10° N - m2/C2)[
1 Tp2

j:—1.75x105 V.

© Wyp=qz(V,= V)= (—5.00><10_6 O)[0—(~1.75x10° V)] =—0.875 J.
EVALUATE: Since V}, <V, a positive charge would be pulled by the existing charges from a to b, so they

would do positive work on this charge. But they would repel a negative charge and hence do negative work
on it, as we found in part (c).

IDENTIFY: The total potential is the scalar sum of the individual potentials, but the net electric field is the
vector sum of the two fields.

SET UP: The net potential can only be zero if one charge is positive and the other is negative, since it is a
scalar. The electric field can only be zero if the two fields point in opposite directions.

EXECUTE: (a) (i) Since both charges have the same sign, there are no points for which the potential is zero.
(ii) The two electric fields are in opposite directions only between the two charges, and midway between
them the fields have equal magnitudes. So £ =0 midway between the charges, but V is never zero.

(b) (i) The two potentials have equal magnitude but opposite sign midway between the charges, so V' =0
midway between the charges, but E #0 there since the fields point in the same direction.

(ii) Between the two charges, the fields point in the same direction, so £ cannot be zero there. In the other
two regions, the field due to the nearer charge is always greater than the field due to the more distant
charge, so they cannot cancel. Hence E is not zero anywhere.

EVALUATE: It does not follow that the electric field is zero where the potential is zero, or that the
potential is zero where the electric field is zero.

IDENTIFY: Apply V' = L P

dmey i 1;

SET UP: The locations of the charges and points 4 and B are sketched in Figure 23.19.
B

0.050m ___ 0.050 m
q; = +240nC A gy = —6.50nC

Figure 23.19
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EXECUTE: (a) V, = 4;(& + q—zj
&

s Ta2

-9 B -9
v, =(8.988x10° N.m?/c?)| T2A0X10 7 €  26.50x10 7 C1_ 57y,

0.050 m 0.050 m

(b) ¥, L B |
47[80 rBl }’32

9~ -9
V, = (8.988x10° N.m?/c?)| T2:A0x10 7 € 26.50x10 7 Ch_ 54

0.080 m 0.060 m

(c) IDENTIFY and SET UP: Use W,_,, =q(V, —V}) and the results of parts (a) and (b) to calculate V.

EXECUTE: Wy, ,=q(Vy—V,)=(2.50x107 C)[-704 V — (=737 V)] =+8.2x107" J.

EVALUATE: The electric force does positive work on the positive charge when it moves from higher

potential (point B) to lower potential (point 4).

IDENTIFY and SET UP:  Apply conservation of energy: K, +U, =K, +U,. Use V = Ulq, to express U

in terms of V.
(@) EXECUTE: K, +qVy =K, +qVs, qV,—V)) =K, -K,; q=-1.602x10"" C.

p _ K, -K
Ky =1mof =4.099x107'"° I; K, =Lmws =2.915x107"7 I AV =V, -1 =——2 =156 V.

EVALUATE: The electron gains kinetic energy when it moves to higher potential.
K -K; _

(b) EXECUTE: Now K; =2.915x107"7 J, K,=0.V,-V = —182 V.
EVALUATE: The electron loses kinetic energy when it moves to lower potential.

> ki - o .
IDENTIFY: For a point charge, V' = ™ The total potential at any point is the algebraic sum of the
r

potentials of the two charges.
SET Up: (a) The positions of the two charges are shown in Figure 23.21a.

5/
- O—=
+q _2q
Figure 23.21a
2 - kg 2k kg(3x—

(b) x>a:V=k—q—ﬁ:M. 0<x<a:V=—q— 4 _ q(3x a)'

x x—a x(x—a) x a-x x(x—a)
x<():V=_—kq+ﬁ=M.Ageneralexpressionvalidforanyyis v=kl L 24 .

x x—a x(x—a) |x| |x—a|

(¢) The potential is zero at x =—a and a/3.
(d) The graph of V versus x is sketched in Figure 23.21b (next page).
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Vv
| | 1 | | | | 1 1 | | 1 | | 1
-2 -1 I 1 la
Figure 23.21b
—kqx —kq . . . .
EVALUATE: (e) For x>>a:V ~——=——, which is the same as the potential of a point charge —g.
X X

Far from the two charges they appear to be a point charge with a charge that is the algebraic sum of their
two charges.
k ki
@ and V = _q'
r r
SET UP: The electric field is directed toward a negative charge and away from a positive charge.

2
EXECUTE: (a) V>0 so ¢>0. —= kq/r2=(k—qj ey r 228V 0307 m.
E k|q|/r r kq 16.2 V/m

Vo (0.307 m)(4.98V)
(b) g=—-= 5 P
k 899x10° N-m?/C

(¢) g >0, so the electric field is directed away from the charge.

23.22. IDENTIFY: For a point charge, E =

=170 % 1074

EVALUATE: The ratio of V' to E due to a point charge increases as the distance » from the charge
increases, because E falls off as 1/7* and V falls off as 1/r.

23.23. (a) IDENTIFY and EXECUTE: The direction of E is always from high potential to low potential so point b
is at higher potential.

b =
(b) IDENTIFY and SET UP: Apply V, -V, = —.[ E-dl torelate V-V, to E.
a

b b
EXECUTE: Vb—Va:—.[ E-dl :J' Edx=E(x; —x,).
a a

VoV +240V

= = =800 V/m
x,—x, 090m-0.60m

(¢) SET UP and EXECUTE: W,_,, =q(V, —V,) =(—0.200x10"® C)(+240 V)=—4.80x107 J.

EVALUATE: The electric force does negative work on a negative charge when the negative charge moves
from high potential (point b) to low potential (point a).
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23.25.

. ki . o .
IDENTIFY: For a point charge, V' = ™ The total potential at any point is the algebraic sum of the
r

k|g]

potentials of the two charges. For a point charge, £ =—". The net electric field is the vector sum of the
r

electric fields of the two charges.

SETUP: E produced by a point charge is directed away from the point charge if it is positive and toward
the charge if it is negative.

EXECUTE: (a) V =V, +V,5 >0, so Vis zero nowhere except for infinitely far from the charges. The
fields can cancel only between the charges, because only there are the fields of the two charges in opposite
directions. Consider a point a distance x from Q and d —x from 20, as shown in Figure 23.24a.

g =—k(2Q)2 —(d —)c)2 =2x% x= 4 ’
X2 (d-x) 1++2
between the charges.

(b) V can be zero in 2 places, A and B, as shown in Figure 23.24b. Point 4 is a distance x from —Q and

The other root, x = L, does not lie
1-2

d —x from 2Q. B is a distance y from —Q and d + y from 20Q. AtA:@+@=O—>x=d/3.

X —-Xx
g KEQ) |, k2O)

y d+y
The two electric fields are in opposite directions to the left of —Q or to the right of 2Q in Figure 23.24c.

=0->y=d.

But for the magnitudes to be equal, the point must be closer to the charge with smaller magnitude of

charge. This can be the case only in the region to the left of —Q. E, = E,, gives g = &Q)z and
x° (d+x)
_d
x= K
EVALUATE: (d) £ and V are not zero at the same places. E is a vector and ¥ is a scalar. E is proportional
to 1/7 and Vis proportional to 1/7. E is related to the force on a test charge and AV is related to the
work done on a test charge when it moves from one point to another.

20 -0 20

0 20 +
. o<——d—>e

x y % x

@ (b) ©
Figure 23.24

IDENTIFY: The potential at any point is the scalar sum of the potential due to each shell.

ST Up: V:%} for <R and V=k—q for » > R.
r

EXECUTE: (a) (i) 7 =0. This point is inside both shells so
6.00x10° C  =9.00x10™° CJ

+
Ry 0.0300 m 0.0500 m

v=k| Iy 92 |- (8.99%10° N-m2/C?)
R R

V =+1.798x10° V +(~1.618x10> V)=180 V.

(i) » =4.00 cm. This point is outside shell 1 and inside shell 2.

-9 . -9
v ok 94 902) 2 g.00x10° N m2c?| £00X107 C | —9.00x107 €|
r R, 0.0400 m 0.0500 m

V =+1.348x10° V+(-1.618x10° V)=-270 V.
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23.27.

(iii) » =6.00 cm. This point is outside both shells.

9 2 /~2
V:k(ﬂﬂ—z}ﬁ(%+q2)=8‘99X10 N-m”/C [6.00><10’9C+(—9.00><10’9 C)]. V =—-450 V.
ror r 0.0600 m

(b) At the surface of the inner shell, » = R, =3.00 cm. This point is inside the larger shell,

soV, = k[% + %j =180 V. At the surface of the outer shell, » = R, =5.00 cm. This point is outside the
)
smaller shell, so

-9 . -9
V:k(ﬂ+%]=(s.99x109N-mz/cz)(woxw Carein2.00%10 CJ.
r 2

0.0500 m 0.0500 m
V= +1.079x10° V +(~1.618x10° V)=-539 V. The potential difference is V; —V, =719 V. The inner

shell is at higher potential. The potential difference is due entirely to the charge on the inner shell.
EVALUATE: Inside a uniform spherical shell, the electric field is zero so the potential is constant (but not
necessarily zero).

IDENTIFY and SET UP: Outside a solid conducting sphere V = k<. Inside the sphere the potential is
r

constant because E = 0, and it has the same value as at the surface of the sphere.
kg _k(3.50x107° C)
r 0.480 m
k(3.50x10~ C)
0.240 m

(¢) This is inside the sphere. The potential has the same value as at the surface, 131 V.
EVALUATE: All points of a conductor are at the same potential.

EXECUTE: (a) This is outside the sphere, so V' = =65.6V.

(b) This is at the surface of the sphere, so V' = =131V.

1 Qx

3/2°

——————5—. The
47€y (x* +a?)

(a) IDENTIFY and SET UP: The electric field on the ring’s axis is given by E, =
magnitude of the force on the electron exerted by this field is given by F' = eE.
EXECUTE: When the electron is on either side of the center of the ring, the ring exerts an attractive force
directed toward the center of the ring. This restoring force produces oscillatory motion of the electron
along the axis of the ring, with amplitude 30.0 cm. The force on the electron is not of the form F' = —kx so
the oscillatory motion is not simple harmonic motion.

(b) IDENTIFY: Apply conservation of energy to the motion of the electron.

SErUp: K, +U, =K, +U, with a at the initial position of the electron and b at the center of the ring.

1 0
7€y 2 4 o2

EXECUTE: x,=30.0 cm, x;, =0.

From Example 23.11, V' = where a is the radius of the ring.

K, =0 (released from rest), K =1mv’.
Thus %mv2 =U,-U,.

2005~V
o=la)

And U=¢gV =—eV so v=

-9
— (8.988x10° N - m2/C2) 240x10 " €

4”80 ,/x +a? J(0.300 m)? +(0.150 m)>

V,=643 V.

-9
=(8.988%x10° N - r112/C2)M =1438 V.

e = 4;:30 /x e 0.150 m
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be [2e(V,—V,) _ [201.602x10 C)(lz?lsv 643V) 1 o107 s
m 9.109x107" kg

EVALUATE: The positively charged ring attracts the negatively charged electron and accelerates it. The
electron has its maximum speed at this point. When the electron moves past the center of the ring the force
on it is opposite to its motion and it slows down.

23.28. IDENTIFY: For an isolated conducting sphere, all the excess charge is on its outer surface. For points
outside the sphere, it behaves like a point-charge at its center, and the electric field is zero inside the
sphere.

SETUP: Use Vat 1.20 m to find ¥ at the surface. ¥ = kL. We don’t know the charge on the sphere, but
r

we know the potential 1.20 m from its center.

surface

EXECUTE: Take the ratio of the potentials: V— = k4/(0.400 m) = 1.20
Vizom  kq(1.20m)  0.400

=3.00, so

Viurtace = (3.00)(24.0 V) =72.0 V.

The electric field is zero inside the sphere, so the potential inside is constant and equal to the potential at
the surface. So at the center V' =72.0 V.

EVALUATE: An alternative approach would be to use the given information to find the charge on the
sphere. Then use that charge to calculate the potential at the surface. The potential is 72.0 V at all points
inside the sphere, not just at the center. Careful! Just because the electric field inside the sphere is zero, it
does not follow that the potential is zero there.

23.29. IDENTIFY: If the small sphere is to have its minimum speed, it must just stop at 8.00 cm from the surface
of the large sphere. In that case, the initial kinetic energy of the small sphere is all converted to electrical
potential energy at its point of closest approach.

SETUP: K, +U,=K,+U,. K,=0. U; =0. Therefore, K; =U,. Outside a spherical charge

distribution the potential is the same as for a point charge at the location of the center of the sphere, so
U=kqQlr.K = %mvz.

EXECUTE: U, =@, with 7, =12.0 cm +8.0 cm =0.200 m. %mvl2 =@.
%) 5

2kq0  [2(8.99x10° N -m?/C?)(3.00x107% C)(5.00x107° C)
Vl = = 5 = 150 m/S.
mr, (6.00x107> kg)(0.200 m)

EVALUATE: If the small sphere had enough initial speed to actually penetrate the surface of the large
sphere, we could no longer treat the large sphere as a point charge once the small sphere was inside.

23.30. IDENTIFY: For a line of charge, V, -V, = % In(r, /r,). Apply conservation of energy to the motion of
TTE,
0

the proton.

SET UP: Let point a be 18.0 cm from the line and let point b be at the distance of closest approach, where

Kb = 0.

EXECUTE: (a) K, =3mv* =1(1.67x107"7 kg)(3.50x10° m/s)”* =1.02x107*° J.

Ky— K, _-1.02x107%"J
q 1.60x 107" C

() K, +qV, =Ky +qVy. V, -V, = =-0.06397 V.

In(ry/r,,) = (2%)(—0.06397 V).

)y = raexp( 27mey(—0.06397 V)j — (0.180 m)exp 27[50(0.0613297 V)
A 5.00x107"? C/m

EVALUATE: The potential increases with decreasing distance from the line of charge. As the positively
charged proton approaches the line of charge it gains electrical potential energy and loses kinetic energy.

J =0.0883 m = 8.83 cm.
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23.31.

23.32.

23.33.

23.34.

IDENTIFY: The voltmeter measures the potential difference between the two points. We must relate this
quantity to the linear charge density on the wire.
SET UP: For a very long (infinite) wire, the potential difference between two points is given by
A
AV =——1In(r,/r,).
27, a
EXECUTE: (a) Solving for 4 gives

C(AV)2me, 575V
In(r, /7,) (18><109N~m2/C2)1n(

=9.49%x107® C/m.

3.50 cm
2.50 cm

(b) The meter will read less than 575 V because the electric field is weaker over this 1.00-cm distance than
it was over the 1.00-cm distance in part (a).

(c) The potential difference is zero because both probes are at the same distance from the wire, and hence
at the same potential.

EVALUATE: Since a voltmeter measures potential difference, we are actually given AV, even though that
is not stated explicitly in the problem.

IDENTIFY: The voltmeter reads the potential difference between the two points where the probes are
placed. Therefore we must relate the potential difference to the distances of these points from the center of
the cylinder. For points outside the cylinder, its electric field behaves like that of a line of charge.

SETUP: Using AV = % In (7, /r, ) and solving for 7,, we have r, = raezw"AVM.

0

1
175V
[2><8.99><10" N~m2/c2]( )

15.0x10™° C/m
1, = (2.50 cm) ™% = 4.78 cm.

EXECUTE: The exponent is

=0.648, which gives

The distance above the surface is 4.78 cm —2.50 cm = 2.28 cm.

EVALUATE: Since a voltmeter measures potential difference, we are actually given AV, even though that
is not stated explicitly in the problem. We must also be careful when using the formula for the potential
difference because each r is the distance from the center of the cylinder, not from the surface.

IDENTIFY: For points outside the cylinder, its electric field behaves like that of a line of charge. Since a
voltmeter reads potential difference, that is what we need to calculate.

L . A
SET UP: The potential difference is AV = 5 In (r,/r,).
7€y

EXECUTE: (a) Substituting numbers gives

AV = 4
2

In (1, /r,) = (8.50x107° C/m)(2x9.00x10° N -m?/C?) In (MJ.
g

6.00 cm

AV=7.82x10% V=78,200V =782kV.
(b) E =0 inside the cylinder, so the potential is constant there, meaning that the voltmeter reads zero.
EVALUATE: Caution! The fact that the voltmeter reads zero in part (b) does not mean that ¥ =0 inside
the cylinder. The electric field is zero, but the potential is constant and equal to the potential at the surface.
IDENTIFY: The work required is equal to the change in the electrical potential energy of the charge-ring
system. We need only look at the beginning and ending points, since the potential difference is
independent of path for a conservative field.

1
SETUP: (a) IV = AU = gAV = q(Ver Vo) = | ——2 -0 |.
4rey a
EXECUTE: Substituting numbers gives
AU = (3.00x107° C)(8.99%x10° N- m?/C?)(5.00x107° C)/(0.0400 m) = 3.38 J.
(b) We can take any path since the potential is independent of path.
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23.35.

23.36.

23.37.

(¢) SET Up: The net force is away from the ring, so the ball will accelerate away. Energy conservation

_1,.2
—2mv.

gives Uy =K,

X

EXECUTE: Solving for v gives

v:\/%= 26380 ot s,
m  \0.00150 kg

EVALUATE: Direct calculation of the work from the electric field would be extremely difficult, and we
would need to know the path followed by the charge. But, since the electric field is conservative, we can
bypass all this calculation just by looking at the end points (infinity and the center of the ring) using the
potential.

IDENTIFY: The electric field of the line of charge does work on the sphere, increasing its kinetic energy.

SETUP: K, +U,=K,+U, and K;=0. U=¢qV so qV;=K,+qV,. V=L1n(’”—°j.
0

27e, r
EXECUTE: V| = A ln[r—oj, Vz:iln[r_()}

2rey \ R

K =g(h~Vp) =L o[ 2 <10} 2| | = 2Lty gy = 2L [ 2|

—6 —6

K, = (3.00x10 C/m1)2(8.020>< 10 2C) ln(4'50j i
27(8.854x107 ° C°/(N - m~) 1.50

EVALUATE: The potential due to the line of charge does not go to zero at infinity but is defined to be zero

at an arbitrary distance #, from the line.

IDENTIFY and SET UP:  For oppositely charged parallel plates, £ = /¢, between the plates and the
potential difference between the plates is V = Ed.

9 2
EXECUTE: (a) E = o _47.0x10 " C/m” _ 5310 N/C.

€o €o
(b) V' =Ed =(5310 N/C)(0.0220 m) =117 V.
(¢) The electric field stays the same if the separation of the plates doubles. The potential difference
between the plates doubles.
EVALUATE: The electric field of an infinite sheet of charge is uniform, independent of distance from the
sheet. The force on a test charge between the two plates is constant because the electric field is constant.
The potential difference is the work per unit charge on a test charge when it moves from one plate to the
other. When the distance doubles, the work, which is force times distance, doubles and the potential
difference doubles.
IDENTIFY and SET UP: Use AV = Ed to relate the electric field between the plates to the potential
difference between them and their separation. The magnitude of the force this field exerts on the particle is

b - —

givenby FF'=gE. Use W,_,, = I F -dl to calculate the work.
a

Vi, 360V

d  0.0450 m
(b) F =|q|E=(2.40x10"? C)(8000 V/m)=+1.92x10"> N.
(¢) The electric field between the plates is shown in Figure 23.37.
+ + 4+ + +

JRRRN

EXECUTE: (a) Using AV = Ed gives E= =8000 V/m.

a

b

Figure 22.37
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23.38.

23.39.

23.40.

23.41.

The plate with positive charge (plate a) is at higher potential. The electric field is directed from high
potential toward low potential (or, E is from + charge toward — charge), so E points from a to b. Hence
the force that E exerts on the positive charge is from a to b, so it does positive work.

b~ -
W= I F -dl = Fd, where d is the separation between the plates.
a

W =Fd =(1.92x107> N)(0.0450 m) = +8.64x107" J.

(d) V,=V, =+360 V (plate a is at higher potential).

AU =U, -U, =q(V, —V,)=(2.40x10™° C)(-360 V)=-8.64x10"" I.

EVALUATE: We see that W,_,, =—(U, -U,)=U, -U,.

IDENTIFY and SET UP: V,, = Ed for parallel plates.

EXECUTE: d = @ = L
E 1.0x107° V/m

EVALUATE: The plates would have to be nearly a thousand miles apart with only a AA battery across
them! This is a small field!
IDENTIFY: The potential of a solid conducting sphere is the same at every point inside the sphere because

=1.5x10° m=1.5x10> km.

E =0 inside, and this potential has the value V' = q/47&, R at the surface. Use the given value of £ to find g.

SET UP: For negative charge the electric field is directed toward the charge.

For points outside this spherical charge distribution the field is the same as if all the charge were

concentrated at the center.
g

47[60}"2

_ (3800 N/C)(0.200 m)*
8.99x10° N -m?/C?
Since the field is directed inward, the charge must be negative. The potential of a point charge, taking oo

99x10° N-m?/C?)(~1.69x 10~
7 _ 8.99<10 | g x ©) =-760 V at the surface of the sphere.
47e,r 0.200 m

Since the charge all resides on the surface of a conductor, the field inside the sphere due to this
symmetrical distribution is zero. No work is therefore done in moving a test charge from just inside the
surface to the center, and the potential at the center must also be =760 V.

EVALUATE: Inside the sphere the electric field is zero and the potential is constant.

IDENTIFY: The electric field is zero inside the sphere, so the potential is constant there. Thus the potential
at the center must be the same as at the surface, where it is equivalent to that of a point-charge.

SET UP: At the surface, and hence also at the center of the sphere, the potential is that of a point-charge,

V =Q/N(4ne,R).
EXECUTE: (a) Solving for Q and substituting the numbers gives

EXECUTE: E = and |q| = 472e, Er” =1.69x107 C.

as zero, is V' =

=4, RV =(0.125m .99 x -m =5.21x =52.1 nC.
4re, 0.125 m)(3750 V)/(8.99x 10° N - m?/C?)=5.21x 10" C=52.1nC

(b) Since the potential is constant inside the sphere, its value at the surface must be the same as at the
center, 3.75 kV.
EVALUATE: The electric field inside the sphere is zero, so the potential is constant but is not zero.

. . k .
IDENTIFY and SET UP: For a solid metal sphere or for a spherical shell, V' = M utside the sphere and
r

V= ?q at all points inside the sphere, where R is the radius of the sphere. When the electric field is radial,

=
or

EXECUTE: (a) (i) » <7,: This region is inside both spheres. V' = ka_kq =kq[L - ij
Ty Ty T
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23.42.

23.43.

.. . . . . . 1 1
(ii) r, <r<r,: This region is outside the inner shell and inside the outer shell. V = ka_kq = kq{— - —j.
r n, ron
(iii) 7 >r,: This region is outside both spheres and V" =0 since outside a sphere the potential is the same
as for a point charge. Therefore the potential is the same as for two oppositely charged point charges at the
same location. These potentials cancel.

(b) Va =L[i_ij and Vb =0, SO Vab= 1 q(i_ij

47[60 7, 7 47[80 L~ 173

1
rb'

g 91 1 G 7
Er:——z——— _—— =+——2=——2.
or 4w, or A7ey r b ~L A
Ty Ty
14

(d) Since E, = A E =0, since V' is constant (zero) outside the spheres.
/s

(c) Between the spheres 7, <r <7, and V = kq[l =
-

(e) If the outer charge is different, then outside the outer sphere the potential is no longer zero but is
_lg 1 9_ 1 (q-90
dmey r Amey r  4mE, v
1

V= 4—2 Therefore relative potentials within the shells are not affected. Thus (b) and (c) do not
TE, 1,
0'p

. All potentials inside the outer shell are just shifted by an amount

change. However, now that the potential does vary outside the spheres, there is an electric field there:

__ IV _ d(kg —kQ) _kqf, Q)_k
“ or 8r[r+ rj 2[ q] rz(q Q)

EVALUATE: In part (a) the potential is greater than zero for all r <7,.

7

IDENTIFY: By the definition of electric potential, if a positive charge gains potential along a path, then the
potential along that path must have increased. The electric field produced by a very large sheet of charge is
uniform and is independent of the distance from the sheet.

(a) SET UpP: No matter what the reference point, we must do work on a positive charge to move it away
from the negative sheet.

EXECUTE: Since we must do work on the positive charge, it gains potential energy, so the potential
increases.

(b) SET UP: Since the electric field is uniform and is equal to 0/2¢,, we have AV = Ed = zid.

&,
0
EXECUTE: Solving for d gives
_26,AV  2(8.85x107'% C?/N - m?)(1.00 V)
o 6.00x10™ C/m?
EVALUATE: Since the spacing of the equipotential surfaces (d = 2.95 mm) is independent of the distance

from the sheet, the equipotential surfaces are planes parallel to the sheet and spaced 2.95 mm apart.

14 ~
IDENTIFY and SET UP: Use E, = Y E, = —%—V, and £ = 8a_V to calculate the components of E.
x )y z

d =0.00295 m = 2.95 mm.

EXECUTE: V = Axy—Bx2 +Cy.

(a) £, = _B_V =—Ay+2Bx.
ox

E, =—a—V=—Ax—C.
dy



23-18

Chapter 23

23.44.

23.45.

Ezza—V:
oz

(b) E=0 requires that E, =E,=E. =0.

0.

E, =0 everywhere.
E, =0 at x=-C/A.

And E, is also equal to zero for this x, any value of z and y =2Bx/4A =(2B/4)(—C/4)=-2BC /4>,
EVALUATE: V doesn’tdepend onzso E, =0 everywhere.

14 14 = .
IDENTIFY: Apply E = —%— and Ey = 3, to find the components of E, then use them to find its
) x )y

magnitude and direction. V(x, y) = Ax’y — Bx".
[r2, 72
SETUP: E=\E{+E, and tan6=E/E,.
oV

EXECUTE: First find the components of E : E, =——= —ai(szy = Bxyz) =—(24xy - Byz).
X X

Now evaluate this result at the point x =2.00 m, y = 0.400 m using the given values for 4 and B.
E,=-]2(5.00 V/m®)(2.00 m)(0.400 m) — (8.00 V/m’)(0.400 m)’] = —6.72 V/m.
i, = —aa—V = —ai(sz y — Bxy?) = —(4Ax> — 2Bxy). At the point (2.00 m, 0.400 m), this is
y )y
E, =—[(5.00 V/m’)(2.00 m)’ - 2(8.00 V/m’)(2.00 m)(0.400 m)] = —7.20 V/m.
Now use the components to find the magnitude and direction of E.
E =\/E§ +E; = \/(—6.72 V/m)? +(=7.20 V/m)?> =9.85 V/m.
tand=E,/E, =(-7.20 V/m)/(-6.72 V/m), which gives & =47.0°. Since both components are negative,

the vector lies in the third quadrant in the xy-plane and makes an angle of 47.0° + 180.0° = 227.0° with the
+x-axis.

EVALUATE: Vis a scalar but E is a vector and has components.
1 1

IDENTIFY: Exercise 23.41 shows that V' = kq(l —ij for r<r,, V= kq(
ron

a 1
1 1
oenf1)
a1y

SETUP: E= k—;], radially outward, for 7, <r<p,.
r

j for r, <r <, and

00V ~7.62x107° C =0.762 nC.

1 1 .
EXECUTE: (a) V,, = kq{———}: 500V gives g =

a1y

1 I
[0.012 m 0096 mj

1 1 7
(b) ¥, =0 so V, =500 V. The inner metal sphere is an equipotential with /=500 V. —=—+ P
ror, kq

a
V=400V at r=1.45cm, V=300V at r=1.85cm, V=200V at r=2.53cm, V=100V at
r=4.00cm, V=0 at »=9.60 cm. The equipotential surfaces are sketched in Figure 23.45.
EVALUATE: (c) The equipotential surfaces are concentric spheres and the electric field lines are radial, so

the field lines and equipotential surfaces are mutually perpendicular. The equipotentials are closest at
smaller », where the electric field is largest.
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23.46.

23.47.

Figure 23.45

IDENTIFY: As the sphere approaches the point charge, the speed of the sphere decreases because it loses
kinetic energy, but its acceleration increases because the electric force on it increases. Its mechanical
energy is conserved during the motion, and Newton’s second law and Coulomb’s law both apply.

SETUP: K, +U,=K,+U,, K= 1m? U=kqq,/r.F =kqq,/r*, and F = ma.
EXECUTE: Find the distance between the two charges when v, =25.0 m/s.
K,+U,=K,+U,.

K, = %mvg = %(4.00>< 107 kg)(40.0 m/s)* =3.20 J.

K =%mv,§ =%(4.00><10—3 kg)(25.0 m/s)> =1.25 1.

49  (8.99x10° N-m?/C?)(5.00x 107 C)(2.00x 107 C)

U -k = 1.498 J.
r, 0.0600 m
Uy=K,+U,~K,=3201+1.498 1-1.25 1 =3.448 J. U, =k3192 apnq
Tp
) 10° N - m2/C2)(5. 10°° 2. 107°
= K1z _ (8:99X10° N-m?/C)(5.00x107 C)Y2.00x10° ©) 0
U, 3.448 1
9 2 /~2 -6 —6
F,—kagy _(899X10° N m¥/C)5.00x10°€ OY200x10 Q) _ 3, 5
i (0.02607 m)
F_ 133N

=3.31x10% m/s>.

m 4.00x107 kg

EVALUATE: As the sphere approaches the point charge, its speed decreases but its acceleration keeps
increasing because the electric force on it keeps increasing.

IDENTIFY: U = k(_‘]ﬂz + 93y D293 J
2 N3 23
SET UP: In part (a), 5, =0.200 m, 7,3 =0.100 m and 73 =0.100 m. In part (b) let particle 3 have

coordinate x, so 7, =0.200 m, 7;=x and r,; =0.200 m —x.

=-3.60x107" J.

ExpcuTE: (a) U = k[ (4.00nC)(-3.00nC) _ (4.00nC)(2.00nC)  (-3.00nC)(2.00 nC)J

(0.200 m) (0.100 m) (0.100 m)
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(b)If U =0, then 0=k| 192 493 4 D98 | golying for x we find:
N2 X Tp—X
8 L
0=-60+—-— 02 = 60x> —26x+1.6=0= x=0.074 m, 0.360 m. Therefore, x =0.074 m since it is
x 02-x

the only value between the two charges.
EVALUATE: U,; is positive and both U,; and U, are negative. If U =0, then |U13| = |U23| + |U12|. For
x=0.074m, Uj3=49.7x10"J, Uyy=—43x10"" J and U;, =—5.4x10"" J. Itis true that U =0 at
this x.

23.48. IDENTIFY: The electric field of the fixed charge does work on the charged object and therefore changes it
kinetic energy. We apply the work-energy theorem.
SETUP: W,_, = AK and W,_, =q(V,~V;), V =k<.

r
EXECUTE: W,_,, =AK =K, — K, =q,(V,-V}), which gives K, =K, +q,(V, - V},).
2 r, n 2 | G
Putting in the numbers gives
K, = %(0.00400 ke )(800 m/s)” +(8.99x10° N-m?/C?)(5.00x10~* C)(-3.00x10™* C)x
[1/(0.400 m) — 1/(0.200 m)].

K, =46511.
vy = (2K,/m)"* = [2(4651 1)/(0.00400 kg)]"* = 1520 m/s.
EVALUATE: The negatively charged small object gains kinetic energy because it is attracted by the
positive charge ¢, which does positive work on the object, so v, > v,.

23.49. IDENTIFY and SET Up: Treat the gold nucleus as a point charge so that V' = =8 According to

r
conservation of energy we have K, +U, = K, +U,, where U =gV
EXECUTE: Assume that the alpha particle is at rest before it is accelerated and that it momentarily stops
when it arrives at its closest approach to the surface of the gold nucleus. Thus we have K| = K, =0, which
implies that U; = U, . Since U = gV we conclude that the accelerating voltage must be equal to the voltage
at its point of closest approach to the surface of the gold nucleus. Therefore
1.60x107"
vV, =V, =kL=899%x10° N-m>/C?) 79(1560X - ——=4.2x10° V.
r (7.3x107° m+2.0x107"" m)

EVALUATE: Although the alpha particle has kinetic energy as it approaches the gold nucleus this is
irrelevant to our solution since energy is conserved for the whole process.

23.50. IDENTIFY: Two forces do work on the sphere as it falls: gravity and the electrical force due to the sheet.

The energy of the sphere is conserved.

. . . . o
SET UP: The gravity force is mg, downward. The electric field of the sheet is £ = 22 upward, and the
€o

force it exerts on the sphere is F' = gE. The sphere gains kinetic energy K = %mv2 as it falls.

—12 2
EXECUTE: mg =4.90x 10°N, =2 = 8.00x10 - C/m =0.4518 N/C. The electric force

26, 2(8.854x107'2 C%/(N - m?)
is gE = (7.00x 1076 C)(0.4518 N/C) =3.1626 x 1079 N, upward. The net force is downward, so the
sphere moves downward when released. Let y =0 at the sheet. U,

Waop =V, —V,. Let point a be at the sheet and let point b be a distance y above the sheet. Take V, =0.

q

grav =mgy. For the electric force,
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23.51.

23.52.

w,

The force on ¢ is gE, upward, so —4=2. = FEy and V, =—Ey. U, =-Eyq. K,+U; =K, +U,. K;=0.
q

»n=0400m, y, =0.100m. K, =U,-U,=mg(y;—y,)—E(n —)1)q.
K, =(5.00x1077 kg)(9.80 m/s2)(0.300 m) — (0.4518 N/C)(0.300 m)(7.00x10™° C).

1
K, =1.470x107° J—0.94878x107° 1 =0.52122x107° J. K, =5mv§ 50

=1.44 m/s.

v, = - —
5.00x107" kg

EVALUATE: Because the weight is greater than the electric force, the sphere will accelerate downward,

but if it were light enough the electric force would exceed the weight. In that case it would never get closer

to the sheet after being released. We could also solve this problem using Newton’s second law and the

constant-acceleration kinematics formulas. a = F/m = (mg — gE)/m gives the acceleration. Then we use

2 _
vy =

2K, _ \'/2(0.52122><10‘6 7)

vgx +2a,.(x—xq) with vy, =0 to find v.

IDENTIFY: The remaining nucleus (radium minus the ejected alpha particle) repels the alpha particle,
giving it 4.79 MeV of kinetic energy when it is far from the nucleus. The mechanical energy of the system
is conserved.

SerUp: U=k292, U, +K,=U,+K,. The charge of the alpha particle is +2e and the charge of the
r

radon nucleus is +86e.
EXECUTE: (a) The final energy of the alpha particle, 4.79 MeV, equals the electrical potential energy of

the alpha-radon combination just before the decay. U =4.79 MeV = 7.66x10713 J.

_kag,  (8.99x10° N -m?/C?)(2)(86)(1.60 x 107" ©)?
v 7.66x107 ]

EVALUATE: Although we have made some simplifying assumptions (such as treating the atomic nucleus
as a spherically symmetric charge, even when very close to it), this result gives a fairly reasonable estimate
for the size of a nucleus.

IDENTIFY: The charged particles repel each other and therefore accelerate away from one another,
causing their speeds and kinetic energies to continue to increase. They do not have equal speeds because
they have different masses. The mechanical energy and momentum of the system are conserved.

=517x10""* m.

M) r

SETUP: The proton has charge g, =+e and mass m, =1.67 %1072 kg. The alpha particle has charge

g, =+2e and mass m, =4m, =6.68 x 1072 kg. We can apply both conservation of energy and

lontal
g

. . F
conservation of linear momentum to the system. a =—, where F =k
m r
EXECUTE: Acceleration: The maximum force and hence the maximum acceleration occurs just after they
(2)(1.60x107"° C)?

(0.225x10~° m)?

F 9.09x107° N . 9
q =L OOXI0 N s 1008 sy g = L2 D00 N 10" ms2, The

a

Pmy 1.67x10777 kg m, 6.68x1027 kg

=9.09x107° N.

are released, when »=0.225 nm. F =(8.99x10° N-m?/C?)

acceleration of the proton is larger by a factor of m, /m,.
Speed: Conservation of energy says U; +K; =U, +K,. K;=0 and U, =0, so K, =U;.
(2)(1.60x107" C)?

0225%10° =2.05x107"8 J, so the total kinetic energy of the
225%107 m

U, =k492 = (8.99%10° N-m?/C?)
r
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23.53.

two particles when they are far apartis K, =2.05 %1078 J. Conservation of linear momentum says how

m
this energy is divided between the proton and alpha particle. p; = p,. 0=myv, —m,v, so v, = (—J Vp-

2
m m
1 2.1 2 _1 2.1 P 2_1 2 P
Ky =3myvy +5m,v; —2mpvp+2ma[—m } Vi ==m,v [l+—].

a

=4.43x10* m/s.

2K, \/ 2(2.05%107'8 7y
Vp =

my (L+(my/my)) [ (1.67x107 kg)(1+1)

m
v, = (—p] Vp = %(4.43 x10* m/s) =1.11x10* m/s. The maximum acceleration occurs just after they are

m,

released. The maximum speed occurs after a long time.

EVALUATE: The proton and alpha particle have equal momenum, but proton has a greater acceleration
and more kinetic energy.

(a) IDENTIFY: Apply the work-energy theorem.

SET UP: Points a and b are shown in Figure 23.53a.

Va =0 <
o————9
qa 8.00 cm b

Figure 23.53a

EXECUTE: W, =AK=K,-K,=K, = 4.35x107° 1.
The electric force Fj; and the additional force F* both do work, so that Wy =W +Wp.

Wi, =W —Wr =4.35x107 J=6.50x107> J =—2.15x107 J.

EVALUATE: The forces on the charged particle are shown in Figure 23.53b.

Fg ¢ F
- —>>

Figure 23.53b

The electric force is to the left (in the direction of the electric field since the particle has positive charge).
The displacement is to the right, so the electric force does negative work. The additional force F is in the
direction of the displacement, so it does positive work.
(b) IDENTIFY and SET UP: For the work done by the electric force, W,_,, =q(V, —V}).

_ -5
EXECUTE: V, -V, = Wamsb _ 2'15X109 !
q 7.60x107" C
EVALUATE The starting point (point @) is at 2.83 % 10° V lower potential than the ending point (point b).
We know that V}, >V, because the electric field always points from high potential toward low potential.

=-2.83x10° V.

(c) IDENTIFY: Calculate E from ¥, —V,, and the separation d between the two points.
SET UP: Since the electric field is uniform and directed opposite to the displacement

W,_, =—Fpd =—qEd, where d =8.00 cm is the displacement of the particle.
_ _ 3
Execute: E=-Vamb o Va=Vy o T2V 5 g0 g8y

qd d 0.0800 m
EVALUATE: Inpart (a), W is the total work done by both forces. In parts (b) and (¢) W,_,, is the work

done just by the electric force.
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23.55.

IDENTIFY: The net force on g, is the vector sum of the forces due to the two charges. Coulomb’s law
applies.

a

SET UP: F:k%, W, =qV,—V,), Vzk%

EXECUTE: (a) The magnitude of the force on g, due to each of the two charges at opposite corners of the

square is F = k@ = k(5.00 £C)(3.00 £C)/(0.0800 m)* = 21.07 N. Adding the two forces vectorially
r
gives the net force F,. = (21.07 N) V2 =29.8 N. The direction is from 4 to B since both charges attract g.

Figure 23.54 shows this force.

o

9 q

Figure 23.54

(b) At point B the two forces on g, are in opposite directions and have equal magnitudes, so they add to
zero: Fo = 0.

(c) For each charge, W,_,z =q(V,—V3), so for both we must double this. Using V' = k4 and simplifying
r

1 1 . M.

we get W, p=2q(V,—Vp)=2kqq, [———J Putting in ¢y =—-3.00 uC, g = 5.00 uC, r, = 0.0800 m, and
Ta B

= 0.0400v/2 m, we get W,_,p =+1.40 J. The work done on ¢, by the electric field is positive since it

this charge moves from A4 to B in the direction of the force. The charge loses potential energy as it gains
kinetic energy. But since ¢, is negative, it moves to a point of higher potential.

EVALUATE: Positive charges accelerate toward lower potential, but negative charges accelerate toward
higher potential.

_ av 14
IDENTIFY and SET UP: Calculate the components of E using £, =——, E = o and E, =—

ox’ Y oy’ T
and use F =gE.

EXECUTE: (a) V = o3,

C=Vix*? =240 v/(13.0x107 m)** =7.85x10* v/im*>.
(b) E,(x)= —%—V = —%Cxl/ 3= (1.05%10° v/m*3)x"3.
X

The minus sign means that £, is in the —x-direction, which says that E points from the positive anode
toward the negative cathode.
(¢) F=gE so F,=—¢E, :%erm.

Halfway between the electrodes means x =6.50% 107 m.

F,=%(1.602x107" €)(7.85x10* V/m*?)(6.50x107* m)'”* =3.13x107"° N.

F, is positive, so the force is directed toward the positive anode.
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23.56.

23.57.

23.58.

23.59.

EVALUATE: V depends only onx,so E, = E_ =0. E is directed from high potential (anode) to low

potential (cathode). The electron has negative charge, so the force on it is directed opposite to the electric
field.

IDENTIFY: At each point (a and b), the potential is the sum of the potentials due to both spheres. The
voltmeter reads the difference between these two potentials. The spheres behave like point charges since
the meter is connected to the surface of each one.

SET UpP: (a) Call a the point on the surface of one sphere and b the point on the surface of the other
sphere, call r the radius of each sphere and call d the center-to-center distance between the spheres. The
potential difference V},, between points a and b is then

beVanba=4l —_C]+ 4 —(14' . j = ZQ( ! —lj
eyl v d-r \r d-r dmeg\d—r r

EXECUTE: Substituting the numbers gives

V, —V, =2(250 uC) (8.99x10° N - m?/C?) ¥ =-12.0x10° V =—12.0 MV. The meter
0.750m 0.250 m

reads 12.0 MV.
(b) Since V}, —V, is negative, V, >V}, so point a is at the higher potential.
EVALUATE: An easy way to see that the potential at a is higher than the potential at b is that it would
require positive work to move a positive test charge from b to a since this charge would be attracted by the
negative sphere and repelled by the positive sphere.
ka9,
r
SET UP: Eight charges means there are 8(8 —1)/2 =28 pairs. There are 12 pairs of g and —g separated

IDENTIFY: U=

by d, 12 pairs of equal charges separated by J2d and 4 pairs of g and —¢ separated by J3d.
2 12 4 j C12kg*(, 11

__+___ —_—
AT e

EXECUTE: (a) U = qu( j =—1.464° /meyd.

= l-—+—

d ( V2 33
EVALUATE: (b) The fact that the electric potential energy is less than zero means that it is energetically
favorable for the crystal ions to be together.

ki
IDENTIFY: For two small spheres, U = S92 oy part (b) apply conservation of energy.
r

SETUP: Let ¢, =2.00 4C and g, =-3.50 4C. Let r, =0.180 m and 7, — oo.

(8.99x10° N-m?/C?)(2.00x107® C)(-3.50x107° C) _
0.180 m
(b) K, =0. U,=0. U, =—03501. K,+U,=K,+U, gives K, =0350J. K,=Lm]

a’
2K

v =y = 2(0'350:) =21.6 ms.
m \1.50x107 kg

EVALUATE: As the sphere moves away, the attractive electrical force exerted by the other sphere does
negative work and removes all the kinetic energy it initially had.
IDENTIFY: Apply > F, =0 and > F, =0 to the sphere. The electric force on the sphere is F, = gE. The

—0.350J.

EXECUTE: (a) U

SO

potential difference between the plates is V' = Ed.

SET UP: The free-body diagram for the sphere is given in Figure 23.59.

EXECUTE: Tcos@=mg and Tsinf =F, gives

F, =mgtanf = (1.50x10™> kg)(9.80 m/s?)tan(30°) = 0.0085 N.

F.=Eq _Va and ¥ _ Fd _(0.0085 N)(O.(iSOO m)
d q 8.90x107° C

EVALUATE: E=V/d =956 V/m. E=0/¢, and 0 = Egy=8.46x10"" C/m’.

=478 V.
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23.61.

mg

Figure 23.59

IDENTIFY: Outside a uniform spherical shell of charge, the electric field and potential are the same as for
a point-charge at the center. Inside the shell, the electric field is zero so the potential is constant and equal
to its value at the surface of the shell. The net potential is the scalar sum of the individual potentials.

serUp: 7=k, call V| the potential due to the inner shell and V, the potential due to the outer shell.
r

Vnel = Vl + VZ-

EXECUTE: (a) Atr=2.50 cm, we are inside both shells. V7 is the potential at the surface of the inner
shell, so V; = kq,/Ry; and V, is the potential at the surface of the outer shell, so V;, = kq./R,. The net
potential is

Vet = kqi/Ry + kqo/ Ry = k(q1/R) + g2/ Ry).

Ve = (8.99%10° N -m?/C?)[(3.004C)/(0.0500 m) + (—5.00 £C)/(0.150 m)] = 2.40x10° V =240 kV.
(b) At »=10.0 cm, we are outside the inner shell but still inside the outer shell. The inner shell now is
equivalent to a point-charge at its center, so the net potential is

Vet = kqi/r + kqo/ Ry = k(qi/7 + g/ Ry).

Vet = k[(3.00 £C)/(0.100 m) + (=5.00 xC)/(0.150 m)] =-30.0 kV.

(c) At »=20.0 cm, we are outside both shells, so both are equivalent to point-charges at their center. So
Vet = kqi/r + kqo/r = k(q, + q2)/r = k(-2.00 xC)/(0.200 m) =-89.9 kV.

EVALUATE: E =0 inside a spherically symmetric shell, but that does not necessarily mean that /"= 0
there. It only means that ¥, —V}, =0 for any two points in side the shell, so V' is constant.

(a) IDENTIFY: The potential at any point is the sum of the potentials due to each of the two charged conductors.
SET UP: For a conducting cylinder with charge per unit length A the potential outside the cylinder is
given by V = (4/27€,)In(r,/r) where r is the distance from the cylinder axis and 7, is the distance from
the axis for which we take /' = 0. Inside the cylinder the potential has the same value as on the cylinder
surface. The electric field is the same for a solid conducting cylinder or for a hollow conducting tube so
this expression for 7 applies to both. This problem says to take 7, =b.

EXECUTE: For the hollow tube of radius b and charge per unit length —A: outside

V =—(A/27e,)In(b/r); inside V' =0 since V' =0 at r=b.

For the metal cylinder of radius a and charge per unit length A:

outside V' = (4/27€,)In(b/r), inside V = (1/27€,)In(b/a), the value at r = a.

(i) » <a; inside both V = (4/27€y)In(b/a).

(i) @ <r <b; outside cylinder, inside tube V = (A4/27&,)In(b/r).

(iii) » > b; outside both the potentials are equal in magnitude and opposite in sign so ¥ =0.
(b) For r=a, V, = (1/27¢€,)In(bla).

For r=0, V, =0.

Thus V,, =V, —V, =(4/27g,)In(bla).

(c) IDENTIFY and SETUP: Use £, = —%—V to calculate E.
r
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EXECUTE: E = _a_V = —Liln(éj = _i[ij(_ij = V“b l
or 2y or  \r 270\ b\ #2) In(bla)r

(d) The electric field between the cylinders is due only to the inner cylinder, so ¥, is not changed,
V., = (A/27€,) In(bla).
EVALUATE: The electric field is not uniform between the cylinders, so V,, # E(b—a).

23.62. IDENTIFY: The wire and hollow cylinder form coaxial cylinders. Problem 23.61 gives E(r)= %l

n a)r
SETUP: a=145x10"°m, »=0.0180 m.
Execute: E=—a 1
In(b/a) r

V., = Eln(b/a)r = (2.00 x 10* N/C)(In (0.018 m/145 x107° m))0.012 m=1157 V.
EVALUATE: The electric field at any 7 is directly proportional to the potential difference between the wire
and the cylinder.

23.63. IDENTIFY and SETUP: Use F =gE to calculate F and then F =ma gives @. E=V/d.

EXECUTE: (a) F, 5 =gE. Since g =—e is negative F, 'z and E are in opposite directions; E is upward
- ! i V. 220V
so Fy is downward. The magnitude of E'is E=—=————= 1.10x10° V/m=1.10x10° N/C. The
d 0.0200 m
magnitude of Fj; is Fj =|q|E = eE =(1.602x10™"? C)(1.10x10° N/C) =1.76x10™'° N.
(b) Calculate the acceleration of the electron produced by the electric force:

—16
A SRR

“m 9.109%107! kg

EVALUATE: This acceleration is much larger than g =9.80 m/s, so the gravity force on the electron can
be neglected. F "> is downward, so @ is downward.

(c) IDENTIFY and SET UP: The acceleration is constant and downward, so the motion is like that of a
projectile. Use the horizontal motion to find the time and then use the time to find the vertical displacement.

EXECUTE: x-component: vy, = 6.50x10° mys; a,=0; x—xy=0.060m; =?
x—xy _ 0.060m
Vor  6.50x10° m/s

X=X =v0xt+%axt2 and the a, term is zero, so ¢ = =9.231x107 s.

y-component: vy, =0; a, = 1.93x10" m/s?; £=9.231x10" m/s; y -yo="?
y=yo=vot+3a,’ y—yy=1(1.93x10" m/s?)(9.231x107 5)* =0.00822 m = 0.822 cm.

(d) IDENTIFY and SET UP: The velocity and its components as the electron leaves the plates are sketched
in Figure 23.63.

Vx EXECUTE:
V=V = 6.50x10% m/s (since a,=0).

vy =V, tayl.

v, =0+(1.93x10"* m/s*)(9.231x107 s).

] v, =1.782x10° mys.
Figure 23.63 g

v, 1.782x10° m/s
tangg =—=—————

G =0.2742 so a=15.3°.
v, 6.50x10° m/s
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23.65.

EVALUATE: The greater the electric field or the smaller the initial speed the greater the downward deflection.
(e) IDENTIFY and SET UP: Consider the motion of the electron after it leaves the region between the
plates. Outside the plates there is no electric field, so @ = 0. (Gravity can still be neglected since the
electron is traveling at such high speed and the times are small.) Use the horizontal motion to find the time
it takes the electron to travel 0.120 m horizontally to the screen. From this time find the distance downward
that the electron travels.

EXECUTE: x-component: vy, = 6.50x10° mys; a,=0; x—xy=0.120m; =7
x—xy  0.120m
Vor  6.50x10° m/s

X =X =Vt +%axt2 and the a, term is term is zero, so ¢ = =1.846x107% s.

y-component: vy, =1.782x10° m/s (from part (b)); a, =0; 1= 1.846x1078 m/s; y=yo="?
¥ = Yo =voyt +3a,t* =(1.782x10° m/s)(1.846x10™ 5) =0.0329 m =3.29 cm.

EVALUATE: The electron travels downward a distance 0.822 cm while it is between the plates and a
distance 3.29 cm while traveling from the edge of the plates to the screen. The total downward deflection is
0.822 cm + 3.29 cm =4.11 cm. The horizontal distance between the plates is half the horizontal distance
the electron travels after it leaves the plates. And the vertical velocity of the electron increases as it travels
between the plates, so it makes sense for it to have greater downward displacement during the motion after
it leaves the plates.

IDENTIFY: The charge on the plates and the electric field between them depend on the potential difference
across the plates.

SET Up: For two parallel plates, the potential difference between them is V' = Ed = Ji-= Q—d
& &4
(8.85%x1072 C2/N - m?)(0.030 m)>(25.0 V)

EXECUTE: (a) Solving for Q gives Q=¢gy4AV/d =

0.0050 m
0=398x10""'C=39.8 pC.

(b) E =V/d =(25.0 V)/(0.0050 m) =5.00x 10° V/m.

(¢) SET Up: Energy conservation gives %mv2 =el.

) . eV [2(1.60x107°C)(25.
EXECUTE: Solving for v gives v= = A8 ( X C3)1( 30 V) =2.96x10%m/s.
m 9.11x10" kg

EVALUATE: Typical voltages in student laboratory work run up to around 25 V, so typical reasonable
values for the charge on the plates is about 40 pC and a reasonable value for the electric field is about
5000 V/m, as we found here. The electron speed would be about 3 million m/s.

(a) IDENTIFY and SET UP: Problem 23.61 derived that E = 12}%)1, where a is the radius of the inner
n a)r

cylinder (wire) and b is the radius of the outer hollow cylinder. The potential difference between the two
cylinders is V. Use this expression to calculate £ at the specified r.

EXECUTE: Midway between the wire and the cylinder wall is at a radius of

r=(a+b)/2=(90.0x10"% m+0.140 m)/2 =0.07004 m.

V1 50.0x10° V
In(b/a) r 1n(0.140 m/90.0x10™° m)(0.07004 m)

(b) IDENTIFY and SET UP: The magnitude of the electric force is given by F =|g|E. Set this equal to ten
times the weight of the particle and solve for |q|, the magnitude of the charge on the particle.

=9.71x10* V/m.

EXECUTE: Fjy =10mg.

10mg  10(30.0x10™° kg)(9.80 m/s?)

E 9.71x10* V/m
EVALUATE: It requires only this modest net charge for the electric force to be much larger than the weight.

=3.03x107"! C.

|q|E=10mg and |q|=
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23.66. (a) IDENTIFY: Calculate the potential due to each thin ring and integrate over the disk to find the
potential. V'is a scalar so no components are involved.
SET UP: Consider a thin ring of radius y and width dy. The ring has area 27y dy so the charge on the ring
is dg=0Qrydy).
EXECUTE: The result of Example 23.11 then says that the potential due to this thin ring at the point on the
axis at a distance x from the ring is
1 d 2 d
dv = 9 __%0 YW
4z, \/x2 +y? 47 \/x2 +y?
R R
y=[av=-= y_dyzi[ /xz+yz} TP+ R -
EVALUATE: For x> R this result should reduce to the potential of a point charge with QO = onR?.
Vx2+ R? =x(1+ R*x*)? = x(1+ R*/2x%) so Vx* +R* —x=R?/2x.
R R
Then V = g X amEaill , as expected.
2g) 2x  Anmgyx  AmEyx
av
(b) IDENTIFY and SET UP: Use E = e to calculate E,.
X
Execurs: E. = __©o|__x _yl_oxfl_ 1
R N (S 26\ x 2 +R?)
EVALUATE: Our result agrees with the results of Example 21.11.
23.67. IDENTIFY: We must integrate to find the total energy because the energy to bring in more charge depends
on the charge already present.
SET UP: If p is the uniform volume charge density, the charge of a spherical shell of radius r and
thickness dr is dg = ,047rr2 dr, and p=Q/(4/3 7ZR3). The charge already present in a sphere of radius 7 is
q=p4/3 7 ). The energy to bring the charge dq to the surface of the charge ¢ is Vdg, where V is the
potential due to ¢, which is g/47e;r.
EXECUTE: The total energy to assemble the entire sphere of radius R and charge Q is sum (integral) of the
tiny increments of energy.
pﬂﬂ'r3 2
q s 2 3(_1 9
U=|Vdg= dq = Arxredr)y == —=—
j 1 -[47r£0r 1 JO 4reyr » ) 5[47[50 R
where we have substituted p= 0/(4/3 7[R3) and simplified the result.
EVALUATE: For a point charge, R — 0 so U — o, which means that a point charge should have infinite
self-energy. This suggests that either point charges are impossible, or that our present treatment of physics
is not adequate at the extremely small scale, or both.
23.68. IDENTIFY: Divide the rod into infinitesimal segments with charge dg. The potential dV due to the segment
. 1 d .
is dy =—. Integrate over the rod to find the total potential.
dre, r
SETUP: dg=Adl, with A=Q/za and di=adé.
EXECUTE: dV = I dg_ 1 _ﬂdlz 1 0d__1 Qdé?. V= ! jﬂQd&: ! Q
dmey v 4dmey a  Amgyma a  4ngy ma drey°0 ma  4rmE) a
EVALUATE: All the charge of the ring is the same distance a from the center of curvature.
23.69. IDENTIFY and SET UP: The sphere no longer behaves as a point charge because we are inside of it. We

know how the electric field varies with distance from the center of the sphere and want to use this to find
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23.70.

23.71.

23.72.

b= =
the potential difference between the center and surface, which requires integration. V, -V}, =I E-dl.
a

The electric field is radially outward, so E - dl = E dr.
kQr

EXECUTE: For r<R E= ? Integrating gives

2
V:_jRE.df'—er.df' LY ij Y kgl 4§ "—Q+"—Q—]‘Qr3 LGP 3-25 |, Atthe
- R R R2 Ik R 2R 2R 2R|” R

340

center of the sphere, »=0 and V| = ETE At the surface of the sphere, » =R and V, = k?Q The potential

9 2 /~2 —6
difference is V; -V, = ’;—% _ P, NZ((I)“Oé EO)(“)'OOXIO 9 _3.60x10° V.
o m

kQr

EVALUATE: To check our answer, we could actually do the integration. We can use the fact that £ =—-
R

k kO R*| &k
so V- Vz—j Edr = Qj rdr = R%[zj %.

IDENTIFY: For r<c, E=0 and the potential is constant. For » > ¢, E is the same as for a point charge

and V =k_q.

7
SETUp: V_=0.

EXECUTE: (a) Points a,b, and ¢ are all at the same potential, so V, =V, =V, =V, =V, -V.=0.
kq _ (8.99x10° N-m*/C*)(150x107° C)
R 0.60 m
(b) They are all at the same potential.
(¢) Only ¥, — V., would change; it would be —2.25x10° V

EVALUATE: The voltmeter reads the potential difference between the two points to which it is connected.
IDENTIFY: Apply Newton's second law to calculate the acceleration. Apply conservation of energy and
conservation of momentum to the motions of the spheres.

1% =225x10° vV

c

-V =

o

|W]2|
d
r2 .

SET Up: Since the spheres behave as though all the charge were at their centers, we have F =k—=

U= M, where ¢, and g, are the charges of the objects and r is the distance between their centers.
r

EXECUTE: Maximum speed occurs when the spheres are very far apart. Energy conservation gives

ke 1 1 . .
% = 5”’[50\/520 + 5”’1150\71250 Momentum conservation gIVES msnVs0 = M50V 50 and V50 = 3V150.

r=0.50 m. Solve for vs; and v;5q:v5y =12.7 m/s, v;5) = 4.24 m/s. Maximum acceleration occurs just

kqiq,
2
B

after spheres are released. > F =ma gives =my 504150

(9x10°N - m?/C? )(10‘5 C)3x107° C)
(0.50 m)?
EVALUATE: The more massive sphere has a smaller acceleration and a smaller final speed.

kQ

(0 15 kg)alSO 50 = 72.0 m/S and asg —30150 =216 m/S

IDENTIFY: The potential at the surface of a uniformly charged sphere is V' =

4 .
SET UP: For a sphere, V = 37[R3 . When the raindrops merge, the total charge and volume are conserved.
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23.73.

kQ _ k(=3.60x107"% C) _

EXECUTE: (a) V =
R 6.50x10™* m

498 V.

(b) The volume doubles, so the radius increases by the cube root of two: R, = Y2 R=8.19x10"*m and
the new charge is O, =20 =-7.20% 1072 C. The new potential is
 kQpew  K(=7.20x107"2 C)

= =-79.0 V.
" Roew 8.19x10™* m

EVALUATE: The charge doubles but the radius also increases and the potential at the surface increases by

2
only a factor of —== 228 <1..
2

. . . 1 . .
IDENTIFY: Slice the rod into thin slices and use V' = 4—1 to calculate the potential due to each slice.
7[80 r

Integrate over the length of the rod to find the total potential at each point.
(a) SET UP: An infinitesimal slice of the rod and its distance from point P are shown in Figure 23.73a.

x r=x+a—x

do

Figure 23.73a

Use coordinates with the origin at the left-hand end of the rod and one axis along the rod. Call the axes
x" and )" so as not to confuse them with the distance x given in the problem.

EXECUTE: Slice the charged rod up into thin slices of width dx’. Each slice has charge dQ = Q(dx'/a)
and a distance » =x+a—x" from point P. The potential at P due to the small slice dQ is

av = ;(d_Qj _ ;Q(d_fj
Ameg\ 7 drey a\x+a-x")
Compute the total ¥ at P due to the entire rod by integrating d¥ over the length of the rod (x"=0to x"=a):

v=[ar= 0 jg’(x & _ O nrea-v)p=—2 1n(ﬂj.

Ameqa +a-x) 4rega 4mega x

EVALUATE: As x > oo, J — 0 1n[£) =0.
4reqa X

(b) SET UP: An infinitesimal slice of the rod and its distance from point R are shown in Figure 23.73b.

’

y

Figure 23.73b
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23.74.

dQ = (Qla)dx’ as in part (a).
Each slice dQ is a distance r =+/y* + (a — x’)*> from point R.

EXECUTE: The potential dV at R due to the small slice dQ is

vl 1 [dQ] 1 0 dx’
dreg\ 7 4rey a \/y +(a- x)

V=jdV—

4reya I \/

In the integral make the change of variable u = a —x’; du = —dx’

+(a- x)

0
Y [ ( [ 2 2”
V=- = In| u+ + .
472’{;‘0 -[ \/ 2+u dre a B P
[2, 2
V== 0 [lny—ln(a+ y2+a2)}: 0 {ln arNa *)
4reya 47r€0at y

(The expression for the integral was found in Appendix B.)

EVALUATE: As y —>oo, V — Q | 2 |=0.
drega \y

(©) SETUP: part (a): V =—2 1n(x+“)= 0 1n(1+3j.
P

4dreqa X 4rega

From Appendix B, In(1+u)=u— u*2..., so In(1+ a/x)=al/x— a*/2x” and this becomes a/x when x is

large.

