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A hydrogen atom is made up of a proton of charge +Q =
1.60 X 107 C and an electron of charge —Q = —1.60 X
1071 C. The proton may be regarded as a point charge at r = 0,
the center of the atom. The motion of the electron causes its charge
to be “smeared out” into a spherical distribution around the proton
(Fig. 22.29), so that the electron is equivalent to a charge per unit
volume of p(r) = —(Q/mag)e ¥, where ay = 5.29 % 107! m
is called the Bohr radius. (a) Find the total amount of the hydro-
gen atom’s charge that is enclosed within a sphere with radius r
centered on the proton. (b) Find the electric field (magnitude and
direction) caused by the charge of the hydrogen atom as a function
of r. (c) Make a graph as a function of r of the ratio of the electric-
field magnitude E to the magnitude of the field due to the proton
alone. G

SOLUTION GUIDE

IDENTIFY and SET UP

1. The charge distribution in this problem is spherically symmet-
ric, as in Example 22.9, so you can solve it with Gauss’s law.

2. The charge within a sphere of radius r includes the proton
charge +( plus the portion of the electron charge distribution

that lies within the sphere. The difference from Example 22.9 .

is that the electron charge distribution is nor uniform, so the
charge enclosed within a sphere of radius r is not simply the
charge density multiplied by the volume 4777°/3 of the sphere.
Instead, you’ll have to do an integral.

3. Consider a thin spherical shell centered on the proton, with
radius r' and infinitesimal thickness dr’. Since the shell is so
thin, every point within the shell is at essentially the same
radius from the proton. Hence the amount of electron charge
within this shell is equal to the electron charge density p(r")
at this radius multiplied by the volume dV of the shell. What is
dV in terms of r'?
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22.29 The charge distribution in a hydrogen atom.

Proton:
point charge +Q

Electron:
charge —Q “smeared out™
in a spherical distribution

4. The total electron charge within a radius r equals the integral
of p(r')dV from +" = 0 to r' = r. Set up this integral (but
don’t solve it yet), and use it to write an expression for the total
charge (including the proton) within a sphere of radius 7.

EXECUTE

5. Integrate your expression from step 4 to find the charge within
radius r. (Hint: Integrate by substitution: Change the integration
variable from r' to x = 2r'/ay. You can use integration by
parts to calculate the integral f x%¢ ™ dx, or you can look it
up in a table of integrals or on the Web.)

6. Use Gauss’s law and your results from step 5 to find the electric
field at a distance r from the proton.

7. Find the ratio referred to in part (c) and graph it versus r.
(You'll actually find it simplest to graph this function versus
the quantity r/ag.)

EVALUATE

8. How do your results for the enclosed charge and the electric-
field magnitude behave in the limit » — 07? In the limit » — 00?
Explain your results.

Problems |

For assigned homework and other learning materials, go to MasteringPhysics®.

*, **, *==: Difficulty levels. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus.
DATA: Problems involving real data, scientific evidence, experimental design, and/or statistical reasoning. BIO: Biosciences problems.

DISCUSSION QUESTIONS

Q22.1 Do you need to know the specific arrangement of charges
to calculate the electric potential surrounding them using Gauss’s
theorem? Explain.

Q22.2 Like Coulomb’s law, Gauss’s law is used to determine the
electric field for a given charge distribution. What is the main dif-
ference between the two?

Q22.3 A 2.6-uC charge is at the center of a cube 7.5 cm on each
side. To calculate the electric flux through one face of the cube, do
you need to integrate over the full volume?

Q22.4 A hemispherical open surface of radius R is placed in
a uniform field of magnitude E. What would be the flux through
the entire closed surface? What is the flux through the flat end?
Q22.5 A spherical Gaussian surface encloses a point charge q.
If the ‘point charge is moved from the center of the sphere to a
point away from the center, does the electric field at a point on the
surface change? Does the total flux through the Gaussian surface
change? Explain.

Q22.6 You find a sealed box on your doorstep. You suspect
that the box contains several charged metal spheres packed in




insulating material. How can you determine the total net charge
inside the box without opening the box? Or isn’t this possible?
Q22.7 A solid copper sphere has a net positive charge. The
charge is distributed uniformly over the surface of the sphere, and
the electric field inside the sphere is zero. Then a negative point
charge outside the sphere is brought close to the surface of the
sphere. Is all the net charge on the sphere still on its surface? If
80, is this charge still distributed uniformly over the surface? If it
is not uniform, how is it distributed? Is the electric field inside the
sphere still zero? In each case justify your answers.

Q22.8 If the electric field of a point charge were proportional
to 1/r instead of 1/r?, would Gauss’s law still be valid? Explain
your reasoning. (Hint: Consider a spherical Gaussian surface
centered on a single point charge.)

Q22.9 Solar panels fitted to buildings are always angled towards
the incoming sunlight. To ensure this alignment, the panels are
either physically moved or mounted on a mechanical stage. Does
this have anything to do with Gauss’s law?

