~ ~

The University of Jordan Dept. Of Chem.

General	Chem.	102

Date: 16/4/2016

 First Exam Time: 60 Min.

 $R = 0.0821 \text{ Latm mol}^{-1} \text{ K}^{-1}$ $Kw = 1 \times 10^{-14} \text{ at } 25^{\circ} \text{ C}$ pH + pOH = 14 $pH = pKa + log \frac{[A^{-}]}{[HA]}$ $kp = kc(RT)^{\Delta n}$

10001010

1. (A) 01010001

c d

d e

10.

a

c

.

2.

b

e

11.

.

3.

1

X

e

12.

a

.

 \mathbf{A}

4.

X

d

e

13.

1

C5.

| |

X

(

е ·

14.

1)

.

đ

6

a

X

g ,

e

15.

a l

c

d

X

e

7.

b

-

X

16.

17.

4

c

8.

a

W

c

d

d

a

d

9.

•

C

0

18. a

X

d

Circle the correct answer for each of the following questions and put (x) on the corresponding choice on the front page:

 Q_{l} . Consider the following reaction mechanism:

Step 1. $NO_{2(g)} + NO_{2(g)} \rightarrow N_2O_{4(g)}$

Step 2. $N_2O_{4(g)} + CO_{(g)} \rightarrow CO_{2(g)} + NO_{(g)} + NO_{2(g)}$

In the overall reaction, N₂O₄ is a

- (a) reaction intermediate.)
- (b) heterogeneous catalyst.
- (c) reactant.

(d) product. (e) homogeneous catalyst

 Q_2 . Suppose the reaction: A + 2B \rightarrow AB₂ occurs by the following mechanism:

Step 1 A+B AB slow -> Rate 1 (A) [B]

Step 2 $AB + B \longrightarrow AB_2$ fast

Overall $A + 2B \rightarrow AB_2$

The rate law expression must be Rate =

- (a) k[A] (b) k[B]
- (c) $k[A][B]^2$
- $(d) k[B]^2$
- (e) k[A][B]

Q3. Which of the following diagrams does not represent a state of chemical equilibrium?

Q4 Consider the following equilibrium:

$$4 \text{ CuO}_{(s)} = 2 \text{ Cu}_2 \text{O}_{(s)} + \text{O}_{2(g)}$$

When CuO(s) was placed in a closed container at a given temperature and reaction was allowed to reach equilibrium the pressure was found to be 0.216 atm.

The equilibrium constant K_p for the reaction is.

KPS PO,

- (a) 0.216
- (b) 0.345
- (c) 0.453
- (d) 0.561
- (e) 0.721

The value of K_c for this equilibrium is 64. In an experiment, equal amounts of hydrogen and iodine were mixed together in 1.0 L container at 723 K, at equilibrium the reaction mixture was found to contain 1.25 moles of iodine. Calculate the concentration of hydrogen iodide in the mixture at 723K

- (a) 10
- (b) 12

- (e) 18

64 s (2x)2 1,25

X 5016 25

(A) 0.04000 mole sample of SO₃ is introduced into a 3.000 L vessel and allowed to reach equilibrium. The amount of SO3 present at equilibrium is found to be 0.0264 mole. Calculate the value of Kc for the reaction

 $2 SO_{3(g)} \rightleftharpoons 2 SO_{2(g)} + O_{2(g)}$

- (b) 5.1 x10⁻⁸
- (c) 6.0×10^{-4}

Kcs 2.1-10-3.

X s 2.1 € 10

 Q_7 . What is the K_P at 1173°C for the reaction: $2 CO_{(g)} + O_{2(g)} \rightleftharpoons 2 CO_{2(g)}$ if K_c is 2.24×10^{22} at the same temperature

- (a) 3.91×10^{18}
- (b) 6.89×10^{-22}
- (c) 1.76×10^{-20}

- (d) 7.12×10^{23}
- (e) 1.89×10^{20}

Keske (RT) Dh

5 2.24× 1022 + (0.0821 + 1446)-1

Q₈ Consider the following equilibrium: + $CO_{2(g)} + O_{(s)} = 2CO_{(g)}$, $\Delta H = +172$ kJ/mol.

Which of the following statements is correct?