Q (a)_

4reqa k xj 4regx

part (b V=2 || 2N+ || O

a a’
n = In| —+ [T+— |
4reya y Areya ¥ y
From Appendix B, \/1+a°/y? =(1+az/y2)1/2 =1+a%/2y%* +...
Thus aly ++1+a*/y* = 1+aly+a®/2y* +...—1+aly. And then using In(l+u) =~u gives

V—>4Q In(l+aly) - —2— KE}L

TEYa dreqa\y ) Ameyy’
EVALUATE: For large y, V' becomes the potential of a point charge.
IDENTIFY: Apply conservation of energy, K, +U, =K, +U,,.

EXECUTE: Thus V —

. For large x, V' becomes the potential of a point charge.

SET UpP: Assume the particles initially are far apart, so U, =0. The alpha particle has zero speed at the
distance of closest approach, so K, =0. 1eV =1 .60x107" J. The alpha particle has charge +2e and the

lead nucleus has charge +82e.
EXECUTE: Set the alpha particle’s kinetic energy equal to its potential energy: K, =U, gives
kQe)82e) . _ k(164)(1.60 x 107'° C)?

r (9.50%x10° eV)(1.60x 1077 J/eV)

EVALUATE: The calculation assumes that at the distance of closest approach the alpha particle is outside
the radius of the lead nucleus.

9.50 MeV = =248x10"% m
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23.75. (a) IDENTIFY and SET UP: The potential at the surface of a charged conducting sphere is: V' = 4—%
TTE
0
o Y Y
For spheres 4 and B this gives V', = and V, = .
4rey R, 4rey Ry
EXECUTE: V, =V}y gives O /47meqR, = Qp/4meyRy and Op/Q4 = Ry/R,. And then R, =3Ry implies
05/0,=1/3.
(b) IDENTIFY and SET UP: The electric field at the surface of a charged conducting sphere is
_1ld
4re, R?
rert 0 0
EXECUTE: For spheres 4 and B this gives £, = | A| > and £, = | B| >
4ne R, 4ne Ry
E 0 4me R
Ep [ 10 7 || T |=108 /04l (R4/R5)* = (13)(3)* =3.
E, \4rmeyRg |04
EVALUATE: The sphere with the larger radius needs more net charge to produce the same potential. We
can write E =V/R for a sphere, so with equal potentials the sphere with the smaller R has the larger E.
23.76. IDENTIFY and SET UP: For points outside of them, the spheres behave as though all the charge were
concentrated at their centers. The charge initially on sphere 1 spreads between the two spheres such as to
bring them to the same potential.
1 1
EXECUTE: (a) £, = —% V= o RE.
4re) R 4rey Ry
(b) Two conditions must be met:
1) Let g, and g, be the final charges of each sphere. Then g, +¢, = O, (charge conservation).
2) Let V} and ¥, be the final potentials of each sphere. All points of a conductor are at the same potential,
so Vj=V;.
V., =V. ; 9 il 1 9> —
1 =V, requires that —=——-—= and then ¢,/R =¢,/R,.
4dngy R, 4rme, R,
OBy = 4R = (O — g R
(©) V= L 4 9 and V, = L % _ 9 , which equals 7] as it should.
ey R, 4nmgy (R + Ry) ey R, 4mey (R, + R,)
V.
@wg=H-— o g N G
Ry Ame,Ry(R +Ry) R, 4mg,R,(R +R,)
EVALUATE: Part (a) says g, = q;(R,/R;). The sphere with the larger radius needs more charge to produce
the same potential at its surface. When R, =R,, q; = ¢, = 0;/2. The sphere with the larger radius has the
smaller electric field at its surface.
23.77. IDENTIFY: Apply conservation of energy: E; =FE,.

SET Up: In the collision the initial kinetic energy of the two particles is converted into potential energy at
the distance of closest approach.
EXECUTE: (a) The two protons must approach to a distance of 2r,, where r, is the radius of a proton.

1 2 ' —19 2
E, =E, gives 2[—mpvz}=ki and v= kd EOXIO © 5 =7.58%10% m/s.
2 2r, 2(1.2x107"° m)(1.67x1077 kg)
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(b) For a helium-helium collision, the charges and masses change from (a) and

-19 2
y= ’_‘ 1(52(1'60“0 ) ———=7.26x10° mJs.
(3.5x107"° m)(2.99)(1.67x10727 kg)

2 ma? —27 6 2
© g T _m? 7, =M _ (1.67x10 kg)(7.2538><10 ) 09K,
2 2 3k 3(1.38x10722J/K)
Cmgy? (2.99)(1.67x107%7 kg)(7.26x10° m/s) 6.4x10° K

Y 3(1.38x1072 J/K)

(d) These calculations were based on the particles’ average speed. The distribution of speeds ensures that
there is always a certain percentage with a speed greater than the average speed, and these particles can
undergo the necessary reactions in the sun’s core.
EVALUATE: The kinetic energies required for fusion correspond to very high temperatures.
23.78. IDENTIFY and SET UP: Apply E = _(8_V; + a—Vj + a—Vlej
ox dy 0z

EXECUTE: (a) E = OLln a—V] LU e 6Ayj -2 Azk.
dx  dy 0z
(b) A charge is moved in along the z-axis. The work done is given by
W, 6.00x107 J

gz2  (1.5x107° C)(0.250 m)>

b
Hash _y _y ana Vo=Vy=| E-dl.
9o a

=640 V/m?.

0~ A 0
W=g| E-kdz=q| (-24z)dz=+(A4q)z;. Therefore, A=
Zy 2y

() E(0,0,0.250) =—2(640 V/m*)(0.250 m)k =—(320 V/m)k.
(d) In every plane parallel to the xz-plane, y is constant, so V(x,,z) = Ax* + 4z* - C, where C= 3Ay2.

% 2_V+C

X +z =R?, which is the equation for a circle since R is constant as long as we have constant

potential on those planes.
1280V +3(640 V/m?)(2.00 m)*

P =14.0 m? and the radius
m

(e) ¥=1280V and y=2.00 m, so x°+z°

of the circle is 3.74 m.

EVALUATE: In any plane parallel to the xz-plane, E projected onto the plane is radial and hence
perpendicular to the equipotential circles.
23.79. IDENTIFY and SET UP: We know that the potential is of the mathematical form V(x,y,z) = Ax' + By" +
oV av

—, E, = , and E, z—a—V. Various measurements are given in
ax’ Yy z

the table with the problem in the text.

EXECUTE: (a) First get 4, B, C, and D using data from the table in the problem.
7(0,0,0)=10.0V=0+0+0+D,soD=10.0 V.

1(1.00,0,0)=A(1.00m)' +0+0+10.0 V=400 V,s0 A =—6.0V-m".

(0, 1.00, 0) = B(1.00 m)" + 10.0 V=6.0 V,s0 B=—4.0V-m™

7(0, 0, 1.00 m) = C(1.00 m)" + 10.0 V=8.0V,s0 C=-2.0V-m".

Now get /, m, and n.

E = —%—V = —ZAxH, and from the table we know that £,(1.00, 0, 0) = 12.0 V/m. Therefore

o X
~1(-6.0 V-m")(1.00 m)" ' = 12.0 V/m.
(6.0 V-m")=12.0 V/m.
1=2.0.

o
y

CZ" + D. We also know that E, =—

E,=

E(0, 1.00, 0) =—m(—4.0 V- m ™)(1.00 m)™" =12.0 V/m.
m=3.0.

=-mBy"".
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E, = _ —-nCz"".
0z
E.(0,0,1.00) =-—n(-2.0 V- m™)(1.00 m)"™" =12.0 V/m.
n==6.0.
Now that we have [, m, and n, we see the units of 4, B, and C, so
A =-6.0V/m’.
B=-4.0 V/m’.
C=-2.0V/m’.

Therefore the equation for V(x,y,z) is

V = (=6.0 V/m*)x* + (-4.0 V/m®))’ + (-2.0 V/m®)z® + 10.0 V.

(b) At (0, 0, 0): ¥ =0 and E = 0 (from the table with the problem).

At (0.50 m, 0.50 m, 0.50 m):

V= (-6.0 V/m>)(0.50 m)* + (4.0 V/m’)(0.50 m)’ + (~2.0 V/m®)(0.50 m)* + 10.0 V=8.0 V.

E = —aa—V =—(—12.0 V/m*)x = (12.0 V/m?)(0.50 m) = 6.0 V/m.
X
E, = LoV _ —3(=4.0 V/m®)y* = (12 V/m*)(0.50 m)* = 3.0 V/m.
dy
E, = _aa_V =—(-12.0 V/m®z’ = (12.0 V/m®)(0.50 m)’ = 0.375 V/m.
Z

E= \/E§ +E;+E; = \/(6.0 V/m)? + (3.0 V/m)? +(0.375 V/m)> = 6.7 V/m.

At (1.00 m, 1.00 m, 1.00 m):

Follow the same procedure as above. The results are V' =-2.0 V, E=21 V/m.

EVALUATE: We know that /, m, and » must be greater that 1 because the components of the electric field
are all zero at (0, 0, 0).

23.80. IDENTIFY and SET UP: Energy is conserved and the potential energy is U = P2 g 1+U =K, +U,.
r

EXECUTE: (a) Energy conservation gives K; + 0 = K, + U,.

lmvgzlmv2+k£ — v2=vg—2k—qQ-l.

2 2 X m x

On a graph of v, versus 1/x, the graph of this equation will be a straight line with y-intercept equal to vg
2kqQ

m

and slope equal to —

. . . . 1
(b) With the given equation of the line in the problem, we have v? =400 m?/s? — (15.75 m’ /sz)—. As x
X

gets very large, 1/x approaches zero, so v, =1/400m?/s* =20 m/s.

) S
(¢) The slope is _2kaQ _ ~15.75 m’/s’, which gives
m

0 =—m(slope)/2kg =—(4.00x10~* kg)(=15.75 m>/s?)/[2k(5.00x 107 C)] = +7.01x107° C =+7.01 uC.

(d) The particle is closest when its speed is zero, so
v2 =400 m?/s? — (15.75 m3/s2)l =0, which gives x=3.94x102 m=3.94 cm.
X

EVALUATE: From the graph in the problem, we see that v* decreases as 1/x increases, so v* decreases as x
decreases. This means that the positively charged particle is slowing down as it gets closer to the sphere, so
the sphere is repelling it. Therefore the sphere must be positively charged, as we found.

23.81. IDENTIFY: When the oil drop is at rest, the upward force |q| E from the electric field equals the

downward weight of the drop. When the drop is falling at its terminal speed, the upward viscous force
equals the downward weight of the drop.

4
SET UP: The volume of the drop is related to its radius 7 by V' = Eﬂr3.
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23.82.

4_7rpr3gd
3 Vg

3
EXECUTE: (a) F, :mg:%pg. F,=|q|E =|q|Vp/d. F,=F, gives |q|=

Y

pg =6mnrv, gives r= o
3 2pg

3
g =228 gd{ /—9’”‘} PPN Uiy
3 Vap [N 2Pg Vg \ 2pg

(b)

. Using this result to replace 7 in the expression in part (a) gives

3.3

v
(c) We use the values for V3 and v, given in the table in the problem and the formula |q| = 187ZVi Z—t
AB 124

from (c). For example, for drop 1 we get
1.00x107 m [(1.81x107> N-s/m?)*(2.54x107> m/s)?
9.16 V 2(824 kg/m>)(9.80 m/s?)

the remaining drops gives the following results:

Drop 1: 4.79%x10"° C

Drop 2: 1.59x107"° C

Drop 3: 8.09x10 " C

Drop 4: 3.23x10°"° C

(d) Use n = g/e, to find the number of excess electrons on each drop. Since all quantities have a power of
107" C, this factor will cancel, so all we need to do is divide the coefficients of 10""° C. This gives
Drop 1: n = q1/q, = 4.79/1.59 = 3 excess electrons

Drop 2: n = g,/q, = 1 excess electron

Drop 3: n = g3/q, = 8.09/1.59 = 5 excess electrons

Drop 4: n = q4/q, = 3.23/1.59 = 2 excess electrons

(e) Using ¢ = —ne gives e = —g/n. All the charges are negative, so e will come out positive. Thus we get
Drop 1: e, = gi/n; = (4.79x10™"° C)/3 = 1.60x10"° C

Drop 2: e, = go/n, = (1.59x10™"° C)/1 = 1.59x10 "° C

Drop 3: e3 = gy/n; = (8.09x10™"° C)/5=1.62x10"° C

Drop 4: es = gu/ns = (3.23x10"° C)2=1.61x10" C

The average is

ew=1(e1+er+es+e)d=[(1.60+1.59+1.62+1.61)x10" C)/4=1.61x10" C.

EVALUATE: The result e = 1.61x10 ' C is very close to the well-established value of 1.60x10™" C.
IDENTIFY: Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length
of the cylinder to find the total potential. The electric field is along the axis of the tube and is given by

|q|= 187 =4.79x107" C. Similar calculations for

ox
SET UP: Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the
slice be at coordinate z along the x-axis, relative to the center of the tube.
EXECUTE: (a) For an infinitesimal slice of the finite cylinder, we have the potential

dv = k dQ = k0 d . Integrating gives
Ja-22+R> L Jx-2?+R?
L2 Li2—x
Vv =k_QJ' /2L=k—QI ” L where u = x — z. Therefore,
Lk \/(x—z)2+R2 L 2-LR=x 2 1 g2

yokO JL2=x)? +R* +(L/2-x)

L) Jw2+x)?+R2-L2-x

J(L2=x)?+R? +L/2— N 2 -
(b) For L <<R, Vzgln ( X R+ al zan[ X oL AR +L2 X

Lo\ Jwa+x?+R-L2-x | L | x+xL+R2—L2—x

on the cylinder axis.
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y kO J1=XLIR? +x2) + (L2 = x)NR? + x* _kO 1-xL/2(R* +x*)+(L12 = x)INR* + x*
Lo 14 al/(R2 ) + (~LR2-)NR* +x2 | L | 14 xL/2(R? + %)+ (~L/2 = )N R + 2
2, .2
p KO | L LNR 22 | k0 IH{H;}_%_;} |
Lo l1-p2yrR*+x* | L 2VR? +x* 2R? + X
k 2L ki S .
V= kQ = 0 , which is the same as for a ring.
L ox?+R? \x*+R?
- ZkQ(\/(L —2x)? +4R? — (L +2x)* + 4R? )
© £, = _a_ y 2 2 2 2
x J(L=2x)? +4R2 (L +2x)2 + 4R
; . ki
EVALUATE: For L << R the expression for £, reduces to that for a ring of charge, £, = L, as
x * T (2 + a2
shown in Example 23.14.
23.83. IDENTIFY: Angular momentum and energy must be conserved.
SET Up: At the distance of closest approach the speed is not zero. E=K +U. q, =2e, g, =82e.
EXECUTE: mvjb=mv,ry. E, =E, gives E| = %mvzz KD p 11 Mev=1.76%10712 1. 1, s the
)
, - ) b b kqq
distance of closest approach. Substituting in for v, =v;| — | we find E, = £, — +—122
7 5) 7
(B3 = (kqiqy)r, — Ep* =0. For b=10"%m, r,=1.01x10""2 m. For 5=10""m, r =1.11x10" m,
And for b=10""*m, r, =2.54x10""* m.
EVALUATE: As b decreases the collision is closer to being head-on and the distance of closest approach
decreases. Problem 23.74 shows that the distance of closest approach is 2.48 x 107" m when b=0,
which is very close to our value.

23.84. IDENTIFY and SET UP: The He ions are first accelerated toward the center and then accelerated away from
the center, but always in the same direction. During the first acceleration, their charge is —e, and during the
second acceleration it is +2e. The work-energy theorem gives AK =gAV. Call V' the voltage at the center.
EXECUTE: (a) Toward the center: AK =gAV =eV.

Away from the center: AK =gAV =2eV.

The ions gain 3.0 MeV of kinetic energy, so el + 2el =3.0 MeV.

3eV =3.0 MeV.

V'=41.0 MV, since the e cancels. This is choice (d).

EVALUATE: The negative He ions are accelerating to higher potential, and the positive He" ions are
accelerating toward lower potential.

23.85. IDENTIFY and SET Up: Conservation of energy gives K = Usjecuic = k%.

r
EXECUTE: Solve for Q: O = rK/kg = (10x10""°> m)(3.0 MeV)/(2ek) = 1.67x10"® C. In terms of e, this is
0=(1.67x10" C)/( 1.60x10™"° C) = 10.4e = 11e, so choice (b) is best.
EVALUATE: If Q = 1le, the atom is sodium (Na), which has an atomic mass of 23, compared to 4 for He.
So it is reasonable to assume that the nucleus does not move appreciably, since it is about 6 times more
massive than the He.

23.86. Ar

IDENTIFY and SET UP: The potential changes by 6.0 MV over a distance of 12 m. E,, = e

av

EXECUTE: E,, = % = (6.0 MV)/(12 m) =0.50x10° V/m = 500,000 V/m, which is choice (c).

EVALUATE: The actual variation of the field may be somewhat complicated, but the average value gives a
good idea of a typical electric field in such apparatus.



CAPACITANCE AND DIELECTRICS

24.1. IDENTIFY: The capacitance depends on the geometry (area and plate separation) of the plates.

SET UP: For a parallel-plate capacitor, V,, = Ed, E = %, and C= g

£ Vab
EXECUTE: (a) V,;, = Ed = (4.00x10° V/m)(2.50x10~> m)=1.00x10* V.
(b) Solving for the area gives
-9 _ 80.0x107 € =226%107 m? = 22.6 cm?.
Eg;  (4.00%x10° V/m)[8.854 x 10712 C?/(N-m?)]
0 _80.0x107 C
Vpy  1.00x10* V
EVALUATE: The capacitance is reasonable for laboratory capacitors, but the area is rather large.

(¢) C= =8.00x107'2 F=8.00 pF.

£
24.2. IDENTIFY and SETUP: C = 07,

A 0.000982 m?

C:Q and V =Ed.
vV

EXECUTE: (a) C=¢, —=¢ ——— =2.65pF.
@ =& =% 00328 m s
-8
(b) V=Q=M]2—C=16.4kv.
C 265x1071* F
3
(©) =V 164X1I00V 45610 Vim.

d 0.00328 m
EVALUATE: The electric field is uniform between the plates, at points that aren’t close to the edges.
24.3. IDENTIFY and SET Up: It is a parallel-plate air capacitor, so we can apply the equations of Section 24.1.

0.148x107°
EXECUTE: (2) C=—2- so ¥, =Q=X—12C=604 V.
v, C 245x10° 2 F

_ Cd _(245x107"7 F)(0.328x10™> m)
£ 8.854x107'? C2/N-m?
Vo 604 V

(©) V,=Ed so E=—4%=—_""" _ -184x10° V/m.
@ d  0328x10° m

=9.08x107> m? =90.8 cm?.

&4
(b) C=7 so A4

@ E=-2 so o=Eey=(1.84x10° V/m)(8.854x107'2 C*/N-m?) =1.63x10™> C/m>.
&,
0

: 148x107° _
EVALUATE: We could also calculate ¢ directly as Q/A. o = Q = 0.148x10 7 € =1.63x107> C/m2,

A 9.08x107> m?
which checks.
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A L
24.4. IDENTIFY: C=¢, 7 when there is air between the plates.

SETUP: A=(3.0x1072 m)2 is the area of each plate.
_ (8.854x107'% F/m)(3.0x1072 m)?

EXECUTE: C =1.59x107'2 F=1.59 pF.

5.0x107 m
EVALUATE: C increases when 4 increases and C increases when d decreases.
& A
24.5. IDENTIFY: C= g c=".
Vo d

SET UP: When the capacitor is connected to the battery, V,, =12.0 V.

EXECUTE: (a) Q=CV,, = (10.0x107 F)(12.0 V) =1.20x10~* C =120 uC.

(b) When d is doubled C is halved, so Q is halved. O =60 uC.

(c) If r is doubled, A4 increases by a factor of 4. C increases by a factor of 4 and Q increases by a factor
of 4. 0 =480 uC.

EVALUATE: When the plates are moved apart, less charge on the plates is required to produce the same
potential difference. With the separation of the plates constant, the electric field must remain constant to
produce the same potential difference. The electric field depends on the surface charge density, o. To
produce the same o, more charge is required when the area increases.

Q g4
24.6. IDENTIFY: C=— C=——.
Vb d
SET UP: When the capacitor is connected to the battery, enough charge flows onto the plates to make

V=120 V.
EXECUTE: (a) 12.0 V.

(b) (i) When d is doubled, C is halved. ¥V, :% and Q is constant, so / doubles. V' =24.0 V.

(i) When r is doubled, 4 increases by a factor of 4. V decreases by a factor of 4 and V' =3.0 V.

EVALUATE: The electric field between the plates is £ = g % V., = Ed. When d is doubled E is

& &
0 0
unchanged and 7 doubles. When 4 is increased by a factor of 4, E decreases by a factor of 4 so V" decreases
by a factor of 4.
24.7. IDENTIFY: The energy stored in a capacitor depends on its capacitance, which in turn depends on its
geometry.

g4
SETUP: C=0Q/V for any capacitor, and C = 07 for a parallel-plate capacitor.

0 _240x107"° C

12 . &4 .
EXECUTE: (a) C= =5.714x10""“ F. Using C=7 gives

Vv 420V
—12 ~2 2 -4 2
A _[8854x107" C?/(N-m 2(6.80><10 ™) 1 05 mm.
c 5714x1072 F

g4 5714x107'2 F

(b) d=2.10x107 m. € =" =2857x102 F. =2, 0
d 2 C

V'=2(42.0 V)=84.0 V.
EVALUATE: Doubling the plate separation halves the capacitance, so twice the potential difference is
required to keep the same charge on the plates.
Q &4
24.8. IDENTIFY: C=—" V,=Ed. C=—.
Vb d

SETUP: We want E =1.00x10* N/C when ¥ =100 V.
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24.9.

24.10.

24.11.

2

EXECUTE: (a) d =@=M=1.00x10’2 m=1.00 cm.
E  1.00x10* N/C

_Cd _ (5.00x107"% F)(1.00x 10~ m)

& 8.854x 10712 C?/(N -m?)

r=\/2=4.24><10_2 m=4.24 cm.
T

(b) O=CV,, =(5.00x107"2 F)(1.00x10* V) =5.00x107'° C =500 pC.

A =5.65x107 m?. A= so

EVALUATE: C= EOTJA. We could have a larger d, along with a larger 4, and still achieve the required C
without exceeding the maximum allowed E.
IDENTIFY: Apply the results of Example 24.4. C=Q/V.
SETUP: 7,=0.50 mm, 7, =5.00 mm.

L27e,  (0.180 m)27e,
In(r,/r,)  In(5.00/0.50)

() V' =0/C=(10.0x10""% C)/(4.35x107'? F)=2.30 V.

EXECUTE: (a) C = =435x10712 F.

EVALUATE: %z 24.2 pF. This value is similar to those in Example 24.4. The capacitance is determined

entirely by the dimensions of the cylinders.
IDENTIFY: Capacitance depends on the geometry of the object.

. . e 27e, L
(a) SET UP: The capacitance of a cylindrical capacitor is C =

. Solving for 1, gives
In(r, /7,

ry = raehg“l‘/c.
EXECUTE: Substituting in the numbers for the exponent gives
272(8.85%10712 C2/N-m?)(0.120 m)
3.67x107"' F

Now use this value to calculate r,: r, = raeo'182 =(0.250 cm)eo‘182 =0.300 cm.

=0.182.

(b) SET UP: For any capacitor, C =Q/V and A =Q/L. Combining these equations and substituting the
numbers gives A=Q/L =CV/L.
EXECUTE: Numerically we get

212GV _(67% 107 F)(125 V)
- B 0.120 m

EVALUATE: The distance between the surfaces of the two cylinders would be only 0.050 cm, which is just

0.50 mm. These cylinders would have to be carefully constructed.

IDENTIFY: We can use the definition of capacitance to find the capacitance of the capacitor, and then

relate the capacitance to geometry to find the inner radius.

(a) SET UP: By the definition of capacitance, C=Q/V.

=3.82x10"% C/m = 38.2 nC/m.

-9
Expcure: €= 2233010 C 500107 Fo 150 pF.

Voo 220x10*V
rr
. : - doie O b
(b) SET UP:  The capacitance of a spherical capacitor is C = 47g, —*

=T

EXECUTE: Solve for 7, and evaluate using C =15.0 pF and #, =4.00 cm, giving 7, =3.09 cm.
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24.12.

24.13.

24.14.

(¢) SET UP: We can treat the inner sphere as a point charge located at its center and use Coulomb’s law,

F-—L 4
dre, 12

(8.99x10° N-m?/C*)(3.30x 10~ C)

(0.0309 m)?

EVALUATE: Outside the capacitor, the electric field is zero because the charges on the spheres are equal
in magnitude but opposite in sign.

C 27[50
IDENTIFY and SET UP: Use — =
L In(r/r)

EXECUTE: E = =3.12x10* N/C.

which was derived in Example 24.4. Then use Q = CV'to

calculate Q.
. C_ 27y
EXECUTE: (a) Using — = gives
L In(ry/r,)

C _27(8.854x107" C*/N-m?)
L In[(3.5 mm)/(2.2 mm)]

() C=(1.20x10""" F/m)(2.8 m)=3.355x10"'° F.

0=CV=(3355x10""" F)(350x 107 V) =1.2x107' C =120 pC.
The conductor at higher potential has the positive charge, so there is +120 pC on the inner conductor
and —120 pC on the outer conductor.

EVALUATE: C depends only on the dimensions of the capacitor. Q and V are proportional.
IDENTIFY: Apply the results of Example 24.3. C=Q/V.

=1.2%107'" F/m = 120 pF/m.

SETUP: 7,=15.0 cm. Solve for 7.

Tab

} ¢ . ] 1
EXECUTE: (a) For two concentric spherical shells, the capacitance is C = —( ] kCr, —kCr, =11,

Vb—}’a

kCr,  k(116x107'% F)(0.150 m)
kC—r, k(116x107? F)=0.150 m
(b) ¥=220V and Q=CV =(116x10""2 F)(220 V) =2.55x10"° C=25.5nC.

and 7, = =0.175m=17.5cm.

EVALUATE: A parallel-plate capacitor with 4 =47r,r, =0.33 m? and d = ny—F, = 2.5x102 m has

&
C= 07 =117 pF, in excellent agreement with the value of C for the spherical capacitor.

IDENTIFY: Simplify the network by replacing series and parallel combinations of capacitors by their
equivalents.

. . . 1 1 1
SET UpP: For capacitors in series the voltages add and the charges are the same; — = el + R +... For
eq 1 2
0

capacitors in parallel the voltages are the same and the charges add; Coq =C+Cy +... C= &

EXECUTE: (a) The equivalent capacitance of the 5.0 uF and 8.0 uF capacitors in parallel is 13.0 yF.

When these two capacitors are replaced by their equivalent we get the network sketched in Figure 24.14.
The equivalent capacitance of these three capacitors in series is 3.47 yF.

() O =CioilV =(3.47 uF)(50.0 V) =174 uC.
(¢) O, is the same as Q for each of the capacitors in the series combination shown in Figure 24.22, so O
for each of the capacitors is 174 uC.
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24.15.

24.16.

24.17.

EVALUATE: The voltages across each capacitor in Figure 24.14 are V}, = % =174V,
10

Vip=200 134V, and 7y =202 193 V. Wiy 47347, =17.4 V+13.4 V4193 V=50.1 V. The sum
Cl3 C9

of the voltages equals the applied voltage, apart from a small difference due to rounding.
10.0 uF 9.0 uF

—

13.0 uF

Figure 24.14

IDENTIFY: For capacitors in series the voltage across the combination equals the sum of the voltages in
the individual capacitors. For capacitors in parallel the voltage across the combination is the same as the
voltage across each individual capacitor.

SET UP and EXECUTE: (a) Connect the capacitors in series so their voltages will add.

(b) V=V +V,+V;+...= NV}, where N is the number of capacitors in the series combination, since the

capacitors are identical. N = Ve SUEE
v, 010V

EVALUATE: It requires many small cells to produce a large voltage surge.
IDENTIFY: The capacitors between b and c are in parallel. This combination is in series with the 15 pF capacitor.
SETUP: Let C;=15pF, C,=9.0 pF and C; =11 pF.

EXECUTE: (a) For capacitors in parallel, Coq =G, +C, +... so Cy3=C, +C3 =20 pF.

=5000.

(b) C, =15 pF is in series with C,3 =20 pF. For capacitors in series, | I +L +... s0
eq Cl C2

. =L+L and Cjp; = Ot USRI EE) =8.6 pF.

Crn C Cxp C +Cy; 15 pF+20 pF

EVALUATE: For capacitors in parallel the equivalent capacitance is larger than any of the individual
capacitors. For capacitors in series the equivalent capacitance is smaller than any of the individual capacitors.
IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents. In each equivalent
network apply the rules for O and V for capacitors in series and parallel; start with the simplest network
and work back to the original circuit.

SET UP: Do parts (a) and (b) together. The capacitor network is drawn in Figure 24.17a.

I I I IC C=C,=C;=C,=4.00 uF.
2 V,,=28.0V.

G

c
311
1% 11

Vo | |
b | | C4
Figure 24.17a

EXECUTE: Simplify the circuit by replacing the capacitor combinations by their equivalents: C; and C,

are in series and are equivalent to C;, (Figure 24.17b).

- Hlz - Ak .

Figure 24.17b
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=2.00x107°F.

c.o GG _ (4.00x107° F)(4.00x107° F)
270 +C 4.00x107° F+4.00x10° F
Ci, and Cj are in parallel and are equivalent to C;,; (Figure 24.17c).

Cip3=Cr +Gs.

|Cl2
4‘:' } s == Clyy =2.00x1070 F+4.00x107° F.
| Cios
C3

Cp3 =6.00x107° F.

Figure 24.17¢

Ci»; and C, are in series and are equivalent to Cj,34 (Figure 24.17d).

CIZ3 1 _L L
:: ::I = —I |71234 Cia Cios Y Cy
C4

Figure 24.17d

C1»3Cq _ (6.00x107° F)(4.00x107 F)
Ci3+Cs  6.00x107° F+4.00x10° F
The circuit is equivalent to the circuit shown in Figure 24.17¢.

i O__| Vs =V =28.0 V.
v 1234

\l/ I C1234 Q1234 = C1234V = (240)(10_6 F)(280 V) = 672 ,UC

=2.40x107° F.

Cioza =

Figure 24.17e
Now build back up the original circuit, step by step. Cj,34 represents Cj,; and C, in series

(Figure 24.17f).
o—1] Cios O123 =04 = Q1234 =67.2uC
Vi | (charge same for capacitors in series).
C4

Figure 24.17f

Oy _ 67.24C _,

Then 1/1232_ 1.2V.
Cps  6.00 uF
= _OT2UC oy
C, 4.00 uF

Note that V, +V],3=16.8 V+11.2 V=28.0 V, as it should.

Next consider the circuit as written in Figure 24.17g (next page).



Capacitance and Dielectrics 24-7

24.18.

24.19.

€y | V2 Vy=V;, =280 V-V,
. L V=112 V.
O]
i C 5 0y = Cy/; = (4.00 uF)(11.2 V).
V=280V P 0;=44.8 uC.
o || 01, = C1oVip =(2.00 uF)(11.2 V).
b iy — 163V
4 O, =22.4 uC.

Figure 24.17g

Finally, consider the original circuit, as shown in Figure 24.17h.

B 0/=0,=0,=2244C
a Cll I I IC2 (charge same for capacitors in series).
o S—
224
iy (=Q_ 24,6y
V=280V 'y =112v 7 C, 4.00 uF
224
Vo H 2:&2 'UC=5.6V.
Cy' MY, =168V C, 4.00uF

Figure 24.17h

Note that ¥} +V, =11.2 V, which equals V5 as it should.

Summary: Oy =22.4uC, V;=5.6 V.

0, =224uC, V,=56V.

0; =448 uC, V3=11.2 V.

0,=672uC,V,=16.8 V.

© Vyy=V;=112V.

EVALUATE: VW +V,+V, =V, ot 3+V, =V. Qi =0,,0,+ 05 =0, and O, = Oy534.

IDENTIFY: The two capacitors are in series. The equivalent capacitance is given by Leq = Cil + CLZ

SET UP: For capacitors in series the charges are the same and the potentials add to give the potential
across the network.
1 1 1 1 1 -6
EXECUTE: (a) —=—+—= + , SO Ceq =1.875x10"" F. Then
Cq G G (3.00x10°F) (5.00x107° F)

—6 4 _ .
0= VCeq =(64.0 V)(1.875x107 F)=1.20x 107" C =120 uC. Each capacitor has a charge of

1.20x10™ C =120 uC.

() ¥, =0/C; =(1.20x107* €)/(3.0x10™° F)=40.0 V.

Vy=0/C, =(1.20x107* C)/(5.0x107° F)=24.0 V.

EVALUATE: V, +V, =64.0 V, which is equal to the applied potential V. The capacitor with the smaller

C has the larger V.
IDENTIFY: The two capacitors are in parallel so the voltage is the same on each, and equal to the applied
voltage V.

SET UP: Do parts (a) and (b) together. The network is sketched in Figure 24.19 (next page).
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24.20.

24.21.

% EXECUTE: V| =V,=V.
T V1J_ ‘d_ V;=52.0V.
V.=v C C
ab - ! T 2 V,=52.0V.
| < ’

Q
()

e}

Figure 24.19

C=0/VsoQ=CV.
0, =CV; =(3.00 uF)(52.0 V) =156 uC. Q, =C,V, =(5.00 uF)(52.0 V) =260 uC.
EVALUATE: To produce the same potential difference, the capacitor with the larger C has the larger Q.

IDENTIFY: For capacitors in parallel the voltages are the same and the charges add. For capacitors in
series, the charges are the same and the voltages add. C=Q/V.

SETUP: C, and C, are in parallel and Cj is in series with the parallel combination of C; and C,.
EXECUTE: (a) C; and C, are in parallel and so have the same potential across them:

30.0x107° €

=v,=2- s IO

€, 3.00x10°F

Since Cj is in series with the parallel combination of Cj and C,, its charge must be equal to their

combined charge: 0, =30.0x107° C+60.0x10° C=90.0x107° C.

1 1 1 1 1

(b) The total capacitance is found from —=—+—= + and
Cq Cn G 9.00x10°F 500x10°F

=10.0 V. Therefore, 0, = ¥,C, = (10.0 V)(6.00x10~° F) =60.0x 107 C.

O _ 90.0x10° C
Coq =3214F. V==t =—""—"—=280V.

Ceq 321x107°F

90.0x107° C

EVALUATE: V; = % =

¢ 5.00x10°F

IDENTIFY: Three of the capacitors are in series, and this combination is in parallel with the other two capacitors.
SET Up: For capacitors in series the voltages add and the charges are the same;

=180V. V,=V+V3=10.0V +18.0 V=28.0 V, as we just found.

1 1 1 . >
——=—+—+.... For capacitors in parallel the voltages are the same and the charges add,
Ceq Cl C2

Coqq=CG+Co+... C:%.
EXECUTE: (a) The equivalent capacitance of the 18.0 nF, 30.0 nF and 10.0 nF capacitors in series is 5.29 nF.
When these capacitors are replaced by their equivalent we get the network sketched in Figure 24.21. The
equivalent capacitance of these three capacitors in parallel is 19.3 nF, and this is the equivalent capacitance of
the original network.

7.5 nF

5.29 nF

6.5 nF
Figure 24.21
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24.22.

24.23.

24.24.

24.25.

(b) Oypr =Ceq/ =(19.3 nF)(25 V) =482 nC.

(c) The potential across each capacitor in the parallel network of Figure 24.21 is 25 V.

Os.5 =Cq 5Vs5 =(6.5nF)(25 V) =162 nC.

(d)25V.

EVALUATE: As with most circuits, we must go through a series of steps to simplify it as we solve for the
unknowns.

IDENTIFY: Refer to Figure 24.10b in the textbook. For capacitors in parallel, C,q =C; +C, +.... For

capacitors in series, L = i + L +....

eq Cl C2
SET UP: The 11 uF, 4 uF and replacement capacitor are in parallel and this combination is in series with
the 9.0 uF capacitor.

1 1 1 1
EXECUTE: —= = + . (I5+x)uF =72 yF and x =57 uF.
Coq BOuF \(11+4.0+x)uF 9.0 uF

EVALUATE: Increasing the capacitance of the one capacitor by a large amount makes a small increase in
the equivalent capacitance of the network.

IDENTIFY and SET UP: The energy density is given by u = %é‘OE 2 Use V = Ed to solve

for E.

EXECUTE: Calculate B: E = = L\g =8.00x10* V/m.
d 5.00%x107 m
Then u = %EOEZ = 2(8.854x 1072 C2/N - m?)(8.00 x 10* V/m)? =0.0283 J/m".

EVALUATE: FE is smaller than the value in Example 24.8 by about a factor of 6 so u is smaller by about a
factor of 67 = 36.

&,A
IDENTIFY: Apply C=Q/V. C= 07. The work done to double the separation equals the change in the

stored energy.

2
serUp: U=scp2=2
2 ek

EXECUTE: (a) V = Q/C = (3.90 1C)/(920x 1072 F) = 4240 V =424 kV.

& A
(b) C= 07 says that since the charge is kept constant while the separation doubles, that means that the

capacitance halves and the voltage doubles to 8480 V = 8.48 kV.

0> (3.90x107% C)°
(© Uy = 2=
2C 2(920x10712 F)
same, the capacitance halves, and the energy stored doubles to 2U;. The amount of work done to move the
plates equals the difference in energy stored in the capacitor, so
AU=U,;-U;=2U;-U; =U;=827ml.
EVALUATE: The oppositely charged plates attract each other so positive work must be done by an
external force to pull them farther apart.

0 &4 1
IDENTIFY: C =V—. C= 4 Vap = Ed. The stored energy is 7OV
ab
SETUP: d=1.50x10"m. 1uC=10"°C
0.0180x107° C

EXECUTE: (a) C=——————==9.00x10""! F=90.0 pF.
200 V

=827x107 J=8.27 ml. Ifthe separation is doubled while Q stays the
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24.26.

24.27.

24.28.

_cd _ (9.00x107" F)(1.50x 107 m)
T & 8854x1072 C2/(N-m?)
(¢) V =Ed=(3.0x10° V/m)(1.50x107> m)=4.5x10> V=4.5kV.

(d) Energy =107 =1(0.0180x10™ €)(200 V) =1.80x10™° J=1.80 uJ.

=0.0152 m?.

(b) C e A
=—— 50
d

2 —6 2
EVALUATE: We could also calculate the stored energy as 1% = (Tl T © =1.80 uJ.
2C  2(9.00x107" F)

02 cr?

&, A
IDENTIFY: C = 07. The stored energy can be expressed either as °C or as — whichever is more

convenient for the calculation.

SET UP: Since d is halved, C doubles.

EXECUTE: (a) If the separation distance is halved while the charge is kept fixed, then the capacitance
increases and the stored energy, which was 8.38 J, decreases since U = 0%/2C. Therefore the new energy
is4.19 J.

(b) If the voltage is kept fixed while the separation is decreased by one half, then the doubling of the
capacitance leads to a doubling of the stored energy to 16.8 J, using U =C ¥2/2, when V is held constant

throughout.

EVALUATE: When the capacitor is disconnected, the stored energy decreases because of the positive work
done by the attractive force between the plates. When the capacitor remains connected to the battery,

QO = CV tells us that the charge on the plates increases. The increased stored energy comes from the battery
when it puts more charge onto the plates.

IDENTIFY: Use the rules for series and for parallel capacitors to express the voltage for each capacitor in
terms of the applied voltage. Express U, Q, and E in terms of the capacitor voltage.

SET UpP: Let the applied voltage be V. Let each capacitor have capacitance C. U = %C V2 fora single
capacitor with voltage V.

EXECUTE: (a) Series: The voltage across each capacitor is ¥72. The total energy stored is
U,=2(:cwinry=1cr.

Parallel: The voltage across each capacitor is V. The total energy stored is

U,=24crh=crr - U, =4U.

(b) O=CV for a single capacitor with voltage V. O, =2[C(V/2)]=CV; O, =2(CV) =2CV; O, =20.
(¢) E=V/d for a capacitor with voltage V. E;=V/2d; E, =V/d; E, =2E,.

EVALUATE: The parallel combination stores more energy and more charge since the voltage for each

capacitor is larger for parallel. More energy stored and larger voltage for parallel means larger electric field
in the parallel case.

11 0

. . . 1
IDENTIFY: The two capacitors are in series. —=—+—+..., C==,and U = %CVZ.
eq Cl CZ 4

SET UP: For capacitors in series the voltages add and the charges are the same.

EXECUTE: (a) L = i +L SO Ceq — CICZ — (150 HF)(120 HF)
eq C] C2 Cl + C2 150 nF +120 nF

0=CV =(66.7 nF)(48 V)=3.2x10"° C=3.2 4C.

(b) O =3.2 uC for each capacitor.

(© U=1C, % =1(66.7x107 F)48 V)’ =77 ul.

=66.7 nF.

(d) We know C and Q for each capacitor so rewrite U in terms of these quantities.
u=Licr?=1cicy =0*nc.
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24.29.

24.30.

_(32x107° ©)? _;
2(150x107° F)
_(32x10°° C)*
2(120x107° F)
Note that 34 pJ+43 pJ =77 ul, the total stored energy calculated in part (c).
0 _32x10°C _
C 150x107° F
0 32x10°C
C 120x107° F
Note that these two voltages sum to 48 V, the voltage applied across the network.

150 nF: U

4 ul.

120nF: U 43 ul.

(e) 150 nF: V = 21V.

120 nF: V' = =27 V.

EVALUATE: Since Q is the same, the capacitor with smaller C stores more energy (U = Q2/ 2C) and has a
larger voltage (V =Q/C).

Y

IDENTIFY: The two capacitors are in parallel. C,, =C+C,. C= = U= %C V2.

SET UP: For capacitors in parallel, the voltages are the same and the charges add.

EXECUTE: (a) C,q =C;+C, =35nF+75nF=110nF. O, =CV =(l 10x107° F)(220 V) =24.2 uC
(b) V' =220V for each capacitor.

35nF: O35 =Cs5V = (35x10™ F)(220 V) =7.7 uC; 75 nF: 075 =Cq5V = (75%107° F)(220 V) =16.5 uC.
Note that O35+ 075 = Oy

(©) Uy =1 Ce/? =1(110x107 F)(220 V)* =2.66 ml.

(d) 35 nF: Uss =1Cy07% =1(35x107° F)(220 V)* =0.85 ml;
75 0F: Uys =1Cp507% =1(75x107° F)(220 V)* =1.81 mJ. Since ¥ is the same the capacitor with larger C

stores more energy.

(e) 220 V for each capacitor.

EVALUATE: The capacitor with the larger C has the larger Q.
IDENTIFY: Capacitance depends on the geometry of the object.

(a) SET UP: The potential difference between the core and tube is V' = %ln(rb /r,). Solving for the

g,

eV Ame)V
In(r,/r))  2In(r,/r,)’

linear charge density gives A=

6.00V

EXECUTE: Using the given values gives A= =6.53x107° C/m.

2(9.00x10” N-m*/C?) In Gg(())j

(b) SETUpP: Q=AL.

EXECUTE: O =(6.53x1071" C/m)(0.350 m)=2.29x107'" C.

(¢) SET UpP: The definition of capacitance is C =Q/V.

co 2.29%x107'0 C
6.00 V

(d) SET UpP: The energy stored in a capacitor is U = %CVz.

EXECUTE: =3.81x107"'F.

EXECUTE: U =1(3.81x107"" F)(6.00 V)* =6.85x107"" I.

EVALUATE: The stored energy could be converted to heat or other forms of energy.
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24.31.

24.32.

25.33.

24.34.

IDENTIFY: U =10V. Solve for 0. C=0Q/V.

o . C 27,
SET Up: Example 24.4 shows that for a cylindrical capacitor, — = .
L In(r/r,)

-9
EXECUTE: (a) U=10V gives Q:%:%:L@xlo_g C.

C 27, . :
(b) == . Solving for r,/r, gives
L In(n/r,)

b = exp(27€,L/C) = exp(27€, LV /Q) = exp[27€,(15.0 m)(4.00 V)/(1.60x10™° C)]=8.05.

a
The radius of the outer conductor is 8.05 times the radius of the inner conductor.
EVALUATE: When the ratio 7,/r, increases, C/L decreases and less charge is stored for a given potential

difference.
IDENTIFY: Apply u= %eoEz.
0

47r€0r

SET UP: Example 24.3 shows that F =

Q _( Ta"b JV
4 - ab*
7[80 Vb—l’a

oy JVab {(0.125 m)(0.148 m)j120 V_965V-m

EXECUTE: E=|—%
=, 0.148 m—0.125m ) 2 2

between the conducting shells and that

7‘2

(a) For »=0.126 m, E =6.08x10> V/m. u :%goEz =1.64x107* I/m’.

(b) For r=0.147 m, E=4.47x10° V/m. u= %EOEZ =8.85x107 J/m’>.

EVALUATE: (c) No, the results of parts (a) and (b) show that the energy density is not uniform in the
region between the plates. E decreases as r increases, so u decreases also.

IDENTIFY:  C=KC,. U=1cr?.

SETUP: Cj =12.5 uF is the value of the capacitance without the dielectric present.
EXECUTE: (a) With the dielectric, C =(3.75)(12.5 uF) =46.9 uF.

Before: U =1Col? =1(12.5%107° F)(24.0 V)* =3.60 mJ.

After: U=1Cr? =1(46.9x107° F)(24.0 V)* =13.5 mJ.

(b) AU =13.5 mJ —3.6 mJ =9.9 mJ. The energy increased.

EVALUATE: The power supply must put additional charge on the plates to maintain the same potential
difference when the dielectric is inserted. U = %QV, so the stored energy increases.
IDENTIFY: V =Ed and C=Q/V. With the dielectric present, C = KC,,.

SETUP: V =Ed holds both with and without the dielectric.

EXECUTE: (a) V = Ed =(3.00x10* V/m)(1.50x10™> m)=45.0 V.

0=C,V =(8.00x107" F)(45.0 V) =3.60 x 107 C =360 pC.
(b) With the dielectric, C = KC; =(2.70)(8.00 pF) =21.6 pF. Vis still 45.0 V, so
0=CV=(21.6x10"2 F)45.0 V)=9.72x107'° c =972 pC.

EVALUATE: The presence of the dielectric increases the amount of charge that can be stored for a given
potential difference and electric field between the plates. Q increases by a factor of K.
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24.35.

24.36.

24.37.

24.38.

IDENTIFY and SET UP: Q is constant so we can apply Eq. (24.14). The charge density on each surface of
the dielectric is given by o; =o(1-1/K).
_Ey _3.20x10° V/m _

= 1.28.
E  250%x10° V/m

E
EXECUTE: E = ?0 so K

(a) o, =0(1-1K).
0 =£yEy =(8.854x107'2 C*/N-m?)(3.20x10° N/C) = 2.833x10°® C/m?.

0, =(2.833x107° C/m?)(1-1/1.28) = 6.20x10”" C/m”.

(b) As calculated above, K =1.28.

EVALUATE: The surface charges on the dielectric produce an electric field that partially cancels the
electric field produced by the charges on the capacitor plates.

IDENTIFY: Capacitance depends on geometry, and the introduction of a dielectric increases the
capacitance.

SET UP: For a parallel-plate capacitor with dielectric, C = K&, 4/d.
EXECUTE: (a) Solving for d gives

Keyd  (3.0)(8.85x 107! C2/N -m?)(0.22 m)(0.28 m)

d=—2 =1.64x107° m =1.64 mm.
c 1.0x10™ F
g . . : 1.64 mm
Dividing this result by the thickness of a sheet of paper gives —————— = 8 sheets.
0.20 mm/sheet

Cd _ (1.0x10™ F)(0.012 m)
Ke,  (3.0)8.85x107'2 C?2/N-m?)
(c) Teflon has a smaller dielectric constant (2.1) than the posterboard, so she will need more area to
achieve the same capacitance.

EVALUATE: The use of dielectric makes it possible to construct reasonable-sized capacitors since the
dielectric increases the capacitance by a factor of K.

IDENTIFY and SET UP: For a parallel-plate capacitor with a dielectric we can use the equation

C = K&, A/d. Minimum 4 means smallest possible d. d is limited by the requirement that E be less than

=0.45m>.

(b) Solving for the area of the plates gives 4 =

1.60x107 V/m when V is as large as 5500 V.

EXECUTE: V =FEd sod =K—ﬂ=3.44x10’4 m.

E 1.60x107 V/m

_9 _4
Then 4= G4 _ (1.25x107 F)(3.44x10~ m)

Ke,  (3.60)(8.854x 1072 C2/N-m?)
EVALUATE: The relation V' = Ed applies with or without a dielectric present. A would have to be larger if
there were no dielectric.
IDENTIFY: We can model the cell wall as a large sheet carrying equal but opposite charges, which makes
it equivalent to a parallel-plate capacitor.

=0.0135m>.

SET UP: With air between the layers, £, = % -2 and V) = E,d. The energy density in the electric
£ £,
0 0

fieldis u = %goE 2. The volume of a shell of thickness  and average radius R is 47R*. The volume of a

. . . . . . E, V
solid sphere of radius R is %ﬂ'RS . With the dielectric present, £ = ?0 and V = ?0.

-3 2

EXECUTE: (a) E, = o _ 0.50x10™" C/m
& 8.854x107'2 C?/(N-m?)
(b) Vy=Eyd = (5.6><107 V/m)(5.0><10_9 m)=0.28 V. The outer wall of the cell is at higher potential,

since it has positive charge.

=5.6x10" V/m.
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24.39.

24.40.

24.41.

24.42.

(c) For the cell, V) = %JFR3, which gives R = (341:““) = [3(10 2 o )J =2.9x10"% m. The volume
T T

of the cell wall is V, ;= 4Rt = 47(2.9% 1076 m)2(5.0>< 107 m)=5.3X% 107" m?. The energy density in
the cell wall is u,, = %eOEg = 1[8.854 10712 C2/(N-m?)](5.6x 107 V/m)? =1.39%10* J/m>. The total

electric-field energy in the cell wall is (1.39><104 J/m3)(5.3><10_19 m3) =7x107 J.

,
Ey _56x10"Vim _ g Vo 028V
K 54 K 54

EVALUATE: To a first approximation, many biological structures can be modeled as basic circuit
elements.

IDENTIFY: C=Q/V. C=KC,. V=Ed.

SET UP: Table 24.1 gives K =3.1 for mylar.

EXECUTE: (a) AQ=0-0,=(K-1)0y=(K-1)Cp}, = (2.1)(2.5x107" F)(12 V) = 6.3x107° C.
(b) 0, =0(1-1/K) so 0, =0(1-1/K)=(9.3x107% C)(1-1/3.1)=6.3x107° C.

(c¢) The addition of the mylar doesn’t affect the electric field since the induced charge cancels the

additional charge drawn to the plates.
EVALUATE: E =V/d and V is constant so £ doesn’t change when the dielectric is inserted.

@ E= =0.052 V.

IDENTIFY and SET UP: The energy density is due to the electric field in the dielectric. u = %gE 2, where
€=Kg,. V=~FEd. Inthis case, £ = 0.800E,.
EXECUTE: (a) Using u = %E,‘E 2 with e=K £,, we have

u=(1/2)(2.6) (8.854x107'? C?/N-m?)[(0.800)(2.0x107 V/m)}* =2945 J/m>, which rounds to 2900 J/m".
(b) First get the plate separation d: V' = Ed gives

d =V/E =(500V)/[(0.800)(2.0x10” V/m)]=3.125x10> m.

The stored energy is U =u x volume =uA4d, so

A=U/ud =(0.200x107> J)/[(2945 J/m*)(3.125%10°m)] = 2.2x10~> m? =22 cm>.

EVALUATE: If this capacitor has square plates, their dimensions would be x = (22 cm?)
each side. This is considerably larger than ordinary laboratory capacitors used in circuits.
(a) IDENTIFY and SET Up: Since the capacitor remains connected to the power supply the potential

12
=47 cmon

difference doesn’t change when the dielectric is inserted. Use U = %C 2 to calculate V and combine it

with K =C/C, to obtain a relation between the stored energies and the dielectric constant and use this to

calculate K.

{ -5
EXECUTE: Before the dielectric is inserted U, = %COV2 so V= 2Y _ 2(1'85X—109J) =10.1V.
Gy 360x10~ F

(b) K =CIC,.
Uy=1Cp?, U=1cr? so C/Cy=U /U,

kU _1.85x107 J+2.32x107° J

= = =2.25.
U 1.85x107° J

EVALUATE: K increases the capacitance and then from U = %C V2, with V constant an increase in C

gives an increase in U.
IDENTIFY: C=KC,. C=0Q/V. V=Ed.

SET UpP: Since the capacitor remains connected to the battery the potential between the plates of the
capacitor doesn’t change.
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24.43.

24.44.

EXECUTE: (a) The capacitance changes by a factor of K when the dielectric is inserted. Since V'is
unchanged (the battery is still connected), Catter _ Gater _ 43.0pC _ K =1.80.
Cbefore Qbefore 25.0 pC

(b) The area of the plates is = 7(0.0300 m)2 =2.827x107> m? and the separation between them is
£4 _ (8.85x107"2 C*/N-m?)(2.827x10~° m*)
12.5x107"2 F
g4 25.0x107'? €)(2.00x107 .
c=""= 2 and V :ﬂ: (25 0;; 02 C)(2 00x10 m)3 N 2.00 V. The battery remains
d ¥V &d  (8.85x107° C“/N-m~)(2.827x10™° m~)
connected, so the potential difference is unchanged after the dielectric is inserted.
w 25.0x107"2
(¢) Before the dielectric is inserted, £ = N = o 25 0x 02 < 55 =1000 N/C.
A  (8.85x107° C“/N-m~)(2.827x10™° m~)
Again, since the voltage is unchanged after the dielectric is inserted, the electric field is also unchanged.
14 2.00V

d 2.00x107 m
the result in part (c). The electric field has this value at any point between the plates. We need d to
calculate £ because V' is the potential difference between points separated by distance d.

thus d =

=2.00x107> m. Before the dielectric is inserted,

EVALUATE: F = =1000 N/C, whether or not the dielectric is present. This agrees with

IDENTIFY: Apply {)KE‘ dA= Qenclrce to calculate E. V' =Ed and C =Q/V apply whether there is a
£
dielectric between the plates or not.

(a) SET UP: Apply ﬁKE -dA= Qenclfree to the dashed surface in Figure 24.43.
)

A’ .
r EXECUTE: ﬁ'}KE -dAd = M
+0 ' | &o
x| (g4 ﬁKEdZ:KEAi
-0 since £ =0 outside the plates

Qencl—free =od'= (Q/A)A,~

Figure 24.43
Thus KEA = ©/4)4 and E = 0 .

& £gydK

Od
SET UP and EXECUTE: (b) V =FEd =———.
£9AK
&, A

@©c=2-_2 _g&° = KC,.

Vo 0dlg,AK T d
EVALUATE: Our result shows that K = C/C,,, which is Eq. (24.12).

IDENTIFY: Gauss’s law in dielectrics has the same form as in vacuum except that the electric field is
multiplied by a factor of K and the charge enclosed by the Gaussian surface is the free charge. The
capacitance of an object depends on its geometry.

(a) SET UP: The capacitance of a parallel-plate capacitor is C = K€,4/d and the charge on its plates is
o=cCr.
EXECUTE: First find the capacitance:
_ Kgyd  (2.1)(8.85x 1072 C2/N-m?)(0.0225 m?)
4 1.00x 107 m
Now find the charge on the plates: O =CV =(4.18x107'% F)(12.0 V) =5.02x107° C.

=4.18x10710 F.
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24.46.

(b) SET UP: Gauss’s law within the dielectric gives KEA =, /€;.
EXECUTE: Solving for E gives

-9
E= e _ 200 € 20x10* NIC.
KAgy  (2.1)(0.0225 m)(8.85%107 < C*/N-m?)
(c) SET Up: Without the Teflon and the voltage source, the charge is unchanged but the potential

increases, so C =¢gyA4/d and Gauss’s law now gives E4 = Q/g,.

EXECUTE: First find the capacitance:

o £A _ (8.85x 10712 C2/N-m?)(0.0225 m?)
d 1.00x107> m
0 _5.02x107 C

C 1.99x107'°F

=1.99x107'0 F.

The potential difference is V' = =25.2 V. From Gauss’s law, the electric field is

Y — 502x107° C

&4 (8.85x1072 C2/N-m?)(0.0225 m?)
EVALUATE: The dielectric reduces the electric field inside the capacitor because the electric field due to
the dipoles of the dielectric is opposite to the external field due to the free charge on the plates.

IDENTIFY: P = E/t, where E is the total light energy output. The energy stored in the capacitor is U = %C V2.
SETUP: E=0.95U.

EXECUTE: (a) The power output is 2.70x10° W, and 95% of the original energy is converted, so

E=Pt=(2.70x10° W)(1.48x10~ s) =400 J. U=%=421J.

=2.52x10* N/C.

2 2(421
) U=1cr?so c=—g=(—2=o.os4 F.
V< (125V)
EVALUATE: For a given V, the stored energy increases linearly with C.
&,4
0

IDENTIFY and SETUP: C = — C=Q/V. V=Ed. U= %C V2. With the battery disconnected,

Q is constant. When the separation d is doubled, C is halved.

A £(0.12m)’
EXECUTE: (a) C=O—=ﬁ

d  37x10° m
() 0=CV =(3.446x10" F)(12 V) = 4.135x107'% C, which rounds to 410 pC.
(¢) E=VId=(12 V)/[(3.7x10™> m) =3200 V/m.

=3.446x107"! F, which rounds to 34 pF.

@) U = %crﬂ = 2(3.446 107" F)(12 V)? =2.48 %107 J, which rounds to 2.5 nlJ.

(e) If the battery is disconnected, so the charge remains constant, and the plates are pulled farther apart to
0.0074 m, then the calculations above can be carried out just as before, and we find:

(a) C=1.7x10""' F=17 pF.
(b) 0=4.1x107'" C=410pC.
(¢) E=3200 V/m.

0> (41x107° ¢y

(d)U==-= - =5.0%x10" J=5.0nJ.
2C 20.7x107M F)
EVALUATE: Q is unchanged. E = % so E is therefore unchanged. U doubles because C is halved with
£,
0

0 unchanged. The additional stored energy comes from the work done by the force that pulled the plates
apart.
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24.47.

24.48.

24.49.

&
o,

SETUP: A=42x10" m>. The original separation between the plates is d = 0.700x107> m. d’ is the
separation between the plates at the new value of C.

Agy _ (420x107° m*)g,
d 7.00x10™* m

IDENTIFY: C=

EXECUTE: C, = =5.31x10""? F. The new value of C is

=4.76x10"*m.

_ Aeg, A 4.20%x107° m?
C=Cy+025pF=781x1073 F. But €= 0 5o ¢=260 _(420x10 " M)y
d C  78Ix1053F

Therefore the key must be depressed by a distance of 7.00x10™ m—4.76x10™* m =0.224 mm.
EVALUATE: When the key is depressed, d decreases and C increases.

4 . . . .
IDENTIFY: C = KC, = K¢, 7 V' =Ed for a parallel plate capacitor; this equation applies whether or

not a dielectric is present.
SETUP: A=1.0cm?=1.0x10"* m°.
(8.85x107'2 F/m)(1.0x10~* m?)

=1.18 uF per cm>.
75%107° m -

EXECUTE: (a) C=(10)

V8 mV

d 75x107° m
EVALUATE: The dielectric material increases the capacitance. If the dielectric were not present, the same
charge density on the faces of the membrane would produce a larger potential difference across the
membrane.
IDENTIFY: Some of the charge from the original capacitor flows onto the uncharged capacitor until the
potential differences across the two capacitors are the same.

M) E =1.13x107 V/m.

SETUp: C= g Let C; =20.0 4F and C, =10.0 uF. The energy stored in a capacitor is
ab

| |2 O
2P =2V =3¢
EXECUTE: (a) The initial charge on the 20.0 uF capacitor is
0=C/(800 V)= (20.0x107% F)(800 V)=0.0160 C.

(b) In the final circuit, charge Q is distributed between the two capacitors and Q; + 0, = Q. The final

circuit contains only the two capacitors, so the voltage across each is the same, V; =V,. V :% so 1=V,

gives %z% o) =%Qz =20,. Using thisin O, + 0, =0.0160 C gives 30, =0.0160 C and
1 G2 2

0 _1.066x107 C

0,=5.33x10" C. 0=20,=1.066x10"2C. V; =
: : "¢ 200x10° F

=533 V.

0, _533x10% C

C, 10.0x10% F
should be.

(¢) Energy =1Cp2 +1C 02 =1(G + Cy)P? gives

H = =533 V. The potential differences across the capacitors are the same, as they

Energy = 1(20.0x107° F+10.0x10™° F)(533 V)* =4.26 I.
(d) The 20.0 4F capacitor initially has energy =1C7> =1(20.0x107° F)(800 V)* =6.40 J. The decrease

in stored energy that occurs when the capacitors are connected is 6.40 J—4.26 J=2.14J.
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EVALUATE: The decrease in stored energy is because of conversion of electrical energy to other forms
during the motion of the charge when it becomes distributed between the two capacitors. Thermal energy is
generated by the current in the wires and energy is emitted in electromagnetic waves.

24.50. IDENTIFY: Initially the capacitors are connected in parallel to the source and we can calculate the charges O,

0>
20
SET Up:  After they are reconnected, the charges add and the voltages are the same, so C,q =C, +C;, as

and O, on each. After they are reconnected to each other the total chargeis O0=0, - Q). U = %C y?=

for capacitors in parallel.

EXECUTE: Originally O, =C/; =(9.0 uF) (64 V)= 5.8x107* C =580 1C, and

0, =GV, =(4.0 uF)(64 V) = 2.6x107* C =260 ucC. C =(}+C, =13.0 uF. The original energy stored
is U=1 > Ce V2 1 5 (13. 0x107° F)(64 V) =2.662x107 J. Disconnect and flip the capacitors, so now the

total chargeis O0=0, -0, = 3.20x107* C and the equivalent capacitance is still the same, C,, =13.0 #F.