Q22.10 You charge up the Van de Graaff generator shown
in Fig. 22.26, and then bring an identical but uncharged hollow
conducting sphere near it, without letting the two spheres touch.
Sketch the distribution of charges on the second sphere. What is
the net flux through the second sphere? What is the electric field
inside the second sphere?

Q22.11 A lightning rod is a rounded copper rod mounted on top
of a building and welded to a heavy copper cable running down
into the ground. Lightning rods are used to protect houses and
barns from lightning; the lightning current runs through the copper
rather than through the building. Why? Why should the end of the
rod be rounded?

Q22.12 An asymmetrical conductor carries a net charge Q. It
also contains an asymmetric, empty cavity inside. What is the
electric field inside the cavity? What value of a point charge must
be put inside the cavity in order to make the surface charge den-
sity on the outer surface of the conductor zero everywhere?
Q22.13 Explain this statement: “In a static situation, the electric
field at the surface of a conductor can have no component parallel
to the surface because this would violate the condition that the
charges on the surface are at rest.” Would this statement be valid
for the electric field at the surface of an insulator? Explain your
answer and the reason for any differences between the cases of a
conductor and an insulator.

Q22.14 In a certain region of space, the electric field E is uni-
form. (a) Use Gauss’s law to prove that this region of space must
be electrically neutral; that is, the volume charge density p must
be zero. (b) Is the converse true? That is, in a region of space
where there is no charge, must E be uniform? Explain.

Q22.15 (a) In a certain region of space, the volume charge den-
sity p has a uniform positive value. Can E be uniform in this
region? Explain. (b) Suppose that in this region of uniform posi-
tive p there is a “bubble” within which p = 0. Can E be uniform
within this bubble? Explain.

Q22.16 A negative charge —Q is placed inside the cavity of a
hollow metal solid. The outside of the solid is grounded by con-
necting a conducting wire between it and the earth. Is any excess
charge induced on the inner surface of the metal? Is there any
excess charge on the outside surface of the metal? Why or why
not? Would someone outside the solid measure an electric field
due to the charge —Q? Is it reasonable to say that the grounded
conductor has shielded the region outside the conductor from the
effects of the charge —Q? In principle, could the same thing be
done for gravity? Why or why not?
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EXERCISES

Section 22.2 Calculating Electric Flux

22.1 - A flat sheet of paper of area 0.320 m? is oriented so that
the normal to the sheet is at an angle of 64° to a uniform electric
field of magnitude 12 N/C. (a) Find the magnitude of the electric
flux through the sheet. (b) Does the answer to part (a) depend on
the shape of the sheet? Why or why not? (c) For what angle ¢
between the normal to the sheet and the electric field is the mag-
nitude of the flux through the sheet (i) largest and (ii) smallest?
Explain your answers,

22.2 -+ A flat sheet is in the shape of a rectangle with sides of
lengths 0.400 m and 0.600 m. The sheet is immersed in a uni-
form electric field of magnitude 76.0 N/C that is directed at 20°
from the plane of the sheet (Fig. E22.2). Find the magnitude of
the electric flux through the sheet.

Figure E22.2
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22.3 * You measure an electric field of 1.37 X 10° N/C at a dis-
tance of 0.165 m from a point charge. There is no other source of
electric field in the region other than this point charge. (a) What
is the electric flux through the surface of a sphere that has this
charge at its center and that has radius 0.165 m? (b) What is the
magnitude of this charge?

22.4 - It was shown in Example 21.10 (Section 21.5) that the
electric field due to an infinite line of charge is perpendicular to
the line and has magnitude £ = A/2megr. Consider an imaginary
cylinder with radius r» = 0.185 m and length [ = 0.500 m that
has an infinite line of positive charge running along its axis. The
charge per unit length on the line is A = 4.25 uC/m. (a) What is
the electric flux through the cylinder due to this infinite line of
charge? (b) What is the flux through the cylinder if its radius is
increased to » = 0.575 m? (¢) What is the flux through the cylin-
der if its length is increased to / = 0.905 m?

22,5 == A hemispherical surface with radius » in a region of uni-
form electric field E has its axis aligned parallel to the direction
of the field. Calculate the flux through the surface.

22.6 * The cube in Fig. E22.6 has sides of length L = 10.0 cm.
The electric field is uniform, has magnitude E = 4.00 X 10° N/C,
and is parallel to the xy-plane at an angle of 53.1° measured
from the +x-axis toward the +y-axis. (a) What is the electric
flux through each of the six cube faces Sy, S», §3, Sy, S5, and Sg?
(b) What is the total electric flux through all faces of the cube?

Figure E22.6
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22.7 - BIO As discussed in Section 22.5, human nerve cells
have a net negative charge and the material in the interior of the
cell is a good conductor. If a cell has a net charge of —8.65 pC,
what are the magnitude and direction (inward or outward) of the
net flux through the cell boundary?

22.8  The three small spheres shown in Fig. E22.8 carry
charges g, = 4.30nC, ¢, = —7.50nC, and g3 = 2.60 nC. Find
the net electric flux through each of the following closed surfaces
shown in cross section in the figure: (a) S;: (b) S3: (¢) S3: (d) S4:
(e) Ss5. (f) Do your answers to parts (a)—(e) depend on how the
charge is distributed over each small sphere? Why or why not?

