Pre-Laboratory Questions

1. What is the mole and molar mass? What are the molar masses of magnesium and atomic oxygen?

tmole is is the amount of substance of and a system which contains as many elementary orbites as there are atoms in a all ky of carbon 12.

I molar mass it the sum of the atomic masses in a molecule.

D= 15.99 1. molar mass for magnesium exide 15 = 40.31.9/mol

2. When 0.192 g of phosphorus is burned, 0.341 g of a white oxide is obtained. (a) Write a balanced chemical equation for the reaction of phosphorus with molecular oxygen based on this empirical formula. (b) Determine the empirical formula of the oxide.

Mass $0 = 0.1429 \Rightarrow 9.3 \times 10^{-5}$ male

Mp = $0.192 \Rightarrow 6.2 \times 10^{-3}$ male

A) $4p + 30 \Rightarrow 2p 0_3$ D $0.0062 \Rightarrow 0.0093 \Rightarrow 0 (P0_3) \times 2$ $0.0062 \Rightarrow 0.0093 \Rightarrow 0 (P0_3) \times 2$

Results and Calculations

Mass of empty crucible (after first heating)		g
Mass of empty crucible (after second heating)		g
Final mass of empty crucible	20,74±0.	o) g
Mass of crucible and Mg	20,94	g
Mass of Mg	0.20	g
Moles of Mg (n1)	8.2 ×10-3	mol
Final mass of crucible and Mg-oxide	21.08	g
Mass of Mg-oxide produced	0.34	g
Mass of oxygen gained	0.14	g
Moles of oxygen atoms (n2)	8. 45 ×10-3	mol
Formula of magnesium oxide (Mg _{n1} O _{n2})	Mg 3,2×10-3 0 8.5	75×10 ⁻³
Empirical formula of magnesium oxide بيتم عاد اصفرتم	M9 0	
Mass percent of Mg in the oxide (x_1) (experimentally)	6.82	%
Mass percent of Mg in the oxide (x ₂) (calculated for MgO)	60.3	%
Percentage error = $[x_2-x_1 /x_2] \times 100\%$	2.47	%

1.5 × 100 %

49

QUESTIONS D

 If water had not been added to your initial product, what error in the determined percentage of magnesium would have resulted (that is, i part of the product has been magnesium nitride)? Explain.

•••••
• • • • •
••••
••••
ting
the
M
A.
•••