0> (3.20x107* C)?
et 1 2(13.0x107% F)
AU =3.983x107 J—2.662x1072 T =—2.3x107> ] =-0.023 J.

EVALUATE: When they are reconnected, charge flows and thermal energy is generated and energy is
radiated as electromagnetic waves.
24.51. IDENTIFY: Simplify the network by replacing series and parallel combinations by their equivalent. The

The new energy stored is U = =3.983x107° J. The change in stored energy is

stored energy in a capacitor is U = %C V2.

SET UP: For capacitors in series the voltages add and the charges are the same; i Ci + CL +.... For
eq 1 2
capacitors in parallel the voltages are the same and the charges add; Coq =C;+Cy +... C= 2 U= %C V2.

EXECUTE: (a) Find C,, for the network by replacing each series or parallel combination by its
equivalent The successive simplified circuits are shown in Figure 24.51.

Ut =1 Co/? =1(2.19x107° F)(12.0 V)* =1.58x10™ 7 =158 pJ.
(b) From Figure 24.51¢, Qi =Cegl = (2.19x107% F)(12.0 V) =2.63x10™ C. From Figure 24.51b,

)
045=2.63x107 C. V4= Zlag _263x10°C_ g p0y,

Cys 480x10°F
Uyg =1Cr? =1(4.80x107° F)(5.48 V)* =7.21x107 T =72.1 4.

This one capacitor stores nearly half the total stored energy.

2
y=2

EVALUATE: pves For capacitors in series the capacitor with the smallest C stores the greatest amount

of energy.

4.06 uF

a.—-H-—-l 8.60 uF 7.56 uF

8.60 uF  4.80 uF ._I I___I l___i I__, ._2i|9|i.
a b
©

3.50 uF 4.80 uF
@ (b)

Figure 24.51
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24.52. IDENTIFY and SET UP: The charge Q is the same on capacitors in series, and the potential V is the same
for capacitors in parallel. C; is in series with C,, and that combination is in parallel with Cs. The C;-C,-C;
combination is in series with Cy. V' = Q/C.

EXECUTE: (a) Since C; and C; are in series, and that combination is in parallel with C;, the potential
difference across the C;-C, combination is the same as the potential difference across C;, which is 40.0 V.
Also, 0, =0,=0.
Vi+V,=40.0V.
Q/C,+ Q/C,=40.0 V.
0/(6.00 uF) + Q/(3.00 uF)=40.0 V.
0 =80.0 uC.
Therefore
Vi=Q/C,=(80.0 uC)/(6.00 uF)=13.3 V.
V,=Q/C,=(80.0 uC)/(3.00 uF)=26.7 V.
(b) First get the charge O, on Cy. We know that Q; = 0, = O = 80.0 uC. We also have
0;=C5V3=(4.00 uF)(40.0 V) = 160 uC.
0,=0 + 0;=280.0 uC + 160 uC =240 uC.
Vy=Q04Cy= (240 uC)/(8.00 uF)=30.0 V.
©Vypy=V3+V,=40.0V+30.0V=70.0V.
EVALUATE: C; and C, are not in parallel, so V3 # V.
24.53. (a) IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents.
SET UP: The network is sketched in Figure 24.53a.

M C,=Cs =84 yF.
. Cy=C;=C, =42 iF.

1
! 1
= C.
i/ 220V T 2

.. S|
N

Figure 24.53a

EXECUTE: Simplify the circuit by replacing the capacitor combinations by their equivalents: C; and Cy

are in series and can be replaced by C;, (Figure 24.53b):

G 1 1 1
—| — c — =t
| - Gy G Gy

||C I G+Cy

’ L

Gy GGy

Figure 24.53b

o~ GCi _ (42 uF) 42 4F) _
MU +C,  42uF+42uF

C, and Cj, are in parallel and can be replaced by their equivalent (Figure 24.53c):

2.1 uF.

I 1 — |&‘ Cr34 =G+ Gy

C234 = 63 IUF

Figure 24.53¢
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Gy, Cs, and Cy34 are in series and can be replaced by C., (Figure 24.53d):

| |C1 L:L.FL.FL
|C234 Ceq C ¢ G '

T - | fq_ 2 1
— |C5 C_eq_&4,uF+6.3,uF
Ceq=2.5uF

Figure 24.53d

EVALUATE: For capacitors in series the equivalent capacitor is smaller than any of those in series. For
capacitors in parallel the equivalent capacitance is larger than any of those in parallel.

(b) IDENTIFY and SET UP: In each equivalent network apply the rules for Q and V for capacitors in series
and parallel; start with the simplest network and work back to the original circuit.

EXECUTE: The equivalent circuit is drawn in Figure 24.53e.

i | @m-lenig

V=220V Ceq
Qeq = (25 /IF)(220 V) =550 /IC

bo T

Figure 24.53e

0 =05 = 0,34 =550 uC (capacitors in series have same charge).

lzgz_sso"lc:“\/

C, 84ufF
O: 550 uC
=25 M sy
Cs 84 uF
V234 = _2234 = —565;) luc = 87 V
34 0.3UF

Now draw the network as in Figure 24.53f.

| M=65V Vy=V34=Vy34 =87V
[ ) . .
T | | Ca4 capacitors in parallel have the same potential.
V=220V C,2—V,
| - [

G v=65v

Figure 24.53f

0, =Gyl =(4.2 uF)(87 V) =370 uC.
O34 = C3yl34 = (2.1 uF)(87 V) =180 uC.
Finally, consider the original circuit (Figure 24.53g).

[a=eV | 1S O3 =04 =03, =180 uC
el ! | L capacitors in series have the same charge.
V=220V C, 2"V =87V
| | |
cl B 1
5 Ve=65V G,

Figure 24.53g
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24.54.

24.55.

24.56.

G _I04C 4y,

3:

Cy  42uF
g _Qs _1804C_ 5y
C, 42 uF

Summary: Oy =550 uC, V; =65 V.

0,=370uC, V, =87 V.

0; =180 uC, ;=43 V.

0,=180uC, V, =43 V.

05 =550 uC, Vs =65 V.

EVALUATE: V3+V, =V, and V| +V, +V5 =220 V (apart from some small rounding error)
O =0, +0; and 05 =0, + 0.

IDENTIFY and SET Up: The total stored energy is U = %C 2, and the energy density is u = U/(volume).
The volume of a cylinder is 7°l. u = %gE 2, where £ = K &y-
EXECUTE: (a) U=1CV?=(1/2)(3000 F)(2.7 V)* =1.09x10* J, which rounds to 1.1x10* J.

(b) 3.0 Wh=(3.0J/s)(3600s)=1.1x 104 , which agrees with our result in (a) within the accuracy of the
given numbers.
(¢) u=U/(volume) =U/(xr*l) = (1.09x10* J)/[w(0.030 m)*(0.135 m)]=2.9x10 J/m°>.

(d) For polyester, K=3.3 and E_, = 6x10" V/m, so
u=1Ke E? = (1/2)(3.3)(8.854x10™"* C*/N-m?)(6x107 V/m)* =5.3x10* J/m’.

ulu =(2.9x107 J/m*)/(5.3x10* I/m*) = 540, so this capacitor can have over 500 times the energy

polyester
density of a polyester capacitor.
EVALUATE: It requires only 2.7 V to give this capacitor a stored energy of 1.1x10* J. For a typical

1.0-uF capacitor, the voltage would be ¥ = (2U/C)"? =[2(1.11x0* J)/(1.0x107° F)] =1.5x10° V =
150 kV. That’s quite a difference from 2.7 V!
IDENTIFY: Capacitors in series carry the same charge, while capacitors in parallel have the same potential

difference across them.
SETUP: V, =150V, Q =150uC, O;=450uC, and V =Q/C.

1
EXECUTE: €, =3.00 4F so ¥ =2 =130HC _ 50 and 1 =7, =500 V. 1 473=V,, so
G, 3.00 uF

V=100 V. C3=%=%=4.50uF. 0,+0, =05 50 0y =05 — 0, =450 11C 150 uC =300 uC
3

and C, =% =% =6.00 4F.
2 .

EVALUATE: Capacitors in parallel only carry the same charge if they have the same capacitance.
IDENTIFY: Apply the rules for combining capacitors in series and in parallel.
SET UP: With the switch open, each pair of 3.00 4F and 6.00 #F capacitors are in series with each other

and each pair is in parallel with the other pair. When the switch is closed, each pair of 3.00 £F and
6.00 uF capacitors are in parallel with each other and the two pairs are in series.

-1 -1
EXECUTE: (a) With the switch open Cg =[(3 1F+6 lF] +[3 1F+61F] ]=4.00,UF.
H H H H

Orota = CegV =(4.00 uF)(210 V) =8.40% 1074 C. By symmetry, each capacitor carries 420x107™* C. The
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voltages are then calculated via V' =Q/C. This gives V,; =0/C; =140V and V,.=0/Cs=70 V.
Vcd = Vad - Vac = 70 V
(b) When the switch is closed, the points ¢ and d must be at the same potential, so the equivalent

-1
capacitance is Cq = ! + ! =4.5 uF.
(3.00+6.00) uF  (3.00+6.00) uF

Orota = CegV =(4.50 uF)(210 V) =9.5 x107* C, and each capacitor has the same potential difference of

105 V (again, by symmetry).
(c) Consider the C, =3.00 gFand C, =6.00 uF capacitors in the upper branch of the network. The
only way for the net charge Q

. On the negative plate of C; and the positive plate of Cq to change is
by charge to flow through the switch. With the switch open all four capacitors have the same charge

and O, = 0. With the switch closed the charge on C; is Q3 =(3.00 uF)(105 V) =315 xC and the
charge on Cs is O, =(6.00 £F)(105 V) =630 4C and O, =0, — 0, =315 uC. Therefore, the change in
Ohet 18 315 uC and this is the amount of charge that flowed through the switch when it was closed.

EVALUATE: When the switch is closed the charge must redistribute to make points ¢ and d be at the same
potential.

(a) IDENTIFY: Replace the three capacitors in series by their equivalent. The charge on the equivalent
capacitor equals the charge on each of the original capacitors.

SET UP: The three capacitors can be replaced by their equivalent as shown in Figure 24.57a.

C, = 8.4uF
L
I C, = 8.44F c
eq
V=36V =
e ¥ 1 B
I l C, = 42uF

Figure 24.57a

EXECUTE: C;=C)/2s0 L=L+L+L :L
eq ¢ C, G 84uF
0=CegV =(2.1uF)(36 V) =76 uC.

The three capacitors are in series so they each have the same charge: O, =0, =05 =76 uC.

and C,, =8.4 uF/4=2.1 4F.

EVALUATE: The equivalent capacitance for capacitors in series is smaller than each of the original
capacitors.

(b) IDENTIFY and SET UP: Use U = %QV. We know each O and we know that V; +V, +1; =36 V.
EXECUTE: U =10/ +10,) +10505.

But 0, =0,=0;=0 so U=%Q(V1+V2+V3).

Butalso V;+V, +V3=V =36V, s0 U =20V =1(76 uC)(36 V) =1.4%x107 J.

EVALUATE: We could also use U = Qz/ 2C and calculate U for each capacitor.

(c) IDENTIFY: The charges on the plates redistribute to make the potentials across each capacitor the same.
SET UP: The capacitors before and after they are connected are sketched in Figure 24.57b.

CJ} &+ Cﬂ: Cﬂfv Cﬂfv G|+
—_—> 1 2
0 [ o] %] o o 94T

Y

Figure 24.57b
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EXECUTE: The total positive charge that is available to be distributed on the upper plates of the three
capacitors is Oy = Oy + Oy + 03 =3(76 uC) =228 uC. Thus O, + 0, + 05 =228 uC. After the circuit is
completed the charge distributes to make V; =V, =V;. V'=0/Cand V] =V, so O0;/C; = 0,/C, and then
G =G, says 0, =0,. V=03 says 0/C, =05/C; and 0, = 05(C1/Cs) = O3(8.4 uF/4.2 piF) = 20;.
Using O, =, and Q) =205 in the above equation gives 20; +20; + 05 =228 uC.

505 =228 uCand O =45.6 uC, O, =0, =91.2 uC

Q _912uC_ 1y &:M:U\/,and 1@:%:%:11\/

C, 84uF C, 84ufF C;  42uF

The voltage across each capacitor in the parallel combination is 11 V.

@) U=10/+10,0, +105.

But J; =V, =V; so U=11,(0, + 0, + 0;) =1 (11 V)(228 u1C) =1.3x107° 1.

Then V) = , V=

EVALUATE: This is less than the original energy of 1.4 X 107 J. The stored energy has decreased, as in
Example 24.7.
&4 0 1
IDENTIFY: C=——. C==. V=FEd. U==-0QV.
d 4 r
SETUP: d=3.0%x10° m. A=zr?, with r=1.0x10° m.

g4 (8.854x107'2 C*/N-m?)7(1.0x 10° m)?

EXECUTE: (a) C =—2— =93x10~ F.

d 3.0x10° m
(b) V=Q=ch=z.zx109 \'
C 93x10”F
9
(©) E=K=w=7.3x105 V/m.
d 3.0x10°m

@ U=10r=1(200)(22x10” V)=2.2x10" J.

EVALUATE: Thunderclouds involve very large potential differences and large amounts of stored energy.
IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents. In each equivalent
network apply the rules for O and V for capacitors in series and parallel; start with the simplest network
and work back to the original circuit.

(a) SET UP: The network is sketched in Figure 24.59a.

PSS | | R T C,=6.9 4F.
. J‘C2 | 102 I _—Lc1 C, =4.6 uF.
po— [ I— b —{ |
117 LS

1

Figure 24.59a

EXECUTE: Simplify the network by replacing the capacitor combinations by their equivalents. Make the
replacement shown in Figure 24.59b.

6y I 3
—||—_[_ c, ¢
T
_||Cl 6 c :Q:6~93ﬂF =23 4F.

Figure 24.59b
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Next make the replacement shown in Figure 24.59c.
Cﬁ_ Ceq =2.3ﬂF+C2.
2.3uF
. —| I— Coq =23 uF+4.6 uF=6.9 uF.

Figure 24.59¢

Make the replacement shown in Figure 24.59d.

e 1.2
16.9,;13 B Il_ Cq G 69uF 69 uF
| |CJ1 Ceq Ceq =2:3 ,UF

1

Figure 24.59d

Make the replacement shown in Figure 24.59e.

__|___|_2.3;LF= |& Coq=Cy +2.3 UF =4.6 F +2.3 uF.
C
T T ' Coy =69 4F.

Figure 24.59¢

Make the replacement shown in Figure 24.59f.

G Ifng i, | 3
— —_—t—
ao——| |—_| 69 Ceq Coqy G 69UF 6.9 uF

) | |C1 | Coq =23 4F.

Figure 24.59f

(b) SET UP and EXECUTE: Consider the network as drawn in Figure 24.59g.

- |1 G From part (a) 2.3 u4F is the equivalent
T @ 11 T 1 capacitance of the rest of the network.
V=420V _l_Cz _l_ 2.3 uF

b | |

Figure 24.59¢g

The equivalent network is shown in Figure 24.5%h.

Cy = 69uF The capacitors are in series, so all
T 2 | | | 6.9 uF three capacitors have the same Q.
V =420V
| C, = 6.9uF

Figure 24.59h
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But here all three have the same C, so by V' =Q/C all three must have the same V. The three voltages must
add to 420 V, so each capacitor has ¥ =140 V. The 6.9 uF to the right is the equivalent of C, and the

2.3 uF capacitor in parallel, so 7, =140 V. (Capacitors in parallel have the same potential difference.)
Hence O, =C\V; =(6.9 uF)(140 V)= 9.7x107* C and 0, =GV, =(4.6 uF)(140 V) = 6.4x107* C.

(¢) From the potentials deduced in part (b) we have the situation shown in Figure 24.59i.

. Cl| [ 140V | C, = 6.9uF From part (a) 6.9 uF is the equivalent
o 11 | P ¢ capacitance of the rest of the network.
. REL L0 -
V =420V o ——6.9uF
p— s
b C! "0V C; = 6.9uF
Figure 24.59i

The three right-most capacitors are in series and therefore have the same charge. But their capacitances are
also equal, so by V' =Q/C they each have the same potential difference. Their potentials must sum

t0140 V, so the potential across each is 47 Vand V_;, =47 V.

EVALUATE: In each capacitor network the rules for combining ¥ for capacitors in series and parallel are
obeyed. Note that V_; <V, in fact V' —2(140 V)-2(47 V)=V_,.

IDENTIFY: Find the total charge on the capacitor network when it is connected to the battery. This is the
amount of charge that flows through the signal device when the switch is closed.

Circuit (a):

SET Up:  For capacitors in parallel, Coq =C; +C, +Cs +....
=C+Cy+C3=60.0 uF. Q=CV =(60.0 uF)(120 V)=7200 uC.

EVALUATE: More charge is stored by the three capacitors in parallel than would be stored in each
capacitor used alone.

Circuit (b):

1
SET UP: Cequiv = {Ci + CL + CL] :

1 2 3
=5.45 uF. O =(5.45 uF)(120V) =654 uC.

EVALUATE: Less charge is stored by the three capacitors in series than would be stored in each capacitor
used alone.
(a) IDENTIFY and SET UP: Q is constant. C = KC; use C = Q/V,, to relate the dielectric constant X to

the ratio of the voltages without and with the dielectric.
EXECUTE: With the dielectric: V' =Q/C = Q/(KC)).

without the dielectric: V) = Q/C,,.
Vo/V =K,so K =(45.0 V)/(11.5 V) =3.91.

EVALUATE: Our analysis agrees with Eq. (24.13).
(b) IDENTIFY: The capacitor can be treated as equivalent to two capacitors C; and C, in parallel, one

EXECUTE:  C,qiy

EXECUTE: C

equiv

with area 24/3 and air between the plates and one with area 4/3 and dielectric between the plates.
SET UP: The equivalent network is shown in Figure 24.61 (next page).
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EXECUTE: Let C, = £ 4/d be the capacitance with only air between the plates. C; = KCy/3, C, =2C/3;
Coq =C1+C, =(C/3)(K +2).

Vzgzg( 2 j:VO( 3 j=(45.0V)(ij=22.8V.
Ceq Co\K+2 K+2 5.91

EVALUATE: The voltage is reduced by the dielectric. The voltage reduction is less when the dielectric
doesn’t completely fill the volume between the plates.
IDENTIFY: This situation is analogous to having two capacitors C; in series, each with separation

L(d-a).

. . . 1 1 1
SET UP: For capacitors in series, — =—+—

eq Cl C2 '

-1
EXECUTE: (a) C=(L+L] =1C =1 fd _ &4
G q d-a)2 d-a
goA 5 SOA d d
d-a d d-a ‘d-a
EVALUATE: (c) As a =0, C — C,. The metal slab has no effect if it is very thin. And as a = d,
C —>e. V'=0/C. V =Ey is the potential difference between two points separated by a distance y parallel

(b) C=

to a uniform electric field. When the distance is very small, it takes a very large field and hence a large O
on the plates for a given potential difference. Since O =CV this corresponds to a very large C.

IDENTIFY: Capacitors in series carry the same charge, but capacitors in parallel have the same potential
difference across them.

SErUp: V,=480V. C=0/V and U = %CVZ. For capacitors in parallel, C =C; +C,, and for

capacitors in series, 1/C =1/C; +1/C,.
2U _ 2(2.90x107° T
y? (48.0 V)?

capacitance of the network. The equivalent capacitance for C; and C, in series is

EXECUTE: Using U = %C 2 gives C = =2.517x107® F, which is the equivalent

C,= %(4.00 UF)=2.00 uF. If C,; is the equivalent capacitance for Cj, and C; in parallel, then

1 1 1 . ;
—+—=—. Solving for Cj,; gives
Gy G
o1 1 !

L —- —=2.722x10° F', so Cjp3 =3.673x10™° F.
Chps C Cp 2517x10%F 8.00x10°%F

C12 + C3 = C123. C3 = C123 —C12 =3673 ﬂF—2OO ﬂF =167 IUF

EVALUATE: As with most circuits, it is necessary to solve them in a series of steps rather than using a
single step.
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2
24.64. IDENTIFY: The electric field energy density is u =g E>. U = Q—
270 2C

SET Up: For this charge distribution, E=0 for r<r,, E= for v, <r<mn, and E=0 for r>n,.

2meyr
C g, R .
Example 24.4 shows that — = for a cylindrical capacitor.
L In(r,/r)
2 2
EXECUTE: (a) u=1g/E? =1g, A __4 ,
? 27\ 27eyr ) 8mteyr?

D 1 2
() U= IudV = 2ﬂLIurdr = ij » and AR In(r, /r,).
drey 1, 1 L 4re, a
0> 0 fiA7 ! .
) U= C- arz,L In(r, /r,) = % In(r, /r,,). This agrees with the result of part (b).
0>

EVALUATE: We could have used the results of part (b) and U = e to calculate C/L and would obtain

the same result as in Example 24.4.
24.65. IDENTIFY: The two slabs of dielectric are in series with each other.

. ' . . I 1 1 =
SET Up: The capacitor is equivalentto C; and C, in series, so —+—=—, which gives C =&.
g ¢ C C+G,
. K.g,4 K,g,4
EXECUTE: With d =1.90 mm, C, = 7 and C, = 7
-12 2 2 2
o KK, \&A 2((4.7)(2.6)j(8.854><10 C”/N-m~)(0.0800 m)® _ 480> "0
K+K,)d \47+26 1.90x10 m

U= %CVZ = %(4.992x10’” F)(86.0 V)? =1.85x107" J.
EVALUATE: The dielectrics increase the capacitance, allowing the capacitor to store more energy than if it
were air-filled.

24.66. IDENTIFY: The capacitor is equivalent to two capacitors in parallel, as shown in Figure 24.66.

Figure 24.66

SET UP: Each of these two capacitors have plates that are 12.0 cm by 6.0 cm. For a parallel-plate

capacitor with dielectric filling the volume between the plates, C = K¢, 7 For two capacitors in parallel,

C =C,+C,. The energy stored in a capacitor is U = %CVz.
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EXECUTE: (a) C=C;+C,.
A (8.854x107'2 F/m)(0.12 : _
C2=gO—=(885 %10 /m)(0 0m)(0060m)=1.42><10 g
d 4.50x107° m
C,=KC, =(3.40)(1.42x107" F)=4.83x107'" F. C=C,+C,=6.25x10""" F=62.5 pF.
(b) U=1cr?=1(6.25x107"" F)(18.0 V)’ =1.01x107° .
(©)Now C,=C, and C=2(1.42x10""" F)=2.84x107"' F.
U=1cr?=12.84x107" F)(18.0 V)* =4.60x107° J.
EVALUATE: The plexiglass increases the capacitance and that increases the energy stored for the same
voltage across the capacitor.
24.67. IDENTIFY: The object is equivalent to two identical capacitors in parallel, where each has the same area 4,
plate separation d and dielectric with dielectric constant K.
& A
SET UP: For each capacitor in the parallel combination, C = 07.
EXECUTE: (a) The charge distribution on the plates is shown in Figure 24.67.
2
() C= 2(@j - 2(4'2)50(0'1420 M) _ 5 38x10™ F.
d 45107 m
EVALUATE: Iftwo of the plates are separated by both sheets of paper to form a capacitor,
£,4 =
C= ZO_d = %, smaller by a factor of 4 compared to the capacitor in the problem.
S |
a + + + + + F + b
4' RIS | i —
I |
Figure 24.67
24.68. IDENTIFY: The system is equivalent to two capacitors in parallel. One of the capacitors has plate

separation d, plate area w(L — k) and air between the plates. The other has the same plate separation d,

plate area wh and dielectric constant K.

K €,4
SET UP: Define K 4 by Ceq = effd 0" where 4 =wL. For two capacitors in parallel, Coq =G+,

gw(L—h)  Kegwh _ewL (1 Kh hj This

EXECUTE: (a) The capacitors are in parallel, so C = y d J 5 7

. Kh h
ives Koo =|1+———|.
g eff ( L Lj

. . L L
(b) For gasoline, with K =1.95: % full: K¢ (h = Zj =1.24; % full: Kg (h = Ej =1.48;

3L
3 full: Keff(h =Tj=1'71'
(¢) For methanol, with K =33: % full: K ¢ (h = %) =9; % full: K (h = —J =17;

3L

(d) This kind of fuel tank sensor will work best for methanol since it has the greater range of K. values.
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EVALUATE: When h=0, K =1. When h=L, K4 =K.

. . . 1 1 1 . . c,C
IDENTIFY and SET UP: For two capacitors in series, — +— =——, which gives Ceq =—22_ For two
G G eq G+G

capacitors in parallel, C, = C, + C,. C = Q/V. The stored energy can be written as U = %C v? or

0>
Tac
EXECUTE: (a) When connected in series, the stored energy is 0.0400 J, so

v=lep? = 1 8% Jp2 _1f GG 5000 v)? =0.0400 J, which gives
2 2\ +C, PO
cc
12 =200 uF.
C +C,

When connected in parallel, the stored energy is 0.180 J, so
U= %crfz G C,W* = 2(C, +C,)(200.0 V)2 =0.180 J.

C1 + C2 =9.00 IUF
Solving the two equations for C; and C, gives C; = 6.00 x4F and C, =3.00 uF.
2
(b) When the capacitors are in series, both have the same charge. The stored energy is U = 2Q_C’ so the

capacitor with the smaller capacitance stores more energy, which is C,.
(c) When the capacitors are in parallel, the potential across them is the same. The stored energy is

U= %C V2, so the capacitor with the /arger capacitance stores the most energy, which is C;.

EVALUATE: When the two capacitors are connected in parallel, they can store considerably more energy
than when in series.
IDENTIFY and SET UP: The presence of the dielectric affects the charge and energy in the capacitor for a

given potential difference. V' =Ed, O = CV, K=C/C,, U :%CV2 . We use the values for K and E,,, from

Table 24.2. In this case, £ = 0.500E,, and d =2.50 mm = 0.00250 m.
EXECUTE: (a) Using U = %CVZ, C =KCy, V' =FEd, and E = 0.500E,,,, the stored energy is

2 2 2
Uzécy = %KCO(Ed) = $KCy(0.500E,,d)".

For polycarbonate, K=2.8 and E,, =3 %107 V/m. Therefore the stored energy is

U = (1/2)[(2.8)(6.00x10™'2 F)][(0.500)(3x107 V/m)(0.00250 m)]?> =1.18x1072 J, which rounds to 12 mJ.

Using similar calculations for the other materials, the results for U are:

12 mJ (polycarbonate)

56 mJ (polyester)

51 mJ (polypropylene)

4.9 mJ (polystyrene)

2.2 mJ (pyrex)

(b) O = CV = KCy(Ed) = KCy(0.500E,)d.

For polycarbonate we have

0=(2.8)(6.00x10""> F)(0.500)(3x10” V/m)(0.00250 m)=6.3x10" C=0.63 uC.

Similar calculations for the other materials yield:
0.63 uC (polycarbonate)

1.5 uC (polyester)

1.2 uC (polypropylene)

0.39 uC (polystyrene)

0.35 uC (pyrex)
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(¢) V= FEd = 0.500Fd. For polycarbonate this gives
¥ =(0.500)(3x107 V/m)(0.00250 m) =3.8x10* V=38 kV.

Similar calculations for the other materials yield:

38 kV (polycarbonate)

75 kV (polyester)

88 kV (polypropylene)

25 kV (polystyrene)

13 kV (pyrex)

EVALUATE: (d) Polyester is best for maximum energy storage and maximum charge, but polypropylene
is best for maximum voltage. No single material is best for all three categories. As so often occurs, the
choice of materials is a trade-off.

: A
IDENTIFY and SET UP: For a parallel-plate capacitor, C = 8?7' The stored energy can be expressed as

2

U=1cr? or v=<.

P,

EXECUTE: (a) If the battery remains connected, V' remains constant, so it is useful to write the energy in
terms of V and C:

2
U=icy? = %[ﬂjyzz_‘%‘ﬂ/ A

d R
If the battery is disconnected, Q remains constant, so it is useful to write the energy in terms of Q and C:
2 2 2
y-@ 0 :[_Q ]d.
2C 2( &4 j 2604
d
The graph shows a linear relationship between U and 1/d, so it must represent the case where the battery
remains connected to the capacitor.

ggAV? £y AV?

(b) In a graph of U versus 1/d for the equation U =

-%, the slope should be equal to

(73-18)x107° J
20.0 cm™ —5.0cm”™

Choosing points on the graph in the problem, the slope is -=3.67x10"" J-m.

Solving for 4 gives
A =2(slope)/ £,V? =2(3.67x10" J-m)/(8.854x10'2 C?/N-m?)(24.0 V)*]=0.014 m? =144 cm?.

: gyAV? 1 :
(¢) With the battery connected: U= =9 5 -—, so as we increase d from 0.0500 cm to 0.400 cm, the
energy decreases since V remains constant.

QZ

€

With the battery disconnected: U = [ ]d , S0 as we increase d, the energy increases since Q does not

change. Therefore there is more energy stored with the battery disconnected as d is increased.
EVALUATE: If this capacitor were square, its plates would be 12 cmXx12 cm. This is a reasonable size
for a piece of apparatus for use in a laboratory and could easily be manufactured.

IDENTIFY: The system can be considered to be two capacitors in parallel, one with plate area L(L —x)

and air between the plates and one with area Lx and dielectric filling the space between the plates.

Ke A
SETUP: C= ; for a parallel-plate capacitor with plate area 4.

EXECUTE: (a) C = %[(L - x)L+xKL | = SLDL[L +(K = x].
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&L &L
(b) dU =1(dC)1*, where C=C,+ %(—dx +dxK), with C, = "?[L +(K = 1)x |. This gives

_ 2
2D 2D

eOLV
D

(c) If the charge is kept constant on the plates, then O = [L +(K - l)xJ and

K-1)e V2L
%dx
2D

2
v=tcri=tcp?| S| v= - Eol (k 1yax | and AU=U-U, = -
2 2 Cy 2 DC,

(K—l)gOVzL

(d) Since dU = —Fdx =— dx, the force is in the opposite direction to the motion dr,

meaning that the slab feels a force pushing it out.

EVALUATE: (e) When the plates are connected to the battery, the plates plus slab are not an isolated
system. In addition to the work done on the slab by the charges on the plates, energy is also transferred
between the battery and the plates. Comparing the results for dU in part (c) to dU =—Fdx gives
_(K-DgV’L

f 7 N

IDENTIFY and SET UP: The potential difference is /'=30 mV — (=70 mV) =100 mV, and Q = CV.
EXECUTE: Q = CV gives Q/em’ = (C/em®)V = (1 #F/cm”)(100 mV)(1 mol/10° C) = 10 "> mol/cm’,
which is choice (c).

EVALUATE: This charge produces a potential difference of 100 mV = 0.1 V, which is certainly
measurable using ordinary laboratory meters.

IDENTIFY and SET UP: The change in concentration of Na ions is equal to the added charge divided by
the volume of the spherical egg. The original concentration of ions is given as 30 mmol/L. We use the
answer from Problem 24.73 to get the added charge.

EXECUTE: The added charge is (10’12 mol/cmz)(surface area of egg) = (107 mol/cm®)(47R?), and the
original volume of the egg is (47/3)R’. Therefore the change in concentration is

(10 mol/em®)(4zR*)/[ (47/3)R* | =3(10" mol/em®)/R =3(10""* mol/em?)/(100x10™*cm) =

F

3%10" mol/cm’® =3x10~° mmol/L.

The fractional change in the concentrations is (3x10~° mmol/L)/(30 mmol/L) =107, which is 1 part

in 10°. Therefore choice (b) is correct.

EVALUATE: As a percent, this change is 10 °% = 0.001%, which is quite small yet certainly important for
the organism.

IDENTIFY and SET UP:  The calcium Ca®" ions carry twice the charge of the Na" ions.

EXECUTE: The charge to produce the given voltage change would be the same as with Na®, so we would
need only half as many Ca”" ions to accomplish this. Thus choice (a) is correct.

EVALUATE: Ca' ions are nearly twice as heavy as Na' ions, so they may not move as readily as the
sodium ions.

IDENTIFY and SET UP: The energy is needed to change the potential from 30 mV to =70 mV.

U= %C V2. The capacitance is (1 uF/cm®)(surface area of egg).
EXECUTE: For a spherical egg, the surface area is 47R’, so the capacitance is
C = (1 uF/em?)(4zR?) = (1 uF/em?)(47)(100x10~* cm)® =1.26x107° F.
The change in stored energy is
AU =Lcvi Lo’ =Lews -,
AU =(1/2)(1.26x107° F)[(=70x107 V) =(30x107° V)*]=2.5x10""? J=2.5 pJ =3 pJ, which makes

choice (d) the correct one.
EVALUATE: The actual energy required would probably be greater than 2.5 pJ, depending on the process
by which the charging is accomplished, but our value is the minimum energy needed.
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25.1.

25.2.

25.3.

254.

AQ

IDENTIFY and SET UP: The lightning is a current that lasts for a brief time. 7 = N
t

EXECUTE: AQ = IAt=(25,000 A)(40x107% 5)=1.0 C.

EVALUATE: Even though it lasts for only 40 us, the lightning carries a huge amount of charge since it is
an enormous current.

IDENTIFY: [=Q/t. Use I = n|q|vdA to calculate the drift velocity vy.

SETUP: n=58x10"® m™. |¢|=1.60x107" C.

EXECUTE: (a) / :2— 4204

= =8.75x1072 A.
¢ 80(605)

J 8.75x107% A
nlgl4  (5.8x10%%)(1.60x107"° C)(r(1.3x107> m)?)
EVALUATE: v, is smaller than in Example 25.1, because / is smaller in this problem.
IDENTIFY: [=Q/t. J=1/A. J=n|q|vy.

=1.78x107% m/s.

(b) I=nlq\vdA. This gives v4 =

SETUP: A=(7/ 4)D2, with D =2.05x10" m. The charge of an electron has magnitude
+e=1.60x10"" C.

EXECUTE: (a) O =1t=(5.00 A)(1.00 s)=5.00 C. The number of electrons is [ 3.12x10".

e
) J= ! > = 5004 —— =1.51x10° A/m*.
(m/4)D*  (7/4)(2.05%107> m)
6 2
(c) vd=i e o0 Am =1.11x107* m/s = 0.111 mmys.

nlg]  (8.5%10% m)(1.60x10™" C)
EVALUATE: (d) If/is the same, J =1/4 would decrease and vy would decrease. The number of

electrons passing through the light bulb in 1.00 s would not change.
(a) IDENTIFY: By definition, J =7/4 and radius is one-half the diameter.

SET Up: Solve for the current: / =J4 = J]Z'(D/2)2

EXECUTE: [ =(3.20x10° A/m?)(7)[(0.00102 m)/2]> =2.61 A.

EVALUATE: This is a realistic current.
(b) IDENTIFY: The current density is J = n|q|vd.

SET UP: Solve for the drift velocity: vq = J/n|q|

EXECUTE: We use the value of n for copper, giving
vy =(3.20x10° A/m?)/[(8.5x10% /m*)(1.60x107"? C)] = 2.4x10™* m/s = 0.24 mm/s.
EVALUATE: This is a typical drift velocity for ordinary currents and wires.
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25.5.

25.6.

25.7.

IDENTIFY and SET UP: Use J = n|q|vd to calculate the drift speed and then use that to find the time to

travel the length of the wire.
EXECUTE: (a) Calculate the drift speed vy:
Ny 4.85A
A 7(1.025%107° m)>
o J 1.469x10° A/m?
“nlg] 8.5%10%8/m3)(1.602x107° C)
t:iz—o'ﬂof =6.58x10% s =110 min.
vg 1.079%107" m/s

I
ﬂr2n|q| ’

=1.469x10° A/m>.

=1.079x107* m/s.

Vd

(b) vy =

L _mrnldL
vy I

t is proportional to r* and hence to d* where d =2r is the wire diameter.
2
4.12 mm .
1=(6.58%x10° )| ———— | =2.66x10% s =440 min.
2.05 mm

(c) EVALUATE: The drift speed is proportional to the current density and therefore it is inversely
proportional to the square of the diameter of the wire. Increasing the diameter by some factor decreases the
drift speed by the square of that factor.

IDENTIFY: The resistance depends on the length, cross-sectional area, and material of the wires.

SETUP: R= p_L’ A=7nr? =d*/4. The resistivities come from Table 25.1.

pL  4pL

. Solving for L gives
Edz 2d> g g

EXECUTE: (a) Combining R = p_AL and 4= 7d’/4, gives R =

L= Rrd?

. Using this formula gives the length of each type of metal.

(1.00Q)7(1.00x107> m)?
4(2.44x107% Q-m)

Gold: L= =322 m.

Copper: Using p =1.72x107° Q-m we get L =45.7 m.

Aluminum: Using p = 2.75x107° Q-m, we get L =28.6 m.

(b) The mass of the gold is the product of its mass density and its volume, so

m = (density)(rd* /4)L = (1.93x10* kg/m*)7(1.00x107> m)?(32.2 m)/4 = 0.488 kg = 488 g.

If gold is currently worth $40 per gram, the cost of the gold wire would be ($40/g)(488 g) = $19,500. At
this price, you wouldn’t want to wire your house with gold wires!

EVALUATE: The resistivities of the three metals are all fairly close to each other, so it is reasonable to
expect that the lengths of the wires would also be fairly close to each other, which is just what we find.

4Y

IDENTIFY and SET UP:  Apply /= >
t

to find the charge dQ in time dt. Integrate to find the total charge

in the whole time interval.
EXECUTE: (a) dQ=1dt.

Q:J~08.05(55 A —(0.65 A/Sz)lz)d[ :|:(55 A)—(0.217 A/sz)t3:|:0 s.

0=(55A)8.0 s)—(0.217 A/s*)(8.0 s)> =330 C.
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25.8.

25.9.

25.10.

25.11.

25.12.

(b) [:Q:M:m A.

t 80s
EVALUATE: The current decreases from 55 A to 13.4 A during the interval. The decrease is not linear and
the average current is not equal to (55A +13.4 A)/2.

IDENTIFY: [ =(Q/t. Positive charge flowing in one direction is equivalent to negative charge flowing in

the opposite direction, so the two currents due to CI~ and Na* are in the same direction and add.

SETUP: Na' and CI™ each have magnitude of charge |q| =+te.

EXECUTE: () Oy = (ncy + g Je = (3.92x10' +2.68%10'°)(1.60x107"° C) =0.0106 C. Then

1:%2M20.0106A:10.6mA.

t 1.00s
(b) Current flows, by convention, in the direction of positive charge. Thus, current flows with Na* toward
the negative electrode.

EvALUATE: The CI™ ions have negative charge and move in the direction opposite to the conventional
current direction.
IDENTIFY and SET UP: The number of ions that enter gives the charge that enters the axon in the specified

AQ

time. [ =—.
At

: 19 B AQ 9.0x107*
EXECUTE: AQ =(5.6x10'" ions)(1.60x10™"° C/ion)=9.0x107% C. I = 20 _ w =9.0 uA.
At 10x107 s
EVALUATE: This current is much smaller than household currents but are comparable to many currents in
electronic equipment.
(a) IDENTIFY: Start with the definition of resistivity and solve for E.
SETUP: E=pJ= pl/;rrz.
EXECUTE: E =(1.72x107% Q- m)(4.50 A)/[7(0.001025 m)*] = 2.345%10 V/m, which rounds to
0.0235 V/m.
EVALUATE: The field is quite weak, since the potential would drop only a volt in 43 m of wire.
(b) IDENTIFY: Take the ratio of the field in silver to the field in copper.
SET Up: Take the ratio and solve for the field in silver: Eg = E.(ps/pc).

EXECUTE: E, =(0.02345 V/m)[(1.47)/(1.72)] = 2.00x 1072 V/m.

EVALUATE: Since silver is a better conductor than copper, the field in silver is smaller than the field in
copper.

IDENTIFY: First use Ohm’s law to find the resistance at 20.0°C; then calculate the resistivity from the
resistance. Finally use the dependence of resistance on temperature to calculate the temperature coefficient
of resistance.

SETUP: Ohm’slawis R=V/I, R=pL/A, R=Ry[1+a(T —T,)], and the radius is one-half the
diameter.

EXECUTE: (a) At20.0°C, R=V/I=(15.0 V)/(18.5 A)=0.811€Q. Using R= pL/4 and solving for p

gives p=RA/L=Rr(D/2)*/L =(0.811 Q)z[(0.00500 m)/2]*/(1.50 m) =1.06x10~> Q- m.
(b) At 92.0°C,R=V/I=(15.0 V)/(17.2 A)=0.872 Q. Using R = Ry[1+ o«(T —T;))] with T, taken as
20.0°C, we have 0.872 Q=(0.811 Q)[1+x(92.0°C —20.0°C)]. This gives & =0.00105 (C°)~".
EVALUATE: The results are typical of ordinary metals.
IDENTIFY: E = pJ, where J =1/4. The drift velocity is given by 1 =n|g|vy4.
SET UP: For copper, p=1.72x10° Q-m. n=8.5x10"%/m’>.

1 3.6A

EXECUTE: (a) J=—=——"""———=681x10° A/m”.
A (23%107 m)
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(b) E=pJ =(1.72x10° Q- m)(6.81x10° A/m?) =0.012 V/m.
(c) The time to travel the wire’s length / is
1 _Injgl4 (4.0 m)@8.5x10%*/m*)(1.6x107" C)(2.3x10° m)?
T 3.6A
t=1333 min = 22 hrs!
EVALUATE: The currents propagate very quickly along the wire but the individual electrons travel very
slowly.

25.13. IDENTIFY: Knowing the resistivity of a metal, its geometry and the current through it, we can use Ohm’s
law to find the potential difference across it.

SETUP: V =IR. For copper, Table 25.1 gives that p = 1.72x107® Q- m and for silver,

p=147x10" Q- m. R=p—AL.

=8.0x10%s.

—8
Execute: (a) R=2L - (L72X10 7 Q m3)(2.020 m) 1 65%1072 Q.
A 7(0.814%107° m)

v =(12.5%107 A)(1.65x1072 Q)=2.06x107* V.
(b) V=ﬂ. K=£=constant, SO Ez—c.

4 p 4 ps P

-8

v, =v,| 5 |=2.06x107* V) w =1.76x107 V.

) 1.72x10 Q- m

EVALUATE: The potential difference across a 2-m length of wire is less than 0.2 mV, so normally we do
not need to worry about these potential drops in laboratory circuits.

25.14. IDENTIFY: The resistivity of the wire should identify what the material is.
SETUP: R =pL/4 and the radius of the wire is half its diameter.

EXECUTE: Solve for p and substitute the numerical values.

7([0.00205 m]/2)*(0.0290 Q)
6.50 m
EVALUATE: This result is the same as the resistivity of silver, which implies that the material is silver.
25.15. (a) IDENTIFY: Start with the definition of resistivity and use its dependence on temperature to find the
electric field.

=147x10°%Q-m

p=AR/L=nr(D/2)*R/L=

SETUP: E =pJ = py[l+ OC(T—TO)]%-
zr

EXECUTE: E =(525x10~° Q- m)[1+(0.0045/C°)(120°C — 20°C)](12.5 A)/[7£(0.000500 m)*]=1.21 V/m.

(Note that the resistivity at 120°C turns out to be 7.61x 10 Q- m.)

EVALUATE: This result is fairly large because tungsten has a larger resistivity than copper.

(b) IDENTIFY: Relate resistance and resistivity.

SETUP: R=pL/A=pL/zr.

EXECUTE: R =(7.61x107% Q- m)(0.150 m)/[£(0.000500 m)>]=0.0145 Q.

EVALUATE: Most metals have very low resistance.

(c) IDENTIFY: The potential difference is proportional to the length of wire.

SETUP: V =EL.

EXECUTE: V' =(1.21 V/m)(0.150 m)=0.182 V.

EVALUATE: We could also calculate V' =7R=(12.5 A)(0.0145Q)=0.181V, in agreement with part (c).
25.16. IDENTIFY: The geometry of the wire is changed, so its resistance will also change.

SETUP: R= p_AL L.... =3L. The volume of the wire remains the same when it is stretched.

new
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25.17.

25.18.

25.19.

25.20.

25.21.

EXECUTE: Volume=LA so LA=L_., A

new “new *

A :—A:

new
LI’ICW

Lo, 4
!

Riew = p/fnew - £GL) = 9p_L =9R.

o A3 4

EVALUATE: When the length increases the resistance increases and when the area decreases the resistance
increases.

L
IDENTIFY: R= p— .

SET UP: For copper, p=1.72><1078£2~m. A=7mr?.

_(1.72x107% Q- m)(24.0 m)
C 2(1.025%107° m)>
EVALUATE: The resistance is proportional to the length of the piece of wire.
IDENTIFY: R= = = p—L

A 7d*/4
SET UP: For aluminum, p, =2.75% 10 Q- m. For copper, p, =1 72x1078 Q-m.

-8
EXECUTE: %:ﬁ = constant, so ’0—31 =’0—§. d,=dy Pe =(2.14 mm) w =1.69 mm.
d= 4L dy dj Pal 2.75x107° Q- m

EVALUATE: Copper has a smaller resistivity, so the copper wire has a smaller diameter in order to have
the same resistance as the aluminum wire.

IDENTIFY and SET UP: Apply R= p_AL to determine the effect of increasing 4 and L.

EXECUTE: R =0.125Q.

EXECUTE: (a) If 120 strands of wire are placed side by side, we are effectively increasing the area of the
current carrier by 120. So the resistance is smaller by that factor: R =(5.60x 10°° Q)/120=4.67 x 108 Q.
(b) If 120 strands of wire are placed end to end, we are effectively increasing the length of the wire by 120,
and so R =(5.60x107° Q)(120)=6.72x10~* Q.

EVALUATE: Placing the strands side by side decreases the resistance and placing them end to end

increases the resistance.

IDENTIFY: Apply R= p_AL and V =IR.

SETUP: A=z’

RA_VA _(4.50 V)z(6.54x10~" m)?
L IL (17.6A)2.50m)
EVALUATE: Our result for p shows that the wire is made of a metal with resistivity greater than that of

EXECUTE: p= =137x1077 Q-m.

good metallic conductors such as copper and aluminum.
IDENTIFY and SET UP: The equation p = E/J relates the electric field that is given to the current density.

V =EL gives the potential difference across a length L of wire and ¥ = IR allows us to calculate R.
EXECUTE: (a) p=E/J soJ=E/p.
From Table 25.1 the resistivity for gold is 2.44x107° Q- m.
J= E__ 049V/m
P 244x10°Q-m
I=JA=Jrr?* =(2.008x10" A/m?)7(0.42x107> m)*> =11 A.
(b) V' =EL=(0.49 V/m)(6.4 m)=3.1V.
(¢) We can use Ohm’s law: V' = IR.
V31V
T11A

=2.008x107 A/m>.

=0.28Q.
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25.22.

25.23.

25.24.

25.25.

25.26.

EVALUATE: We can also calculate R from the resistivity and the dimensions of the wire:
RoPL_pL _ (2.44x1078 Q- m)(6.4 m)

3 T =0.28 Q, which checks.
A4 zr 7(0.42x10™ m)

IDENTIFY: When the ohmmeter is connected between the opposite faces, the current flows along its length,
but when the meter is connected between the inner and outer surfaces, the current flows radially outward.

(a) SET UP: For a hollow cylinder, R = pL/A, where 4= 7z(b2 - az).

-8
pL___ (75x10°Q m@2S0m) _ o5

EXECUTE: R=pL/A=—7F——-= 5 5=
m(b*—a”) 7{(0.0460 m)~ —(0.0275 m)~]

(b) SET Up: For a thin cylindrical shell of inner radius » and thickness dr, the resistance is dR = %
r

b
For radial current flow from r=ator=5b, R= J.dR =%J lalr =(p/2xL) In(b/a).
mlLiay

-8
EXECUTE: R =%ln(b/a) e 2.75%x107°Q mln(460 cm
T

j=9.01><1010 Q.
27(2.50 m) 2.75 ecm

EVALUATE: The resistance is much smaller for the radial flow because the current flows through a much
smaller distance and the area through which it flows is much larger.
IDENTIFY: Apply R =Ry[1+a(T —T,)] to calculate the resistance at the second temperature.

(@) SETUP: o =0.0004 (C°)~' (Table 25.2). Let T, be 0.0°C and T be 11.5°C.

R 100.0

_ = =99.54 Q.
1+a(T—Ty) 1+(0.0004 (C°)'(11.5 C°))

EXECUTE: R;=

(b) SETUP: @ =—0.0005(C°)~" (Table 25.2). Let Ty =0.0°C and T = 25.8°C.

EXECUTE: R = Ry[1+a(T —Ty)] = 0.0160 Q1+ (-0.0005 (C°)~")(25.8 C°)]=0.0158 Q.

EVALUATE: Nichrome, like most metallic conductors, has a positive & and its resistance increases with
temperature. For carbon, ¢ is negative and its resistance decreases as 7 increases.
IDENTIFY: Ry =Ry[1+a(T -T))].

SETUP: R, =2173Q. Ry =215.8Q. For carbon, o = —0.()0050(C°)_1.

_(Ry/Ry) -1 _(215.8Q/2173Q)—1
o —0.00050 (C°)!

EXECUTE: T -1, =13.8C°. T=13.8C°+4.0°C=17.8°C.

EVALUATE: For carbon, « is negative so R decreases as 7 increases.
L
IDENTIFY: Use R = % to calculate R and then apply V' =IR. P=VI and energy = Pt.

SET UP: For copper, p = 1.72x10°% Q-m. 4=7mr*, where »=0.050 m.

RoPL_ (1.72x107° Q- m)(100x10°m)
A 7(0.050 m)?

(b) P=VI=(27.4V)(125 A)=3422 W =3422 J/s and energy = Pt = (3422 J/s)(3600s) =1.23x10" I.

EVALUATE: The rate of electrical energy loss in the cable is large, over 3 kW.
IDENTIFY: When current passes through a battery in the direction from the — terminal toward the
+ terminal, the terminal voltage V,;, of the battery is V, =& —1Ir. Also, V,, = IR, the potential across the

EXECUTE: (a) =0219Q. ¥ =IR=(125 A)(0.219Q)=27.4 V.

circuit resistor.
SETUP: £=24.0V. I1=4.00 A.

e-V, 240V-212V
I 4.00 A

EXECUTE: (a) V, =&—1Ir gives r= =0.700 Q.
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25.27.

25.28.

25.29.

V, 212V
I 400 A

EVALUATE: The voltage drop across the internal resistance of the battery causes the terminal voltage of
the battery to be less than its emf. The total resistance in the circuit is R+ 7 =6.00 Q.

I 240V
6.00Q
IDENTIFY: The terminal voltage of the battery is V,;, = £ —Ir. The voltmeter reads the potential difference

(b) V,, —IR=0 so R= =530Q.

=4.00 A, which agrees with the value specified in the problem.

between its terminals.

SET UP: An ideal voltmeter has infinite resistance.

EXECUTE: (a) Since an ideal voltmeter has infinite resistance, so there would be NO current through the
2.0 Q resistor.

(b) V,, =€ =5.0V; Since there is no current there is no voltage lost over the internal resistance.

(¢) The voltmeter reading is therefore 5.0 V since with no current flowing there is no voltage drop across
either resistor.

EVALUATE: This not the proper way to connect a voltmeter. If we wish to measure the terminal voltage of
the battery in a circuit that does not include the voltmeter, then connect the voltmeter across the terminals
of the battery.

IDENTIFY: The idealized ammeter has no resistance so there is no potential drop across it. Therefore it
acts like a short circuit across the terminals of the battery and removes the 4.00-Q resistor from the circuit.
Thus the only resistance in the circuit is the 2.00-Q internal resistance of the battery.

SET UP: Use Ohm’s law: [ =¢&/r.

EXECUTE: (a) /=(10.0 V)/(2.00 )=5.00 A.

(b) The zero-resistance ammeter is in parallel with the 4.00-Q resistor, so all the current goes through the
ammeter. If no current goes through the 4.00-Q resistor, the potential drop across it must be zero.

(¢) The terminal voltage is zero since there is no potential drop across the ammeter.

EVALUATE: An ammeter should never be connected this way because it would seriously alter the circuit!
IDENTIFY: The voltmeter reads the potential difference V,;, between the terminals of the battery.

SET UP: open circuit: / =0. The circuit is sketched in Figure 25.29a.

,=E£=3.08V.

rlf , EXECUTE: V,

h

R

Figure 25.29a
SET UP: switch closed: The circuit is sketched in Figure 25.29b.

P r € , EXECUTE: V,, =¢-Ir=297V.

= =297V
I\L Tl I’——] .
AMVWA

L _308V-297V

=0.067 Q.

R 1.65 A
Figure 25.29b
And V,, =IR sor=Ya 2297V _ 1800
I 1.65A

EVALUATE: When current flows through the battery there is a voltage drop across its internal resistance
and its terminal voltage V is less than its emf.
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25.30.

25.31.

IDENTIFY: The sum of the potential changes around the circuit loop is zero. Potential decreases by /R
when going through a resistor in the direction of the current and increases by £ when passing through an
emf in the direction from the — to + terminal.

SET Up: The current is counterclockwise, because the 16-V battery determines the direction of current flow.
EXECUTE: +16.0V-8.0V-1(1.6Q+5.0Q+1.4Q+9.0Q)=0.
B 16.0V-8.0V
1.6Q+5.0Q+1.4Q+9.0Q
(b) V,+16.0 V-11.6Q)=V,, so V, -V, =V, =160 V- (1.6 Q)(0.47 A)=152 V.
© V. +80V+114Q+50Q)=V,s0 V,,=(5.0Q)(0.47 A)+(1.4Q)(0.47 A)+8.0V=11.0 V.
(d) The graph is sketched in Figure 25.30.
EVALUATE: V_, =(0.47 A)(9.0Q)=4.2 V. The potential at point b is 15.2 V below the potential at point

a and the potential at point c is 11.0 V below the potential at point a, so the potential of point ¢ is
152 V-11.0 V=4.2 V above the potential of point b.

=047 A.

16V

Figure 25.30

(a) IDENTIFY and SET UP: Assume that the current is clockwise. The circuit is sketched in Figure 25.31a.

160V
1.6 Q
a b
- |+ A
500 9.0 Q)
8.0V
AMWN—| 3
140 - —

Figure 25.31a

Add up the potential rises and drops as travel clockwise around the circuit.
EXECUTE: 16.0 V-I(1.6Q2)—-1(9.0Q)+8.0 V-7(1.4Q)-1(5.0Q)=0.

_ 16,0 V+8.0V 240V
9.0Q+1.4Q+5.0Q+1.6Q 17.0Q
EVALUATE: The 16.0-V battery and the 8.0-V battery both drive the current in the same direction.

(b) IDENTIFY and SET Up:  Start at point a and travel through the battery to point b, keeping track of the
potential changes. At point b the potential is V.

EXECUTE: V,+16.0 V-I(1.6Q)=V,.
V,-V,=-16.0 V+(1.41 A)1.6 Q).

=1.41 A, clockwise.

Vi =—16.0 V+23V=-13.7V (point a is at lower potential; it is the negative terminal). Therefore,
Ve =13.7V.
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EVALUATE: Could also go counterclockwise from a to b:
V,+(1.41 A)5.0Q)+(1.41 A)(1.4Q)—-8.0 V+(1.41 A)9.0Q)=V,.

V., =—13.7 V, which checks.

(c) IDENTIFY and SET UP: Start at point « and travel through the battery to point ¢, keeping track of the
potential changes.

EXECUTE: V,+16.0 V-1(1.6Q)-1(9.0Q)=V..
V,=V.=-16.0 V+(1.41 A)1.6 2+9.0Q).
V,e=—16.0 V+15.0 V=-1.0 V (point a is at lower potential than point c).

EVALUATE: Could also go counterclockwise from a to c:
V,+(1.41 A)5.0Q)+(1.41 A)(1.4Q)-8.0 V=VT,.

V.. =-1.0 V, which checks.

(d) Call the potential zero at point a. Travel clockwise around the circuit. The graph is sketched in
Figure 25.31b.

Ir="70V

Figure 25.31b

25.32. IDENTIFY: The sum of the potential changes around the loop is zero.
SET UP: The voltmeter reads the /R voltage across the 9.0-Q resistor. The current in the circuit is
counterclockwise because the 16-V battery determines the direction of the current flow.
EXECUTE: (a) V), =19V givesI=V,./R,.=1.9V/9.0Q=0.21A.

548V

(6) 160 V-8.0V=(16Q+9.0Q+14Q+R)021A) and R=—""—"=26.1Q

(¢) The graph is sketched in Figure 25.32.
EVALUATE: In Exercise 25.30 the current is 0.47 A. When the 5.0-Q resistor is replaced by the 26.1-Q
resistor the current decreases to 0.21 A.

16V

S
1N}
o

Figure 25.32

25.33. IDENTIFY and SET UP: There is a single current path so the current is the same at all points in the circuit.
Assume the current is counterclockwise and apply Kirchhoff’s loop rule.
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EXECUTE: (a) Apply the loop rule, traveling around the circuit in the direction of the current.
16.0V-8.0V
+160V-11.6 Q2+5.0Q+14Q+9.0Q)-8.0V=0. I= oo =0.471 A. Our calculated
1 is positive so [ is counterclockwise, as we assumed.
() V,+16.0 V-I1(1.6 Q)=V,. V,, =160V —-(0471 A)(1.6 Q) =152 V.
EVALUATE: If we traveled around the circuit in the direction opposite to the current, the final answers
would be the same.
25.34. IDENTIFY and SET UP: The resistance is the same in both cases, and P = V2R,
EXECUTE: (a) Solving P=V?/R for R, gives R =V?/P. Since the resistance is the same in both cases,
v: vy . .
we have — =%. Solving for P, gives P, = P,(V>/V})* = (0.0625 W)[(12.5 V)/(1.50 V)" = 4.41 W.
1 2
P 5.00 W
b) Solving for V, gives V, =V, [--=(1.50 V),|———— =13.4 V.
(b) Solving for ¥, gives ¥, 1,/E ( ),/0.0625W
EVALUATE: These calculations are correct assuming that the resistor obeys Ohm’s law throughout the
range of currents involved.
25.35. IDENTIFY: The bulbs are each connected across a 120-V potential difference.
SETUP: Use P=V?/R to solve for R and Ohm’s law (I =V/R) to find the current.
EXECUTE: (a) R=V>/P=(120 V)?/(100 W) =144 Q.
(b) R=V?/P=(120 V)*/(60 W) =240 Q.
(c) For the 100-W bulb: 7 =V/R=(120 V)/(144 Q)=0.833 A.
For the 60-W bulb: 7 = (120 V)/(240 Q)=0.500 A.
EVALUATE: The 60-W bulb has more resistance than the 100-W bulb, so it draws less current.
25.36. IDENTIFY: Across 120V, a 75-W bulb dissipates 75 W. Use this fact to find its resistance, and then find
the power the bulb dissipates across 220 V.
SETUP: P=V?/R,s0 R=V?/P.
EXECUTE: Across 120 V: R=(120 V)z/(75 W) =192 Q. Across a 220-V line, its power will be
P=V?/R=(220 V)*/(192 Q) =252 W.
EVALUATE: The bulb dissipates much more power across 220 V, so it would likely blow out at the higher
voltage. An alternative solution to the problem is to take the ratio of the powers.
2 2 2 2
P _ V222—0/R | Vo | - (@j . This gives Py =(75 W)(gJ =252 W.
Ry Vio/R  \Ni20 120 120
25.37. IDENTIFY: A “100-W” European bulb dissipates 100 W when used across 220 V.
(a) SET UP: Take the ratio of the power in the U.S. to the power in Europe, as in the alternative method
for Problem 25.36, using P = V2R
2 2 2 2
Execurs: 208 VSR [ Vs | (mj . This gives P, =(100 W)(Mj =29.8 W.
B VER \ Mg 220V 220V
(b) SETUpP: Use P =1V to find the current.
EXECUTE: [=P/V =(29.8 W)/(120 V) =0.248 A.
EVALUATE: The bulb draws considerably less power in the U.S., so it would be much dimmer than in
Europe.
25.38. IDENTIFY: P=VI. Energy = Pt.
SETUP: P=(9.0 V)(0.13 A)=1.17 W.
EXECUTE: Energy = (1.17 W)(30 min)(60 s/min) = 2100 J.
EVALUATE: The energy consumed is proportional to the voltage, to the current and to the time.
25.39. IDENTIFY: Calculate the current in the circuit. The power output of a battery is its terminal voltage times

the current through it. The power dissipated in a resistor is / ’R.
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25.40.

25.41.

25.42.

25.43.

SET UP: The sum of the potential changes around the circuit is zero.

EXECUTE: (a) [ = % =047 A. Then Po = I*R=(0.47 A)*(5.0Q)=1.1 W and

Pyo =I*R=(0.47 A)*(9.0Q)=2.0 W, so the total is 3.1 W.
() By =&l —1*r=(16 V)(0.47 A)—(0.47 A)*(1.6 Q) =72 W.

(©) By =&l +Ir* =(8.0 V)(0.47 A)+(0.47 A’ (1.4Q) = 4.1 W.
EVALUATE: (d) (b)=(a)+(c). The rate at which the 16.0-V battery delivers electrical energy to the
circuit equals the rate at which it is consumed in the 8.0-V battery and the 5.0-C2 and 9.0-Q resistors.

IDENTIFY: Knowing the current and potential difference, we can find the power.
SETUP: P=VI and energy is the product of power and time.

EXECUTE: P =(500 V)(80><10‘3 A)=40 W.

Energy = Pt = (40 W)(10x10™ 5) =0.40 J.

EVALUATE: The energy delivered depends not only on the voltage and current but also on the length of
the pulse. The pulse is short but the voltage is large.

IDENTIFY: We know the current, voltage and time the current lasts, so we can calculate the power and the
energy delivered.