Figure E22.8
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22.9 .= A charged paint is spread in a very thin uniform layer
over the surface of a plastic sphere of diameter 20.0 cm, giving
it a charge of —14.0 nC. Find the electric field (a) just inside the
paint layer; (b) just outside the paint layer; (c) 5.00 cm outside
the surface of the paint layer.

22.10 - A point charge g; = 4.15nC is located on the x-axis at
x = 1.80 m, and a second point charge g, = —6.15 nC is on the
y-axis at y = 1.15 m. What is the total electric flux due to these
two point charges through a spherical surface centered at the origin
and with radius (a) 0.755 m, (b) 1.40 m, (c) 2.95 m?

22.11 * A 9.50-pC point charge is at the center of a cube with
sides of length 0.790 m. (a) What is the electric flux through one
of the six faces of the cube? (b) How would your answer to part (a)
change if the sides were 0.145 m long? Explain.

22.12 - Electric Fields in an Atom. The nuclei of large atoms,
such as uranium, with 92 protons, can be modeled as spherically
symmetric spheres of charge. The radius of the uranium nucleus
is approximately 7.4 X 10" m. (a) What is the electric field this
nucleus produces just outside its surface? (b) What magnitude of
electric field does it produce at the distance of the electrons, which
is about 1.9 X 107 m? (c) The electrons can be modeled as
forming a uniform shell of negative charge. What net electric field
do they produce at the location of the nucleus?

Section 22.4 Applications of Gauss’s Law and
Section 22.5 Charges on Conductors

22.13 -+ Two very long uniform lines of charge are parallel and
are separated by 0.220 m. Each line of charge has charge per unit
length +5.00 xC/m. What magnitude of force does one line of
charge exerton a4.90 X 102-m section of the other line of charge?
22.14 -+ A solid metal sphere with radius 0.500 m carries a net
charge of 0.280 nC. Find the magnitude of the electric field (a) at a
point 0.100 m outside the surface of the sphere and (b) at a point
inside the sphere, 0.100 m below the surface.

22.15 -+ How many excess electrons must be added to an iso-
lated spherical conductor 40.0 cm in diameter to produce an elec-
tric field of magnitude 1170 N/C just outside the surface?

22.16 » Some planetary scientists have suggested that the planet
Mars has an electric field somewhat similar to that of the earth,
producing a net electric flux of —3.67 X 10'® N-m?/C at the
planet’s surface. Calculate: (a) the total electric charge on the
planet; (b) the electric field at the planet’s surface (refer to
the astronomical data inside the back cover); (c) the charge density
on Mars, assuming all the charge is uniformly distributed over the
planet’s surface.

22.17 « A very long uniform line of charge has charge per unit
length 4.76 uC/m and lies along the x-axis. A second long uniform
line of charge has charge per unit length —2.48 1.C/m and is par-
allel to the x-axis at y = 0.420 m. What is the net electric field
(magnitude and direction) at the following points on the y-axis:
(@) y = 0.206 m and (b) y = 0.618 m?

22.18 e+ The electric field 0.355 m from a very long uniform
line of charge is 900 N/C. How much charge is contained in a
2.80-cm section of the line?

22.19 -+ A hollow, conducting sphere with an outer radius of
0.248 m and an inner radius of 0.208 m has a uniform surface
charge density of +6.44 X 107 C/m% A charge of —0.560 uC
is now introduced at the center of the cavity inside the sphere.
(a) What is the new charge density on the outside of the sphere?
(b) Calculate the strength of the electric field just outside the
sphere. (c) What is the electric flux through a spherical surface
just inside the inner surface of the sphere?

22.20 - (a) At a distance of 0.186 cm from the center of a
charged conducting sphere with radius 0.100 cm, the electric field
is 430 N/C. What is the electric field 0.600 cm from the center
of the sphere? (b) At a distance of 0.188 cm from the axis of a
very long charged conducting cylinder with radius 0.100 ¢m, the
electric field is 430 N/C. What is the electric field 0.594 ¢cm from
the axis of the cylinder? (c) At a distance of 0.212 cm from a large
uniform sheet of charge, the electric field is 430 N/C. What is the
electric field 1.04 cm from the sheet?

22.21 += The electric field at a distance of 0.124 m from the sur-
face of a solid insulating sphere with radius 0.366 m is 1690 N/C.
(a) Assuming the sphere’s charge is uniformly distributed, what is
the charge density inside it? (b) Calculate the electric field inside
the sphere at a distance of 0.217 m from the center.

22.22 -+ A point charge of —2.00 pC is located in the center of
a spherical cavity of radius 6.55 cm that, in turn, is at the center of
an insulating charged solid sphere. The charge density in the solid
is p = 7.36 X 107 C/m>. Calculate the electric field inside the
solid at a distance of 9.49 cm from the center of the cavity.

