
Functions are group of statements that perform a task,

They take 0 or more parameters and perform their

statements and return an output (except for void functions

that don’t return a value).

- A function prototype (signature) consists of the return

type, the name of the function and the parameter list.

- A function body is the statements that gets executed

when the function is called.

- A function can return a value and ends it’s execution

with the return keyword (for a void function the return

keywork can be used to end the execution early).

Arguments Can be passed by reference or by value:-

-if passed by value then the argument is copied and is

passed to the function and the original copy is

untouched

void add_five(int var){ //var taken by value
 var = var + 5;
}

int var = 3;
add_five(var); //var value doesn’t change

//output is “var: 3”
cout << "var: " << var;

-if passed by reference then the original variable is

passed and any changes that happens to it in the

function’s body also changes the original variable

void add_five(int & var){ //var taken by
reference
 var = var + 5;
}

int var = 3;
add_five(var); //var value does change

//output is “var: 8”
cout << "var: " << var;

-constant references can be used to guaranty that no

changes happen to the variable

Function overloading is creating different functions with

the same name but with different parameter list

(changing the return type of the function doesn’t matter).

//arguments are taken as constant references
//to guaranty the original variables are
//unmodified

//swap two ints
void swap(const int & a, const int & b){
 int tmp = a;
 a = b;
 b = tmp;
}

//swap two strings
void swap(const string & a, const string & b){
 string tmp = s1;
 s1 = s2;
 s2 = tmp;
}

Functions can have default arguments for their parameters

That are used when no arguments are provided by the

caller.

Default parameters have to be declared in order and they

can not be skipped.

void func1 (int x, int y = 3, int z); //Illegal
void func2 (int x, int y = 3, int z = 5);
// Legal

Passing arguments have also to be done in order and no

argument can be skipped and the argument(s) after it

given values.

func1(2, , 20); // illegal
func2(2) // legal as y and z use their default
values

C++ has three types of variable scopes and they are:-

1. Global Scope: global scopes define variables outside

of any function and are accessible anywhere in the

program

2. Local Scope: Local scope define variables that are

visible only inside a specific region of the program

and are inaccessible outside it.

This region of code is usually contained withen curly

brackets and they mark the body of a function or a

body of a loop or an if statement or an unbounded

internal scope

3. Static Scope: static scope defines variables that are

local to a function and which values aren’t destroyed

after the function returns and retain their values when

the function is called again.

- Static variables should be initialized at declaration

or else they won’t retain their value when the function

is called again

//global variable accessible everywhere
int x = 5;

int function(){
 //static variable that retains it's value
 static int sum = 0;

 for (int i = 0; i < 10; i++){
 //variables value and i are local
 //to the for loop scope
 int value = i + 5;
 sum += value;
 }
 {
 //variable z is local and accessible
 //only in this inner scope
 int z = 2 * sum;

 }
 //illegal as z is inaccessible here
 cout << z;
 return sum;
}

- Inline functions: are function whose statements get

inserted where they are called to avoid the overhead

of function calls and speed up the program

- Inline functions should be simple functions and should

not contain Loops or Recursion

inline int mult3(int x){

 return x * x * x;
}

int x = 5;

cout << mult3(x) << endl; //output is 75
// the above will expand to this
cout << x * x * x << endl;