SET UpP: Power is energy per unit time. The power delivered by a voltage source is P=V,, 1.

EXECUTE: (a) P=(25 V)(12 A)=300 W.

(b) Energy = Pt = (300 W)(3.0x107> s)=0.90 J.

EVALUATE: The energy is not very great, but it is delivered in a short time (3 ms) so the power is large,
which produces a short shock.

IDENTIFY and SET UP: The average power delivered by the battery can be calculated in two different

ways: P =etn.eﬂ or P=VI. The time is 5.25 h, which in seconds is
ime

5.25 h=(5.25 h)(3600 s/h) =1.89 x 10" s.

energy _3.15x10%J

- = —=1.6667 W. Thus,
time 1.89x10" s

EXECUTE: The average power delivered by the battery is P =

the current must be 7 :£ =m =0.450 A.
|14 370 V

EVALUATE: The energy stored in the battery can be expressed in joules or watt-hours. The energy is

equal to Pt, so we can express the stored energy as either 3.15x 104 J or (1.6667 W)(5.25 h) =
8.75 W -h.
(a) IDENTIFY and SET UP: P =V and energy = (power) X (time).

EXECUTE: P=VI=(12V)(60 A)=720 W.
The battery can provide this for 1.0 h, so the energy the battery has stored is
U = Pt =(720 W)(3600 s) = 2.6x10° J.

(b) IDENTIFY and SET UP: For gasoline the heat of combustion is L, = 46x10° J/kg. Solve for the
mass m required to supply the energy calculated in part (a) and use density p =m/V to calculate V.

2.6x10°J

EXECUTE: The mass of gasoline that supplies 2.6x10% Jism= ————=0.0565 kg.
46x10° J/kg
The volume of this mass of gasoline is
po2n DO0kE (50 m3(%j=0.063 L
£ 900 kg/m 1m
(c) IDENTIFY and SET UP:  Energy = (power) X (time); the energy is that calculated in part (a).
6
Execute: U=pPri=2 =210 5600 =97 min=1.61.

p 450 W
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25.44.

25.45.

25.46.

25.47.

EVALUATE: The battery discharges at a rate of 720 W (for 1.0 h) and is charged at a rate of 450 W (for
1.6 h), so it takes longer to charge than to discharge.

IDENTIFY: The voltmeter reads the terminal voltage of the battery, which is the potential difference across
the appliance. The terminal voltage is less than 15.0 V because some potential is lost across the internal
resistance of the battery.

(a) SETUP: P=V>/R gives the power dissipated by the appliance.

EXECUTE: P= (119 V)2 /(75.0 Q) = 1.888 W, which rounds to 1.89 W.

(b) SET UpP: The drop in terminal voltage (£ —V,,) is due to the potential drop across the internal
resistance r. Use Ir =£ -V, to find the internal resistance r, but first find the current using P =1V
EXECUTE: [=P/V =(1.888 W)/(11.9 V) =0.1587 A. Then Ir=¢-V, gives

(0.1587 A)r=15.0 V-119 Vand r =19.5 Q.

EVALUATE: The full 15.0-V of the battery would be available only when no current (or a very small current)
is flowing in the circuit. This would be the case if the appliance had a resistance much greater than 19.5 Q.
IDENTIFY: Some of the power generated by the internal emf of the battery is dissipated across the
battery’s internal resistance, so it is not available to the bulb.
SETUP: Use P=I°R and take the ratio of the power dissipated in the internal resistance r to the total
power.

P. I’r r_35Q
EXECUTE: = = =
Prow I°(r+R) r+R 285Q
EVALUATE: About 88% of the power of the battery goes to the bulb. The rest appears as heat in the
internal resistance.

IDENTIFY: The power delivered to the bulb is / 2R. Energy = Pt.

=0.123=12.3%.

SET Up: The circuit is sketched in Figure 25.46. 1, is the combined internal resistance of both batteries.

EXECUTE: (a) r,, =0. The sum of the potential changes around the circuit is zero, so

1.5V+1.5V-I(17Q)=0. I=0.1765 A. P=I’R=(0.1765 A)*(17Q)=0.530 W. This is also
(3.0 V)(0.1765 A).
(b) Energy =(0.530 W)(5.0 h)(3600 s/h) =9540 J.

(c)P=M=O.26S W. P=I’R so 1=\E= AR Dl s
2 i =T

The sum of the potential changes around the circuit is zero, so 1.5 V+1.5 V—IR — I, ;,; =0.

3.0 V—-(0.125 A)(17Q
Total = E) 125 A )( )=7'0 Q.

EVALUATE: When the power to the bulb has decreased to half its initial value, the total internal resistance
of the two batteries is nearly half the resistance of the bulb. Compared to a single battery, using two
identical batteries in series doubles the emf but also doubles the total internal resistance.

1.5V 15V

Tiots
+l. = + .= total

R=170Q
Figure 25.46
IDENTIFY: Solve for the current / in the circuit. Apply P=VI=1 ’R to the specified circuit elements to

find the rates of energy conversion.
SET UP: The circuit is sketched in Figure 25.47 (next page).
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25.48.

25.49.

25.50.

r=100 5T 120V EXECUTE: Compute I:
ANNV— 1= g—[r—]R:O.leV
" 11 1=—= s S200A
AN F+R 1.0Q+5.0
R=50Q

Figure 25.47

(a) The rate of conversion of chemical energy to electrical energy in the emf of the battery is
P=el=(12.0 V)(2.00 A)=24.0 W.

(b) The rate of dissipation of electrical energy in the internal resistance of the battery is

P=1*=(2.00 A)>(1.0Q)=4.0 W.

(c) The rate of dissipation of electrical energy in the external resistor R

is P=1’R=(2.00 A)*(5.0Q)=20.0 W.

EVALUATE: The rate of production of electrical energy in the circuit is 24.0 W. The total rate of
consumption of electrical energy in the circuit is 4.00 W +20.0 W =24.0 W. Equal rates of production

and consumption of electrical energy are required by energy conservation.
2
IDENTIFY: P=1°R = VI. V=IR.

SET UP: The heater consumes 540 W when V" =120 V. Energy = Pt.

2 2 2
EXECUTE: (a) P=V— S0 R=V—=(I2O—V)=26.7 Q.
R P 540 W
(b) P=VI so 1=£=540W=4.50 A.
Vo120V
Vi (110 V)?

(¢) Assuming that R remains 26.7Q, P=— =453 W. P is smaller by a factor of (110/1 20)2.

R 26.7Q
EVALUATE: (d) With the lower line voltage the current will decrease and the operating temperature will
decrease. R will be less than 26.7 Q and the power consumed will be greater than the value calculated in

part (c).

IDENTIFY: The resistivity is p=——.
ne’t

SET UP: For silicon, p=2300Q - m.
mo 9.11x10! kg

ne’p  (1.0x10"° m™)(1.60x107"° C)*(2300 Q- m)

028

EXECUTE: (a) 7= =1.55x10""?s.

EVALUATE: (b) The number of free electrons in copper (8.5x1 m™ ) is much larger than in pure

silicon (1.0x10'® m™). A smaller density of current carriers means a higher resistivity.

IDENTIFY: Negative charge moving from 4 to B is equivalent to an equal magnitude of positive charge
going from B to 4.
AQ

SET UP: [ =—=_ The current direction is the direction of flow of positive charge.

EXECUTE: The total positive charge moving from B to 4 is
1.85C

30 s

AQ=[5.11x10"8 +2(3.24x10'*)](1.60x10™"° C)=1.85C. I =AA—Q= =62 mA. Positive charge
t

flows from B to 4 so the current is in this direction.
EVALUATE: The charges flowing in opposite directions do not cancel each other out because one is
positive and the other is negative.
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25.51.

25.52.

25.53.

25.54.

(a) IDENTIFY and SET UpP: Use R= p_AL

RA _(0.104 Q)7(1.25x10 m)?
L 14.0 m
EVALUATE: This value is similar to that for good metallic conductors in Table 25.1.

(b) IDENTIFY and SET UP: Use V' = EL to calculate E and then Ohm’s law gives /.
EXECUTE: V =EL=(1.28 V/m)(14.0 m)=17.9 V.

vV 179V _

=3.65x107° Q- m.

EXECUTE: p=

=—= =172 A.
R 0.104 Q
EVALUATE: We could do the calculation another way:
E=pJsog=Lo_128VM 550007 Am?,

P 3.65x10°Q-m
I=J4=(3.51x10" A/m?*)z(1.25%107> m)?> =172 A, which checks.
(c) IDENTIFY and SET UP: Calculate J = I/4 or J = E/p and then use Eq. (25.3) for the target variable v;.
EXECUTE: J= n|q|vd =neyy.
J 3.51x107 A/m?
ne  (8.5%10% m™)(1.602x107"° C)
EVALUATE: Even for this very large current the drift speed is small.

IDENTIFY and SET UP: Use R = p_AL and V' = RI. Call x the distance from point 4 to the short. The

=2.58x107> m/s =2.58 mm/s.

distance from B to the short is 2000 m — x. V is the same in both measurements since we use the same
9.00-V battery.

EXECUTE: Since V is the same in both measurements, V' = R\[; = Ry[,. Also R, = % and

_ p(2000 m - x)
] A

(2.86 A)x = (1.65 A)(2000 m — x), so x = 732 m from point 4.

EVALUATE: Our result assumes that the wire has uniform thickness with no kinks in it. These would
affect the cross-sectional area and hence the resistance.

IDENTIFY and SET UP: With the voltmeter connected across the terminals of the battery there is no
current through the battery and the voltmeter reading is the battery emf; £=12.6 V.

With a wire of resistance R connected to the battery current / flows and &€ — Ir — IR =0, where r is the internal

R, . Combining these two conditions gives

%Il = wg. This gives

resistance of the battery. Apply this equation to each piece of wire to get two equations in the two unknowns.
EXECUTE: Call the resistance of the 20.0-m piece R;; then the resistance of the 40.0-m piece is

R, =2R,.

e-Lr—LR=0; 12.6 V—(7.00 A)r—(7.00 A)R, =0.

e-Lir—1,(2Ry)=0; 12.6 V—-(4.20 A)r—(4.20 A)(2R))=0.

Solving these two equations in two unknowns gives R} =1.20 Q. This is the resistance of 20.0 m, so the
resistance of one meter is [1.20 €2/(20.0 m)](1.00 m) = 0.060 €2.

EVALUATE: We can also solve for » and we get » =0.600 Q. When measuring small resistances, the
internal resistance of the battery has a large effect.

IDENTIFY: Conservation of charge requires that the current is the same in both sections. The voltage
drops across each section add, so R = Rc, + R,,. The total resistance is the sum of the resistances of each

. . . . V IR . . . -
section. The electric field in a conductor is E = f = T’ where R is the resistance of a section and L is its

length.
SET UP: For copper, pc, =1.72 %1078 Q- m. For silver, Pag =147x 10°%Q - m.
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-8
EXECUTE: (a) [ ro_rv Rey = Peuley _(172x10 7 Q m1(0.82m) =0.049 Q and
R Rey +Rpg Acy (7/4)(6.0x10™*m)
L 8.
Ry = Pagmag _ (147107 Q HB(l'zzm) =0.062 Q. This gives I = 9.0V =81.1A, which
Apg (7£/4)(6.0x10~* m) 0.049Q+0.062Q

rounds to 81 A, so the current in the copper wire is 81 A.
(b) The current in the silver wire is 81.1 A, the same as that in the copper wire or else charge would build
up at their interface.

() Eq, = Ve = IRey = (81.1A)(0.049Q) =4.97 V/m, which rounds to 5.0 V/m.
“ e L 0.80
Cu Cu 0 m
V.. IR
() Epy=—"2=—PE= BLIAN00629) _, 19 v/m, which rounds to 4.2 V/m.
Lyg  Lag 12m

(€) Vag =1Rp, =(81.1A)(0.062 Q) =5.03 V, which rounds to 5.0 V.
EVALUATE: For the copper section, V-, = IR, = (81.1 A)(0.049 Q) =3.97 V. Note that
Veu tVag =397V +5.03V=90V, the voltage applied across the ends of the composite wire.

25.55. IDENTIFY: Conservation of charge requires that the current be the same in both sections of the wire.
E=pJ= % For each section, V' =IR=JAR = (ﬂj[p—jj = EL. The voltages across each section add.
P
SETUP: A=(7m/ 4)D2, where D is the diameter.

EXECUTE: (a) The current must be the same in both sections of the wire, so the current in the thin end is

2.5 mA.
-8 -3
) [ ¥ g MULEALN m)(2'35><120 A) _ 5 14x107° V/m.
4 (2/4)(1.6x107 m)
%1078 Q- m)(2.5x107 A)

pl (172

(c) E = J =—=
U (72/4)(0.80x1073 m)?
(d) V=E gkt 6 mm * Eo.s mmLo.s mm: V' = (2.14x107 V/m)(1.20 m) +(8.55x10™> V/m)(1.80 m) =1.80x10™ V.

EVALUATE: The currents are the same but the current density is larger in the thinner section and the
electric field is larger there.
25.56. IDENTIFY and SET UP: The voltage is the same at both temperatures since the same battery is used. The

poweris P=V?/R and R = R,(1+0AT).

=8.55x107° V/m. This is 4E; gm-

EXECUTE: Since the voltage is the same, we have V% = RoRgo = B50R;50- Therefore
By Ro[l+ a(Tgg — 1)1 = B soRo[1+ (159 — Ty)]. Solving for P;s and putting in the numbers gives
71 O, O,
— + -
1+ a(Tyy - Tp) — (480 W) 1 +(0.0045 K 1 )(80°C —20°C)
1+ a(Ti50 = Tp) 1 +(0.0045 K )(150°C — 20°C)
EVALUATE: This result assumes that ¢ is the same at all the temperatures.

25.57. IDENTIFY: Knowing the current and the time for which it lasts, plus the resistance of the body, we can
calculate the energy delivered.

=385 W.

Bso=FKy

SET Up: Electric energy is deposited in his body at the rate P =1 2R. Heat energy Q produces a
temperature change AT according to O =mcAT, where ¢ =4190 J/kg - C°.

EXECUTE: (a) P= I’R= (25,000 A)2(1 0kQ)=6.25x10"" W. The energy deposited is
Pt =(6.15x10"" W)(40x107® s)=2.5x107 J. Find AT when Q=2.5x10" J.
0 2.5%107 J

AT =2 = =80 C°.
me (75 kg)(4190 J/kg - C°)
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25.58.

25.59.

25.60.

(b) An increase of only 63 C° brings the water in the body to the boiling point; part of the person’s body

will be vaporized.

EVALUATE: Even this approximate calculation shows that being hit by lightning is very dangerous.
IDENTIFY: The current in the circuit depends on R and on the internal resistance of the battery, as well as
the emf of the battery. It is only the current in R that dissipates energy in the resistor R.

SETUP: = Rg , where ¢ is the emf of the battery, and P = I’R.

+r

2
EXECUTE: P=I’R= —R which gives €2R = (R +2Rr+r>)P.
(R+ r)

2 2
R+ 205 |Rer2 =0, R=L|E o |4
P 2|l P

2 2 2
A (w_mg)]i [w_zwmj ot i
80.0 W 80.0 W

R=050Q+0.30Q. R=0.20Q and R=0.80 Q.
EVALUATE: There are two values for R because there are two ways for the power dissipated in R to be
80 W. The poweris P=1 2R, so we can have a small R(0.20 Q) and large current, or a larger R(0.80 €2)

and a smaller current.

(a) IDENTIFY: Apply R= p_AL to calculate the resistance of each thin disk and then integrate over the

truncated cone to find the total resistance.
SET UP:

1 EXECUTE: The radius of a truncated
cone a distance y above the bottom is

givenby r=r, +(V/h)(rn—-n)=nrn+yph
—= with ﬁ = (7"1 —7'2)/]’1-
&)

dy | h

Figure 25.59

Consider a thin slice a distance y above the bottom. The slice has thickness dy and radius » (see

Figure 25.59.) The resistance of the slice is dR = pdy = p—d); = p—dy2
A mrt m(n+fy)

The total resistance of the cone if obtained by integrating over these thin slices:

T T
Jar= O(rz+ﬂy) 7 " o o FBLnthB 1
But n+hfB=n.

R L | L_L|_p( b \n=r)__ph
mplr 7 T\n—n nn ””1”2.

(b) EVALUATE: Let =r,=r. Then R= ph//l'r2 = pL/4 where A = zr? and L = h. This agrees with

r=PL.

A
IDENTIFY: Divide the region into thin spherical shells of radius  and thickness dr. The total resistance is
the sum of the resistances of the thin shells and can be obtained by integration.

SETUP: [=V/R and J=1 /47zr2, where 4772 is the surface area of a shell of radius 7.
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25.61.

25.62.

EXECUTE: (a) dR—4pdr =R= e Ibdr
Tr

&Rl 4
s 4rm\a b) 4r\ ab

(b) j=Ya _Vapdmab J:i:M:L"b.
R p(b-a) A pb-a)dm*  pb-a)r’

(c) If the thickness of the shells is small, then 47zab = 47ra” is the surface area of the conducting material.

=£(1 1j=/’(b‘“): pL _pL

— ==, where L=b—a.
dz\a b Azab  Amg* A

EVALUATE: The current density in the material is proportional to /2.

IDENTIFY: In each case write the terminal voltage in terms of &, [, and r. Since 7 is known, this gives two
equations in the two unknowns & and r.

SET UP: The battery with the 1.50-A current is sketched in Figure 25.61a.

- +I£. r ; V., =840 V.
* L NN —— Vy=€-1Ir.
- -~
I I=150A £—(1.50 A)r=8.40 V.
Figure 25.61a

The battery with the 3.50-A current is sketched in Figure 25.61b.

“ *Ig. r b Vap =102 V.
S (T~ V=" Vy=e+Ir.
R — R ——
1=350A £+(3.50 A)r=10.2 V.

Figure 25.61b

EXECUTE: (a) Solve the first equation for £ and use that result in the second equation:
£=8.40V+(1.50 A)r.

8.40 V+(1.50 A)r+(3.50 A)r=10.2 V.

1.8V

(5.00 A)r=1.8 Vsor= =0.36 Q.
5.00 A

(b) Then £=8.40 V+(1.50 A)r=8.40 V+(1.50 A)(0.36Q)=8.94 V.

EVALUATE: When the current passes through the emf in the direction from — to +, the terminal voltage
is less than the emf and when it passes through from + to —, the terminal voltage is greater than the emf.
IDENTIFY: Consider the potential changes around the circuit. For a complete loop the sum of the potential
changes is zero.

SET UP: There is a potential drop of /R when you pass through a resistor in the direction of the current.
8.0V-40V

EXECUTE: (a) / YV Y 0.167A. V;+8.00 V-1(0.50Q2+8.00Q)=V,, so

V.0 =8.00V—(0.167 A)8.50Q)=6.58 V.

(b) The terminal voltage is V. =V, —V.. V,+4.00 V+1(0.50 Q) =V, and

Ve =+4.00 V+(0.167 A)(0.50 Q) =+4.08 V.

(¢) Adding another battery at point d in the opposite sense to the 8.0-V battery produces a counterclockwise

current with magnitude 7 = 10.3 V_zi'(;\g/2+4'0 V. 0.257 A. Then V,+4.00 V-1(0.50 )=V} and

V,. =4.00 V—(0.257 A) (0.50 Q) =3.87 V.
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25.63.

25.64.

25.65.

25.66.

EVALUATE: When current enters the battery at its negative terminal, as in part (c), the terminal voltage is
less than its emf. When current enters the battery at the positive terminal, as in part (b), the terminal
voltage is greater than its emf.

IDENTIFY: R =p—AL. V=IR P=IR.
SET UP: The area of the end of a cylinder of radius r is 7.

EXECUTE: (a) szzl_oxlo3 Q.

7(0.050 m)?

(b)V =IR =(100x107> A)(1.0x10° Q) =100 V.
(¢) P=I*R=(100x107> A)*(1.0x10°> Q) =10 W.
EVALUATE: The resistance between the hands when the skin is wet is about a factor of ten less than when
the skin is dry (Problem 25.64).
IDENTIFY: V =IR. P=I°R.
SET UP: The total resistance is the resistance of the person plus the internal resistance of the power
supply.

4 14x10° v

EXECUTE: (a) [=—= - =
Rei  10x10° Q+2000Q

(b) P=1’R=(1.17 A)*(10x10° Q) =1.37x10* J=13.7 kJ.
Vo 14x10° V
© Ry =—=—"""7—
I 1.00x107° A
14x10° Q-10x10° Q =14x10° Q =14 MQ.

EVALUATE: The current through the body in part (a) is large enough to be fatal.

IDENTIFY: The cost of operating an appliance is proportional to the amount of energy consumed. The
energy depends on the power the item consumes and the length of time for which it is operated.

SET UP: At a constant power, the energy is equal to P¢, and the total cost is the cost per kilowatt-hour
(kWh) times the energy (in kWh).

EXECUTE: (a) Use the fact that 1.00 k Wh = (1000 J/s)(3600 s) =3.60 % 10° J, and one year contains
3.156x10" s.

1.17 A.

=14x10° Q. The resistance of the power supply would need to be

7L
(75J/S){3.156x10 SJ( $0.120

lyr 3.60x10° J

(b) At 8 h/day, the refrigerator runs for 1/3 of a year. Using the same procedure as above gives

7
(400J/S)Gj[3.156x10 SJ[ $0.120 j:$140'27.

J=$78.90.

lyr 3.60x10° J

EVALUATE: Electric lights can be a substantial part of the cost of electricity in the home if they are left on
for a long time!

IDENTIFY: As the resistance R varies, the current in the circuit also varies, which causes the potential drop
across the internal resistance of the battery to vary. The largest current will occur when R =0, and the

smallest current will occur when R — oo. The largest terminal voltage will occur when the current is zero
(R — o) and the smallest terminal voltage will be when the current is a maximum (R =0).

SET Up: If £ is the internal emf of the battery and 7 is its internal resistance, then V,, =& —rl.
EXECUTE: (a) As R —> oo, [ =0, so V,;, > £=15.0V, which is the largest reading of the voltmeter.
When R =0, the current is largest at (15.0 V)/(4.00Q)=3.75 A, so the smallest terminal voltage is
Vipy=€-r[=150V— (4.00Q)3.75 A)=0.

(b) From part (a), the maximum current is 3.75 A when R =0, and the minimum current is 0.00 A when
R — oo,
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(¢) The graphs are sketched in the Figure 25.66.
EVALUATE: Increasing the resistance R increases the terminal voltage, but at the same time it decreases
the current in the circuit.

Vul? 1

150V + 375A+

Figure 25.66

25.67. IDENTIFY: The ammeter acts as a resistance in the circuit loop. Set the sum of the potential rises and
drops around the circuit equal to zero.
(a) SET UP: The circuit with the ammeter is sketched in Figure 25.67a.

|g y EXECUTE: [, =— —
e A% 5 3 r+R+R,
‘ e=1,(r+R+R,).
A
R Ry T>

Figure 25.67a

SET UP: The circuit with the ammeter removed is sketched in Figure 25.67b.

€ :
| EXECUTE: [=—°

‘ +|i— VWA ) R+r
R i

Figure 25.67b

Combining the two equations gives

1 R
I=|— |I,(r+R+R,)=1,1+—2|.
(R+rj Al ) A( RJ

r+
(b) Want 7, =0.9901. Use this in the result for part (a).

I= 0.9901(1+ A4
r+

RRJ.

0.010:0.990( R4 j
R

r+

R, = (r+ R)(0.010/0.990) = (0.45 Q+3.80 £)(0.010/0.990) = 0.0429 €.
E &
r+R r+R+R,

-] ¢ r+R+RA—r—R _ SRA
4 (r+R)r+R+R,)) (r+R)(r+R+R,)

©I-1,=
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25.68.

25.69.

25.70.

EVALUATE: The difference between / and [, increases as R increases. If R, is larger than the value
calculated in part (b) then 7, differs from 7 by more than 1.0%.

(a) IDENTIFY: The rate of heating (power) in the cable depends on the potential difference across the
cable and the resistance of the cable.

SET UP: The poweris P = V2/R and the resistance is R = pPL/A. The diameter D of the cable is twice its
radius. P :V—2 = & = Ar? = s
R (pL/A) pL pL
difference across its ends divided by the length of the cable: E=V/L.
EXECUTE: Solving for » and using the resistivity of copper gives

-8

I L (90.0 W)t.72x10 sz)asoo M) _ | 236x10~% m=0.1236 mm. D= 2r = 0.247 mm.
v 7(220.0 V)

(b) IDENTIFY and SETUP: E=V/L.

EXECUTE: E =(220V)/(1500 m)=0.147 V/m.

EVALUATE: This would be an extremely thin (and hence fragile) cable.

(a) IDENTIFY: Since the resistivity is a function of the position along the length of the cylinder, we must

integrate to find the resistance.

SET UP: The resistance of a cross-section of thickness dx is dR = pdx/A.

EXECUTE: Using the given function for the resistivity and integrating gives

. The electric field in the cable is equal to the potential

R=| pdx IL (a+bx*)dx _aL+bL'/3
4 52 art

Now get the constants @ and b.: p(0)=a=2.25 %10 Q-m and pL)y=a+ bI? gives

8.50x10° Q- m=225x10° Q- m+ b(1.50 m)2 which gives b= 2.78x107® Q/m. Now use the above
result to find R.

(225107 Q- m)(1.50 m) +(2.78x10™® Q/m)(1.50 m)*/3
D 2(0.0110 m)>

(b) IDENTIFY: Use the definition of resistivity to find the electric field at the midpoint of the cylinder,
where x=L/2.

SET UP: E = pJ. Evaluate the resistivity, using the given formula, for x = L/2.

_[a+b(L/2)*11

7Z'l”2

R =1.71x107* Q=171 1.

EXECUTE: At the midpoint, x =L/2, giving E = p—12
r

[225x107° Q- m+(2.78x107% Q/m)(0.750 m)?](1.75 A)
7(0.0110 m)?

(c) IDENTIFY: For the first segment, the result is the same as in part (a) except that the upper limit of the
integral is L/2 instead of L.

E

=1.76x10~* V/m =176 uV/m

a(L/2)+(b/3)(L/8)

71'r2

SET UP: Integrating using the upper limit of L/2 gives R =

EXECUTE: Substituting the numbers gives

(2.25%107° Q- m)(0.750 m) +(2.78x10™® Q/m)/3((1.50 m)*/8)
- 2(0.0110 m)?

The resistance R, of the second half is equal to the total resistance minus the resistance of the first half.
Ry=R-R =171x107* Q-547x107° Q=1.16x10"* Q =116 uQ.

EVALUATE: The second half has a greater resistance than the first half because the resistance increases
with distance along the cylinder.

IDENTIFY: Compact fluorescent bulbs draw much less power than incandescent bulbs and last much
longer. Hence they cost less to operate.

R =547x107° Q =54.7 uQ.
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25.71.

25.72.

25.73.

2
SET UP: A kWh is power of 1 kW for a time of 1 h. P= %

EXECUTE: (a) In 3.0 yr the bulbs are on for (3.0 yr)(365.24 days/yr)(4.0 h/day) = 4.38x10° h.

Compact bulb: The energy used is (23 W)(4.38x10° h) =1.01x10° Wh =101 kWh. The cost of this
energy is ($0.080/kWh) (101 kWh) = $8.08. One bulb will last longer than this. The bulb cost is $11.00, so
the total cost is $19.08.

Incandescent bulb: The energy used is (100 W)(4.38><103 h)= 4.38x10° Wh =438 kWh. The cost of this
energy is ($0.080/kWh)(438 kWh) =$35.04. Six bulbs will be used during this time and the bulb cost will

be $4.50. The total cost will be $39.54.
(b) The compact bulb will save $39.54 —$19.08 = $20.46.
2 2

© R =V_= 120 V)
P 23 W

EVALUATE: The initial cost of the bulb is much greater for the compact fluorescent bulb but the savings

soon repay the cost of the bulb. The compact bulb should last for over six years, so over a 6-year period the

savings per year will be even greater. The cost of compact fluorescent bulbs has come down dramatically,

so the savings today would be considerably greater than indicated here.

=626 Q.

L . . ” .
IDENTIFY: Apply R= p7 for each material. The total resistance is the sum of the resistances of the rod

and the wire. The rate at which energy is dissipated is / ’R.

SET UP: For steel, p = 2.0x107" Q- m. For copper, 2= 1.72x1078 Q- m.

_pPL_(2.0x107'Q - m)(2.0 m)

EXECUTE: (a) R =1.57x107° Q and

Reeley (7£/4)(0.018 m) 2
-8
Ry =£L (7210 2 mOIM 6150 This gives
A (7/4)(0.008 m)

V = IR = I(Ryuyy + Rey) = (15000 A) (1.57x107° Q+0.012 Q) =204 V.
(b) E =Pt=1*Rt = (15000 A)*(0.0136 Q)(65x107° 5) =199 J.

EVALUATE: [°R is large but ¢ is very small, so the energy deposited is small. The wire and rod each
have a mass of about 1 kg, so their temperature rise due to the deposited energy will be small.
IDENTIFY: No current flows to the capacitors when they are fully charged.

SETUP: Vi =RI and V- =Q/C.

EXECUTE: (a) V¢, _0 _18.04C

C, 3.00 uF
0, = GV, =(6.00 4F)(6.00 V) =36.0 uC.

=6.00 V. Vg, =V =6.00 V.

(b) No current flows to the capacitors when they are fully charged, so £ =1IR, +IR,.

”
Vi =V =600 V. 1= =800V 3504
2 A R, 2.00Q
g E7IR _T20N=600V ) 00
I 3.00 A

EVALUATE: When a capacitor is fully charged, it acts like an open circuit and prevents any current from
flowing though it.
IDENTIFY: No current flows through the capacitor when it is fully charged.

SET UP: With the capacitor fully charged, 7 =

. Vp=IR and V,~=0Q/C.
R, K c=0
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v
EXECUTE: V- _Q_360uC YR _4.00V

C  9.00 uF R 6.00Q
Vi, =Ry =(0.667 A)(4.00Q)=2.668 V. £=Vp +Vg, =4.00 V+2.668 V=6.67 V.

=0.667 A.

=4.00 V. Vg =V =400V and [ =

EVALUATE: When a capacitor is fully charged, it acts like an open circuit and prevents any current from
flowing though it.
25.74. IDENTIFY and SET Up: Ohm’s law applies. The terminal voltage ¥, is less than the internal emf £ due to

voltage losses in the internal resistance r of the battery when current / is flowing in the circuit. V,, =& —rl.

EXECUTE: (a) The equation V,, =& —rl applies to this circuit, so a graph of V, versus / should be a

straight line with a slope equal to — and a y-intercept equal to £. Using points where the graph crosses

grid lines, the slope is: slope :M =-2.00 V/A. Therefore r = —(-2.00 V/A) = 2.00 Q.
7.00 A—-3.00 A

The equation of the graph is ¥, =& —rl, so we can solve for £ and use a point on the graph to calculate

€. This gives

g =V, +rI=30.0V+(2.00Q)3.00A)=36.0V.
Mb)R=V,/land [ = € Vap , S0 R :L:FV—”}’. Putting in the numbers gives
r E-Va e-V,
r

R =(2.00 ©)(0.800)(36.0 V)/[36.0 V —(0.800)(36.0 V)] = 8.00 Q.
EVALUATE: For large currents, the terminal voltage can be much less than the internal emf, as shown by
the graph with the problem.

25.75. IDENTIFY: According to Ohm’s law, R = V;b = constant, and a graph of V,, versus / will be a straight

line with positive slope passing through the origin.
SET Up and EXECUTE: (a) Figure 25.75a shows the graphs of 7, versus / and R versus / for resistor A.

Figure 25.75b shows these graphs for resistor B.

4.80 6.00
4.40 5.00

V., (V) 400 R 400

ab V7 3,60 (Ohms)
320 3.00
2.80 2.00
2.40 1.00
000 100 2.00 3.00 4.00 000 100 2.00 3.00 4.00

1(A) 1(A)
Figure 25.75a

(b) In Figure 25.75a, the graph of V¥, versus / is not a straight line so resistor A does not obey Ohm’s law.
In the graph of R versus /, R is not constant; it decreases as / increases.

16.0
4.00 u u u o—
12.0
3.00
Vo (V)
ab 8,0 R 2 OO
(Ohms)
4.0
1.00
0.0
0.00 1.00 2.00 3.00 4.00 0.00 1.00 2.00 3.00 4.00
1(A) I(A)

Figure 25.75b
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25.76.

25.77.

(¢) In Figure 25.75b, the graph of V, versus [ is a straight line with positive slope passing through the
origin, so resistor B obeys Ohm’s law. The graph of R versus [ is a horizontal line. This means that R is
constant, which is consistent with Ohm’s law.

(d) We use P = [V. From the graph of V,;, versus [ in Figure 25.75a, we read that / =2.35 A when
V'=4.00 V. Therefore P =1V = (2.35 A)(4.00 V) =9.40 W.

(e) We use P=V?/R. From the graph of R versus / in Figure 25.75b, we find that R = 3.88 Q. Thus
P=V?/R=(4.00 V)*/(3.88 Q) =4.12 W.

EVALUATE: Since resistor B obeys Ohm’s law V, = R, R is the slope of the graph of V;, versus/in
Figure 25.75b. The given data points lie on the line, so we use them to calculate the slope.

1552V -194V
~ 4.00A-0.50 A

versus / in Figure 25.75b, so our results agree.
IDENTIFY: The power supplied to the house is P =VI. The rate at which electrical energy is dissipated in

. L
the wires is IZR, where R = '07

slope = R =3.88 Q. This value is the same as the one we got from the graph of R

SET UP: For copper, p = 1.72x10° Q- m.

EXECUTE: (a) The line voltage, current to be drawn, and wire diameter are what must be considered in
household wiring.
P 4200 W

(b) P=VI gives [ = S =35 A, so the 8-gauge wire is necessary, since it can carry up to 40 A.
2 2 -8
© P:IZR:I pL:(SSA) (1.72x107° Q m)g42.0m) 106 W.
A (7/4)(0.00326 m)
2 2 -8
(d) If 6-gauge wire is used, P = i A8 = Q5 A’ (1W2>g0 &) m2) (42 m) =66 W. The decrease in energy
A (7/4)(0.00412 m)

consumption is AE = APt = (40 W)(365 days/yr) (12 h/day) =175 kWh/yr and the savings is
(175 kWh/yr)($0.11/kWh) = $19.25 per year.
EVALUATE: The cost of the 4200 W used by the appliances is $2020. The savings is about 1%.

IDENTIFY: Apply R= % to find the resistance of a thin slice of the rod and integrate to find the total R.
V' =1IR. Also find R(x), the resistance of a length x of the rod.
SETUP: E(x)=p(x)J

EXECUTE: (a) dR= p_dx = M SO

A A
R= &ILexp [—x/L] dx = 20 [ exp(—x/L)IE = Aok (-e') and 1= Bo__ Tod —. With an upper
A% 4 4 R pyL-e™)
limit of x rather than L in the integration, R(x)= %}J(l YL ).
I poe—x/L Voe—x/L

(b) E(x)=p(x)J = = )

p A L1-e!

—x/L _ -1
© V=Vy—IR(x). V=V~ —L __ (&Lj(l _ehyop e me )
poLll—e 1)\ 4 (I-e)

(d) Graphs of resistivity, electric field, and potential from x =0 to L are given in Figure 25.77 (next page).

Each quantity is given in terms of the indicated unit.
EVALUATE: The current is the same at all points in the rod. Where the resistivity is larger the electric
field must be larger, in order to produce the same current density.
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1.00 1.60
080 -+ 1.20
o e e \\ .
Resistivity 0-60 = Electric field o ~
Vo/L .
P 940 T gt o
020 0.40
0.00 0.00
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
x (L) x (L)
1.00
8 ™N
0.80 \\
Potential 0-60
Vo)
0.40
R
0.20
~
0.00
000 020 040 060 080  1.00
x (L)
Figure 25.77
25.78. IDENTIFY and SET UP: The power output P of the source is the power delivered to the resistor R, so P is

the power output of the internal emf € minus the power consumed by the internal resistance 7. Therefore

P=¢l—I°r. For the entire circuit, £ = (R +r)l.

2R

TR+

2
EXECUTE: (a) Combining P=1 2/R and ¢ = (R + )l gives P =(R€ j R . From this result,
+r
we can see thatas R —>0, P —0.
2
(b) Using the same equation as in (a), we see thatas R — oo, P — % — 0.

2
(c) In (a) we showed that P = 5 For maximum power, dP/dR = 0.
(R+7r)
dpP _ g2 2R + 1 =0 > 2R _ R=r
dR (R+7)" (R+7r) R+r

The maximum power is therefore
Re? | _ re?
R+, (@r)
2

45

max

to calculate P.

(d) Use P= 3
(R+7r)

For R =2.00 Q: P,=(64.0 V)*(2.00 Q)/(6.00 Q)* =228 W.

For R =4.00 Q: P,=(64.0 V)*(4.00 Q)/(8.00 Q)* =256 W.

For R = 6.00 Q: P¢=(64.0 V)*(6.00 Q)/(10.0 Q)* =246 W.

EVALUATE: The maximum power in (d) occurred when R =r = 4.00 Q, so it is consistent with the result

2
from (c). The equation we found, P, = i—, gives P = (64.0 V)*/[4(4.00 Q)] = 256 W, which agrees
r

with our calculation in (d). When R is smaller than r, [ is large and the / 2 losses in the battery are large.
When R is larger than 7, I is small and the power output £/ of the battery emf is small.
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25.79.

25.80.

25.81.

25.82.

IDENTIFY and SET UP: R = p_L

. L. . .
EXECUTE: From the equation R = %, if we double the length of a resistor and change nothing else, the

resistance will double. But from the data table given in the problem, we see that doubling the length of the
thread causes its resistance to do much more than double. For example, at 5 mm the resistance is 9%10° Q

and at 11 mm (approximately double) the resistance is 63x10° Q, which is much more than twice the

resistance at 5 mm. Therefore as the thread stretches, its coating gets thinner, which decreases its cross-
sectional area. This decreased area contributes significantly to the increase in resistance. Therefore choice (c)
is correct.

EVALUATE: The cross-sectional area of the coating depends on the square of the radius of the thread, so a
decrease in the radius has a very large effect on the resistance.

: L
IDENTIFY and SET UP: Use data from the table for 5 mm and 13 mm to compare the resistance. R = ’07

p(13 mm)
EXECUTE: st e | :%. Solving for 4,5 gives
R 9 pGmm) 54,
43
A, = A By ) 0.23 :l, which is choice (b).
5 )\102 4

EVALUATE: It is reasonable that 4,5 < A5 because the thread and its coating stretch out and get thinner.
IDENTIFY and SET UP: Apply Ohm’s law, V' = RI. The minimum resistance will give the maximum
current. Get data from the table in the problem.

EXECUTE: Iy = V/Rmin = (9 V)/(9%10° Q) = 1x10° A = 1 nA, which is choice (d).

EVALUATE: This is a very small current, but the thread of a spider web is very thin.

IDENTIFY and SET UP: An electrically neutral conductor contains equal amounts of positive and negative
charge, and these charges can move if a charged object comes near to them.

EXECUTE: If a positively charged object comes near to the web, it attracts negative charges in the web.
The attraction between these negative charges in the web and the positive charges in the charged object
pull the web toward the object. If a negatively charged object comes near the web, it repels negative
charges in the web, leaving the web positively charged near the object. The attraction between the
negatively charged object and the positive side of the web pulls the web toward the object. This is best
explained by choice (d).

EVALUATE: This is similar to the principle of charging by induction. The amounts of charge are small,
but the web is moved because it is extremely light.
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26.1.

26.2.

26.3.

26.4.

26.5.

IDENTIFY: The newly-formed wire is a combination of series and parallel resistors.

SET Up: Each of the three linear segments has resistance R/3.The circle is two R/6 resistors in parallel.
EXECUTE: The resistance of the circle is R/12 since it consists of two R/6 resistors in parallel. The
equivalent resistance is two R/3 resistors in series with an R/12 resistor, giving

R =R/3+R/3+ R/12=3R/4.

EVALUATE: The equivalent resistance of the original wire has been reduced because the circle’s
resistance is less than it was as a linear wire.

IDENTIFY: It may appear that the meter measures X directly. But note that X is in parallel with three other
resistors, so the meter measures the equivalent parallel resistance between ab.

SET UP: We use the formula for resistors in parallel.

EXECUTE: 1/(2.00 Q) =1/X +1/(15.0 Q) +1/(5.0 Q) +1/(10.0 ), so X =7.5 Q.

EVALUATE: X is greater than the equivalent parallel resistance of 2.00 Q.
IDENTIFY: The emf of the battery remains constant, but changing the resistance across it changes its
power output.

equiv

2
SET UP: The power consumption in a resistor is P = —

2

EXECUTE: With just R, A =% and V' = BR, =/(36.0 W)(25.0 Q) =30.0 V is the battery voltage.
1

2 2
With R, added, Ry, =40.0Q. P=——=8%0V)
Ry 400Q

EVALUATE: The two resistors in series dissipate electrical energy at a smaller rate than R, alone.

=225 W.

IDENTIFY: For resistors in parallel the voltages are the same and equal to the voltage across the equivalent
resistance.

SETUP: V =IR. L=L+L.
eq R] RZ
1 1Y .
EXECUTE: (a) Ryq=|——+—— =13.548 Q, which rounds to 13 Q.
42Q 20Q
(b) I= 7 = 240V =17.7 A, which rounds to 18 A.
R, 13548Q
Vo 240V Vo240V
¢) Ijpo=—=—"—-—=57A; I,yjo=—=——=12A.
© lee=%="p0 027 R 7200

EVALUATE: More current flows through the resistor that has the smaller R.

IDENTIFY: The equivalent resistance will vary for the different connections because the series-parallel
combinations vary, and hence the current will vary.

SET Up: First calculate the equivalent resistance using the series-parallel formulas, then use Ohm’s law
(V' =RI) to find the current.
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26.6.

26.7.

26.8.

EXECUTE: (a) 1/R=1/(15.0 Q)+1/(30.0 Q) gives R=10.0 Q. 7 =V/R=(35.0 V)/(10.0 Q) =3.50 A.
(b) I/R=1/(10.0 Q) +1/(35.0 Q) gives R=7.78 Q. I =(35.0 V)/(7.78 Q) =4.50 A.

(¢) I/R=1/(20.0 Q)+1/(25.0 Q) gives R=11.11 Q,s0 1 =(35.0 V)/(11.11 Q)=3.15 A.

(d) From part (b), the resistance of the triangle alone is 7.78 Q. Adding the 3.00-Q2 internal resistance of

the battery gives an equivalent resistance for the circuit of 10.78 Q. Therefore the current is
1=(35.0V)/(10.78 Q) =3.25 A.

EVALUATE: It makes a big difference how the triangle is connected to the battery.

IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel
combination is the same as the current through the 45.0-CQ resistor.

(a) SET UpP: Apply Ohm’s law in the parallel branch to find the current through the 45.0-Q resistor. Then
apply Ohm’s law to the 45.0-Q resistor to find the potential drop across it.

EXECUTE: The potential drop across the 25.0-Q resistor is V55 =(25.0 Q)(1.25 A)=3125 V. The
potential drop across each of the parallel branches is 31.25 V. For the 15.0-Q resistor:

115 =(3125V)/(15.0 Q) = 2.083 A. The resistance of the 10.0-2 +15.0-Q combination is 25.0 €, so the

current through it must be the same as the current through the upper 25.0-Q resistor: /;y,;5 =125 A. The
sum of currents in the parallel branch will be the current through the 45.0-Q resistor.

It =125 A+2.083 A+1.25 A =458 A.
Apply Ohm’s law to the 45.0-Q resistor: V5 =(4.58 A)(45.0 ) =206 V.

(b) SET UP: First find the equivalent resistance of the circuit and then apply Ohm’s law to it.
EXECUTE: The resistance of the parallel branch is 1/R =1/(25.0 Q) +1/(15.0 Q) +1/(25.0 Q), so

R =6.82 Q. The equivalent resistance of the circuit is 6.82 Q +45.0 Q +35.00 Q=86.82 Q. Ohm’s law
gives Vg, =(86.62 Q)(4.58 A)=398 V.

EVALUATE: The emf of the battery is the sum of the potential drops across each of the three segments
(parallel branch and two series resistors).

IDENTIFY: First do as much series-parallel reduction as possible.

SET UP: The 45.0-Q and 15.0-Q resistors are in parallel, so first reduce them to a single equivalent
resistance. Then find the equivalent series resistance of the circuit.

EXECUTE: 1/R, =1/(45.0 Q)+1/(15.0 Q) and R, =11.25 Q. The total equivalent resistance is

18.0 Q+1125Q+3.26 Q=32.5Q. Ohm’s law gives 7 =(25.0 V)/(32.5 Q)=0.769 A.

EVALUATE: The circuit appears complicated until we realize that the 45.0-Q and 15.0-Q resistors are in
parallel.

. ! . . s 1 1 1
IDENTIFY: The equivalent resistance of the resistors in parallel is given by — = 3 + o +.... For
eq 1 2
resistors in parallel, the voltages are the same and the currents add.
SET Up: The circuit is sketched in Figure 26.8a.

E=28.0V EXECUTE: (a) parallel
- L_1, 11

R, I eq
1
AVAVAY. R. 1.60Q 240Q 4.80Q
Lav— N
Ry =0.800Q.

Figure 26.8a

(b) For resistors in parallel the voltage is the same across each and equal to the applied voltage;
Vi=V,=V;=£=28.0V.
i _280V

V=IRsol =—

= =175 A.
R 160Q
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26.9.

26.10.

b 28O0V =117 Aand I; _f_280V =58 A.

R, 240Q Ry 48Q
(c¢) The currents through the resistors add to give the current through the battery:
I=1+1L,+1=175A+11.7A+58 A=35.0 A.

EVALUATE: Alternatively, we can use the equivalent resistance R, as shown in Figure 26.8b.

2

£=1280V £~ IR, =0.
=
1l +l I=L=M=35.O A, which checks.
AN Ry 0.800Q
Ry = 0.800 )

Figure 26.8b

(d) As shown in part (b), the voltage across each resistor is 28.0 V.
(e) IDENTIFY and SET UP: We can use any of the three expressions for P:P=VI =1 ZR=V?/R. They will

all give the same results, if we keep enough significant figures in intermediate calculations.

2 2
EXECUTE: Using P=V?/R, B=V?2/R = @8OVY”_ 400 w, P =V} IRy = % =327 W, and
2
P =V2IR _280V) _eaw.
80 Q

®) P= 2 /R. The resistors in parallel each have the same voltage, so the power P is largest for the one
with the least resistance.

EVALUATE: The total power dissipated is P, = B + P, + P, =980 W. This is the same as the power

P =¢&l=(28.0 V)(35.0 A)=980 W delivered by the battery.

IDENTIFY: For a series network, the current is the same in each resistor and the sum of voltages for each
resistor equals the battery voltage. The equivalent resistance is Ryq =R+ R, + Ry. P=1 ’R.

SETUP: Let R =1.60Q, R, =240Q, R;=4.80Q.

EXECUTE: (a) Ry =1.60Q+2.40Q+4.80Q=8.80€.

Vo280V

(b) [=—

R, 880Q

(¢) 1 =3.18 A, the same as for each resistor.

) ¥, =IR =(3.18 AY1.60Q)=5.09 V. ¥, =IR, =(3.18 A)(2.40Q)=7.63 V.
Vy=1IR,=(3.18 A)(4.80Q)=15.3 V. Note that V; + ¥, +V; =28.0 V.

(€ B=I"R =(3.18 A)*(1.60Q)=162 W. P, =I*R, =(3.18 A)*(2.40Q)=243 W.
P =1’Ry=(3.18 A)*(4.80 Q) = 48.5 W.

=3.18 A.

(f) Since P=1 2R and the current is the same for each resistor, the resistor with the greatest R dissipates
the greatest power.

EVALUATE: When resistors are connected in parallel, the resistor with the smallest R dissipates the
greatest power.

IDENTIFY: The current, and hence the power, depends on the potential difference across the resistor.

SETUP: P=V?/R.

EXECUTE: (a) V =+/PR = \/(5.0 W)(15,000 Q) =274 V.

(b) P=V?/R=(120 V)?/(9,000Q)=1.6 W.

(¢) SET Up: If the larger resistor generates 2.00 W, the smaller one will generate less and hence will be safe.

Therefore the maximum power in the larger resistor must be 2.00 W. Use P =1 ’R to find the maximum current
through the series combination and use Ohm’s law to find the potential difference across the combination.
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26.11.

26.12.

26.13.

EXECUTE: P=I°R gives I =+ P/R =+/(2.00 W)/(150 Q) = 0.115 A. The same current flows through
both resistors, and their equivalent resistance is 250 Q. Ohm’s law gives

V'=IR=(0.115 A)(250 ) =28.8 V. Therefore A5, =2.00 W and

Boo=1?R=(0.115 A)*(100 Q) =132 W.

EVALUATE: If the resistors in a series combination all have the same power rating, it is the /argest
resistance that limits the amount of current.

IDENTIFY and SET UP: Ohm’s law applies to the resistors, the potential drop across resistors in parallel is
the same for each of them, and at a junction the currents in must equal the currents out.

EXECUTE: (a) V, =1,R, =(4.00 A)(6.00Q2)=24.0V. V=V,=240V.

240V
R 3.00Q
(b) V3=05LR; =(12.0 A)(5.002)=600V. =V +V,=24.0 V+60.0 V=84.0 V.
EVALUATE: Series/parallel reduction was not necessary in this case.

IDENTIFY and SET UP: Ohm’s law applies to the resistors, and at a junction the currents in must equal the
currents out.

EXECUTE: V| =1R =(1.50A)5.00Q)=750V. V,=750V. I} +1,=1I;5 so

= =800 A. Iy=I+1,=400 A+8.00 A=12.0 A.

I,=1,-1,=450A-150 A=3.00 A. R, By i =2.50 Q.
I, 3.00A
27.
V,=e-V,=350V-750V=275V. Ry e TN =6.11Q.
I; 450A
EVALUATE: Series/parallel reduction was not necessary in this case.
. . 1 I 1
IDENTIFY: For resistors in parallel, the voltages are the same and the currents add. — = ra + s SO
eq 1 2
RR, . . .
oq = , For resistors in series, the currents are the same and the voltages add. R., = R + R,.
R +R, d

SET UP: The rules for combining resistors in series and parallel lead to the sequences of equivalent
circuits shown in Figure 26.13.

: 60.0 V -
EXECUTE: R, =5.00€. In Figure 26.13¢c, I = S5 =12.0 A. This is the current through each of the

resistors in Figure 26.13b. V}, = IR, = (12.0 A)(2.00Q2)=24.0 V.
V34 = IRy, = (12.0 A)(3.00 ) =36.0 V. Note that V}, + V3, =60.0 V. V], is the voltage across R, and

Vi, 240V Vi, 240V .
across R,, so [;=—2 = =8.00 A and [, =—12=""-=4.00 A. V;, is the voltage across R,
R 3.00Q R, 6.00Q
Vi, 360V V3, 360V
and across Ry, so [;=—%= =3.00 A and [, =% = =9.00 A.
R, 120Q R, 4.00Q
EVALUATE: Note that [, +1, =I5+ 1,.
[1£
| |
[L£ [ €
R, Ry L L
R, Ry Rip Ry Req
(@) () ©

Figure 26.13
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26.14. IDENTIFY: Replace the series combinations of resistors by their equivalents. In the resulting parallel
network the battery voltage is the voltage across each resistor.
SET UP: The circuit is sketched in Figure 26.14a.

€=480V EXECUTE: R, and R, in series have an
+I = equivalent resistance of R, =R, + R, =4.00 Q.
; l R, =1000 R, =3000 R; and R, in series have an equivalent resistance
T’ of Ry =Ry +R, =12.0Q.
Iy
g
MWV

Ry=700Q R, =500Q

Figure 26.14a

The circuit is equivalent to the circuit sketched in Figure 26.14b.

€ |: 480V Ry, and Ry, in parallel are equivalent to R,
il
I given by L:L.FL:M.
1| Ry =4.000Q cq R Ry RipRy
T __RioRsy .
2 Ry + Ry
I34
AN p, - BOQ209) 0
R, =1200 4.00Q2+12.0Q

Figure 26.14b

The voltage across each branch of the parallel combination is &, so &—1;,R;, =0.
e 480V

12 =—= =12.0 A.
R, 400Q
Ry 1200

The current is 12.0 A through the 1.00-Q2 and 3.00-Q resistors, and it is 4.0 A through the 7.00-Q and
5.00-Q resistors.
EVALUATE: The current through the battery is / =1, + 13, =12.0 A+4.0 A=16.0 A, and this is equal to

E/R,q =48.0 V/3.00Q2=16.0 A.
26.15. IDENTIFY: In both circuits, with and without R4, replace series and parallel combinations of resistors by

their equivalents. Calculate the currents and voltages in the equivalent circuit and infer from this the

currents and voltages in the original circuit. Use P =1 2R to calculate the power dissipated in each bulb.
(a) SET Up: The circuit is sketched in Figure 26.15a.

VWV EXECUTE: R,, R;, and R4 are in parallel, so
R
| - R, their equivalent resistance R, is given by
B R R
? ¢ 11 11
—_— =t —t—
\ Req Ry, Ry Ry

Figure 26.15a

|+
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1 3

Rq 4300

The equivalent circuit is drawn in Figure 26.15b.

and Ry =1.50 Q.

! e—I(R +R,)=0
—_— 1 eq .
VYWW "
. R, = .
Sj__ R1+Req

€q

Figure 26.15b

9.00 V

T450Q+150Q
Then ¥, =R, =(1.50 A)(4.50Q)=6.75 V.
Ioq =150 A, Vo =IqReq =(1.50 A)(1.50Q) =2.25 V.
For resistors in parallel the voltages are equal and are the same as the voltage across the equivalent resistor,
so Vy=V3=V,=225V.

71 A 0.500 A, I; L 0.500 A, 1, N

R, 450Q Ry R,
EVALUATE: Note that [, +/3+ 1, =1.50 A, which is /... For resistors in parallel the currents add and

=1.50 Aand 7; =1.50 A.

=0.500 A.

2:

their sum is the current through the equivalent resistor.

(b) SETUP: P=I°R.

EXECUTE: B =(1.50 A)2(4.50 Q)=10.1 W.

P, =P =P, =(0.500 A)2 (4.50Q)=1.125 W, which rounds to 1.12 W. R, glows brightest.

EVALUATE: Note that P, + P, + P, =3.37 W. This equals Py, =13 R, =(1.50 A)*(1.50Q)=3.37 W, the

power dissipated in the equivalent resistor.
(¢) SET Up: With R, removed the circuit becomes the circuit in Figure 26.15c.

EXECUTE: R, and R; are in parallel and their

& + equivalent resistance R, is given by
- 1 1 1
—= —= and R, =2.25Q.
Rgq R, Ry 450Q

Figure 26.15¢

The equivalent circuit is shown in Figure 26.15d.

£~ I(R +Ryy)=0.
_ I3
R+ Ry
900V
450Q+225Q

=1.333 A

Figure 26.15d
1, =133 A, V=11R =(1.333 A)(4.50Q)=6.00 V.
Toq =133 A, Voq = IoqReq =(1.333 A)(2.25Q)=3.00 Vand V, =3 =3.00 V.
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26.16.

26.17.

26.18.

Vo 300V o667 a1 =23 0.667 A,

R, 450Q R

(d) SETUP: P=1IR.

EXECUTE: B =(1.333 A)*(4.50Q)=8.00 W.

P, =P, =(0.667 A)*(4.50 Q) =2.00 W.

EVALUATE: (e) When R, isremoved, A decreases and P, and P; increase. Bulb R, glows less

2:

brightly and bulbs R, and R; glow more brightly. When R, is removed the equivalent resistance of the
circuit increases and the current through R, decreases. But in the parallel combination this current divides
into two equal currents rather than three, so the currents through R, and R; increase. Can also see this by
noting that with R, removed and less current through R, the voltage drop across R, is less so the voltage
drop across R, and across R; must become larger.

IDENTIFY: Apply Ohm’s law to each resistor.

SET UP: For resistors in parallel the voltages are the same and the currents add. For resistors in series the
currents are the same and the voltages add.

EXECUTE: From Ohm'’s law, the voltage drop across the 6.00-Q resistor is V" = IR =(4.00 A)(6.00 Q) =

24.0 V. The voltage drop across the 8.00- resistor is the same, since these two resistors are wired in
parallel. The current through the 8.00-Q resistor is then 7 =V/R =24.0 V/8.00 Q =3.00 A. The current

through the 25.0-Q resistor is the sum of the current through these two resistors: 7.00 A. The voltage drop
across the 25.0-Q resistor is V' = /R =(7.00 A)(25.0 Q) =175V, and total voltage drop across the top

branch of the circuit is 175 V+24.0 V=199 V, which is also the voltage drop across the 20.0-Q resistor.
The current through the 20.0-Q resistor is then 7 =V/R =199 V/20Q=9.95 A.

EVALUATE: The total current through the battery is 7.00 A+9.95 A =16.95 A. Note that we did not need
to calculate the emf of the battery.

IDENTIFY: Apply Ohm’s law to each resistor.

SET UP: For resistors in parallel the voltages are the same and the currents add. For resistors in series the
currents are the same and the voltages add.

EXECUTE: The current through the 2.00-Q resistor is 6.00 A. Current through the 1.00-Q resistor also is
6.00 A and the voltage is 6.00 V. Voltage across the 6.00-Q resistor is 12.0 V+6.0 V=18.0 V. Current
through the 6.00-Q resistor is (18.0 V)/(6.00 Q) =3.00 A. The battery emfis 18.0 V.

EVALUATE: The current through the battery is 6.00 A +3.00 A =9.00 A. The equivalent resistor of the
resistor network is 2.00 €2, and this equals (18.0 V)/(9.00 A).

IDENTIFY: Ohm’s law applies to each resistor. In one case, the resistors are connected in series, and in the
other case they are in parallel.

SETUP: V =RI, i = L +L+ ... (in parallel), R, = R, + R, +... (in series). Figure 26.18 shows the
eq 1 R2 “

equivalent circuit when S is open and when S is closed.

R,

R

a 2 b a b
R,
R; R,

[ ||

N I

£ e

(a) S open (b) S closed

Figure 26.18
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EXECUTE: (a) S open: We use the circuit in Figure 26.18a. R, and R; are in series. Ohm’s law gives
£=(Ry+Ry)I.
I=€/(R,+R;)=(36.0 )/(9.00 Q)=4.00 A.
V= RoI=(6.00 Q)(4.00 A)=24.0 V.
S closed: We use the circuit in Figure 26.18b. R, and R, are in parallel, and this combination is in series
with R;. For the parallel branch
L = L +L +... =1/(4.00 ) + 1/(6.00 Q), which gives R., = 2.40 Q. The equivalent resistance R of
Req Rl RZ
the circuit is 2.40 Q + 3.00 Q = 5.40 Q. The current is / = £/R = (36.0 V)/(5.40 Q) = 6.667 A. Therefore
Vip = IReq = (6.667 A)(2.40 Q) =16.0 V.
(b) S open: From part (a), we know that 7, = 4.00 A through R,. Since S is open, no current can flow
through Rla SO 11 = O, ]2 213 =4.00 A.
Sclosed: I) = V,,/R; = (16.0 V)/(4.00 Q) =4.00 A. I,=V,/R,=(16.0 V)/(6.00 Q) =2.67 A.
L=1+5=400A+2.67A=6.67A.
I, increased from 0 to 4.00 A.
I, decreased from 4.00 A to 2.67 A.
Iz increased from 4.00 A to 6.67 A.
EVALUATE: With S closed, V,, + V3=16.0 V + (3.00 Q)(6.67 A) =36.0 V, which is equal to &, as it
should be.

26.19. IDENTIFY and SET UP: Replace series and parallel combinations of resistors by their equivalents until the
circuit is reduced to a single loop. Use the loop equation to find the current through the 20.0-Q resistor.
Set P=1*R for the 20.0-Q resistor equal to the rate O/t at which heat goes into the water and set
O =mcAT.

EXECUTE: Replace the network by the equivalent resistor, as shown in Figure 26.19.

10.0 Q 10.0 20.0 Q

ANN——

5.0Q
100 Q 100 Q 2004
A SR AN = = —ONNN—
— 500 10.0 Q

ANN—<C e
Figure 26.19
30,0 V-7(20.0Q2+5.0Q+5.0Q2)=0;/=1.00 A.
For the 20.0-Q resistor thermal energy is generated at the rate P =17 2R=20.0 W. Q= Pt and Q = mcAT
gives = mcAT _ (0.100 kg)(4190 J/kg - K)(48.0 C°) —1.01x10° .

P 20.0 W
EVALUATE: The battery is supplying heat at the rate P =&/ =30.0 W. In the series circuit, more energy
is dissipated in the larger resistor (20.0 €2) than in the smaller ones (5.00 Q).
26.20. IDENTIFY: P=IR determines R.R|, Ry, and the 10.0-Q resistor are all in parallel so have the same

voltage. Apply the junction rule to find the current through R,.

SETUP: P=I°R foraresistorand P=¢l for an emf. The emf inputs electrical energy into the circuit
and electrical energy is removed in the resistors.

EXECUTE: (a) A = 112R1. 15.0 W = (2.00 A)2 R, so R =3.75Q. R, and 10.0 Q are in parallel, so
(10.0)1,, =(3.75Q)2.00 A) so ,, =0.750 A. So I, =3.50 A- 1, — 1, =350 A~-2.00 A-0.750 A
=0.750 A. R; and R, are in parallel, so (0.750 A)R, = (2.00 A)(3.75 Q) which gives R, =10.0 Q.
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26.21.

(b) £=V,=(2.00 A)3.75Q)=750 V.

(¢) From part (a), I, = 0.750 A, I, = 0.750 A.