22.23 « CP An electron is released from rest at a distance of
0.540 m from a large insulating sheet of charge that has uniform
surface charge density +3.00 X 107'2 C/m?. (a) How much work
is done on the electron by the electric field of the sheet as the
electron moves from its initial position to a point 7.00 X 1072 m
from the sheet? (b) What is the speed of the electron when it is
7.00 X 1072 m from the sheet?

22.24 «+ Charge ( is distributed uniformly throughout the vol-
ume of an insulating sphere of radius R = 4.00 cm. At a distance
of r = 8.00 cm from the center of the sphere, the electric field
due to the charge distribution has magnitude E = 940 N/C. What
are (a) the volume charge density for the sphere and (b) the electric
field at a distance of 2.00 cm from the sphere’s center?

22.25 « A conductor with an inner cavity, like that shown in
Fig. 22.23c, carries a total charge of +4.60 nC. The charge within
the cavity, insulated from the conductor, is —6.10 nC. How much
charge is on (a) the inner surface of the conductor and (b) the outer
surface of the conductor?




-22.26 * A very large, horizontal, nonconducting sheet of
charge has uniform charge per unit area ¢ = 5.00 X 10°® C/m>.
(a) A small sphere of mass m = 8.00 X 107° kg and charge g is
placed 3.00 cm above the sheet of charge and then released from
rest. (a) If the sphere is to remain motionless when it is released,
what must be the value of g? (b) What is g if the sphere is released
1.50 cm above the sheet?

22.27 - Apply Gauss's law to the Gaussian surfaces S,, S5, and
Sy in Fig. 22.21b to calculate the electric field between and outside
the plates.

22.28 * A square insulating sheet 80.0 cm on a side is held hori-
zontally. The sheet has 4.50 nC of charge spread uniformly over
its area. (a) Calculate the electric field at a point 0.100 mm above
the center of the sheet. (b) Estimate the electric field at a point
100 m above the center of the sheet. (c) Would the answers to parts
(a) and (b) be different if the sheet were made of a conducting
material? Why or why not?

22.29 * An infinitely long cylindrical conductor has radius R
and uniform surface charge density . (a) In terms of o and R,
what is the charge per unit length A for the cylinder? (b) In terms
of o, what is the magnitude of the electric field produced by the
charged cylinder at a distance r > R from its axis? (c) Express
the result of part (b) in terms of A and show that the electric
field outside the cylinder is the same as if all the charge were on
the axis. Compare your result to the result for a line of charge in
Example 22.6 (Section 22.4).

22.30 - Two very large, nonconducting plastic sheets, each
10.0 cm thick, carry uniform charge densities oy, 03, o3, and
oy on their surfaces (Fig. E22.30). These surface charge densi-
ties have the values o = —6.00 uC/m’, o, = +5.00 uC/m>,
oy = +2.00 pC/m?, and oy = +4.00 uC/m?. Use Gauss’s law to
find the magnitude and direction of the electric field at the follow-
ing points, far from the edges of these sheets: (a) point A, 5.00 cm
from the left face of the left-hand sheet; (b) point B, 1.25 ¢cm from
the inner surface of the right-hand sheet; (c) point C, in the middle
of the right-hand sheet.

Figure E22.30
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PROBLEMS

22.31 = CP At time ¢ = 0 a proton is a distance of 0.360 m
from a very large insulating sheet of charge and is moving parallel
to the sheet with speed 9.70 X 10° m/s. The sheet has uniform
surface charge density 2.34 X 107 C/m®. What is the speed of
the proton at = 5.00 X 1078 s?

22.32 = CP A very small object with mass 8.20 x 107 kg and
positive charge 6.50 X 107°C is projected directly toward a very
large insulating sheet of positive charge that has uniform surface
charge density 5.90 X 107 C/m?. The object is initially 0.400 m
from the sheet. What initial speed must the object have in order
for its closest distance of approach to the sheet to be 0.100 m?

Problems 771

2233 = CP A small sphere with Figure P22.33
mass 2. OO X 107 kg and charge |
4.80 X 1078 C hangs from a thread |
near a very large, charged insulating
sheet (Fig. P22.33). The charge density
on the surface of the sheet is uniform
and equal to —2.20 X 10™° C/m?2. Find
the angle of the thread.

22,34 == A cube has sides of length L = 0.350 m. One corner is
at the origin (Fig. E22.6). The nonuniform electric field is given
by E = (—5.64N/C-m)xi + (254 N/C-m)zk. (a) Find the
electric flux through each of the six cube faces Sy, S5, 3, S4. Ss,
and Sg. (b) Find the total electric charge inside the cube.
22.35 + The electric field E in .
Fig. P22.35 is everywhere parallel to el peaie
the x-axis, so the components E, and &
E. are zero. The x-component of the
field E, depends on x but not on y

; ; 3.0
or z. At points in the yz-plane (where
x=0),E, = 125N/C. (a) What is
the electric flux through surface I in ;
Fig. P22.35? (b) What is the electric  2.0m|
flux through surface I1? (c) The vol-
ume shown is a small section of a
very large insulating slab 1.0 m thick.
If there is a total charge of —24.0 nC
within the volume shown, what are the magnitude and direction of
E at the face opposite surface 17 (d) Is the electric field produced
by charges only within the slab, or is the field also due to charges

outside the slab? How can you tell?

