Quiz#1

Name: ..

Reg.NC

Q1: In the following figure;

- a. What is the name of the glassware?
- 1.Beaker (2.) Graduated Cylinder 3. Erlenmeyer flask 4. Pipet
- b. The Volume of the liquid and the error in the volume are

Q2. A student preformed an experiment to determine the density of a liquid, the following result was obtained:

Mass of empty beaker = 37.102 g

Mass of beaker and 25.00 ml liquid = 65.125 g

Calculate the density of the liquid, consider the significant numbers in your answer.

$$d = \frac{m}{V} = \frac{98.023}{25.00} = 1.1219/ml$$

Q3. Calculate the molar mass of [KAl(SO₄)₂.12H₂O], given that atomic mass of K=39.0, Al=27.0, S=32 O= 16.0 and H= 1.0 g/mole

molar mass 3.0 1/27 0 +20(32) +8(16.0)+

malar mass = 39.0 + 27.0 + 2(32) + 20 (16.0) + 24 (1.0)

Chem 109 Quiz 1

The University of Jordan School of Science Department of Chemistry

Section ID

ų.

- [1.] In the following image, the names of the glassware and equipment are
- erlenmeyer flask and crucible tongs.
- (B) erlenmeyer flask and clamp.
- (C) volumetric flask and crucible tongs.
- (D) volumetric flask and clamp.
- (E) erlenmeyer flask and test tube holder.
- [2.] You must wear goggles in the lab because
- (A) they look cool and are a trendy fashion statement.
- they protect your eyes from chemical splashes.
- they protect your eyes from fumes and odors.
- (D) they improve your vision.
- (E) the instructor wants all students to have uniform eyewear.
- [3.] An unused/leftover chemical should be
- (A) returned back to its original container right before you leave the lab.
- (B) taken outside the lab and dumped on the soil to fertilize it.
- disposed of in the designated waste container.
- (D) sent out to the Safety Committee.
- (E) left on the bench for the technician to take care of it.
- [4.] If the balance reading was taken as 0.2525, then it should be reported as
- (A) $0.2525 \pm 0.0001 s$

(B) 0.2525 ± 0.1000 g

(C) $0.2525 \pm 0.0100 \text{ g}$

(D) 0.2525 ± 0.0001 g

- (E) $0.2525 \pm 0.0010 \text{ g}$
- [5.] A metal sphere weighing 9.6 g is added to 21.5 mL water in a graduated cylinder. The water level rises to 24.5 mL. Calculate the density of the metal.
- (A) 3.20 g/mL

(B) 3.2 g/L

(C) 0.45 g/mL

(D) 0.39 g/mL

(E) 3.2 g/mL

Scanned with CamScanne

Q1: Which of the following statements are true (T) and which are false (F):

- Toxic chemicals can't be used outside the fume hood (> > 7
- Fire extinguishers is a safety equipment (

Q2: Write the name of the following glassware:

Q3: An empty beaker weighs 23.7524g. A 10.00 mL sample was transferred to the beaker. The total mass of the beaker and the sample was 39.4507. Calculate the density of the liquid.

Q4: How would the calculated X value be affected in the following cases:

- a) If some hydrated salt is spilled from the crucible after it is weighted:

 (Greater than, less than, same as) the true value
- b) If the dehydration is not completed:

 (Greater than, less than, same as) the true value

Quiz#2

Name:

Reg.N

Q1. 1.39 g of hydrated zinc sulfate was heated in a crucible; the mass percent of anhydrous salt (ZnSO₄) is 57.5%. Given that the atomic mass of Zn=65.38, S=32 O=16.0 and H=1.0 g/mole

a. The mass percent of water of crystallization is

الدل بإلث**ا**ب

b. The formula of hydrated salt is

Q2. A student burned 0.105 g of Aluminum in a crucible to get 0.204 g of white oxide. Given that the atomic mass of Al= 26.9, and O= 16.0 g/mole

a. Mass percent of Al in the oxide

Ì

b. Find the empirical formula of Aluminum oxide.

K102

$$M_{0} = m_{0}xide - mAI$$

$$= 0.204 - 0.105$$

$$= 0.0990$$

$$= 0.00390$$

$$0.00390 = 0.00619$$

$$0.00390 = 0.00619$$

$$0.00390 = 0.00390$$

$$1:1.59$$

(D) to expel both NH3 and H2O gases.

to produce MgO and Mg₃N₂ compounds.

