
Recursion is a programming teqnique that allows us to

express functions that would be difficult to implement in an

imperative way.

Recursion is a simple concept to explain but hard to

master.

A Recursive function is simply a function that calls itself

within itself.

It partially calculates the result in one iteration and then

returns the partial result to the caller which combines the

partial result with other parts and then returns its own

result.

This process repeats until the final result is calculated from

the partial results

It consists of the following parts:-

- Base Case to end the recursion. If omitted the

recursion becomes infinite and doesn’t stop.

- The General Case: the part of the function where it

calls itself

A famous example is the Fibonacci sequence defined as

follows :-

With

-fib(2) = fib(1) + fib(0) = 2

-fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1)= (1+1)+1=3

-fib(4) = fib(3) + fib(2) = (fib(2) + fib(1))+3=(3+1)+3=7

We can easily write a C++ function to implement the

Fibonacci sequence easily:-

- We start with the base cases when n == 0 and

when n == 1.

- Then we handle the general case when n >= 2.

int fib(int n){
 //base case (essintial to end the recursion)
 if (n == 0 || n == 1)
 return 1;
 //general case
 //the function calls itself and calculates a
 //partial result and combines it with the other
 //part the it returns it's own result
 return fib(n-1) + fib(n-2);
}

We start by writing down the base case then move on to

define the general case that includes the function calling

itself with different parameters.

if we call the function with n=5; fib(5), then we will get the

following trace:-

At each stage the function calls itself twice and gets two

results and then it adds them to get the full results then it

returns that result to the caller.

We can also turn a function that is written without

recursion (imperative function) into a recursive function by

turning loops into recursion.

For example:-

//return the sum of the array
int sum(int arr[], int SIZE){
 int result = 0;
 for(int i = 0; i < SIZE; i++)
 result += arr[i];
 return result;
}

//recursive implementation
int sum(int arr[], int SIZE, int i = 0){
 //when i goes out of range we end the recursion
 //and return zero which doesn't affect the sum
 if (i >= SIZE)
 return 0;
 //we add arr[i] to sum(i+1..n) and return
 return arr[i] + sum(arr, SIZE, i + 1);
}

We can turn loops into recursion with minimal effort.

Lets now try to guess what is the output if we are given the

a recursive function and it’s initial parameters.

For the following function:-

int func(int x, int y){
 if (x == 0)
 return y;
 else
 return func(x - 1, x + y);
}

What is the output for func(5, 2) ?

To answer such question we must calculate the
values of the parameters at each stage

First iter: x=5, y=2
Second iter: x=4, y=2+5
Third iter: x=3, y=2+5+4
Forth iter: x=2, y=2+5+4+3
Fifth iter: x=1, y=2+5+4+3+2
Final iter: x=0, y=2+5+4+3+2+1, return y

And the result is y=2+5+4+3+2+1 = 17

To answer questions like these we need to trace
the function’s execution at each iteration and
calculate each partial result until we get to
the base case.