22.36 *+ CALC In a region of space there is an electric
field E that is in the z-direction and that has magnitude E =
[963 N/(C+m)]x. Find the flux for this field through a square
in the xy-plane at z = 0 and with side length 0.480 m. One side of
the square is along the +x-axis and another side is along the
+y-axis.

22.37 - The electric field E; at
one face of a parallelepiped is uniform
over the entire face and is directed
out of the face. At the opposite face,
the electric field E, is also uniform
over the entire face and is directed
into that face (Fig. P22.37). The
two faces in question are inclined at
30.0° from the horizontal, while both
E1 and Ez are horizontal; E] has a magnitude of 2.40 x 10* N/C,
and E; has a magnitude of 8.40 X 10° N/C. (a) Assuming that no
other electric field lines cross the surfaces of the parallelepiped,
determine the net charge contained within. (b) Is the electric
field produced by the charges only within the parallelepiped, or is
the field also due to charges outside the parallelepiped? How can
you tell?

22.38 - A long line carrying a uniform linear charge density
+50.0 uC/m runs parallel to and 10.0 cm from the surface of
a large, flat plastic sheet that has a uniform surface charge den-
sity of —100 £C/m? on one side. Find the location of all points
where an a particle would feel no force due to this arrangement of
charged objects.

Figure P22.37




772

CHAPTER 22 Gauss's Law

22.39 ¢ The Coaxial Cable. A long coaxial cable consists of
an inner cylindrical conductor with radius @ and an outer coaxial
cylinder with inner radius b and outer radius c. The outer cylin-
der is mounted on insulating supports and has no net charge. The
inner cylinder has a uniform positive charge per unit length A.
Calculate the electric field (a) at any point between the cylinders
a distance r from the axis and (b) at any point outside the outer
cylinder. (c) Graph the magnitude of the electric field as a function
of the distance r from the axis of the cable, from r = O to r = 2c.
(d) Find the charge per unit length on the inner surface and on the
outer surface of the outer cylinder.

22.40 - A very long conducting tube (hollow cylinder) has inner
radius a and outer radius b. It carries charge per unit length +ea,
where a is a positive constant with units of C/m. A line of charge
lies along the axis of the tube. The line of charge has charge per
unit length +a. (a) Calculate the electric field in terms of « and the
distance r from the axis of the tube for (i) r < a; (i) a < r < b;
(iii) » > b. Show your results in a graph of E as a function of r.
(b) What is the charge per unit length on (i) the inner surface of
the tube and (ii) the outer surface of the tube?

22.41 + A very long, solid cylinder with radius R has positive
charge uniformly distributed throughout it, with charge per unit
volume p. (a) Derive the expression for the electric field inside
the volume at a distance r from the axis of the cylinder in terms
of the charge density p. (b) What is the electric field at a point
outside the volume in terms of the charge per unit length A in the
cylinder? (c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from
r=0tor=3R.

22.42 - A Sphere in a Sphere. A solid conducting sphere
carrying charge g has radius a. It is inside a concentric hollow con-
ducting sphere with inner radius b and outer radius c. The hollow
sphere has no net charge. (a) Derive expressions for the electric-
field magnitude in terms of the distance r from the center for
the regions r < a,a < r < b, b < r < ¢, and r > c. (b) Graph
the magnitude of the electric field as a function of » from r = 0 to
r = 2c. (c) What is the charge on the inner surface of the hollow
sphere? (d) On the outer surface? (e) Represent the charge of the
small sphere by four plus signs. Sketch the field lines of the system
within a spherical volume of radius 2c.

22.43 + A solid conducting sphere with radius R that carries
positive charge Q is concentric with a very thin insulating shell
of radius 2R that also carries charge Q. The charge Q is distrib-
uted uniformly over the insulating shell. (a) Find the electric field

(magnitude and direction) in each of the regions D=mr<R
R < r < 2R, and r > 2R. (b) Graph the electric-field magnitude
as a function of r.

22.44 « A conducting spherical shell with Figure P22.44
inner radius a and outer radius b has a positive —

point charge Q located at its center. The total ~ / a. b
charge on the shell is —3Q, and it is insulated | @’v
from its surroundings (Fig. P22.44). (a) Derive X o =30
expressions for the electric-field magnitude E

in terms of the distance r from the center for the regions r < a,
a < r < b, and r > b. What is the surface charge density (b) on
the inner surface of the conducting shell; (c) on the outer surface
of the conducting shell? (d) Sketch the electric field lines and the
location of all charges. (e) Graph E as a function of r.