(d) A =150W (given). P, = 122R2 =(0.750 A)*(10.0 Q) = 5.625 W, which rounds to 5.63 W.
By,=1 IZOR10 =(0.750 A)Z(IO.O Q) =5.625 W. The total rate at which the resistors remove electrical
=15.0 W+5.625 W +5.625 W = 26.25 W, which rounds to 26.3 W.

= Ie=(3.50 A)Y(7.50 V) =

energy is P,

Resist

The total rate at which the battery inputs electrical energy is PBattery

26.3 W- Therefore Fregigt = Fattery» Which agrees with conservation of energy.

EVALUATE: The three resistors are in parallel, so the voltage for each is the battery voltage, 7.50 V. The
currents in the three resistors add to give the current in the battery.

IDENTIFY: For resistors in series, the voltages add and the current is the same. For resistors in parallel, the
voltages are the same and the currents add. P=I°R.

(a) SET UP: The circuit is sketched in Figure 26.21a.

. R, =4000Q For resistors in series the current is
——ANWV— the same through each.
‘éb =120 VI
A ANV
R, =800 Q
Figure 26.21a
V 120V . .
EXECUTE: Ry =R +R,=1200Q. I=—= =0.100 A. This is the current drawn from the line.
Ry 1200 Q

() A= 112R1 =(0.100 A)*(400Q)=4.0 W.

P, =I3R, =(0.100 A)*(800 Q) =8.0 W.

(¢) Py =H+P=12.0W, the total power dissipated in both bulbs. Note that

P, =VI=(120V)(0.100 A)=12.0 W, the power delivered by the potential source, equals P,
(d) SET Up: The circuit is sketched in Figure 26.21b.

ut -

a For resistors in parallel the voltage across
each resistor is the same.
Vap = 120V R, R,
bC
Figure 26.21b
EXECUTE: [ N 10V 0.300 A, I, N 10V 0.150 A.
R, 400 Q R, 800Q

EVALUATE: Note that each current is larger than the current when the resistors are connected in series.
EXECUTE: (e) P =I2R, =(0.300 A)*(400Q)=36.0 W.

P, =I3R, =(0.150 A)*(800 Q) =18.0 W.

® Py=B+P=540W.

EVALUATE: Note that the total current drawn from the line is / = /; + I, = 0.450 A. The power input from
the line is P, =V, = (120 V)(0.450 A) =54.0 W, which equals the total power dissipated by the bulbs.
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(g) The bulb that is dissipating the most power glows most brightly. For the series connection the currents
are the same and by P=1 2R the bulb with the larger R has the larger P; the 800-Q bulb glows more
brightly. For the parallel combination the voltages are the same and by P = V2/R the bulb with the smaller
R has the larger P; the 400-Q2 bulb glows more brightly.
(h) The total power output P, equals P, =V, I, so P, is larger for the parallel connection where the
current drawn from the line is larger (because the equivalent resistance is smaller.)

26.22. IDENTIFY: Use P=V>/R with ¥ =120 V and the wattage for each bulb to calculate the resistance of
each bulb. When connected in series the voltage across each bulb will not be 120 V and the power for each
bulb will be different.

SET UP:  For resistors in series the currents are the same and R,y = R, + R,.
2 (120 V)? v (120 V)?

EXECUTE: (a) R =—=—"—=240Q; R =—=——"""=72Q.

(@) Reow 7 0w 200W =5 = 00w

£ 240 V
Therefore, /, =/ =—=———=0.769 A.
A e — T KT
() Pyow = I7R=(0.769 A)*(240Q) =142 W; Pyyow =I*R=(0.769 A)*(72Q)=42.6 W.
(¢) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times its rated value.
EVALUATE: In series the largest resistance dissipates the greatest power.
26.23. IDENTIFY: Apply Kirchhoff’s rules.

SET UP: Figure 26.23 shows the loops taken. When we go around loop (1) in the direction shown there is

a potential rise across the 200.0 V battery, so there must be a drop across R and the current in R must be in

the direction shown in the figure. Similar analysis of loops (2) and (3) tell us that currents 7, and /5 must

be in the directions shown. The junction rule has been used to label the currents in all the other branches of
the circuit.

Figure 26.23

EXECUTE: (a) Apply the Kirchhoff loop rule to loop (1): +200.0 V — [, R = 0. Solving for R gives

R 12000V _ 4200.0 V

= =20.0Q.
1, 10.0 A

160.0 V

b) Loop (2): +160.0 V—1,(40.0Q)=0. I, = =4.00 A.
(b) Loop (2) o ) 2= 1000

160.0 V
Loop (3): +160.0 V—75(20.0Q) =0. Is=————=8.00 A.
P (3) 5( ) 555000

A, reads I, =4.00 A. 4; reads I, +15=12.0 A. 4, reads [; +1, =14.0 A. A5 reads /5 =8.00 A.
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26.24.

26.25.

EVALUATE: The sum of potential changes around the outer loop (4) is
+200.0 V—1,R+1,(40.0 Q) — 15(20.0 Q) =200.0 V —(10.0 A)(20.0 ) + (4.00 A)(40.0 Q) —
(8.00 A)(20.0Q)=200.0 V-200.0 V-160.0 V=0.
The loop rule is satisfied for loop (4) and this is a good check of our calculations.
IDENTIFY: This circuit cannot be reduced using series/parallel combinations, so we apply Kirchhoff’s
rules. The target variables are the currents in each segment.
SET UP: Assume the unknown currents have the directions shown in Figure 26.24. We have used the
junction rule to write the current through the 10.0 V battery as ; +/,. There are two unknowns, /; and

I, , so we will need two equations. Three possible circuit loops are shown in the figure.

10.0 V

Figure 26.24

EXECUTE: (a) Apply the loop rule to loop (1), going around the loop in the direction shown:
+10.0 V—-(30.0 Q)/; =0 and /; =0.333 A.

(b) Apply the loop rule to loop (3): +10.0 V—(20.0 Q)/, —5.00 V=0 and 7, =0.250 A.

(¢) ;+1,=0333 A+0.250 A=0.583 A.

EVALUATE: For loop (2) we get

+5.00 V +1,(20.0 Q) —1,(30.0 ) =5.00 V +(0.250 A)(20.0 Q)—(0.333 A)(30.0Q2) =

5.00 V+5.00 V-10.0 V=0, so that with the currents we have calculated the loop rule is satisfied for this

third loop.

IDENTIFY: Apply Kirchhoff’s junction rule at point a to find the current through R. Apply Kirchhoff’s
loop rule to loops (1) and (2) shown in Figure 26.25a to calculate R and &. Travel around each loop in the
direction shown.

SET UP:

Figure 26.25a

EXECUTE: (a) Apply Kirchhoff’s junction rule to pointa: >/ =0s0o/+4.00 A—6.00 A=0
1=2.00 A (in the direction shown in the diagram).
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(b) Apply Kirchhoff’s loop rule to loop (1): —(6.00 A)(3.00Q)—(2.00 A)R+28.0 V=0
—18.0 V-(2.00Q)R+28.0 V=0.
_280V-18.0V
o 200A
(¢) Apply Kirchhoff’s loop rule to loop (2): —(6.00 A)(3.00 ) —(4.00 A)(6.00Q)+¢£=0.
e=18.0V+24.0V=42.0V.

EVALUATE: We can check that the loop rule is satisfied for loop (3), as a check of our work:
28.0 V—£+(4.00 A)(6.00Q)—(2.00 A)R=0.

28.0 V—-42.0V+24.0 V—(2.00 A)5.00Q)=0.

520V=420V+10.0V.

52.0 V=52.0V, so the loop rule is satisfied for this loop.

(d) IDENTIFY: If the circuit is broken at point x there can be no current in the 6.00-Q resistor. There is

now only a single current path and we can apply the loop rule to this path.
SET UP: The circuit is sketched in Figure 26.25b.

=5.00Q.

Figure 26.25b

EXECUTE: +28.0 V—-(3.00Q)/ —(5.00Q)/ =0.
280V

T 8.00Q

EVALUATE: Breaking the circuit at x removes the 42.0-V emf from the circuit and the current through the
3.00-Q resistor is reduced.

26.26. IDENTIFY: Apply Kirchhoff’s loop rule and junction rule.
SET UP: The circuit diagram is given in Figure 26.26. The junction rule has been used to find the
magnitude and direction of the current in the middle branch of the circuit. There are no remaining
unknown currents.
EXECUTE: The loop rule applied to loop (1) gives:
+20.0V —(1.00 A)(1.00 €2) + (1.00 A)(4.00 £2)+(1.00 A)(1.00 Q) —& —(1.00 A)(6.00£2) =0.
£=20.0V-1.00 V+4.00 V+1.00 V—-6.00 V=18.0 V. The loop rule applied to loop (2) gives:
+20.0 V—(1.00 A)(1.00 £2) —(2.00 A)(1.00 Q) —&, —(2.00 A)(2.00 Q) —(1.00 A)(6.00Q)=0.
£ =20.0V-1.00 V-2.00 V-4.00 V-6.00 V=7.0 V. Going from b to a along the lower branch,
Vy, +(2.00 A)(2.00€2)+7.0 V+(2.00 A)(1.00Q) =V, -V, —V,=-13.0 V; point b is at 13.0 V lower
potential than point a.
EVALUATE: We can also calculate V;, —V, by going from b to a along the upper branch of the circuit.
V, —(1.00 A)(6.00Q)+20.0 V—(1.00 A)(1.00Q)=V, and ¥V}, —V,=-13.0 V. This agrees with V}, -V,
calculated along a different path between b and a.

1 =3.50 A.
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26.27.

6.00 Q

(@)

Figure 26.26

IDENTIFY: Apply Kirchhoff’s junction rule at points a, b, ¢, and d to calculate the unknown currents.
Then apply the loop rule to three loops to calculate &, €,, and R.

SET UP: The circuit is sketched in Figure 26.27.

Figure 26.27

(a) EXECUTE: Apply the junction rule to point a: 3.00 A +5.00 A—17; =0.
1;,=8.00 A.

Apply the junction rule to point b: 2.00 A+, —-3.00 A=0.

1,=1.00A.

Apply the junction rule to point ¢: I3 =1, —I5=0.

Is=1;-1,=8.00 A-1.00 A=7.00 A.

EVALUATE: As a check, apply the junction rule to pointd: /5—2.00 A-5.00 A=0.
15=7.00 A.

(b) EXECUTE: Apply the loop rule to loop (1): & —(3.00 A)(4.00 Q) —75(3.00 ) = 0.
£ =12.0 V+(8.00 A)(3.002)=36.0 V.

Apply the loop rule to loop (2): &, —(5.00 A)(6.00 ) —15(3.00€2) =0.

& =30.0 V+(8.00 A)(3.00Q)=54.0 V.
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26.28.

26.29.

(c) EXECUTE: Apply the loop rule to loop (3): —(2.00 A)R—¢& +¢&, =0.
_&—& _540V-360V
2.00 A 2.00 A

EVALUATE: Apply the loop rule to loop (4) as a check of our calculations:
—(2.00 A)R —(3.00 A)(4.00 Q)+ (5.00 A)(6.00€2)=0.

—(2.00 A)(9.00Q)-12.0 V+30.0 V=0.

-18.0 V+18.0 V=0.

IDENTIFY: Use Kirchhoff’s rules to find the currents.

SET Up: Since the 10.0-V battery has the larger voltage, assume /; is to the left through the 10-V battery,
I, is to the right through the 5-V battery, and /5 is to the right through the 10-Q resistor. Go around each
loop in the counterclockwise direction.

EXECUTE: (a) Upper loop: 10.0 V—(2.00 Q+3.00 )/, —(1.00 Q+4.00 Q)I, —5.00 V =0. This gives
5.0V —(5.00Q),-(5.00Q)], =0, and = I; +1, =1.00 A.

Lower loop: 5.00 V+(1.00 Q +4.00 Q)/, — (10.0 Q)I5 = 0. This gives

5.00 V+(5.00 )], —(10.0Q)/; =0, and [, —2/;=-1.00 A.
Along with I} =1, + I3, we can solve for the three currents and find:

1,=0.800 A, 1, =0.200 A, I3 =0.600 A.

(b) V,, =—(0.200 A)(4.00 ) —(0.800 A)(3.00 Q) =-3.20 V.

EVALUATE: Traveling from b to a through the 4.00-Q and 3.00-Q resistors you pass through the resistors
in the direction of the current and the potential decreases. Therefore point b is at higher potential than
point a.

IDENTIFY: Apply the junction rule to reduce the number of unknown currents. Apply the loop rule to two
loops to obtain two equations for the unknown currents /; and /,.

(a) SET UP: The circuit is sketched in Figure 26.29.

=9.00 Q.

Figure 26.29

Let 7; be the current in the 3.00-Q resistor and /, be the current in the 4.00-Q resistor and assume that
these currents are in the directions shown. Then the current in the 10.0-€ resistor is /3 = /; —I,, in the
direction shown, where we have used Kirchhoff’s junction rule to relate /5 to /; and /,. If we get a

negative answer for any of these currents we know the current is actually in the opposite direction to what
we have assumed. Three loops and directions to travel around the loops are shown in the circiut diagram in
Figure 26.29. Apply Kirchhoff’s loop rule to each loop.

EXECUTE: Loop (1):

+10.0 V= 1,(3.00 Q) — I, (4.00 Q) +5.00 V — 1,(1.00 Q) — ,(2.00 Q) = 0.
15.00 V —(5.00 Q)1, - (5.00 Q)1, =0.
3.00A—1, -1, =0.
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Loop (2):
+5.00 V-1,(1.00 Q) +({; —1,)10.0Q2—1,(4.00 Q) =0.

5.00 V+(10.0Q), —(15.0Q)1, =0.
1.00 A +2.00/; —3.007, =0.
The first equation says 7, =3.00 A —1;.
Use this in the second equation: 1.00 A +2.00/; —9.00 A +3.00/; =0.
5.00/;, =8.00 A, 7; =1.60 A.
Then 7, =3.00 A—1;=3.00 A—1.60 A=1.40 A.
Iy=1-1,=1.60 A-1.40 A=0.20 A.
EVALUATE: Loop (3) can be used as a check.
+10.0 V—(1.60 A)(3.00)—(0.20 A)(10.00 ) —(1.60 A)(2.00Q)=0.
100 V=48V+20V+32V.
10.0 V=10.0 V.
We find that with our calculated currents the loop rule is satisfied for loop (3). Also, all the currents came
out to be positive, so the current directions in the circuit diagram are correct.
(b) IDENTIFY and SET UP: To find V,;, =V, -V, start at point b and travel to point a. Many different
routes can be taken from b to a and all must yield the same result for V.
EXECUTE: Travel through the 4.00-Q resistor and then through the 3.00-Q resistor:
Vy+1,(4.00Q)+1,(3.00Q)=V,.
V, =V, =(1.40 A)(4.00 Q)+ (1.60 A)(3.00€2)=5.60 V+4.8 V=10.4 V (point a is at higher potential
than point b).
EVALUATE: Alternatively, travel through the 5.00-V emf, the 1.00-Q resistor, the 2.00-Q resistor, and
the 10.0-V emf.
V,+5.00 V-1,(1.00Q)-1;(2.00Q2)+10.0 V=V,.
V,—V,=15.0 V-(1.40 A)(1.00Q)—(1.60 A)(2.00Q)=15.0 V-1.40 V-3.20 V=104 V, the same as
before.
26.30. IDENTIFY: Use Kirchhoff’s rules to find the currents.
SET Up: Since the 15.0-V battery has the largest voltage, assume /; is to the right through the 10.0-V
battery, I, is to the left through the 15.0-V battery, and /5 is to the right through the 10.00-Q resistor.

Go around each loop in the counterclockwise direction.
EXECUTE: (a) Upper loop: 10.0 V +(2.00 Q +3.00 Q)/, +(1.00 Q+4.00 Q)/, —15.00 V = 0.

=5.00 V+(5.00 Q)7, +(5.00 Q)1, =0, so I, + 1, =+1.00A.
Lower loop: 15.00 V —(1.00 Q+4.00 Q)7, —(10.0 )7, = 0.

15.00 V- (5.00 )7, - (10.0Q)I; =0, so [, +21,=3.00 A.
Along with I, =1, + I3, we can solve for the three currents and find
1,=0.00 A, I, =+1.00 A (to the left), /; = +1.00 A (to the right).

(b) V., = 1,(4.00Q)+ 1,(3.00Q) = (1.00 A)(4.00Q)+(0.00 A)(3.00Q) = 4.00 V.

EVALUATE: Traveling from b to a through the 4.00-Q and 3.00-Q resistors you pass through each
resistor opposite to the direction of the current and the potential increases; point « is at higher potential
than point b.

26.31. (a) IDENTIFY: With the switch open, the circuit can be solved using series-parallel reduction.
SET UpP: Find the current through the unknown battery using Ohm’s law. Then use the equivalent
resistance of the circuit to find the emf of the battery.
EXECUTE: The 30.0-Q and 50.0-Q resistors are in series, and hence have the same current. Using

Ohm’s law 15, =(15.0 V)/(50.0 ) =0.300 A = I5,. The potential drop across the 75.0-Q resistor is the
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same as the potential drop across the 80.0-Q2 series combination. We can use this fact to find the current
through the 75.0-Q resistor using Ohm’s law: V55 = Vg, =(0.300 A)(80.0 ) =24.0 V and
I;5 =(24.0 V)/(75.0 Q) =0.320 A.
The current through the unknown battery is the sum of the two currents we just found:
Iiow =0.300 A+0.320 A =0.620 A.

The equivalent resistance of the resistors in parallel is 1/R; =1/(75.0 €2)+1/(80.0 ). This gives
R, =38.7Q. The equivalent resistance “seen” by the battery is R.q;, =20.0 Q+387 Q=587 Q.
Applying Ohm’s law to the battery gives € = RoqyiyIoa = (58.7 €2)(0.620 A) =36.4 V.
(b) IDENTIFY: With the switch closed, the 25.0-V battery is connected across the 50.0-Q resistor.
SET UP: Take a loop around the right part of the circuit.
EXECUTE: Ohm’s law gives I =(25.0 V)/(50.0 ) =0.500 A.
EVALUATE: The current through the 50.0-Q resistor, and the rest of the circuit, depends on whether or
not the switch is open.

26.32. IDENTIFY: We need to use Kirchhoff’s rules.
SET UP: Take a loop around the outside of the circuit, apply the junction rule at the upper junction, and
then take a loop around the right side of the circuit.
EXECUTE: The outside loop gives 75.0 V —(12.0 Q)(1.50 A) —(48.0 Q)I4,3 =0,s0 [, =1.188 A. Ata
junction we have 1.50A =/, +1.188 A, and /., =0.313 A. A loop around the right part of the circuit gives
£—(48 Q)(1.188 A)+(15.0 2)(0.313 A). £=52.3 V, with the polarity shown in the figure in the problem.
EVALUATE: The unknown battery has a smaller emf than the known one, so the current through it goes
against its polarity.

26.33. (a) IDENTIFY: With the switch open, we have a series circuit with two batteries.
SET UP: Take a loop to find the current, then use Ohm’s law to find the potential difference between
aand b.
EXECUTE: Taking the loop: / =(40.0 V)/(175 Q) =0.229 A. The potential difference between a and b is
Vy =V, =+15.0 V—(75.0 2)(0.229 A)=-2.14 V.
EVALUATE: The minus sign means that a is at a higher potential than b.
(b) IDENTIFY: With the switch closed, the ammeter part of the circuit divides the original circuit into two
circuits. We can apply Kirchhoff’s rules to both parts.
SET UP: Take loops around the left and right parts of the circuit, and then look at the current at the
junction.
EXECUTE: The left-hand loop gives ;50 = (25.0 V)/(100.0 ) =0.250 A. The right-hand loop gives
I7;5=(15.0 V)/(75.0 ) =0.200 A. At the junction just above the switch we have I}, =0.250 A (in) and
1;5=0.200 A (out),so/, =0.250 A—0.200 A =0.050 A, downward. The voltmeter reads zero because
the potential difference across it is zero with the switch closed.
EVALUATE: The ideal ammeter acts like a short circuit, making a and b at the same potential. Hence the
voltmeter reads zero.

26.34. IDENTIFY: We first reduce the parallel combination of the 20.0-Q resistors and then apply Kirchhoff’s

rules.

SETUP: P=I°R so the power consumption of the 6.0-Q resistor allows us to calculate the current
through it. Unknown currents [, /,, and /3 are shown in Figure 26.34. The junction rule says that

I, =1, + 1. In Figure 26.34 the two 20.0-Q resistors in parallel have been replaced by their equivalent
(10.0 Q).
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26.35.

26.36.

170 10.0 Q
MW AV

+ +
= 25V o 190

Figure 26.34

. P |24/ ) .
EXECUTE: (a) P=1IR gives I, = \/; =50 S; =2.0 A. The loop rule applied to loop (1) gives:

25V-18V
—(2.0 A)3.02)— (2.0 A)(6.0 Q)+25V-1,(10.0 2+19.0 2+1.0Q)=0. I, = g 0.233 A.
() ,=1,-1,=2.0A-0.233 A=1.77 A. The loop rule applied to loop (2) gives:
—(2.0A)3.0Q2+6.0Q)+25V—-(1.77 A)(17 Q)—e—-(1.77 A)(13 Q) =0.
£=25V-18V-53.1V=-46.1V. Theemfis 46.1 V.
EVALUATE: Because of the minus sign for the emf, the polarity of the battery is opposite to what is shown
in the figure in the problem; the + terminal is adjacent to the 13-Q resistor.
IDENTIFY: To construct an ammeter, add a shunt resistor in parallel with the galvanometer coil. To
construct a voltmeter, add a resistor in series with the galvanometer coil.
SET UP: The full-scale deflection current is 500 A and the coil resistance is 25.0 Q.

EXECUTE: (a) For a 20-mA ammeter, the two resistances are in parallel and the voltages across each are

the same. V, =V, gives IR, = I.R.. (500x10°A)(25.0Q)=(20x10A —-500x10"°A)R, and

R, =0.641Q.
(b) For a 500-mV voltmeter, the resistances are in series and the current is the same through each:
v, 1073
V., =I(R,+R) and R, =— R, =500X—6V—25.OQ=975 Q.
1 500x107™ A
EVALUATE: The equivalent resistance of the voltmeter is R, = R; + R, =1000€2. The equivalent
. . 1 1 1 . .
resistance of the ammeter is given by —=——+ I and R, =0.625 €. The voltmeter is a high-
eq h C

resistance device and the ammeter is a low-resistance device.

IDENTIFY: The galvanometer is represented in the circuit as a resistance Rg. Use the junction rule to
relate the current through the galvanometer and the current through the shunt resistor. The voltage drop
across each parallel path is the same; use this to write an equation for the resistance R.

SET UP: The circuit is sketched in Figure 26.36.
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R R,=9.360Q
——WV —~VW\
Iy, = 0.0224 A
1,=200A" Ia Ry = 002500 e
Figure 26.36
We want that 7, =20.0 A in the external circuit to produce /g =0.0224 A through the galvanometer coil.
EXECUTE: Applying the junction rule to point a gives [, — Iy — Iy, =0.
Iy =1, —15=20.0 A-0.0224 A=19.98 A.
The potential difference V,;, between points a and b must be the same for both paths between these two
points: I (R+Rg) =14 Ry,.
R= TonRen _ R = (15 26RO -936Q=2230Q-936Q=129Q.
Iy 0.0224 A

EVALUATE: R, << R+ R;; most of the current goes through the shunt. Adding R decreases the fraction
of the current that goes through Rg.

26.37. IDENTIFY: The meter introduces resistance into the circuit, which affects the current through the 5.00-k€Q
resistor and hence the potential drop across it.
SET Up: Use Ohm’s law to find the current through the 5.00-kQ resistor and then the potential drop across it.
EXECUTE: (a) The parallel resistance with the voltmeter is 3.33 kQ, so the total equivalent resistance
across the battery is 9.33 kQ, giving 7 =(50.0 V)/(9.33 kQ) =5.36 mA. Ohm’s law gives the potential
drop across the 5.00-kQ resistor: Vs =(3.33 kQ)(5.36 mA)=17.9 V.
(b) The current in the circuit is now 7 =(50.0 V)/(11.0 kQ)=4.55mA.
Vs =(5.00kQ)(4.55mA)=22.7 V.
(¢) % error =(22.7 V-179 V)/(22.7 V) =0.214 = 21.4%. (We carried extra decimal places for accuracy
since we had to subtract our answers.)
EVALUATE: The presence of the meter made a very large percent error in the reading of the “true”
potential across the resistor.

26.38. IDENTIFY: The resistance of the galvanometer can alter the resistance in a circuit.
SET UP: The shunt is in parallel with the galvanometer, so we find the parallel resistance of the ammeter.
Then use Ohm’s law to find the current in the circuit.
EXECUTE: (a) The resistance of the ammeter is given by
1/R, =1/(1.00 Q) +1/(25.0 Q), so R, =0.962 Q. The current through the ammeter, and hence the current it
measures, is 7 =V/R=(25.0 V)/(15.96 Q) =157 A.
(b) Now there is no meter in the circuit, so the total resistance is only 15.0 Q.7 =(25.0 V)/(15.0 Q) =167 A.
(¢) (1.67 A—157 A)/(1.67 A)=0.060 = 6.0%.
EVALUATE: A 1-Q shunt can introduce noticeable error in the measurement of an ammeter.

26.39. IDENTIFY: The capacitor discharges exponentially through the voltmeter. Since the potential difference

across the capacitor is directly proportional to the charge on the plates, the voltage across the plates

decreases exponentially with the same time constant as the charge.

SET UP: The reading of the voltmeter obeys the equation V' = Voeft/ RC

, where RC is the time constant.
EXECUTE: (a) Solving for C and evaluating the result when ¢ =4.00s gives
t 4.00 s

C-= _ =8.49x107F.
RIn(V/V,)

(3.40x10° Q)In 120V
3.00 V

(b) 7=RC =(3.40x10° Q)(8.49x10”7 F)=2.89s.

EVALUATE: In most laboratory circuits, time constants are much shorter than this one.
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26.40.

26.41.

26.42.

26.43.

IDENTIFY: When S is closed, charge starts to flow and charge the capacitor until the potential difference
across the capacitor is equal to the emf of the battery.
SETUP: Vx=RI Ve=e(1-¢"), and U- = 0*2C.
EXECUTE: (a) Kirchhoff’s loop rule gives Ve + Viy = &, sol = (& — V)/R=(36.0V—-28.00 V)/(120 Q) =
0.2333 A, which rounds to 0.233 A.
(b) From Ve =& (1 — e ), we get e "* = 1 —V,./e. Taking logs gives —#/RC =In(1 — V,./€). Solving for
t gives
t=—(120 Q)(5.00 xF) In[1 — (8.00 V)/(36.0 V)] = 151 us.
(¢) Uc = 0*/2C, so Pc = dUJ/dt = (Q/C) dQ/dt = VI = (8.00 V)(0.2333 A) = 1.87 W.
EVALUATE: Pc+ Py =Pc+ R =187 W +(0.2333 A)’(120 Q) =840 W. P.=1¢ =(0.2333 A)
(36.0 V) = 8.40 W. These results for the power agree, as they should by conservation of energy.
IDENTIFY: An uncharged capacitor is placed into a circuit. Apply the loop rule at each time.
SET UP: The voltage across a capacitor is V- =¢/C.
EXECUTE: (a) At the instant the circuit is completed, there is no voltage across the capacitor, since it has
no charge stored.
(b) Since V- =0, the full battery voltage appears across the resistor V =£=245V.
(c) There is no charge on the capacitor.
£ 245V
~7500Q

(e) After a long time has passed the full battery voltage is across the capacitor and i = 0. The voltage
across the capacitor balances the emf: V- =245 V. The voltage across the resistor is zero. The capacitor’s

charge is g = CV =(4.60 x 107 F)(245V)=1.13x 107 C. The current in the circuit is zero.
EVALUATE: The current in the circuit starts at 0.0327 A and decays to zero. The charge on the capacitor

(d) The current through the resistor is i = =0.0327 A =32.7 mA.

R

total

starts at zero and rises to ¢ =1.13 % 107 C.

IDENTIFY: Once the switch S is closed, current starts to flow and charge the capacitor.
SETUP: P =1V, Vp=RIl, U.=0%2C, Q=Ce(l-e "R, (1-e""), and I=(e/R) e "R,
EXECUTE: (a) € =Vz+ Vc=IR + Q/C =(3.00 A)(12.0 Q) + (40.0 uC)/(5.00 uF)=44.0 V.
(b) The current is / =(&/R) ¢ "RC The current is 3.00 A when 0 =40.0 uC, so

3.00 A=[(44.0 )/(12.0 Q)]e”/RC. Taking logs and solving for 7 gives

—#/RC = In(36.0/44.0).
t = (12.0 Q)(5.00 4F) In(36.0/44.0) = 12.0 us.

(¢) (i) The power in the capacitor is F. =dU/dt = d(QZ/ZC)/dt =(Q/C) dQ/dt=QI/C, so

P =(40.0 £C)(3.00 4)/(5.00 uF)=24.0 W.

(ii) P.=Te =(3.00 A)(44.0 V)= 132 W.

EVALUATE: In (c), when /=3.00 A, P, =I°R=(3.00 4)*(12.0 Q) =108 W. Therefore Py + Pc=108 W
+24.0 W =132 W, which is equal to F,, as it should be by energy conservation. In (b), we can use the
equation O = C&(1 —e_t/RC) to calculate Q when 7 = 12.0 us; it should be 40.0 uC. We have

0 =(44.0 V)(5.00 uF)(1— 120102000 )y — 400 4C, as expected.

IDENTIFY: The capacitors, which are in parallel, will discharge exponentially through the resistors.
SET UP: Since V is proportional to O, ¥ must obey the same exponential equation as Q,

V= Voe”/RC. The current is 7 =(V,/R) e /R
EXECUTE: (a) Solve for time when the potential across each capacitor is 10.0 V:
t=—RC In(V'/V) =—(80.0 )(35.0 uF) In(10/45) =4210 us =4.21 ms.

(b) I=(Vy/R) e VRC, Using the above values, with [, =45.0 V, gives / =0.125 A.
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EVALUATE: Since the current and the potential both obey the same exponential equation, they are both
reduced by the same factor (0.222) in 4.21 ms.

26.44. IDENTIFY: For a charging capacitor ¢(r)=Ce(1—e %) and i(t) = %e_[/ L

SET UP: The time constant is RC = (0.895x10° Q) (12.4x10° F)=111s.

EXECUTE: (a) At 1=0s: g=Ce(l—e "R =0.

At t=5s: g=Ce(1-e ") =(12.4x107° F)(60.0 V)(1—e GO9Iy~ 5 70%107* C.
At 1=10s: g=Ce(l-e ") = (12.4x107° F)(60.0 V)(1—e 100119y — 4 47107 C.
At t=20s: g=Ce(1—e ") =(12.4x107° F)(60.0 V)(1—e 200119y _621x107* C.
At t=100s: g=Ce(l—e"RC)=(12.4x107° F)(60.0 V)(1—e 100119y — 7 445107 C.

(b) The current at time ¢ is given by: i = %e’”RC.
600V _
At t=0s: i=LSe 01 = 670107 A.
8.95x10° Q
At t=5s: i=60'—0\26_5/“'1 =427x107 A.
8.95x10° Q
At t=10s: 1=L0\2e‘1°/“-1 =2.72x107° A.
8.95x10° Q
At t=20s: i=60'—ovse_20/“‘l =1.11x107° A.
8.95%10° Q
At £=100s: i=60'—0\ge‘10°/”-1 =8.20x107A.
8.95x10° Q

(c) The graphs of ¢(¢) and i(¢) are given in Figure 26.44a and b.

EVALUATE: The charge on the capacitor increases in time as the current decreases.

q(107*C) i(10 5 A)
6.00 6.00 \\
— \
4.00 / 4.00
\
2.00 / - 2.00 ™~
// ——
0.00 / t(s) 0.00 £(s)
0.00 4.00 8.00 1200 1600  20.00 0.00 4.00 8.00 1200 1600  20.00

@ (b)
Figure 26.44

26.45. IDENTIFY and SET UP: Apply Kirchhoff’s loop rule. The voltage across the resistor depends on the
current through it and the voltage across the capacitor depends on the charge on its plates.
EXECUTE: ¢—-Vp—V-=0.
£=120V, Vp =1R=(0.900 A)(80.02)=72 V,s0 V=48 V.

Q=CV =(4.00x107% F)(48 V) =192 uC.
EVALUATE: The initial charge is zero and the final charge is Ce =480 4C. Since current is flowing at the

instant considered in the problem the capacitor is still being charged and its charge has not reached its final
value.
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26.46.

26.47.

26.48.

26.49.

IDENTIFY: In 7= RC use the equivalent capacitance of the two capacitors.

. . . 1 I 1 . . .
SET UP: For capacitors in series, — = ek + o For capacitors in parallel, Cq = C; + C,. Originally,
eq 1 2
7=RC=0.780s.
EXECUTE: (a) The combined capacitance of the two identical capacitors in series is given by
1 1 1 2 . . .

=—+—=—,580 Cy= E The new time constant is thus R(C/2) = 0.780s
Cq C C C 2
(b) With the two capacitors in parallel the new total capacitance is simply 2C. Thus the time constant is
R(2C)=2(0.780s)=1.56s.

EVALUATE: The time constant is proportional to C.,. For capacitors in series the capacitance is

=0.390s.

decreased and for capacitors in parallel the capacitance is increased.

IDENTIFY: The stored energy is proportional to the square of the charge on the capacitor, so it will obey
an exponential equation, but not the same equation as the charge.

SET Up: The energy stored in the capacitor is U = 0%/2C and the charge on the plates is Qoeft/RC. The

currentis / = Ioe_”RC.

EXECUTE: U = Q2/ 2C = (Qoe_t/ RCY2 pC = er_ZZ/RC. When the capacitor has lost 80% of its stored

energy, the energy is 20% of the initial energy, which is U,/5.U,/5=U,, '

t=(RC/2) In 5=(25.0 Q)(4.62 pF)(In 5)/2=92.9 ps.

At this time, the current is / =1, e 1RC = (Q0 /RC) e "RC o

gives

1=(3.5nC)/[(25.0 Q)(4.62 pF)] e 02 PVI250 D(@62pP)] _ 136 A

EVALUATE: When the energy is reduced by 80%, neither the current nor the charge are reduced by that
percent.
IDENTIFY: The charge is increasing while the current is decreasing. Both obey exponential equations, but

they are not the same equation.
SET UP: The charge obeys the equation O =0, (1—- e /RC

I=1 "R

), but the equation for the current is

EXECUTE: When the charge has reached < of its maximum value, we have Q.. /4 =0, .. (1—- e VRCy

which says that the exponential term has the value e "/*¢ =

[=1,,.e"RC=1_ (3/4)=(3/4)[(10.0 V)/(12.0 Q)] =0.625 A.

max

2. The current at this time is

EVALUATE: Notice that the current will be <, not +,

of its maximum value when the charge is + of its
maximum. Although current and charge both obey exponential equations, the equations have different
forms for a charging capacitor.

IDENTIFY: In both cases, simplify the complicated circuit by eliminating the appropriate circuit elements.
The potential across an uncharged capacitor is initially zero, so it behaves like a short circuit. A fully
charged capacitor allows no current to flow through it.

(a) SET UP: Just after closing the switch, the uncharged capacitors all behave like short circuits, so any
resistors in parallel with them are eliminated from the circuit.

EXECUTE: The equivalent circuit consists of 50 Q and 25 Q in parallel, with this combination in series

with 75 Q, 15 Q, and the 100-V battery. The equivalent resistance is 90 Q+16.7 Q=106.7 Q, which
gives 1 =(100V)/(106.7 Q)=0.937 A.

(b) SET UpP: Long after closing the switch, the capacitors are essentially charged up and behave like open
circuits since no charge can flow through them. They effectively eliminate any resistors in series with them
since no current can flow through these resistors.

EXECUTE: The equivalent circuit consists of resistances of 75 Q, 15 Q, and three 25-Q resistors, all in

series with the 100-V battery, for a total resistance of 165 Q. Therefore 7 =(100V)/(165 Q) =0.606 A.
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EVALUATE: The initial and final behavior of the circuit can be calculated quite easily using simple series-
parallel circuit analysis. Intermediate times would require much more difficult calculations!
26.50. IDENTIFY: Both the charge and energy decay exponentially, but not with the same time constant since the
energy is proportional to the square of the charge.
SET UP: The charge obeys the equation QO = Qoe_t/ RC but the energy obeys the equation
U =0%2C =(Qye "R 2C =Ue /R
EXECUTE: (a) The charge is reduced by half: Q,/2 = Qoe’t/ RC This gives
t=RC In2=(225Q)(12.0 uF)(In 2) = 1.871 ms, which rounds to 1.87 ms.
(b) The energy is reduced by half: U,/2= UOe’Z[/ RC This gives
t=(RC In 2)/2 = (1.871 ms)/2 = 0.936 ms.
EVALUATE: The energy decreases faster than the charge because it is proportional to the square of the
charge.
26.51. IDENTIFY: When the capacitor is fully charged the voltage V across the capacitor equals the battery emf
and Q =CV. For a charging capacitor, g = Q(1— o E o)
SETUP: Ine* =x.
EXECUTE: (a) Q=CV =(5.90x107° F)(28.0 V) =1.65x107* C =165 uC.
—t
b) g =0(1—e/RC , SO e t/RC = 1—i and R=———_ After
(b) ¢=0( ) 0 Cin(l—4/0)
_ -3
t=3x107 s: R= e’ =463Q
(5.90x10™ F)(In(1-110/165))
(c) If the charge is to be 99% of final value: %= 1- e RC) gives
t =—RC In(1—g/Q) =—(463 Q) (5.90x107° F) In(0.01) = 0.0126 s = 12.6 ms.
EVALUATE: The time constant is 7= RC =2.73 ms. The time in part (b) is a bit more than one time
constant and the time in part (c) is about 4.6 time constants.
26.52. IDENTIFY: P=VI=I’R
SET UP: Problem 25.76 says that for 12-gauge wire the maximum safe current is 25 A.
P 4100 W .
EXECUTE: (a) /= v = 220V =17.1 A. So we need at least 14-gauge wire (good up to 18 A). 12-gauge
is also ok (good up to 25 A).
2 2 2
24
) P="" and R="_COV" _ 140
R P 4100 W
(c) At 11¢ per kWh, for 1 hour the cost is (11¢/kWh)(1 h)(4.1kW)=45¢.
EVALUATE: The cost to operate the device is proportional to its power consumption.
26.53. IDENTIFY and SET UP: The heater and hair dryer are in parallel so the voltage across each is 120 V and

the current through the fuse is the sum of the currents through each appliance. As the power consumed by
the dryer increases, the current through it increases. The maximum power setting is the highest one for
which the current through the fuse is less than 20 A.

EXECUTE: Find the current through the heater. P=VI sol = P/V = (1500 W)/(120 V) =12.5 A. The
maximum total current allowed is 20 A, so the current through the dryer must be less than

20 A—12.5 A=7.5 A. The power dissipated by the dryer if the current has this value is P = VI =

(120 V)(7.5 A) =900 W. For P at this value or larger the circuit breaker trips.

EVALUATE: P=V?>/R and for the dryer Vis a constant 120 V. The higher power settings correspond to a
smaller resistance R and larger current through the device.
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26.54.

26.55.

26.56.

26.57.

IDENTIFY: We need to do series/parallel reduction to solve this circuit.
2
£ . . . . . .
SETUP: P= ?, where R is the equivalent resistance of the network. For resistors in series,

Req =Ry +R,, and for resistors in parallel 1/Rp =1/R; +1/R,.

2 2
Execure: R=5-= B0V 20100 R, =R+ R, =8.00Q. R=Ri;+ R,
P 295 W
R =R-R;=7810Q2-3.00Q2=4.810Q. L+l =L. 1 =L—L=M.
Ry, R3 Rpy; R3 Rpy Rp Rix3Ry,

RisR,  (4810Q)8.00Q)
Riy—R,; 8.00Q-4810Q

EVALUATE: The resistance R; is greater than R, since the equivalent parallel resistance is less than any

Ry= 12.1Q.

of the resistors in parallel.
IDENTIFY: The terminal voltage of the battery depends on the current through it and therefore on the
equivalent resistance connected to it. The power delivered to each bulbis P=1 2R, where [ is the current

through it.
SET UP: The terminal voltage of the source is & — Ir.
EXECUTE: (a) The equivalent resistance of the two bulbs is 1.0 Q. This equivalent resistance is in series

with the internal resistance of the source, so the current through the battery is
vV 8.0V

Ry 1.0Q+0.80Q

cach bulb is £—Ir=8.0 V—(4.4 A)(0.80Q)=4.4 V. Therefore, By, = I*R=(22 A)*(2.0Q)=9.7 W.
vV 80V
Row  20Q+080Q

is29A,and P=I’R= (2.9 A)2 (2.0 Q)=16.3 W. The remaining bulb is brighter than before, because it is
consuming more power.

EVALUATE: In Example 26.2 the internal resistance of the source is negligible and the brightness of the
remaining bulb doesn’t change when one burns out.

IDENTIFY: Half the current flows through each parallel resistor and the full current flows through the
third resistor, that is in series with the parallel combination. Therefore, only the series resistor will be at its
maximum power.

SETUp: P=IR.

EXECUTE: The maximum allowed power is when the total current is the maximum allowed value of

1=+ P/R =,/(48 W)/(2.4 Q) = 4.47 A. Then half the current flows through the parallel resistors and the
maximum power is Py, =(I/2)° R+ (12’ R+ I°R=31"R=3(447 A’ (24Q)=72 W.

=4.4 A. and the current through each bulb is 2.2 A. The voltage applied to

(b) If one bulb burns out, then / = =2.9 A. The current through the remaining bulb

EVALUATE: If all three resistors were in series or all three were in parallel, then the maximum power
would be 3(48 W) =144 W. For the network in this problem, the maximum power is half this value.

(a) IDENTIFY: Break the circuit between points @ and b means no current in the middle branch that
contains the 3.00-Q resistor and the 10.0-V battery. The circuit therefore has a single current path. Find
the current, so that potential drops across the resistors can be calculated. Calculate ¥, by traveling from
a to b, keeping track of the potential changes along the path taken.

SET UP: The circuit is sketched in Figure 26.57a.
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Figure 26.57a

EXECUTE: Apply Kirchhoff’s loop rule to loop (1).

+120V-7(1.00Q+2.00Q2+2.00Q+1.00Q)—-8.0 V-1(2.00Q2+1.00 Q) =0.

7= 120 V-8.0V
9.00Q

To find ¥, start at point b and travel to a, adding up the potential rises and drops. Travel on path (2)

shown on the diagram. The 1.00-Q and 3.00-Q resistors in the middle branch have no current through
them and hence no voltage across them. Therefore,

V,—10.0 V+12.0 V-1(1.00 2 +1.00 2 +2.00 Q) =V,; thus

V,=V,=2.0V—-(0.4444 A)(4.00Q)=+0.22 V (point a is at higher potential).

EVALUATE: As a check on this calculation we also compute V,;, by traveling from b to a on path (3).
V,—10.0 V4+8.0 V+7(2.00Q2+1.00Q2+2.00Q)=V,.

V., =—2.00 V+(0.4444 A)(5.00 Q) =+0.22 V, which checks.

(b) IDENTIFY and SET UP: With points a and b connected by a wire there are three current branches, as
shown in Figure 26.57b.

=0.4444 A.

7 1.00 Q 12ov @

AN —] =

(6]

I, 1.00Q 100V 3000
+I A%

Figure 26.57b

The junction rule has been used to write the third current (in the 8.0-V battery) in terms of the other
currents. Apply the loop rule to loops (1) and (2) to obtain two equations for the two unknowns /; and /,.
EXECUTE: Apply the loop rule to loop (1).

12.0 V-1;(1.00 Q) — 1;(2.00 ) - 1,(1.00 ) —10.0 V - 1,(3.00 Q) — [;(1.00 Q) = 0
20V-1,(4.00Q)-1,(4.002)=0

(2.00Q)1; +(2.00Q)1, =1.0 V eq. (1)
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26.58.

25.59.

Apply the loop rule to loop (2).
—(1, - 1,)(2.00Q)— (I, - 1,)(1.00Q)-8.0 V—(I; - 1,)(2.00 Q) + 1,(3.00 2) +10.0 V + 1,(1.00 Q) =0

2.0 V—-(5.00Q)7; +(9.00Q)7, =0 eq. (2)
Solve eq. (1) for 7, and use this to replace /, in eq. (2).
12 = 050 A - Il

2.0 V—(5.00Q)7, +(9.00Q)(0.50 A—1;)=0

(14.02)1; =6.50 V so I; =(6.50 V)/(14.0Q) =0.464 A

1, =0.500 A—-0.464 A=0.036 A.

The current in the 12.0-V battery is /; =0.464 A

EVALUATE: We can apply the loop rule to loop (3) as a check.

+12.0 V-1;(1.00Q2+2.00Q2+1.00 Q) — ({; — 1,)(2.00Q2+1.00Q2+2.00Q)-8.0 V=40 V-1.86 V-
2.14 V=0, as it should.

IDENTIFY: Heat, which is generated in the resistor, melts the ice.

SET UP: Find the rate at which heat is generated in the 20.0-Q resistor using P = V2/R. Then use the
heat of fusion of ice to find the rate at which the ice melts. The heat dH to melt a mass of ice dm is

dH = Lp dm, where Ly is the latent heat of fusion. The rate at which heat enters the ice, dH/dt, is the
power P in the resistor, so P = Ly dm/dt. Therefore the rate of melting of the ice is dm/dt = P/L.
EXECUTE: The equivalent resistance of the parallel branch is 5.00 Q, so the total resistance in the circuit
is 35.0 Q. Therefore the total current in the circuit is /1, = (45.0 V)/(35.0 Q) =1286 A. The potential
difference across the 20.0-Q resistor in the ice is the same as the potential difference across the parallel
branch: V.. = IR, = (1.286 A)(5.00 Q) =6.429 V. The rate of heating of the ice is

P..= Vife /R = (6.429 V)?/(20.0 Q) =2.066 W. This power goes into to heat to melt the ice, so

dm/dt = P/Lg = (2.066 W)/(3.34x10° J/kg) = 6.19x10°® kg/s = 6.19x10~ g/s.
EVALUATE: The melt rate is about 6 mg/s, which is not much. It would take 1000 s to melt just
6 g of ice.
IDENTIFY: Apply Kirchhoff’s junction rule to express the currents through the 5.00-CQ2 and 8.00-Q2
resistors in terms of /;, /5, and /5. Apply the loop rule to three loops to get three equations in the three
unknown currents.
SET UP: The circuit is sketched in Figure 26.59.

Il-ﬁ-l3

o
|
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o
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~
—

Figure 26.59

The current in each branch has been written in terms of /;, /5, and /5 such that the junction rule is satisfied

at each junction point.
EXECUTE: Apply the loop rule to loop (1).
-12.0 V+1,(1.00 Q) + (I, — I3)(5.00Q) =0

1,(6.00Q)— 1;(5.00Q) =12.0 V eq. (1)



26-26 Chapter 26

Apply the loop rule to loop (2).

—1;(1.00Q)+9.00 V- (I, + 15)(8.00Q)=0

1,(9.00 Q) + 15(8.00 Q) =9.00 V eq. (2)
Apply the loop rule to loop (3).

—15(10.0Q)—-9.00 V+;(1.00Q) - 71,(1.00Q)+12.0 V=0

-1;(1.00 Q)+ 71,(1.00 Q) + I5(10.02) =3.00 V eq.- (3)
Eq. (1) gives 1, =2.00 A+215; eq.(2) gives [; =1.00 A= 3 1.

Using these results in eq. (3) gives

~(1.00 A —£1,)(1.00 Q) +(2.00 A+21,)(1.00 Q)+ 1,(10.0 Q) =3.00 V.
(Ae134180y 1 =2 00 A; [, =45(2.00 A)=0.171 A.

Then 7, =2.00 A+%I3 =2.00 A+%(0.l7l A)=2.14 A and

[,=1.00 A—57,=1.00 A—5(0.171 A)=0.848 A.

EVALUATE: We could check that the loop rule is satisfied for a loop that goes through the
5.00-Q, 8.00-Q and 10.0-Q resistors. Going around the loop clockwise:

—(, —13)(5.00 Q) + (1, + 13)(8.00 Q) + 15(10.0 2) =—9.85 V +8.15 V +1.71 V, which does equal zero,
apart from rounding.

26.60. IDENTIFY: Apply the junction rule and the loop rule to the circuit.
SET UP: Because of the polarity of each emf, the current in the 7.00-€2 resistor must be in the direction
shown in Figure 26.60a. Let / be the current in the 24.0-V battery.
EXECUTE: The loop rule applied to loop (1) gives: +24.0 V—(1.80 A)(7.00Q)—7(3.00 Q) =0.
1=3.80 A. The junction rule then says that the current in the middle branch is 2.00 A, as shown in
Figure 26.64b. The loop rule applied to loop (2) gives: +&—(1.80 A)(7.00 Q)+ (2.00 A)(2.00Q)=0
and €=8.6 V.
EVALUATE: We can check our results by applying the loop rule to loop (3) in Figure 26.60b:
+24.0 V—£—-(2.00 A)(2.002)—(3.80 A)(3.00Q2)=0 and £€=24.0V-4.0V-11.4V =8.6V, which

agrees with our result from loop (2).

I

2.00A
ll,SO A
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§ 7.00 O
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™

(b
Figure 26.60
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26.61.

26.62.

IDENTIFY and SET UP: The circuit is sketched in Figure 26.61.

Two unknown currents /; (through
the 2.00-Q resistor) and 1,

(through the 5.00-Q resistor) are

labeled on the circuit diagram. The
current through the 4.00-Q resistor

has been written as [, — I; using the

junction rule.

Figure 26.61

Apply Kirchhoff’s loop rule to loops (1) and (2) to get two equations for the unknown currents, /; and /,.

Loop (3) can then be used to check the results.
EXECUTE: Loop (1): 420.0 V—-17;(2.00Q)—-14.0 V+ (I, —1,)(4.00Q)=0

6.001, —4.001, = 6.00 A

3.007; —2.007, =3.00 A eq. (1)
Loop (2): +36.0 V = I1,(5.00 Q) — (I, — I,)(4.00 Q) = 0
—4.007; +9.001, =36.0 A eq. (2)

Solving eq. (1) for I; gives /; =1.00 A+%12.
Using this in eq. (2) gives —4.00(1.00 A +%12) +9.00/, =36.0 A.
(~2+9.00)7,=40.0 Aand I, =6.32 A,

Then /;=1.00 A+27,=1.00 A+2(6.32 A)=5.21 A.

In summary then

Current through the 2.00-€ resistor: /; =5.21 A.

Current through the 5.00-Q resistor: /, =6.32 A.

Current through the 4.00-Q resistor: [, =1} =632 A-521 A=1.11A.

EVALUATE: Use loop (3) to check. +20.0 V —17;(2.00Q)—14.0 V+36.0 V—1,(5.00Q) =0.

(5.21 A)(2.00Q)+(6.32 A)(5.00Q)=42.0 V.

10.4 V+31.6 V=42.0 V, so the loop rule is satisfied for this loop.

IDENTIFY: Apply the loop and junction rules.

SET UP: Use the currents as defined on the circuit diagram in Figure 26.62 and obtain three equations to

solve for the currents.

EXECUTE: (a) Leftloop: 14—1; —2(/;—1,)=0 and 3/, -21, =14.

Top loop: 2(/ - 1;)+I, +1; =0 and -2/ +31;+ 1, =0.

Bottom loop: —(/ =1} +1,)+2(l; =1,)—1,=0 and -1 +31;-41,=0.

Solving these equations for the currents we find: / = Iyyyer, =10.0 As Iy =1 =6.0A; [, =1 =2.0A.

So the other currents are: [p =/—-1)=4.0A;1p =1 -1, =40A;Ip =1-1,+1)=6.0A.
V140V

(b) R =7=m=1.40 Q.

EVALUATE: It isn’t possible to simplify the resistor network using the rules for resistors in series and
parallel. But the equivalent resistance is still defined by V' = IR,.
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Figure 26.62
26.63. IDENTIFY: Simplify the resistor networks as much as possible using the rule for series and parallel
combinations of resistors. Then apply Kirchhoff’s laws.
SET UP: First do the series/parallel reduction. This gives the circuit in Figure 26.63. The rate at which the
10.0-Q resistor generates thermal energy is P =1 2R.
EXECUTE: (a) Apply Kirchhoff’s laws and solve for £. AV, 4. =0: =(20Q)(2 A)-5V - (20 Q)/, =0.
This gives I, =—2.25A. Then I;+1, =2 A gives [; =2 A—(-2.25 A)=4.25 A.
AV pcdeta =00 (15Q)(4.25 A) + £ - (20 Q)(—2.25 A) =0. This gives £=-109 V. Since ¢ is calculated to
be negative, its polarity should be reversed.
(b) The parallel network that contains the 10.0-Q resistor in one branch has an equivalent resistance of
10 Q. The voltage across each branch of the parallel network is e = ] = (10Q)(2A)=20V. The
current in the upper branch is [ 2 =2A. Pt= E, so I> Rt = E, where E =60.0 J.
R 30Q 3
2
(2A) 10Q)r=6017, and =13.5s.
EVALUATE: For the 10.0-Q resistor, P = I°R = 4.44 W. The total rate at which electrical energy is
inputted to the circuit in the emfis (5.0 V)(2.0 A)+ (109 V)(4.25 A) =473 J. Only a small fraction of the
energy is dissipated in the 10.0-Q resistor.
20Q
v 5
I, 150
2A b —WW——— G 5V
T
a la
20Q)
— M ————
f . e
Figure 26.63
26.64. IDENTIFY: The resistor R, can vary between 3.00 Q and 24.0 Q. R, is in parallel with R, so as R, is changed

it affects the current in R, and hence the power dissipated in R,. Ohm’s law and Kirchhoff’s rules apply.
serue: =L Lo y—mp-rr

eq Rl RZ

EXECUTE: A= VIZ/RI, so P; is largest when V] is largest. By Kirchhoff’s loop rule,
g —Vi—V3=0,s0 V; = € — V3, which means that V; is largest when V5 is smallest.
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26.65.

V3=1IRy = € [(Req + R3), Where R, is the equivalent resistance of the R;-R, combination. Since they are in

1 1 1 Lo RR . .
parallel, — =—+—, which gives R, = —12_ The smallest ¥ is for the smallest /, which occurs
q R R Ri+R,
R R R
for the largest Req =—12_ = R L
Rl + R2 Ny
R,

As we can see, the largest R.q occurs when R, is largest, which is R, = 24.0 Q.
The equivalent parallel resistance is then

- RR1R2 = (6.00 Q)(24.0 Q)/(6.00 Q + 24.0 Q) = 4.80 Q.
TR,

The current / is then
I=€/(Req+ R3)=(24.0 V)/(4.80 Q+12.0 Q) = 1.429 A,
V3=1IR;=(1.429 A)(12.0 2)=17.148 V.
The potential difference across R, is
Vi=¢—-V;=240V-17.148V=6.852 V.
The power dissipated in R; is
P =V?/R =(6.852 V)*/(6.00 Q) =7.83 W.
EVALUATE: Since all the circuit elements except for R, are fixed, varying R, affects the current in the
circuit as well as the current through R;.
IDENTIFY and SET UP: Simplify the circuit by replacing the parallel networks of resistors by their
equivalents. In this simplified circuit apply the loop and junction rules to find the current in each branch.
EXECUTE: The 20.0-Q and 30.0-Q resistors are in parallel and have equivalent resistance 12.0 Q. The two
resistors R are in parallel and have equivalent resistance R/2. The circuit is equivalent to the circuit
sketched in Figure 26.65.

20A 1200 Rf2
-
12
1800 2000V |
1 200v
S00A
—

Figure 26.65

(a) Calculate V., by traveling along the branch that contains the 20.0-V battery, since we know the current

in that branch.
V,—(5.00 A)(12.0Q)—(5.00 A)(18.0Q)-20.0 V=V,.

V,-V.=20.0 V+90.0 V+60.0 V=170.0 V.

Vy=V,=V, =160 V.

X -V, =170.0 V so X =186.0 V, with the upper terminal +.

(b) 7, =(16.0 V)/(8.0Q)=2.00 A.

The junction rule applied to point a gives I, +1; =5.00 A, so I, =3.00 A. The current through the 200.0-V

battery is in the direction from the — to the + terminal, as shown in the diagram.
(c) 200.0 V—-1,(R/2)=170.0 V.

(3.00 A)(R/2)=30.0 V so R=20.0Q.
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26.66.

26.67.

EVALUATE: We can check the loop rule by going clockwise around the outer circuit loop. This gives
+20.0 V+(5.00 A)(18.0 Q2 +12.0 Q)+ (3.00 A)(10.0 ) —-200.0 V=20.0 V+150.0 V+30.0 V-200.0 V,
which does equal zero.

IDENTIFY: The current through the 40.0-Q resistor equals the current through the emf, and the current through
each of the other resistors is less than or equal to this current. So, set Py, =2.00 W, and use this to solve for the
current / through the emf. If Py, =2.00 W, then P for each of the other resistors is less than 2.00 W.

SET UP: Use the equivalent resistance for series and parallel combinations to simplify the circuit.
EXECUTE: [’R=P gives [ 2(40 Q)=2.00 W, and 7/ =0.2236 A. Now use series/parallel reduction to
simplify the circuit. The upper parallel branch is 6.38 Q and the lower one is 25 Q. The series sum is now
126 Q. Ohm’s law gives € = (126 Q)(0.2236 A)=28.2 V.

EVALUATE: The power input from the emfis £/ =6.30 W, so nearly one-third of the total power is
dissipated in the 40.0-Q resistor.

(a) IDENTIFY and SET UP: The circuit is sketched in Figure 26.67a.

T V=360V With the switch open there is no current
through it and there are only the two
currents /; and /, indicated in the sketch.

Figure 26.67a

The potential drop across each parallel branch is 36.0 V. Use this fact to calculate /; and /,. Then travel
from point a to point b and keep track of the potential rises and drops in order to calculate V.
EXECUTE: —/;(6.00Q+3.00Q)+36.0 V=0.

= _ 360V _s00A
6.00 Q+3.00Q
_,(3.00Q+6.000Q)+36.0 V=0
L=— 80V _400a
3.00 Q+6.00Q

To calculate V,, =V, -V, start at point b and travel to point a, adding up all the potential rises and drops
along the way. We can do this by going from & up through the 3.00-Q resistor:

Vy +1,(3.00Q)—1,(6.00Q)=V,.

V, =V, =(4.00 A)(3.00 2)—(4.00 A)(6.00Q)=12.0 V-240V=-12.0 V.

V., =—12.0 V (point a is 12.0 V lower in potential than point b).

EVALUATE: Alternatively, we can go from point b down through the 6.00-€ resistor.

Vy —1,(6.00 Q)+ 1;(3.00Q)=V,.

V, =V, =—=(4.00 A)(6.00 Q)+ (4.00 A)(3.00Q)=-24.0 V+12.0 V=-12.0 V, which checks.

(b) IDENTIFY: Now there are multiple current paths, as shown in Figure 26.67b. Use the junction rule to
write the current in each branch in terms of three unknown currents [, I,, and /5. Apply the loop rule to
three loops to get three equations for the three unknowns. The target variable is /5, the current through the

switch. Ry, is calculated from V' = IR

oq> Where [ is the total current that passes through the network.
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SET UP:
The three unknown currents /;, /,, and I3

are labeled on Figure 26.67b.

Figure 26.67b

EXECUTE: Apply the loop rule to loops (1), (2) and (3).
Loop (1): —1;(6.00 ) + 15(3.00 ) + 7,(3.00 Q) =0

I, =211 eq. (1)
Loop (2): —(f; + 13)(3.00 Q) + (1, — 13)(6.00 Q) — 15(3.00 Q) =0
61,-121;-31,=0s02l,-41;—-1,=0

Use eq (1) to replace I5:

4, -21;-45,-1,=0

3[,=61; and I, =215 eq. (2)

Loop (3): This loop is completed through the battery (not shown), in the direction from the
— to the+ terminal.

—1,(6.00Q)—(/; +13)(3.00Q)+36.0 V=0

9I +31;=36.0 Aand 3/, + I3 =12.0 A eq. 3)

Use eq. (2) in eq. (3) to replace /;:

32L)+1;=120A

;=120 A/7T=1.71A

[,=2I;=3.42 A

I, =21-13=2(342 A)-1.71A=5.13 A

The current through the switch is /3 =1.71 A.

(¢) SET UP and EXECUTE: From the results in part (a) the current through the battery is

I=1+1,=342 A+5.13 A=8.55 A. The equivalent circuit is a single resistor that produces the same

current through the 36.0-V battery, as shown in Figure 26.67c.

360V ~IR+36.0 V=0.
1=8.55Al o360V _360V_ o
. I 8.55 A

Figure 26.67¢
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EVALUATE: With the switch open (part a), point b is at higher potential than point a, so when the switch is
closed the current flows in the direction from b to a. With the switch closed the circuit cannot be simplified
using series and parallel combinations but there is still an equivalent resistance that represents the network.

2

26.68. IDENTIFY: F ,=—":
eq
SET UP: Let R be the resistance of each resistor.
. o v? . .

EXECUTE: When the resistors are in series, R,y =3R and F =3—R. When the resistors are in parallel,

V2 V2
Roq=RI3. By=—n=3="=9R =9(45.0 W) =405 W.

EVALUATE: In parallel, the voltage across each resistor is the full applied voltage V. In series, the voltage
across each resistor is ¥'/3 and each resistor dissipates less power.

26.69. IDENTIFY and SET UP: For part (a) use that the full emf is across each resistor. In part (b), calculate the power
dissipated by the equivalent resistance, and in this expression express R; and R, in terms of B, P, and &.
EXECUTE: A= gz/Rl SOR; = EZ/PI.