Chem 109

Quiz 2

The University of Jordan School of Science

D			- 6	CI.		•	
Depa	rım	ent	OI.	Cn	em	ıstry	

= > 01408 X=1.9

		ID No		Section ID	
[1]	A 3.178 g sample of tin(II) chloride hydrated	calt was heated	to 150 °C All o	f the water
	(molar mass = 18.02 g/mol)				
	(molar mass = 189.61 g/mol			Somete	= 3.1789
(1		_		X= 1502	1405 = 2.67
(A		(B)	SnCl ₂ •2H ₂ O	X = 150%	WHIO
(C		(D)	SnCl₂•4H₂O	2.0 *	n= 250
(E)	SnCl ₂ •5H ₂ O			X=	Comparas
[2]	A 2.350 g sample of Nickel	(atomic weight = 58.	69 g/mol) is oxid	dized in a crucible	
	mass of the Nickel Oxide is				
	Given that the atomic weight				
(A)		B	71.00%	#10 = 3.310 #1 = 2.35 &	4
(C)		(D)	52.00%	pi = 2.35 8	
(E)	43.00%	(D)	32.0076	mass per cent =	
. ,					Wall Wig
[3]	After balancing the following			coefficients are:	
	$\underline{Mg}(OH)_2(s) + \underline{2}HCl(aq)$	→MgCl₂(aq) + 2	_H2O(I)		
(A)	2, 1, 2, 1	(B)	1, 2, 1, 2		
(C)	1, 2, 2, 1		1, 1, 1, 1		
(E)	2, 1, 1, 2				- 0
[4]	Which one of the following for		, м	"" (Sou) 2 . X H	70.
	Which one of the following fo	4	esent an alum?		
(A)	KAI(SO₄)₂•12H₂O	(B) (CuSO₄•5H₂O		
(C)	KCr(SO ₄) ₂ •12H ₂ O	(D) I	NH₄AI(SO₄)₂•12F	I₂O	
(E)	NaAl(SO₄)₂•6H₂O				
[5]	In the empirical formula of an	oxide, the purpose of	the second heati	ng step is	
(A)	to test if there is any remaining		W -51		
4	to convert Mg(OH)2 to MgO a	nd to expel both NH ₃	and H ₂ O gases.		
(C)	to convert Mg(OH)2 to MgO.				

Q1: A $\underline{2.4}$ g of Mg metal was burned with excess amount of air, and the resultant product Mg_xO_y weighs $\underline{4.56}$ g, find the Formula Mg_{n1}O_{n2}, the empirical formula of the oxide, and the % error in the experiment (Mm Mg= 24 g/mol, Mm O= 16 g/mol)

$$\frac{1}{16} = \frac{1}{16} = \frac{1}{16}$$

Q2: Fill the blanks with the correct answers:

- b) Not washing the precipitate in limiting reactant experiment with enough amount of hot water will ...decrease.... (Increase, decrease) the percentage of excess.

Quia Piule, Colorless b. decrease limiting

Name:	 Reg.NO.

Q1. The vapor of unknown volatile liquid occupies a 279 mL Erlenmeyer flask at 98.5 o C and 745 mmHg. The mass of vapor is 0.841 g, calculate the molar mass of the liquid?

Q2,10.00 ml sample of concentrated bleach bottle needs 25,70 ml of 0.31 M Na₂S₂O₃.

n. The mass% of NaClO in the <u>original</u> solution "Assume the density of bleach solution is 1.084 = \(\mu g/mL\)

b. By mistakes, unknown volume of water was added to the original bottle. If 10.00 ml from diluted solution was titrated with 0.31 M Na₂S₂O₃ and the solution turned clear after adding 6.60 ml. How many times the original solution was diluted

Q4. Q1. 0.333 g sample of antacid was dissolved in 50.00 ml of 0.14 M HCl solution, the excess HCl was titrated with 0.0250 M NaOH solution.

HCI moles that dissolved the antacid sample	n=MV = 0.14 x 50.00x 10]
Initial reading of burette	(0.70) ml ± (0-059
Final reading of burette	(15.60) ml ± (0.050)
Neutralizing Capacity of antacid (mole HCI / g of antacid)	6-6×10-3 - 0.019 mat/q

Q1) M.w = m.R.T = 0.841 . 0.0821 . (98.5+273) 0.279 (745/760) = 93.8 g/mol G2) a. 2 mol clo = mol 82032 M = 0.0257 x 6.31 2 + 0.01 = 0.398 Clob = 0.348 x 74.4 % 10 + 1.084 - 2.7% b. M = 0.0066+0.31 = 0.109 2+0.01 * diluted Factor = 0.398 = 3.9 54 0.102

[] 0.05 x 0.14 = 7.0 x 163 [3] 15.60 + 0.05 C = 7-0x103- (0.025 x (15.60-0.7)) 0.333 0.019 mol 19

Chem 109 Quiz 3 The University of Jordan School of Science Department of Chemistry

ID No

Section ID:

[1] A mixture of 1.20 g BaCl₂.2H₂O and 1.20 g Na₃PO₄.12H₂O was dissolved in water. Calculate the mass of precipitate Ba₃(PO₄)₂ formed. Molar masses: BaCl₂.2H₂O = 244.27 g/rnol; Na₃PO₄.12H₂O = 380.18 g/mol; Ba₃(PO₄)₂ = 601.93 g/mol.

