A 1.88 g sample mixture of BaCl₂.2H₂O (molar mass = 244.3 g/mol) and Na₃PO₄.12H₂O (molar mass = 380.2 g/mol) was dissolved in 250 mL water, and after filtration and drying of the resulting barium phosphate precipitate Ba₃(PO₄)₂, (molar mass = 601.9 g/mol), weighed 0.15 g. If a drop of barium chloride solution added to the filtrate yielded a precipitate, then the mass % of the excess reactant in the sample mixture is equal to:

```
2 NasPOimp + 3 BaClaim - Bas(POs)am + 6 NaClam
```

- 84 %
- 71 %
- 77%
- 90 %
- 60 %

Clear my choice

1115	15ac12+	2 NO3 PO4	BC13	(PO4) 2+6/10e
FIJBBacks.	+2103po	+->Ba3(204)2-46	bael
mass Ba	iel 2 : 1	2Ber3(Po4) 0.15 x 3 601.9	2 * 3 * 24 * 2 4 4 . 3	4.3
		= 0.1839	-> mass%	1.R = 0.188 1.88
		-9 mas	s'a excess=	90%

Scanned with CamScanner

A 1.88 g sample mixture of $BaCl_2.2H_2O$ (molar mass = 244.3 g/mol) and $Na_3PO_4.12H_2O$ (molar mass = 380.2 g/mol) was dissolved in 250 mL water, and after filtration and drying of the resulting barium phosphate precipitate $Ba_3(PO_4)_2$, (molar mass = 601.9 g/mol), weighed 0.45 g. If a drop of barium chloride solution added to the filtrate yielded a precipitate, then the mass % of the excess reactant in the sample mixture is equal to:

 $2 \text{ Na}_3 PO_{4(aq)} + 3 \text{ BaCl}_{2(aq)} \rightarrow \text{ Ba}_3(PO_4)_{2(a)} + 6 \text{ NaCl}_{(aq)}$

0 90 %

t of

- 0 71%
- 60 %
- 0 84 %
- 0 77 %

Clear my choice

Next page

[3] mass Bacl2 = nBa3(po+)2 × 3 × 244.3 $= 6.45 \times 3 \times 244.3$ = 0.55 9 -> mass/81.R = 0.65 = 29°6 , mass'6 excess = 71%

Which one of the following statements is incorrect? Ol.An overestimate of the excess reactant mass % is obtained on incomplete drying of the precipitate. An overestimate of the excess reactant mass % is obtained on loss of part of the precipitate. BaCl₂ 2H₂O is the excess reactant, if addition of BaCl₂ aqueous solution to the filtrate didn't yield a precipitate. Na₃PO₄ 12H₂O is the excess reactant, if addition of Na₂PO₄ aqueous solution to the filtrate didn't yield a precipitate. Na₃PO₄ 12H₂O is not the excess reactant, if addition of BaCl₂ aqueous solution to the filtrate didn't yield a precipitate. Clear my choice

Which of the following statements is not correct concerning the experiment of limiting reactant?

Na₃PO₄.12H₂O is not the limiting reactant, if addition of Na₃PO₄ aqueous solution to the filtrate yields a precipitate.

BaCl₂.2H₂O is the limiting reactant, if addition of BaCl₂ aqueous solution to the filtrate yields a precipitate.

- An underestimate of the limiting reactant mass % is obtained on loss of part of the precipitate.
 - Na₃PO₄.12H₂O is not the limiting reactant, if addition of BaCl₂ aqueous solution to the filtrate yields a precipitate.
- An overestimate of the limiting reactant mass % is obtained on incomplete drying of the precipitate.