P, =£?/R, 50 Ry = €*/P,.
(a) When the resistors are connected in parallel to the emf, the voltage across each resistor is £ and the
power dissipated by each resistor is the same as if only the one resistor were connected. A, = A + B.

(b) When the resistors are connected in series the equivalent resistance is Roq =R + R,.

__e £ _ BRh
“ R +R, £ /P+e*P, B+P
. . 1 1 1
EVALUATE: The result in part (b) can be written as B = 7 +?. Our results are that for parallel the
tot 1 2

powers add and that for series the reciprocals of the power add. This is opposite the result for combining

resistance. Since P=¢g2/R tells us that P is proportional to 1/R, this makes sense.

26.70. IDENTIFY and SET UP: Just after the switch is closed the charge on the capacitor is zero, the voltage
across the capacitor is zero and the capacitor can be replaced by a wire in analyzing the circuit. After a
long time the current to the capacitor is zero, so the current through R; is zero. After a long time the
capacitor can be replaced by a break in the circuit.

EXECUTE: (a) Ignoring the capacitor for the moment, the equivalent resistance of the two parallel
1 N 13
6.00Q 3.00Q 6.00Q°

. 1 .
resistors 1Is — = Req =2.00 Q. In the absence of the capacitor, the total

eq
current in the circuit (the current through the 8.00-Q resistor) would be
i= £ 420V =4.20 A, of which 2/3, or 2.80 A, would go through the 3.00-Q resistor and

R 8.000+2.000
1/3, or 1.40 A, would go through the 6.00-CQ resistor. Since the current through the capacitor is given by

.V
= tIRC

, at the instant ¢ =0 the circuit behaves as through the capacitor were not present, so the

currents through the various resistors are as calculated above.
(b) Once the capacitor is fully charged, no current flows through that part of the circuit. The 8.00-Q and
the 6.00-Q resistors are now in series, and the current through them is i =&/R =(42.0 V)/(8.00 Q +

6.00 Q) =3.00 A. The voltage drop across both the 6.00-Q resistor and the capacitor is thus

V' =iR=(3.00 A)(6.00 Q) =18.0 V. (There is no current through the 3.00-Q resistor and so no voltage
drop across it.) The charge on the capacitor is Q = CV = (4.00x 107° F)(18.0 V) =7.2x107° C.
EVALUATE: The equivalent resistance of R, and R; in parallel is less than R;, so initially the current

through R, is larger than its value after a long time has elapsed.
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26.71.

26.72.

26.73.

IDENTIFY: An initially uncharged capacitor is charged up by an emf source. The current in the circuit and
the charge on the capacitor both obey exponential equations.

2
SETUP: U = Z—C, Pp=i2R, q=0;(1-¢ %), and i= I, '/RC.

. .0
EXECUTE: (a) Initially, =0 so V =¢ and I=£=90—\2=0.0150 A P =/’R=135W.
R 6.00x10° Q
2 . )
q dUc _qi 2 g, q .
b) Ur==—. Fp=——+==—. Py=i"R. F-=F; gives —=i"R. —=1.
) Uc o = =0 e c=Fr gives -~ o
=0;(1-e "R =eCc(1-e"RC). =1 e_t/RC=£e_t/RC. i=—L gives
q=0( ) ( ) 0 R RC g
£ ke _€C (1= RC), g/RC _|_ ,~tIRC oq JRC _ 5

R RC
t=RCIn2=(6.00x10> Q)(2.00x107° F)In2=8.31x107> s =8.31 ms.

3 3 6
© i=— _iIRC 60900 0132 o~(8318x1073 $)/[(6.00x10% Q200107 F)] _ 7 5051073 A
x

Pp= izR =(7.50x107> A)%(6.00x10> Q) =0.337 W.
EVALUATE: Initially energy is dissipated in the resistor at a higher rate because the current is high, but as

time goes by the current deceases, as does the power dissipated in the resistor.
2

IDENTIFY and SET UP: P, =i’R, e—zR———O and UC—;]—C

EXECUTE: P, =i 2R soi= f /300W =7.746 A. g—lR_—_O S0
5.00Q C

q=C(e—iR)= (600><10 F)[50.0 V —(7.746 A)(5.00 Q)]=6.762x107> C.

2 -5
B NCNLA 3 O R L

2C  2(6.00x107° F)

EVALUATE: The energy stored in the capacitor can be returned to a circuit as current, but the energy
dissipated in a resistor cannot.

IDENTIFY: Connecting the voltmeter between point b and ground gives a resistor network and we can
solve for the current through each resistor. The voltmeter reading equals the potential drop across the
200-kQ resistor.

C

. . 1 1 1 . . .
SET UP: For two resistors in parallel, — =—+—. For two resistors in series, R,y =R + R,.
eq 1 2
1 Y
EXECUTE: (a) R, =100kQ+ +——| =140kQ. The total current is
1 200kQ  50kQ

=M =2.86x107> A. The voltage across the 200-k€2 resistor is
140 kQ
1 Y
V. =IR=(2.86xX107° A))| ———+——| =114.4V.
200 k0 ( )[200 kQ 50 ij

(b) If the resistance of the voltmeter is 5.00 x 10° Q, then we carry out the same calculations as above to

find Ry =292k, 1=137x107 A and Vypq =263 V.

(c) If the resistance of the voltmeter is infinite, then we find Req =300 kQ, 1=1.33x 107 A and

VZOOkQ = 266 V

EVALUATE: When a voltmeter of finite resistance is connected to a circuit, current flows through the
voltmeter and the presence of the voltmeter alters the currents and voltages in the original circuit. The
effect of the voltmeter on the circuit decreases as the resistance of the voltmeter increases.
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26.74.

26.75.

26.76.

IDENTIFY and SET UP: Zero current through the galvanometer means the current /; through N is also the
current through M and the current 7, through P is the same as the current through X. And it means that

points b and c are at the same potential, so ;N = I,P.

. . £ £ .
EXECUTE: (a) The voltage between points a and d is &, so [ = and /, =——. Using these
N+ P+X

expressions in [;N =I,P gives £ N = £ P. NP+X)=P(N+M). NX =PM and
N+M P+X
X = MP/N.
) X _MpP _ (850.0€2)(33.48Q) ~13970
N 15.00Q

EVALUATE: The measurement of X does not require that we know the value of the emf.

IDENTIFY: With S open and after equilibrium has been reached, no current flows and the voltage across
each capacitor is 18.0 V. When S is closed, current / flows through the 6.00-Q and 3.00-Q resistors.
SET UP: With the switch closed, a and b are at the same potential and the voltage across the 6.00-Q
resistor equals the voltage across the 6.00-uF capacitor and the voltage is the same across the 3.00-uF
capacitor and 3.00-Q resistor.

EXECUTE: (a) With an open switch: V,, =£=18.0 V.

(b) Point «a is at a higher potential since it is directly connected to the positive terminal of the battery.

(c) When the switch is closed 18.0 V=17(6.00Q+3.00Q). /=2.00 A and

¥, =(2.00 A)(3.00 Q)= 6.00 V.

(d) Initially the capacitor’s charges were Q3 = CV =(3.00x 107 F)(18.0V)=5.40% 107 C and

Qg =CV =(6.00 x 107° F)(18.0 V) =1.08 x 10~* C. After the switch is closed

03 =CV =(3.00x107° F)(18.0 V-12.0 V) =1.80x10™> C and

Qs =CV =(6.00x107° F)(18.0 V—-6.0 V) =7.20x10™ C. Both capacitors lose 3.60x 107 C =36.0 uC.

EVALUATE: The voltage across each capacitor decreases when the switch is closed, because there is then
current through each resistor and therefore a potential drop across each resistor.

IDENTIFY: Just after the connection is made, ¢ =0 and the voltage across the capacitor is zero. After a
long time i =0.

SET Up: The rate at which the resistor dissipates electrical energy is P, = V2/R, where V is the voltage
across the resistor. The energy stored in the capacitor is qz/ 2C. The power output of the source is P, = &i.

2 2
EXECUTE: (a) (i) Py = % - %

2 .
iy po=dU _ L)) _ia _
d 2C dt C
120V
5.86 Q
The power output of the source is the sum of the power dissipated in the resistor and the power stored in
the capacitor.

(b) After a long time, i=0, so P, =0, - =0, P, =0.

=2460 W.

(iii) P, =l =(120V) =2460 W.

(¢) (i) Since g =gy, (1 - e_t/RC), when g =gq,,,,/2, e RC = % P = i’R, so
2 2 2 2
R
PR — (ioe*l/RC)zR — igR(e*[/RC)z - (lgR)(%] — IOT :W# ::‘_R’ Wthh gives

(120 V)

= =614 W.
4(5.86 Q)
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(ii) dUC :i qgﬂax (1_e—t/RC)2 :g—2=614 W.
dt dt| 2C 4R

(iii) P. =&i=e(iye")=(120 V)[%j&) =1230 W.

The power output of the source is the sum of the power dissipated in the resistor and the power stored in
the capacitor.

EVALUATE: Initially all the power output of the source is dissipated in the resistor. After a long time
energy is stored in the capacitor but the amount stored isn’t changing. For intermediate times, part of the
energy of the power source is dissipated in the resistor and part of it is stored in the capacitor. Conservation
of energy tells us that the power output of the source should be equal to the power dissipated in the resistor
plus the power stored in the capacitor, which is exactly what we have found in part (iii).

26.77. IDENTIFY and SET UP: Without the meter, the circuit consists of the two resistors in series. When the
meter is connected, its resistance is added to the circuit in parallel with the resistor it is connected across.
(a) EXECUTE: [=1 =1,.
1_90.0V_ 90.0 V

R +R, 224Q+589Q

Vi=LR =(0.1107 A)(224Q)=24.8 V; V, =I,R, =(0.1107 A)(589Q)=65.2 V.
(b) SET UpP: The resistor network is sketched in Figure 26.77a.

=0.1107 A.

1 Ry The voltmeter reads the potential difference
s AAYA » across its terminals, which is 23.8 V.
<~—238V—> If we can find the current /; through the voltmeter
1 . .
R = then we can use Ohm’s law to find its resistance.
1 224 Q) 589 Q) l
90.0V
Figure 26.77a

EXECUTE: The voltage drop across the 589-Q resistor is 90.0 V—-23.8 V=66.2 V, so

:K: 66.2¢ =0.1124 A. The voltage drop across the 224-Q resistor is 23.8 V, so
R 589 Q
vV 238V .
,=—= =0.1062 A. Then /=141, givesI;=1—-1,=0.1124 A—0.1062 A =0.0062 A.
R 224 Q
Vo 238
RV=—=#=384OQ.
I, 0.0062 4

1
(¢) SET Up: The circuit with the voltmeter connected is sketched in Figure 26.77b.

I Ry, = 3840 O

—AMA

l—w—>’ =AM
224 Q) 589 Q) l

- 90V

Figure 26.77b

EXECUTE: Replace the two resistors in parallel by their equivalent, as shown in Figure 26.77c.



26-36 Chapter 26

A 224 Q) Req 11 . 1

l MWWt 3A4% l Ry 3840Q 589Q°

- 900V o= (3840589 _ 51070

3840Q+589Q
Figure 26.77¢
00V 0.1225 A.
224 Q+510.7Q
The potential drop across the 224-Q resistor then is /R = (0.1225 A)(224 Q) =27.4 V, so the potential
drop across the 589-Q resistor and across the voltmeter (what the voltmeter reads) is
90.0 V-274V=62.6V.
EVALUATE: (d) No, any real voltmeter will draw some current and thereby reduce the current through the
resistance whose voltage is being measured. Thus the presence of the voltmeter connected in parallel with the
resistance lowers the voltage drop across that resistance. The resistance of the voltmeter in this problem is only
about a factor of ten larger than the resistances in the circuit, so the voltmeter has a noticeable effect on the circuit.
26.78. IDENTIFY: The energy stored in a capacitor is U = qz/ 2C. The electrical power dissipated in the resistor
is P=i"R.
SET UP: For a discharging capacitor, i = _RLC'
2 2
EXECUTE: (a) U, =Q—°=M=5.15 J.
2C  2(4.62x107° F)
2 2
(b) By=1’R= (&j R= U a) ——=2620W.
RC (850 Q)(4.62x107° F)
(¢) Since U =¢°/2C, when U — U, /2, ¢ — Qy/<J2. Since g = Qe kS, this means that ¢ "¢ =1/4/2.
Therefore the current is i = ioe_’/ RC = io/ V2. Therefore
. \2 2 2 2
P = fo )R 1 R % R - L% =&. Putting in the numbers gives
2 2\ R 2\ RC RC(2C | RC
51517
h=—"—"——"—=1310W.
(850 Q)(4.62 uF)
EVALUATE: All the energy originally stored in the capacitor is eventually dissipated as current flows
through the resistor.
26.79. IDENTIFY: Apply the loop rule to the circuit. The initial current determines R. We can then use the time

constant to calculate C.
SET UP: The circuit is sketched in Figure 26.79.

E=110V
+I o Initially, the charge of the capacitor is
ii Ti — 65X 10~5A zero, so by V' =¢q/C the voltage across
the capacitor is zero.
R C
Figure 26.79
. 11
EXECUTE: The loop rule therefore gives € —iR=0 and R= £ = LVS =1.7x10° Q.
I 65x107 A
. L T 52s
The time constant is given by 7= RC, so C=—=———-—=3.14F.
R 1.7x10°Q

EVALUATE: The resistance is large so the initial current is small and the time constant is large.
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26.80. IDENTIFY and SET UP: When the switch S is closed, current begins to flow as the capacitor plates
discharge. The current in the circuit is i = (Qy/RC ye !/ RE.

EXECUTE: (a) Taking logs of the equation for i gives In(i) = In(Qy/RC) — t/RC. A graph of In(i) versus ¢
will be a straight line with slope equal to —1/RC.
(b) Using the points (1.50 ms, —3.0) and (3.00 ms, —4.0) on the graph in the problem, the slope is

slope = _A0=30 =-0.667 (ms)fl =667 s'. Therefore
3.00 ms — 1.50 ms
~1/RC=—-667s".

C = 1/[(196 Q)(667 s )] = 7.65x10°° F, which rounds to 7.7 uF.

Using point (1.50 ms, —3.0) on the graph, the equation of the graph gives
3.0 = In(Qy/RC) — (1.50 ms)/RC.

Simplifying and rearranging gives

—2.0 =1In(Qy/RC).

0y =RC ¢ =(196 Q)(7.65 uF) ¢ >° =203 uC, which rounds to 200 xC.

(¢) Taking a loop around the circuit gives
Ve + Ve=0.
—IR + Q/C=0.
QO = RCI = (196 Q)(7.65 uF)(0.0500 A) =75 uC.
(d) From (c), we have Q = RCI, so I = Q/RC = (500 uC)/[(196 Q)(7.65 uF)] =0.33 A.
EVALUATE: The accuracy of the answers depends on how well we can get information from the graph
with the problem, so answers may differ slightly from those given here.
26.81. IDENTIFY and SET UP: Kirchhoff’s rules apply to the circuit. Taking a loop around the circuit gives
€ —Ri—q/C=0.
EXECUTE: (a) Solving the loop equation for g gives g = ¢ = £C — RCi. A graph of ¢ as a function of i
should be a straight line with slope equal to —RC and y-intercept equal to £C. Figure 26.81 shows this

graph.
50.0 ‘ u\
40.0 ~o
o
3 30.0
~ ‘
20.0 5 O
10.0
0.0 10.0 20.0 30.0 40.0 50.0 60.0
i (mA)
Figure 26.81

The best-fit slope of this graph is —1.233 x 10~ C/A, and the y-intercept is 7.054x10~ C.
(b) RC = —slope = —(—1.233 %107 C/A), which gives

R = (-1.233x10"° C/A)/(5.00x10°° F) = 246.6 Q, which rounds to 247 Q.

The y-intercept is £€C, so

7.054 x 10° C= £(5.00 x 10°°F).

e =159V.

() Vo =e(l—e""%).
Vele=1-e"" =(10.0 V)(15.9 V).

Solving for 7 gives
t=(247 Q)(5.00 4F) In(0.3714) = 1223 us, which rounds to 1.22 ms.
d)Vr=¢€ -Vc=159V-400V=119V.
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26.82.

26.83.

26.84.

EVALUATE: As time increases, the potential difference across the capacitor increases as it gets charged,
but the potential difference across the resistor decreases as the current decreases.

IDENTIFY and SET UpP: When connected in series across a 48.0-V battery, R, and R, dissipate 48.0 W of
power, and when in parallel across the same battery, they dissipate a total of 256 W. PR = I'R = V*/R.
EXECUTE: (a) In series: [ =¢€/(R +R,).

P =I*(R +R))=[e/ (R +Ry)I2(R +R,) =€ /(R + R,).
48.0 W =(48.0 V)2 /(R +R,).

R +R,=48.0 Q.
2 2
£ £ of 101 W R+ Ry
In parallel: P, = I2R +13R, === R +—R, =€>| —+— |=¢?| L2 | =256 W.
p 14 282 R12 1 R22 2 Rl R2 R1R2
Therefore  (48.0 V)z[Rl—R;J:zsé W. Using R +R, =48.0 Q, this becomes RR, =432 Q.
R4Y)

Solving the two equations for R; and R, simultaneously, we get two sets of answers: R; =36.0 Q,
R, =12.0 Q and R} =12.0 Q, R, =36.0 Q. But we are told that that R, > R,, so the solution to use is
R =36.0Q, R, =12.0 Q.

(b) In series, both resistors have the same current. P =1 2R, so the larger resistor, which is R;, consumes
more power.

(c) In parallel, the potential difference across both resistors is the same. P = VZR, so the smaller resistor,
which is R,, consumes more power.

EVALUATE: If we did not know which resistor was larger, we would know that one resistor was 12.0 Q
and the other was 36.0 Q, but we would not know which one was the larger of the two.

IDENTIFY: Consider one segment of the network attached to the rest of the network.

SET UP: We can re-draw the circuit as shown in Figure 26.83.

-1
EXECUTE: Ry =2R| + 1 + 1 - 2R, +ﬁ
R, Ry Ry, + Ry

Ry =R =\R2+2RRy. Ry >0, s0 Ry = R ++/R>+2RR,.

EVALUATE: Even though there are an infinite number of resistors, the equivalent resistance of the
network is finite.

. R;* —2RR; —2RR, =0.

a e———— a e——A\A

>
e
WV
=
)
>
3
AMA

Figure 26.83

IDENTIFY: Assume a voltage V applied between points a and b and consider the currents that flow along
each path between a and b.

SET UP: The currents are shown in Figure 26.84.

EXECUTE: Let current / enter at @ and exit at b. At a there are three equivalent branches, so current is
1/3 in each. At the next junction point there are two equivalent branches so each gets current //6. Then at
b there are three equivalent branches with current //3 in each. The voltage drop from a to b then is

V= ! R+ ! R+ ! R=2[R. This must be the same as V' = IR, S0 R, =2 R.
3 6 3 6 q qa 6

EVALUATE: The equivalent resistance is less than R, even though there are 12 resistors in the network.
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13
16 W——s =
>
T 13 =i
15
13t Q
— 2 W
I 13

Figure 26.84

IDENTIFY: The network is the same as the one in Challenge Problem 26.83, and that problem shows that
the equivalent resistance of the network is R, = \[Rlz +2RR,.

SET UP: The circuit can be redrawn as shown in Figure 26.85.

R 1 RyR 2R (Ry + R 2R
EXECUTE: (a) V,y=V,——=V,, and R, =—2=—L—. But ﬂ=M=—l,
v ] Gk ™ Ry +Ry RyR, R
1
soV =V, ,——.
cd ab 1+’B

® =0 = oy Ve o
A+ T A+ a+pE " (4B A+

If R =R,, then Ry =R ++/R> +2R R, =R, (1++/3) and = 2(12;?) =2.73. So, for the nth segment

+3

<0.01. This says n =4, and then

1 | 1
1+p4" (1+2.73)"

to have 1% of the original voltage, we need:

V4 - OOOSVO
(¢) Ry =R, ++R%>+2RR, gives Ry =6400Q+ \/(6400 Q)% +2(6400 Q)(8.0x10% Q) =3.2x10° Q and
_ 2(6400 Q)(3.2x10° Q+8.0x10° Q)

B
(3.2x10° Q)(8.0x10% Q)
(d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 u#m long. The voltage therefore

v V. 1 _
055 so —2000 = ——o05 = 34%10 4
a+p Vo (14+4.0x107)

() If R, =3.3x10"2 Q, then R, =2.1x10° Q and B=6.2x107>. This gives

=4.0x1072.

attenuates by V500 =

Yoo _ 1 =0.88.
Vo o (1+6.2x107)200

EVALUATE: As R, increases, f decreases and the potential difference decrease from one section to the

next is less.

a C
R,
< < —_—
R R —_—
$h rg
b B d
———AMAA

Figure 26.85
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26.86. IDENTIFY and SETUP: R = %

2 2 11
EXECUTE: Solve for p: p:ﬂz R _ #(0.3 nm)”(Ix10° ©) =24Q mQ=2Q -m, whichis
L L 12 nm

choice (c).
EVALUATE: According to the information in Table 25.1, this resistivity is much greater than that of
conductors but much less than that of insulators. It is closer to that of semiconductors.

26.87. IDENTIFY and SET UP: The channels are all in parallel. For » identical resistors R in parallel,

1 1 1 1 1
—:—+—+...:—+—+...:£, S0 Req:R/n.I:jA.
Rq R R R R R

EXECUTE: [= jA=V/R. =V/(RIn)=nV/R.
JRIV =nlA=(5 mA/em?)(10'! Q)/(50 mV)=10""/cm? =100/um?, which is choice (d).
EVALUATE: A density of 100 per um” seems plausible, since these are microscopic structures.

26.88. IDENTIFY and SETUP: 7= RC. The resistance is 1x10'! Q. Cis the capacitance per area divided by the
number density of channels, which is 100/um’ from Problem 26.87.

EXECUTE: C=(1 ,uF/cmz)/(l 00/,um2) =107'® F. The time constant is
7=RC=(1x10" Q)(107'° F)=1x10"> s =10 us, which is choice (b).
EVALUATE: This time constant is comparable to that of typical laboratory RC circuits.
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IDENTIFY and SET UP: Apply F= qv X B to calculate F. Use the cross products of unit vectors from
Chapter 1. ¥ = (+4.19%x10* m/s)i +(-3.85x10* m/s) .

(a) EXECUTE: B =(1.40 T)i.

F=gvxB=(~124x10"% C)(1.40 T)[(4.19%x10% m/s)i xi —(3.85x10* m/s)jxi].

fxf:O, ]‘xf:—lg.

F =(-1.24x107% C)(1.40 T)(-3.85x10* m/s)(—k) = (=6.68x10~* N)k.

EVALUATE: The directions of ¥ and B are shown in Figure 27.1a.

The right-hand rule gives that ¥x B is
- M directed out of the paper (+z-direction).
> The charge is negative so F is opposite
to ¥xB.

Figure 27.1a

F is in the —z-direction. This agrees with the direction calculated with unit vectors.
(b) EXECUTE: B =(1.40 T)k.

F=gvxB=(~124x10"% C)(1.40 T)[(+4.19x10% m/s)i xk — (3.85x10* m/s)jxk].
ixk=-j, jxk=i.

F =(=7.27x107* N)(=/) + (6.68x10™* N)i =[(6.68x107* N)i +(7.27x10™* N)J].
EVALUATE: The directions of ¥ and B are shown in Figure 27.1b.

The direction of F is opposite to ¥x B since
F . . . . =
/ q is negative. The direction of F computed
B x from the right-hand rule agrees qualitatively
\ with the direction calculated with unit vectors.
vV
VXB

(by right-hand rule)

Figure 27.1b
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27.2.

27.3.

IDENTIFY: The net force must be zero, so the magnetic and gravity forces must be equal in magnitude and
opposite in direction.

SET UP: The gravity force is downward so the force from the magnetic field must be upward. The
charge’s velocity and the forces are shown in Figure 27.2. Since the charge is negative, the magnetic force
is opposite to the right-hand rule direction. The minimum magnetic field is when the field is perpendicular

to ¥. The force is also perpendicular to B, so B is either eastward or westward.
EXECUTE: If B is eastward, the right-hand rule direction is into the page and F, » 1s out of the page, as
required. Therefore, B is eastward. mg =|g|vBsing. ¢ =90° and
mg  (0.195x107> kg)(9.80 m/s?)
gl (4.00x10* m/s)(2.50x107% C) -

EVALUATE: The magnetic field could also have a component along the north-south direction, that would
not contribute to the force, but then the field wouldn’t have minimum magnitude.

191T.

Figure 27.2

IDENTIFY: The force F on the particle is in the direction of the deflection of the particle. Apply the
right-hand rule to the directions of ¥ and B. See if your thumb is in the direction of F, or opposite to
that direction. Use F =|g|vBsing with ¢=90° to calculate F.

SET UP: The directions of v, B, and F are shown in Figure 27.3.

EXECUTE: (a) When you apply the right-hand rule to ¥ and B, your thumb points east. F is in this
direction, so the charge is positive.

(b) F =|g|vBsing=(8.50x10~° C)(4.75%x10° m/s)(1.25 T)sin90° = 0.0505 N

EVALUATE: If the particle had negative charge and ¥ and B are unchanged, the particle would be
deflected toward the west.

I
>
<

®
M

Figure 27.3

27.4. IDENTIFY: Apply Newton’s second law, with the force being the magnetic force.

SET UP: sz =—k.
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27.5.

27.6.

27.7.

27.8.

g xB

EXECUTE: F =ma=qgvxB gives d= and
m
-8 4 1ot
L _(1.22x107F ©)3.0x10 3m/s)(1.63 DD _ 0330 misi
1.81x107 kg

EVALUATE: The acceleration is in the —z-direction and is perpendicular to both ¥ and B.
IDENTIFY: Apply F =|q|vBsin¢) and solve for v.

SET UP: An electron has ¢ = -1.60x107" C.

_F 4.60x107"° N
lg|Bsing  (1.6x107'° C)(3.5x107> T)sin 60°

EVALUATE: Only the component Bsing of the magnetic field perpendicular to the velocity contributes to

the force.
IDENTIFY: Apply Newton’s second law and F =|q|v Bsing.

EXECUTE: v

=9.49x10%m/s.

SETUP: ¢ is the angle between the direction of ¥ and the direction of B.

EXECUTE: (a) The smallest possible acceleration is zero, when the motion is parallel to the magnetic
field. The greatest acceleration is when the velocity and magnetic field are at right angles:

=B _ (1.6x107" C)(1.40x10° m/s)(7.4x107> T)
m 9.11x107! kg)
|g|vBsin ¢
m

=1.82x10"° m/s%.

b)If a= %(1.82>< 10" m/s?) = , then sing =0.25 and ¢=14.5°.

EVALUATE: The force and acceleration decrease as the angle ¢ approaches zero.
IDENTIFY: Apply F =gv xB.
SETUP: ¥ =v,j, with v, =-3.80x10° m/s. F,=+7.60x10" N, F, =0, and F, =-5.20x10 N.
EXECUTE: (a) F, =q(v,B.—v.B,)=qv,B..
B. =F,/qv, =(7.60x107> N)/[(7.80x10~° C)(-3.80x10° m/s)] =—0.256 T.
F,=q(v.B,—v,B.)=0, which is consistent with F as given in the problem. There is no force
component along the direction of the velocity.
F,=q(v.B,-v,B,)=-qv,B,. B,=-F,/qv,=-0.175T.
(b) B, is not determined. No force due to this component of B along ¥; measurement of the force tells
us nothing about B,
(¢) B-F=B/F, +B,F, +B.F, =(-0.175 T)(+7.60x10™> N)+(~0.256 T)(~5.20x10™> N)
B-F=0. B and F are perpendicular (angle is 90°).
EVALUATE: The force is perpendicular to both ¥ and B, so v - F is also zero.
IDENTIFY and SET UP:  F =g x B =gB_[v,(i xk) + v, (jx k) +v.(kx k)] = gB.[v,(~]) + v, ()]
EXECUTE: (a) Set the expression for F equal to the given value of F to obtain:
_F (7.40x1077 N)

= = 5 =—-106 m/s.
—qB.  —(=5.60x107 C)(-1.25T)

_F, _ —(340x107N)
Y gB,  (=5.60x107° C)(-1.25T)

(b) v, does not contribute to the force, so is not determined by a measurement of F.

=—48.6 m/s.
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27.9.

27.10.

27.11.

_ F o
Q) V- F=v F.+v.F,+v.F.=—YF + X F =0; §=90°.
() Xt X yty ztz _qu X qu y

EVALUATE: The force is perpendicular to both % and B, so B F is also zero.
IDENTIFY: Apply F =gvxB to the force on the proton and to the force on the electron. Solve for the

components of B and use them to find its magnitude and direction.
SETUp: F is perpendicular to both ¥ and B. Since the force on the proton is in the +y-direction,

B, = 0 and B = Bxf + BZIE. For the proton, |7p =(1.50 km/s)f = vpf and Fp = (2.25><10716 N),;' = Fp}. For
the electron, v, =—(4.75 km/s)k = —velg and F, = (8.50x10716 N)j = Fef. The magnetic force is
F =g¥xB.
EXECUTE: (a) For the proton, Fp =qv, % B gives Fp}' = evpf X (Bxf + leé) = —evaZ}. Solving for B,
Fy 2.25x1071° N

gives B, =———=— o =-0.9375 T. For the electron, F, =—ev,x B, which gives
ev,  (1.60x107"" C)(1500 m/s)

F,j=(—e)(—v.k)X(B,i + B.k) = ev,B_j. Solving for B, gives

o_F _ 8.50x107'° N
Y oev,  (1.60x107" C)(4750 m/s)

=1.118 T. Therefore B =1.118 Ti —0.9375 Tk. The magnitude of

the field is B = \/Bﬁ +B = \/(1.1 18 T)? +(~0.9375 T)> =1.46 T. Calling 6 the angle that the magnetic

field makes with the +x-axis, we have tan@ = % = % =-0.8386, so 8 =-40.0°. Therefore the

X
magnetic field is in the xz-plane directed at 40.0° from the +x-axis toward the —z-axis, having a
magnitude of 1.46 T.
(b) B=B.i+B.k and v = (3.2 km/s)(—j).
F = gvx B =(—e)(3.2 kn/s)(—j) X (B,i + B_k) = e(3.2x10° m/s)[B (—k)+ B.i].

F =e(3.2x10° m/s)(—1.118 Tk —0.9375 Ti) =—4.80x10'® Ni —5.724x107'° Nk.
F

\/sz + FZ2 =7.47x107"® N. Calling @ the angle that the force makes with the —x-axis, we have

F, -5.724x107'° N
F, -4.800x107° N
50.0° from the —x-axis toward either the —z-axis.

EVALUATE: The force on the electrons in parts (a) and (b) are comparable in magnitude because the
electron speeds are comparable in both cases.

IDENTIFY: Knowing the area of a surface and the magnetic field it is in, we want to calculate the flux
through it.

SETUP: dA=ddk, so dDy=B-dA=B_dA.

EXECUTE: ®j = B_A=(-0.500 T)(0.0340 m)* =-5.78x10™* T-m?. |®4]=5.78x10"* Wb.
EVALUATE: Since the field is uniform over the surface, it is not necessary to integrate to find the flux.
IDENTIFY and SET Up: ®j = jl? -dA.

, which gives € =50.0°. The force is in the xz-plane and is directed at

Circular area in the xy-plane, so 4= 7 = 7(0.0650 m)2 =0.01327 m? and dA is in the z-direction. Use
Eq. (1.18) to calculate the scalar product.

EXECUTE: (a) B =(0.230 T)k; B and dA4 are parallel (¢=0°) so B-dA =B dA.

B is constant over the circular area so

Dy, = jiz -dA = jB dA= BjdA =BA=(0.230 T)(0.01327 m?) =3.05x10~> Wb.
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27.12.

27.13.

27.14.

27.15.

(b) The directions of B and dA are shown in Figure 27.11a.

B-dA = BcospdA
with ¢ =53.1°.

Figure 27.11a

Band ¢ are constant over the circular area so @5 = _[E dA= IBcos¢dA = Bcos ¢j dA = Bcos@pA

@, =(0.230 T)c0s53.1°(0.01327 m?) =1.83x10™> Wb.
(c) The directions of B and dA are shown in Figure 27.11b.

dA B -dA =0 since dA and B are perpendicular (¢ = 90°).
90° ®B=Jl§-d2=0.

Figure 27.11b

EVALUATE: Magnetic flux is a measure of how many magnetic field lines pass through the surface. It is
maximum when B is perpendicular to the plane of the loop (part a) and is zero when B is parallel to the
plane of the loop (part c).

IDENTIFY: Knowing the area of a surface and the magnetic flux through it, we want to find the magnetic
field needed to produce this flux.

SET UP: @y =BAcos¢ where ¢ =60.0°.

D, 3.10x10™* Wb

Acos¢ - (0.0280 m)(0.0320 m)cos60.0°

EVALUATE: This is a fairly strong magnetic field, but not impossible to achieve in modern laboratories.
IDENTIFY: The total flux through the bottle is zero because it is a closed surface.
SET UP: The total flux through the bottle is the flux through the plastic plus the flux through the open cap,

=0.692 T.

EXECUTE: Solving @ = BAcos¢ for B gives B =

so the sum of these must be zero. <I>plamc + (Dcap =0.
2
(Dplastic = _q)cap =-BAcos¢=—B(xr")cosy.
EXECUTE: Substituting the numbers gives @, =—(1.75 T)7(0.0125 m)? cos 25°=-7.8x10"* Whb.

EVALUATE: It would be very difficult to calculate the flux through the plastic directly because of the
complicated shape of the bottle, but with a little thought we can find this flux through a simple calculation.

IDENTIFY: When B is uniform across the surface, @ = B- A= BAcos 9.

SETUP: A is normal to the surface and is directed outward from the enclosed volume. For surface abcd,
A=—Ai. For surface befe, A= —Ak. For surface aefd, cos¢=3/5 and the flux is positive.

EXECUTE: (a) ®z(abcd)=B-A=0.

(b) D y(befc)=B-A=—(0.128 T)(0.300 m)(0.300 m)=—0.0115 Wb.

(¢) ®y(acfd)=B- A=BAcos¢=2(0.128 T)(0.500 m)(0.300 m) =+0.0115 Wb.

(d) The net flux through the rest of the surfaces is zero since they are parallel to the x-axis. The total flux is
the sum of all parts above, which is zero.
EVALUATE: The total flux through any closed surface, that encloses a volume, is zero.

(a) IDENTIFY: Apply F =gvx B to relate the magnetic force F to the directions of ¥ and B. The
electron has negative charge so F is opposite to the direction of ¥ x B. For motion in an arc of a circle the

acceleration is toward the center of the arc so F must be in this direction. a =v?/R.
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27.16.

27.17.

SET Up:

Vo X B As the electron moves in the semicircle,
Vo its velocity is tangent to the circular path.

0 The direction of ¥ x B at a point along
y the path is shown in Figure 27.15.

o

Figure 27.15

EXECUTE: For circular motion the acceleration of the electron a4 is directed in toward the center of the

circle. Thus the force F '» exerted by the magnetic field, since it is the only force on the electron, must be

radially inward. Since g is negative, F 's 1s opposite to the direction given by the right-hand rule for

Vo X B. Thus B is directed into the page. Apply Newton’s second law to calculate the magnitude of B:

Y F =ma gives Y F,,y=ma Fp= m(*/R).

Fy =|q|vBsin¢ =|q|vB, ) |q|vB = m(vz/R).
_omv (9.109%x107" kg)(1.41x10° m/s)
CJalR (1602107 €)(0.050 m)

(b) IDENTIFY and SET UP: The speed of the electron as it moves along the path is constant. (Fj changes

=1.60x107* T.

the direction of ¥ but not its magnitude.) The time is given by the distance divided by v.

EXECUTE: The distance along the semicircular path is zR, so ¢ =”—R 1 7P

Vo 1.41x10° m/s

EVALUATE: The magnetic field required increases when v increases or R decreases and also depends on
the mass to charge ratio of the particle.

=1.11x10"" s.

IDENTIFY: Newton’s second law gives |q|vB =mv*/R. The speed v is constant and equals v,. The

direction of the magnetic force must be in the direction of the acceleration and is toward the center of the
semicircular path.

SET UP: A proton has ¢ = +1.60x107" C and m=1.67x10"’ kg. The direction of the magnetic force
is given by the right-hand rule.

mv _ (1.67x10727 kg)(1.41x10° m/s) _
gR  (1.60x107'° C)(0.0500 m)

The direction of the magnetic field is out of the page (the charge is positive), in order for F to be directed
to the right at point 4.

(b) The time to complete half a circle is ¢ = 7R/vy =1.1 11077 s.

EXECUTE: (a) B= 0.294T.

EVALUATE: The magnetic field required to produce this path for a proton has a different magnitude
(because of the different mass) and opposite direction (because of opposite sign of the charge) than the
field required to produce the path for an electron.

IDENTIFY and SET UP: Use conservation of energy to find the speed of the ball when it reaches the

bottom of the shaft. The right-hand rule gives the direction of F and F=|g|v Bsing gives its
magnitude. The number of excess electrons determines the charge of the ball.
EXECUTE: ¢ =(4.00x10%)(—1.602x107"? C)=-6.408x107"! C.

speed at bottom of shaft: %mv2 =mgy; v=+/2gy =49.5 m/s.

v is downward and B is west, so ¥X B is north. Since q<0, F is south.

F =|q|vBsin@=(6.408x107"" C)(49.5 m/s)(0.250 T)sin90°=7.93x10""" N.
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27.18.

27.19.

27.20.

EVALUATE: Both the charge and speed of the ball are relatively small so the magnetic force is small,
much less than the gravity force of 1.5 N.
IDENTIFY: Since the particle moves perpendicular to the uniform magnetic field, the radius of its path is

R=""" The magnetic force is perpendicular to both ¥ and B.

4B
SET UP: The alpha particle has charge g =4+2e¢=3.20% 107 c.

(6.64x10727 kg)(35.6x10° m/s)
(3.20x107"7 C)(1.80T)
moves in a circular arc of diameter 2R = 2(0.4104 mm) = 0.821 mm.

EXECUTE: (a) R= =4.104x10"* m =0.4104 mm. The alpha particle

(b) For a very short time interval the displacement of the particle is in the direction of the velocity.

The magnetic force is always perpendicular to this direction so it does no work. The work-energy theorem

therefore says that the kinetic energy of the particle, and hence its speed, is constant.

(¢) The acceleration is

L Fs_ lg|vBsing  (3.20x107" C)(35.6x10° m/s)(1.80 T)sin90°
m m 6.64x1072" kg

a= ﬁ and the result of part (a) to calculate a = M
R 4.104x10™ m

acceleration is perpendicular to ¥ and B and so is horizontal, toward the center of curvature of the

particle’s path.

EVALUATE: (d) The unbalanced force (F. 's) 1s perpendicular to v, so it changes the direction of v but

=3.09x10'2 m/s>. We can also use

=3.09x10'? m/sz, the same result. The

not its magnitude, which is the speed.
2

IDENTIFY: For motion in an arc of a circle, a = VE and the net force is radially inward, toward the center
of the circle.
SET UP: The direction of the force is shown in Figure 27.19. The mass of a proton is 1.67 X 1077 kg.
EXECUTE: (a) F is opposite to the right-hand rule direction, so the charge is negative. F =ma gives
la| BR _3(1.60x10™" C)(0.250 T)(0.475 m) _

m 12(1.67x1077 kg)

(b) Fj =|q|vBsing=3(1.60x10"" C)(2.84x10° m/s)(0.250 T)sin90° =3.41x10""* N.

2.84%10° mys.

2
|q|vBsin¢=m%. $=90° and v=

w=mg =12(1.67 x107%7 kg)(9.80 m/sz) =1.96x107%> N. The magnetic force is much larger than the

weight of the particle, so it is a very good approximation to neglect gravity.
EVALUATE: (c) The magnetic force is always perpendicular to the path and does no work. The particles
move with constant speed.

° opB
° °
° °
° ° ° ° °

Figure 27.19
IDENTIFY: The magnetic field acts perpendicular to the velocity, causing the ion to move in a circular
path but not changing its speed.

SET Up: R=% and K =1m?. K=5.0 MeV = 8.0x107 I.
q
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EXECUTE: (a) Solving K = %mv2 for v gives v=+/2K/m.
v=[28.0x107" 1)/(1.67x107%" kg)]"*> =3.095x10” m/s, which rounds to 3.1x10” m/s.
(b) Using R = W = (1.67x107%" kg)(3.095%x107 m/s)/[(1.602x107"° C)(1.9T)]=0.17 m =17 cm.
EVALUATE: If the hydride ions were accelerated to 20 MeV, which is 4 times the value used here, their
speed would be twice as great, so the radius of their path would also be twice as great.
27.21. (a) IDENTIFY and SET UP: Apply Newton’s second law, with a = Vv2/R since the path of the particle is
circular.
EXECUTE: X F =mi says |q|vB=m(v*/R).
BR _(1.602x10"" C)(2.50 T 107
|q| (1.602x107" C)( 5_27)(6 BRIy o i o
m 3.34x107°" kg
(b) IDENTIFY and SET UP: The speed is constant so ¢ = distance/v.
EXECUTE: ¢= 2 Mlgm) 2.62x107% s.
v 8.35x10° m/s
(c) IDENTIFY and SET UP: Kkinetic energy gained = electric potential energy lost.
EXECUTE: %mvz =|q|V.
2 27 5 2
34x1 kg)(8.35x1
_mv._ G410 ke)BISXIT M) _ 5 57x108 v=7.27 kV.
2|q] 2(1.602x107"° C)
EVALUATE: The deutron has a much larger mass to charge ratio than an electron so a much larger B is
required for the same v and R. The deutron has positive charge so gains kinetic energy when it goes from
high potential to low potential.
27.22. IDENTIFY: An alpha particle has twice as much charge and about 4 times as much mass as a proton.
SETUP: R _T and K == v2. K = (mv)*2m = p*/2m, so mv=~/2mK .
q|B
EXECUTE: The kinetic energy is the same in both cases, so express the radius in terms of it.
_ v _ yimK . Now take ratios of the radii for an alpha particle and a proton.
\qlB lg1B
2m K
R”‘ __2eB == f6 .64 =0.997, which gives
) /2m K 1.67
R, = 0.997Rp =(0.997)(16.0 cm) = 16.0 cm, which is the same as for the proton.
EVALUATE: The radius is proportional to |£ The alpha particle has twice the charge of the proton and
q
about 4 times its mass, so the result is the same for both particles.
27.23. IDENTIFY: When a particle of charge —e is accelerated through a potential difference of magnitude V it

2
gains kinetic energy eV. When it moves in a circular path of radius R, its acceleration is R

SET UP: An electron has charge ¢ =—e= -1.60x107" C and mass 9.11x107>! kg.

-19 3
EXECUTE: Lm =el and v=, |2/ =\/2(1'60X10 OQ00XI0° V) _ 5 655107 mss. F = ma
m

2 9.11x107! kg

mv (9.11x107" kg)(2.65x107 m/s)

_ —4
= -8.38x1074 T.
lgfR (1.60x107" €)(0.180 m)

2
gives |q|vBs1n¢) m . ¢$=90° and B=——
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27.24.

27.25.

27.26.

27.27.

EVALUATE: The smaller the radius of the circular path, the larger the magnitude of the magnetic field that
is required.

IDENTIFY: The magnetic force on the beam bends it through a quarter circle.

SET Up: The distance that particles in the beam travel is s = R6, and the radius of the quarter circle is R = mv/gB.

EXECUTE: Solving for R gives R =s/6 =s/(7/2)=1.18 cm/(7/2) =0.751 cm. Solving for the magnetic

field: B =mvigR =(1.67x10727 kg)(1200 m/s)/[(1.60x10~"° C)(0.00751 m)]=1.67x10~ T.

EVALUATE: This field is about 10 times stronger than the earth’s magnetic field, but much weaker than
many laboratory fields.

IDENTIFY and SET Up: F = q(E +v X E‘) gives the total force on the proton. At =0,
F=¢gvxB= q(vxf + vzle)x Bxf = quBx}'. c)
EXECUTE: (a) F =(1.60x107" C)(2.00x10° m/s)(0.500 T)j=(1.60x107* N);.

(b) Yes. The electric field exerts a force in the direction of the electric field, since the charge of the proton
is positive, and there is a component of acceleration in this direction.

(¢) In the plane perpendicular to B (the yz-plane) the motion is circular. But there is a velocity
component in the direction of B, so the motion is a helix. The electric field in the +i-direction exerts a

force in the +i-direction. This force produces an acceleration in the +i-direction and this causes the pitch
of the helix to vary. The force does not affect the circular motion in the yz-plane, so the electric field does
not affect the radius of the helix.

(d) IDENTIFY and SET UP:  Use @=|q|B/m and T =27/@ to calculate the period of the motion.

Calculate a, produced by the electric force and use a constant acceleration equation to calculate the

displacement in the x-direction in time 77/2.
EXECUTE: Calculate the period 7: w= ,qlB/m.

2z 2xm_ 2x(1.67x1077 kg)

o |gB  (1.60x107" €)(0.500 T)
Vo, =1.50x10° my/s.
_F, _(1.60x107" €)(2.00x10" V/m)

— X
X

m 1.67x107%" kg

=1.312x10"" s. Then t=T7/2=6.56x10"" s.

=+1.916x10'% m/s2.

x—=xo =Vt +Lat’.
x=xo=(1.50x10° m/s)(6.56x10™" 5)+1(1.916x10"* m/s?)(6.56x10™ 5)* =1.40 cm.

EVALUATE: The electric and magnetic fields are in the same direction but produce forces that are in
perpendicular directions to each other.

IDENTIFY: After being accelerated through a potential difference V the ion has kinetic energy g/. The
acceleration in the circular path is VIR,

SET UP: The ion has charge g =+e.

-19
EXECUTE: K =gV =+el. %mvz =el and v= /M = 2(1.60x10 56)(220 V) =7.79%10* nvs.
m 1.16x107°° kg

2
Fg =|q|vBsing. ¢=90°. F =ma gives |q|vB=m%.

_omv_ (1.16x107% kg)(7.79x10* m/s)
|a| B (1.60x107"? C)(0.874 T)
EVALUATE: The larger the accelerating voltage, the larger the speed of the particle and the larger the

radius of its path in the magnetic field.

IDENTIFY: For no deflection the magnetic and electric forces must be equal in magnitude and opposite in
direction.

=6.46x107> m =6.46 mm.
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27.28.

27.29.

SETUP: v=E/B for no deflection.

EXECUTE: To pass undeflected in both cases, E =vB =(5.85% 10° m/s)(1.35 T)=7898 N/C.

(a)lIf g= 0.640x107° C, the electric field direction is given by —(}>< (—12)) =i, since it must point in the
opposite direction to the magnetic force.

b If ¢g= —0.320x107° C, the electric field direction is given by ((—})x (—12)) =i, since the electric force

must point in the opposite direction as the magnetic force. Since the particle has negative charge, the
electric force is opposite to the direction of the electric field and the magnetic force is opposite to the
direction it has in part (a).

EVALUATE: The same configuration of electric and magnetic fields works as a velocity selector for both
positively and negatively charged particles.

IDENTIFY: For no deflection the magnetic and electric forces must be equal in magnitude and opposite in
direction.

SETUP: v=E/B forno deflection. With only the magnetic force, |g|vB =mv?/R.
EXECUTE: (a) v=E/B=(1.56x10* V/m)/(4.62x107> T)=3.38x10° mys.
(b) The directions of the three vectors ¥, E, and B are sketched in Figure 27.28.
31 6
© R= my__ (9.11x10 19kg)(3.38><10 3m/s) —417%10° m.
|Q|B (1.60x107" C)(4.62x107° T)
_2zm _27R _ 2m(4.17x107° m)
lgB v (3.38x10° m/s)

EVALUATE: For the field directions shown in Figure 27.28, the electric force is toward the top of the page
and the magnetic force is toward the bottom of the page.

=7.74x107" s.

Figure 27.28

IDENTIFY: For the alpha particles to emerge from the plates undeflected, the magnetic force on them must
exactly cancel the electric force. The battery produces an electric field between the plates, which acts on
the alpha particles.

SETUP: First use energy conservation to find the speed of the alpha particles as they enter the region between

the plates: gV =1/2 mv?. The electric field between the plates due to the battery is £ =V}, /d. For the alpha
particles not to be deflected, the magnetic force must cancel the electric force, so gvB = gE, giving B = E/v.
EXECUTE: Solve for the speed of the alpha particles just as they enter the region between the plates. Their

charge is 2e.
-19
y, = P2V _ |4(1.60x10 _(2(1750\/) = 4.11x10° ms.
m 6.64x107°" kg

The electric field between the plates, produced by the battery, is
E=V,/d =150 V)/(0.00820 m)=18,300 V/m.

The magnetic force must cancel the electric force:
B=FE/v,=(18,300 V/m)/(4.1 1x10° m/s) = 0.0445 T.

The magnetic field is perpendicular to the electric field. If the charges are moving to the right and the
electric field points upward, the magnetic field is out of the page.
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27.30.

27.31.

27.32.

27.33.

EVALUATE: The sign of the charge of the alpha particle does not enter the problem, so negative charges
of the same magnitude would also not be deflected.

IDENTIFY: The velocity selector eliminates all ions not having the desired velocity. Then the magnetic
field bends the ions in a circular arc.

SET UP: In a velocity selector, £ =vB. For motion in a circular arc in a magnetic field of magnitude B,

R= The ion has charge +e.

IfIIB

EXECUTE: (a) E =vB =(4.50x10° m/s)(0.0250 T)=112 V/m.

mv _ (6.64x1072% kg)(4.50x10° m/s)
gk~ (1.60x107"° C)(0.125 m)

EVALUATE: By laboratory standards, both the electric field and the magnetic field are rather weak and
should easily be achievable.

IDENTIFY: The velocity selector eliminates all ions not having the desired velocity. Then the magnetic
field bends the ions in a circular arc.

SET UP: In a velocity selector, £ =vB. For motion in a circular arc in a magnetic field of magnitude B,

(b) B'= =1.49x107 T.

R=""" The ion has charge +e.

lg| B
E 155 V/m

EXECUTE: (a) v= T =4.92x10° m/s.
B 0.0315T

R|q|B (0.175 m)(1.60x107" C)(0.0175 T)

- =9.96x107%6 kg.
4.92x10° m/s

(b) m

EVALUATE: Ions with larger ratio — will move in a path of larger radius.
q

IDENTIFY and SET UP: For a velocity selector, £ =vB. For parallel plates with opposite charge, V' = Ed.
EXECUTE: (a) E=vB= (1.82><106 m/s)(0.510T) = 9.28x10° V/m.

(b) V = Ed =(9.28x10° V/m)(5.20x10> m) = 4.83 kV.

EVALUATE: Any charged particle with v= 1.82x10°% m/s will pass through undeflected, regardless of the
sign and magnitude of its charge.

IDENTIFY: A mass spectrometer separates ions by mass. Since "N and >N have different masses they

will be separated and the relative amounts of these isotopes can be determined.

SETUP: R= —| |B For m=1.99x1072¢ kg (12C) Ry, =12.5 cm. The separation of the isotopes at the
q
detector is 2(Ry5 — Ry4).
. R R R . .
EXECUTE: Since R=—r, = =—"=constant. Therefore —14 = =12 which gives
lg|B™ m |q|B My My

-26
Ry = Rlz(ZMj (12.5 cm)[%} =14.6 cm and
12 . g

1.99x107%° kg
2(Rjs—Ry4)=2(15.6 cm—14.6 cm)=2.0 cm.

EVALUATE: The separation is large enough to be easily detectable. Since the diameter of the ion path is
large, about 30 cm, the uniform magnetic field within the instrument must extend over a large area.

2.49x107° k . . ,
Ri5s= Rlz[ J (125¢ )[M] =15.6 cm. The separation of the isotopes at the detector is
M2
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27.34. IDENTIFY: The earth’s magnetic field exerts a force on the moving charges in the wire.
SETUP: F = lIBsing. The direction of F is determined by applying the right-hand rule to the directions
of Iand B. 1 gauss =107*T.
EXECUTE: (a) The directions of /and B are sketched in Figure 27.34a. ¢=90° so
F=(15A)25 m)(0.55><1074 T)= 2.1x107* N. The right-hand rule says that F is directed out of the
page, so it is upward.
N
N B
B
I
W < ® >»E W < O > E
F ! F
s s
@ (b
Figure 27.34
(b) The directions of 7 and B are sketched in Figure 27.34b. ¢=90° and F =2.1x107* N. F is directed
east to west.
(¢) B and the direction of the current are antiparallel. p=180° so F =0.
(d) The magnetic force of 2.1x10™* N is not large enough to cause significant effects.
EVALUATE: The magnetic force is a maximum when the directions of 7and B are perpendicular and it is
zero when the current and magnetic field are either parallel or antiparallel.
27.35. IDENTIFY: Apply F =IIBsing.

SET UP: Label the three segments in the field as a, b, and c. Let x be the length of segment a. Segment b has
length 0.300 m and segment ¢ has length 0.600 m —x. Figure 27.35a shows the direction of the force on each
segment. For each segment, ¢ =90°. The total force on the wire is the vector sum of the forces on each segment.

EXECUTE: F, =IIB=(4.50 A)x(0.240 T). F, =(4.50 A)(0.600 m—x)(0.240 T). Since F, and F, are

in the same direction their vector sum has magnitude
F,.=F,+F,=(4.50 A)(0.600 m)(0.240 T) =0.648 N and is directed toward the bottom of the page in

Figure 27.35a. F, =(4.50 A)(0.300 m)(0.240 T)=0.324 N and is directed to the right. The vector
addition diagram for F,, and F, is given in Figure 27.35b.

and 6 =63.4°. The net

F. 0.648N
F=+F2+F?=4(0.648 N)> +(0.324 N)?> =0.724 N. tanf=—9< =
\/ ac b \/( ) ( ) Fb 0324 N

force has magnitude 0.724 N and its direction is specified by 6 =63.4° in Figure 27.35b.
EVALUATE: All three current segments are perpendicular to the magnetic field, so ¢ =90° for each in the
force equation. The direction of the force on a segment depends on the direction of the current for that segment.
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27.36.

27.37.

27.38.

B I
® —
i 1
FC
B (@i
Fy
I B
— ® b
a
l K,
@

Figure 27.35

IDENTIFY: Apply F =IIBsing.

SETUP: [=0.0500 m is the length of wire in the magnetic field. Since the wire is perpendicular to B,
¢ =90°.

EXECUTE: F =1/B=(10.8 A)(0.0500 m)(0.550 T)=0.297 N.

EVALUATE: The force per unit length of wire is proportional to both B and 1.

IDENTIFY and SET UP: The magnetic force is given by F = [IBsing. F; =mg when the bar is just ready
to levitate. When / becomes larger, F; >mg and F; —mg is the net force that accelerates the bar upward.
Use Newton’s second law to find the acceleration.

mg _ (0.750 kg)(9.80 m/s?)
IB (0.500 m)(0.450 T)
V =1IR=(32.67 A)(25.0Q) =817 V.

(b) R=2.0Q,7=¢/R=(816.7 V)/(2.0Q) =408 A.
F;=1IB=92N.

a=(F;—mg)/m=113 m/s.

EVALUATE: [increases by over an order of magnitude when R changes to F; >>mg and a is an order of

EXECUTE: (a) IIB=mg, [ = =32.67 A.

magnitude larger than g.

IDENTIFY and SET UP:  F = [IBsin@. The direction of F is given by applying the right-hand rule to the
directions of / and B.

EXECUTE: (a) The current and field directions are shown in Figure 27.38a (next page). The right-hand
rule gives that F is directed to the south, as shown. ¢ =90° and

F =(2.60 A)(1.00x107> m)(0.588 T) =0.0153 N.
(b) The right-hand rule gives that F is directed to the west, as shown in Figure 27.38b. ¢ =90° and
F =0.0153 N, the same as in part (a).

(¢) The current and field directions are shown in Figure 27.38c. The right-hand rule gives that F is 60.0°
north of west. =90° so F =0.0153 N, the same as in part (a).

EVALUATE: In each case the current direction is perpendicular to the magnetic field. The magnitude of
the magnetic force is the same in each case but its direction depends on the direction of the magnetic field.
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Figure 27.38

27.39.

27.40.

27.41.

IDENTIFY: The magnetic force F, 's must be upward and equal to mg. The direction of F 'z is determined
by the direction of / in the circuit.

SETUP: Fj =1IBsing, with ¢ =90°. [ = %, where V is the battery voltage.

EXECUTE: (a) The forces are shown in Figure 27.39. The current / in the bar must be to the right to
produce F, 's upward. To produce current in this direction, point a must be the positive terminal of the

battery.
_1IB_VIB (175 V)(0.600 m)(1.50 T) _

g Rg (5.00 ©)(9.80 m/s?)

EVALUATE: If the battery had opposite polarity, with point a as the negative terminal, then the current
would be clockwise and the magnetic force would be downward.

(b) Fy=mg. IIB=mg. m 3.21kg.

Fy

B¢ —>

mg
Figure 27.39

IDENTIFY: 7=IA4Bsin¢g. The magnetic moment of the loop is u =IA.

SET UP: Since the plane of the loop is parallel to the field, the field is perpendicular to the normal to the
loop and ¢ =90°.

EXECUTE: (a) 7=IAB=(6.2 A)(0.050 m)(0.080 m)(0.19 T)=4.7x10™> N -m.

() 1 =14=(6.2 A)(0.050 m)(0.080 m)=0.025 A -m>.
(¢) Maximum area is when the loop is circular. R = 0.050m+0.080m _ 0.0414 m.
T
A=7R*=538%x10" m? and 7=(6.2 A)(5.38x10> m?)(0.19 T) =6.34x10> N - m.

EVALUATE: The torque is a maximum when the field is in the plane of the loop and ¢ =90°.

IDENTIFY: The wire segments carry a current in an external magnetic field. Only segments ab and cd will
experience a magnetic force since the other two segments carry a current parallel (and antiparallel) to the
magnetic field. Only the force on segment cd will produce a torque about the hinge.

SET UP: F =1IIBsing. The direction of the magnetic force is given by the right-hand rule applied to the

directions of / and B. The torque due to a force equals the force times the moment arm, the perpendicular
distance between the axis and the line of action of the force.
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27.42.

27.43.

EXECUTE: (a) The direction of the magnetic force on each segment of the circuit is shown in Figure 27.41.
For segments bc and da the current is parallel or antiparallel to the field and the force on these segments is zero.

1
—>
b c
B
i :
Fyjy O e F (@
lz
B
g
a d
1

Figure 27.41

(b) Fab acts at the hinge and therefore produces no torque. ch tends to rotate the loop about the hinge so
it does produce a torque about this axis. F,; = /IBsing =(5.00 A)(0.200 m)(1.20 T)sin90°=1.20 N

(¢) 7=FI[=(1.20 N)(0.350 m) =0.420 N - m.

EVALUATE: The torque is directed so as to rotate side cd out of the plane of the page in Figure 27.41.
IDENTIFY: 7 =IABsing, where ¢ is the angle between B and the normal to the loop.

SET UP: The coil as viewed along the axis of rotation is shown in Figure 27.42a for its original position
and in Figure 27.42b after it has rotated 30.0°.

EXECUTE: (a) The forces on each side of the coil are shown in Figure 27.42a. 17“1 + F‘z =0 and
f‘3 + F, =0. The net force on the coil is zero. ¢ =0° and sing=0, so 7= 0. The forces on the coil

produce no torque.

(b) The net force is still zero. ¢=30.0° and the net torque is

7=(1)(1.95 A)(0.220 m)(0.350 m)(1.50 T)sin30.0°=0.113 N - m. The net torque is clockwise in

Figure 27.42b and is directed so as to increase the angle ¢.

EVALUATE: For any current loop in a uniform magnetic field the net force on the loop is zero. The torque
on the loop depends on the orientation of the plane of the loop relative to the magnetic field direction.

Figure 27.42

IDENTIFY: The magnetic field exerts a torque on the current-carrying coil, which causes it to turn. We can
use the rotational form of Newton’s second law to find the angular acceleration of the coil.

SET UP: The magnetic torque is given by 7 = fix B, and the rotational form of Newton’s second law is
2.7 = Ior. The magnetic field is parallel to the plane of the loop.