[2] 5.00 mL of vinegar solution is titrated with 39.0 mL of 0.200 M NaOH. Calculate the mass percent of acetic acid (Molar mass = 60.05 g/mol) in vinegar. Assume the density of the vinegar is 1.00 g/ml.

Q_{1}
- 3Bact + 2 Na3 Po4 -> Ba3 (Po4) 2 + 6 Nacl
Racla
244.27 3 - 0.00/64 moloFBu3(pax)2
Nasport 100
1.20 1 = 0.00158 mol 0 [- Buz (pax)
#1.R
mass of Baz (po4)2 - 0.00158 x 601.93
= 0.951 g
Q2:
mol clo - mol baolt
Mclo = 0.039 x 0.2
0.005
= 1.56
$C(6^{-9}) = 1.56 \times 60.05 $
1 + 10
= 9.37%

-

Name:		Quiz (3)	Date: 21/12/2021
Registr	ation Number:	51015 MANN	
A.	A student titrated 10.00 mL	of acetic acid and 17.35 mL of (0.150 M NaOH were needed.
1.	Find the concentration of	acetic acid	
2.	Find % mass of acetic acid g/mol)	solution assuming density of	solution is 1.1 g/mL (M. wt: 60
В.	In antacid experiment,		
1.	Write a balanced equation	for the reaction of HCl and h	NaHCO ₃
2.	How many moles of HCI a	re needed to react with 0.47	g NaHCO3 (Mwt: 84 g/mol)
3.	The color change of brom	othymol blue indicator is from	mto

A. L. mol CH3(00H = mol NCeOH M.V = M.V M = 0.01735 x 0.150 0.01000 - 0.260 2. C/13(00/P/0 = 0.260 + 60 o/ 10 x1./1x 25001.42015 B. 1. Natroz+Hcl - Nacl+H2(03 2. mol HCl = mol NaHcoz mol 14c1 = 0.47/84 = 0.00560 3. Yellow - Blue

Name:

Reg.NO

Q1. A student reacts 200g of sodium metal (Na) with 250g of iron (III) oxide (Fe₃O₂) according to the following chemical equation. Given that the atomic mass of Fe=55.8, Na=23 and O=16.0 g/mole

a. Which reagent is the limiting reactant?

Na is Limiting reactant

b. The mass of iron metal that precipitated during the reaction.

9.7 gmal Na - X

Q2. How many moles of acetic acid (CH3COOH) needs to react with 25.30 ml of 0.20 M NaOH

Imal CH3 COOH - I mal NaOH

Chem 109 Quiz 4 The University of Jordan School of Science Department of Chemistry

IDN

Section ID 4

[1] A 0.200 g of antacid was neutralized with 10.0 mL of 0.100 M HCl. Calculate the neutralizing capacity of antacid?

[2] A 3.00 mL bleach (NaOCl is the active ingredient) sample is mixed with potassium iodide and acid to completely form triiodide ions, which titrated with 0.10 M thiosulfate solution. The endpoint is reached when 30.0 mL of the thiosulfate solution is added. What is the mass percent of NaClO in the bleach solution? Assume density = 1.00 g/mL.

ClO+ 2 S2O32+ 2H+ → Cl+ S2O62+ H2O

Q1: mol Hel = mol antareid) 0.0 × 0.1 = 0.00 mol C = 0.601 = 5 x10 mol/q Q2; mel 803 = 2 mol clo mes clo= 0.10 x 0.03 2 * 0.003 = 0.5 Clo-96 = 0.5 x 74 % 14 01 = 3.722%

Q1: Consider the following results on bleach experiment:

- Volume of diluted solution experiment = 15.0 ml
- Volume of <u>0.15 M Na₂S₂O₃</u> solution needed to titrate completely the diluted bleach solution = 22.00 mL
- Dilution factor of the original bleach solution = $\frac{30}{c_i}$
- Calculate the molarity and the mass % of the original bleach solution (density = 1.10 g/mL, Molar mass of NaClO= 74.5 g/mole

Q2: The vapor from an unknown volatile liquid occupies a 285 mL Erlenmeyer flask at 99.6 °C and 735 torr. The mass of vapor is 0.841 g, calculate the molar mass of the V.L and the density of the vapor at STP

Q,: mol 82803 - 2 mol clo
$\frac{M}{C10^{-2}} = \frac{0.15 \times 0.022}{2 \times 0.015}$
= 0:11
M = 0.11 * 30
Moriginal = 3.3
clo°10 = 3.3 x 74.5 %
2 (0 + 1.)
= 22.35°6
62: M.w = w. R.T
P.V
= 0.841 × 0.0821 × (99.6+273
(735/760) * 6.285
= 93.45
0 = P.M.w = 2.95 g/L
RT