

Arrays are lists of variables of the same type that are

placed next to each other in memory and accessible from

a single variable by indexing.

Their syntax is:

datatype name [size];

The size must be constant and known at compile time.

They can be initialized with values in {} separated by

commas.

For example:

 //all elements are initialized

 int arr[5] = {1, 2, 3, 4, 5};

 //first three are initialized
 // and the rest are zeros
 int arr[5] = {1, 2, 3};

 //size of the array is 5
 //which is the size of the initializer
 int arr[] = {1, 2, 3, 4, 5};

Array elements can be accessed by indexing
using [index] syntax.

For example:

 arr[3] = arr[1] + arr[2];

 cout << arr[3];

Processing arrays is usually done with for
loops to access each element of the array
individually.

For example:

 const int SIZE = 5; // constant size only
 int arr[SIZE] = {1, 2, 3, 4, 5};

 int sum = 0;
 for(int i = 0; i < SIZE; i++){
 sum += arr[i];
 }
 cout << "sum = " << sum << endl;

we can replace the above loop with a for each
loop which is usually preferred:

 for(int element: arr){

 sum += element;
 }

Arrays can’t be copied directly, instead each
element has to be copied individually:

 int arr_copy[SIZE];
 for(int i = 0; i < SIZE; i++){
 arr_copy[i] = arr[i];
 }

Passing arrays to functions is done by passing
the memory address of the first element of the
array to the function.

And this is essentially passing by reference
and no new arrays are created thus any change
to the array inside the function reflects on
the original array.

We can’t deduce the size of the array inside
the function and we have to pass it separately
to the function.

//adds one to all elements in the array
void add_one(int arr[], int SIZE) {
 for(int i = 0; i < SIZE; i++)
 arr[i] = arr[i] + 1;
 //the change is reflected on the original array
}

To forbid a function from changing the content
of an array we can pass it as a const:

//this function is forbidden from changing the
//content of array arr
void add_one(const int arr[], int SIZE) {
 for(int i = 0; i < SIZE; i++)
 arr[i] = arr[i] + 1;
 //this will produce an error and won’t compile
}

We can’t return arrays from functions such a
function is forbidden:

//this is illegal
int[] reversed(int arr[], const int SIZE);

for the function like the one above who returns
a new array that is a reverse of the original
array we can instead pass the reverse array as
a parameter and the function can fill it’s
content with the reversed values.

void reversed(int arr[], int reverse[], const
int SIZE);

C-strings are essentially arrays of char that
is terminated by the null character ‘\0’

They can be initialized by the array
initializer {} or by the “” syntax

 //this is legal (notice the ‘\0’ at the end)
 char str[] = {'h', 'e', 'l', 'l', 'o', '\0'};

 //this is also legal (notice the lack of ‘\0’)
 char str[] = "hello";

Reading and Writing c-string is very similar to
reading and writing a normal string.

We can write a c string exsactly as we write a
string.

 char cstr[] = "hello world";
 cout << cstr;

reading a c-string is also similar but with
some exceptions.

• We have to make sure the size of the c-
string is big enough to fit the string we
are reading

• We have to make sure to have one extra
space in the c-string for the null
character ‘\0

For example:

 char cstr[256]; // make sure it's big enough
 cin >> cstr; //reads a single word in the line
 getline(cin, cstr, '\n'); //reads the entire line

once the cstr is read from the screen, a null
character ‘\0’ is placed at the end to mark the
end of the c-string.

We can get the length of the string using the
strlen function.

 char cstr[256];
 cin >> cstr;
 // entered " hello " to the terminal
 cout << strlen(cstr); //outputs 5

C-String functions:
The C standard library has many functions to
help deal with c-strings and the most common of
which are:-

 C-String Functions

Some examples on c-string functions:

 char cstr[256];
 strncpy(cstr, "hello world", 5);
 cout << cstr << endl; //outputs hello

 strcat(cstr, " world");
 cout << cstr << endl; //outputs hello world

 cout << strlen(cstr) << endl; //outputs 11

 itoa(3049, cstr, 10);
 cout << strlen(cstr) << endl; //outputs 4

//outputs -1
 cout << strcmp("abcd", "abcz") << endl;

//outputs 0
cout << strcmp("abcd", "abcd") << endl;

//outputs 1
cout << strcmp("abcz", "abcd") << endl;