22.45 » Concentric Spherical Shells. A small conducting
spherical shell with inner radius a and outer radius b is concen-
tric with a larger conducting spherical shell with inner radius ¢
and outer radius d (Fig. P22.45). The inner shell has total charge

+2g. and the outer shell has charge +4q.
(a) Calculate the electric field E (magni-
tude and direction) in terms of ¢ and the
distance r from the common center of the
two shells for () r < a; (i) a <r < b;
ib<r<c@Vc<r<dr>d.
Graph the radial component of E as a
function of . (b) What is the total charge
on the (i) inner surface of the small shell:
(ii) outer surface of the small shell; (iii) in-
ner surface of the large shell; (iv) outer surface of the large shell?
22.46 - Repeat Problem 22.45, but now let the outer shell have
charge —2¢. The inner shell still has charge +24.

22.47 + Negative charge —Q is distributed uniformly over
the surface of a thin spherical insulating shell with radius R.
Calculate the force (magnitude and direction) that the shell exerts
on a positive point charge ¢ located a distance (a) r > R from the
center of the shell (outside the shell); (b) r < R from the center of
the shell (inside the shell).

22.48 + A solid conducting sphere with radius R carries a posi-
tive total charge Q. The sphere is surrounded by an insulating
shell with inner radius R and outer radius 2R. The insulating shell
has a uniform charge density p. (a) Find the value of p so that the
net charge of the entire system is zero. (b) If p has the value found
in part (a), find the electric field E (magnitude and direction) in
each of the regions 0 < r < R, R < r < 2R, and r > 2R. Graph
the radial component of E as a function of r. (¢) As a general rule,
the electric field is discontinuous only at locations where there is
a thin sheet of charge. Explain how your results in part (b) agree
with this rule.

22.49 +»» CALC An insulating hollow sphere has inner radius a
and outer radius b. Within the insulating material the volume charge
density is given by p(r) = a/r, where « is a positive constant.
(a) In terms of a and a, what is the magnitude of the electric field
at a distance r from the center of the shell, where a < r < b?
(b) A point charge g is placed at the center of the hollow space,
at r = 0. In terms of  and a, what value must g have (sign and
magnitude) in order for the electric field to be constant in the
regiona < r < b, and what then is the value of the constant field
in this region?

22.50 +» CP Thomson’s Model of the Atom. Early in the
20th century, a leading model of the structure of the atom was that
of English physicist J. J. Thomson (the discoverer of the electron).
In Thomson’s model, an atom consisted of a sphere of positively
charged material in which were embedded negatively charged elec-
trons, like chocolate chips in a ball of cookie dough. Consider such
an atom consisting of one electron with mass m and charge —e,
which may be regarded as a point charge, and a uniformly
charged sphere of charge +e and radius R. (a) Explain why the
electron’s equilibrium position is at the center of the nucleus.
(b) In Thomson’s model, it was assumed that the positive material
provided little or no resistance to the electron’s motion. If the elec-
tron is displaced from equilibrium by a distance less than R, show
that the resulting motion of the electron will be simple harmonic,
and calculate the frequency of oscillation. (Hint: Review the defi-
nition of SHM in Section 14.2. If it can be shown that the net force
on the electron is of this form, then it follows that the motion is
simple harmonic. Conversely, if the net force on the electron does
not follow this form, the motion is not simple harmonic.) (¢) By
Thomson’s time, it was known that excited atoms emit light-waves
of only certain frequencies. In his model, the frequency of emit-
ted light is the same as the oscillation frequency of the electron(s)




in the atom. What radius would a Thomson-model atom need for
it to produce red light of frequency 4.57 X 10'* Hz? Compare
your answer to the radii of real atoms, which are of the order
of 1079 m (see Appendix F). (d) If the electron were displaced
from equilibrium by a distance greater than R, would the elec-
tron oscillate? Would its motion be simple harmonic? Explain
your reasoning. (Historical note: In 1910, the atomie nucleus
was discovered, proving the Thomson model to be incorrect. An
atom’s positive charge is not spread over its volume, as Thomson
supposed, but is concentrated in the tiny nucleus of radius 107'#
to 105 m,)

22.51 * Thomson’s Model of the Atom, Continued. Using
Thon?son’s. (outdated) model of th.e atom gure P22.51
described in Problem 22.50, consider an
atom consisting of two electrons, each of
charge —e, embedded in a sphere of charge
+2e and radius R. In equilibrium, each
electron is a distance d from the center of
the atom (Fig. P22.51). Find the distance d
in terms of the other properties of the
atom.

+2e

22.52 -+ (a) How many excess electrons must be distributed
uniformly within the volume of an isolated plastic sphere 26.0 cm
in diameter to produce an electric field of magnitude 1500 N/C
just outside the surface of the sphere? (b) What is the electric
field at a point 14.5 cm outside the surface of the sphere?

22.53 »+ CALC A nonuniform, but spherically symmetric, dis-
tribution of charge has a charge density p(r) given as follows:

p(r)=pn(1 —é) forr = R

p(r) =10 forr =R

where py = 30/7R% is a positive constant. (a) Show that the total
charge contained in the charge distribution is Q. (b) Show that the
electric field in the region r = R is identical to that produced by a
point charge @ at r = 0. (c) Obtain an expression for the electric
field in the region r = R. (d) Graph the electric-field magnitude E
as a function of r. (e) Find the value of r at which the electric field
is maximum, and find the value of that maximum field.

