Pre-Laboratory Questions

What are alums? Give examples other than potassium alum.

a colorless astringent compound that is a hydrated
double sulfate of aluminum & patassium, used in
solution medicinally binducing toming. ex. Note 150 a) X 140

2. What are the hydrates? Give few examples of metal salt hydrates.

is a campound that has crystcillized from (ag) solution.
with weekly bound water molecules contained in the
Crystal : ex; cusou SH20 , NaczH302.3H20

3. Potassium chromic alum has the formula: KCr(SO₄)₂.xH₂O. A sample of 1.12 g of this alum was heated in a crucible to get a constant mass. The mass of the anhydrous salt produced (KCr(SO₄)₂) was 0.64 g. Calculate the value "x" in the formula of the alum.

mass of 1/20 = mass of alum - mass of salt = 1.12 - 0.64	= 0.489 9
h . Salt = 0.64 a. a. a. 23 mal	
X = nH20 0.07 = 12	
KCv (Soul 12Ha)	

Results and Calculations

A. Potassium Alum:

Mass of empty crucible (m ₁)	19.08	g
Mass of crucible and the alum (m₂)	20.04	g
Mass of crucible and anhydrous salt (m ₃)	19.58	g
Mass of alum (m ₂ -m ₁)	0.96	g
Mass of anhydrous salt (m ₃ -m ₁)	0.50	g
Mass of water lost upon heating (m ₂ -m ₃)	0.46	g
Number of moles of water lost upon heating	0.015	mol
Number of moles of anhydrous salt (KAl(SO ₄) ₂)= $\frac{\zeta_o}{25\%2}$	25 1936	mol
Percentage of water of crystallization, by mass	47.9	%
The value "x" in the formula, (number of moles of water of crystallization / number of moles of anhydrous salt)	0.025 1.936 ×10-3	

B. Unknown Hydrate:

Unknown number: ----U

Mass of empty crucible (m ₄)	19.06	g
Mass of crucible and the hydrate (m₅)	20.17	g
Mass of crucible and anhydrous salt (m ₆)	19 96	g
Mass of anhydrous salt (m ₅ -m ₄)	L.II	g
Mass of water lost upon heating (m ₅ -m ₆)	€ 0.9	g
Percentage of water of crystallization, by mass	13 844	%

Mass sof Lonkmover HyD

18 13.

QUESTIONS

1.	What is the effect on the calculated value of "x" if the dehydration of the
	alum is not complete
	num Hzo mus,
	When m decrease num: P. moles of 420 will decrease.
	too sa x value will becrease.
2.	A student heated 1.16 g of hydrated sodium sulfate in a crucible to get
	0.51 g of anhydrous salt. What is the formula of the anhydrous salt?
	(Show your work)
	moles 140 = 1.16 - 0.51 = 0.65 g
	Durn of moles HzQ = 0.45 20.036
	num of moles: 0:51 = 3.6 × 10-5
	X = 0.036
	Ferrand Naz Sou. 10 HzO
	mad untalple on selected it my feety in the my Because as a stance