
Pointers: a special type of variables that holds the

memory address of another variables.

In C++ pointers of all types have the same size that

depends on the size of a memory address of the CPU

• For 64-bit CPU the size of a pointer is 64-bit

• For 32-bit CPU the size of a pointer is 32-bit

To declare a pointer: type * pointerName;

For example:-

 int * iptr;
 string * sptr;
 //size is always 8 (bytes) on my machine
 cout << sizeof(iptr);//output: 8
 cout << sizeof(sptr);//output: 8

pointers takes the memory address of another variable.
To access the variable’s memory address we use the &
symbol before the variable name:-

 int x = 5;
 //ptr now holds the memory address of x
 int * ptr = &x;

each pointer can only hold a memory address of a variable
of the same type as the pointer.

 int x = 5;
 string str = "hello world";

 string * ptr;
 ptr = &x; //illegal: x not of the same type
 ptr = &str; //legal: str is of the same type

To access the variable pointed to by a pointer we do
dereferencing:-

Dereferencing is done with * before the pointer’s name:-

 int x = 5;
 int * ptr = &x;
 (*ptr)++;//x is now 6
 int y = (*ptr) + 3;
 cout << y; //output: 9

 string str = "hello ";
 string * sp = &str;
 (*sp).append("world");
 cout << (*sp).length(); //ouptut:11

Arrays and Pointers:-

Arrays are actually a special type of pointers, They hold
the memory address of the first element in the array.

For example:-

 int arr[] = {1, 2, 3, 4, 5};
 //arr holds the memory address of arr[0]
 int * ptr = arr;
 cout << *ptr;//ouput: 1

this also work:-

 //added 2 to the memory address
 //and dereferenced to get arr[2]
 cout << *(ptr+2);//output: 3
 cout << ptr[2];//same as above

pointers can be used like arrays and vise versa.

pointers and Functions:-

Pointers can be passed to and returned by functions,

they can also be passed instead of arrays:-

void print_arr(int arr[], int SIZE){
 for(int i = 0; i < SIZE; i++)
 cout << arr[i] << ' ';
 cout << endl;
}

void print_ptr(int * ptr, int SIZE){
 for(int i = 0; i < SIZE; i++)
 cout << *(ptr + i) << ' ';
 cout << endl;
}

Both of the functions above are equivalent as both arrays and

pointers are the same thing:-

 print_arr(arr, 5);
 print_arr(ptr, 5);//this works
 print_arr(&arr[0], 5);//this also works

 print_ptr(ptr, 5);
 print_ptr(arr, 5);//this works
 print_ptr(&(*ptr), 5);//this also works
 print_ptr(&ptr[0], 5);//also this works

all of the statements above are equivalent and each of them

outputs: 1 2 3 4 5

We can use const on a pointer parameter to make it

immutable just like passing const arrays.

For example:-

void add5(const int * ptr){
 *ptr = *ptr + 5;//this is illegal
}

void increment(const int * ptr, int SIZE){
 for(int i = 0; i < SIZE; i++)
 *(ptr+i)++;//this is illegal
}

Both functions above are illegal because they change the

variables they point to.

Null Pointers:-

Any pointer that is not initialized at declaration may have

the value 0.

0 or NULL is a special value meaning this pointer doesn’t

point to anything.

Trying to dereference a pointer with a value NULL will

result in a runtime error and the program will crash.

 int * ptr = NULL;
 cout << *ptr;//this will cause a runtime error

when declaring a pointer without initializing, then it’s

recommended to initialize it with NULL