22.54 -+ A Uniformly Charged Slab. A slab of insulating
material has thickness 2d and is oriented so that its faces are par-
allel to the yz-plane and given by the planes x = 4 and x = —d.
The y- and z-dimensions of the slab are very large compared to d;
treat them as essentially infinite. The slab has a uniform positive
charge density p. (a) Explain why the electric field due to the slab
is zero at the center of the slab (x = 0). (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.

22.55 * CALC A Nonuniformly Charged Slab. Repeat Prob-
lem 22.54, but now let the charge density of the slab be given by
p(x) = po(x/d)? where py is a positive constant.

22.56 + CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density p(r) given as follows:

4r

= - — forr < R
p(r) po(l 3R)

forr = R

P — -
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where py is a positive constant. (a) Find the total charge contained
in the charge distribution. Obtain an expression for the electric
field in the region (b) r = R; (c) » = R. (d) Graph the electric-
field magnitude E as a function of r. (e) Find the value of r at
which the electric field is maximum, and find the value of that
maximum field.
22.57 * (a) An insulating sphere with
radius @ has a uniform charge density p. The
sphere is not centered at the origin but at \\
7 = b. Show that the electric field inside the A
)

Figure P22.57

sphere is given by E = p(F — b)/3¢y. (b) An A0 3
insulating sphere of radius R has a spherical ge density
hole of radius a located within its volume and

centered a distance b from the center of the

sphere, where @ < b < R (a cross section of

the sphere is shown in Fig. P22.57). The solid part of the sphere
has a uniform volume charge density p. Find the magnitude and
direction of the electric field E inside the hole, and show that E is
uniform over the entire hole. [Hint: Use the principle of superposi-
tion and the result of part (a).]

22,58 + A very long, solid insulating cylinder has radius R:
bored along its entire length is a cylindrical hole with radius a.
The axis of the hole is a distance b from the axis of the cylinder,
where a < b < R (Fig. P22.58). The solid material of the cylin-
der has a uniform volume charge density p. Find the magnitude
and direction of the electric field E inside the hole, and show that
E is uniform over the entire hole. (Hint: See Problem 22.57.)

Figure P22.58

22,59 = DATA In one experiment the electric field is measured
for points at distances r from a uniform line of charge that has
charge per unit length A and length /, where [ >> r. In a second
experiment the electric field is measured for points at distances r
from the center of a uniformly charged insulating sphere that
has volume charge density p and radius R = 8.00 mm, where
r > R. The results of the two measurements are listed in the
table, but you aren’t told which set of data applies to which
experiment:

r(cm) 1.00 1.50 2.00 250 3.00 3.50 4.00

Measurement A
E(10°N/C) 272 179 134 107 0902 0770 0.677

Measurement B
E(10°N/C) 545 242 134 0861 0.605 0443 0.335

For each set of data, draw two graphs: one for Er* versus r and
one for Er versus r. (a) Use these graphs to determine which data
set, A or B, is for the uniform line of charge and which set is for
the uniformly charged sphere. Explain your reasoning. (b) Use the
graphs in part (a) to calculate A for the uniform line of charge and
p for the uniformly charged sphere.
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22.60 = DATA The electric field is measured for points at dis-
tances r from the center of a uniformly charged insulating sphere
that has volume charge density p and radius R, where r < R
(Fig. P22.60). Calculate p.

Figure P22.60

E (10% N/C)
S +
7
6
5
4
: ]
2
1

r (mm)

BilieiZelashonos A 10812

22.61 *» DATA The volume charge density p for a spherical
charge distribution of radius R = 6.00 mm is not uniform.
Figure P22.61 shows p as a function of the distance r from the
center of the distribution. Calculate the electric field at these val-
ues of (i) 1.00 mm; (ii) 3.00 mm: (iii) 5.00 mm; (iv) 7.00 mm.

Figure P22.61
p (nC/m’)

10.0

8.0

6.0

4.0

2.0

0

=20

- : Ly (mm)
2.00 4.00 6.00 8.00
>

CHALLENGE PROBLEM

22.62 s+ CP CALC A region in space contains a total positive
charge Q that is distributed spherically such that the volume charge
density p(r) is given by

p(r) = 3ar/2R forr = R/2
p(r) = all — (r/R)?] forR2=r=R
p(r) =0 forr = R

Here « is a positive constant having units of c/ m°. (a) Determine
« in terms of @ and R. (b) Using Gauss’s law, derive an expression
for the magnitude of the electric field as a function of r. Do this
separately for all three regions. Express your answers in terms
of Q. (¢c) What fraction of the total charge is contained within the
region R/2 = r = R? (d) What is the magnitude of E at r = R/2?
(e) If an electron with charge q' = —e is released from rest at
any point in any of the three regions, the resulting motion will be
oscillatory but not simple harmonic. Why?