- (a) Increasing the temperature of the reaction will produce more CO2
- (b) Decreasing the total pressure (increase the volume) will produce more of CO
 - (c) Adding more carbon monoxide to the reaction will shift the reaction to the right
 - (d) Adding CO2 to the system will shift the equilibrium to the left
 - (e) More CO will be produced when a catalyst is added
 - O. For the reaction

$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$$

If $K_c = 4.3 \times 10^6$ and the following concentrations are present; $[SO_2] = 0.010 \text{ M}$,

 $[SO_3] = 10 \text{ M}, [O_2] = 0.01 \text{ M}$. Which of the following statements is correct?

- a. The system is at equilibrium
- b. The system is not at equilibrium and is shifting from right to left
- c. The system is not at equilibrium and is shifting from left to right
- Kc s 4.3 * 106

Q 5 102

- d. There is not enough information
- e. The reaction will be forced in one direction

0 > 1 0.01

 Q_{10} . Consider the following reaction

$$\begin{array}{c} \text{HSO}_4^{-1} + \text{NH}_3 \rightarrow \text{NH}_4^{+} + \text{SO}_4^{2} \\ \text{2} \end{array}$$

Which of the following is correct?

- a) HSO₄ is Lewis base.
- b) NH₃ act as acid.
- c) NH₄⁺ is the conjugate base of NH₃. X
- d) The above reaction is not acid-base reaction.

= 5

مراحق.

e) SO_4^2 is the conjugate base of HSO₄.

(a) 0	.1 M.HCl	(b) 0.1 M NaOH	(c) 0.1	M NH ₃	
(d) (0.1 М СН₃СООН	(e) 0.1 M NaCl	4	قام	
	in so are	John	- igus	عنه	
Q12 Which	one of these state	ements about stron	g acids is true	27	
			A - m 1		
(b)	strong acids are co	ompletely or nearly	d to electrone / completely i	gative oxygen atom ionize in water. X	5. ×
(d)	I he conjugate base Strong acids are ve	e of a strong acid i	s itself a stron	ng bases.	
Cop's	Strong acids produ	ice solutions with	eids. a higher pH tl	han weak acids. X	
1000		John I	British Pri	man weak acids. X	
Qu. The n	W oc 0 2577				
Ers. The p	11 01 a 0.35 M of	weak base solution	is 12.4. Wha	at is the K _b of this ba	se
(a) 0.35	(b) 1.8x10 ⁻⁷	(c) 1.9×10^{-3}		.65 (e) 1.8x10 ⁻⁵	
() [HO]	0.35			PH s 12.4	
	12 /2		The state of the	POH : 1.6	
0.952 2X) KP &	0.35			-1.6 5 +109	50H-7
				-1.0 5 +109	
Q14. Calcu	late the pH of 0.7	0 M aqueous solu	tion of sodiur	n propionate, NaC ₃ H	7.0 2.5
K6, 7, 7 = 10	$HC_3H_5O_2) = 1.3x$	10-5.	on or boards	,	
V ₁₄ Calculate (K _a) K _b , 7.7 = 10 ⁻¹⁰ (a)	9.2 (b) 9.4	(c) 8.7	(d) 8.9	(e) 4.8	,
2 +1 + 2 10	- Lance		(7)	(0) 1.0	
O15. Which	ch of the following	o statements is oar	rant concern	ing the strength of t	•
acid	ls? (part of period	lic table is given):	rect concern	ing the strength of t	ihe
			TEL	alik 🍇 🎤	
a)	HF > HCl > HB	sr X.	, , , ,		And the second district of the second district of
b)	PH ₃ >H ₂ S > HC	$_{\mathrm{cl}}$ \times	60	(F CH)	-51
c)	HClO > HClO ₂	> HClO ₃ ×		5 [2.3+]	0 3
d)	HClO > HClO ₃				
	$\backslash HF > H_2O > NH$		Marian Marian Mariantan	60 H	, 4,69
(e)) III > 1120 > NE	13	01	1.5	4.634
				-	3 2 7
		5	2 7	204,10-5	

Qn. Which of the following solutions has the LOWEST pH value?

ALFAJER

التاريخ موضوع الدرس NOOH (0.5-02) (0.4+6.2) Not Had 0.3 0.60 pH = p | can + log 0.600 1000 ml = 14 0,2 md 114 0.2 M . F 2 log (3.5 x 10 8) + day (0.6) oct -Strong