EXECUTE: (a) The coil rotates about axis 4, because the only torque is along top and bottom sides of the coil.
(b) To find the moment of inertia of the coil, treat the two 1.00-m segments as point-masses (since all the
points in them are 0.250 m from the rotation axis) and the two 0.500-m segments as thin uniform bars
rotated about their centers. Since the coil is uniform, the mass of each segment is proportional to its
fraction of the total perimeter of the coil. Each 1.00-m segment is 1/3 of the total perimeter, so its mass is
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(1/3)(210 g) =70 g=0.070 kg. The mass of each 0.500-m segment is half this amount, or 0.035 kg.
The result is
I=2(0.070 kg)(0.250 m)” +2-1.(0.035 kg)(0.500 m) =0.0102 kg - m”.
The torque is
|7|= | ,a><1?| = IABsin90° = (2.00A)(0.500m)(1.00m)(3.00T) =3.00 N - m.
Using the above values, the rotational form of Newton’s second law gives
a= ; =290 rad/s>.
EVALUATE: This angular acceleration will not continue because the torque changes as the coil turns.
27.44. IDENTIFY and SET UP: Both coils A and B have the same area 4 and N turns, but they carry current in
opposite directions in a magnetic field. The torque is 7 = % B and the potential energy is U =—uBcosg.
The magnetic moment is i = 4.
EXECUTE: (a) Using the right-hand rule for the magnetic moment, Z points in the —z-direction (into the
page) for coil A and in the +z-direction (out of the page) for coil B.
(b) The torque is 7 = Zx B which has magnitude 7= uBsing. For coil A, ¢ = 180°, and for coil B,
¢ =0°. In both cases, sin ¢ = 0, making the torque zero.
(¢) Forcoil A: U, =—uBcos¢=—NIABcos180° = NIAB.
For coil B: Ug =—uBcos¢ =—NIABcos0°=—NIAB.
(d) If coil A is rotated slightly from its equilibrium position, the magnetic field will flip it 180°, so its
equilibrium is unstable. But if the same thing it done to coil B, the magnetic field will return it to its
original equilibrium position, which makes its equilibrium stable.
EVALUATE: For the stable equilibrium (coil B), its potential energy is a minimum, while for the unstable
equilibrium (coil A), its potential energy is a maximum.
27.45. IDENTIFY: 7=jxB and U=—uBcosp, where u= NIA. 7=uBsing.
SETUP: ¢ is the angle between B and the normal to the plane of the loop.
EXECUTE: (a) ¢=90°. 7= NIABsin(90°) = NIAB, direction k X j = —i. U =—uBcos¢=0.
(b) ¢=0. 7= NIABsin(0) =0, no direction. U = —uBcos¢ =—NIAB.
(¢) $=90°. 7= NIAB sin(90°) = NIAB, direction—kx j=i. U =—pBcos¢$ =0.
(d) ¢=180° 7= NIAB sin(180°) =0, no direction, U =—uB cos(180°) = NIAB.
EVALUATE: When 7 is maximum, U =0. When |U| is maximum, 7=0.
27.46. IDENTIFY and SET UP: The potential energy is given by U =—fi- B. The scalar product depends on the
angle between I and B.
EXECUTE: For f and B parallel, ¢ = 0° and fI- B = uBcos¢ = uB. For fI and B antiparallel,
¢=180° and fi- B = uBcos¢ = —iB.
Uy=+uB, Uy =—uB.
AU =U,-U==2uB=-2(145A- m?)(0.835 T)=-2.42 J.
EVALUATE: U is maximum when £ and B are antiparallel and minimum when they are parallel. When
the coil is rotated as specified its magnetic potential energy decreases.
27.47. IDENTIFY: The circuit consists of two parallel branches with the potential difference of 120 V applied

across each. One branch is the rotor, represented by a resistance R, and an induced emf that opposes the

applied potential. Apply the loop rule to each parallel branch and use the junction rule to relate the currents
through the field coil and through the rotor to the 4.82 A supplied to the motor.
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27.48.

27.49.

SET UP: The circuit is sketched in Figure 27.47.

I1=482A L ¢is the induced emf developed by the motor.

L > a —_—> . .

' It is directed so as to oppose the current

l’ f through the rotor.
R.=59Q
V=120V R, = 106 Q
f
\ T°
Figure 27.47

EXECUTE: (a) The field coils and the rotor are in parallel with the applied potential difference
V,soV=1IRs. I¢ :LZM
Ry 106 Q
(b) Applying the junction rule to point a in the circuit diagram gives [ —I; — I, =0.
I,=1-1;=482A—-1.13 A=3.69 A.

(¢) The potential drop across the rotor, /R, +&, must equal the applied potential difference

V:V=IR +&

e=V-IR =120 V—-(3.69 A)(5.9Q)=982V

(d) The mechanical power output is the electrical power input minus the rate of dissipation of electrical
energy in the resistance of the motor:

electrical power input to the motor

P, =1V =(482 A)(120 V) =578 W.

electrical power loss in the two resistances

By =I3R; +I’R = (1.13 A)> (106 Q) + (3.69 A)*(5.9Q) =216 W.

mechanical power output

Pui=P,—PB. =578 W—-216 W=362 W.

The mechanical power output is the power associated with the induced emf &.

P =P.=€I.=(98.2 V)(3.69 A)=362 W, which agrees with the above calculation.

EVALUATE: The induced emf reduces the amount of current that flows through the rotor. This motor
differs from the one described in Example 27.11. In that example the rotor and field coils are connected in
series and in this problem they are in parallel.

IDENTIFY: Apply V,, =€ + Ir in order to calculate /. The power drawn from the line is P,

=1.13 A.

0SS

upplied — IVab'

The mechanical power is the power supplied minus the / 2 electrical power loss in the internal resistance

of the motor.

SErUp: V, =120V, £=105V, and r=3.2Q.

Vyp—€ 120V-105V
ro 320

(0) Byppiica = 1Vap = (4.7 A)120 V) =564 W.

(©) Pyt =1V, —1*r =564 W — (4.7 A)* (3.2 Q) =493 W.

EVALUATE: If the rotor isn’t turning, when the motor is first turned on or if the rotor bearings fail, then

e=0and I = ;2% =37.5 A. This large current causes large / 2y heating and can trip the circuit breaker.

EXECUTE: (a) V,,=c+Ir=1= =47 A.

IDENTIFY: The drift velocity is related to the current density by J, = n|g|v4. The electric field is

determined by the requirement that the electric and magnetic forces on the current-carrying charges are
equal in magnitude and opposite in direction.
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27.50.

SET UP and EXECUTE: (a) The section of the silver ribbon is sketched in Figure 27.49a.

® * J, =nlq|vy.
00118m| O T

X

$0 Vd=n|q|'

Figure 27.49a

1. _1320 A =4.42x10" A/m?.
iz (0.23x107> m)(0.0118 m)

L 4.42x107 A/m?

nlg] (5.85%10%%/m*)(1.602x107" €)

(b) magnitude of E:

|q|EZ =|q|vdBy.

E, =vyB, =(4.7x107 m/s)(0.95 T) =4.5x10 V/m.

1
EXECUTE: J, = o

=4.7x107> m/s = 4.7 mm/s.

Vd

direction of E:

The drift velocity of the electrons is in the opposite direction to the current, as shown in Figure 27.49b.

oL, ixB 1.

B® Fquﬁxéz—eﬁxfii.
Figure 27.49b

The directions of the electric and magnetic forces on an electron in the ribbon are shown in Figure 27.49¢c.

TF FE must oppose FB so FE is in
the —z-direction.

Figure 27.49¢

F, E = qE =—¢E so E is opposite to the direction of F, & and thus E isin the +z-direction.
(c¢) The Hall emf is the potential difference between the two edges of the strip (atz =0 and z = z|) that

results from the electric field calculated in part (b). &y, = £z =(4.5 X107 V/m)(0.0118 m) =53 uV.

EVALUATE: Even though the current is quite large the Hall emf is very small. Our calculated Hall emf is
more than an order of magnitude larger than in Example 27.12. In this problem the magnetic field and
current density are larger than in the example, and this leads to a larger Hall emf.

-J\B,
IDENTIFY: Apply gn= .

V4
SET UP: A=ylZl. E=€/Zl |q|:e

J.B, IB, IBz IB,

TldE. T AlglE. Aldle wldle

n= (780A)229T) =3.7x10%} electrons/m”.

T (2.3x107* m)(1.6x107"° C)(1.31x107* V)

EXECUTE: n
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EVALUATE: The value of n for this metal is about one-third the value of n calculated in Example 27.12
for copper.

27.51. IDENTIFY: Use F =q\7xl§ to relate v, B, and F.

SET Up: The directions of ¥ and F, are shown in Figure 27.51a.

v F =¢qvxB says that F is perpendicular
to ¥ and B. The information given here

F means that B can have no z-component.
1
Figure 27.51a

The directions of %, and F, are shown in Figure 27.51b.

A F is perpendicular to ¥ and B,

S|

so B can have no x-component.

Figure 27.51b

Both pieces of information taken together say that B is in the y-direction; B = B, j

EXECUTE: (a) Use the information given about F, to calculate By: F, = sz ,Vy = vzle, B= B,j.
F, = gV, x B says sz = quByI; X} = quBy(—l:) and F) =—qv,B,.
B, =-F,/(qv,) ==F,/(gw). B has the magnitude F,/(gvy) and is in the —y-direction.
(b) F; =qvBsing=qv|B,|\2 = ;2.
EVALUATE: v, =v, ., is perpendicular to B whereas only the component of v, perpendicular to B
contributes to the force, so it is expected that F, > F|, as we found.

27.52. IDENTIFY: Apply F =gvxB.
SETUP: B, =0.650T. B,=0 and B, =0.
EXECUTE: F,=q(v,B.—v.B,)=0.
F,=q(v,B, —v,B)= (726X 107 C)(5.85%10% m/s)(0.650 T) =2.76 x 10~ N.
F,=q(vB,—v,B)=~(726x 1078 C)(=3.11x10% m/s)(0.650 T)=1.47 x 10~ N.
EVALUATE: F is perpendicular to both ¥ and B. We can verify that F - % =0. Since B is along the
x-axis, v, does not affect the force components.

27.53. IDENTIFY: In part (a), apply conservation of energy to the motion of the two nuclei. In part (b) apply
|q|vB =mv*/R.

SET UP: In part (a), let point 1 be when the two nuclei are far apart and let point 2 be when they are at
their closest separation.
EXECUTE: (a) K;+U,; =K, +U,. U =K, =0, so K; =U,. There are two nuclei having equal kinetic

1

energy, so Emv2 +%mv2 = ke*/r. Solving for v gives

v=e i=(1.602><10‘19 C) =8.3x10° mys.

mr

8.99x10° N-m?/C?
(3.34x107%" kg)(1.0x107"> m)
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27.54.

27.55.

27.56.

27.57.

mv _ (3.34x107"7 kg)(8.3x10° m/s) _
qr (1.602x107"° C)(1.25 m)
EVALUATE: The speed calculated in part (a) is large, nearly 3% of the speed of light.
IDENTIFY: The period is T =27zr/v, the current is Q/t and the magnetic moment is u = IA4.

SET UP: The electron has charge —e. The area enclosed by the orbit is 7.

0.14T.

(b) XF =ma gives quzmvz/r. B=

EXECUTE: (a) T =27zr/v= 1.5x10716 s,

(b) Charge —e passes a point on the orbit once during each period, so / =Q/t=e/t =1.1 mA.

(©) u=IA=1Ixr*=93x107* A-m>.

EVALUATE: Since the electron has negative charge, the direction of the current is opposite to the direction
of motion of the electron.

IDENTIFY: The sum of the magnetic, electrical and gravitational forces must be zero to aim at and hit the

target.
SET UP: The magnetic field must point to the left when viewed in the direction of the target for no net

force. The net force is zero, so > F = Fy — Fp —mg =0 and gqvB—qE —mg =0.
EXECUTE: Solving for B gives
B= gE+mg (2500%x107° C)(27.5 N/C) +(0.00425 kg)(9.80 m/s?)

qv (2500%107° C)(12.8 m/s)

The direction should be perpendicular to the initial velocity of the coin.
EVALUATE: This is a very strong magnetic field, but achievable in some labs.
IDENTIFY and SET UP: The maximum radius of the orbit determines the maximum speed v of the protons.

=345T.

Use Newton’s second law and a4 = v2/R for circular motion to relate the variables. The energy of the

particle is the kinetic energy K = %mvz.

EXECUTE: (a) Y F =md gives |q|vB=m(v2/R).

) lg| BR  (1.60x107"" €)(0.85 T)(0.40 m)
m 1.67x107%7 kg

with this speed is K =Lmv* =1(1.67x1077 kg)(3.257x10 m/s)* =8.9x10™" J=5.5 MeV.

27R _ 27(0.40 m)
v 3.257x10" m/s

a1 m(|q|BR ]2 _lgB?R? J2Km
2 2

=3.257x10" m/s. The kinetic energy of a proton moving

(b) The time for one revolution is the period 7 = =7.7%x107% .

() K= .Orn, B . B is proportional to JK , so if K is increased

m B |q|R
by a factor of 2 then B must be increased by a factor of V2. B= \/5(0.85 T)=12T.

e lg| BR  (3.20x107" C)(0.85 T)(0.40 m)
m 6.65x107% kg

K =1mv? =1(6.65x107% kg)(1.636x10 m/s)” =8.9x107"> J=5.5 MeV, the same as the maximum

m

(d) =1.636x10" m/s

energy for protons.
EVALUATE: We can see that the maximum energy must be approximately the same as follows: From

2
BR
part (¢), K = %m[m] . For alpha particles |q| is larger by a factor of 2 and m is larger by a factor of 4
m

(approximately). Thus |q|2 /m is unchanged and X is the same.

IDENTIFY and SET Up: Use F = q17><1§ to relate ¢, v, B and F. The force F and @ are related by
Newton’s second law. B =—(0.120 T)k, v = (1.05x10° m/s)(=3i +4j +12k), F =2.45 N.

EXECUTE: (a) F =gvxB. F =q(—0.120 T)(1.05x10® m/s)(=3i xk +4jx k + 12k x k).
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27.58.

ixk=—j, jxk=i, kxk=0. F=—g(126x10° N/C)(+3j+4i)=—-(1.26x10° N/C)(+4i +3j). The
magnitude of the vector +4i +3j is /3% +4% =5. Thus F =—¢(1.26x10° N/C)(5).

F B 245N
5(1.26x10° N/C)  5(1.26x10° N/C)
(b) =F =mi so d = F/m.

F =—q(1.26x10° N/C)(+4i +3J) = —(=3.89x107° C)(1.26x10° N/C)(+4i +3) = +0.490 N(+4i +3).
Then

=-3.89x107° C.

i Fime 0.4901;
2.58x107" kg

(¢) IDENTIFY and SET UP:  F is in the xy-plane, so in the z-direction the particle moves with constant

j(+4i +3J)=(1.90x10" m/s?)(+4i +3 ) =7.60x10"* m/s%i +5.70x10'* m/s?j.

speed 12.6% 10® ns. In the xy-plane the force F causes the particle to move in a circle, with F directed in
toward the center of the circle.

EXECUTE: Y. F =ma gives F = m(v*/R) and R = mv*/F.

V2 =17 4] =(=3.15%10° m/s)” + (+4.20x10° m/s)* =2.756x10" m*/s”.

F=\|F}+F} =(0.490 N)y4? +3> =2.45 N.

m?  (2.58x107" kg)(2.756x10" m?/s?)

F 245N
(d) IDENTIFY and SET UP: The cyclotron frequency is f = w/27z =v/27R.

R= =0.0290 m=2.90 cm.

EXECUTE: The circular motion is in the xy-plane, so v =, /vf + v)2, =5.25%10° m/s.

v 525x10° m/s
ey 272(0.0290 m)
(e) IDENTIFY and SET UP: Compare ¢ to the period 7 of the circular motion in the xy-plane to find the
x- and y-coordinates at this ¢. In the z-direction the particle moves with constant speed, so z =z, +v,t.

. — o 1 1 _
EXECUTE: The period of the motion in the xy-plane is given by 7 =— = ——=——=3.47x10 85 In

f 2.88x107 Hz
t=2T the particle has returned to the same x- and y-coordinates. The z-component of the motion is

=2.88x10 Hz, and w=27f =1.81x10° rad/s.

motion with a constant velocity of v, = +12.6x10° m/s. Thus

z=zy+v,t =0+(12.6x10° m/s)(2)(3.47x107® s) = +0.874 m. The coordinates at #=2T are
x=R=0.0290 m, y=0, z=+0.874 m.

EVALUATE: The circular motion is in the plane perpendicular to B. The radius of this motion gets
smaller when B increases and it gets larger when v increases. There is no magnetic force in the direction of

B so the particle moves with constant velocity in that direction. The superposition of circular motion in
the xy-plane and constant speed motion in the z-direction is a helical path.

IDENTIFY: Apply F =gV xB.

SETUP: v =vk.
EXECUTE: (a) F =—qvB,i+qvB,j. But F =3F;i +4F,j, so 3F,=—qvB, and 4F,=qvB,.
K 4F, . .
Therefore, B, = —3—0, B, =—2" and B, is undetermined.
qv qv
6F, K ? K ’ JI1F,
v
() B=""0= B2+ B2+ B2 =" Jo+16+| L | B2 =20 1254 4| B2 50 B, =+Y""0.
qv qv Fy qv F, qv

EVALUATE: The force doesn’t depend on B_, since v is along the z-direction.
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27.59. IDENTIFY: For the velocity selector, £ =vB. For circular motion in the field B’, R= | m;;,.
q
SETUP: B=B'=0.682T.
4
EXECUTE: v= E = M =2.757x10* m/s. R= ﬂ, SO
B 0.682 T qB’
-27 4
= 82(1.66x10 711<9g)(2.757><10 m/s) _ 0.0344 m = 3.44 com.
(1.60x107"" C)(0.682 T)
84(1.66x107%7 kg)(2.757x10* m/!
gy = L0OXI0 ~ kg)(2.757 5 - 0.0352 m=3.52 cm.
(1.60x107~ C)(0.682 T)
1.66x107%7 kg)(2.757x10"
o = 200610 ke)@TSTXI0_ W) _ 4367 1y =361 cm.
(1.60x107~ C)(0.682 T)
The distance between two adjacent lines is 2AR =2(3.52 cm—3.44 cm) =0.16 cm =1.6 mm.
EVALUATE: The distance between the ®?Kr line and the 3*Kr line is 1.6 mm and the distance between
the ¥ Kr line and the 36Kr line is 1.6 mm. Adjacent lines are equally spaced since the 5Kr versus S*Kr
and ¥ Kr versus %Kr mass differences are the same.
27.60. IDENTIFY: Apply conservation of energy to the acceleration of the ions and Newton’s second law to their
motion in the magnetic field.
SET UP: The singly ionized ions have g =+e. A 12C ion has mass 12 uand a '*C ion has mass 14 u,
where 1u=1.66x10" kg.
: . . 1 2 2q V .
EXECUTE: (a) During acceleration of the ions, gV = S mv and v=,/——. In the magnetic field,
m
Ry _m2qVim . qB’R®
qB qB 2V
gB*R*  (1.60x107" €)(0.150 T)?(0.500 m)* 4
(b) V= = o7 =2.26x10" V.
2m 2(12)(1.66x10™" kg)
(c) The ions are separated by the differences in the diameters of their paths. D=2R =2 %, S0
q
AD=D,, - Dy, =2\/2V’Z‘ —2\/2V’;’ =2\/2V(12“) 14 -12).
9B” |, q9B" |, 9B
2(2.26x10* V)(1.66x107* k _ . o
=2 ( X 19)( . ; g)(\/ﬁ—ﬁ)=8.01x10 2 m. This is about 8 cm and is easily
(1.6x1077 C)(0.150 T)
distinguishable.
. 2(1.60x107" €)(2.26x10* -
EVALUATE: The speed of the 2¢C jonis v= (1.60x10" ~ CX > 6x10°V) =6.0x10° m/s. Thisis
12(1.66x107" kg)
very fast, but well below the speed of light, so relativistic mechanics is not needed.
27.61. IDENTIFY: The force exerted by the magnetic field is given by F = [IBsing@. The net force on the wire

must be zero.

SET UP: For the wire to remain at rest the force exerted on it by the magnetic field must have a
component directed up the incline. To produce a force in this direction, the current in the wire must be
directed from right to left in the figure with the problem in the textbook. Or, viewing the wire from its left-
hand end the directions are shown in Figure 27.61a.
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27.62.

27.63.

Figure 27.61a
The free-body diagram for the wire is given in Figure 27.61b.

EXECUTE: X F, =0.
F;cos@—Mgsinf=0.
F, =ILBsing.

N‘zg SEi #=90° since B is perpendicular to the
current direction.

Figure 27.61b

Mg tan 6
LB

EVALUATE: The magnetic and gravitational forces are in perpendicular directions so their components
parallel to the incline involve different trig functions. As the tilt angle @ increases there is a larger

Thus (ILB) cos@—Mgsinf=0 and [ =

component of Mg down the incline and the component of F; up the incline is smaller; / must increase with
6 to compensate. As 8 -0, I — 0 and as 8 — 90°, / — oo.

IDENTIFY: In the figure shown with the problem in the text, the current in the bar is toward the bottom of
the page, so the magnetic force is toward the right. Newton’s second law gives the acceleration. The bar is
in parallel with the 10.0-CQ resistor, so we must use circuit analysis to find the initial current through the
bar.

SET Up: First find the current. The equivalent resistance across the battery is 30.0 Q, so the total current

is 4.00 A, half of which goes through the bar. Applying Newton’s second law to the bar gives

>F= ma = Fy = ILB.

EXECUTE: Equivalent resistance of the 10.0-Q resistor and the bar is 5.0 Q. Current through the
25.0-Q resistor is [, = % =4.00 A. The current in the bar is 2.00 A, toward the bottom of the
page. The force F ; that the magnetic field exerts on the bar has magnitude F; =/IB and is directed to the

right. a = 1 118 = (2.00 A)(0.850 m)(1.60 T) =10.3 m/s’. @ is directed to the right.
m

m (2.60 N)/(9.80 m/s?)

EVALUATE: Once the bar has acquired a non-zero speed there will be an induced emf (Chapter 29) and
the current and acceleration will start to decrease.
my

a8

SET UP: After completing one semicircle the separation between the ions is the difference in the
diameters of their paths, or 2(R;; —R,). A singly ionized ion has charge +e.

mv _ (1.99x1072° kg)(8.50x10° m/s)
|a| R (1.60x107"? €)(0.125 m)

IDENTIFY: R=

EXECUTE: (a) B= =8.46x107 T.
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27.64.

27.65.

27.66.

27.67.

. . . . R v R R
(b) The only difference between the two isotopes is their masses. — = —— = constant and —2 =13
m |q|B my Mg

-26
Ri3 =R, {@] =25 cm)[MJ =13.6 cm. The diameter is 27.2 cm.
m

12 1.99x1072% kg
(c) The separation is 2(Rj3 — R;,) =2(13.6 cm —12.5 cm) =2.2 cm. This distance can be easily observed.
EVALUATE: Decreasing the magnetic field increases the separation between the two isotopes at the detector.
IDENTIFY: Turning the charged loop creates a current, and the external magnetic field exerts a torque on
that current.
SETUP: The currentis I =¢q/T =q/(l/f)=qf =q(@/27) = qw/2x. The torque is 7= uBsing.
EXECUTE: In this case, ¢ = 90° and u = I4, giving 7 =I4AB. Combining the results for the torque and

current and using 4 = 7r? gives 7= (%) 7r’B= %qa)r2B.

EVALUATE: Any moving charge is a current, so turning the loop creates a current causing a magnetic
force.

IDENTIFY: The force exerted by the magnetic field is /' = ILBsing. a = F/m and is constant. Apply a
constant acceleration equation to relate v and d.

SETUP: ¢ =90°. The direction of F is given by the right-hand rule.

EXECUTE: (a) F =ILB, to the right.

2

2
b) v2 =vZ. +2a.(x—x, ives v2 =2ad and d:v—:vm.
() X Ox x( O) g 2 2ILB

© d= (1.12x10"* m/s)* (25 kg)
~2(2000 A)(0.50 m)(0.80 T)

3
EVALUATE: a= 13 WeoK10 A)z(;).lfo BEOD _ 32 m/s%. The acceleration due to gravity is not
m g

negligible. Since the bar would have to travel nearly 2000 km, this would not be a very effective launch
mechanism using the numbers given.

IDENTIFY: Apply F =1I xB.

SETUP: [ =Ik.

EXECUTE: (a) F =1(lk)x B =1I[(-B,)i +(B,)j]. This gives

F,=-1IB, =—(7.40 A)(0.250 m)(-0.985T) =1.82 N and

F, =1IB, =(7.40 A)(0.250 m)(-0.242 T) =-0.448 N. F, =0, since the wire is in the z-direction.

=1.96x10° m =1960 km.

(b) F=\[F2+F2 =\/(1.82N)? +(0.448 N)* =1.88 .

EVALUATE: F must be perpendicular to the current direction, so F has no z-component.

IDENTIFY: The magnetic field exerts a force on each of the three segments of the wire due to the current
in them. The net force on the wire is the vector sum of these three forces.

SET UP: Label the three segments in the magnetic field 1, 2, and 3, as shown in Figure 27.67. The force
on a current carrying conductor is F' = I[Bsin¢@, where ¢ is the angle between the direction of the current

and the direction of the magnetic field. The direction of the force on each segment is given by the right-
hand rule and is shown in the figure. The sum of F, and F; is the same as the force Fj; on a wire

0.307 m long. Section 2 has length 0.800 m. The current in each segment is perpendicular to the magnetic
field, so ¢ =90°.
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27.68.

27.69.

F3
F, B ® t 3
| _—
| 1
|
_____ 1 0.400m
|
|
|
o |
i 2
1 - 0.693m 0.307m—x
— >
X
@
y y
R F,sin60° Fe———— F,
| - | A
| |
| |
| |
I Fis |
| |
| |
IN | [60° | ’]
I X [ X
F, cos 60° /8
(b) ©

Figure 27.67

EXECUTE: Fj; =1IBsing=(6.50 A)(0.307 m)(0.280 T)sin90°=0.559 N.
F, =1IBsing = (6.50 A)(0.800 m)(0.280 T)sin90°=1.46 N. The forces and a coordinate system are
shown in Figure 27.67b. 17‘2 has been resolved into its x- and y-components.

F, = F, +F, =-F,c0860.0° = —(1.46 N)(c0s60.0°) = —0.730 N.

F,=Fy, +Fs3, = F5in60.0°+ F3 =+(1.46 N)(5in60.0°) +0.559 N =+1.83 N.

F,, Fy, and the resultant total force F are shown in Figure 27.67c. The resultant force has magnitude

1.97 N and is at 68.3° clockwise from the left-hand straight segment.
EVALUATE: Even though all three segments are perpendicular to the magnetic field, the direction of the
force on the segments is not the same. Therefore we must use vector addition to find the force on the wire.

IDENTIFY: The torque exerted by the magnetic field is 7 = g x B. The torque required to hold the loop in
place is —7.

SETUP: u=1IA4. 4 is normal to the plane of the loop, with a direction given by the right-hand rule that is
illustrated in Figure 27.32 in the textbook. 7 =14Bsing, where ¢ is the angle between the normal to the
loop and the direction of B.

EXECUTE: (a) 7=1IAB sin 60°=(15.0 A)(0.060 m)(0.080 m)(0.48 T)sin60°=0.030 N - m, in the
—}'-direction. To keep the loop in place, you must provide a torque in the +}-direction.

(b) 7=14Bsin 30°=(15.0 A)(0.60 m)(0.080 m)(0.48 T)sin30°=0.017 N - m, in the +}-directi0n. You

must provide a torque in the —}-direction to keep the loop in place.

EVALUATE: (c) If the loop was pivoted through its center, then there would be a torque on both sides of
the loop parallel to the rotation axis. However, the lever arm is only half as large, so the total torque in
each case is identical to the values found in parts (a) and (b).

IDENTIFY: For the loop to be in equilibrium the net torque on it must be zero. Use 7 = [t'xl} to calculate
the torque due to the magnetic field and 7,,, =mgrsing for the torque due to gravity.

SET UP: See Figure 27.69a (next page).
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" Use >7, =0, where
point 4 is at the origin.
A M
X
| 0
130 \f
mg
Figure 27.69a
EXECUTE: See Figure 27.69b.
< 7,,g =mgrsing = mg(0.400 m)sin30.0°.
The torque is clockwise; 7, is
30° directed into the paper.
mg

27.70.

Figure 27.69b
For the loop to be in equilibrium the torque due to B must be counterclockwise (opposite to 7, ) and it
must be that 73 =7,,,. See Figure 27.69¢.

B ~ o = .
7 = fix B. For this torque to be counter-

i Gy‘ L clockwise (7 directed out of the paper),

B must be in the +y-direction.

Figure 27.69¢

Tp = UBsing = IABsin 60.0°.
Tp =Ty gives IABsin60.0° = mg(0.0400 m)sin30.0°.
m=(0.15 g/cm)2(8.00 cm+6.00 cm)=4.2 g = 42x1073 kg.

A =(0.0800 m)(0.0600 m) =4.80x10~> m?.
B mg(0.0400 m)(sin 30.0°)'
1A45sin 60.0°
5o (4.2x107 kg)(9.80 m/s>)(0.0400 m)sin30.0°
(8.2 A)(4.80x10~> m?)sin60.0°
EVALUATE: As the loop swings up the torque due to B decreases to zero and the torque due to mg
increases from zero, so there must be an orientation of the loop where the net torque is zero.

IDENTIFY and SET UP: The force on a current-carrying bar of length / is ' = [IB if the field is
perpendicular to the bar. The torque is 7, = 4Bsing.

EXECUTE: (a) The force on the infinitesimal segment is dF = IBdl = IBdx. The torque about point a is
dt, = xdF sing = xIBdx. In this case, sin@ = 1 because the force is perpendicular to the bar.

=0.024 T.

L
(b) We integrate to get the total torque: 7, = .[0 xIBdx = %IBLz.

. L L 1 L
(¢) For F' = ILB at the center of the bar, the torque is 7, = F (Ej = ILB(EJ = EIBLZ, which is the same

result we got by integrating.
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27.71.

27.72.

27.73.

EVALUATE: We can think of the magnetic force as all acting at the center of the bar because the magnetic
field is uniform. This is the same reason we can think of gravity acting at the center of a uniform bar.

IDENTIFY: Apply F =1I xB to calculate the force on each side of the loop.

SET UP: The net force is the vector sum of the forces on each side of the loop.

EXECUTE: (a) Fpp =(5.00 A)(0.600 m)(3.00 T)sin(0°) =0 N.

Frp =(5.00 A)(0.800 m)(3.00 T) sin(90°) =12.0 N, into the page.

Fpr =(5.00 A)(1.00 m)(3.00 T)(0.800/1.00) =12.0 N, out of the page.

(b) The net force on the triangular loop of wire is zero.

(¢) For calculating torque on a straight wire we can assume that the force on a wire is applied at the wire’s

center. Also, note that we are finding the torque with respect to the PR-axis (not about a point), and
consequently the lever arm will be the distance from the wire’s center to the x-axis. 7 =rFsing gives

Tpg =r(0N) =0, 7pp =(0m)Fsing=0 and 7y =(0.300 m)(12.0 N)sin(90°) =3.60 N - m. The net
torque is 3.60 N - m.

(d) Using 7= NIAB sing gives

7 = NIAB sing = (1)(5.00 A)(%)(O.6OO m)(0.800 m)(3.00 T)sin(90°) =3.60 N - m, which agrees with our
result in part (c).

(e) Since Fpp is out of the page and since this is the force that produces the net torque, the point O will be
rotated out of the plane of the figure.

EVALUATE: In the expression 7= NIABsing, ¢ is the angle between the plane of the loop and the

direction of B. In this problem, ¢ =90°.

IDENTIFY: For rotational equilibrium, the torques due to gravity and the magnetic field must balance
around point a.

SET UP: From Problem 27.70 we have 7, = %IBLZ.

. . L 1 . Yot .
EXECUTE: (a) Balancing the two torques gives: mgzcosﬁ =EIBL2. Simplifying gives ILB = mg cos 6.

Putting in the numbers gives

1(0.150 T)(0.300 m) = (0.0120 kg)(9.80 m/s*)cos(30.0°), so I =2.26 A.

(b) Gravity tends to rotate the bar clockwise about point a, so the magnetic force must be upward and to
the left to tend to rotate the bar clockwise. Therefore the current must flow from a to b.

EVALUATE: If the current were from b to a, the bar could not balance.

IDENTIFY: Use dF = Idl Bsing to calculate the force on a short segment of the coil and integrate over the
entire coil to find the total force.

SET UP: See Figures 27.73a and 27.73b. The two sketches show that the x-components cancel and that the
y-components add. This is true for all pairs of short segments on opposite sides of the coil. The net

magnetic force on the coil is in the y-direction and its magnitude is given by F = dey.

Consider the force dF on a short segment

|
|
# /‘0: dl at the left-hand side of the coil, as viewed in
& the figure with the problem in the textbook. The
dF, '

IR OY! current at this point is directed out of the page. dF
: 5 is perpendicular both to B and to the direction of 1.
|

Figure 27.73a
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Consider also the force dF’ on a short
segment on the opposite side of the coil,

at the right-hand side of the coil in the figure
with the problem in the textbook. The current
at this point is directed into the page.

Figure 27.73b

EXECUTE: dF = Idl Bsing. But B is perpendicular to the current direction so ¢ = 90°.
dF,, = dF c0s30.0 = /B c0s30.0%l.

F = [dF, = IBcos30.0° [ dl.
But Idl = N(2xr), the total length of wire in the coil.

F = IBcos30.0°N(277) = (0.950 A)(0.220 T)(cos30.0°)(50)27(0.0078 m) = 0.444 N and F = —(0.444 N)j

EVALUATE: The magnetic field makes a constant angle with the plane of the coil but has a different
direction at different points around the circumference of the coil so is not uniform. The net force is
proportional to the magnitude of the current and reverses direction when the current reverses direction.
IDENTIFY and SET UP: The rod is in rotational equilibrium, so the torques must balance. Take torques

about point P and use 7, = %IBL2 from Problem 27.70.

. . L 1 . .
EXECUTE: Balancing torques gives mgzcosﬁ +EIBL2 =T'sin@L, where L is the length of the bar and T

is the tension in the string. Solving for T and putting in the numbers gives
T =[(0.0840 kg)(9.80 m/s”) cos(53.0°) + (12.0 A)(0.120 T)(0.180 m)]/[2 sin(53.0°)] = 0.472 N.
EVALUATE: If the current were reversed, the tension would be less than 0.472 N.

IDENTIFY: Apply dF =Idl x B to each side of the loop.
SET UP: For each side of the loop, dl is parallel to that side of the loop and is in the direction of /. Since
the loop is in the xy-plane, z=0 at the loop and B, =0 at the loop.

EXECUTE: (a) The magnetic field lines in the yz-plane are sketched in Figure 27.75.
= L = = L A A
(b) Side 1, that runs from (0,0) to (0.L): F = [ 1l x B=1I[, BOdeyi =1ByLii.

Boy dx “

= L = — L N
Side 2, that runs from (0,L) to (L,L): F = jo Al xB=1 jo i j=—IB,Lj.
e =

— 0 O, 0 ~ ~
Side 3, that runs from (Z,L) to (,0): F = jL A xB=1 jL LBO%dy(—i) =—L1IB,Li.
X= LX=

Byydx 5
L 7

0.

Side 4, that runs from (L,0) to (0,0): F = Jf OldixE = IJ.;) 0
y= \y=

(¢) The sum of all forces is Fy., = —IBOL}.
EVALUATE: The net force on sides 1 and 3 is zero. The force on side 4 is zero, since y =0 and z=0 at
that side and therefore B =0 there. The net force on the loop equals the force on side 2.
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B

—

Figure 27.75

IDENTIFY: [ =% and u=1I4.
t

SET Up: The direction of 4 is given by the right-hand rule that is illustrated in Figure 27.32 in the
textbook. 7 is in the direction of flow of positive charge and opposite to the direction of flow of negative
charge.

dg _Aq q,v ev

EXECUTE: (a) I, B ol oy

(b) p,=1,4="m?=2".
3zr 3
(c) Since there are two down quarks, each of half the charge of the up quark, u; =, = %. Therefore,

2evr
Hiotal ZT
27 2
@y =2 8 13COORI0mn AT & 785,157 nifs.

2er 2(1.60x107"° C)(1.20x10™ 5 m)
EVALUATE: The speed calculated in part (d) is 25% of the speed of light.
IDENTIFY: Use U =—fi- B torelate U, i, and B and use 7 = fix B to relate 7, /i, and B. We also know

that Bg = Bf + Bﬁ + BZZ. This gives three equations for the three components of B.

SET UP: The loop and current are shown in Figure 27.77.

H H 1is into the plane of the paper,

in the —z-direction.

Figure 27.77

EXECUTE: (a) JI=—uk =—IAk.

(b) 7 = D(+4i —3j), where D >0.

fi=-I4k,B=Bi+B,j+B k.

7= [ixB=(—IA)\B.kxi+B Jkx j+Bkxk)=1I4B i - IAB,].

Compare this to the expression given for 7: /4B, =4D so B, =4D/I4 and - I[AB, =—3D so0 B, =3D/IA.

B, doesn’t contribute to the torque since Z is along the z-direction. But B = B,, and Bf + Bi + BZ2 = BOZ;

with By =13D/IA. Thus B, =+,|B; - B — B2 =+(DIIAW169 -9 16 = +12(D/14).
That U=-g. B is negative determines the sign of B, U=-4- B= —(—IAI;) . (Bxf + By} + BZIG) =+IAB,.
So U negative says that B, is negative, and thus B, =—12D/IA.
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EVALUATE: /I is along the z-axis so only B, and B, contribute to the torque. B, produces a
y-component of 7 and B, produces an x-component of 7. Only B, affects U, and U is negative when
M and BZ are parallel.

IDENTIFY: The ions are accelerated from rest. When they enter the magnetic field, they are bent into a
circular path. Newton’s second law applies to the ions in the magnetic field.

SETUP: K= %mv2 =qV. R= m—;, where ¢ is the magnitude of the charge.
q

EXECUTE: (a) As the ions are accelerated through the potential difference ¥, we have K = %mv2 =qV,

which gives v = fﬂ In the magnetic field, R = m_; Using the v we just found gives
m

q
== /ﬁ = (LD Z—m\/; From this result we see that a graph of R versus \/;
qgB gB\N m q B B\ ¢q
. . ) 1 |2m
should be a straight line with a slope equal to e
q

(b) The graph of R versus \/; is shown in Figure 27.78. The slope of the best-fit line is
(6.355 cm)/\kV =(0.06355 m)/A/1000 V =0.00201 m- V2. We know that % /2—’" = slope, s0
q

q _ 2 _ 2
m  [B(slope)]* [(0.250 T)(0.00201 m- V2]

5 = 7.924x107° C/kg, which rounds to 7.92x 10° C/kg.

R
(cm)
29

28 P
27 /
26 /

25

24 /

23

2 ~

21

20 ~

%4
19 T T T T T T T |
3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60

\/; (kv)‘/z

Figure 27.78

(¢) Use our result for ¢/m: v = /2‘1—’/ = \/2(20.0><103 V)(7.924x10° C/kg) =5.63x10° nvs.
m

(d) Since R =% 2—m\/; , doubling ¢ means that R is smaller by a factor of \/5 . Therefore
q

R=(21.1 cm)/A/2 =15.0 cm.
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EVALUATE: Besides the approach we have taken, the equation R =% ’2_m\/; can be graphed in other
q

ways to obtain a straight line. For example, we could graph R” versus ¥, or even logR versus logV. Ideally
they should all give the same result for g/m. But differences can arise because we are dealing with less-
than-ideal data points.

E2

27.79. IDENTIFY and SET UP: The analysis in the text of the Thomson e/m experiment gives £- B For a
m VB

particle of charge e and mass m accelered through a potential V, eV = %va.

2 e

EXECUTE: (a) Solving the equation ‘- 5 for E” gives E 22 2( szV. Therefore a graph of £ 2
m

VB> m

versus ¥ should be a straight line with slope equal to 2(e/m)B’.
(b) We can find the slope using two easily-read points on the graph. Using (100, 200) and (300, 600), we
8 72/ 2 8 2/ 2
get 600 ;Q0SEIT o (1 0C il =2.00x10% V/m? for the slope. This gives
300 V-100 V
e/m = (slope)/2B* = (2.00x10° V/m?) /[2(0.340 T)*] = 8.65x10° C/kg, which gives m =1.85x107® kg.

(¢) V' = Ed = (2.00x10° V/m) (0.00600 m) = 1.20 kV..

(d) Using eV = %mv2 to find the muon speed gives

v= \/% = \/2(8.65><108 C/kg)(400 V) =8.32x10° m/s.
EVALUATE: Results may vary due to inaccuracies in determining the slope of the graph.

27.80. IDENTIFY and SET Up: If g is the magnitude of the charge, the cyclotron frequency is @w= ﬁ, where
@ =2xf, and R = mv/qB. K

EXECUTE: (a) Combining @= 98 and w =2xfgives f = (%ij B. Therefore a graph of f versus B
m T m

should be a straight line having slope equal to g/2zm = (2¢)/2zm = e/xm. Solving for m gives

m= %. We use two points on the graph to calculate the slope, giving 7.667 X 10® Hz/T. Therefore
7(slope

m=—23 = e/[7(7.667x10° HZ/T)] = 6.65x10727 kg.
7(slope)

1
(b) Apply [ = (Z_iJB =gB/2xm to the electron and the proton.
T m

Electron: £, =(1.602x107" €)(0.300 T)/[272(9.11x107>" kg)]=8.40x10° Hz =8.40 GHz.
Proton: f, =(1.602x107"? €)(0.300 T)/[27(1.67x107>" kg)]=4.58x10° Hz =4.58 MHz.

For an alpha particle, ¢ = 2e and m = 4my,, so g/m for an alpha particle is (2e)/(4m,) = % of what it is for a

proton. Therefore f, = % J» =2.3 MHz.
For an alpha particle, ¢ = 2e and m = 4(1836)m., so g/m for an alpha particle is 2/[4(1836)] = 1/[2(1836)]

1 1
=—f =23MHz
2(1836)f‘°' 36727

(¢) R = mv/gB gives v = RgB/m = (0.120 m) (3.2x107"? C)(0.300 T)/(6.65x1077 kg) = 1.73x10° mys.
K =Lmv? =(1/2)(6.65x107*" kg)(1.73x10° m/s)* = 1.0x107'* 1 =6.25x10” eV = 625 keV = 0.625 MeV.
EVALUATE: We could use v = Rwto find v in part (c), where = 2xf.

what it is for an electron. Therefore f,, =
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IDENTIFY and SET UP: In the magnetic field, R = m—; Once the particle exits the field it travels in a
q

straight line. Throughout the motion the speed of the particle is constant.

—11 5
EXECUTE: (a) R="" = 3:20x10° ke)(1.45x10° mfs) _

5.14m.
4B (2.15%107° C)(0.420 T)

. . L . 2
(b) See Figure 27.81. The distance along the curve, d, is given by d = R@. sinf = (5) 12 m , SO
14 m

6=2.79°=0.0486 rad. d = RO =(5.14m)(0.0486 rad)=0.25m. And
(=4 025m 2 _172x10°,
v 1.45%10” m/s
(¢) Ay, =dtan(6/2) = (0.25 m)tan(2.79°/2) = 6.08x10™ m.
(d) Ax =Ax; +Ax,, where Ax, is the horizontal displacement of the particle from where it exits the field
region to where it hits the wall. Ax, =(0.50 m)tan2.79°=0.0244 m. Therefore,
Ax=6.08x10" m+0.0244 m =0.0305 m.
EVALUATE: d is much less than R, so the horizontal deflection of the particle is much smaller than the
distance it travels in the y-direction.

5.14m
0.25m

Figure 27.81

IDENTIFY: The electric and magnetic fields exert forces on the moving charge. The work done by the
2
electric field equals the change in kinetic energy. At the top point, a, = b and this acceleration must

correspond to the net force.

SET UP: The electric field is uniform so the work it does for a displacement y in the y-direction is

W = Fy =qEy. At the top point, F. ‘s is in the —y-direction and F 'z 1s in the +y-direction.

EXECUTE: (a) The maximum speed occurs at the top of the cycloidal path, and hence the radius of
curvature is greatest there. Once the motion is beyond the top, the particle is being slowed by the electric
field. As it returns to y =0, the speed decreases, leading to a smaller magnetic force, until the particle
stops completely. Then the electric field again provides the acceleration in the y-direction of the particle,

leading to the repeated motion.

(b) W:qu:lmv2 and v= ,Zqﬂ
2 m

2
2¢E
() Atthe top, F, =qE—qvB=—"2—=-"92Y = _4p 24E=qvB and v= 2E
R 2y m B
EVALUATE: The speed at the top depends on B because B determines the y-displacement and the work
done by the electric force depends on the y-displacement.
IDENTIFY and SET UP: The torque on a magnetic moment is 7 = #Bsing.

EXECUTE: 7= uBsing= (1.4x1072% J/T)(2 T)(sin90°) = 2.8x1072° N-m, which is choice (c).
EVALUATE: The value we have found is the maximum torque. It could be less, depending on the
orientation of the proton relative to the magnetic field.

IDENTIFY and SET UP: For the nucleus to have a net magnetic moment, it must have an odd number of
protons and neutrons.
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EXECUTE: Only 3 1P15 has an odd number of protons and neutrons, so choice (d) is correct.

EVALUATE: All the other choices have an even number of protons and an even number of neutrons.
IDENTIFY and SET UP: Model the nerve as a current-carrying bar in a magnetic field. The resistance of the

. L .. . . .
nerveis R= p7’ the current through it is / = V/R (by Ohm’s law), and the maximum magnetic force on it

is F =ILB.
EXECUTE: The resistance is R = pT% =(0.6 Q2-m)(0.001 m)/[7(0.0015/2 m)*]=340 Q.

The current is 7 = V/R = (0.1 V)/(340 Q) = 2.9%1074 A.

The maximum force is F' = ILB = (2.9><10_4 A)(0.001 m)(2 T)=5.9x10" N=6x10"" N, which is
choice (a).

EVALUATE: This is the force on a 1-mm segment of nerve. The force on the entire nerve would be
somewhat larger, depending on the length of the nerve.
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- VXF ~ .
IDENTIFY and SET UP: Use B = 4&0«61_2 to calculate B at each point.
T r
—~ VXF VXF . . F
B :&q_z :&q—S’ since r = —.
4 r 4 7

V= (8.00><106 m/s)]' and 7 is the vector from the charge to the point where the field is calculated.
EXECUTE: (a) F =(0.500 m)i, = 0.500 m.

VXF =vrjxi=-vrk.

(6.00x107° €)(8.00x10° m/s) 2

gz_ﬂq_;£=—(lx10_7 T-m/A) 2
(0.500 m)

4 r
B =-(1.92x107 T)k.
(b) 7 =—(0.500 m)j, =0.500 m.
VXF=—vrjx j=0and B =0.
(¢) 7 =(0.500 m)k, r =0.500 m.
VXF = Wf;'xlg =vri.
(6.00x107° C)(8.00x10° ms) ;

- =+(1.92x107° T)i.
(0.500 m)

B=(1x10"" T-m/A)

(d) 7 =—(0.500 m)j+(0.500 m)k, r = \/(0.500 m)? +(0.500 m)> =0.7071 m.
¥ X7 =v(0.500 m)(—jx j+ jx k)= (4.00x10° m?/s)i.
-6 6 2
B=(x107 T-m/a)&00x10 C)(4’00X310 M) F  4(6.79%107 T,
(0.7071 m)

EVALUATE: At each point B is perpendicular to both ¥ and 7. B=0 along the direction of ¥.
IDENTIFY: A moving charge creates a magnetic field as well as an electric field.

p=to qvsing
4z

SET UpP: The magnetic field caused by a moving charge is , and its electric field is

r2

1 .
E=—2% since g =e.
dre, p?
EXECUTE: Substitute the appropriate numbers into the above equations.
5 Ho qvsing _ 47x107 T-m/A (1.60x107"2C)(2.2x10°m/s)sin90°
4 2 4rr (5.3x107'm)?

=13 T, out of the page.
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9 2,2 -19
=L% = (©.00x10'N - m"/C 1)1(1'620X 10 0 = 5.1><10”N/C, toward the electron.
4dmy r (5.3x107" 'm)
EVALUATE: There are enormous fields within the atom!
IDENTIFY: A moving charge creates a magnetic field.

vsin
B= ﬂ‘J_zq)
T r
EXECUTE: Substituting numbers into the above equation gives

® 5 o gvsing _ 47x107 T-m/A (1.6x1072C)(3.0x10" m/s)sin30°

4 2 41 (2.00x107%m)?

SET UP: The magnetic field due to a moving charge is

B=6.00x10" T, out of the paper, and it is the same at point B.
(b) B=(1.00x10"" T-m/A)(1.60x10" C)(3.00x10” m/s)/(2.00x10~® m)?.

B=120x10"" T, out of the page.

(¢) B=0 T since sin(180°) =0.

EVALUATE: Even at high speeds, these charges produce magnetic fields much less than the earth’s
magnetic field.

IDENTIFY: Both moving charges produce magnetic fields, and the net field is the vector sum of the two
fields.

SET UP: Both fields point out of the paper, so their magnitudes add, giving

B= Balpha

+ By = (esin 40°+ 2esin140°).
4zr

EXECUTE: Factoring out an e and putting in the numbers gives

. 47x1077 T-m/A (1.60x107"° C)(2.50x10° m/s)
4r (8.65%10™ m)?

(sin40°+ 2sin140°).

B=1.03x10"* T =0.103 mT, out of the page.
EVALUATE: At distances very close to the charges, the magnetic field is strong enough to be important.

IDENTIFY: Apply B =&w.
A r

SET UP: Since the charge is at the origin, r = xi+ y} +zk.
EXECUTE: (a) v=vi,F=ri; xF=0,B=0.

(b) ¥ =vi,F =rj; vXF =vrk,r =0.500 m.

=131x107° T.

3 _(&j@ _(1.0x1077 N-s%/C*)(4.80x107° C)(6.80x10° m/s)
4r ) »? (0.500 m)>

q is negative, so B = —(1.31><1076 T)IG.
(¢) ¥ =vi, F =(0.500 m)(i + j); ¥xF =(0.500 m)vk, » =0.7071 m.

:(&j“q”ﬁﬁ'”}) _ (1.0x1077 N -5*/C*)(4.80x10™ €)(0.500 m)(6.80x10° m/s)
74 (0.7071 m)*

B=4.62x10" T. B=—(4.62x10"" T)k.

(d) ¥ =vi,F =rk; ¥XF =—vij, r =0.500 m.

=131x107° T.

B (&j@ ~(1.0x1077 N -s%/C%)(4.80x107° C)(6.80x10° m/s)
4r ) v? (0.500 m)?
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B=(131x10"° T)j.
EVALUATE: In each case, B is perpendicular to both 7 and ¥.

IDENTIFY: Apply

B= f—og For the magnetic force, apply the results of Example 28.1, except here
T

the two charges and velocities are different.

P
SET UP: Inpart(a), »=d and ¥ is perpendicular to v in each case, so |v 3r| = d_vz For calculating the
r
force between the charges, r =2d.
) _ ,_MHo(qv_ 4V
EXECUTE: (a) B, =B+B —E(?+ 72 j
—6 6 —6 6
p_to (8.0x10 C)(4.5><210 m/s) i (3.0x10 C)(9.0><210 m/s) 438104 T.
4z (0.120 m) (0.120 m)

The direction of B is into the page.
(b) Following Example 28.1 we can find the magnetic force between the charges:

o -6 —6 6 6
Fy =299 (167 Ty (8.00x107° C)(3.00x10 C)(4.50;<10 m/s)(9:00x10° m/s)
A (0.240 m)

Fp=1.69% 107 N. The force on the upper charge points up and the force on the lower charge points
down. The Coulomb force between the charges is
(8.0x107° C)(3.0x107° C)

Fe= kql—zz =(8.99% 10°N- mZ/C2) =3.75 N. The force on the upper charge
r

(0.240 m)?
points up and the force on the lower charge points down. The ratio of the Coulomb force to the magnetic
2
force is L) CAMEER ' B 2.22x10%; the Coulomb force is much larger.

FB ViVa 1.69)(10_3 N
(¢) The magnetic forces are reversed in direction when the direction of only one velocity is reversed but the
magnitude of the force is unchanged.
EVALUATE: When two charges have the same sign and move in opposite directions, the force between
them is repulsive. When two charges of the same sign move in the same direction, the force between them
is attractive.
IDENTIFY: A moving charge creates a magnetic field.

SETUP: Apply B = i‘—oﬁ. 7 =(0.200 m)i +(—0.300 m)j, and r=0.3606 m.
T r

EXECUTE: ¥ X7 =[(7.50x10* m/s)i + (=4.90x10* m/s) j]x[(0.200 m)i + (~0.300 m) j], which simplifies to
VX7 =(=2.25x10* m%/s)k +(9.80x10° m%/s)k = (—1.27x10* m%/s)k.

_ —6 _ - . .
(=3.00x107° C)( 1.273><10 M) £ _ (0.75x10° Thi.
(0.3606 m)

EVALUATE: We can check the direction of the magnetic field using the right-hand rule, which shows
that the field points in the +z-direction.
IDENTIFY: Both moving charges create magnetic fields, and the net field is the vector sum of the two. The

magnetic force on a moving charge is F,,,, =qvBsing and the electrical force obeys Coulomb’s law.

B=(1.00x10"7 T-m/A)

gvsing
2

EXECUTE: (a) Both fields are into the page, so their magnitudes add, giving

B=B,+B,=22 &1 %% \inoge.
dr\ e n

SET UP: The magnetic field due to a moving charge is B = :I—O
v/4
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1 1
+ .
(5.00x10°m)?>  (4.00x10m)?

B= 21—0(1.60><10_19C)(735,000 m/s)
T

B=121x10"> T=121mT, into the page.
(b) Using B = f—ow, where 7 =+/41 nm and @ =180°—arctan(5/4) =128.7°, we get
T r
_4mx 107 T-m/A (1.6 x 1072 C)(735,000 m/s)sin128.7°

4r (V41 %10 m)?
(€©) Fryy = qvBsin90° = (1.60 % 10712 €)(735,000 m/s)(2.24 x 10~ T) =2.63%x 1077 N, in the

B

=2.24%107* T, into the page.

+x-direction.

9 22 -19 2
F,. =(1/47£€0)e2/r2 _ (9.00x10"N - m"/C”)(1.60x10""C) —5.62x10712 N, at 129°

(V41 x 10 m)?

counterclockwise from the +x-axis.

EVALUATE: The electric force is over 200,000 times as strong as the magnetic force.
28.9. IDENTIFY: A current segment creates a magnetic field.
Idlsing

SET UP: The law of Biot and Savart gives dB = o =

dr  r
EXECUTE: Applying the law of Biot and Savart gives
47x1077 T-m/A (10.0 A)(0.00110 m) sin90°

(a) dB=
4z (0.0500 m)?

=4.40x10"7 T, out of the paper.

(b) The same as above, except = \/(5.00 cm)2 +(14.0 cm)2 and ¢ =arctan(5/14) =19.65°, giving
dB=1.67x10" T, out of the page.
(¢) dB =0 since ¢ =0°.

EVALUATE: This is a very small field, but it comes from a very small segment of current.
28.10. IDENTIFY: Apply the Biot-Savart law.

SETUP: Apply dB =i‘—°q‘”4. r = (=0.730 m)? +(0.390 m)* = 0.8276 m.
T r

EXECUTE:
dl X7 =[0.500x107> m] j x[(—0.730 m)i + (0.390 m)k] = (+3.65x10~* m?)k +(+1.95x10~* m?)i.

40 A - . _ :
%[(3.6&10 4 m?)k +(1.95x107* m?)i].
(0.8276 m)

dB =(1.86x107"" T)i + (3.48x107'° T)i.

EVALUATE: The magnetic field lies in the xz-plane.

dB=(1.00x10"7 T -m/A)

28.11. IDENTIFY and SET UP: The magnetic field produced by an infinitesimal current element is given

&Ifxf

by dB = 3

4w r

As in Example 28.2, use dB = Ho HXF
4z 2

Al =0.500-mm length is much smaller than the distances to the field points.

for the finite 0.500-mm segment of wire since the

BZ&IAifo&IAZXF

4r r2 4r r3

Iis in the +z-direction, so Al = (0.500><1073 m)IG.
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28.12.

28.13.

28.14.

EXECUTE: (a) The field pointis at x=2.00 m, y =0, z=0 so the vector 7 from the source point
(at the origin) to the field point is 7 =(2.00 m)i.
AT xF =(0.500x107> m)(2.00 m)k xi =+(1.00x10~> m?);.

7 -3 2
1x107 T - m/A)(4.00 A3(1_00><10 ™) 3 (5.00x10°1 T,
(2.00 m)

(b) 7 =(2.00 m)j, » =2.00 m.

AT xF =(0.500x107> m)(2.00 m)k X j =—(1.00x10~> m?)i.
(1x1077 T-m/A)(4.00 A)(-1.00x107> m?) ;

p (2.00 m)? i

(¢) 7=(2.00 m)(i + J), 7 =~/2(2.00 m).

Al X7 =(0.500x1073 m)(2.00 m)k x (i + j)=(1.00x10~> m?)(j—1).

(11077 T-m/A)(4.00 A)(1.00x107> m?) - i
= —i)=(-1.77x107" T)(i - j).
22,00 m)] (j—i)=( X )i —j)

(d) 7=(2.00 m)k, »=2.00 m.
Al X7 =(0.500x107> m)(2.00 m)k xk =0; B =0.

gl

=—(5.00x10""! T)i.

=

T

EVALUATE: At each point B is perpendicular to both 7 and AI. B =0 along the length of the wire.
IDENTIFY: A current segment creates a magnetic field.

Idlsing

—

SET UP: The law of Biot and Savart gives dB = Z—O
T r

Both fields are into the page, so their magnitudes add.
EXECUTE: Applying the law of Biot and Savart for the 12.0-A current gives

2.50 cm
.00 cm

(12.0 A)(0.00150 m)(

. J
_4zx107 T-m/A =8.79%10°° T.

47 (0.0800 m)?

The field from the 24.0-A segment is twice this value, so the total field is 2.64 X 10”7 T, into the page.
EVALUATE: The rest of each wire also produces field at P. We have calculated just the field from the two
segments that are indicated in the problem.

IDENTIFY: A current segment creates a magnetic field.

SET UP: The law of Biot and Savart gives dB = il—oﬂ;n(b Both fields are into the page, so their
T r

dB

magnitudes add.

EXECUTE: Applying the Biot and Savart law, where » = %\/ (3.00 cm)2 +(3.00 <:m)2 =2.121cm, we have

471077 T-m/A (28.0 A)(0.00200 m)sin 45.0°
4rr (0.02121 m)?

EVALUATE: Even though the two wire segments are at right angles, the magnetic fields they create are in
the same direction.
IDENTIFY: A current segment creates a magnetic field.

SET UP: The law of Biot and Savart gives dB = f—o tdi s21n¢
T r

dB=2 =1.76x107> T, into the paper.

. All four fields are of equal magnitude and

into the page, so their magnitudes add.
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_7 . °
Execute: B =427>10 " T-m/A (8.00 A)0.00120 n;) SIN90% _ | 54x10° T=1.54 4T, into
Ar (0.0500 m)
the page.
EVALUATE: A small current element causes a small magnetic field.
28.15. IDENTIFY: We can model the lightning bolt and the household current as very long current-carrying wires.
SET UP: The magnetic field produced by a long wire is B = ;li[.
r
EXECUTE: Substituting the numerical values gives
~7
(@) B= (4rx107" T-m/A)(20,000 A) — 8104 T,
272(5.0 m)
-7
(b) B= (4rx107" T-m/A)(10 A) —4.0x10° T,
27(0.050 m)
EVALUATE: The field from the lightning bolt is about 20 times as strong as the field from the household
current.
28.16. IDENTIFY: The long current-carrying wire produces a magnetic field.
SET UP: The magnetic field due to a long wire is B = élil.
r
EXECUTE: First find the current: 7 =(8.20x10'® el/s)(1.60x10™" C/el)=1.312 A.
—7
Now find the magnetic field: (4zx10 " T wANI.312 A) 6.56x10° T =6.56 uT.
27(0.0400 m)
Since electrons are negative, the conventional current runs from east to west, so the magnetic field above
the wire points toward the north.
EVALUATE: This magnetic field is much less than that of the earth, so any experiments involving such a
current would have to be shielded from the earth’s magnetic field, or at least would have to take it into
consideration.
28.17. IDENTIFY: We can model the current in the heart as that of a long straight wire. It produces a magnetic
field around it.
SET UP: For a long straight wire, B = gi. Mo = 47x107 T-m/A. 1 gauss = 1074 T.
r
EXECUTE: Solving for the current gives
-9
I 27rB _ 27(0.050 m)(1.0x 10" T) — 25107 A =250 yA.
4, 47x107 T-m/A
EVALUATE: By household standards, this is a very small current. But the magnetic field around the heart
(=10 uG) is also very small.
28.18. IDENTIFY: The current in the transmission line creates a magnetic field. If this field is greater than 5% of
the earth’s magnetic field, it will interfere with the navigation of the bacteria.
SETUpP: B= Aol due to a long straight wire.
2xr
EXECUTE: We know the field is B =(0.05)(5 x107° T)=2.5% 107 T. Solving B = gil for r gives
r
p=tod 05107 T ma)y—0A A6 -
2xB 25x107° T
EVALUATE: If the bacteria are within 8 m (= 25 ft) of the cable, its magnetic field may be strong enough
to affect their navigation.
28.19. IDENTIFY: The long current-carrying wire produces a magnetic field.

7
p=tol
2rr
EXECUTE: First solve for the current, then substitute the numbers using the above equation.

SET UpP: The magnetic field due to a long wire is
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(a) Solving for the current gives

I = 27rBl 1y = 272(0.0200 m)(1.00x10™* T)/(47x107 T-m/A) =10.0 A.

(b) The earth’s horizontal field points northward, so at all points directly above the wire the field of the
wire would point northward.

(c) At all points directly east of the wire, its field would point northward.

EVALUATE: Even though the earth’s magnetic field is rather weak, it requires a fairly large current to
cancel this field.

. I L = . . .
28.20. IDENTIFY: For each wire B = ;IL, and the direction of B is given by the right-hand rule (Figure 28.6 in
r
the textbook). Add the field vectors for each wire to calculate the total field.

(a) SET UP: The two fields at this point have the directions shown in Figure 28.20a.

Y EXECUTE: At point P midway between
" Sl the two wires the fields B, and B, due to
a the two currents are in opposite directions,
®%
P-i@ X SO B:BZ_BI'
I T
2
#2
_—
I
Figure 28.20a

I
But B, =B, =2 50 B=0.
2ra

(b) SET UP: The two fields at this point have the directions shown in Figure 28.20b.

d EXECUTE: At point Q above the upper
B® . wire B, and B, are both directed out of
(]
aI B? I the page (+z-direction), so B =B, + B,.
#1
4

Figure 28.20b

gl gl
2ra 27(3a)

po ol (1, 1) 2l g Mol
2ra 3 3ra 3za

(¢) SET Up: The two fields at this point have the directions shown in Figure 28.20c (next page).
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28.21.