[PASSAGE PROBLEMS)

SPACE RADIATION SHIELDING. One of the hazards facing
humans in space is space radiation: high-energy charged particles
emitted by the sun. During a solar flare, the intensity of this radia-
tion can reach lethal levels. One proposed method of protection
for astronauts on the surface of the moon or Mars is an array of
large, electrically charged spheres placed high above areas where
people live and work. The spheres would produce a strong elec-
tric field E to deflect the charged particles that make up space
radiation. The spheres would be similar in construction to a Mylar
balloon, with a thin, electrically conducting layer on the outside
surface on which a net positive or negative charge would be
placed. A typical sphere might be 5 m in diameter.

22.63 Suppose that to repel electrons in the radiation from a
solar flare, each sphere must produce an electric field E of mag-
nitude 1 X 10° N/C at 25 m from the center of the sphere. What
net charge on each sphere is needed? (a) —0.07 C; (b) —8 mC;
(©) =80 uC; (@) —1 X 107°C.

22.64 What is the magnitude of E just outside the surface of
such a sphere? () 0; (b) 10° N/C; (¢) 107 N/C: (d) 108 N/C.

22.65 What is the direction of E just outside the surface of such
a sphere? (a) Tangent to the surface of the sphere: (b) perpendicu-
lar to the surface, pointing toward the sphere: () perpendicular to
the surface, pointing away from the sphere; (d) there is no electric
field just outside the surface.

22.66 Which statement is true about

E inside a negatively

charged sphere as described here? (a) It points from the center of
the sphere to the surface and is largest at the center. (b) It points
from the surface to the center of the sphere and is largest at the
surface. (¢) It is zero. (d) It is constant but not zero.
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Chapter Opening Question &

(iii) The electric field inside a cavity within a conductor is zero,
so there would be no electric effect on the child. (See Section 22.5.)

Test Your Understanding Questions

22.1 (iii) FEach part of the surface of the box will be three
times farther from the charge +¢, so the electric field will be
(1)? = § as strong. But the area of the box will increase by a fac-
tor of 3% = 9. Hence the electric flux will be multiplied by a factor
of (§)(9) = 1.In other words, the flux will be unchanged.

22.2 (iv), (ii), (), (iii) In each case the electric field is uni-
form, so the flux is &g = E+A. We use the relationships for
the scalar products of unit vectors: 1+1 = j+]=1,1+]=0.In
case (i) we have @z = (4.0 N/C)(6.0 m?)i+j = 0 (the electric
field and vector area are perpendicular, so there is zero flux). In
case (ii) we have ®5 = [(4.0N/C)i + (20N/C)j] * (3.0 m?)j =
(20N/C) - (3.0m?) = 6.0 N+m?/C. Similarly, in case (iii) we
have &= [(4.0 N/C)i = (2.0N/C)j] + [(3.0 m?)i +(7.0m?)j] =
(40N/C)(3.0m?) — (20N/C)(7.0m?) = —2N-m*/C, and
in case (ivy we have ®g= [(40N/C)i — (20N/C)j]*
(3.0 m?)i — (7.0 m?)j] = (4.0 N/C)(3.0 m?) + (20 N/C) -
(7.0 m?) = 26 N-m?*/C.

22.3 85,85, 54, 5; and S; (tie) Gauss's law tells us that the
flux through a closed surface is proportional to the amount
of charge enclosed within that surface. So an ordering of these
surfaces by their fluxes is the same as an ordering by the
amount of enclosed charge. Surface §; encloses no -charge,
surface S, encloses 9.0 uC + 5.0 uC + (=7.0 uC) = 7.0 uC,
surface S; encloses 9.0 uC + 1.0 uC + (—10.0 uC) = 0, sur-
face S, encloses 8.0 uC + (=7.0uC) = 1.0 uC, and surface
Ss encloses 8.0 uC + (=7.0 uC) + (—10.0 uC) + (1.0pC) +
(9.0 uC) + (5.0 uC) = 6.0 uC.

22.4 no You might be tempted to draw a Gaussian surface that
is an enlarged version of the conductor, with the same shape and
placed so that it completely encloses the conductor. While you

know the flux through this Gaussian surface (by Gauss’s law, it's
®; = Q/€p). the direction of the electric field need not be per-
pendicular to the surface and the magnitude of the field need not
be the same at all points on the surface. It’s not possible to do the
flux integral f E, dA, and we can’t calculate the electric field.
Gauss’s law is useful for calculating the electric field only when
the charge distribution is highly symmetric.

22.5 no Before you connect the wire to the sphere, the presence
of the point charge will induce a charge —¢ on the inner surface
of the hollow sphere and a charge g on the outer surface (the net
charge on the sphere is zero). There will be an electric field out-
side the sphere due to the charge on the outer surface. Once you
touch the conducting wire to the sphere, however, electrons will
flow from ground to the outer surface of the sphere to neutralize
the charge there (see Fig. 21.7c). As a result the sphere will have
no charge on its outer surface and no electric field outside.

Bridging Problem

@ Q(r) = Qe ¥/%[2(r/ap)* + 2(r/ag) + 1]

er—Zr/ao

() E = =——[2(r/ac)’ + 2rfaq) + 1]

(©  E/Eproton
1.00
0.80
0.60
0.40

0.20

0.00

rla
0.00 2

3.00

1.00 2.00 4.00
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