
Object Oriented Paradigm is a programming approach

revolves around objects that focuses on modeling real

world entities and make it easier to reason about them and

using them in the context of a program.

It also helps us define various types of relationships

between objects and how to use them together,

but relationship between objects is beyond the scope of

this discussion.

In C++ and many other programming languages Object

Oriented relies on two parts:-

• Objects representing real world entities (for example

string represents text, ofstream represents a file).

• Classes/Structs that describes the structure and the

behavior of an object and is considered a blueprint to

construct objects from.

A Class consists of three primary parts:-

• Class Name

• Data fields: consists of the variables that makes up

the an instance of a class.

• Methods: functions that are tied to an instance of a

class and has access to it’s data fields

We can represent a class in a graphical way with a UML

Diagram Like the following

o The first part represents the name of the Class.

o The second part represents the datafileds.

o The Third part represents the Methods of the class.

Methods that do not have a return type and their name is

similar to the name of the class are called Constructors.

Constructors are special methods/functions that are used

to make objects (instances of particular class) and they

are overloadable.

They are used to initialize data fields and do any needed

computations to make an object.

For example considering this class:-

//class name
class Student{

 //data fields
 string name;
 string major;
 double gpa;

 //methods
 Student(string name, string major, double gpa){
 this->name = name;
 this->major = major;
 this->gpa = gpa;
 }

 void say_hi(){
 cout << "hi my name is " << name << endl;
 }
};

The function Student is a constructor that is used to make

objects of the type Student and initialize it’s data field.

There are three types of constructors we need to be aware

of:-

• Normal Constructors: constructors with parameters

that initialize the object’s data fields and they aren’t

called automatically for any reason.

• Default Constructors: constructors with no parameters

that are called automatically when declaring an object

of a class.

• Copy Constructors: constructors that takes a const

reference of an object of the same type and are used

to copy one object to another object, and they are

called automatically when using assignment (=).

For example the following constructors of class Student:-

 //default constructor
 Student()
 : name(), major(), gpa() {}

 //copy constructor
 Student(const Student & other){
 this->name = other.name;
 this->major = other.major;
 this->gpa = other.gpa;
 }

 //normal constructor with parameters
 Student(string name, string major, double gpa)
 : name(name), major(major), gpa(gpa) {}

If we used these constructors as follows, notice which

constructor is being called:-

 //calling default constructor
 Student s1;
 Student s2();
 Student s3 = Student();

 //calling parameterized normal constructor
 Student s4("Ahmad", "Computer Engineer", 3.52);
 Student s5 = Student("Ahmad", "Computer Engineer"
, 3.52);

 //calling copy constructor
 Student s6 = s4;
 Student s7(s4);

Student s8 = Student(s4);

Copy Constructors are provided by the compiler if no

such constructor is written by the programmer.

Default Constructors are also provided by the

compiler but only if no other constructors of any

type present for the class.

Data Fields can be accessed with the following

syntax:-

 objectName.fieldName

Methods are functions that are bounded to an

instance of a class and have access to it’s

fields via this pointer.

They can be called by the following syntax:-

 objectName.methodName(param1, param2, …)

for example the following methods for class Student:-

 void print_info(){
 cout << "My name is: " << name << endl;
 cout << "I study: " << major << endl;
 cout << "my GPA is: " << gpa << endl;
 }

 int compare_gpa(double other_gpa){
 if (gpa < other_gpa)
 return -1;
 else if(gpa > other_gpa)
 return 1;
 else
 return 0;
 }

If we execute the following Code:-

Student s("Ahmad", "Computer Engineering", 3.52);
 s.print_info();
 cout << s.compare_gpa(2.89) << endl;
 cout << "name: " << s.name << '\n';

Output:

 My name is: Ahmad

I study: Computer Engineering

my GPA is: 3.52

1

name: Ahmad

Instead of directly accessing fields we usually use getters

(accessors) and setters (mutators) to read and write to a

field.

For example a getter and a setter for field gpa:-

 double getGPA(){
 return gpa;
 }
 void setGPA(double gpa){
 this->gpa = gpa;
 }

We call them as follows:-

s.getGPA(); // read value of GPA
s.setGPA(3.42); //set value of gpa to 3.42

Visibility Modifiers are special labels that are used to set

the fields and methods of class/struct accessible from

outside of it or not:-

There are two types of visibility modifiers:-

• Public: sets the methods and variables to be

accessible from outside of the class.

• Private: sets the methods and variables to be

inaccessible outside of the class and only accessible

from inside of it.

For example:-

class Student{

private:
 string name;
 string major;
 double gpa;

public:
 Student(string name, string major, double gpa)
 : name(name), major(major), gpa(gpa) {}

 void print_info(){
 cout << "My name is: " << name << endl;
 cout << "I study: " << major << endl;
 cout << "my GPA is: " << gpa << endl;
 }

 double getGPA(){
 return gpa;
 }
 void setGPA(double gpa){
 this->gpa = gpa;
 }
};

The fields of the class Student are private and can’t be

accessed outside of the class and all the methods and the

constructors are public and are accessible outside of the

class

But the field gpa has a getter and a setter and can be

accessed using these methods.

This is called Encapsulation

Visibility difference between a class and a struct:-

Class and Struct are very similar to each other with very

few differences between them.

The main difference we are interested in is the default

visibility their methods and variables which and can be

summed as follows:-

• Everything inside a class is private by default unless

declared otherwise.

• Everything inside a struct is public by default unless

declared otherwise

Objects can be const as their fields can not be changed:-

 s.name = "Omar"; //this would be illegal
 s.setGPA(3.42); //this also is illegal

Objects can be constructed and used without being binded

to a variable:-

 //output: 11

cout << string("hello world").length() << '\n';

We usually put the class prototype in one file denoted .h

by and the implementation in another file denoted by

.cpp :-

In Student.h :-

#ifndef STUDENT_H
#define STUDENT_H
class Student{
private:
 string name;
 string major;
 double gpa;
public:
 void print_info();
}
#endif

In Student.cpp:-

void Student::print_info(){
 cout << "My name is: " << name << endl;
 cout << "I study: " << major << endl;
 cout << "my GPA is: " << gpa << endl;
}