28.22.

28.23.

EXECUTE: At point R below the lower
— wire B, and B, are both directed into the

aI page (—z-direction), so B=B, +B,.

Figure 28.20c

Mol p _ Hol
s ) — .
27 (3a) 2ra
B, :ﬂ_d(H%)Jﬂ_of;g:_Mg
2ra

| =

3za 3za

EVALUATE: In the figures we have drawn, B due to each wire is out of the page at points above the wire

and into the page at points below the wire. If the two field vectors are in opposite directions the magnitudes

subtract.

IDENTIFY: The total magnetic field is the vector sum of the constant magnetic field and the wire’s

magnetic field.

SET UpP: For the wire, B = 5—;;1 and the direction of B, is given by the right-hand rule that is

illustrated in Figure 28.6 in the textbook. EO =(1.50x107° T)tc .

EXECUTE: (a) At (0,0, 1 m), B =5, —‘iz — (1.50x1076 )i - oBLOA) &
27r 27(1.00 m)

Hy(8.00 A) i

27(1.00 m)

=—(1.0x107" T)i.
(b) At (1 m,0,0),§=1§0+/‘0 k=(1.50x10"° T)i +

B=(1.50x10"% T)i +(1.6x107% T)k =2.19x107° T, at & =46.8° from x to z.

L Ho(8.00 A) 5
27(0.25 )
EVALUATE: At point ¢ the two ﬁelds are in the same direction and their magnitudes add. At point a they
are in opposite directions and their magnitudes subtract. At point b the two fields are perpendicular.
IDENTIFY: The magnetic field is that of a long current-carrying wire.

(¢) At (0,0,-0.25m), B=B, +”0 t—(l 50x107° T)i + i=(7.9x107° T)i.

SETUpP: B= ,u_ol'
2rr

5 Mol _ (2:0x1077 T-m/A)150 A)
27 8.0 m

EVALUATE: Since this field is much smaller than the earth’s magnetic field, it would be expected to have
less effect than the earth’s field.

EXECUTE: =3.8x107% T. This is 7.5% of the earth’s field.

IDENTIFY: B= gi. The direction of B is given by the right-hand rule.
r

SET Up: Call the wires a and b, as indicated in Figure 28.23. The magnetic fields of each wire at points
F and P, are shown in Figure 28.23a. The fields at point 3 are shown in Figure 28.23b.

EXECUTE: (a) At B, B, =B, and the two fields are in opposite directions, so the net field is zero.

(b) B, = Mol p _ Mol

b
2rr, 27r,

. B, and B, are in the same direction so
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-7
B=B, +5, _ Ml 1 1) (4mx107 T m/A)(4.00 A){ . :|:6.67><10—6 T
2r\r, n 2r 0300 m 0.200 m
B has magnitude 6.67 4T and is directed toward the top of the page.
(¢) In Figure 28.25b, Ea is perpendicular to 7, and Eb is perpendicular to 7,. tan@ = 25 M and
cm
0=14.04°. r,=n= \/(0.200 m)? +(0.050 m)®> =0.206 m and B,=B,.
-7 o
B=B,cos@+ B,cos@=2B,cosf =2 Aol cosf = 2047 x107 T /A)@4.0 A)cosld.04° 7.54 uT
27, 27(0.206 m)

B has magnitude 7.53 T and is directed to the left.
EVALUATE: At points directly to the left of both wires the net field is directed toward the bottom of
the page.

Ba
B )
B, B, B, g i :\\\
By, ,';) : \\
© A Y e I
P, // E o |
/7 Q \
Bb /I :8 \
5.0 cm 5.0 cm 20.0 cm 7 | %
Sem__p_ . @
25.0 cm
a b
@ ()
Figure 28.23
28.24. IDENTIFY: Each segment of the rectangular loop creates a magnetic field at the center of the loop, and all
these fields are in the same direction.
SET UP: The field due to each segment is B = #—012—0. B is into paper so [ is clockwise around
47 ¥ +a
the loop.
EXECUTE: Long sides: a =4.75 cm. x =2.10 cm. For the two long sides,
-2
B=2(1.00x10"" T -m/A)I 2(4.75x10 7 m) =(1.742x107 T/A)I.
(2.10x1072 m)\/(0.0ZIO m)? +(0.0475 m)?
Short sides: @ =2.10 cm. x =4.75 cm. For the two short sides,
_ 2(2.10x107* .
B=2(1.00x10"" T-m/A)I (2.10x10 * m) =(3.405x107° T/A)I.
(4.75%1072 m)\/(0.0475 m)? +(0.0210 m)?
Using the known field, we have B =(2.082x10™> T/A)I =5.50x10™> T, which gives I =2.64 A.
EVALUATE: This is a typical household current, yet it produces a magnetic field which is about the same
as the earth’s magnetic field.
28.25. IDENTIFY: The net magnetic field at the center of the square is the vector sum of the fields due to

each wire.
. 7 L = . .
SET UP: For each wire, B = gi and the direction of B is given by the right-hand rule that is illustrated
r

in Figure 28.6 in the textbook.
EXECUTE: (a) and (b) B =0 since the magnetic fields due to currents at opposite corners of the square

cancel.
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(¢) The fields due to each wire are sketched in Figure 28.25.
B =B,c0s45°+ B, cos45°+ B, cos45°+ B,cos 45° =48, cos45° = 4[%)00545".
r
r =10 cm)? + (10 cm)? =103/2 cm = 0.10v/2 m, so
~7
=40 TAA00A) 50— 40107 T, to the Ieft
27(0.10v/2 m)

EVALUATE: In part (c), if all four currents are reversed in direction, the net field at the center of the
square would be to the right.

‘® ®

By
B)
= 45°
u 45°
By
© " @

c d

Figure 28.25
1
28.26. IDENTIFY: Use B = ;li and the right-hand rule to determine the field due to each wire. Set the sum of

r
the four fields equal to zero and use that equation to solve for the field and the current of the fourth wire.
SET UP: The three known currents are shown in Figure 28.26.

l0.0AT #1 #4 1721 ®, §2 ®, §3 ©
—
8.0A B= ’U—OI; r=0.200 m for each wire.
° 2rr
200 A
—
#3

Figure 28.26

EXECUTE: Let O be the positive z-direction. 7; =10.0 A, I, =8.0 A, I3 =20.0 A. Then

B, =1.00x10"° T, B,=0.80x10" T, and By =2.00x107 T.

B, =-1.00x10" T, B,, =—0.80x10™> T, By, =+2.00x107° T.

B, +B,,+B;,+B,,=0.

By, =—(B,+ By, +B;,)=-2.0x10° T.

To give 34 in the ® direction the current in wire 4 must be toward the bottom of the page.

B, = Ml I= rBy  _(0.200 m)7(2.0><10_6 T)
(Uo/27) (2x1077 T-m/A)

EVALUATE: The fields of wires #2 and #3 are in opposite directions and their net field is the same as due
to a current 20.0 A —-8.0 A=12.0 A in one wire. The field of wire #4 must be in the same direction as that

of wire #1, and 10.0 A+1,=12.0 A.

=2.0A.

2rr
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28.27. IDENTIFY: The net magnetic field at any point is the vector sum of the magnetic fields of the two wires.

SET UP: For each wire B = ;LI and the direction of B is determined by the right-hand rule described in
r

the text. Let the wire with 12.0 A be wire 1 and the wire with 10.0 A be wire 2.
_ (4 107'T- m/A)(12.0 A)

. My 1y -5
EXECUTE: (a)Point O: B, = =1.6x10" T.
@ sy 27(0.15m)
- o I,  (47x107T-m/A)10.0 A _
The direction of B, is out of the page. B, _toly _ (47X HEH10.0 )=2.5><10 T,
27, 272(0.080 m)

The direction of éz is out of the page. Since Bl and Bz are in the same direction,
B=B;+B,=4.1x10" T and B is directed out of the page.

Point P: B, = 1.6x107 T, directed into the page. B, = 2.5x107> T, directed into the page.
B=B+B,= 4.1x107° T and B is directed into the page.

(b) El is the same as in part (a), out of the page at Q and into the page at P. The direction of Ez is
reversed from what it was in (a) so is into the page at Q and out of the page at P.

Point O: B, and B, are in opposite directions so B=B, —B; =2.5x107° T—-1.6x107> T= 9.0x107% T
and B is directed into the page.

Point P: B, and B, are in opposite directions so B= B, —B; =9.0x10° T and B is directed out of
the page.

EVALUATE: Points P and Q are the same distances from the two wires. The only difference is that the

fields point in either the same direction or in opposite directions.
F 1
28.28. IDENTIFY: Apply — = Ho
L 27r
SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel

conductors carrying currents in opposite directions repel each other.
F_yolz(l 1 j_,uolz

for the force from each wire.

EXECUTE: On the top wire — , upward. On the middle wire, the magnetic
L 27 \d 2d) 4rd

2
l - Lj = &, downward.

d 2d) 4nd
EVALUATE: The net force on the middle wire is zero because at the location of the middle wire the net
magnetic field due to the other two wires is zero.
F IT
28.29. IDENTIFY: Apply — =20t
L 2rr
SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel
conductors carrying currents in opposite directions repel each other.
Fe Mol IHL _ 145(5.00 A)(2.00 A)(1.20 m)
27y 27(0.400 m)

since the currents are in opposite directions.

2
: . F [
forces cancel so the net force is zero. On the bottom wire B = —#20 (
V4

EXECUTE: (a) =6.00x107° N, and the force is repulsive

(b) Doubling the currents makes the force increase by a factor of four to F' =2.40% 107 N.
EVALUATE: Doubling the current in a wire doubles the magnetic field of that wire. For fixed magnetic
field, doubling the current in a wire doubles the force that the magnetic field exerts on the wire.

F Il

L 27’

SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel
conductors carrying currents in opposite directions repel each other.

EXECUTE: (a) E = M gives ]2 :E 27r = (4'0><10_5 N/m) 27[(00250 m)
L 2mr L ol 146(0.60 A)

28.30. IDENTIFY: Apply

=833 A.
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28.31.

28.32.

28.33.

28.34.

(b) The two wires repel so the currents are in opposite directions.
EVALUATE: The force between the two wires is proportional to the product of the currents in the wires.
IDENTIFY: The lamp cord wires are two parallel current-carrying wires, so they must exert a magnetic
force on each other.
SET UP: First find the current in the cord. Since it is connected to a light bulb, the power consumed by the
ol

27r
EXECUTE: For the light bulb, 100 W = 7(120 V) gives / =0.833 A. The force per unit length is

bulb is P =1V. Then find the force per unit length using % =

4rx1077 T -m/A (0.833 A)®
2 0.003 m

Since the currents are in opposite directions, the force is repulsive.

EVALUATE: This force is too small to have an appreciable effect for an ordinary cord.

IDENTIFY: The wire CD rises until the upward force F; due to the currents balances the downward force

F/L= =4.6x10"N/m

of gravity.
SET UP: The forces on wire CD are shown in Figure 28.32.

IF Currents in opposite directions so the force
C— D is repulsive and F; is upward, as shown.

Figure 28.32

1 2
£='u0 sasF,=’u0[L
L 2nr
EXECUTE: mg=ALg.

where L is the length of wire CD and # is the distance between the wires.

p) 2
Thus F; —mg =0 says Hol'L =ALg andh=i.
27ch 2rwgA

EVALUATE: The larger / is or the smaller A is, the larger A will be.
IDENTIFY: We can model the current in the brain as a ring. Since we know the magnetic field at the center
of the ring, we can calculate the current.

. / . _
SET UP: At the center of aring, B = ’ZLR. In this case, R =8 cm. 1gauss=1x10"* T.
2RB _ 2(8x107% m)(3.0x107'2 T)
m 4x107 T-m/A
EVALUATE: This current is about a third of a microamp, which is a very small current by household

standards. However, the magnetic field in the brain is a very weak field, about a hundreth of the earth’s
magnetic field.

EXECUTE: Solving for / gives [ = =3.8x1077 A.

IDENTIFY: The magnetic field at the center of a circular loop is B = ’LZI—OI

IS By symmetry each segment of

1

the loop that has length A/ contributes equally to the field, so the field at the center of a semicircle is 3

that of a full loop.

SET UP: Since the straight sections produce no field at P, the ficld at P is B = Z_(;?I'
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5o bl

EXECUTE: s The direction of B is given by the right-hand rule: B is directed into the page.

. . . . . . !
EVALUATE: For a quarter-circle section of wire the magnetic field at its center of curvature is B = %.

28.35. IDENTIFY: Calculate the magnetic field vector produced by each wire and add these fields to get the total
field.

SET Up: First consider the field at P produced by the current /; in the upper semicircle of wire. See
Figure 28.35a.

Consider the three parts of this wire:
a: long straight section
— == b: semicircle

1 1 c: long, straight section

Figure 28.35a

: - Idl x 7 Idl X7
Apply the Biot-Savart law dB = to 2>< A 3X !
A 4 r

EXECUTE: part a: See Figure 28.35b.

to each piece.

a2, s, o dl X7 =0,
L so dB=0.

Figure 28.35b

The same is true for all the infinitesimal segments that make up this piece of the wire, so B =0 for this
piece.
part ¢: See Figure 28.35c.

o e di X7 =0,

S so dB=0and B=0 for this piece.

Figure 28.35¢

part b: See Figure 28.35d.

dl xF is directed into the paper for all
infinitesimal segments that make up this
semicircular piece, so B is directed into

the paper and B = .[dB (the vector sum

of the dB is obtained by adding their
magnitudes since they are in the same direction).

Figure 28.35d
|df ><F| = rdlsin@. The angle @ between dl and F is 90° and 7 = R, the radius of the semicircle. Thus
|dl 7| = Rdl.

I\dI xF
dB:& | |:lu()11 idl:( ﬂ0112jdl'
ar 3 4z R 47R
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28.36.

28.37.

28.38.

_ _[ Mol j _( Holy j _ Mol
B=|dB=|——||dl=| == |(#R) =——.
I (4;:1%2 I 47nR? (ZR) 4R

(We used that J. dl isequal to 7R, the length of wire in the semicircle.) We have shown that the two

straight sections make zero contribution to B, so B, = tfol;/4R and is directed into the page.

- 1: 7 For current in the direction shown in

I
2 I\ 2 Figure 28.35¢, a similar analysis gives
2 B, = 1y1,/4R, out of the paper.

Figure 28.35¢

- - I -1
B, and B, are in opposite directions, so the magnitude of the net field at Pis B = |Bl = Bz| = %.

EVALUATE: When [, =1,, B=0.

UoNIa®
2(xszaz)yz'
SET UP: At the center of the coil, x =0. a is the radius of the coil, 0.0240 m.
2aB
EXECUTE: (a) B, = sNI2a, so I = ——x - 20024m) Q0770 _ 5 50 )
N (47 x1077 T - m/A)(800)

(b) At the center, B, = t,NI/2a. At a distance x from the center,

IDENTIFY: Apply B, =

2 3 3 3
B, = 2(;01\[:;)3/2 =(#32Uj((xz +aaz)3/z ] =B, (‘(xz +aa2)3/2 J B, =%Bc Says o +aa2)3/2 =%’ and
(x* +a%)® =44°. Since a =0.024 m, x =0.0184 m = 1.84 cm.

EVALUATE: As shown in Figure 28.14 in the textbook, the field has its largest magnitude at the center of
the coil and decreases with distance along the axis from the center.

IDENTIFY: We use the equation for the magnetic field at the center of a single circular loop and then use
the equation for the magnetic field inside a solenoid.

SET UP: The magnetic field at the center of a circular loop is By, = ’L;LRI. The magnetic field at the

center of a solenoid is B,

N .
olenoid = Monl, where n= 7 is the number of turns per meter.

~7
EXECUTE: () Biogp = %e] _(4rx 102(0T051:)1/A;(2.00 A) %105 T,
. m

() n N _ 1000500 m

L 500m
Bigencia = Honl = (47 x 107" T-m/A)(200 m™")(2.00 A)=5.03x 107" T. Bgenoiq = 20800, The field at
the center of a circular loop depends on the radius of the loop. The field at the center of a solenoid depends
on the length of the solenoid, not on its radius.

EVALUATE: The equation B = y,nl for the field at the center of a solenoid is only correct for a very

long solenoid, one whose length L is much greater than its radius R. We cannot consider the limit that L
gets small and expect the expression for the solenoid to go over to the expression for N circular loops.
IDENTIFY and SET UP: The magnetic field at a point on the axis of N circular loops is given by

Uy Nla*

=—"2"—— Solve for N and set x=0.0600 m.
x 2(x2+a2)3/2
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28.39.

28.40.

28.41.

_2B.(2+a)¥? 2(6.39x107* T)[(0.0600 m)® +(0.0600 m)* 12

EXECUTE: N 3 = 3
Mola (4rx107" T-m/A)(2.50 A)(0.0600 m)

69.

EVALUATE: At the center of the coil the field is B, = ,u;_NI =1.8x107 T. The field 6.00 cm from the
a

center is a factor of 1/2*'? times smaller.

IDENTIFY: The field at the center of the loops is the vector sum of the field due to each loop. They must
be in opposite directions in order to add to zero.
SET UP: Let wire 1 be the inner wire with diameter 20.0 cm and let wire 2 be the outer wire with diameter

30.0 cm. To produce zero net field, the fields Bl and Ez of the two wires must have equal magnitudes

and opposite directions. At the center of a wire loop B = ’Lzl—(;e]. The direction of B is given by the right-
hand rule applied to the current direction.

EXECUTE: B, = M, B, = ’ULI. B, =B, gives ikl d ’U0—12. Solving for 7, gives
2R, 2R, 2R, 2R,

I, = [%jll =G(5)g ij(lZ.O A)=18.0 A. The directions of /; and of its field are shown in Figure 28.39.
| .0 cm

Since B’l is directed into the page, B’z must be directed out of the page and 7, is counterclockwise.

Figure 28.39

EVALUATE: The outer current, /,, must be larger than the inner current, /;, because the outer ring is

larger than the inner ring, which makes the outer current farther from the center than the inner current is.
IDENTIFY: Apply Ampere’s law.

SET UP: From the right-hand rule, when going around the path in a counterclockwise direction currents
out of the page are positive and currents into the page are negative.

EXECUTE: Patha: I, =0=¢B-dl =0.

Path b: Iy =—1=—4.0 A= $B - dl =—p1y(4.0 A)=-5.03x10° T-m.

Pathc: Iy =—f+1,=—40 A+60A=2.0 A=$B-dl = 1,(2.0 A)=2.51x10° T-m
Pathd: Iy =—1 +1,+1;=4.0 A= $B - dl =+1y(4.0 A)=5.03x10° T-m,

EVALUATE: If we instead went around each path in the clockwise direction, the sign of the line integral
would be reversed.
IDENTIFY: Apply Ampere’s law.

SETUP: 1y =47x10" T-m/A.
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28.42.

28.43.

28.44.

EXECUTE: (a) 5ﬁ§~di=,u01 3.83x10™* T-m and / 305 A.

encl = encl =

(b) —3.83 x10™ T -m since at each point on the curve the direction of dl is reversed.

EVALUATE: The line integral 5151} -dl around a closed path is proportional to the net current that is
enclosed by the path.

IDENTIFY and SET UP: At the center of a long solenoid B = yynl = ,uo%l .

BL  (0.150 T)(0.550 m)
UyN (47 %1077 T - m/A)(4000)
EVALUATE: The magnetic field inside the solenoid is independent of the radius of the solenoid, if the
radius is much less than the length, as is the case here.

IDENTIFY: Apply Ampere’s law.
SET UP: To calculate the magnetic field at a distance » from the center of the cable, apply Ampere’s law

EXECUTE: [= =164 A.

to a circular path of radius ». By symmetry, 5ﬁl_§ dl = B(2zr) for such a path.

- !
EXECUTE: (a) For a<r<b, I, =1=$B - dl =pyl = B2rr =yl = B =§i.
r

(b) For r > ¢, the enclosed current is zero, so the magnetic field is also zero.

EVALUATE: A useful property of coaxial cables for many applications is that the current carried by the
cable doesn’t produce a magnetic field outside the cable.

IDENTIFY: Apply Ampere’s law to calculate B.

(a) SETUP: For a <r<b the end view is shown in Figure 28.44a.

< Apply Ampere’s law to a circle of radius

’ r, where a <r<b. Take currents /; and /,
' to be directed into the page. Take this
’ Z direction to be positive, so go around the

integration path in the clockwise direction.

Figure 28.44a

EXECUTE: $B -dl =yl

encl*

$B -dl = BQ2rr), Iy = 1.

Thus B(2zr) = gyl and B =001,
2rr

(b) SETUpP: r>c: See Figure 28.44b.

Apply Ampere’s law to a circle of
radius », where r > c. Both
currents are in the positive
direction.

Figure 28.44b

EXECUTE: $B -dl = iy, .
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28.45.

28.46.

28.47.

28.48.

28.49.

$B - dl = BQ27r), 1y =1, + 1.

encl —
L +1
Thus B(27r) = ty(L; +1,) and B = W
r
EVALUATE: For a <r<b the field is due only to the current in the central conductor. For » > ¢ both
currents contribute to the total field.

IDENTIFY: We treat the solenoid as being ideal.

SET Up: At the center of an ideal solenoid, B,

olenoid = Ho ™ = 1, %1. A distance 7 from a long straight

. Hol
wire, BWire = .
450

EXECUTE: (a) B
0.35m

solenoid

=4z x107’ T-m/A)( j(1.75 A)=2.83x107T.

47 %1077 T-m/A)(1.75 A -
(b) By = X0 TmBCTOA) 3 50x107° T.
27(1.0 x 1072 m)
EVALUATE: The magnetic field due to the wire is much less than the field at the center of the solenoid.
For the solenoid, the fields of all the wires add to give a much larger field.

IDENTIFY: B = pignl =2 OLNI.

SETUP: L=0.150 m.
gt (600)(8.00 A)

(0.150 m)
EVALUATE: The field near the center of the solenoid is independent of the radius of the solenoid, as long
as the radius is much less than the length, as it is here.
IDENTIFY and SET UP: The magnetic field near the center of a long solenoid is given by B = gnl.
EXECUTE: (a) Turns per unit length n = B 0.0270 T =1790 turns/m.

Ul (4zx1077 T-m/A)(12.0 A)

(b) N=nL=(1790 turns/m)(0.400 m) =716 turns.
Each turn of radius R has a length 27zR of wire. The total length of wire required is
N(Q27zR) = (716)(27)(1.40x10~> m) = 63.0 m.

EVALUATE: A large length of wire is required. Due to the length of wire the solenoid will have
appreciable resistance.

IDENTIFY: Knowing the magnetic field at the center of the toroidal solenoid, we can find the current
causing that field.

EXECUTE: =0.0402T.

1 . . . .
SETUP: B= ’L;O—N. 7 =0.140 m is the distance from the center of the torus to the point where B is to be
r

calculated. This point must be between the inner and outer radii of the solenoid, but otherwise the field
doesn’t depend on those radii.

-3
EXECUTE: Solving for N gives N = 278 _ 27(0.140 m)(3.75x10° " T) =1750 turns.

ol (4xx1077 T-m/A)(1.50 A)
EVALUATE: With an outer radius of 15 c¢cm, the outer circumference of the toroid is about 100 cm, or
about a meter. It is reasonable that the toroid could have 1750 turns spread over a circumference of one
meter.
IDENTIFY and SET UP: Use the appropriate expression for the magnetic field produced by each current
configuration.

Mol _27rB 27200107 m)37.2T) _

EXECUTE: (a) B= 3.72x10%A =3.72 MA.
2zr Hy 47x107 T-m/A
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28.50.

28.51.

28.52.

28.53.

(b) B= =249%x10° A =249 KA.

Nuyl s I = 2RB _ 2(0.420 m)(37.2 T)
2R Ny (100) (47 %1077 T-m/A)
BL (37.2 T)(0.320 m)

MHoN - (47x107" T - m/A)(40,000) -

EVALUATE: Much less current is needed for the solenoid, because of its large number of turns per unit

length.
IDENTIFY: Outside an ideal toroidal solenoid there is no magnetic field and inside it the magnetic field is

g N
2rr
SET UP: The torus extends from 7 =15.0 cm to », =18.0 cm.

EXECUTE: (a) »=0.12 m, which is outside the torus, so B =0.

(c) Bz,uo%l so [ =

given by

®)r=0.16m, so B=H0M _ H@0B0A)_, (0,103 T,
2rr 27(0.160 m)

(¢) »=0.20 m, which is outside the torus, so B =0.
EVALUATE: The magnetic field inside the torus is proportional to 1/r, so it varies somewhat over the
cross-section of the torus.
NI
ey

IDENTIFY: Inside an ideal toroidal solenoid, -
r

SETUP: 7=0.070 m.

MoNI  145(600)(0.650 A)
27r 272(0.070 m)

EVALUATE: If the radial thickness of the torus is small compared to its mean diameter, B is approximately

uniform inside its windings.

IDENTIFY: Use B =% oM
2rr

EXECUTE: B= =1.11x10"3 T.

, with u, replaced by u =K 1,, with K =80.

SET Up: The contribution from atomic currents is the difference between B calculated with x# and B
calculated with .

UNI K 1oNI — 11,(80)(400)(0.25 A)
2zr 2z 27(0.060 m)

EXECUTE: (a) B= =0.0267 T.

(b) The amount due to atomic currents is B’ = g—gB = %(0.0267 T)=0.0263T.

EVALUATE: The presence of the core greatly enhances the magnetic field produced by the solenoid.

IDENTIFY: The magnetic field from the solenoid alone is B\ = tynl. The total magnetic field is

B=K,By. Mis given by B= l_§0 +,u01‘7.

SETUP: 7=6000 turns/m.

EXECUTE: (a) (i) By = tonl = 1iy(6000 m™")(0.15 A)=1.13x107 T,

K -1 By = 5199
Ho Ho

(iii) B=K By = (5200)(1.13x107> T)=5.88 T.

(b) The directions of B, BO and M are shown in Figure 28.53. Silicon steel is paramagnetic and

m

(i) M = (1.13x107° T) = 4.68x10° A/m.

Bo and M are in the same direction.
EVALUATE: The total magnetic field is much larger than the field due to the solenoid current alone.



Sources of Magnetic Field 28-19

28.54.

28.55.

28.56.

Figure 28.53

K toNI

2ar
SET UP: K, is the relative permeability and y,,, = K, —1 is the magnetic susceptibility.
_2zrB _ 27(0.2500 m)(1.940 T)
,uONI Hy(500)(2.400 A)
) ym =K, —1=2020.
EVALUATE: Without the magnetic material the magnetic field inside the windings would be

IDENTIFY: Apply B=

EXECUTE: (a) K, =2021.

B/2021=9.6x10"* T. The presence of the magnetic material greatly enhances the magnetic field inside
the windings.

IDENTIFY: Moving charges create magnetic fields. The net field is the vector sum of the two fields. A
charge moving in an external magnetic field feels a force.

(a) SET UP: The magnitude of the magnetic field due to a moving charge is B = H ldlvsing

. Both fields
4 r
are into the paper, so their magnitudes add, giving B, = B+ B = 'ZO (|q|vszm¢ lg1v ,521n¢ j
7 r r

EXECUTE: Substituting numbers gives
_ Mo | (8.00 C)(9. 00x10* m/s)s1n90° (5.00 uC)(6. 50x10* m/s)sm 90°
4r (0.300 m)> (0.400 m)*

B = 1.00x107® T=1.00T, into the paper.

net —

(b) SET Up: The magnetic force on a moving charge is F = gv x B, and the magnetic field of charge ¢’

at the location of charge ¢ is into the page. The force on ¢ is

F= qva —(qv)zx’uoqv (@ )X(,uoqumgbj( k) [ﬂoquvsm(pj_
” r

4r r2

where ¢ is the angle between ¥ and .
EXECUTE: Substituting numbers gives

_ Hp | (8.00x107° €)(5.00x10™° €)(9.00x10* m/s)(6.50x10* m/s)(O 400)}

4r (0.500 m)> 0.500

F =(7.49x10°N) .
EVALUATE: These are small fields and small forces, but if the charge has small mass, the force can affect
its motion.
IDENTIFY: Charge ¢, creates a magnetic field due to its motion. This field exerts a magnetic force on ¢,

which is moving in that field.

- Vi XA . P
B, =&q113#, since 7 =Fr.

SET UP: Find El, the field produced by g, at the location of ¢,. 4
¥4

)
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EXECUTE: #_,, =(0.150 m)i +(=0.250 m)j, so r,_, =0.2915 m.
Vi XE_, =[(9.20x10° m/s)i 1X[(0.150 m)i +(~0.250 m)j]=(9.20x10° m/s)(—0.250 m)k.
—6 5 _ . .
By =(1.00x107 T m/a)&:80x10 7 ©)0O.20x10 ;WS)( 0250 m) £ _ _(4457x10°° Tk,
(0.2915 m)
The force that B, exerts on ¢, is
Fy = gy, X B, =(-2.90x107° C)(-5.30x10° m/s)(—4.457x107° T) jxk =—(6.85x107° N)i.
EVALUATE: If we think of the moving charge g; as a current, we can use the right-hand rule for the
direction of the magnetic field due to a current to find the direction of the magnetic field it creates in the
vicinity of ¢g,. Then we can use the cross product right-hand rule to find the direction of the force
this field exerts on g,, which is in the —x-direction, in agreement with our result.
1
28.57. IDENTIFY: Use B = éli and the right-hand rule to determine points where the fields of the two wires cancel.
r
(a) SET UP: The only place where the magnetic fields of the two wires are in opposite directions is
between the wires, in the plane of the wires. Consider a point a distance x from the wire carrying
I, =75.0 A. B,,; will be zero where B, = B,.
EXECUTE: Holy _Hly
27(0.400 m—x) 27x
1,(0400 m—x)=1x; [; =25.0 A, 1, =75.0 A.
x=0.300 m; B, =0 along a line 0.300 m from the wire carrying 75.0 A and 0.100 m from the wire
carrying current 25.0 A.
(b) SETUP: Let the wire with 7; =25.0 A be 0.400 m above the wire with 7, =75.0 A. The magnetic
fields of the two wires are in opposite directions in the plane of the wires and at points above both wires or
below both wires. But to have B, = B, must be closer to wire #1 since I; </,, so can have B, =0 only
at points above both wires. Consider a point a distance x from the wire carrying /; =25.0 A. B, will be
zero where B) =B,.
Execute: Aofi_ Mol
2zx  27(0.400 m+ x)
1,x=1,(0.400 m+ x); x =0.200 m.
B, =0 along a line 0.200 m from the wire carrying current 25.0 A and 0.600 m from the wire carrying
current [, =75.0 A.
EVALUATE: For parts (a) and (b) the locations of zero field are in different regions. In each case the
points of zero field are closer to the wire that has the smaller current.
28.58. IDENTIFY: The wire creates a magnetic field near it, and the moving electron feels a force due to this field.

SET UP: The magnetic field due to the wire is B = ;lil, and the force on a moving charge is

r
F =|g|vBsing.

EXECUTE: F =|q|vBsing = (evyl sin@)/2zr. Substituting numbers gives
F=(1.60x107" C)(6.00 x 10* m/s)(47 x 10~ T - m/A)(8.60 A)(sin90°)/[272(0.0450 m)].

F = 3.67x10""Y N. From the right-hand rule for the cross product, the direction of ¥x B is opposite to

the current, but since the electron is negative, the force is in the same direction as the current.
EVALUATE: This force is small at an everyday level, but it would give the electron an acceleration of over

10" m/s>.
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29.59.

28.60.

28.61.

IDENTIFY: Find the force that the magnetic field of the wire exerts on the electron.
SET UP: The force on a moving charge has magnitude F = |q|vB sing and direction given by the right-

hand rule. For a long straight wire, B = ;ILI and the direction of B is given by the right-hand rule.
r
B sin
EXECUTE: (a) a= L = |q|v—¢ = 2(’”—0[} Substituting numbers gives
m m\ 2xr

1.6x10712C)(2.50%x10° m/s)(47x107" T-m/A)(13.0 A
g=
(9.11x1073! kg)(27)(0.0200 m)
(b) The electric force must balance the magnetic force. eE =evB, and
_ Mol _ (250,000 m/s)(47 % 1077 T-m/A)(13.0 A)
27r 272(0.0200 m)

away from the wire so the force from the electric field must be toward the wire. Since the charge of the
electron is negative, the electric field must be directed away from the wire to produce a force in the desired
direction.

EVALUATE: (¢) mg =(9.11x107! kg)(9.8 m/s?) =107 N.
Fy=eE=(1.6x10"" C)(32.5 N/C) = 5x107'® N. F,; =5x10'" F,_ , so we can neglect gravity.

grav>

IDENTIFY: The current in the wire creates a magnetic field, and that field exerts a force on the moving
electron.

=5.7x10" mys?, away from the wire.

E=vB

=32.5 N/C. The magnetic force is directed

Hol
2rzr
electron is F = qv x B, where q =—e. The magnitude of a vector is 4 =, [Af + A}% + Az2. The electron is on
the +y-axis. The current is in the —x-direction so, by the right-hand rule, the magnetic field it produces at

I -
Ho” k.
27y
,ULJ _ Hp(9.00 A)
2zzr 27(0.200 m)
B =-9.00x 10° T k. The force on the electron is F = qi’xl}, SO

F=gvxB = —¢(5.00x10* m/s i —3.00x10* m/s j)x(=9.00x107° T k).

SET Up: The magnetic field due to the current in the wire is B = . The force the field exerts on the

the location of the electron is in the —z-direction, so B =—

EXECUTE: The magnitude of the magnetic field is B = =9.00x107° T, so

Taking out common factors gives F= (9% 102 T- m/s)(Sf - 3}') x k. Using the fact that i X k = —j and
jxk=1i, weget F=(9%x102e T-m/s)(=5j—3i). Usinge=1.60x 10"°C gives

F=-432x10"2" Ni-7.20x10"2" Nj.

The magnitude of this force is

F=\F2+ F2+ F2 =(-432x1020 N> +(=7.20x10 2 N)? =8.40x102° N,

EVALUATE: This is a small force on an everyday scale, but it would give the electron an acceleration of
a=Flm=(8.40x1072° N)/(9.11x107>! kg) = 9x10'°* m/s>.

IDENTIFY and SET UP: The power input of the motor is 65 hp. We know that 1 hp =746 W. The relation
between power, voltage, and current is P = V1. The attractive force between two parallel wires is

potolhly
2rr

EXECUTE: (a) We find the current from / = il = (65 hp)(746 W/hp)
14 600 V

(b) The attractive force between the wires per unit length is
(47x107" T-m/A)(80.8 A)?
272(0.55 m)

=80.8 A, which rounds to 81 A.

FIL = =2.4x107> N/m.
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28.62.

28.63.

EVALUATE: If the current from the cables is in the same direction, the force will be attractive; however, if
the current runs in opposite directions the force will be repulsive.
IDENTIFY: Find the vector sum of the magnetic fields due to each wire.

. . 7 o S . .
SET UP: For a long straight wire B = gli. The direction of B is given by the right-hand rule and is
r
perpendicular to the line from the wire to the point where the field is calculated.

EXECUTE: (a) The magnetic field vectors are shown in Figure 28.62a.

=2‘u—01sin0= Hol a4 _ Mol

RPN
zr ﬂ\/x2+a2 \/x2+a2 z(x"+a”)

(b) At a position on the x-axis B, , in the positive
x-direction.

(c) The graph of B versus x/a is given in Figure 28.62b.

EVALUATE: (d) The magnetic field is a maximum at the origin, x = 0.

(€) When x> a, B = H0l@

7Z'x2

B, B
B / \
/ N
a / ™\
B,
1(X xla
2 -3.00 -—-2.00 -—1.00 0.00 1.00 2.00 3.00
@ (b)

Figure 28.62

1
IDENTIFY: Use B = ;li and the right-hand rule to calculate the magnitude and direction of the magnetic
r

field at P produced by each wire. Add these two field vectors to find the net field.
(a) SET Up: The directions of the fields at point P due to the two wires are sketched in Figure 28.63a.

B = =
= 600A I T 2 EXECUTE: B, and B, must be equal and
1= 2 .
X—=0 o P opposite for the resultant field at P to be zero.
1.00m  0.50 ml 5 Bz is to the upward so 7, is out of the page.
1

Figure 28.63a

B, _ Mol =&(6.00 AJ LoD, =&( I, j

27y 27\ 1.50 m 2zr,  27\0.50 m
B, = B, says Ho[600AY_ Ko 1y .
27\1.50m ) 27\0.50 m

L= [0'50 mj(aoo A)=2.00 A.
1.50 m

(b) SET UpP: The directions of the fields at point Q are sketched in Figure 28.63b.
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28.64.

28.65.

B,
EXECUTE: B = ‘ULII.
27n
PYLED M 1.00 m % 600 A
I A B =(2x1077 T~m/A)( : j=2.40><10‘6 T.
0.50 m
B, B, = ﬂ012.
Zﬂ'rz
Figure 28.63b
= 2.00 A =
B, =(2x107 T-m/A) =2.67x1077 T.
1.50 m

B, and B, are in opposite directions and B, > B, so
B=B,—B, =2.40x10"° T-2.67x107" T=2.13x10"° T, and B is upward.
(¢) SET Up: The directions of the fields at point S are sketched in Figure 28.63c.

I
/ & L EXECUTE: B, =Ko
0.60 m /\ 27n
B
B,
® ®
I i

B =(2x107 T- m/A)(6'00 Aj =2.00x107° T.
- 0.60 m
1.00m B, _Holy
Zﬂ'rz
Figure 28.63¢
B, =(2x1077 T~m/A)(2'OO Aj=5.00x107 T.
0.80 m

El and ﬁz are right angles to each other, so the magnitude of their resultant is given by

B=+B2+ B2 =J(2.00x10™° T)*+(5.00x1077 T)? =2.06x10° T.

EVALUATE: The magnetic field lines for a long, straight wire are concentric circles with the wire at the
center. The magnetic field at each point is tangent to the field line, so B is perpendicular to the line from

the wire to the point where the field is calculated.
IDENTIFY: Consider the forces on each side of the loop.

SET UP: The forces on the left and right sides cancel. The forces on the top and bottom segments of the

loop are in opposite directions, so the magnitudes subtract.

EXECUTE: F:Ft_sz(MJ LI_I_Z =M l_i )
2 A 2 ok

2 0.100m 0.026 m

toward the wire, so the net force is toward the wire.

_ Ho(5.00 A)(0.200 m)(14.0 A) [_ Lo, 1

j= 7.97x107° N. The force on the top segment is

EVALUATE: The net force on a current loop in a uniform magnetic field is zero, but the magnetic field of

the wire is not uniform; it is stronger closer to the wire.

IDENTIFY: Apply Y F =0 to one of the wires. The force one wire exerts on the other depends on 7 so

> F =0 gives two equations for the two unknowns 7" and /.
SET UP: The force diagram for one of the wires is given in Figure 28.65 (next page).
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Tcos O A— — — 5 L 12
The force one wire exerts on the other is F = {’[;O—jL, where
r
F . -3 . .
«—@® Tginp 7 =2(0.040 m)sin @ =8.362x107" m is the distance between the
two wires.
mg
Figure 28.65

29.66.

28.67.

EXECUTE: X F, =0 gives Tcos@=mg and T =mg/cos6.
2 F, =0 gives F =Tsinf = (mg/cosf)sinf = mg tan 6.
And m=AL,so F =ALgtan@.

2
[MJL =ALgtané.
2zr

7= /ﬂ, grtan6

(to/27)
7 [(0.0125 kg/m)(9.80 m/s?)(tan 6.00°)(8.362x10™> m)

2x107'T-m/A
EVALUATE: Since the currents are in opposite directions the wires repel. When [/ is increased, the angle &
from the vertical increases; a large current is required even for the small displacement specified in this problem.
IDENTIFY: Apply dB =22 tdt 2X .
4 r

SET UP: The two straight segments produce zero field at P. The field at the center of a circular loop of

=232 A

. . ! . . 1
radius Ris B= /21_0R’ so the field at the center of curvature of a semicircular loop is B = ’ZLR.

EXECUTE: The semicircular loop of radius a produces field out of the page at P and the semicircular loop of

radius b produces field into the page. Therefore, B =B, — B; = 1)1 1 _ AL -4 , out of page.
202 \a b 4a b

EVALUATE: If a=b, B=0.

IDENTIFY: Find the vector sum of the fields due to each loop.

“, Ia?
2(x2 + a2)3/2 g
the field along the x-axis from between them means that the “x” in the formula is different for each case.
EXECUTE: (a)

SET UP: For a single loop B, = Here we have two loops, each of N turns, and measuring

2
Left coil: x — x+ %= B = ﬂoNga 232"
= 2 2[(x+al2)"+a”]

2
. . a HoNla

Right coil: x 5 x——= B, = .

2 A(x—al2)+a?T?
So, the total field at a point a distance x from the point between them is

2
BZ#ONIQ 12 PRI 12 232 |
2 [(x+al2)" +a”] [(x=al2)"+a”]

(b) B versus x is graphed in Figure 28.67. Figure 28.67a is the total field and Figure 28.67b is the field
from the right-hand coil.

2 2 3/2
(c) Atpoint P, x=0 and B= HoNla ! + ! __toNla™ (ij ’UO_NI,
2 (@2 +a®P? [(~al2?+a*T? ) (5a%14)¥* \5 a
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3/2 3/2
() B= (fj HoNT _ (f] HpBOOXE.004) _ 50027,
5 a 5 (0.080 m)

2 — f— f—
© d_B: HoNla 3(x—12—a/22 _ 3(x . a/ZZ | Atx=o,
dx 2 [(x+a/2)"+a”] [(x=al2)* +a”]

dB uyNIa* -3(al2) —3(-al2)

- = I T

dx|c=o 2 \[@2)" +a’] [(-a/2)" +a”]

d*B _ uyNIa* -3 6(x+al2)*(5/2) -3 6(x—al2)*(5/2)
dx? 2 \[(x+al2?+d®T? [(x+a/2?+a’1? [(x-a/2)?+a’T? [(x-a/2)*+d*]"? )
At x=0,

d23| B uONJaZ( 223 ¢ 6(a/2)*(5/2) ) -3 . 6(-a/2)*(5/2) |
a2 2 (@22 +a®P? (@2 +aT? (@22 +d P [(@2) +a?T?

EVALUATE: Since both first and second derivatives are zero, the field can only be changing very slowly.

B B

/

/—/
A
x/a x/a
0.00 0.100 0.200 0.300 0.400 0.500 —0.500 —0.400 —0.300 —0.200 —0.100  0.00
@ (b)
Figure 28.67

28.68. IDENTIFY: Both arcs produce magnetic fields at point P perpendicular to the plane of the page. The field
due to arc DA points into the page, and the field due to arc BC points out of the page. The field due to DA
has a greater magnitude than the field due to arc BC. The net field is the sum of these two fields.

p = Hol

SET UP: The magnitude field at the center of a circular loop of radius a is . Each arc is

2ra
120°/360° = 1/3 of a complete loop, so the field due to each of them is B =l,u_01 = ’u—ol.
327ma 6ra
EXECUTE: The net field is
_ _ H4(12.0 A) 1 1 6 o .
Bt = By — B3 = - =4.19x107° T =4.19 uT. Since By, > B3, the net
v 67 10200m 0.300m “ oo

field points into the page at P.
EVALUATE: The current in segments CD and AB produces no magnetic field at P because its direction is
directly toward (or away from) point P.

28.69. (a) IDENTIFY: Consider current density J for a small concentric ring and integrate to find the total current
in terms of & and R.

SETUP: Wecan’tsay [ =J4= J7R?, since J varies across the cross section.
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To integrate J over the cross section of the wire,
divide the wire cross section up into thin concentric
rings of radius » and width dr, as shown in Figure 28.69.
Figure 28.69
EXECUTE: The area of such a ring is d4, and the current through itis dI =.JdA; dA=2zrdr and
dl = J dA=ar(2zr dr) = 27or’dr.
R 3/
I= jdl = 2mj rPdr =270(R*/3) s0 = ——.
0 2R
(b) IDENTIFY and SET UP: (i) » <R.
Apply Ampere’s law to a circle of radius » < R. Use the method of part (a) to find the current enclosed by
Ampere’s law path.
EXECUTE: §B - dl =§$Bdl = B$dl = B(2xr), by the symmetry and direction of B. The current passing
through the path is 1, = 'fdl , where the integration is from 0 to r.
3 3
_ roo o 2mor” 2m( 31 )3 Ir = b
Iencl = Zﬂa.[o redr = 3 —T(2ER3 r —F. Thus QSB -dl —,uOIencl gives
) Y7/ Ir?
BQ2rr) = tty| — | and B="0—.
|\ R 2R3
(ii) IDENTIFY and SET UP: r>R.
Apply Ampere’s law to a circle of radius » > R.
EXECUTE: $B - dl =$Bdl = Bdl = B(2rr).
1o =1; all the current in the wire passes through this path. Thus $B - dl = Holenol gives B(2rr) = ol
and B = #—01.
2xr
EVALUATE: Note that at » =R the expression in (i) (for » < R) gives B = %. At r=R the
V.4
expression in (ii) (for » > R) gives B = %, which is the same.
T
- Idl %7
28.70. IDENTIFY: Apply dB= Mo 1dl 2>< r
dr 7
SET Up: The horizontal wire yields zero magnetic field since df x# = 0. The vertical current provides the
magnetic field of half of an infinite wire. (The contributions from all infinitesimal pieces of the wire point
in the same direction, so there is no vector addition or components to worry about.)
7 7 .
EXECUTE: B= l(&j = Fol. and is directed out of the page.
2\27a) 4ra
EVALUATE: In the equation preceding Eq. (28.8) the limits on the integration are 0 to a rather than —a to
a and this introduces a factor of % into the expression for B.
28.71. IDENTIFY: Use the current density J to find df through a concentric ring and integrate over the appropriate

cross section to find the current through that cross section. Then use Ampere’s law to find B at the
specified distance from the center of the wire.
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(a) SET UP:
Divide the cross section of the cylinder into thin
concentric rings of radius 7 and width dr, as shown
in Figure 28.71a. The current through each ring is
dl =JdA=J2zxrdr.

Figure 28.71a

21 41 s . . .
EXECUTE: dI = —02[1 - (r/a)z]Zﬂr dr = —20[1 - (r/a)z]r dr. The total current / is obtained by integrating
za a

. 41 40\[1 5 1 <
dI over the cross section [ = J:dl ( Ojj (—r2/a*)r dr —( 20 j[z P Zr“/az} =1, as wasto be
a 0
shown.
(b) SET UP: Apply Ampere’s law to a path that is a circle of radius » > a, as shown in Figure 28.71b.

$B-dl = B(2rr).
I

encl =

1, (the path encloses the entire cylinder).

Figure 28.71b

EXECUTE: $B - dl = uyl,, says B(2zr)=uyl, and B = ,uo_lo.

2rr
(¢) SET UP:
Divide the cross section of the cylinder into
concentric rings of radius 7* and width dr’, as
was done in part (a). See Figure 28.71c. The current
41 %
dr’ dI through each ring is dI = —20 1—(—} v dr.
a a
Figure 28.71c¢

EXECUTE: The current / is obtained by integrating df from »’=0to r =r:

I= jd[—MOJ.{ [ﬂ ' = 410[ ') %(r’)“/aq;.

2
I =4—120(r2/2—r4/4a2) 10” 2-5 .
a a a

(d) SET Up: Apply Ampere’s law to a path that is a circle of radius » < a, as shown in Figure 28.71d.
$B - dl = B(27r).

Iy? 2 2
Iona = 2 —— | (from part (c)).
a’ a’

Figure 28.71d
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S o Iy I
EXECUTE:  $B - dl = iyl g s2ys BQ7tr) = ty =2~ (2~ r*/a’) and B = %%(2 —r2la).
a T a

. 1 .
EVALUATE: Result in part (b) evaluated at » =a: B = %. Result in part (d) evaluated at
za

r=a.B= 'UZO—IO%(Z - az/az) = 'LZIO—IO. The two results, one for » >a and the other for » <a, agree at
T a

ma
r=a.
28.72. IDENTIFY: The net field is the vector sum of the fields due to the circular loop and to the long straight wire.
SET UP: For the long wire, B = Holy , and for the loop, B = 'uo—lz.
2zxD 2R

EXECUTE: At the center of the circular loop the current /, generates a magnetic field that is into the

page, so the current /; must point to the right. For complete cancellation the two fields must have the same

M:#O_IZ Thus’ Il :Q[
2zD 2R
EVALUATE: If I; is to the left the two fields add.

28.73. IDENTIFY: Use what we know about the magnetic field of a long, straight conductor to deduce the
symmetry of the magnetic field. Then apply Ampere’s law to calculate the magnetic field at a distance a
above and below the current sheet.

SET UP: Do parts (a) and (b) together.

magnitude: 5

Consider the individual currents in pairs, where
the currents in each pair are equidistant on either
side of the point where B is being calculated.
Figure 28.73a shows that for each pair the
z-components cancel, and that above the sheet

x the field is in the —x-direction and that below
the sheet it is in the +x-direction.

Figure 28.73a
Also, by symmetry the magnitude of B a distance a above the sheet must equal the magnitude of B a

distance a below the sheet. Now that we have deduced the symmetry of B, apply Ampere’s law. Use a
path that is a rectangle, as shown in Figure 28.73b.

———— I fﬁﬁ -dl = Holenel-
a

Figure 28.73b

1 is directed out of the page, so for / to be positive the integral around the path is taken in the
counterclockwise direction.

EXECUTE: Since B is parallel to the sheet, on the sides of the rectangle that have length 2a, $B - dl =0.

On the long sides of length L, B is parallel to the side, in the direction we are integrating around the path,
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and has the same magnitude, B, on each side. Thus gﬁl} -dl =2BL. n conductors per unit length and
current / out of the page in each conductor gives I, = nL. Ampere’s law then gives
2BL = foInL and B =1 tigIn.

EVALUATE: Note that B is independent of the distance a from the sheet. Compare this result to the
electric field due to an infinite sheet of charge in Chapter 22.

28.74. IDENTIFY: Find the vector sum of the fields due to each sheet.
SET UP: Problem 28.73 shows that for an infinite sheet B = % HMoln. If I is out of the page, B is to the left

above the sheet and to the right below the sheet. If / is into the page, B is to the right above the sheet and
to the left below the sheet. B is independent of the distance from the sheet. The directions of the two fields
at points P, R and S are shown in Figure 28.74.

EXECUTE: (a) Above the two sheets, the fields cancel (since there is no dependence upon the distance
from the sheets).

(b) In between the sheets the two fields add up to yield B = yyn/, to the right.

(c) Below the two sheets, their fields again cancel (since there is no dependence upon the distance from the
sheets).

EVALUATE: The two sheets with currents in opposite directions produce a uniform field between the
sheets and zero field outside the two sheets. This is analogous to the electric field produced by large
parallel sheets of charge of opposite sign.

< >
<€ >

P
[(&) (&) (&) (») (») (») (0]

R
——

(X0 X0 X0 X0 X0 X X
S

- >
% =

Figure 28.74

28.75. IDENTIFY: Apply Ampere’s law to a circle of radius r.
SET UP: The current within a radius ris / = Ij -dA, where the integration is over a disk of radius r.

EXECUTE: (a) [y =[J -dd= j(ée("‘“y s jrdrd& - 27sz0" D gy = 2 p§ 0 0 =27hS(1— %),
r

Iy =27(600 A/m)(0.025 m)(1— 0500029y —g1 5 A,

(b) For r>a,§B-dl = B2zr = uyl o = ptol, and B= /2‘0—10
r

(¢) For r<a, I(r)= j J-dA= j (3 Pl jr’dr'dﬁ = 27;1;]0’ e gy = 2 Sl 0
r

S _
1(r)=27b8(e" 8 — =%y = 27tb5e % ("% 1) and I(r) =1, _Ee - 1;,
e’ -1
B di @ -1 Holo(e”® = 1)
(d) For r<a, $B-dl = B(r)27r = tipl .o = tloly———— and B= '
0Zencl 040 (ea/6 -1 zﬂ.r(ea/é' -1

folo(e=1) _ tBL5A)  (e=D)
27[5(6‘1/5 -1 27(0.025 m) (60'050/0'025 ~1)

ald _
At r=a=0.050m, B= Holy (e _ D _ #BL5A)
2ma (¢° 1) 27(0.050 m)

(€) At r=6=0.025m, B= =1.75x107* T.

=3.26x107* T.
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28.76.

28.717.

At r=2a=0.100 m, B="*olo _ HoB1.5A)
2zr  272(0.100 m)

EVALUATE: At points outside the cylinder, the magnetic field is the same as that due to a long wire

running along the axis of the cylinder.

IDENTIFY and SET UP: We assume that both solenoids are ideal, in which case the field due to each one is

=1.63x107* T.

given by B = yynl = ,LJO%I . The net field inside is the sum of both the fields.

EXECUTE: (a) The net fieldis B =ﬂ0%ll +/‘0%[2 = %[Nll1 + N,1,]. For the numbers in this

problem, we have BL/uy =(0.00200 A)N, + N,I,. Therefore a graph of BL/u,, versus I, should be a

straight line with slope equal to N, and y-intercept equal to (0.00200 A)N;.
(b) Using the graph given with the problem, we calculate the slope using the points (5.00 mA, 16.00 A)
and (2.00 mA, 8.00 A), which gives slope = (16.00 A — 8.00 A)/(5.00 mA —2.00 mA) = 2667. Therefore
N, =2667 turns, which rounds to 2670 turns. To find the y-intercept, we use the point (5.00 mA, 16.00 A)
y—16.00 A

x—0.00500 A
y =2667x+2.67. When x =0, y=2.67 A. As we saw, the y-intercept is equal to (0.00200 A)N;, so N; =
(2.67 A)/(0.00200 A) = 1335 turns, which rounds to 1340 turns.

and the slope to deduce the equation of the line. This gives =2667, which simplifies to

(c) Now the fields are in opposite directions, so B = #0%11 _ﬂo%lz = %[Nlll - N,1,].

B =[( 1, )/(0.400 m)][(0.00200 A)(1335) — (0.00500 A)(2667)] =-3.35 %107 T. The minus sign just tells
us that the field due to 7, is stronger than the field due to /;. So the magnitude of the net field is
B=3.35x07 T=33.5uT.
EVALUATE: As a check for V; in part (b), we could use a ruler to extrapolate the graph in the textbook
back to its intersection with the y-axis to find the y-intercept. This method is not particularly accurate, but
it should give reasonable agreement with the result for N; from part (b).
IDENTIFY and SET UP: The magnitude of the magnetic a distance » from the center of a very long current-
carrying wire is B = gi. In this case, the measured quantity x is the distance from the surface of the

r
cable, not from the center.
EXECUTE: (a) Multiplying the quantities given in the table in the problem, we get the following values
for Bx in units of T - cm, starting with the first pair: 0.812, 1.00, 1.09, 1.13, 1.16. As we can see, these
values are not constant. However the last three values are nearly constant. Therefore Bx is not truly
constant. The reason for this is that x is the distance from the surface of the cable, not from the center. In

I . .
the formula B = éli, r is the distance from the center of the cable. In that case, we would expect Br to be
r
constant. For the last three points, it does appear that Bx is nearly constant. The reason for this is that the
Hol
27 (R + x)

As x gets large compared to R, = x and the magnitude approaches Mol

27r

proper formula for the magnetic field for this cable is B = , where R is the radius of the cable.

(b) Using the equation appropriate for the cable and solving for x gives x = (xyl/ 271')% —R. A graph of

x versus 1/B should have a slope equal to £//2x and a y-intercept equal to —R. Figure 28.77 shows the
graph of x versus 1/B.
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28.78.

(cm)
12.0

10.0
8.0 /

6.0 /

4.0 /

2.0 /

0.0 ! T T T 1

0.00 2.00 4.00 6.00 8.00 10.00

/g (mT)™!

Figure 28.77

(¢) The best-fit equation for this graph is x = (1.2981 mT-cm )% —1.1914 cm. The slope is

1.2981 mT-cm = 1.2981x107 T-m. Since the slope is equal to #y//27, we have

Upl/2r = slope, which gives [ =27r(slope)/uy = 272(1.2981x107 T- m)/ty =64.9 A, which rounds to
65 A. The y-intercept is —R, so R = —(—1.1914 cm) = 1.2 cm.
EVALUATE: As we can see, the field within 2 cm or so of the surface of the cable would vary

. . /
considerably from the value given by B = gi.

r

IDENTIFY and SET UP: The wires repel each other since they carry currents in opposite directions, so the
wires will move away from each other until the magnetic force is just balanced by the force due to the
spring. The force per unit length between two parallel current-carrying wires of equal length and separation
F y Il

) . In this case, the currents are the same and the distance between the wires is [, + x, where
Tr

ris
Hol’L

x is the distance the spring stretches. Therefore the force is F' =
27 (ly + x)

. The magnitude of the force

that each spring exerts is F' = kx, by Hooke’s law. On each wire, F,,. =F, and there are two spring

spr mag?

. I°L
forces on each wire. Therefore e 2kx
27 (ly + x)
EXECUTE: (a) We are given two cases with values for 7 and x, and each one leads to an equation
involving /, and k. If we take the ratio of these two equations, common factors such as L will cancel. This
gives us

(13.1 A)2(ly +0.40 m) _ 0.80 cm

(8.05 A’ (I, +0.80 m)  0.40 cm

=2.0. Solving for /, gives [, = 0.834 cm, which rounds to 0.83 cm.

Uol’L

Now we can solve for k using this value for /, using ————=

1o(13.1 A)?(0.50 m)
272(0.0080 m +0.00834 m)

=2k(0.0080 m). £=0.0656 N/m, which rounds to 0.066 N/m.
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2
(b) For a 12.0-A current, we have #(12.0 A)(0.50 m) =2(0.0656 N/m)x. Carrying out the
27(x+0.00834 m)
multiplication and division and simplifying we get the quadratic equation
X+ (0.00834 m)x — 1.097x10™* m? =0.
Using the quadratic formula and taking the positive solution gives x = 0.0071 m=0.71 cm.
(¢) To stretch the spring by 1.00 cm, the current must satisfy the equation
1%(0. - ,
Ho!”(0.50 m) =2(0.0656 N/m)(0.0100 m). This gives / = 15.5 A, which rounds to 16 A.
27(0.0100 m +0.00834 m)
EVALUATE: The spring force in part (c) is k&x =(0.0656 N/m)(0.0100 m) = 6.56x 10~ N. This is a very
small force resulting from a rather large 16-A current. This tells us that magnetic forces between parallel
wires, such as extension cords, are not very significant for typical household currents.
28.79. IDENTIFY: The current-carrying wires repel each other magnetically, causing them to accelerate
horizontally. Since gravity is vertical, it plays no initial role.
2
SET UP: The magnetic force per unit length is % = 5—0 I—, and the acceleration obeys the equation
F/L=m/L a. The rms current over a short discharge time is 7,/ V2.
EXECUTE: (a) First get the force per unit length:
2 2
F_m!®_ #y o [V
L 2rd 2nd 47zd R 47rd '
F m o,V
Now apply Newton’s second law using the result above: i = za =Ada= f—od(—oj . Solving for a gives
T
2
= %. From the kinematics equation v, =v, +a,t, we have v, =at =aRC = £ OQO
47ARC=d 47ARCd
2
[ HoDo ] )
2 47ARCd 1 2
(b) Conservation of energy gives imvo mgh and h= i O Qo .
2g 2g 2g | 4mARCd
EVALUATE: Once the wires have swung apart, we would have to consider gravity in applying Newton’s
second law.
28.80. IDENTIFY: Approximate the moving belt as an infinite current sheet.

SET UP: Problem 28.73 shows that B = % Moln for an infinite current sheet. Let L be the width of the

sheet, so n=1/L.

EXECUTE: The amount of charge on a length Ax of the beltis AQ = LAxo, so [ = AA—Q = L%O‘ =Lvo.
t t

o o 7 S .
Approximating the belt as an infinite sheet B = % = /10_211(>" B is directed out of the page, as shown in

Figure 28.80.
EVALUATE: The field is uniform above the sheet, for points close enough to the sheet for it to be
considered infinite.

~

v

O

Figure 28.80
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28.81.

28.82.

28.83.

IDENTIFY and SET UpP: This solenoid is not ideal since its width is fairly large compared to its length. But
we can get a rough estimate using the ideal formula, B = y,nl.

EXECUTE: B = y,nl = u,(1000 m = 150x107° T, which gives I = 0.12 A, choice (b).

EVALUATE: This is a reasonable laboratory current of 120 mA.
IDENTIFY and SET UP: The magnetic field of an ideal solenoid is B = yynl.

EXECUTE: Both solenoids have the same current, the same length, and the same number of turns, so the
magnetic field inside both of them should be the same, which is choice (c).

EVALUATE: This answer is somewhat of an approximation. Even though both solenoids have the same
current and same length and number of turns, the second (larger) solenoid is even farther from the ideal
case than the first one. Therefore there would be some difference in the magnetic fields inside.

IDENTIFY and SET UP: The enclosure is no longer present to shield the solenoid from the earth’s magnetic
field of 50 4T, so net field inside is a sum of the solenoid field and the earth’s field. Whether the earth’s
field adds or subtracts from the solenoid’s field depends on the orientation of the solenoid. The magnetic
field due to the solenoid is 150 uT.

EXECUTE: When the solenoid field is parallel to the earth’s field, the net field is 150 4T +50 uT =
200 uT. When the field’s are antiparallel (opposite), the net field is 150 4T —50 4T =100 uT. So the
field that the bacteria experience is between 100 4T and 200 4T, which is choice (c).

EVALUATE: Since the earth’s field is quite appreciable compared to the solenoid’s field, it is important to
shield the solenoid from external fields, such as that of the earth. The earth’s field can make a difference of
up to a factor of 2 in the field experienced by the bacteria.



