Pre-Laboratory Questions

A metal sphere weighing 9.48 g is added to 21.27 mL water in a graduated cylinder. The water level rises to 24.78 mL. Calculate the density of the metal.
d= m/U _ 9.48/3.51
ياس/ و 2.70 =
2. An empty beaker weighs 32.4257 g. A 10.00 mL sample of unknown liquid is transferred to the beaker. The total mass of the beaker and liquid sample was 39.4507 g. Calculate the density of the unknown liquid. M of the unknown liquid = 7.025 g.
= 0.7025 g/mL
3. A term that is easily confused with density is specific gravity. What is meant by specific gravity? What are the units of specific gravity?

Results and Calculation

A. Determination of the Density of Pure Liquid

Pure water	Trial (I)		Trial (II)	
Mass of beaker	34.41	g	34.39	g	
Mass of beaker + water	42.60	g	44.34	g	
Mass of water	8.19	g	9.95	g	
Volume of water	10.00	mL	10.00	mL	
Temperature of water	19.0	°C	19.5	°C	
Density	0.819	g/mL	0.995	g/mL	
Average density	- HOO - C	0.907			
Handbook density	0.9983			g/mL	
Unknown liquid	772 1.23	drig t			
Unknown Nomber	A				
Mass of beaker	34.39	g	RH W III A A. J.	g	
Mass of beaker + unknown liquid	44.81	g		g	
Mass of unknown liquid	10.42	g		g	
Volume of unknown liquid	10.0	mL		mL	
Density of unknown liquid	1.042	1.042 g/mL			

B. Density of Solutions

	Trial (I)		Trial (II)
Mass of beaker	34.35	g	
olume of solution	10.0	mL	Typunge
Mass of beaker + solution	44.45	g	
Mass of solution	10.1		
Temperature of solution	to the contract	g	e irrector
Density of solution	22.0	°C	Test in
- J S SOIGHOIT	1.01	g/mL	124512

C. Density of Solids

Manager	Trial (I)		Trial (II)	
Mass of beaker	34.40	g	VACOUNTY OF THE PROPERTY OF TH	
Mass of beaker + solid pieces	44.92	g	g	
Mass of solid pieces Initial water level in the graduated	10.52	g	rash waden ing	
cylinder	70	mL	mL	
Final water level in the graduated cylinder	75	mL	mL	
Volume of solid pieces	listeric	or called the	and Andrews A	
Density of the solid substance	2.05	mL g/mL	mL 	

Questions

프로젝트 아이들 아이들 때문에 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.	
1. What error would be introduced into the density of the metal pellets if you had not shaken the pellets to remove adhering air bubbles? Would the density be too high or too low?	
backer, personal ever , too lan	
Q Ag Pt	(
2. The density of silver is 10.5 g/cm^3 and the density of platinum is 21.45	
g/cm3. If equal masses of silver and platinum were transferred to equal	
volumes of water in graduated cylinders, which graduated cylinder	
would have the highest volume reading? Explain.	
Ag, because the density is cross proportional with	
wolune. The lowest weather the ligher desity dessity	
have the higher voyline.	
Sin o	